101
|
Mettu PS, Wielgus AR, Ong SS, Cousins SW. Retinal pigment epithelium response to oxidant injury in the pathogenesis of early age-related macular degeneration. Mol Aspects Med 2012; 33:376-98. [PMID: 22575354 DOI: 10.1016/j.mam.2012.04.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 04/14/2012] [Indexed: 01/06/2023]
Abstract
Age-related macular degeneration (AMD) represents the leading cause of vision loss in the elderly. Accumulation of lipid- and protein-rich deposits under the retinal pigment epithelium (RPE) heralds the onset of early AMD, but the pathogenesis of subretinal deposit formation is poorly understood. Numerous hypothetical models of deposit formation have been proposed, including hypotheses for a genetic basis, choroidal hypoperfusion, abnormal barrier formation, and lysosomal failure. This review explore the RPE injury hypothesis, characterized by three distinct stages (1) Initial RPE oxidant injury, caused by any number of endogenous or exogenous oxidants, results in extrusion of cell membrane "blebs," together with decreased activity of matrix metalloproteinases (MMPs), promoting bleb accumulation under the RPE as basal laminar deposits (BLD). (2) RPE cells are subsequently stimulated to increase synthesis of MMPs and other molecules responsible for extracellular matrix turnover (i.e., producing decreased collagen), affecting both RPE basement membrane and Bruchs membrane (BrM). This process leads to progression of BLD into basal linear deposits (BLinD) and drusen by admixture of blebs into BrM, followed by the formation of new basement membrane under the RPE to trap these deposits within BrM. We postulate that various hormones and other plasma-derived molecules related to systemic health cofactors are implicated in this second stage. (3) Finally, macrophages are recruited to sites of RPE injury and deposit formation. The recruitment of nonactivated or scavenging macrophages may remove deposits without further injury, while the recruitment of activated or reparative macrophages, through the release of inflammatory mediators, growth factors, or other substances, may promote complications and progression to the late forms of the disease.
Collapse
Affiliation(s)
- Priyatham S Mettu
- Duke Center for Macular Diseases, Duke Eye Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
102
|
Residual abilities in age-related macular degeneration to process spatial frequencies during natural scene categorization. Vis Neurosci 2012; 28:529-41. [PMID: 22192508 DOI: 10.1017/s0952523811000435] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Age-related macular degeneration (AMD) is characterized by a central vision loss. We explored the relationship between the retinal lesions in AMD patients and the processing of spatial frequencies in natural scene categorization. Since the lesion on the retina is central, we expected preservation of low spatial frequency (LSF) processing and the impairment of high spatial frequency (HSF) processing. We conducted two experiments that differed in the set of scene stimuli used and their exposure duration. Twelve AMD patients and 12 healthy age-matched participants in Experiment 1 and 10 different AMD patients and 10 healthy age-matched participants in Experiment 2 performed categorization tasks of natural scenes (Indoors vs. Outdoors) filtered in LSF and HSF. Experiment 1 revealed that AMD patients made more no-responses to categorize HSF than LSF scenes, irrespective of the scene category. In addition, AMD patients had longer reaction times to categorize HSF than LSF scenes only for indoors. Healthy participants' performance was not differentially affected by spatial frequency content of the scenes. In Experiment 2, AMD patients demonstrated the same pattern of errors as in Experiment 1. Furthermore, AMD patients had longer reaction times to categorize HSF than LSF scenes, irrespective of the scene category. Again, spatial frequency processing was equivalent for healthy participants. The present findings point to a specific deficit in the processing of HSF information contained in photographs of natural scenes in AMD patients. The processing of LSF information is relatively preserved. Moreover, the fact that the deficit is more important when categorizing HSF indoors, may lead to new perspectives for rehabilitation procedures in AMD.
Collapse
|
103
|
Xu YT, Wang Y, Chen P, Xu HF. Age-related maculopathy susceptibility 2 participates in the phagocytosis functions of the retinal pigment epithelium. Int J Ophthalmol 2012; 5:125-32. [PMID: 22762035 DOI: 10.3980/j.issn.2222-3959.2012.02.02] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 04/07/2012] [Indexed: 11/02/2022] Open
Abstract
AIM Age-related macular degeneration (AMD) is a multifactorial disease and a prevalent cause of visual impairment in developed countries. Many studies suggest that age-related maculopathy susceptibility 2 (ARMS2) is a second major susceptibility gene for AMD. At present, there is no functional information on this gene. Therefore, the purpose of the present study was to detect the expression of ARMS2 in retinal pigment epithelium (RPE) cells and to investigate the effect of ARMS2 on the phagocytosis function of RPE cells. METHODS Immunofluorescence and reverse transcriptase PCR were used to demonstrate the presence and location of ARMS2 in ARPE-19 (human retinal pigment epithelial cell line, ATCC, catalog No.CRL-2302) cells. siRNA was used to knock down ARMS2 mRNA, and the effects of the knockdown on the phagocytosis function of the ARPE-19 cells were evaluated via Fluorescence Activated Cell Sorting (FACS). RESULTS ARMS2 was present in ARPE-19 cells, localized in the cytosol of the perinuclear region. The expression of ARMS2 mRNA (messenger RNA) in ARPE-19 cells transfected with ARMS2-siRNA (small interfering RNA, 0.73±0.08) was decreased compared with normal cells (1.00±0.00) or with cells transfected with scrambled siRNA (0.95±0.13) (P<0.05). After incubation of RPE cells with a latex beads medium for 12, 18, or 24 hours, the fluorescence intensities were 38.04±1.02, 68.92±0.92, and 78.00±0.12 in the ARMS2-siRNA-transfected groups, respectively, and 77.98±5.43, 94.87±0.60, and 98.30±0.11 in the scrambled siRNA-transfected groups, respectively. The fluorescent intensities of the same time points in the two groups were compared using Student's t-test, and the p values were all less than 0.001 at the three different time points. CONCLUSION There is endogenous expression of ARMS2 in ARPE-19 cells. ARMS2 plays a role in the phagocytosis function of RPE cells, and this role may be one of the mechanisms that participates in the development of AMD.
Collapse
Affiliation(s)
- Yi-Ting Xu
- School of Medicine and Life Sciences of Shandong Academy of Medical Sciences, University of Jinan, Jinan 250022, Shandong Province, China
| | | | | | | |
Collapse
|
104
|
NAGINENI CHANDRASEKHARAMN, KOMMINENI VIJAYK, WILLIAM ABITHA, DETRICK BARBARA, HOOKS JOHNJ. Regulation of VEGF expression in human retinal cells by cytokines: implications for the role of inflammation in age-related macular degeneration. J Cell Physiol 2012; 227:116-26. [PMID: 21374591 PMCID: PMC12039479 DOI: 10.1002/jcp.22708] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chronic inflammation is implicated in the pathogenesis of age-related macular degeneration (AMD). Choroidal neovascularization (CNV) observed in exudative form of AMD results in vision loss. Human retinal pigment epithelial cell (HRPE) layer and choroidal tissue are the primary pathological sites in AMD. Pathological and therapeutic evidences have strongly indicated the vascular endothelial growth factor (VEGF) molecules as critical components in CNV pathogenesis. In these studies, we used human primary HRPE and choroidal fibroblast cells (HCHF) prepared from adult donor eyes. The effects of inflammatory cytokine (IFN-γ+ TNF-α+IL-1β) mix (ICM) on global gene expression profiles in HRPE cells, revealed 10- and 9-fold increase in VEGF-A and VEGF-C expression, respectively. The microarray results were validated by quantitative RT-PCR and secretion of VEGFs proteins. IL-1β is the most potent in inducing VEGFs secretion followed by IFN-γ and TNF-α, and the secretion was more effective in the presence of 2 and 3 cytokines. NF-κB and JAK-STAT pathway, but not HIF-1α, Sp-1, Sp-3, and STAT-3, transcription factors were upregulated and translocated to nucleus by ICM treatment. The mRNA levels of VEGF-A and VEGF-C and secretion of these proteins were also significantly enhanced by ICM in HCHF cells. The secretion of other angiogenic molecules, PEDF, SDF-1α, endostatin, and angiopoietins was not affected by ICM. Our results show that the inflammatory cytokines enhance secretion of VEGF-A and VEGF-C by HRPE and HCHF cells. These studies indicate that VEGFs secreted by these cells initiate and promote pathological choroidal and retinal noevascularization processes in AMD.
Collapse
Affiliation(s)
| | - VIJAY K. KOMMINENI
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - ABITHA WILLIAM
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - BARBARA DETRICK
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - JOHN J. HOOKS
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
105
|
Hulleman JD, Kaushal S, Balch WE, Kelly JW. Compromised mutant EFEMP1 secretion associated with macular dystrophy remedied by proteostasis network alteration. Mol Biol Cell 2011; 22:4765-75. [PMID: 22031286 PMCID: PMC3237620 DOI: 10.1091/mbc.e11-08-0695] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
R345W EFEMP1 is secreted poorly, causing the macular dystrophy malattia leventinese. A novel assay shows that other substitutions (F, Y, P) at residue 345 impair secretion, partly by reducing native disulfide bonds. EFEMP1 secretion is rescued by reduced growth temperature and translational attenuation—potential strategies to delay disease. An Arg345Trp (R345W) mutation in epidermal growth factor–containing, fibulin-like extracellular matrix protein 1 (EFEMP1) causes its inefficient secretion and the macular dystrophy malattia leventinese/Doyne honeycomb retinal dystrophy (ML/DHRD). To understand the influence of the protein homeostasis (or proteostasis) network in rescuing mutant EFEMP1 misfolding and inefficient secretion linked to ML/DHRD, we developed a convenient and sensitive cell-based luminescence assay to monitor secretion versus intracellular accumulation. Fusing EFEMP1 to Gaussia luciferase faithfully recapitulates mutant EFEMP1 secretion defects observed previously using more cumbersome methodology. To understand what governs mutant intracellular retention, we generated a series of R345 mutants. These mutants revealed that aromatic residue substitutions (i.e., Trp, Tyr, and Phe) at position 345 cause significant EFEMP1 secretion deficiencies. These secretion defects appear to be caused, in part, by reduced native disulfide bonding in domain 6 harboring the 345 position. Finally, we demonstrate that mutant EFEMP1 secretion and proper disulfide formation are enhanced by adaptation of the cellular environment by a reduced growth temperature and/or translational attenuation. This study highlights the mechanisms underlying the inefficient secretion of R345W EFEMP1 and demonstrates that alteration of the proteostasis network may provide a strategy to alleviate or delay the onset of this macular dystrophy.
