101
|
Contribution of sex hormones to gender differences in schizophrenia: A review. Asian J Psychiatr 2015; 18:2-14. [PMID: 26321672 DOI: 10.1016/j.ajp.2015.07.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/14/2015] [Accepted: 07/25/2015] [Indexed: 12/22/2022]
Abstract
Female patients with schizophrenia tend to have a more benign course and better outcomes than males. One proposed explanation is the differential influence of male and female sex hormones, including estrogen, progesterone, testosterone, and dehydroepiandrosterone (DHEA) and its sulfate (DHEAS). Such benefit may be mediated by their effects on neurotransmitters and neuroprotection. Besides altered estrogen and DHEA/DHEAS levels in female patients, data is equivocal on hormonal differences between patients and controls. However, several reports note a mostly negative correlation between estrogen levels and symptom severity in both genders, and a positive correlation between estrogen levels and neurocognition but mainly in females. Adjunctive estrogen appears to improve symptoms in both genders. Progesterone levels have inconsistent links to symptom severity in both genders, and correlate positively with neurocognition but only in males. Estrogen-progesterone combination shows preliminary benefits as augmentation for both symptoms and neurocognition in females. Testosterone levels correlate inversely with negative symptoms in males and have inconsistent associations with neurocognition in both genders. Testosterone augmentation reduced negative symptoms in male patients in a pilot investigation, but has not been evaluated for neurocognition in either gender. DHEA/DHEAS have mixed results for their association with, and clinical utility for, symptoms and neurocognition in both genders. Overall, data on the impact of sex hormones on clinical course or as treatment for schizophrenia is limited, but estrogen has most evidence for positive influence and clinical benefit. The possibly greater tolerability and broader impact of these hormones versus existing medications support further exploration of their use.
Collapse
|
102
|
Reeve S, Sheaves B, Freeman D. The role of sleep dysfunction in the occurrence of delusions and hallucinations: A systematic review. Clin Psychol Rev 2015; 42:96-115. [PMID: 26407540 PMCID: PMC4786636 DOI: 10.1016/j.cpr.2015.09.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/24/2015] [Accepted: 09/03/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Sleep dysfunction is extremely common in patients with schizophrenia. Recent research indicates that sleep dysfunction may contribute to psychotic experiences such as delusions and hallucinations. OBJECTIVES The review aims to evaluate the evidence for a relationship between sleep dysfunction and individual psychotic experiences, make links between the theoretical understanding of each, and highlight areas for future research. METHOD A systematic search was conducted to identify studies investigating sleep and psychotic experiences across clinical and non-clinical populations. RESULTS 66 papers were identified. This literature robustly supports the co-occurrence of sleep dysfunction and psychotic experiences, particularly insomnia with paranoia. Sleep dysfunction predicting subsequent psychotic experiences receives support from epidemiological surveys, research on the transition to psychosis, and relapse studies. There is also evidence that reducing sleep elicits psychotic experiences in non-clinical individuals, and that improving sleep in individuals with psychosis may lessen psychotic experiences. Anxiety and depression consistently arise as (partial) mediators of the sleep and psychosis relationship. CONCLUSION Studies are needed that: determine the types of sleep dysfunction linked to individual psychotic experiences; establish a causal connection between sleep and psychotic experiences; and assess treatments for sleep dysfunction in patients with non-affective psychotic disorders such as schizophrenia.
Collapse
Affiliation(s)
- Sarah Reeve
- Department of Psychiatry, University of Oxford, UK
| | | | | |
Collapse
|
103
|
Kalmady SV, Shivakumar V, Gautham S, Arasappa R, Jose DA, Venkatasubramanian G, Gangadhar BN. Dermatoglyphic correlates of hippocampus volume: Evaluation of aberrant neurodevelopmental markers in antipsychotic-naïve schizophrenia. Psychiatry Res 2015; 234:113-20. [PMID: 26385539 DOI: 10.1016/j.pscychresns.2015.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 07/23/2015] [Accepted: 09/02/2015] [Indexed: 12/31/2022]
Abstract
Schizophrenia is a disorder of aberrant neurodevelopment is marked by abnormalities in brain structure and dermatoglyphic traits. However, the link between these two (i.e. dermatoglyphic parameters and brain structure) which share ectodermal origin and common developmental window has not been explored extensively. The current study examined dermatoglyphic correlates of hippocampal volume in antipsychotic-naïve schizophrenia patients in comparison with matched healthy controls. Ridge counts and asymmetry measures for palmar inter-digital areas (a-b, b-c, c-d) were obtained using high resolution digital scans of palms from 89 schizophrenia patients [M:F=48:41] and 48 healthy controls [M:F=30:18]. Brain scans were obtained for subset of subjects including 26 antipsychotic-naïve patients [M:F=13:13] and 29 healthy controls [M:F=19:10] using 3 T-MRI. Hippocampal volume and palmar ridge counts were measured by blinded raters with good inter-rater reliability using valid methods. Directional asymmetry (DA) of b-c and bilateral hippocampal volume were significantly lower in patients than controls. Significant positive correlation was found between DA and ridge count of b-c with bilateral anterior hippocampal volume. Study demonstrates the utility of dermatoglyphic markers in identifying structural changes in the brain which may form the basis for neurodevelopmental pathogenesis in schizophrenia.
Collapse
Affiliation(s)
- Sunil V Kalmady
- InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, NIMHANS, Bangalore, India
| | - Venkataram Shivakumar
- InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, NIMHANS, Bangalore, India
| | - S Gautham
- Translational Psychiatry Laboratory, Neurobiology Research Centre, NIMHANS, Bangalore, India
| | - Rashmi Arasappa
- InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, NIMHANS, Bangalore, India
| | - Dania A Jose
- Translational Psychiatry Laboratory, Neurobiology Research Centre, NIMHANS, Bangalore, India
| | - Ganesan Venkatasubramanian
- InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, NIMHANS, Bangalore, India.
| | - B N Gangadhar
- InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, NIMHANS, Bangalore, India
| |
Collapse
|
104
|
Xie J, Gizatullin R, Vukojevic V, Leopardi R. The CCDC55 couples cannabinoid receptor CNR1 to a putative DISC1 schizophrenia pathway. Neuroscience 2015; 310:723-30. [PMID: 26475744 DOI: 10.1016/j.neuroscience.2015.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE Our previous study suggested that the coiled coil domain-containing 55 gene (CCDC55), also named as NSRP1 (nuclear speckle splicing regulatory protein 1 (NSRP1)), was encompassed in a haplotype block spanning over the serotonin transporter (5-HTT) gene in patients with schizophrenia (SCZ). However, the neurobiological function of CCDC55 gene remains unknown. This study aims to uncover the potential role of CCDC55 in SCZ-associated molecular pathways. EXPERIMENTAL DESIGN Using molecular cloning, sequencing and immune blotting to identify basic properties, yeast two-hybrid screening and glutathione S-transferase (GST) pull-down assay to test protein-protein interaction, and confocal laser scanning microscopy (CSLM) to show intracellular interaction of proteins. PRINCIPAL FINDINGS (i) CCDC55 is expressed as a nuclear protein in human neuronal cells; (ii) Protein-protein interaction analyses showed CCDC55 physically interacted with Ran binding protein 9 (RanBP9) and disrupted in schizophrenia 1 (DISC1); (iii) CCDC55 and RanBP9 co-localized in the nucleus of human neuronal cells; (iv) CCDC55 also interacted with the cannabinoid receptor 1 (CNR1), and with the brain cannabinoid receptor-interacting protein 1a (CNRIP1a); (v) CNR1 activation in differentiated human neuronal cells resulted in an altered RanBP9 localization. CONCLUSION CCDC55 may be involved in a functional bridging between the CNR1 activation and the DISC1/RanBP9-associated pathways.
Collapse
Affiliation(s)
- J Xie
- Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
| | - R Gizatullin
- Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - V Vukojevic
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - R Leopardi
- Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
105
|
Rapado-Castro M, Bartholomeusz CF, Castro-Fornieles J, González-Pinto A, Otero S, Baeza I, Moreno C, Graell M, Janssen J, Bargalló N, Pantelis C, Desco M, Arango C. Gender effects on brain changes in early-onset psychosis. Eur Child Adolesc Psychiatry 2015; 24:1193-205. [PMID: 25589436 DOI: 10.1007/s00787-014-0669-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/18/2014] [Indexed: 11/24/2022]
Abstract
Progressive loss of cortical gray matter (GM) and increase of cerebrospinal fluid (CSF) have been reported in early-onset psychosis (EOP). EOP typically begins during adolescence, a time when developmental brain trajectories differ by gender. This study aimed to determine gender differences in progression of brain changes in this population. A sample of 61 (21 females) adolescents with a first psychotic episode and a matched sample of 70 (23 females) controls underwent both baseline and 2-year follow-up anatomical brain imaging assessments. Regional GM and CSF volumes were obtained using automated methods based on the Talairach's proportional grid system. At baseline, only male patients showed a clear pattern of alterations in the frontal lobe relative to controls (smaller GM and larger CSF volumes). However, parallel longitudinal changes for male and female patients relative to controls were observed, resulting in a common pattern of brain changes across both genders: rate of left frontal lobe GM volume loss was larger in male (-3.8%) and female patients (-4.2%) than in controls (-0.7% males; -0.4% females). The reverse was found for the CSF volume in the left frontal lobe. While the GM and CSF volumes of females with EOP appear to be within the normal range at initial illness onset, our results point to a similar trajectory of increased/accelerated brain changes in both male and female patients with EOP. The pattern of progression of brain changes in psychosis appears to be independent of gender or structural alterations on appearance of psychotic symptoms.
Collapse
Affiliation(s)
- Marta Rapado-Castro
- Child and Adolescent Psychiatry Department, CIBERSAM, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid, Spain.
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, 161 Barry Street, Carlton South, VIC, 3053, Australia.
| | - Cali F Bartholomeusz
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, 161 Barry Street, Carlton South, VIC, 3053, Australia
| | - Josefina Castro-Fornieles
- Child Psychiatry and Psychology Department, Neurosciences Institute, Hospital Clinic de Barcelona, IDIBAPS, SGR-1119, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain
- Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain
| | - Ana González-Pinto
- Hospital Santiago Apóstol de Vitoria, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Kronikgune, EHU-UPV, Vitoria, Spain
| | - Soraya Otero
- Child Psychiatry Unit, Hospital Universitario Marqués de Valdecilla, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Santander, Spain
| | - Inmaculada Baeza
- Child Psychiatry and Psychology Department, Neurosciences Institute, Hospital Clinic de Barcelona, IDIBAPS, SGR-1119, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain
- Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain
| | - Carmen Moreno
- Child and Adolescent Psychiatry Department, CIBERSAM, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Montserrat Graell
- Psychiatry and Psychology Department, Hospital Infantil Universitario Niño Jesús, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| | - Joost Janssen
- Child and Adolescent Psychiatry Department, CIBERSAM, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid, Spain
- Medicina y Cirugía Experimental, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, CIBERSAM, Madrid, Spain
| | - Nuria Bargalló
- Image Diagnostic Center, Hospital Clinic de Barcelona, IDIBAPS, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, 161 Barry Street, Carlton South, VIC, 3053, Australia
| | - Manuel Desco
- Department of Bioengineering and Aerospatial Engineering, University Carlos III de Madrid, Madrid, Spain
- Medicina y Cirugía Experimental, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, CIBERSAM, Madrid, Spain
| | - Celso Arango
- Child and Adolescent Psychiatry Department, CIBERSAM, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
106
|
O’Reilly K, Donohoe G, Coyle C, O’Sullivan D, Rowe A, Losty M, McDonagh T, McGuinness L, Ennis Y, Watts E, Brennan L, Owens E, Davoren M, Mullaney R, Abidin Z, Kennedy HG. Prospective cohort study of the relationship between neuro-cognition, social cognition and violence in forensic patients with schizophrenia and schizoaffective disorder. BMC Psychiatry 2015; 15:155. [PMID: 26159728 PMCID: PMC4496853 DOI: 10.1186/s12888-015-0548-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/30/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND There is a broad literature suggesting that cognitive difficulties are associated with violence across a variety of groups. Although neurocognitive and social cognitive deficits are core features of schizophrenia, evidence of a relationship between cognitive impairments and violence within this patient population has been mixed. METHODS We prospectively examined whether neurocognition and social cognition predicted inpatient violence amongst patients with schizophrenia and schizoaffective disorder (n = 89; 10 violent) over a 12 month period. Neurocognition and social cognition were assessed using the MATRICS Consensus Cognitive Battery (MCCB). RESULTS Using multivariate analysis neurocognition and social cognition variables could account for 34 % of the variance in violent incidents after controlling for age and gender. Scores on a social cognitive reasoning task (MSCEIT) were significantly lower for the violent compared to nonviolent group and produced the largest effect size. Mediation analysis showed that the relationship between neurocognition and violence was completely mediated by each of the following variables independently: social cognition (MSCEIT), symptoms (PANSS Total Score), social functioning (SOFAS) and violence proneness (HCR-20 Total Score). There was no evidence of a serial pathway between neurocognition and multiple mediators and violence, and only social cognition and violence proneness operated in parallel as significant mediators accounting for 46 % of the variance in violent incidents. There was also no evidence that neurocogniton mediated the relationship between any of these variables and violence. CONCLUSIONS Of all the predictors examined, neurocognition was the only variable whose effects on violence consistently showed evidence of mediation. Neurocognition operates as a distal risk factor mediated through more proximal factors. Social cognition in contrast has a direct effect on violence independent of neurocognition, violence proneness and symptom severity. The neurocognitive impairment experienced by patients with schizophrenia spectrum disorders may create the foundation for the emergence of a range of risk factors for violence including deficits in social reasoning, symptoms, social functioning, and HCR-20 risk items, which in turn are causally related to violence.