Collapse
Affiliation(s)
- John D Hulleman
- Departments of Chemistry and Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
106
|
Abstract
The mitochondrion is a vital intracellular organelle for retinal cell function and survival. There is growing confirmation to support an association between mitochondrial dysfunction and a number of retinal degenerations. Investigations have also unveiled mitochondrial genomic instability as one of the contributing factors for age-related retinal pathophysiology. This review highlights the role of mitochondrial dysfunction originating from oxidative stress in the etiology of retinal diseases including diabetic retinopathy, glaucoma and age-related macular degeneration (AMD). Moreover, mitochondrial DNA (mtDNA) damage associated with AMD due to susceptibility of mtDNA to oxidative damage and failure of mtDNA repair pathways is also highlighted in this review. The susceptibility of neural retina and retinal pigment epithelium (RPE) mitochondria to oxidative damage with ageing appears to be a major factor in retinal degeneration. It thus appears that the mitochondrion is a weak link in the antioxidant defenses of retinal cells. In addition, failure of mtDNA repair pathways can also specifically contribute towards pathogenesis of AMD. This review will further summarize the prospective role of mitochondria targeting therapeutic agents for the treatment of retinal disease. Mitochondria based drug targeting to diminish oxidative stress or promote repair of mtDNA damage may offer potential alternatives for the treatment of various retinal degenerative diseases.
Collapse
Affiliation(s)
- Megha Barot
- School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | | | | |
Collapse
|
107
|
Jia L, Dong Y, Yang H, Pan X, Fan R, Zhai L. Serum superoxide dismutase and malondialdehyde levels in a group of Chinese patients with age-related macular degeneration. Aging Clin Exp Res 2011; 23:264-7. [PMID: 22067370 DOI: 10.1007/bf03324965] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS The aim of this study was to investigate superoxide dismutase (SOD) activity together with malondialdehyde (MDA) levels in a group of Chinese patients with age-related macular degeneration (AMD). METHODS Serum SOD activity and MDA levels were analysed in 56 AMD patients with subtypes (early dry, geographic atrophy, and wet) and 34 healthy controls matched with age and sex. RESULTS Serum MDA levels were significantly higher in AMD (3.68 ± 1.06 nmol/mL) than in controls (2.83 ± 0.43 nmol/mL; p=0.000), and was significantly higher in wet AMD (3.79 ± 0.79 nmol/mL) than in early dry AMD (3.26 ± 0.99 nmol/mL; p=0.038). Serum SOD activity was significantly higher in AMD (87.12 ± 13.22 U/mL) than in controls (79.91 ± 11.80 U/mL; p=0.012), and slightly higher in wet AMD (89.52 ± 16.25 U/mL) than in GA (83.62 ± 9.75 U/mL; p=0.275) and early dry AMD (81.64 ± 18.90 U/mL; p=0.093). There was a positive correlation between serum MDA levels and SOD activities in AMD patients and controls (r=0.320, p=0.002). CONCLUSIONS The observed increase in SOD activity in our study may be related to increased MDA levels, as a compensatory regulation in response to oxidative stress in AMD patients. The present data also demonstrate that oxido-reduction disturbance may be hypothesized in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Lihong Jia
- School of Public Health, China Medical University, Shenyang 110001, China.
| | | | | | | | | | | |
Collapse
|
108
|
Lanzl IM, Seidova SF, Maier M, Lohmann C, Schmidt-Trucksäss A, Halle M, Kotliar KE. Dynamic retinal vessel response to flicker in age-related macular degeneration patients before and after vascular endothelial growth factor inhibitor injection. Acta Ophthalmol 2011; 89:472-9. [PMID: 20102347 DOI: 10.1111/j.1755-3768.2009.01718.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Retinal vessel responses to flickering light are different in various systemic and ocular diseases and can be improved after successful therapy. We investigated retinal vessel response to flickering light in age-related macular degeneration (AMD) patients before and after treatment with a single intravitreal bevacizumab (Avastin(®) ) injection. METHODS In 10 patients with exudative AMD [age: median (1.quartile; 3.quartile) 76.0 (73.5; 80.0) years], retinal vessel reactions were examined by Dynamic Vessel Analyser (DVA) before and 3 months after a single intravitreal application of bevacizumab (1.25 mg). A baseline measurement was followed by three consecutive monochromatic flicker stimulations (530-600 nm, 12.5 Hz, 20 seconds). Temporal retinal vessel reaction was analysed and compared with the reaction in healthy controls. RESULTS Mean arterial dilation at the end of flicker was not different in all groups. For veins this parameter amounted to: pre-treatment, 2.6 (1.7; 3.9)%; post-treatment, 2.9 (2.4; 4.0)%; control, 4.3 (3.2; 5.7)%; significant: pre-treatment - control (Dunnett's procedure, p < 0.05). Maximal dilation occurred in arteries at: pre-treatment, 17.5 (14.8; 32.5) seconds; post-treatment, 18.0 (16.6; 30.6) seconds; control, 14.5 (10.8; 17.3) seconds. Both AMD groups were slower (p < 0.05): in veins at 17.0 (14.5; 20.0) seconds, 12.8 (8.6; 14.8) seconds and 18.5 (17.1; 19.9) seconds, respectively; significant post-treatment - control (p < 0.05). In the post-treatment AMD group arterial constriction after stimulation occurred more slowly compared with the control group (p < 0.05). CONCLUSION Dynamic retinal arterial and venous reactions to flickering light are altered in AMD compared with controls. Three months after a single injection of a vascular endothelial growth factor inhibitor, the investigated retinal dynamic vascular parameters were not altered in our study.
Collapse
Affiliation(s)
- Ines M Lanzl
- Department of Ophthalmology, Munich University of Technology, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
109
|
Yang D, Elner SG, Chen X, Field MG, Petty HR, Elner VM. MCP-1-activated monocytes induce apoptosis in human retinal pigment epithelium. Invest Ophthalmol Vis Sci 2011; 52:6026-34. [PMID: 21447688 DOI: 10.1167/iovs.10-7023] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE The inflammatory response in age-related macular degeneration (AMD) is characterized by mononuclear leukocyte infiltration of the outer blood-retina barrier formed by the retinal pigment epithelium (RPE). A key mechanistic element in AMD progression is RPE dysfunction and apoptotic cell loss. The purpose of this study was to evaluate whether monocyte chemoattractant protein (MCP)-1-activated monocytes induce human RPE apoptosis and whether Ca(2+) and reactive oxygen species (ROS) are involved in this process. METHODS A cell-based fluorometric assay was used to measure intracellular Ca(2+) concentrations ([Ca(2+)](i)) in RPE cells loaded with fluorescent Ca(2+) indicator. Intracellular RPE ROS levels were measured by using the 5- and 6-chloromethyl-2',7'-dichlorodihydrofluorescence diacetate acetyl ester (CM-H(2)DCFDA) assay. RPE apoptosis was evaluated by activated caspase-3, Hoechst staining, and apoptosis ELISA. RESULTS MCP-1-activated human monocytes increased [Ca(2+)](i), ROS levels, and apoptosis in RPE cells, all of which were inhibited by 8-bromo-cyclic adenosine diphosphoribosyl ribose (8-Br-cADPR), an antagonist of cADPR. Although the ROS scavengers pyrrolidinedithiocarbamate (PDTC) and N-acetylcysteine (NAC) significantly inhibited ROS production and apoptosis induced by activated monocytes, they did not affect induced Ca(2+) levels. The induced Ca(2+) levels and apoptosis in RPE cells were inhibited by an antibody against cluster of differentiation antigen 14 (CD14), an adhesion molecule expressed by these cells. CONCLUSIONS These results indicate that CD14, Ca(2+), and ROS are involved in activated monocyte-induced RPE apoptosis and that cADPR contributes to these changes. Understanding the complex interactions among CD14, cADPR, Ca(2+), and ROS may provide new insights and treatments of retinal diseases, including AMD.