Collapse
Affiliation(s)
- Ken O’Reilly
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland ,National Forensic Mental Health Service, Central Mental Hospital, Dundrum, Dublin 14, Ireland
| | - Gary Donohoe
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland.
| | - Ciaran Coyle
- National Forensic Mental Health Service, Central Mental Hospital, Dundrum, Dublin 14, Ireland.
| | - Danny O’Sullivan
- National Forensic Mental Health Service, Central Mental Hospital, Dundrum, Dublin 14, Ireland
| | - Arann Rowe
- National Forensic Mental Health Service, Central Mental Hospital, Dundrum, Dublin 14, Ireland.
| | - Mairead Losty
- National Forensic Mental Health Service, Central Mental Hospital, Dundrum, Dublin 14, Ireland.
| | - Tracey McDonagh
- National Forensic Mental Health Service, Central Mental Hospital, Dundrum, Dublin 14, Ireland.
| | - Lasairiona McGuinness
- National Forensic Mental Health Service, Central Mental Hospital, Dundrum, Dublin 14, Ireland.
| | - Yvette Ennis
- National Forensic Mental Health Service, Central Mental Hospital, Dundrum, Dublin 14, Ireland.
| | - Elizabeth Watts
- National Forensic Mental Health Service, Central Mental Hospital, Dundrum, Dublin 14, Ireland.
| | - Louise Brennan
- National Forensic Mental Health Service, Central Mental Hospital, Dundrum, Dublin 14, Ireland.
| | - Elizabeth Owens
- National Forensic Mental Health Service, Central Mental Hospital, Dundrum, Dublin 14, Ireland.
| | - Mary Davoren
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland. .,National Forensic Mental Health Service, Central Mental Hospital, Dundrum, Dublin 14, Ireland.
| | - Ronan Mullaney
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland. .,National Forensic Mental Health Service, Central Mental Hospital, Dundrum, Dublin 14, Ireland.
| | - Zareena Abidin
- National Forensic Mental Health Service, Central Mental Hospital, Dundrum, Dublin 14, Ireland.
| | - Harry G Kennedy
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland. .,National Forensic Mental Health Service, Central Mental Hospital, Dundrum, Dublin 14, Ireland.
| |
Collapse
|
107
|
Liu CH, Keshavan MS, Tronick E, Seidman LJ. Perinatal Risks and Childhood Premorbid Indicators of Later Psychosis: Next Steps for Early Psychosocial Interventions. Schizophr Bull 2015; 41:801-16. [PMID: 25904724 PMCID: PMC4466191 DOI: 10.1093/schbul/sbv047] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Schizophrenia and affective psychoses are debilitating disorders that together affect 2%-3% of the adult population. Approximately 50%-70% of the offspring of parents with schizophrenia manifest a range of observable difficulties including socioemotional, cognitive, neuromotor, speech-language problems, and psychopathology, and roughly 10% will develop psychosis. Despite the voluminous work on premorbid vulnerabilities to psychosis, especially on schizophrenia, the work on premorbid intervention approaches is scarce. While later interventions during the clinical high-risk (CHR) phase of psychosis, characterized primarily by attenuated positive symptoms, are promising, the CHR period is a relatively late phase of developmental derailment. This article reviews and proposes potential targets for psychosocial interventions during the premorbid period, complementing biological interventions described by others in this Special Theme issue. Beginning with pregnancy, parents with psychoses may benefit from enhanced prenatal care, social support, parenting skills, reduction of symptoms, and programs that are family-centered. For children at risk, we propose preemptive early intervention and cognitive remediation. Empirical research is needed to evaluate these interventions for parents and determine whether interventions for parents and children positively influence the developmental course of the offspring.
Collapse
Affiliation(s)
- Cindy H Liu
- Department of Psychiatry, Harvard Medical School, Massachusetts Mental Health Center Division of Public Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA; Department of Psychology, University of Massachusetts, Boston, MA;
| | - Matcheri S Keshavan
- Department of Psychiatry, Harvard Medical School, Massachusetts Mental Health Center Division of Public Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA
| | - Ed Tronick
- Department of Psychology, University of Massachusetts, Boston, MA; Department of Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Larry J Seidman
- Department of Psychiatry, Harvard Medical School, Massachusetts Mental Health Center Division of Public Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA; Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
108
|
Keshavan MS, Mehta UM, Padmanabhan JL, Shah JL. Dysplasticity, metaplasticity, and schizophrenia: Implications for risk, illness, and novel interventions. Dev Psychopathol 2015; 27:615-35. [PMID: 25997775 PMCID: PMC6283269 DOI: 10.1017/s095457941500019x] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this paper, we review the history of the concept of neuroplasticity as it relates to the understanding of neuropsychiatric disorders, using schizophrenia as a case in point. We briefly review the myriad meanings of the term neuroplasticity, and its neuroscientific basis. We then review the evidence for aberrant neuroplasticity and metaplasticity associated with schizophrenia as well as the risk for developing this illness, and discuss the implications of such understanding for prevention and therapeutic interventions. We argue that the failure and/or altered timing of plasticity of critical brain circuits might underlie cognitive and deficit symptoms, and may also lead to aberrant plastic reorganization in other circuits, leading to affective dysregulation and eventually psychosis. This "dysplastic" model of schizophrenia can suggest testable etiology and treatment-relevant questions for the future.
Collapse
Affiliation(s)
- Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Urvakhsh Meherwan Mehta
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Jaya L. Padmanabhan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Jai L. Shah
- Douglas Hospital Research Center and Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
109
|
Naaijen J, Lythgoe DJ, Amiri H, Buitelaar JK, Glennon JC. Fronto-striatal glutamatergic compounds in compulsive and impulsive syndromes: A review of magnetic resonance spectroscopy studies. Neurosci Biobehav Rev 2015; 52:74-88. [DOI: 10.1016/j.neubiorev.2015.02.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 12/20/2014] [Accepted: 02/13/2015] [Indexed: 11/29/2022]
|
110
|
Hippocampal Pruning as a New Theory of Schizophrenia Etiopathogenesis. Mol Neurobiol 2015; 53:2065-2081. [PMID: 25902861 DOI: 10.1007/s12035-015-9174-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/13/2015] [Indexed: 12/20/2022]
Abstract
Pruning in neurons has been suggested to be strongly involved in Schizophrenia's (SKZ) etiopathogenesis in recent biological, imaging, and genetic studies. We investigated the impact of protein-coding genes known to be involved in pruning, collected by a systematic literature research, in shaping the risk for SKZ in a case-control sample of 9,490 subjects (Psychiatric Genomics Consortium). Moreover, their modifications through evolution (humans, chimpanzees, and rats) and subcellular localization (as indicative of their biological function) were also investigated. We also performed a biological pathways (Gene Ontology) analysis. Genetics analyses found four genes (DLG1, NOS1, THBS4, and FADS1) and 17 pathways strongly involved in pruning and SKZ in previous literature findings to be significantly associated with the sample under analysis. The analysis of the subcellular localization found that secreted genes, and so regulatory ones, are the least conserved through evolution and also the most associated with SKZ. Their cell line and regional brain expression analysis found that their areas of primary expression are neuropil and the hippocampus, respectively. At the best of our knowledge, for the first time, we were able to describe the SKZ neurodevelopmental hypothesis starting from a single biological process. We can also hypothesize how alterations in pruning fine regulation and orchestration, strongly related with the evolutionary newest (and so more sensitive) secreted proteins, may be of particular relevance in the hippocampus. This early alteration may lead to a mis-structuration of neural connectivity, resulting in the different brain alteration that characterizes SKZ patients.
Collapse
|
111
|
Thomas MS, Davis R, Karmiloff-Smith A, Knowland VC, Charman T. The over-pruning hypothesis of autism. Dev Sci 2015; 19:284-305. [DOI: 10.1111/desc.12303] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 02/06/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Michael S.C. Thomas
- Developmental Neurocognition Lab; Centre for Brain & Cognitive Development, Birkbeck,University of London; UK
| | - Rachael Davis
- Developmental Neurocognition Lab; Centre for Brain & Cognitive Development, Birkbeck,University of London; UK
| | - Annette Karmiloff-Smith
- Developmental Neurocognition Lab; Centre for Brain & Cognitive Development, Birkbeck,University of London; UK
| | | | - Tony Charman
- Institute of Psychiatry; Psychology & Neuroscience, King's College London; UK
| |
Collapse
|
112
|
Chung Y, Jacobson A, He G, van Erp TGM, McEwen S, Addington J, Bearden CE, Cadenhead K, Cornblatt B, Mathalon DH, McGlashan T, Perkins D, Seidman LJ, Tsuang M, Walker E, Woods SW, Heinssen R, Cannon TD. Prodromal Symptom Severity Predicts Accelerated Gray Matter Reduction and Third Ventricle Expansion Among Clinically High Risk Youth Developing Psychotic Disorders. MOLECULAR NEUROPSYCHIATRY 2015; 1:13-22. [PMID: 26005673 DOI: 10.1159/000371887] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A recent prospective longitudinal neuroimaging study of 274 prodromal risk syndrome subjects revealed that those who later developed full-blown psychotic symptoms exhibited accelerated gray matter loss and third ventricle expansion around the time of onset of psychosis. Previous studies also indicate that higher levels of unusual thought content during prodromal states are a significant predictor of psychosis in clinically high-risk youth (CHR). However, the relationship between clinical symptoms and changes in neuroanatomical structure has not been previously examined in the North American Prodrome Longitudinal Study (NAPLS) sample at the atlas level. In this report, we investigated whether symptom severity as measured by the Scale of Prodromal Symptoms (SOPS) predicted the accelerated gray matter decline in 274 CHR cases, including 35 who converted to psychosis. Higher levels of unusual thought content (pre-delusional) symptoms at baseline were associated with a steeper rate of gray matter loss in the prefrontal cortex bilaterally among converters. In contrast, there was no association found among non-converters. Steeper gray matter loss seems to be unique to those (CHR) individuals with higher levels of sub-psychotic pre-delusional symptoms that acutely worsen in the ramp-up to full-blown psychosis, and as such may reflect pathophysiological processes driving emergence of psychosis.