Collapse
Affiliation(s)
- Dongli Yang
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105-0714, USA
| | | | | | | | | | | |
Collapse
|
110
|
Mitochondria impairment correlates with increased sensitivity of aging RPE cells to oxidative stress. J Ocul Biol Dis Infor 2011; 3:92-108. [PMID: 22833778 DOI: 10.1007/s12177-011-9061-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 07/12/2011] [Indexed: 12/22/2022] Open
Abstract
Impairment of mitochondria function and cellular antioxidant systems are linked to aging and neurodegenerative diseases. In the eye, the retinal pigment epithelium (RPE) is exposed to a highly oxidative environment that contributes to age-related visual dysfunction. Here, we examined changes in mitochondrial function in human RPE cells and sensitivity to oxidative stress with increased chronological age. Primary RPE cells from young (9-20)-, mid-age (48-60)-, and >60 (62-76)-year-old donors were grown to confluency and examined by electron microscopy and flow cytometry using several mitochondrial functional assessment tools. Susceptibility of RPE cells to H(2)O(2) toxicity was determined by lactate dehydrogenase and cytochrome c release, as well as propidium iodide staining. Reactive oxygen species, cytoplasmic Ca(2+) [Ca(2+)](c), and mitochondrial Ca(2+) [Ca(2+)](m) levels were measured using 2',7'-dichlorodihydrofluorescein diacetate, fluo-3/AM, and Rhod-2/AM, respectively, adenosine triphosphate (ATP) levels were measured by a luciferin/luciferase-based assay and mitochondrial membrane potential (ΔΨm) estimated using 5,5',6,6'-tetrachloro 1,1'3,3'-tetraethylbenzimid azolocarbocyanine iodide. Expression of mitochondrial and antioxidant genes was determined by real-time polymerase chain reaction. RPE cells show greater sensitivity to oxidative stress, reduction in expression of mitochondrial heat shock protein 70, uncoupling protein 2, and superoxide dismutase 3, and greater expression of superoxide dismutase 2 levels with increased chronological age. Changes in mitochondrial number, size, shape, matrix density, cristae architecture, and membrane integrity were more prominent in samples obtained from >60 years old compared to mid-age and younger donors. These mitochondria abnormalities correlated with lower ATP levels, reduced ΔΨm, decreased [Ca(2+)](c), and increased sequestration of [Ca(2+)](m) in cells with advanced aging. Our study provides evidence for mitochondrial decay, bioenergetic deficiency, weakened antioxidant defenses, and increased sensitivity of RPE cells to oxidative stress with advanced aging. Our findings suggest that with increased severity of mitochondrial decay and oxidative stress, RPE function may be altered in some individuals in a way that makes the retina more susceptible to age-related injury.
Collapse
|
111
|
Butt AL, Lee ET, Klein R, Russell D, Ogola G, Warn A, Kingsley RM, Yeh J. Prevalence and risks factors of age-related macular degeneration in Oklahoma Indians: the Vision Keepers Study. Ophthalmology 2011; 118:1380-5. [PMID: 21310490 PMCID: PMC3129490 DOI: 10.1016/j.ophtha.2010.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 11/09/2010] [Accepted: 11/09/2010] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To determine the prevalence of age-related macular degeneration (AMD) and to identify its risk factors in an Oklahoma Indian population. DESIGN Cross-sectional study design. PARTICIPANTS Included 1019 Oklahoma Indians who participated in baseline and second examinations of the Strong Heart Study. METHODS Retinal photographs of at least 1 eye were obtained and graded for AMD by the University of Wisconsin Ocular Epidemiology Reading Center. Retinal photographs of 986 participants were considered gradable and were included in the study. MAIN OUTCOME MEASURES Age-related macular degeneration (early and late). RESULTS The overall prevalence of AMD in the study was 35.2%, including a prevalence of 0.81% for late AMD. The prevalence of early AMD increased from 30.6% in those aged 48 to 59 years to 46.1% in those 70 to 82 years of age. When potential risk factors were analyzed individually (univariate analyses), men with hypertension had a significantly higher prevalence of AMD (P = 0.02) than those without hypertension. In women, high-density lipoprotein cholesterol and sun exposure were associated positively with the prevalence of AMD (P = 0.01), whereas a history of using multivitamins was associated with lower AMD prevalence (P = 0.005). When multiple risk factors were analyzed simultaneously using logistic regression, only age showed significant association with AMD in both men (P = 0.02) and women (P<0.0001) and was the only significant risk factor in men. In women, multivitamin use and total cholesterol had a significant inverse association with AMD, whereas sun exposure and high-density lipoprotein cholesterol had a positive association. When men and women were combined, age and high-density lipoprotein cholesterol had significant positive associations, whereas total cholesterol, multivitamin use, and current alcohol use showed a significant inverse association with AMD. CONCLUSIONS This study was the first to report a detailed prevalence of AMD in Oklahoma Indians and its risk factors. The prevalence seemed to be relatively high compared with that in other ethnic groups. Some of the modifiable risk factors identified confirmed previous findings and can be used to design preventive programs to reduce the burden of AMD, although longitudinal data are still needed.
Collapse
Affiliation(s)
- Amir L Butt
- Center for American Indian Health Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Mocko JA, Kim M, Faulkner AE, Cao Y, Ciavatta VT, Pardue MT. Effects of subretinal electrical stimulation in mer-KO mice. Invest Ophthalmol Vis Sci 2011; 52:4223-30. [PMID: 21467171 DOI: 10.1167/iovs.10-6750] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Subretinal electrical stimulation (SES) from microphotodiode arrays protects photoreceptors in the RCS rat model of retinitis pigmentosa. The authors examined whether mer(kd) mice, which share a Mertk mutation with RCS rats, showed similar neuroprotective effects from SES. METHODS Mer(kd) mice were implanted with a microphotodiode array at postnatal day (P) 14. Weekly electroretinograms (ERGs) followed by retinal histology at week 4 were compared with those of age-matched controls. RT-PCR for fibroblast growth factor beta (Fgf2), ciliary nerve trophic factor (Cntf), glial-derived neurotrophic factor (Gdnf), insulin growth factor 1 (Igf1), and glial fibrillary acidic protein (Gfap) was performed on retinas at 1 week after surgery. Rates of degeneration using ERG parameters were compared between mer(kd) mice and RCS rats from P28 to P42. RESULTS SES-treated mer(kd) mice showed no differences in ERG a- and b-wave amplitudes or photoreceptor numbers compared with controls. However, the expression of Fgf2 and Cntf was greater (6.5 ± 1.9- and 2.5 ± 0.5-fold, respectively; P < 0.02) in SES-treated mer(kd) retinas. Rates of degeneration were faster for dark-adapted maximal b-wave, log σ, and oscillatory potentials in mer(kd) mice than in RCS rats. CONCLUSIONS Although SES upregulated Fgf2 in mer(kd) retinas, as reported previously for RCS retinas, this was not accompanied by neuroprotection of photoreceptors. Comparisons of ERG responses from mer(kd) mice and RCS rats across different ages showed inner retinal dysfunction in mer(kd) mice but not in RCS rats. This inner retinal dysfunction and the faster rate of degeneration in mer(kd) mice may produce a retinal environment that is not responsive to neuroprotection from SES.
Collapse
Affiliation(s)
- Julie A Mocko
- Rehabilitation Research and Development Service, Atlanta Department of Veterans Affairs, Decatur, Georgia 30033, USA
| | | | | | | | | | | |
Collapse
|
113
|
Pons M, Marin-Castaño ME. Nicotine increases the VEGF/PEDF ratio in retinal pigment epithelium: a possible mechanism for CNV in passive smokers with AMD. Invest Ophthalmol Vis Sci 2011; 52:3842-53. [PMID: 21330654 DOI: 10.1167/iovs.10-6254] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Cigarette smoking is the strongest environmental risk factor for wet age-related macular degeneration (AMD). Inappropriate expression of proangiogenic vascular endothelial growth factor (VEGF) and antiangiogenic pigment epithelium derived factor (PEDF) may cause choroidal neovascularization (CNV), a key event in wet AMD, resulting in vision loss. Nicotine (NT), a potent angiogenic agent abundant in second-hand smoke, may play a major role in the pathogenesis of wet AMD. The purpose of this study was to evaluate the expression of nicotinic acetylcholine receptors (nAchR) in retinal pigment epithelium (RPE) and determine the effects of NT on RPE-derived VEGF and PEDF expression in the context of passive smoking. METHODS Human RPE cells were treated with NT (10(-8) M), with or without the nAchR-nonspecific antagonist hexamethonium (HXM) (10(-5) M) for 72 hours. RPE sheets were microdissected from rats exposed to NT in drinking water (100 μg/mL), with or without HXM (40 mg/kg/d, intraperitoneally), for 72 hours. Cell death was determined by cell count and proliferation by Western blot for proliferating cell nuclear antigen (PCNA). nAchR expression was examined by real-time PCR and Western blot. ERK activation was evaluated by Western blot analysis. VEGF and PEDF expression was assessed by ELISA, Western blot, and real-time PCR. RESULTS Cultured RPE cells constitutively expressed the nAchR α3, α10, and β1 subunits, with β1 being the most prevalent. The nAchR α4, α5, α7, and β2 subunits were detected in RPE sheets from rats, among which α4 is the predominant subtype. NT, which did not result in either cell death or proliferation, induced β1 nAchR, upregulated VEGF, and downregulated PEDF expression through nAChR in ARPE-19 cells. Transcriptional activation of the nAchR α4 subunit and nAChR-mediated upregulation of VEGF and PEDF were observed in RPE from rats exposed to NT. CONCLUSIONS NT increased the VEGF-to-PEDF ratio in the RPE through nAchR in vitro and in vivo. This alteration in the ratio may play a key role in the progression to wet AMD in passive smokers.