Collapse
Affiliation(s)
| | | | - George He
- Department of Psychology, Yale University
| | | | - Sarah McEwen
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, UCLA
| | | | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, UCLA
| | | | | | | | | | - Diana Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill ; Renaissance Computing Institute, University of North Carolina, Chapel Hill
| | - Larry J Seidman
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School ; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School
| | | | | | | | - Robert Heinssen
- Division of Treatment and Prevention Research, National Institute of Mental Health
| | - Tyrone D Cannon
- Department of Psychology, Yale University ; Division of Treatment and Prevention Research, National Institute of Mental Health
| |
Collapse
|
113
|
Cannon TD, Chung Y, He G, Sun D, Jacobson A, van Erp TGM, McEwen S, Addington J, Bearden CE, Cadenhead K, Cornblatt B, Mathalon DH, McGlashan T, Perkins D, Jeffries C, Seidman LJ, Tsuang M, Walker E, Woods SW, Heinssen R. Progressive reduction in cortical thickness as psychosis develops: a multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biol Psychiatry 2015; 77:147-57. [PMID: 25034946 PMCID: PMC4264996 DOI: 10.1016/j.biopsych.2014.05.023] [Citation(s) in RCA: 432] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/17/2014] [Accepted: 05/25/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND Individuals at clinical high risk (CHR) who progress to fully psychotic symptoms have been observed to show a steeper rate of cortical gray matter reduction compared with individuals without symptomatic progression and with healthy control subjects. Whether such changes reflect processes associated with the pathophysiology of schizophrenia or exposure to antipsychotic drugs is unknown. METHODS In this multisite study, 274 CHR cases, including 35 individuals who converted to psychosis, and 135 healthy comparison subjects were scanned with magnetic resonance imaging at baseline, 12-month follow-up, or the point of conversion for the subjects who developed fully psychotic symptoms. RESULTS In a traveling subjects substudy, excellent reliability was observed for measures of cortical thickness and subcortical volumes. Controlling for multiple comparisons throughout the brain, CHR subjects who converted to psychosis showed a steeper rate of gray matter loss in the right superior frontal, middle frontal, and medial orbitofrontal cortical regions as well as a greater rate of expansion of the third ventricle compared with CHR subjects who did not convert to psychosis and healthy control subjects. Differential tissue loss was present in subjects who had not received antipsychotic medications during the interscan interval and was predicted by baseline levels of an aggregate measure of proinflammatory cytokines in plasma. CONCLUSIONS These findings demonstrate that the brain changes are not explained by exposure to antipsychotic drugs but likely play a role in psychosis pathophysiology. Given that the cortical changes were more pronounced in subjects with briefer durations of prodromal symptoms, contributing factors may predominantly play a role in acute-onset forms of psychosis.
Collapse
Affiliation(s)
- Tyrone D Cannon
- Departments of Psychology, Yale University, New Haven, Connecticut; Departments of Psychiatry, Yale University, New Haven, Connecticut.
| | - Yoonho Chung
- Departments of Psychology, Yale University, New Haven, Connecticut
| | - George He
- Departments of Psychology, Yale University, New Haven, Connecticut
| | - Daqiang Sun
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Aron Jacobson
- Departments of Psychology, Yale University, New Haven, Connecticut
| | - Theo G M van Erp
- Department of Psychiatry, University of California, Irvine, Irvine, California
| | - Sarah McEwen
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Jean Addington
- Department of Psychiatry (JA), University of Calgary, Calgary, Alberta, Canada
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Kristin Cadenhead
- Department of Psychiatry, University of California, San Diego, San Diego, California
| | - Barbara Cornblatt
- Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, New York
| | - Daniel H Mathalon
- Department of Psychiatry, University of California, San Francisco, San Francisco, California
| | - Thomas McGlashan
- Departments of Psychiatry, Yale University, New Haven, Connecticut
| | - Diana Perkins
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Clark Jeffries
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Larry J Seidman
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ming Tsuang
- Department of Psychiatry, University of California, San Diego, San Diego, California
| | - Elaine Walker
- Department of Psychology, Emory University, Atlanta, Georgia
| | - Scott W Woods
- Departments of Psychiatry, Yale University, New Haven, Connecticut
| | - Robert Heinssen
- Division of Treatment and Prevention Research, National Institute of Mental Health, Rockville, Maryland
| |
Collapse
|
114
|
Abstract
Cognitive impairment is a common feature of schizophrenia; however, its origin remains controversial. Neurodevelopmental abnormalities clearly play a role in pre-morbid cognitive dysfunction in schizophrenia, yet many authors believe that schizophrenia is characterized by illness-related cognitive decline before and after onset of the psychosis that can be the result of neurodegenerative changes. The main reasons behinds such arguments include, first, the evidence showing that effect sizes of the cognitive deficits in subjects who develop adult schizophrenia gradually increase in the first two decades of life and, second, the fact that there is functional decline in many patients with schizophrenia over the years. In this Editorial, I argue that current evidence suggests that illness-related cognitive impairment is neurodevelopmental in origin and characterized by slower gain (developmental lag) but not cognitive decline continuing throughout the first two decades of life. I introduce a model suggesting that neurodevelopmental abnormality can in fact explain the course of cognitive dysfunction and variations in the trajectory of functional decline throughout the life in individuals with schizophrenia. In this model, the severity of underlying neurodevelopmental abnormality determines the age that cognitive deficits first become apparent and contributes to the cognitive reserve of the individual. Interaction of neurodevelopmental abnormality with clinical symptoms, especially negative symptoms and aging, vascular changes, psychological and iatrogenic factors contributes to the heterogeneity of the functional trajectory observed in this disorder.
Collapse
Affiliation(s)
- E Bora
- Melbourne Neuropsychiatry Centre, Department of Psychiatry,The University of Melbourne and Melbourne Health,VIC,Australia
| |
Collapse
|
115
|
Mychasiuk R, Hehar H, Ma I, Kolb B, Esser MJ. The development of lasting impairments: a mild pediatric brain injury alters gene expression, dendritic morphology, and synaptic connectivity in the prefrontal cortex of rats. Neuroscience 2014; 288:145-55. [PMID: 25555930 DOI: 10.1016/j.neuroscience.2014.12.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 01/04/2023]
Abstract
Apart from therapeutic discovery, the study of mild traumatic brain injury (mTBI) has been focused on two challenges: why do a majority of individuals recover with little concern, while a considerable proportion suffer with persistent and often debilitating symptomology; and, how do mild injuries significantly increase risk for an early-onset neurodegeneration? Owing to a lack of observable damage following mTBI, this study was designed to determine if there were changes in neuronal morphology, synaptic connectivity, and epigenetic patterning that could contribute to the manifestation of persistent neurological dysfunction. Prefrontal cortex tissue from male and female rats was used for Golgi-Cox analysis along with the profiling of changes in gene expression (BDNF, DNMT1, FGF2, IGF1, Nogo-A, OXYR, and TERT) and telomere length (TL), following a single mTBI or sham injury in the juvenile period. Golgi-Cox analysis of dendritic branch order, dendritic length, and spine density demonstrate that an early mTBI increases complexity of pyramidal neurons in the mPFC. Furthermore, there are also substantial changes in the expression levels of the seven genes of interest and TL following a single mild injury in this brain region. The results from the neuroanatomical measures and changes in gene expression indicate that the mTBI disrupts normal pruning processes that are typically underway at this point in development. In addition, there are significant interactions between the social environment and epigenetic processes that work in concert to perpetuate neurological dysfunction.
Collapse
Affiliation(s)
- R Mychasiuk
- Alberta Children's Hospital Research Institute, University of Calgary, Faculty of Medicine, Calgary, Canada.
| | - H Hehar
- Alberta Children's Hospital Research Institute, University of Calgary, Faculty of Medicine, Calgary, Canada
| | - I Ma
- Alberta Children's Hospital Research Institute, University of Calgary, Faculty of Medicine, Calgary, Canada
| | - B Kolb
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - M J Esser
- Alberta Children's Hospital Research Institute, University of Calgary, Faculty of Medicine, Calgary, Canada
| |
Collapse
|
116
|
Bitanihirwe BKY, Woo TUW. Transcriptional dysregulation of γ-aminobutyric acid transporter in parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia. Psychiatry Res 2014; 220:1155-9. [PMID: 25312391 PMCID: PMC4447488 DOI: 10.1016/j.psychres.2014.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/15/2014] [Accepted: 09/23/2014] [Indexed: 12/18/2022]
Abstract
Parvalbumin (PV)-containing neurons are functionally compromised in schizophrenia. Using double in situ hybridization in postmortem human prefrontal cortex, we found that the messenger RNA (mRNA) for the γ-aminobutyric acid (GABA) transporter GAT-1 was undetectable in 22-41% of PV neurons in layers 3-4 in schizophrenia. In the remaining PV neurons with detectable GAT-1 mRNA, transcript expression was decreased by 26% in layer 3. Hence, the dysfunction of PV neurons involves the molecular dysregulation of presynaptic GABA reuptake.
Collapse
Affiliation(s)
- Byron K. Y. Bitanihirwe
- System and Cell Biology of Neurodegeneration, University of Zürich, Zürich, Switzerland,Program in Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
| | - Tsung-Ung W. Woo
- Program in Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA,Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
117
|
Moyer CE, Shelton MA, Sweet RA. Dendritic spine alterations in schizophrenia. Neurosci Lett 2014; 601:46-53. [PMID: 25478958 DOI: 10.1016/j.neulet.2014.11.042] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 12/19/2022]
Abstract
Schizophrenia is a chronic illness affecting approximately 0.5-1% of the world's population. The etiology of schizophrenia is complex, including multiple genes, and contributing environmental effects that adversely impact neurodevelopment. Nevertheless, a final common result, present in many subjects with schizophrenia, is impairment of pyramidal neuron dendritic morphology in multiple regions of the cerebral cortex. In this review, we summarize the evidence of reduced dendritic spine density and other dendritic abnormalities in schizophrenia, evaluate current data that informs the neurodevelopment timing of these impairments, and discuss what is known about possible upstream sources of dendritic spine loss in this illness.
Collapse
Affiliation(s)
- Caitlin E Moyer
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Micah A Shelton
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Robert A Sweet
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; VISN 4 Mental Illness Research, Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA.
| |
Collapse
|
118
|
Keshavan MS, Giedd J, Lau JYF, Lewis DA, Paus T. Changes in the adolescent brain and the pathophysiology of psychotic disorders. Lancet Psychiatry 2014; 1:549-58. [PMID: 26361314 DOI: 10.1016/s2215-0366(14)00081-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/23/2014] [Indexed: 10/24/2022]
Abstract
Adolescence is a time of extensive neuroanatomical, functional, and chemical reorganisation of the brain which parallels substantial maturational changes in cognition and affect regulation. This period is characterised by stabilisation of synapses to diminish redundancy and increase efficiency of neural function, fine-tuning of excitatory and inhibitory neurotransmitter systems, beginning of integration between late maturing and early maturing brain structures, and development of effective connections. In effect, these so-called moving parts create a state of dynamic change that might underlie adolescent behaviours. Imbalances or changes in timing of these developmental processes clearly increase the risk for psychiatric disorders. Genetic, environmental, and epigenetic factors that shape brain development and hormonal changes that affect stress reactivity could be reasons why some, but not all, adolescents are at a heightened risk of developing a psychopathological disorder. In this Series paper, we assess the neurobiology of the changing adolescent brain, implications of this knowledge, and future research in major psychiatric disorders, particularly for psychotic disorders.
Collapse
Affiliation(s)
- Matcheri S Keshavan
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA.
| | - Jay Giedd
- Brain Imaging Section, Child Psychiatry Branch, NIMH, Bethesda, MD, USA
| | | | - David A Lewis
- Department of Psychiatry, Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA
| | - Tomáš Paus
- Rotman Research Institute and Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
119
|
Lubman DI, Cheetham A, Yücel M. Cannabis and adolescent brain development. Pharmacol Ther 2014; 148:1-16. [PMID: 25460036 DOI: 10.1016/j.pharmthera.2014.11.009] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 11/03/2014] [Indexed: 12/14/2022]
Abstract
Heavy cannabis use has been frequently associated with increased rates of mental illness and cognitive impairment, particularly amongst adolescent users. However, the neurobiological processes that underlie these associations are still not well understood. In this review, we discuss the findings of studies examining the acute and chronic effects of cannabis use on the brain, with a particular focus on the impact of commencing use during adolescence. Accumulating evidence from both animal and human studies suggests that regular heavy use during this period is associated with more severe and persistent negative outcomes than use during adulthood, suggesting that the adolescent brain may be particularly vulnerable to the effects of cannabis exposure. As the endocannabinoid system plays an important role in brain development, it is plausible that prolonged use during adolescence results in a disruption in the normative neuromaturational processes that occur during this period. We identify synaptic pruning and white matter development as two processes that may be adversely impacted by cannabis exposure during adolescence. Potentially, alterations in these processes may underlie the cognitive and emotional deficits that have been associated with regular use commencing during adolescence.