Collapse
Affiliation(s)
- Marianne Pons
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | |
Collapse
|
114
|
Radu RA, Hu J, Yuan Q, Welch DL, Makshanoff J, Lloyd M, McMullen S, Travis GH, Bok D. Complement system dysregulation and inflammation in the retinal pigment epithelium of a mouse model for Stargardt macular degeneration. J Biol Chem 2011; 286:18593-601. [PMID: 21464132 PMCID: PMC3099675 DOI: 10.1074/jbc.m110.191866] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 03/22/2011] [Indexed: 11/06/2022] Open
Abstract
Accumulation of vitamin A-derived lipofuscin fluorophores in the retinal pigment epithelium (RPE) is a pathologic feature of recessive Stargardt macular dystrophy, a blinding disease caused by dysfunction or loss of the ABCA4 transporter in rods and cones. Age-related macular degeneration, a prevalent blinding disease of the elderly, is strongly associated with mutations in the genes for complement regulatory proteins (CRP), causing chronic inflammation of the RPE. Here we explore the possible relationship between lipofuscin accumulation and complement activation in vivo. Using the abca4(-/-) mouse model for recessive Stargardt, we investigated the role of lipofuscin fluorophores (A2E-lipofuscin) on oxidative stress and complement activation. We observed higher expression of oxidative-stress genes and elevated products of lipid peroxidation in eyes from abca4(-/-) versus wild-type mice. We also observed higher levels of complement-activation products in abca4(-/-) RPE cells. Unexpectedly, expression of multiple CRPs, which protect cells from attack by the complement system, were lower in abca4(-/-) versus wild-type RPE. To test whether acute exposure of healthy RPE cells to A2E-lipofuscin affects oxidative stress and expression of CRPs, we fed cultured fetal-derived human RPE cells with rod outer segments from wild-type or abca4(-/-) retinas. In contrast to RPE cells in abca4(-/-) mice, human RPE cells exposed to abca4(-/-) rod outer segments adaptively increased expression of both oxidative-stress and CRP genes. These results suggest that A2E accumulation causes oxidative stress, complement activation, and down-regulation of protective CRP in the Stargardt mouse model. Thus, Stargardt disease and age-related macular degeneration may both be caused by chronic inflammation of the RPE.
Collapse
Affiliation(s)
- Roxana A Radu
- Jules Stein Eye Institute, the Department of Ophthalmology, University of California, Los Angeles School of Medicine, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Silva RA, Moshfeghi AA, Kaiser PK, Singh RP, Moshfeghi DM. Radiation Treatment for Age-Related Macular Degeneration. Semin Ophthalmol 2011; 26:121-30. [DOI: 10.3109/08820538.2011.554486] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
116
|
Recent studies provide an updated clinical perspective on blue light-filtering IOLs. Graefes Arch Clin Exp Ophthalmol 2011; 249:957-68. [PMID: 21584764 PMCID: PMC3124647 DOI: 10.1007/s00417-011-1697-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 04/07/2011] [Accepted: 04/08/2011] [Indexed: 11/10/2022] Open
Abstract
Background Recent reviews of blue light-filtering intraocular lenses (IOLs) have stated their potential risks for scotopic vision and circadian photoentrainment. Some authors have challenged the rationale for retinal photoprotection that these IOLs might provide. Our objective is to address these issues by providing an updated clinical perspective based on the results of the most recent studies. Methods This article evaluates the currently available published papers assessing the potential risks and benefits of blue light-filtering IOLs. It summarizes the results of seven clinical and two computational studies on photoreception, and several studies related to retinal photoprotection, all of which were not available in the previous reviews. These results provide a clinical risk/benefit analysis for an updated review for these IOLs. Results Most clinical studies comparing IOLs with and without the blue light-filtering feature have found no difference in clinical performance for; visual acuity, contrast sensitivity, color vision, or glare. For blue light-filtering IOLs, three comparative clinical studies have shown improved contrast sensitivity and glare reduction; but one study, while it showed satisfactory overall color perception, demonstrated some compromise in mesopic comparative blue color discrimination. Comparative results of two recent clinical studies have also shown improved performance for simulated driving under glare conditions and reduced glare disability, better heterochromatic contrast threshold, and faster recovery from photostress for blue light-filtering IOLs. Two computational and five clinical studies found no difference in performance between IOLs with or without blue light-filtration for scotopic vision performance and photo entrainment of the circadian rhythm. The rationale for protection of the pseudophakic retina against phototoxicity is discussed with supporting results of the most recent computational, in-vitro, animal, clinical, and epidemiological investigations. Conclusions This analysis provides an updated clinical perspective which suggests the selection of blue light-filtering IOLs for patients of any age, but especially for pediatric and presbyopic lens exchange patients with a longer pseudophakic life. Without clinically substantiated potential risks, these patients should experience the benefit of overall better quality of vision, reduced glare disability at least in some conditions, and better protection against retinal phototoxicity and its associated potential risk for AMD. Electronic supplementary material The online version of this article (doi:10.1007/s00417-011-1697-6) contains supplementary material, which is available to authorized users.
Collapse
|
117
|
Schimel AM, Abraham L, Cox D, Sene A, Kraus C, Dace DS, Ercal N, Apte RS. N-acetylcysteine amide (NACA) prevents retinal degeneration by up-regulating reduced glutathione production and reversing lipid peroxidation. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2032-43. [PMID: 21457933 DOI: 10.1016/j.ajpath.2011.01.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/18/2011] [Accepted: 01/25/2011] [Indexed: 02/07/2023]
Abstract
Oxidative stress plays a critical role in accelerating retinal pigment epithelial dysfunction and death in degenerative retinal diseases, including age-related macular degeneration. Given the key role of oxidative stress-induced retinal pigment epithelial cell death and secondary photoreceptor loss in the pathogenesis of age-related macular degeneration, we hypothesized that a novel thiol antioxidant, N-acetylcysteine amide (NACA), might ameliorate cellular damage and subsequent loss of vision. Treatment of human retinal pigment epithelial cells with NACA protected against oxidative stress-induced cellular injury and death. NACA acted mechanistically by scavenging existing reactive oxygen species while halting production of reactive oxygen species by reversing lipid peroxidation. Furthermore, NACA functioned by increasing the levels of reduced glutathione and the phase II detoxification enzyme glutathione peroxidase. Treatment of mice exposed to phototoxic doses of light with NACA maintained retinal pigment epithelial cell integrity and prevented outer nuclear layer cell death as examined by histopathologic methods and rescued photoreceptor function as measured by electroretinography. These observations indicate that NACA protects against oxidative stress-induced retinal pigment epithelial and photoreceptor cell death in vitro and in vivo. The data suggest that NACA may be a novel treatment in rescuing retinal function and preventing vision loss secondary to retinal degenerative diseases, including age-related macular degeneration.
Collapse
Affiliation(s)
- Andrew M Schimel
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Pons M, Marin-Castaño ME. Cigarette smoke-related hydroquinone dysregulates MCP-1, VEGF and PEDF expression in retinal pigment epithelium in vitro and in vivo. PLoS One 2011; 6:e16722. [PMID: 21386905 PMCID: PMC3046136 DOI: 10.1371/journal.pone.0016722] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 12/23/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is the leading cause of legal blindness in the elderly population. Debris (termed drusen) below the retinal pigment epithelium (RPE) have been recognized as a risk factor for dry AMD and its progression to wet AMD, which is characterized by choroidal neovascularization (CNV). The underlying mechanism of how drusen might elicit CNV remains undefined. Cigarette smoking, oxidative damage to the RPE and inflammation are postulated to be involved in the pathophysiology of the disease. To better understand the cellular mechanism(s) linking oxidative stress and inflammation to AMD, we examined the expression of pro-inflammatory monocyte chemoattractant protein-1 (MCP-1), pro-angiogenic vascular endothelial growth factor (VEGF) and anti-angiogenic pigment epithelial derived factor (PEDF) in RPE from smoker patients with AMD. We also evaluated the effects of hydroquinone (HQ), a major pro-oxidant in cigarette smoke on MCP-1, VEGF and PEDF expression in cultured ARPE-19 cells and RPE/choroids from C57BL/6 mice. PRINCIPAL FINDINGS MCP-1, VEGF and PEDF expression was examined by real-time PCR, Western blot, and ELISA. Low levels of MCP-1 protein were detected in RPE from AMD smoker patients relative to controls. Both MCP-1 mRNA and protein were downregulated in ARPE-19 cells and RPE/choroids from C57BL/6 mice after 5 days and 3 weeks of exposure to HQ-induced oxidative injury. VEGF protein expression was increased and PEDF protein expression was decreased in RPE from smoker patients with AMD versus controls resulting in increased VEGF/PEDF ratio. Treatment with HQ for 5 days and 3 weeks increased the VEGF/PEDF ratio in vitro and in vivo. CONCLUSION We propose that impaired RPE-derived MCP-1-mediated scavenging macrophages recruitment and phagocytosis might lead to incomplete clearance of proinflammatory debris and infiltration of proangiogenic macrophages which along with increased VEGF/PEDF ratio favoring angiogenesis might promote drusen accumulation and progression to CNV in smoker patients with dry AMD.