Collapse
Affiliation(s)
- Dan I Lubman
- Turning Point, Eastern Health and Eastern Health Clinical School, Monash University, Victoria, Australia.
| | - Ali Cheetham
- Turning Point, Eastern Health and Eastern Health Clinical School, Monash University, Victoria, Australia
| | - Murat Yücel
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia; Monash Clinical & Imaging Neuroscience, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
120
|
Nosarti C, Nam KW, Walshe M, Murray RM, Cuddy M, Rifkin L, Allin MPG. Preterm birth and structural brain alterations in early adulthood. NEUROIMAGE-CLINICAL 2014; 6:180-91. [PMID: 25379430 PMCID: PMC4215396 DOI: 10.1016/j.nicl.2014.08.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/05/2014] [Accepted: 08/10/2014] [Indexed: 12/15/2022]
Abstract
Alterations in cortical development and impaired neurodevelopmental outcomes have been described following very preterm (VPT) birth in childhood and adolescence, but only a few studies to date have investigated grey matter (GM) and white matter (WM) maturation in VPT samples in early adult life. Using voxel-based morphometry (VBM) we studied regional GM and WM volumes in 68 VPT-born individuals (mean gestational age 30 weeks) and 43 term-born controls aged 19–20 years, and their association with cognitive outcomes (Hayling Sentence Completion Test, Controlled Oral Word Association Test, Visual Reproduction test of the Wechsler Memory Scale-Revised) and gestational age. Structural MRI data were obtained with a 1.5 Tesla system and analysed using the VBM8 toolbox in SPM8 with a customized study-specific template. Similarly to results obtained at adolescent assessment, VPT young adults compared to controls demonstrated reduced GM volume in temporal, frontal, insular and occipital areas, thalamus, caudate nucleus and putamen. Increases in GM volume were noted in medial/anterior frontal gyrus. Smaller subcortical WM volume in the VPT group was observed in temporal, parietal and frontal regions, and in a cluster centred on posterior corpus callosum/thalamus/fornix. Larger subcortical WM volume was found predominantly in posterior brain regions, in areas beneath the parahippocampal and occipital gyri and in cerebellum. Gestational age was associated with GM and WM volumes in areas where VPT individuals demonstrated GM and WM volumetric alterations, especially in temporal, parietal and occipital regions. VPT participants scored lower than controls on measures of IQ, executive function and non-verbal memory. When investigating GM and WM alterations and cognitive outcome scores, subcortical WM volume in an area beneath the left inferior frontal gyrus accounted for 14% of the variance of full-scale IQ (F = 12.9, p < 0.0001). WM volume in posterior corpus callosum/thalamus/fornix and GM volume in temporal gyri bilaterally, accounted for 21% of the variance of executive function (F = 9.9, p < 0.0001) and WM in the posterior corpus callosum/thalamus/fornix alone accounted for 17% of the variance of total non-verbal memory scores (F = 9.9, p < 0.0001). These results reveal that VPT birth continues to be associated with altered structural brain anatomy in early adult life, although it remains to be ascertained whether these changes reflect neurodevelopmental delays or long lasting structural alterations due to prematurity. GM and WM alterations correlate with length of gestation and mediate cognitive outcome. Preterm birth is associated with brain alterations in early adulthood Preterm birth affects maturation of both white and grey matter Volume alterations are observed in temporal, frontal, parietal and occipital areas Regional alterations mediate the effects of preterm birth on cognitive functioning
Collapse
Affiliation(s)
- Chiara Nosarti
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, De Crespigny Park, SE58AF London, UK
| | - Kie Woo Nam
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, De Crespigny Park, SE58AF London, UK
| | - Muriel Walshe
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, De Crespigny Park, SE58AF London, UK
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, De Crespigny Park, SE58AF London, UK
| | - Marion Cuddy
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, De Crespigny Park, SE58AF London, UK
| | - Larry Rifkin
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, De Crespigny Park, SE58AF London, UK
| | - Matthew P G Allin
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, De Crespigny Park, SE58AF London, UK
| |
Collapse
|
121
|
Abstract
The clinical symptoms and cognitive and functional deficits of schizophrenia typically begin to gradually emerge during late adolescence and early adulthood. Recent findings suggest that disturbances of a specific subset of inhibitory neurons that contain the calcium-binding protein parvalbumin (PV), which may regulate the course of postnatal developmental experience-dependent synaptic plasticity in the cerebral cortex, including the prefrontal cortex (PFC), may be involved in the pathogenesis of the onset of this illness. Specifically, converging lines of evidence suggest that oxidative stress, extracellular matrix (ECM) deficit and impaired glutamatergic innervation may contribute to the functional impairment of PV neurons, which may then lead to aberrant developmental synaptic pruning of pyramidal cell circuits during adolescence in the PFC. In addition to promoting the functional integrity of PV neurons, maturation of ECM may also play an instrumental role in the termination of developmental PFC synaptic pruning; thus, ECM deficit can directly lead to excessive loss of synapses by prolonging the course of pruning. Together, these mechanisms may contribute to the onset of schizophrenia by compromising the integrity, stability, and fidelity of PFC connectional architecture that is necessary for reliable and predictable information processing. As such, further characterization of these mechanisms will have implications for the conceptualization of rational strategies for the diagnosis, early intervention, and prevention of this debilitating disorder.
Collapse
Affiliation(s)
- Tsung-Ung W Woo
- Laboratory of Cellular Neuropathology, MRC303E, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA,
| |
Collapse
|
122
|
Mirzakhanian H, Singh F, Cadenhead KS. Biomarkers in psychosis: an approach to early identification and individualized treatment. Biomark Med 2014; 8:51-7. [PMID: 24325224 DOI: 10.2217/bmm.13.134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Numerous biomarkers for somatic disorders are used in routine medical practice. Yet, despite remarkable advances in mental health research, we are not able to identify biomarkers with established clinical utility for mental disorders such as schizophrenia. While identification and characterization of biomarkers are crucial first steps in this process, their predictive diagnostic and treatment utility need to be better developed for clinical practice. The heterogeneity of psychotic disorders etiologically, pathologically and symptomatically presents both a challenge and an opportunity for the use of biomarkers in clinical practice. Simply said, a single biomarker might not exist that necessitates the search for a biomarker profile. In this review we discuss research findings in light of such an approach. We summarize some examples of emerging biomarkers in early psychosis research and delineate how these can be applied to a clinical setting to inform treatment on an individual basis fostering a personalized treatment approach.
Collapse
Affiliation(s)
- Heline Mirzakhanian
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0810, USA
| | | | | |
Collapse
|
123
|
Haller CS, Padmanabhan JL, Lizano P, Torous J, Keshavan M. Recent advances in understanding schizophrenia. F1000PRIME REPORTS 2014; 6:57. [PMID: 25184047 PMCID: PMC4108956 DOI: 10.12703/p6-57] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Schizophrenia is a highly disabling disorder whose causes remain to be better understood, and treatments have to be improved. However, several recent advances have been made in diagnosis, etiopathology, and treatment. Whereas reliability of diagnosis has improved with operational criteria, including Diagnostic and Statistical Manual of Mental Disorders, (DSM) Fifth Edition, validity of the disease boundaries remains unclear because of substantive overlaps with other psychotic disorders. Recent emphasis on dimensional approaches and translational bio-behavioral research domain criteria may eventually help move toward a neuroscience-based definition of schizophrenia. The etiology of schizophrenia is now thought to be multifactorial, with multiple small-effect and fewer large-effect susceptibility genes interacting with several environmental factors. These factors may lead to developmentally mediated alterations in neuroplasticity, manifesting in a cascade of neurotransmitter and circuit dysfunctions and impaired connectivity with an onset around early adolescence. Such etiopathological understanding has motivated a renewed search for novel pharmacological as well as psychotherapeutic targets. Addressing the core features of the illness, such as cognitive deficits and negative symptoms, and developing hypothesis-driven early interventions and preventive strategies are high-priority goals for the field. Schizophrenia is a severe, chronic mental disorder and is among the most disabling disorders in all of medicine. It is estimated by the National Institute of Mental Health (NIMH) that 2.4 million people over the age of 18 in the US suffer from schizophrenia. This illness typically begins in adolescence and derails the formative goals of school, family, and work, leading to considerable suffering and disability and reduced life expectancy by about 20 years. Treatment outcomes are variable, and some people are successfully treated and reintegrated (i.e. go back to work). Despite the effort of many experts in the field, however, schizophrenia remains a chronic relapsing and remitting disorder associated with significant impairments in social and vocational functioning and a shortened lifespan. Comprehensive treatment entails a multi-modal approach, including psychopharmacology, psychosocial interventions, and assistance with housing and financial sustenance. Research to date suggests a network of genetic, neural, behavioral, and environmental factors to be responsible for its development and course. This article aims to summarize and explain recent advancements in research on schizophrenia, to suggest how these recent discoveries may lead to a better understanding and possible further development of effective therapies, and to highlight the paradigm shifts that have taken place in our understanding of the diagnosis, etiopathology, and treatment.
Collapse
Affiliation(s)
- Chiara S. Haller
- Department of Psychology, Harvard University33 Kirkland street, Cambridge, MA 02138USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center330 Brookline Avenue, Boston, MA 02215USA
| | - Jaya L. Padmanabhan
- Division of Public Psychiatry, Massachusetts Mental Health Center75 Fenwood Road, Boston, MA 02115USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center330 Brookline Avenue, Boston, MA 02215USA
| | - Paulo Lizano
- Division of Public Psychiatry, Massachusetts Mental Health Center75 Fenwood Road, Boston, MA 02115USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center330 Brookline Avenue, Boston, MA 02215USA
| | - John Torous
- Division of Public Psychiatry, Massachusetts Mental Health Center75 Fenwood Road, Boston, MA 02115USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center330 Brookline Avenue, Boston, MA 02215USA
| | - Matcheri Keshavan
- Department of Psychology, Harvard University33 Kirkland street, Cambridge, MA 02138USA
- Harvard Medical SchoolBoston, MA 02115USA
| |
Collapse
|
124
|
Bora E, Murray RM. Meta-analysis of cognitive deficits in ultra-high risk to psychosis and first-episode psychosis: do the cognitive deficits progress over, or after, the onset of psychosis? Schizophr Bull 2014; 40:744-55. [PMID: 23770934 PMCID: PMC4059428 DOI: 10.1093/schbul/sbt085] [Citation(s) in RCA: 332] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cognitive dysfunction is a well-established feature of schizophrenia, and there is evidence suggesting that cognitive deficits are secondary to abnormal neurodevelopment leading to problems in acquiring such abilities. However, it is not clear whether there is also a decline in cognitive performance over, or after, the onset of psychosis. Our objective was to quantitatively examine the longitudinal changes in cognitive function in patients who presented with first-episode psychosis (FEP), ultra-high risk (UHR) for psychosis, and controls. Electronic databases were searched for the studies published between January 1987 and February 2013. All studies reporting longitudinal cognitive data in FEP and UHR subjects were retrieved. We conducted meta-analyses of 25 studies including 905 patients with FEP, 560 patients at UHR, and 405 healthy controls. The cognitive performances of FEP, UHR, and healthy controls all significantly improved over time. There was no publication bias, and distributions of effect sizes were very homogenous. In FEP, the degree of improvement in verbal working memory and executive functions was significantly associated with reduction in negative symptoms. There was no evidence of cognitive decline in patients with UHR and FEP. In contrast, the cognitive performances of both groups improved at follow-up. These findings suggest that cognitive deficits are already established before the prodromal phases of psychosis. These data support the neurodevelopmental model rather than neurodegenerative and related staging models of schizophrenia.
Collapse
Affiliation(s)
- Emre Bora
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Victoria, Australia;
| | - Robin M. Murray
- Department of Psychosis Studies, Institute of Psychiatry, Kings College, De Crespigny Park, London, UK
| |
Collapse
|
125
|
Wheeler AL, Chakravarty MM, Lerch JP, Pipitone J, Daskalakis ZJ, Rajji TK, Mulsant BH, Voineskos AN. Disrupted prefrontal interhemispheric structural coupling in schizophrenia related to working memory performance. Schizophr Bull 2014; 40:914-24. [PMID: 23873858 PMCID: PMC4059434 DOI: 10.1093/schbul/sbt100] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Prominent regional cortical thickness reductions have been shown in schizophrenia. In contrast, little is known regarding alterations of structural coupling between regions in schizophrenia and how these alterations may be related to cognitive impairments in this disorder. METHODS T1-weighted magnetic resonance images were acquired in 54 patients with schizophrenia and 68 healthy control subjects aged 18-55 years. Cortical thickness was compared between groups using a vertex-wise approach. To assess structural coupling, seeds were selected within regions of reduced thickness, and brain-wide cortical thickness correlations were compared between groups. The relationships between identified patterns of circuit structure disruption and cognitive task performance were then explored. RESULTS Prominent cortical thickness reductions were found in patients compared with controls at a 5% false discovery rate in a predominantly frontal and temporal pattern. Correlations of the left dorsolateral prefrontal cortex (DLPFC) with right prefrontal regions were significantly different in patients and controls. The difference remained significant in a subset of 20 first-episode patients. Participants with stronger frontal interhemispheric thickness correlations had poorer working memory performance. CONCLUSIONS We identified structural impairment in a left-right DLPFC circuit in patients with schizophrenia independent of illness stage or medication exposure. The relationship between left-right DLPFC thickness correlations and working memory performance implicates prefrontal interhemispheric circuit impairment as a vulnerability pathway for poor working memory performance. Our findings could guide the development of novel therapeutic interventions aimed at improving working memory performance in patients with schizophrenia.
Collapse
Affiliation(s)
- Anne L Wheeler
- Kimel Family Translational Imaging Genetics Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - M Mallar Chakravarty
- Kimel Family Translational Imaging Genetics Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jason P Lerch
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Jon Pipitone
- Kimel Family Translational Imaging Genetics Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Tarek K Rajji
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Benoit H Mulsant
- Kimel Family Translational Imaging Genetics Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Aristotle N Voineskos
- Kimel Family Translational Imaging Genetics Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada;
| |
Collapse
|
126
|
Bitanihirwe BKY, Woo TUW. Perineuronal nets and schizophrenia: the importance of neuronal coatings. Neurosci Biobehav Rev 2014; 45:85-99. [PMID: 24709070 DOI: 10.1016/j.neubiorev.2014.03.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/19/2014] [Accepted: 03/25/2014] [Indexed: 12/17/2022]
Abstract
Schizophrenia is a complex brain disorder associated with deficits in synaptic connectivity. The insidious onset of this illness during late adolescence and early adulthood has been reported to be dependent on several key processes of brain development including synaptic refinement, myelination and the physiological maturation of inhibitory neural networks. Interestingly, these events coincide with the appearance of perineuronal nets (PNNs), reticular structures composed of components of the extracellular matrix that coat a variety of cells in the mammalian brain. Until recently, the functions of the PNN had remained enigmatic, but are now considered to be important in development of the central nervous system, neuronal protection and synaptic plasticity, all elements which have been associated with schizophrenia. Here, we review the emerging evidence linking PNNs to schizophrenia. Future studies aimed at further elucidating the functions of PNNs will provide new insights into the pathophysiology of schizophrenia leading to the identification of novel therapeutic targets with the potential to restore normal synaptic integrity in the brain of patients afflicted by this illness.
Collapse
Affiliation(s)
| | - Tsung-Ung W Woo
- Program in Cellular Neuropathology, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
127
|
Self-disturbances as a possible premorbid indicator of schizophrenia risk: a neurodevelopmental perspective. Schizophr Res 2014; 152:73-80. [PMID: 23932148 PMCID: PMC3877695 DOI: 10.1016/j.schres.2013.07.038] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/17/2013] [Accepted: 07/19/2013] [Indexed: 02/07/2023]
Abstract
Self-disturbances (SDs) are increasingly identified in schizophrenia and are theorized to confer vulnerability to psychosis. Neuroimaging research has shed some light on the neural correlates of SDs in schizophrenia. But, the onset and trajectory of the neural alterations underlying SDs in schizophrenia remain incompletely understood. We hypothesize that the aberrant structure and function of brain areas (e.g., prefrontal, lateral temporal, and parietal cortical structures) comprising the "neural circuitry of self" may represent an early, premorbid (i.e., pre-prodromal) indicator of schizophrenia risk. Consistent with neurodevelopmental models, we argue that "early" (i.e., perinatal) dysmaturational processes (e.g., abnormal cortical neural cell migration and mini-columnar formation) affecting key prefrontal (e.g., medial prefrontal cortex), lateral temporal cortical (e.g., superior temporal sulcus), and parietal (e.g., inferior parietal lobule) structures involved in self-processing may lead to subtle disruptions of "self" during childhood in persons at risk for schizophrenia. During adolescence, progressive neurodevelopmental alterations (e.g., aberrant synaptic pruning) affecting the neural circuitry of self may contribute to worsening of SDs. This could result in the emergence of prodromal symptoms and, eventually, full-blown psychosis. To highlight why adolescence may be a period of heightened risk for SDs, we first summarize the literature regarding the neural correlates of self in typically developing children. Next, we present evidence from neuroimaging studies in genetic high-risk youth suggesting that fronto-temporal-parietal structures mediating self-reflection may be abnormal in the premorbid period. Our goal is that the ideas presented here might provide future directions for research into the neurobiology of SDs during the pre-psychosis development of youth at risk for schizophrenia.
Collapse
|
128
|
Jalbrzikowski M, Jonas R, Senturk D, Patel A, Chow C, Green MF, Bearden CE. Structural abnormalities in cortical volume, thickness, and surface area in 22q11.2 microdeletion syndrome: Relationship with psychotic symptoms. Neuroimage Clin 2013; 3:405-15. [PMID: 24273724 PMCID: PMC3814944 DOI: 10.1016/j.nicl.2013.09.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 02/02/2023]
Abstract
INTRODUCTION 22q11.2 deletion syndrome (22q11DS) represents one of the largest known genetic risk factors for psychosis, yet the neurobiological mechanisms underlying symptom development are not well understood. Here we conducted a cross-sectional study of 22q11DS to decompose cortical volume into its constituent parts, cortical thickness (CT) and surface area (SA), which are believed to have distinct neurodevelopmental origins. METHODS High-resolution T1-weighted scans were collected on 65 participants (31 22q11DS, 34 demographically comparable typically developing controls, 10-25 years old). Measures of cortical volume, CT, and SA were extracted from regions of interest using the FreeSurfer image analysis suite. Group differences and age-related trajectories in these structures, as well as their association with psychotic symptomatology, were assessed. RESULTS Relative to controls, 22q11DS participants showed bilateral volumetric reductions in the inferior temporal cortex, fusiform gyrus, anterior cingulate, superior parietal cortex, and cuneus, which were driven by decreased SA in these regions. 22q11DS participants also had increased volumes, driven by increased CT, in bilateral insula regions. 22q11DS youth had increased CT in frontal regions, particularly middle frontal and medial orbitofrontal cortices. A pattern of age-associated cortical thinning was observed in typically developing controls in brain regions associated with visual and sensory information-processing (i.e., left pericalcarine cortex and fusiform gyrus, right lingual and postcentral cortices). However, this relationship was disrupted in 22q11DS participants. Finally, correlational analyses revealed that increased CT in right medial orbitofrontal cortex was associated with increased positive symptom severity in 22q11DS. CONCLUSION Differential disruptions of CT and SA in distinct cortical regions in 22q11DS may indicate abnormalities in distinct developmental neural processes. Further, neuroanatomic abnormalities in medial frontal brain structures disproportionately affected in idiopathic schizophrenia were associated with psychotic symptom severity in 22q11DS youth, suggesting that disrupted biological processes in these cortical regions may underlie development of psychotic symptoms, both in 22q11DS and in the broader population.
Collapse
Affiliation(s)
- Maria Jalbrzikowski
- Department of Psychology, University of California, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Rachel Jonas
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Damla Senturk
- Department of Biostatistics, School of Public Health, University of California, Los Angeles, CA 90095, USA
| | - Arati Patel
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Carolyn Chow
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Michael F. Green
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, 760 Westwood Plaza, Los Angeles, CA 90095, USA
- VA Greater Los Angeles Healthcare System, VISN22 Mental Illness Research, Education and Clinical Center, 11301 Wilshire Blvd., Los Angeles, CA 90073, USA
| | - Carrie E. Bearden
- Department of Psychology, University of California, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
129
|
Thermenos HW, Keshavan MS, Juelich RJ, Molokotos E, Whitfield-Gabrieli S, Brent BK, Makris N, Seidman LJ. A review of neuroimaging studies of young relatives of individuals with schizophrenia: a developmental perspective from schizotaxia to schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:604-35. [PMID: 24132894 DOI: 10.1002/ajmg.b.32170] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/24/2013] [Indexed: 11/08/2022]
Abstract
In an effort to identify the developing abnormalities preceding psychosis, Dr. Ming T. Tsuang and colleagues at Harvard expanded Meehl's concept of "schizotaxia," and examined brain structure and function in families affected by schizophrenia (SZ). Here, we systematically review genetic (familial) high-risk (HR) studies of SZ using magnetic resonance imaging (MRI), examine how findings inform models of SZ etiology, and suggest directions for future research. Neuroimaging studies of youth at HR for SZ through the age of 30 were identified through a MEDLINE (PubMed) search. There is substantial evidence of gray matter volume abnormalities in youth at HR compared to controls, with an accelerated volume reduction over time in association with symptoms and cognitive deficits. In structural neuroimaging studies, prefrontal cortex (PFC) alterations were the most consistently reported finding in HR. There was also consistent evidence of smaller hippocampal volume. In functional studies, hyperactivity of the right PFC during performance of diverse tasks with common executive demands was consistently reported. The only longitudinal fMRI study to date revealed increasing left middle temporal activity in association with the emergence of psychotic symptoms. There was preliminary evidence of cerebellar and default mode network alterations in association with symptoms. Brain abnormalities in structure, function and neurochemistry are observed in the premorbid period in youth at HR for SZ. Future research should focus on the genetic and environmental contributions to these alterations, determine how early they emerge, and determine whether they can be partially or fully remediated by innovative treatments.
Collapse
Affiliation(s)
- H W Thermenos
- Harvard Medical School, Boston, Massachusetts; Massachusetts Mental Health Center, Division of Public Psychiatry, Boston, Massachusetts; Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Brent BK, Thermenos HW, Keshavan MS, Seidman LJ. Gray Matter Alterations in Schizophrenia High-Risk Youth and Early-Onset Schizophrenia: A Review of Structural MRI Findings. Child Adolesc Psychiatr Clin N Am 2013; 22:689-714. [PMID: 24012081 PMCID: PMC3767930 DOI: 10.1016/j.chc.2013.06.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article reviews the literature on structural magnetic resonance imaging findings in pediatric and young adult populations at clinical or genetic high-risk for schizophrenia and early-onset schizophrenia. The implications of this research are discussed for understanding the pathophysiology of schizophrenia and for early intervention strategies. The evidence linking brain structural changes in prepsychosis development and early-onset schizophrenia with disruptions of normal neurodevelopmental processes during childhood or adolescence is described. Future directions are outlined for research to address knowledge gaps regarding the neurobiological basis of brain structural abnormalities in schizophrenia and to improve the usefulness of these abnormalities for preventative interventions.