Collapse
Affiliation(s)
- Marianne Pons
- Department of Ophthalmology, Miller School of Medicine, Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States of America
| | - Maria E. Marin-Castaño
- Department of Ophthalmology, Miller School of Medicine, Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States of America
| |
Collapse
|
119
|
Kokotas H, Grigoriadou M, Petersen MB. Age-related macular degeneration: genetic and clinical findings. Clin Chem Lab Med 2010; 49:601-16. [PMID: 21175380 DOI: 10.1515/cclm.2011.091] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Age-related macular degeneration (AMD) is a sight threatening eye disease that affects millions of humans over the age of 65 years. It is considered to be the major cause of irreversible blindness in the elderly population in the developed world. The disease is prevalent in Europe and the United States, which has a large number of individuals of European descent. AMD is characterized by a progressive loss of central vision attributable to degenerative and neovascular changes that occur in the interface between the neural retina and the underlying choroid. This location contains the retinal photoreceptors, the retinal pigmented epithelium, a basement membrane complex known as Bruch's membrane and a network of choroidal capillaries. AMD is increasingly recognized as a complex genetic disorder where one or more genes contribute to an individual's susceptibility to development of the condition, while the prevailing view is that the disease stems from the interaction of multiple genetic and environmental factors. Although it has been proposed that a threshold event occurs during normal aging, the sequelae of biochemical, cellular, and molecular events leading to AMD are not fully understood. Here, we review the clinical aspects of AMD and summarize the genes which have been reported to have a positive association with the disease.
Collapse
Affiliation(s)
- Haris Kokotas
- Department of Genetics, Institute of Child Health, Aghia Sophia Children's Hospital, Athens, Greece.
| | | | | |
Collapse
|
120
|
|
121
|
Sparrow JR, Wu Y, Nagasaki T, Yoon KD, Yamamoto K, Zhou J. Fundus autofluorescence and the bisretinoids of retina. Photochem Photobiol Sci 2010; 9:1480-9. [PMID: 20862444 DOI: 10.1039/c0pp00207k] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Imaging of the human fundus of the eye with excitation wavelengths in the visible spectrum reveals a natural autofluorescence, that in a healthy retina originates primarily from the bisretinoids that constitute the lipofuscin of retinal pigment epithelial (RPE) cells. Since the intensity and distribution of fundus autofluorescence is altered in the presence of retinal disease, we have examined the fluorescence properties of the retinal bisretinoids with a view to aiding clinical interpretations. As is also observed for fundus autofluorescence, fluorescence emission from RPE lipofuscin was generated with a wide range of exciting wavelengths; with increasing excitation wavelength, the emission maximum shifted towards longer wavelengths and spectral width was decreased. These features are consistent with fluorescence generation from a mixture of compounds. While the bisretinoids that constitute RPE lipofuscin all fluoresced with maxima that were centered around 600 nm, fluorescence intensities varied when excited at 488 nm, the excitation wavelength utilized for fundus autofuorescence imaging. For instance the fluorescence efficiency of the bisretinoid A2-dihydropyridine-phosphatidylethanolamine (A2-DHP-PE) was greater than A2E and relative to both of the latter, all-trans-retinal dimer-phosphatidylethanolamine was weakly fluorescent. On the other hand, certain photooxidized forms of the bisretinoids present in both RPE and photoreceptor cells were more strongly fluorescent than the parent compound. We also sought to evaluate whether diffuse puncta of autofluorescence observed in some retinal disorders of monogenic origin are attributable to retinoid accumulation. However, two retinoids of the visual cycle, all-trans-retinyl ester and all-trans-retinal, did not exhibit fluorescence at 488 nm excitation.
Collapse
Affiliation(s)
- Janet R Sparrow
- Department of Ophthalmology, Columbia University, 630 W. 168th Street, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|
122
|
Papadaki T, Tsilimbaris M, Pallikaris I, Thermos K. Somatostatin receptor activation (sst(1) -sst(5) ) differentially influences human retinal pigment epithelium cell viability. Acta Ophthalmol 2010; 88:e228-33. [PMID: 20632998 DOI: 10.1111/j.1755-3768.2010.01945.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE To investigate the differential effects of somatostatin and its receptors (sst(1-5) ) on the viability of cultured human retinal pigment epithelium (hRPE) cells. METHODS MTT [3 (4, 5-dimethylthiazol-2yl)-2, 5 diphenyltetrazolium bromide], APO Percentage(TM) and trypan blue assays were performed to assess the mechanisms via which somatostatin (10(-10) -10(-4) m) and selective receptor (sst(1-5) ) ligands (10(-12) -10(-4) m) affect cell viability. The effect of orthovanadate (phosphatase inhibitor, 10(-7) -10(-5) m) on somatostatin's (10(-5) m) actions was examined, and western blot analysis was employed to determine the presence of ssts and phosphotyrosine phosphatase SHP-1 in human RPE cells. RESULTS Somatostatin and selective ligands for the five somatostatin receptor subtypes (sst(1-5) ) decreased cell viability in a concentration-dependent manner. The observed decrease in cell number was partly because of apoptosis via the activation of sst(1) and sst(5) receptors. Activation of sst(2) , sst(3) and sst(4) receptors led to inhibition of cell growth that did not involve apoptosis, but rather antiproliferative actions. SHP-1 was found in the human RPE cells and sodium orthovanadate reversed somatostatin's actions. CONCLUSIONS This study provides new information regarding the involvement of ssts in human RPE cell viability and suggests that a pathway involving the phosphotyrosine phosphatase may mediate somatostatin's actions.
Collapse
Affiliation(s)
- Thekla Papadaki
- Department of Pharmacology, Faculty of Medicine, University of Crete, Crete, Greece
| | | | | | | |
Collapse
|
123
|
Igarashi T, Miyake K, Masuda I, Takahashi H, Shimada T. Adeno-associated vector (type 8)-mediated expression of soluble Flt-1 efficiently inhibits neovascularization in a murine choroidal neovascularization model. Hum Gene Ther 2010; 21:631-7. [PMID: 20053138 DOI: 10.1089/hum.2009.153] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To assess the feasibility of a gene therapeutic approach to treating choroidal neovascularization (CNV), we generated a recombinant adeno-associated viral (AAV) vector (type 8) encoding soluble Flt-1 (AAV-sflt-1), and determined its ability to inhibit angiogenesis. When we treated human umbilical vein endothelial cells (HUVECs) with the supernatant of cells transduced with AAV-sflt-1 or AAV-EGFP (control), we found that tube formation was significantly inhibited by the former but not the latter (area: 25,121 +/- 557 vs. 68,628 +/- 1357 pixels [p < 0.01]; length: 4811 +/- 246 vs. 10,894 +/- 297 pixels [p < 0.01]). CNV was induced in C57BL/6 mice by making four separate choroidal burns around the optic nerve in each eye, using a diode laser. Thereafter, 2 microl (5 x 10(11) vector genomes/ml) of AAV-sflt-1 (n = 11) or control AAV-LacZ (n = 12) was injected into the subretinal space, and 2 weeks later the eyes were removed for flatmount analysis of CNV surface area. Notably, subretinal delivery of AAV-sflt-1 significantly diminished CNV at the laser lesions, as compared with AAV-LacZ (555 +/- 304 vs. 1470 +/- 1000 microm(2); p = 0.007). These results suggest that there was diffusion of the secreted sFlt-1 across the retina and that long-term suppression of CNV is possible through the use of stable rAAV-mediated sflt-1 expression. In vivo gene therapy thus appears to be a feasible approach to the clinical management of CNV in conditions such as age-related macular degeneration.
Collapse
Affiliation(s)
- Tsutomu Igarashi
- Department of Ophthalmology, Research Center for Advanced Medical Technology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8603, Japan
| | | | | | | | | |
Collapse
|
124
|
Olchawa M, Szewczyk G, Zareba M, Piłat A, Bzowska M, Mikołajczyk T, Sarna T. Sub-lethal photodynamic damage to ARPE-19 cells transiently inhibits their phagocytic activity. Photochem Photobiol 2010; 86:772-80. [PMID: 20492570 DOI: 10.1111/j.1751-1097.2010.00727.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Efficient phagocytosis of photoreceptor outer segments (POS) membranes by retinal pigment epithelium (RPE) plays a key role in biological renewal of these highly peroxidizable structures. Here, we tested whether photodynamic treatment, mediated by merocyanine 540 (MC 540), rose Bengal or a zinc-substituted chlorophyllide inhibited phagocytic activity of ARPE-19 cells in vitro. Specific phagocytosis of fluorescein-5-isothiocyanate-labeled POS isolated from cow retinas and nonspecific phagocytosis of fluorescent polystyrene beads were measured by flow cytometry. Photodynamic treatment, mediated by all three photosensitizers with sub-threshold doses, induced significant inhibition of the cell-specific phagocytosis. The nonspecific phagocytosis was inhibited by photodynamic treatment mediated only by MC 540. The inhibition of phagocytosis was a reversible phenomenon and after 24 h, the photodynamically treated cells exhibited phagocytic activity that was comparable with that of untreated cells. This study provides proof of principle that sub-threshold photodynamic treatment of ARPE-19 cells with appropriate photosensitizers is a convenient experimental approach for in vitro study of the effects of oxidative stress on specific phagocytic activity of RPE cells. We postulate that oxidative damage to key components of the cell phagocytic machinery may be responsible for severe impairment of its activity, which can lead to retinal degeneration.