Collapse
Affiliation(s)
- Benjamin K Brent
- Harvard Medical School, Boston, MA 02115, USA; Division of Public Psychiatry, Massachusetts Mental Health Center, 75 Fenwood Road, Boston, MA 02115, USA; Department of Psychiatry, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
131
|
Holtzman CW, Trotman HD, Goulding SM, Ryan AT, Macdonald AN, Shapiro DI, Brasfield JL, Walker EF. Stress and neurodevelopmental processes in the emergence of psychosis. Neuroscience 2013; 249:172-91. [PMID: 23298853 PMCID: PMC4140178 DOI: 10.1016/j.neuroscience.2012.12.017] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/24/2012] [Accepted: 12/02/2012] [Indexed: 11/28/2022]
Abstract
The notion that stress plays a role in the etiology of psychotic disorders, especially schizophrenia, is longstanding. However, it is only in recent years that the potential neural mechanisms mediating this effect have come into sharper focus. The introduction of more sophisticated models of the interplay between psychosocial factors and brain function has expanded our opportunities for conceptualizing more detailed psychobiological models of stress in psychosis. Further, scientific advances in our understanding of adolescent brain development have shed light on a pivotal question that has challenged researchers; namely, why the first episode of psychosis typically occurs in late adolescence/young adulthood. In this paper, we begin by reviewing the evidence supporting associations between psychosocial stress and psychosis in diagnosed patients as well as individuals at clinical high risk for psychosis. We then discuss biological stress systems and examine changes that precede and follow psychosis onset. Next, research findings on structural and functional brain characteristics associated with psychosis are presented; these findings suggest that normal adolescent neuromaturational processes may go awry, thereby setting the stage for the emergence of psychotic syndromes. Finally, a model of neural mechanisms underlying the pathogenesis of psychosis is presented and directions for future research strategies are explored.
Collapse
Affiliation(s)
- C. W. Holtzman
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States
| | - H. D. Trotman
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States
| | - S. M. Goulding
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States
| | - A. T. Ryan
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States
| | - A. N. Macdonald
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States
| | - D. I. Shapiro
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States
| | - J. L. Brasfield
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States
| | - E. F. Walker
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States
| |
Collapse
|
132
|
Lunsford-Avery JR, Mittal VA. Sleep dysfunction prior to the onset of schizophrenia: A review and neurodevelopmental diathesis–stress conceptualization. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/cpsp.12041] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
133
|
Panaccione I, Napoletano F, Forte AM, Kotzalidis GD, Del Casale A, Rapinesi C, Brugnoli C, Serata D, Caccia F, Cuomo I, Ambrosi E, Simonetti A, Savoja V, De Chiara L, Danese E, Manfredi G, Janiri D, Motolese M, Nicoletti F, Girardi P, Sani G. Neurodevelopment in schizophrenia: the role of the wnt pathways. Curr Neuropharmacol 2013; 11:535-58. [PMID: 24403877 PMCID: PMC3763761 DOI: 10.2174/1570159x113119990037] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/28/2013] [Accepted: 05/12/2013] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES To review the role of Wnt pathways in the neurodevelopment of schizophrenia. METHODS SYSTEMATIC PUBMED SEARCH, USING AS KEYWORDS ALL THE TERMS RELATED TO THE WNT PATHWAYS AND CROSSING THEM WITH EACH OF THE FOLLOWING AREAS: normal neurodevelopment and physiology, neurodevelopmental theory of schizophrenia, schizophrenia, and antipsychotic drug action. RESULTS Neurodevelopmental, behavioural, genetic, and psychopharmacological data point to the possible involvement of Wnt systems, especially the canonical pathway, in the pathophysiology of schizophrenia and in the mechanism of antipsychotic drug action. The molecules most consistently found to be associated with abnormalities or in antipsychotic drug action are Akt1, glycogen synthase kinase3beta, and beta-catenin. However, the extent to which they contribute to the pathophysiology of schizophrenia or to antipsychotic action remains to be established. CONCLUSIONS The study of the involvement of Wnt pathway abnormalities in schizophrenia may help in understanding this multifaceted clinical entity; the development of Wnt-related pharmacological targets must await the collection of more data.
Collapse
Affiliation(s)
- Isabella Panaccione
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Flavia Napoletano
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Alberto Maria Forte
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Giorgio D. Kotzalidis
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Antonio Del Casale
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Chiara Rapinesi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Chiara Brugnoli
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Daniele Serata
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Federica Caccia
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Ilaria Cuomo
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Elisa Ambrosi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Alessio Simonetti
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Valeria Savoja
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Lavinia De Chiara
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Emanuela Danese
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Giovanni Manfredi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Delfina Janiri
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | | | - Ferdinando Nicoletti
- NEUROMED, Pozzilli, Isernia, Italy
- Department of Neuropharmacology, Sapienza University, School of Medicine and Pharmacy, Rome, Italy
| | - Paolo Girardi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
- Centro Lucio Bini, Rome, Italy
| | - Gabriele Sani
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
- Centro Lucio Bini, Rome, Italy
- IRCCS Santa Lucia Foundation, Department of Clinical and Behavioural Neurology, Neuropsychiatry Laboratory, Rome, Italy
| |
Collapse
|
134
|
McEvoy J, Baillie RA, Zhu H, Buckley P, Keshavan MS, Nasrallah HA, Dougherty GG, Yao JK, Kaddurah-Daouk R. Lipidomics reveals early metabolic changes in subjects with schizophrenia: effects of atypical antipsychotics. PLoS One 2013; 8:e68717. [PMID: 23894336 PMCID: PMC3722141 DOI: 10.1371/journal.pone.0068717] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/02/2013] [Indexed: 12/22/2022] Open
Abstract
There is a critical need for mapping early metabolic changes in schizophrenia to capture failures in regulation of biochemical pathways and networks. This information could provide valuable insights about disease mechanisms, trajectory of disease progression, and diagnostic biomarkers. We used a lipidomics platform to measure individual lipid species in 20 drug-naïve patients with a first episode of schizophrenia (FE group), 20 patients with chronic schizophrenia that had not adhered to prescribed medications (RE group), and 29 race-matched control subjects without schizophrenia. Lipid metabolic profiles were evaluated and compared between study groups and within groups before and after treatment with atypical antipsychotics, risperidone and aripiprazole. Finally, we mapped lipid profiles to n3 and n6 fatty acid synthesis pathways to elucidate which enzymes might be affected by disease and treatment. Compared to controls, the FE group showed significant down-regulation of several n3 polyunsaturated fatty acids (PUFAs), including 20:5n3, 22:5n3, and 22:6n3 within the phosphatidylcholine and phosphatidylethanolamine lipid classes. Differences between FE and controls were only observed in the n3 class PUFAs; no differences where noted in n6 class PUFAs. The RE group was not significantly different from controls, although some compositional differences within PUFAs were noted. Drug treatment was able to correct the aberrant PUFA levels noted in FE patients, but changes in re patients were not corrective. Treatment caused increases in both n3 and n6 class lipids. These results supported the hypothesis that phospholipid n3 fatty acid deficits are present early in the course of schizophrenia and tend not to persist throughout its course. These changes in lipid metabolism could indicate a metabolic vulnerability in patients with schizophrenia that occurs early in development of the disease.
Collapse
Affiliation(s)
- Joseph McEvoy
- Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, Durham, North Carolina, United States of America
| | | | - Hongjie Zhu
- Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, Durham, North Carolina, United States of America
| | - Peter Buckley
- Medical College of Georgia, Augusta, Georgia, United States of America
| | - Matcheri S. Keshavan
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Henry A. Nasrallah
- University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - George G. Dougherty
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jeffrey K. Yao
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States of America
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Rima Kaddurah-Daouk
- Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
135
|
Craiu D. What is special about the adolescent (JME) brain? Epilepsy Behav 2013; 28 Suppl 1:S45-51. [PMID: 23756479 DOI: 10.1016/j.yebeh.2012.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 12/09/2012] [Indexed: 01/23/2023]
Abstract
Juvenile myoclonic epilepsy (JME) involves cortico-thalamo-cortical networks. Thalamic, frontal gray matter, connectivity, and neurotransmitter disturbances have been demonstrated by structural/functional imaging studies. Few patients with JME show mutations in genes coding ion channels or GABAA (gamma-aminobutyric acid) receptor subunits. Recent research points to EFHC1 gene mutations leading to microdysgenesis and possible aberrant circuitry. Imaging studies have shown massive structural/functional changes of normally developing adolescent brain structures maturing at strikingly different rates and times. Gray matter (GM) volume diminishes in cortical areas (frontal and parietal) and deep structures (anterior thalamus, putamen, and caudate). Diffusion tensor imaging (DTI) findings support continued microstructural change in WM (white matter) during late adolescence with robust developmental changes in thalamocortical connectivity. The GABAA receptor distribution and specific receptor subunits' expression patterns change with age from neonate to adolescent/adult, contributing to age-related changes in brain excitability. Hormonal influence on brain structure development during adolescence is presented. Possible implications of brain changes during adolescence on the course of JME are discussed.
Collapse
Affiliation(s)
- Dana Craiu
- Pediatric Neurology Clinic, Alexandru Obregia Clinical Hospital, Carol Davila University of Medicine, Bucharest, Romania.
| |
Collapse
|
136
|
Trotman HD, Holtzman CW, Ryan AT, Shapiro DI, MacDonald AN, Goulding SM, Brasfield JL, Walker EF. The development of psychotic disorders in adolescence: a potential role for hormones. Horm Behav 2013; 64:411-9. [PMID: 23998682 PMCID: PMC4070947 DOI: 10.1016/j.yhbeh.2013.02.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 01/20/2013] [Accepted: 02/26/2013] [Indexed: 12/14/2022]
Abstract
This article is part of a Special Issue "Puberty and Adolescence". The notion that adolescence is characterized by dramatic changes in behavior, and often by emotional upheaval, is widespread and longstanding in popular western culture. In recent decades, this notion has gained increasing support from empirical research showing that the peri- and post-pubertal developmental stages are associated with a significant rise in the rate of psychiatric symptoms and syndromes. As a result, interest in adolescent development has burgeoned among researchers focused on the origins of schizophrenia and other psychotic disorders. Two factors have fueled this trend: 1) increasing evidence from longitudinal research that adolescence is the modal period for the emergence of "prodromal" manifestations, or precursors of psychotic symptoms, and 2) the rapidly accumulating scientific findings on brain structural and functional changes occurring during adolescence and young adulthood. Further, gonadal and adrenal hormones are beginning to play a more prominent role in conceptualizations of adolescent brain development, as well as in the origins of psychiatric symptoms during this period (Walker and Bollini, 2002; Walker et al., 2008). In this paper, we begin by providing an overview of the nature and course of psychotic disorders during adolescence/young adulthood. We then turn to the role of hormones in modulating normal brain development, and the potential role they might play in the abnormal brain changes that characterize youth at clinical high-risk (CHR) for psychosis. The activational and organizational effects of hormones are explored, with a focus on how hormone-induced changes might be linked with neuropathological processes in the emergence of psychosis.
Collapse
Affiliation(s)
- Hanan D Trotman
- Department of Psychology, Emory University, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Catts VS, Fung SJ, Long LE, Joshi D, Vercammen A, Allen KM, Fillman SG, Rothmond DA, Sinclair D, Tiwari Y, Tsai SY, Weickert TW, Shannon Weickert C. Rethinking schizophrenia in the context of normal neurodevelopment. Front Cell Neurosci 2013; 7:60. [PMID: 23720610 PMCID: PMC3654207 DOI: 10.3389/fncel.2013.00060] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/16/2013] [Indexed: 01/11/2023] Open
Abstract
The schizophrenia brain is differentiated from the normal brain by subtle changes, with significant overlap in measures between normal and disease states. For the past 25 years, schizophrenia has increasingly been considered a neurodevelopmental disorder. This frame of reference challenges biological researchers to consider how pathological changes identified in adult brain tissue can be accounted for by aberrant developmental processes occurring during fetal, childhood, or adolescent periods. To place schizophrenia neuropathology in a neurodevelopmental context requires solid, scrutinized evidence of changes occurring during normal development of the human brain, particularly in the cortex; however, too often data on normative developmental change are selectively referenced. This paper focuses on the development of the prefrontal cortex and charts major molecular, cellular, and behavioral events on a similar time line. We first consider the time at which human cognitive abilities such as selective attention, working memory, and inhibitory control mature, emphasizing that attainment of full adult potential is a process requiring decades. We review the timing of neurogenesis, neuronal migration, white matter changes (myelination), and synapse development. We consider how molecular changes in neurotransmitter signaling pathways are altered throughout life and how they may be concomitant with cellular and cognitive changes. We end with a consideration of how the response to drugs of abuse changes with age. We conclude that the concepts around the timing of cortical neuronal migration, interneuron maturation, and synaptic regression in humans may need revision and include greater emphasis on the protracted and dynamic changes occurring in adolescence. Updating our current understanding of post-natal neurodevelopment should aid researchers in interpreting gray matter changes and derailed neurodevelopmental processes that could underlie emergence of psychosis.
Collapse
Affiliation(s)
- Vibeke S. Catts
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Samantha J. Fung
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Leonora E. Long
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia
| | - Dipesh Joshi
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Ans Vercammen
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
- School of Psychology, Australian Catholic UniversitySydney, NSW, Australia
| | - Katherine M. Allen
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Stu G. Fillman
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Debora A. Rothmond
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
| | - Duncan Sinclair
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Yash Tiwari
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia
| | - Shan-Yuan Tsai
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Thomas W. Weickert
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| |
Collapse
|
138
|
Neurodevelopmental role for VGLUT2 in pyramidal neuron plasticity, dendritic refinement, and in spatial learning. J Neurosci 2013; 32:15886-901. [PMID: 23136427 DOI: 10.1523/jneurosci.4505-11.2012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The level and integrity of glutamate transmission during critical periods of postnatal development plays an important role in the refinement of pyramidal neuron dendritic arbor, synaptic plasticity, and cognition. Presently, it is not clear how excitatory transmission via the two predominant isoforms of the vesicular glutamate transporter (VGLUT1 and VGLUT2) participate in this process. To assess a neurodevelopmental role for VGLUT2 in pyramidal neuron maturation, we generated recombinant VGLUT2 knock-out mice and inactivated VGLUT2 throughout development using Emx1-Cre(+/+) knock-in mice. We show that VGLUT2 deficiency in corticolimbic circuits results in reduced evoked glutamate transmission, release probability, and LTD at hippocampal CA3-CA1 synapses during a formative developmental period (postnatal days 11-14). In adults, we find a marked reduction in the amount of dendritic arbor across the span of the dendritic tree of CA1 pyramidal neurons and reduced long-term potentiation and levels of synaptic markers spinophilin and VGLUT1. Loss of dendritic arbor is accompanied by corresponding reductions in the number of dendritic spines, suggesting widespread alterations in synaptic connectivity. Conditional VGLUT2 knock-out mice exhibit increased open-field exploratory activity yet impaired spatial learning and memory, endophenotypes similar to those of NMDA receptor knock-down mice. Remarkably, the impairment in learning can be partially restored by selectively increasing NMDA receptor-mediated glutamate transmission in adult mice by prolonged treatment with d-serine and a d-amino acid oxidase inhibitor. Our data indicate that VGLUT2 expression is pivotal to the proper development of mature pyramidal neuronal architecture and plasticity, and that such glutamatergic deficiency leads to cognitive malfunction as observed in several neurodevelopmental psychiatric disorders.
Collapse
|
139
|
Novak G, Fan T, O'Dowd BF, George SR. Postnatal maternal deprivation and pubertal stress have additive effects on dopamine D2 receptor and CaMKII beta expression in the striatum. Int J Dev Neurosci 2013; 31:189-95. [DOI: 10.1016/j.ijdevneu.2013.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/31/2012] [Accepted: 01/01/2013] [Indexed: 01/05/2023] Open
Affiliation(s)
- Gabriela Novak
- Centre for Addiction and Mental HealthTorontoOntarioCanada
- Department of PharmacologyUniversity of TorontoTorontoOntarioCanada
| | - Theresa Fan
- Centre for Addiction and Mental HealthTorontoOntarioCanada
| | - Brian F. O'Dowd
- Centre for Addiction and Mental HealthTorontoOntarioCanada
- Department of PharmacologyUniversity of TorontoTorontoOntarioCanada
| | - Susan R. George
- Centre for Addiction and Mental HealthTorontoOntarioCanada
- Department of PharmacologyUniversity of TorontoTorontoOntarioCanada
- Department of MedicineUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
140
|
Danivas V, Kalmady SV, Venkatasubramanian G, Gangadhar BN. Thalamic shape abnormalities in antipsychotic naïve schizophrenia. Indian J Psychol Med 2013; 35:34-8. [PMID: 23833340 PMCID: PMC3701357 DOI: 10.4103/0253-7176.112198] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Neurodevelopmental hypothesis of schizophrenia states abnormal pruning as one of the pathogenetic mechanism in schizophrenia. Though thalamic volume abnormalities have been documented, the shape differences of thalamus in antipsychotic-free schizophrenia in comparison with age- and sex-matched healthy volunteers need validation. MATERIALS AND METHODS We examined antipsychotic naïve schizophrenia patients (n=60) and age- and sex-matched healthy volunteers (n=44). The thalamic shape abnormalities were analyzed from their coded structural magnetic resonance imaging (MRI) data using three-dimensional automated image analysis software, FMRIB's (Oxford Center for the functional MRI of the brain) tools-FIRST (FMRIB's Integrated Registration and Segmentation Tool) by creating deformable mesh model. Correlation with the psychopathology scores was carried out using F-statistics. RESULTS Patients with schizophrenia showed significant inward deformations in the regions corresponding to anterior, ventromedial, mediodorsal, and pulvinar nuclei. There was a direct correlation between negative syndrome score and the deformation in the right mediodorsal and right pulvinar nuclei. CONCLUSION The inward deformations of thalamus in antipsychotic naive schizophrenia patients correspond to those nuclei which have reciprocal connections with frontal, superior temporal, and anterior cingulate regions and support the neurodevelopmental hypothesis of schizophrenia.
Collapse
Affiliation(s)
- Vijay Danivas
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India ; Translational Psychiatry Laboratory, Cognitive Neurobiology Division, Neurobiology Research Centre, Bangalore, Karnataka, India
| | | | | | | |
Collapse
|
141
|
Alexander-Bloch AF, Vértes PE, Stidd R, Lalonde F, Clasen L, Rapoport J, Giedd J, Bullmore ET, Gogtay N. The anatomical distance of functional connections predicts brain network topology in health and schizophrenia. Cereb Cortex 2013; 23:127-38. [PMID: 22275481 PMCID: PMC3513955 DOI: 10.1093/cercor/bhr388] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The human brain is a topologically complex network embedded in anatomical space. Here, we systematically explored relationships between functional connectivity, complex network topology, and anatomical (Euclidean) distance between connected brain regions, in the resting-state functional magnetic resonance imaging brain networks of 20 healthy volunteers and 19 patients with childhood-onset schizophrenia (COS). Normal between-subject differences in average distance of connected edges in brain graphs were strongly associated with variation in topological properties of functional networks. In addition, a club or subset of connector hubs was identified, in lateral temporal, parietal, dorsal prefrontal, and medial prefrontal/cingulate cortical regions. In COS, there was reduced strength of functional connectivity over short distances especially, and therefore, global mean connection distance of thresholded graphs was significantly greater than normal. As predicted from relationships between spatial and topological properties of normal networks, this disorder-related proportional increase in connection distance was associated with reduced clustering and modularity and increased global efficiency of COS networks. Between-group differences in connection distance were localized specifically to connector hubs of multimodal association cortex. In relation to the neurodevelopmental pathogenesis of schizophrenia, we argue that the data are consistent with the interpretation that spatial and topological disturbances of functional network organization could arise from excessive "pruning" of short-distance functional connections in schizophrenia.
Collapse
Affiliation(s)
- Aaron F. Alexander-Bloch
- Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK,Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA,David Geffen School of Medicine at University of California—Los Angeles, Los Angeles, CA 90095, USA
| | - Petra E. Vértes
- Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Reva Stidd
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - François Lalonde
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Liv Clasen
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Judith Rapoport
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Jay Giedd
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Edward T. Bullmore
- Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Nitin Gogtay
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| |
Collapse
|
142
|
Francis AN, Seidman LJ, Jabbar GA, Mesholam-Gately R, Thermenos HW, Juelich R, Proal AC, Shenton M, Kubicki M, Mathew I, Keshavan M, DeLisi LE. Alterations in brain structures underlying language function in young adults at high familial risk for schizophrenia. Schizophr Res 2012; 141:65-71. [PMID: 22892286 PMCID: PMC3466598 DOI: 10.1016/j.schres.2012.07.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Neuroanatomical and cognitive alterations typical of schizophrenia (SZ) patients are observed to a lesser extent in their adolescent and adult first-degree relatives, likely reflecting neurodevelopmental abnormalities associated with genetic risk for the illness. The anatomical pathways for language are hypothesized to be abnormal and to underlie the positive symptoms of schizophrenia. Examining non-psychotic relatives at high familial risk (FHR) for schizophrenia may clarify if these deficits represent trait markers associated with genetic vulnerability, rather than specific markers resulting from the pathological process underlying schizophrenia. METHODS T1 MRI scans from a 3T Siemens scanner of young adult FHR subjects (N=46) and controls with no family history of illness (i.e. at low genetic risk LRC; N=31) were processed using FreeSurfer 5.0. We explored volumetric and lateralization alterations in regions associated with language processing. An extensive neuropsychological battery of language measures was administered. RESULTS No significant differences were observed between groups on any language measures. Controlling intracranial volume, significantly smaller left pars triangularis (PT) (p<0.01) and right pars orbitalis (PO) (p<0.01) volumes and reversal of the L>R pars orbitalis (p<0.001) lateralization were observed in FHR subjects. In addition, the L pars triangularis and R pars orbitalis correlated with performance on tests of linguistic function in the FHR group. CONCLUSIONS Reduced volume and reversed structural asymmetry in language-related regions hypothesized to be altered in SZ are also found in first degree relatives at FHR, despite normal language performance. To clarify if these findings are endophenotypes for Sz, future studies would need to be performed of ill and well family members no longer within the age range of risk for illness to show these deficits segregate with schizophrenia within families. Moreover, measures of complex language need to be studied to determine if FHR individuals manifest impairments in some aspects of language function.
Collapse
Affiliation(s)
- Alan N. Francis
- Beth Israel Deaconess Medical Center; Harvard Medical School, Boston, MA
| | - Larry J. Seidman
- Beth Israel Deaconess Medical Center; Harvard Medical School, Boston, MA,Massachusetts General Hospital; Harvard Medical School, Boston, MA
| | - Gul A. Jabbar
- Veterans Affairs, Boston Healthcare System, Brockton, MA; Harvard Medical School, Boston, MA
| | | | - Heidi W. Thermenos
- Beth Israel Deaconess Medical Center; Harvard Medical School, Boston, MA,Massachusetts General Hospital; Harvard Medical School, Boston, MA
| | - Richard Juelich
- Massachusetts General Hospital; Harvard Medical School, Boston, MA
| | - Ashley C. Proal
- Veterans Affairs, Boston Healthcare System, Brockton, MA; Harvard Medical School, Boston, MA
| | - Martha Shenton
- Brigham and Women’s Hospital; Harvard Medical School, Boston, MA,Veterans Affairs, Boston Healthcare System, Brockton, MA; Harvard Medical School, Boston, MA
| | - Marek Kubicki
- Brigham and Women’s Hospital; Harvard Medical School, Boston, MA,Veterans Affairs, Boston Healthcare System, Brockton, MA; Harvard Medical School, Boston, MA
| | - Ian Mathew
- Beth Israel Deaconess Medical Center; Harvard Medical School, Boston, MA
| | - Matcheri Keshavan
- Beth Israel Deaconess Medical Center; Harvard Medical School, Boston, MA
| | - Lynn E. DeLisi
- Veterans Affairs, Boston Healthcare System, Brockton, MA; Harvard Medical School, Boston, MA,Address all correspondence to: LE DeLisi, MD, Building 2 (2-2-B), The VA Boston Healthcare System, 940 Belmont Avenue, Brockton, Massachusetts.
| |
Collapse
|
143
|
Bramon E, Murray RM. A plausible model of schizophrenia must incorporate psychological and social, as well as neuro developmental, risk factors. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22033679 PMCID: PMC3181665 DOI: 10.31887/dcns.2001.3.4/ebramon] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Subtle alterations in brain development caused by genes or early environmental hazards, such as obstetric complications, play a role in projecting some individuals on a trajectory toward schizophrenia. High-risk and cohort studies demonstrate that children destined to develop schizophrenia tend to have delayed milestones and subtle neuromotor and cognitive impairments (particularly in coordination and language). These neurocognitive problems lead to difficulties in interpersonal relations, and their progressive alienation makes these at-risk children more likely to harbor odd or paranoid ideas. This cascade of increasingly deviant development may then be compounded by brain maturational changes during adolescence with a resultant lability of the dopaminergic response to stress. As a result, the individual is more susceptible to the effects of the abuse of dopamine-releasing drugs, and to other risk factors such as migration or stressful life events; social isolation may be a common pathway underlying several of the social risk factors.