Collapse
|
125
|
Abstract
Stargardt-like macular degeneration (STGD3) is an early onset, autosomal dominant macular degeneration. STGD3 is characterized by a progressive pathology, the loss of central vision, atrophy of the retinal pigment epithelium, and accumulation of lipofuscin, clinical features that are also characteristic of age-related macular degeneration. The onset of clinical symptoms in STGD3, however, is typically observed within the second or third decade of life (i.e., starting in the teenage years). The clinical profile at any given age among STGD3 patients can be variable suggesting that, although STGD3 is a single gene defect, other genetic or environmental factors may play a role in moderating the final disease phenotype. Genetic studies localized the STGD3 disease locus to a small region on the short arm of human chromosome 6, and application of a positional candidate gene approach identified protein truncating mutations in the elongation of very long chain fatty acids-4 gene (ELOVL4) in patients with this disease. The ELOVL4 gene encodes a protein homologous to the ELO group of proteins that participate in fatty acid elongation in yeast. Pathogenic mutations found in the ELOVL4 gene result in altered trafficking of the protein and behave with a dominant negative effect. Mice carrying an Elovl4 mutation developed photoreceptor degeneration and depletion of very long chain fatty acids (VLCFA). ELOVL4 protein participates in the synthesis of fatty acids with chain length longer than 26 carbons. Studies on ELOVL4 indicate that VLCFA may be necessary for normal function of the retina, and the defective protein trafficking and/or altered VLCFA elongation underlies the pathology associated with STGD3. Determining the role of VLCFA in the retina and discerning the implications of abnormal trafficking of mutant ELOVL4 and depleted VLCFA content in the pathology of STGD3 will provide valuable insight in understanding the retinal structure, function, and pathology underlying STGD3 and may lead to a better understanding of the process of macular disease in general.
Collapse
|
126
|
Mitochondrial decay and impairment of antioxidant defenses in aging RPE cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 664:165-83. [PMID: 20238015 DOI: 10.1007/978-1-4419-1399-9_20] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In the eye, the retinal pigment epithelium (RPE) is exposed to a highly oxidative environment, partly due to elevated oxygen partial pressure from the choriocapillaris and to digestion of polyunsaturated fatty acid laden photoreceptor outer segments. Here we examined the vulnerability of RPE cells to stress and changes in their mitochondria with increased chronological aging and showed that there is greater sensitivity of the cells to oxidative stress, alterations in their mitochondrial number, size, shape, matrix density, cristae architecture, and membrane integrity as a function of age. These features correlate with reduced cellular levels of ATP, ROS, and [Ca(2+)](c), lower Deltapsim, increased [Ca(2+)](m) sequestration and decreased expression of mtHsp70, UCP2, and SOD3. Mitochondrial decay, bioenergetic deficiencies, and weakened antioxidant defenses in RPE cells occur as early as age 62. With increased severity, these conditions may significantly reduce RPE function in the retina and contribute to age related retinal anomalies.
Collapse
|
127
|
Framme C, Walter A, Prahs P, Regler R, Theisen-Kunde D, Alt C, Brinkmann R. Structural changes of the retina after conventional laser photocoagulation and selective retina treatment (SRT) in spectral domain OCT. Curr Eye Res 2009; 34:568-79. [PMID: 19899970 DOI: 10.1080/02713680902964892] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Spectral domain optical coherence tomography (SD-OCT) in patients can deliver retinal cross-sectional images with high resolution. This may allow the evaluation of the extent of damage to the retinal pigment epithelium (RPE) and the neurosensory retina after laser treatment. This article aims to investigate the value of SD-OCT in comparing laser lesions produced by conventional laser photocoagulation and selective retina treatment (SRT). MATERIAL AND METHODS In a retrospective study, conventional retinal laser (CRL) lesions and SRT laser lesions were evaluated with SD-OCT. One hundred seventy-five CRL lesions were investigated in 10 patients with diabetic maculopathy at timepoints between 1 hr and 4 years after treatment. Ninety-one SRT lesions were examined in 9 patients with central serous retinopathy, geographic atrophy, and diabetic maculopathy at timepoints between 1 hr and 2 years. CRL lesions were applied with an ophthalmoscopically slightly grayish-white appearance (Nd:YAG laser at 532-nm wavelength; power 100-200 mW; retinal spot diameter 100 microm; pulse duration 100 ms). SRT lesions were applied with a Nd:YLF (527 nm; pulse duration 200 ns [30 pulses at 100 Hz]; energy 100-200 microJ/pulse; retinal spot diameter 200 microm) and were visible only angiographically. RESULTS All CRL lesions were characterized by high reflectivity in OCT images throughout the full thickness of the neurosensory tissue 1 hr after irradiation, suggesting complete neurosensory coagulation. Strong contraction through the full thickness of the neurosensory layers was observed within 7 days after treatment. In contrast, the neural retina appeared unaffected after SRT. For both lesion types, the RPE layer appeared to be regular or thinner immediately after treatment, whereas within a period of 4 weeks, a RPE thickening indicating RPE proliferation was observable. One year and later after treatment, CRL lesions were characterized by RPE atrophy combined with significant damage of the neurosensory tissue. SRT lesions aged one year and older revealed unaffected neurosensory structures and an intact RPE layer. CONCLUSION Spectral domain OCT can be used clinically to follow the development of laser-induced lesions over time. Postoperative RPE proliferation was observed in both CRL and SRT laser lesions. RPE atrophy appeared subsequently only in CRL lesions, whereas the neurosensory retina appeared unaffected following SRT. These results suggest the selective effect of SRT in humans without causing adverse effects to the neurosensory retina.
Collapse
|
128
|
Curcio CA, Johnson M, Huang JD, Rudolf M. Aging, age-related macular degeneration, and the response-to-retention of apolipoprotein B-containing lipoproteins. Prog Retin Eye Res 2009; 28:393-422. [PMID: 19698799 PMCID: PMC4319375 DOI: 10.1016/j.preteyeres.2009.08.001] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The largest risk factor for age-related macular degeneration (ARMD) is advanced age. A prominent age-related change in the human retina is the accumulation of histochemically detectable neutral lipid in normal Bruch's membrane (BrM) throughout adulthood. This change has the potential to have a major impact on physiology of the retinal pigment epithelium (RPE). It occurs in the same compartment as drusen and basal linear deposit, the pathognomonic extracellular, lipid-containing lesions of ARMD. Here we present evidence from light microscopic histochemistry, ultrastructure, lipid profiling of tissues and isolated lipoproteins, and gene expression analysis that this deposition can be accounted for by esterified cholesterol-rich, apolipoprotein B-containing lipoprotein particles constitutively produced by the RPE. This work collectively allows ARMD lesion formation and its aftermath to be conceptualized as a response to the retention of a sub-endothelial apolipoprotein B lipoprotein, similar to a widely accepted model of atherosclerotic coronary artery disease (CAD) (Tabas et al., 2007). This approach provides a wide knowledge base and sophisticated clinical armamentarium that can be readily exploited for the development of new model systems and the future benefit of ARMD patients.
Collapse
Affiliation(s)
- Christine A Curcio
- Department of Ophthalmology, University of Alabama School of Medicine, Birmingham, AL 35294-0009, USA.
| | | | | | | |
Collapse
|
129
|
Alcazar O, Hawkridge AM, Collier TS, Cousins SW, Bhattacharya SK, Muddiman DC, Marin-Castano ME. Proteomics characterization of cell membrane blebs in human retinal pigment epithelium cells. Mol Cell Proteomics 2009; 8:2201-11. [PMID: 19567368 PMCID: PMC2758750 DOI: 10.1074/mcp.m900203-mcp200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Revised: 06/09/2009] [Indexed: 12/21/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of legal blindness among the elderly population in the industrialized world, affecting about 14 million people in the United States alone. Smoking is a major environmental risk factor for AMD, and hydroquinone is a major component in cigarette smoke. Hydroquinone induces the formation of cell membrane blebs in human retinal pigment epithelium (RPE). Blebs may accumulate and eventually contribute first to sub-RPE deposits and then drusen formation, which is a prominent histopathologic feature in eyes with AMD. As an attempt to better understand the mechanisms involved in early AMD, we sought to investigate the proteomic profile of RPE blebs. Isolated blebs were subjected to SDS-PAGE fractionation, and in-gel trypsin-digested peptides were analyzed by LC-MS/MS that lead to the identification of a total of 314 proteins. Identified proteins were predominantly involved in oxidative phosphorylation, cell junction, focal adhesion, cytoskeleton regulation, and immunogenic processes. Importantly basigin and matrix metalloproteinase-14, key proteins involved in extracellular matrix remodeling, were identified in RPE blebs and shown to be more prevalent in AMD patients. Altogether our findings suggest, for the first time, the potential involvement of RPE blebs in eye disease and shed light on the implication of cell-derived microvesicles in human pathology.
Collapse
Affiliation(s)
- Oscar Alcazar
- From the ‡Bascom Palmer Eye Institute, University of Miami, Miami, Florida 33136
| | - Adam M. Hawkridge
- §W. M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, and
| | - Timothy S. Collier
- §W. M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, and
| | - Scott W. Cousins
- ¶Duke Center for Macular Diseases, Duke University, Durham, North Carolina 27710
| | | | - David C. Muddiman
- §W. M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, and
| | | |
Collapse
|
130
|
Curcio CA, Johnson M, Huang JD, Rudolf M. Apolipoprotein B-containing lipoproteins in retinal aging and age-related macular degeneration. J Lipid Res 2009; 51:451-67. [PMID: 19797256 DOI: 10.1194/jlr.r002238] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The largest risk factor for age-related macular degeneration (ARMD) is advanced age. With aging, there is a striking accumulation of neutral lipids in Bruch's membrane (BrM) of normal eye that continues through adulthood. This accumulation has the potential to significantly impact the physiology of the retinal pigment epithelium (RPE). It also ultimately leads to the creation of a lipid wall at the same locations where drusen and basal linear deposit, the pathognomonic extracellular, lipid-containing lesions of ARMD, subsequently form. Here, we summarize evidence obtained from light microscopy, ultrastructural studies, lipid histochemistry, assay of isolated lipoproteins, and gene expression analysis. These studies suggest that lipid deposition in BrM is at least partially due to accumulation of esterified cholesterol-rich, apolipoprotein B-containing lipoprotein particles produced by the RPE. Furthermore, we suggest that the formation of ARMD lesions and their aftermath may be a pathological response to the retention of a sub-endothelial apolipoprotein B lipoprotein, similar to a widely accepted model of atherosclerotic coronary artery disease (Tabas, I., K. J. Williams, and J. Borén. 2007. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation. 116:1832-1844). This view provides a conceptual basis for the development of novel treatments that may benefit ARMD patients in the future.
Collapse
Affiliation(s)
- Christine A Curcio
- Department of Ophthalmology, University of Alabama School of Medicine, Birmingham, AL, USA.
| | | | | | | |
Collapse
|
131
|
Ryhänen T, Hyttinen JMT, Kopitz J, Rilla K, Kuusisto E, Mannermaa E, Viiri J, Holmberg CI, Immonen I, Meri S, Parkkinen J, Eskelinen EL, Uusitalo H, Salminen A, Kaarniranta K. Crosstalk between Hsp70 molecular chaperone, lysosomes and proteasomes in autophagy-mediated proteolysis in human retinal pigment epithelial cells. J Cell Mol Med 2009; 13:3616-31. [PMID: 19017362 PMCID: PMC4516511 DOI: 10.1111/j.1582-4934.2008.00577.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 10/20/2008] [Indexed: 12/19/2022] Open
Abstract
The pathogenesis of age-related macular degeneration involves chronic oxidative stress, impaired degradation of membranous discs shed from photoreceptor outer segments and accumulation of lysosomal lipofuscin in retinal pigment epithelial (RPE) cells. It has been estimated that a major part of cellular proteolysis occurs in proteasomes, but the importance of proteasomes and the other proteolytic pathways including autophagy in RPE cells is poorly understood. Prior to proteolysis, heat shock proteins (Hsps), agents that function as molecular chaperones, attempt to refold misfolded proteins and thus prevent the accumulation of cytoplasmic protein aggregates. In the present study, the roles of the Hsp70 molecular chaperone and proteasomal and lysosomal proteolytic pathways were evaluated in human RPE cells (ARPE-19). The Hsp70 and ubiquitin protein levels and localization were analysed by Western blotting and immunofluorescense. Confocal and transmission electron microscopy were used to detect cellular organelles and to evaluate the morphological changes. Hsp70 levels were modulated using RNA interference and overexpression techniques. Cell viability was measured by colorimetric assay. The proteasome inhibitor MG-132 evoked the accumulation of perinuclear aggregates positive for Hsp70, ubiquitin-protein conjugates and the lysosomal membrane protein LAMP-2. Interestingly, the hsp70 mRNA depletion significantly increased cell death in conjunction with proteasome inhibition. We found that the accumulation of lysosomes was reversible: a cessation of proteasome inhibition led to clearance of the deposits via a mechanism believed to include autophagy. The molecular chaperone Hsp70, proteasomes and autophagy have an important regulatory role in the protein turnover of human RPE cells and may thus open new avenues for understanding degenerative processes in retinal cells.
Collapse
Affiliation(s)
- Tuomas Ryhänen
- Department of Ophthalmology, University of KuopioKuopio, Finland
| | | | - Jürgen Kopitz
- Institute of Molecular Pathology, Medical Faculty of the University of HeidelbergHeidelberg, Germany
| | - Kirsi Rilla
- Department of Anatomy, University of KuopioKuopio, Finland
| | - Erkki Kuusisto
- Department of Neuroscience and Neurology, University of KuopioKuopio, Finland
| | - Eliisa Mannermaa
- Department of Pharmaceutics, University of KuopioKuopio, Finland
| | - Johanna Viiri
- Department of Ophthalmology, University of KuopioKuopio, Finland
| | - Carina I Holmberg
- Molecular and Cancer Biology Program, Institute of Biomedicum, University of HelsinkiHelsinki, Finland
| | - Ilkka Immonen
- Department of Ophthalmology, Helsinki University HospitalHelsinki, Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology, Haartman Institute, University of HelsinkiHelsinki, Finland
| | - Jussi Parkkinen
- Department of Computer Science and Statistics, University of JoensuuJoensuu, Finland
| | - Eeva-Liisa Eskelinen
- Department of Biological and Environmental Sciences, Division of Biochemistry, University of HelsinkiHelsinki, Finland
| | - Hannu Uusitalo
- Department of Ophthalmology, University of KuopioKuopio, Finland
| | - Antero Salminen
- Department of Neuroscience and Neurology, University of KuopioKuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of KuopioKuopio, Finland
| |
Collapse
|
132
|
Smith RT, Gomes NL, Barile G, Busuioc M, Lee N, Laine A. Lipofuscin and autofluorescence metrics in progressive STGD. Invest Ophthalmol Vis Sci 2009; 50:3907-14. [PMID: 19387078 PMCID: PMC2771564 DOI: 10.1167/iovs.08-2448] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE To evaluate Stargardt disease (STGD) progression and relative lipofuscin levels via autofluorescence image analysis. METHODS The relationship between focally increased autofluorescence (FIAF), geographic atrophy (GA) and focally decreased autofluorescence (FDAF) was analyzed in serial, registered autofluorescence (AF) scans of 10 patients with STGD (20 eyes, 40 scans; mean follow-up, 2.0 years) using automated techniques. RESULTS GA progressed uniformly in a transition zone with minimal FIAF. Only 4.3% of FIAF progressed to GA or FDAF, despite significant progression of GA (median 30%/year) and FDAF (mean, 29%/year). As a spatial predictor, the mean chance of FIAF for progression to FDAF was 4.3% +/- 4.4%, significantly less than that of random areas (6.7% +/- 4.0%, P = 0.029, Mann-Whitney test). In the seven eyes with GA, the mean chance of FIAF in the transition zone for transition to GA was 12% +/- 8.9%, significantly less than that of random areas (33% +/- 3.6%, P = 0.026, Mann-Whitney test). CONCLUSIONS Autofluorescent flecks and FIAF deposits with AF levels elevated above the initial macular background were less likely in the short term (2 years) to transform to GA and FDAF (AF levels below the final background) than random areas, suggesting additional mechanisms beyond direct lipofuscin toxicity. FIAF/FDAF levels were observed to fluctuate, with focal remodeling of FIAF and FDAF, or rarely, even transition of FDAF to FIAF. FDAF tended to develop, not coincident with, but adjacent to initial FIAF. Because AF identifies these characteristic biological markers so specifically, autofluorescence metrics merit consideration in the study of STGD.
Collapse
Affiliation(s)
- R Theodore Smith
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
133
|
Yang QR, Zwijsen A, Slegers H, Berghe DV. Purification and Characterization of VEGFNPF Secreted by Human Retinal Pigment Epithelial Cells. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10623329409024636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
134
|
Parodi MB, Virgili G, Evans JR. Laser treatment of drusen to prevent progression to advanced age-related macular degeneration. Cochrane Database Syst Rev 2009:CD006537. [PMID: 19588397 DOI: 10.1002/14651858.cd006537.pub2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Drusen are amorphous yellowish deposits beneath the sensory retina. People with drusen, particularly large drusen, are at higher risk of developing age-related macular degeneration (AMD). The most common complication in AMD is choroidal neovascularisation (CNV), the growth of new blood vessels in the centre of the macula. The risk of CNV is higher among patients who are already affected by CNV in one eye.It has been observed clinically that laser photocoagulation of drusen leads to their disappearance and may prevent the occurrence of advanced disease (CNV or geographic atrophy) associated with visual loss. OBJECTIVES To examine the effectiveness and adverse effects of laser photocoagulation of drusen in AMD. SEARCH STRATEGY We searched CENTRAL, MEDLINE and EMBASE on 14 November 2008. SELECTION CRITERIA Randomised controlled trials (RCTs) of laser treatment of drusen in AMD in which laser treatment had been compared with no intervention or sham treatment. Two types of trials were included. Some trials studied one eye of each patient (unilateral studies); other studies recruited patients with bilateral drusen and randomised one eye to photocoagulation or control and the fellow eye to the other group. DATA COLLECTION AND ANALYSIS Two review authors independently selected studies and extracted data. We pooled data from unilateral and bilateral studies using a random-effects model. For the bilateral studies, we estimated the within-patient correlation coefficient from one study and assumed it was valid for the others. MAIN RESULTS We found nine studies which randomised 2216 people: four unilateral trials, three bilateral trials and two trials that included both a unilateral and a bilateral study arm.Overall, the studies were of moderate quality. Only half of the trials reported adequate allocation sequence generation, allocation concealment and masking of visual acuity outcome assessors.Although two (of the nine) studies reported significant drusen disappearance at two years, photocoagulation did not appear to affect the development of CNV at two years follow up (nine studies, 1767 people followed up, odds ratio (OR) 1.04, 95% CI 0.71 to 1.51) or the loss of three or more lines of visual acuity (six studies, 1628 people followed up, OR 1.17, 95% CI 0.75 to 1.82). AUTHORS' CONCLUSIONS The trials included in this review confirm the clinical observation that laser photocoagulation of drusen leads to their disappearance. However, there is no evidence that this subsequently results in a reduction in the risk of developing CNV, geographic atrophy or visual acuity loss.