Collapse
Affiliation(s)
- E Bramon
- Division of Psychological Medicine, Institute of Psychiatry, London, UK
| | | |
Collapse
|
144
|
Abstract
Services that provide comprehensive, early intervention (EI) have shown promise in improving long-term outcomes in schizophrenia. This article reviews the rationale and salient concepts relevant to understanding the growing EI literature. A selective review of studies evaluating the effectiveness of integrated EI is followed by a discussion of feasibility, especially in the US context. Finally, the authors present a framework that seeks to integrate activities traditionally categorized and separated as discovery and implementation. This framework is offered as a way to advance both goals.
Collapse
Affiliation(s)
- Vinod H Srihari
- Department of Psychiatry, Yale University,and Clinic for Specialized Treatment Early in Psychosis (STEP), 34 Park Street, Connecticut Mental Health Center, Room 273A, New Haven, CT 06519, USA.
| | | | | |
Collapse
|
145
|
Karageorgiou E, Schulz SC, Gollub RL, Andreasen NC, Ho BC, Lauriello J, Calhoun VD, Bockholt HJ, Sponheim SR, Georgopoulos AP. Neuropsychological testing and structural magnetic resonance imaging as diagnostic biomarkers early in the course of schizophrenia and related psychoses. Neuroinformatics 2012; 9:321-33. [PMID: 21246418 DOI: 10.1007/s12021-010-9094-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Making an accurate diagnosis of schizophrenia and related psychoses early in the course of the disease is important for initiating treatment and counseling patients and families. In this study, we developed classification models for early disease diagnosis using structural MRI (sMRI) and neuropsychological (NP) testing. We used sMRI measurements and NP test results from 28 patients with recent-onset schizophrenia and 47 healthy subjects, drawn from the larger sample of the Mind Clinical Imaging Consortium. We developed diagnostic models based on Linear Discriminant Analysis (LDA) following two approaches; namely, (a) stepwise (STP) LDA on the original measurements, and (b) LDA on variables created through Principal Component Analysis (PCA) and selected using the Humphrey-Ilgen parallel analysis. Error estimation of the modeling algorithms was evaluated by leave-one-out external cross-validation. These analyses were performed on sMRI and NP variables separately and in combination. The following classification accuracy was obtained for different variables and modeling algorithms. sMRI only: (a) STP-LDA: 64.3% sensitivity and 76.6% specificity, (b) PCA-LDA: 67.9% sensitivity and 72.3% specificity. NP only: (a) STP-LDA: 71.4% sensitivity and 80.9% specificity, (b) PCA-LDA: 78.5% sensitivity and 91.5% specificity. Combined sMRI-NP: (a) STP-LDA: 64.3% sensitivity and 83.0% specificity, (b) PCA-LDA: 89.3% sensitivity and 93.6% specificity. (i) Maximal diagnostic accuracy was achieved by combining sMRI and NP variables. (ii) NP variables were more informative than sMRI, indicating that cognitive deficits can be detected earlier than volumetric structural abnormalities. (iii) PCA-LDA yielded more accurate classification than STP-LDA. As these sMRI and NP tests are widely available, they can increase accuracy of early intervention strategies and possibly be used in evaluating treatment response.
Collapse
Affiliation(s)
- Elissaios Karageorgiou
- Brain Sciences Center (11B), Veterans Affairs Medical Center, One Veterans Drive, Minneapolis, MN 55417, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Flynn D, Smith D, Quirke L, Monks S, Kennedy HG. Ultra high risk of psychosis on committal to a young offender prison: an unrecognised opportunity for early intervention. BMC Psychiatry 2012; 12:100. [PMID: 22863073 PMCID: PMC3481442 DOI: 10.1186/1471-244x-12-100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 07/30/2012] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The ultra high risk state for psychosis has not been studied in young offender populations. Prison populations have higher rates of psychiatric morbidity and substance use disorders. Due to the age profile of young offenders one would expect to find a high prevalence of individuals with pre-psychotic or ultra-high risk mental states for psychosis (UHR). Accordingly young offender institutions offer an opportunity for early interventions which could result in improved long term mental health, social and legal outcomes. In the course of establishing a mental health in-reach service into Ireland's only young offender prison, we sought to estimate unmet mental health needs. METHODS Every third new committal to a young offenders prison was interviewed using the Comprehensive Assessment of At-Risk Mental States (CAARMS) to identify the Ultra High Risk (UHR) state and a structured interview for assessing drug and alcohol misuse according to DSM-IV-TR criteria, the Developmental Understanding of Drug Misuse and Dependence - Short Form (DUNDRUM-S). RESULTS Over a twelve month period 171 young male offenders aged 16 to 20 were assessed. Of these 39 (23%, 95% confidence interval 18% to 30%) met UHR criteria. UHR states peaked at 18 years, were associated with lower SOFAS scores for social and occupational function and were also associated with multiple substance misuse. The relationship with lower SOFAS scores persisted even when co-varying for multiple substance misuse. CONCLUSIONS Although psychotic symptoms are common in community samples of children and adolescents, the prevalence of the UHR state in young offenders was higher than reported for community samples. The association with impaired function also suggests that this may be part of a developing disorder. Much more attention should be paid to the relationship of UHR states to substance misuse and to the health needs of young offenders.
Collapse
Affiliation(s)
- Darran Flynn
- National Forensic Mental Health Service, Central Mental Hospital, Dundrum, Dublin, Ireland
| | | | | | | | | |
Collapse
|
147
|
Bilbo SD, Schwarz JM. The immune system and developmental programming of brain and behavior. Front Neuroendocrinol 2012; 33:267-86. [PMID: 22982535 PMCID: PMC3484177 DOI: 10.1016/j.yfrne.2012.08.006] [Citation(s) in RCA: 401] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 12/16/2022]
Abstract
The brain, endocrine, and immune systems are inextricably linked. Immune molecules have a powerful impact on neuroendocrine function, including hormone-behavior interactions, during health as well as sickness. Similarly, alterations in hormones, such as during stress, can powerfully impact immune function or reactivity. These functional shifts are evolved, adaptive responses that organize changes in behavior and mobilize immune resources, but can also lead to pathology or exacerbate disease if prolonged or exaggerated. The developing brain in particular is exquisitely sensitive to both endogenous and exogenous signals, and increasing evidence suggests the immune system has a critical role in brain development and associated behavioral outcomes for the life of the individual. Indeed, there are associations between many neuropsychiatric disorders and immune dysfunction, with a distinct etiology in neurodevelopment. The goal of this review is to describe the important role of the immune system during brain development, and to discuss some of the many ways in which immune activation during early brain development can affect the later-life outcomes of neural function, immune function, mood and cognition.
Collapse
Affiliation(s)
- Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, 572 Research Drive, Box 91050, Durham, NC 27708, USA.
| | | |
Collapse
|
148
|
Molofsky AV, Krencik R, Krenick R, Ullian EM, Ullian E, Tsai HH, Deneen B, Richardson WD, Barres BA, Rowitch DH. Astrocytes and disease: a neurodevelopmental perspective. Genes Dev 2012; 26:891-907. [PMID: 22549954 DOI: 10.1101/gad.188326.112] [Citation(s) in RCA: 510] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Astrocytes are no longer seen as a homogenous population of cells. In fact, recent studies indicate that astrocytes are morphologically and functionally diverse and play critical roles in neurodevelopmental diseases such as Rett syndrome and fragile X mental retardation. This review summarizes recent advances in astrocyte development, including the role of neural tube patterning in specification and developmental functions of astrocytes during synaptogenesis. We propose here that a precise understanding of astrocyte development is critical to defining heterogeneity and could lead advances in understanding and treating a variety of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Anna V Molofsky
- Department of Pediatrics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Owens SF, Picchioni MM, Ettinger U, McDonald C, Walshe M, Schmechtig A, Murray RM, Rijsdijk F, Toulopoulou T. Prefrontal deviations in function but not volume are putative endophenotypes for schizophrenia. ACTA ACUST UNITED AC 2012; 135:2231-44. [PMID: 22693145 DOI: 10.1093/brain/aws138] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study sought to systematically investigate whether prefrontal cortex grey matter volume reductions are valid endophenotypes for schizophrenia, specifically investigating their presence in unaffected relatives, heritability, genetic overlap with the disorder itself and finally to contrast their performance on these criteria with putative neuropsychological indices of prefrontal functioning. We used a combined twin and family design and examined four prefrontal cortical regions of interest. Superior and inferior regions were significantly smaller in patients. However, the volumes of these same regions were normal in unaffected relatives and therefore, we could confirm that such deficits were not due to familial effects. Volumes of the prefrontal and orbital cortices were, however, moderately heritable, but neither shared a genetic overlap with schizophrenia. Total prefrontal cortical volume reductions shared a significant unique environmental overlap with the disorder, suggesting that the reductions were not familial. In contrast, prefrontal (executive) functioning deficits were present in the unaffected relatives, were moderately heritable and shared a substantial genetic overlap with liability to schizophrenia. These results suggest that the well recognized prefrontal volume reductions are not related to the same familial influences that increase schizophrenia liability and instead may be attributable to illness related biological changes or indeed confounded by illness trajectory, chronicity, medication or substance abuse, or in fact a combination of some or all of them.
Collapse
Affiliation(s)
- Sheena F Owens
- Department of Psychosis Studies, Institute of Psychiatry, Kings College, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Rubio MD, Haroutunian V, Meador-Woodruff JH. Abnormalities of the Duo/Ras-related C3 botulinum toxin substrate 1/p21-activated kinase 1 pathway drive myosin light chain phosphorylation in frontal cortex in schizophrenia. Biol Psychiatry 2012; 71:906-14. [PMID: 22458949 PMCID: PMC3334466 DOI: 10.1016/j.biopsych.2012.02.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 02/07/2012] [Accepted: 02/09/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND Recent studies on GTPases have suggested that reduced Duo and cell division cycle 42 (Cdc42) transcript expression is involved in dendritic spine loss in schizophrenia. In murine models, Duo and Cdc42 phosphorylate p21-activated kinase 1 (PAK1), which modifies the activity of regulatory myosin light chain (MLC) and cofilin by altering their phosphorylation. Therefore, we hypothesized that in schizophrenia abnormal Duo and Cdc42 expression result in changes in MLC and/or cofilin phosphorylation, which might alter actin cytoskeleton dynamics underlying dendritic spine maintenance. METHODS We performed Western blot protein expression analysis in postmortem brains from patients diagnosed with schizophrenia and a comparison group. We focused our studies in the anterior cingulate cortex (ACC; n = 33 comparison group; n = 36 schizophrenia) and dorsolateral prefrontal cortex (DLPFC; n = 29 comparison group; n = 35 schizophrenia). RESULTS In both ACC and DLPFC, we found a reduction of Duo expression and PAK1 phosphorylation in schizophrenia. Cdc42 protein expression was decreased in ACC but not in DLPFC. In ACC, we observed decreased PAK1 phosphorylation and increased MLC phosphorylation (pMLC), whereas in DLPFC pMLC remained unchanged. CONCLUSIONS These data suggest a novel mechanism that might underlie dendritic spine loss in schizophrenia. The increase in pMLC seen in ACC might be associated with dendritic spine shrinkage. The lack of an effect on pMLC in DLPFC suggests that in schizophrenia PAK1 downstream pathways are differentially affected in these cortical areas.
Collapse
Affiliation(s)
- María D. Rubio
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA,Corresponding author: , Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1719 6th Ave. S., CIRC 590C, Birmingham, AL 35294-0021, USA
| | - Vahram Haroutunian
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA
| | - James H. Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|