Collapse
Affiliation(s)
- Maurizio B Parodi
- Department of Ophthalmology, University of Udine, Piazzale Santa Maria della Misericordia, Udine, Italy, 33100
| | | | | |
Collapse
|
135
|
(Pro)renin receptor is expressed in human retinal pigment epithelium and participates in extracellular matrix remodeling. Exp Eye Res 2009; 89:638-47. [PMID: 19580809 DOI: 10.1016/j.exer.2009.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/08/2009] [Accepted: 06/11/2009] [Indexed: 01/30/2023]
Abstract
The (pro)renin receptor (PRR) is believed to potentiate the renin-angiotensin system (RAS), conferring to prorenin, a likely pathological role at tissue level. The PRR has been identified in the microvascular endothelial cells of the retina, in which it seems to be involved in pathological neovascularization processes. In the present study, we sought to explore PRR expression and prorenin action in human retinal pigment epithelium (RPE) cells, as well as its potential implication in extracellular matrix (ECM) turnover. Isolated RPE cells from donor human eyes as well as freshly isolated human retinas demonstrated expression of PRR at mRNA and protein levels. Moreover, we demonstrate that PRR expressed in the RPE cells is functional, as shown by prorenin-induced increases in Erk1/2 phosphorylation. PRR expression was also shown to be regulated by its main physiological agonist prorenin. We found evidence that the PRR may be involved in ECM-remodeling processes through a prorenin-induced upregulation of type I collagen. Immunostaining analysis of human retinas revealed higher PRR and type I collagen expression in the RPE of eye donors with dry age-related macular degeneration (AMD) and hypertension, supporting the in vitro findings using human-isolated RPE cells. Taken together, the present study demonstrates for the first time that the PRR is expressed in human RPE and suggests a molecular mechanism by which hypertension may exacerbate the pathology of dry AMD.
Collapse
|
136
|
Sheu SJ, Wu TT. Resveratrol protects against ultraviolet A-mediated inhibition of the phagocytic function of human retinal pigment epithelial cells via large-conductance calcium-activated potassium channels. Kaohsiung J Med Sci 2009; 25:381-8. [PMID: 19605330 PMCID: PMC11917912 DOI: 10.1016/s1607-551x(09)70531-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 04/29/2009] [Indexed: 10/20/2022] Open
Abstract
This study was undertaken to examine the protective effect of resveratrol on human retinal pigment epithelial (RPE) cell phagocytosis against ultraviolet irradiation damage. Cultured RPE cells were exposed to ultraviolet A (UVA, 20 minutes) irradiation, and treated with meclofenamic acid (30 microM, 20 minutes), paxilline (100 nM, 20 minutes) or resveratrol (10 microM, 20 minutes). Meclofenamic acid and resveratrol were given after exposure to UVA. Pretreatment with meclofenamic acid, resveratrol or paxilline before UVA irradiation was also performed. Fluorescent latex beads were then fed for 4 hours and the phagocytotic function was assessed by flow cytometry. UVA irradiation inhibited the phagocytic function of human RPE cells. The large-conductance calcium-activated potassium channel activator meclofenamic acid ameliorated the damage caused by UVA irradiation. Pretreatment with resveratrol acid also provided protection against damage caused by UVA. Posttreatment with meclofenamic acid offered mild protection, whereas resveratrol did not. In conclusion, the red wine flavonoid resveratrol ameliorated UVA-mediated inhibition of human RPE phagocytosis. The underlying mechanism might involve the large-conductance calcium-activated potassium channels.
Collapse
Affiliation(s)
- Shwu-Jiuan Sheu
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, and Yuhing Junior College of Health Care and Management, Kaohsiung, Taiwan.
| | | |
Collapse
|
137
|
Praddaude F, Cousins SW, Pêcher C, Marin-Castaño ME. Angiotensin II-induced hypertension regulates AT1 receptor subtypes and extracellular matrix turnover in mouse retinal pigment epithelium. Exp Eye Res 2009; 89:109-18. [PMID: 19281810 PMCID: PMC2744298 DOI: 10.1016/j.exer.2009.02.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 02/24/2009] [Accepted: 02/24/2009] [Indexed: 01/21/2023]
Abstract
Accumulation of specific deposits and extracellular molecules under the retinal pigment epithelium (RPE) has been previously observed in eyes with age-related macular degeneration (AMD) and may play a role in the pathogenesis of AMD. Even though age is the major determinant for developing AMD, clinical studies have revealed hypertension (HTN) as another systemic risk factor. Angiotensin II (Ang II) is considered the most important hormone associated with HTN. To evaluate the relationship of Ang II to AMD, we studied whether mouse RPE expresses functional Ang II receptor subtypes and whether HTN-induced Ang II regulates expression of these receptors as well as critical ECM molecules (MMP-2 and type IV collagen) involved in ECM turnover in RPE. We used 9-month-old C57BL/6 male mice infused with Ang II alone or Ang II in combination with the AT1 receptor antagonist candesartan or the AT2 receptor antagonist PD123319 for 4 weeks to determine whether HTN-associated Ang II was important for ECM regulation in RPE. We found that mouse RPE expressed both Ang II receptor subtypes at the mRNA and protein levels. Infusion with Ang II induced HTN and elevated plasma and ocular Ang II levels. Ang II also regulated AT1a and AT1b receptor mRNA expression, the intracellular concentration of calcium [Ca(2+)](i), MMP-2 activity, and type IV collagen accumulation. Concurrent administration of Ang II with the AT1 receptor blocker prevented the increase in blood pressure and rise in ocular Ang II levels, as well as the calcium and MMP-2 responses. In contrast, the type IV collagen response to Ang II was prevented by blockade of AT2 receptors, but not AT1 receptors. Plasma Ang II levels were not modified by the AT1 or AT2 receptor blockade. Since the effects of Ang II on MMP-2 and type IV collagen require inhibition of both Ang II receptor subtypes, these receptors may play a role as a potential therapeutic targets to prevent ECM turnover dysregulation in the RPE basement membrane, suggesting a pathogenic mechanism to explain the link between HTN and AMD.
Collapse
MESH Headings
- Angiotensin II/pharmacokinetics
- Angiotensin II/pharmacology
- Animals
- Blood Pressure/drug effects
- Calcium Signaling/drug effects
- Collagen Type IV/metabolism
- Extracellular Matrix/drug effects
- Extracellular Matrix/metabolism
- Eye/metabolism
- Eye Proteins/biosynthesis
- Eye Proteins/genetics
- Eye Proteins/physiology
- Gene Expression Regulation/drug effects
- Hypertension/metabolism
- Macular Degeneration/metabolism
- Male
- Matrix Metalloproteinase 2/metabolism
- Mice
- Mice, Inbred C57BL
- RNA, Messenger/genetics
- Receptor, Angiotensin, Type 1/biosynthesis
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/physiology
- Receptor, Angiotensin, Type 2/biosynthesis
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/physiology
- Retinal Pigment Epithelium/drug effects
- Retinal Pigment Epithelium/metabolism
- Tissue Inhibitor of Metalloproteinase-2/metabolism
Collapse
Affiliation(s)
| | - Scott W. Cousins
- Duke Center for Macular Diseases, Duke University Eye Center, Durham, North Caroline
| | - Christiane Pêcher
- Physiology, University Paul Sabatier, School of Medicine, Toulouse, France
| | - Maria E. Marin-Castaño
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
138
|
Yang D, Elner SG, Lin LR, Reddy VN, Petty HR, Elner VM. Association of superoxide anions with retinal pigment epithelial cell apoptosis induced by mononuclear phagocytes. Invest Ophthalmol Vis Sci 2009; 50:4998-5005. [PMID: 19458341 DOI: 10.1167/iovs.09-3620] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Oxidative stress of the retinal pigment epithelium by reactive oxygen species and monocytic infiltration have been implicated in age-related macular degeneration. The purpose of this study was to determine the role of superoxide anions (O(2)(-)) in mononuclear phagocyte-induced RPE apoptosis. METHODS Mouse RPE cell cultures were established from wild-type and heterozygous superoxide dismutase 2-knockout (Sod2(+/-)) mice. The intracellular reactive oxygen species, O(2)(-) and hydrogen peroxide, were measured by using dihydroethidium assay and 5-(and 6)-chloromethyl-2',7'-dichlorodihydrofluorescence diacetate, acetyl ester assay, respectively. RPE apoptosis was evaluated by Hoechst staining and terminal deoxynucleotidyltransferase dUTP nick-end labeling assay. Changes in mitochondrial membrane potential were detected by 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide dye. Activated caspases and caspase-3 were detected in situ by FITC-VAD-fmk staining and caspase-3 substrate, respectively. RESULTS Mononuclear phagocytes and interferon-gamma-activated mononuclear phagocytes induced the production of intracellular RPE O(2)(-), a decrease in RPE mitochondrial membrane potential, caspase activation, and apoptosis of mouse RPE cells. All theses changes were significantly enhanced in the Sod2(+/-) RPE cells. Activated mononuclear phagocytes induced more of these oxidative and apoptotic changes in RPE cells than did unstimulated mononuclear phagocytes. CONCLUSIONS The authors have shown that the decreased expression of SOD2 and increased superoxide production correlate with RPE apoptosis induced by unstimulated and activated mononuclear phagocytes. The authors suggest that elevated O(2)(-) levels due to genetic abnormalities of SOD2 or immunologic activation of mononuclear phagocytes lead to greater levels of RPE apoptosis. The present study could serve as a useful model to characterize RPE/phagocyte interaction in AMD and other retinal diseases.
Collapse
Affiliation(s)
- Dongli Yang
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105-0714, USA
| | | | | | | | | | | |
Collapse
|
139
|
Patil AJ, Gramajo AL, Sharma A, Seigel GM, Kuppermann BD, Kenney MC. Differential effects of nicotine on retinal and vascular cells in vitro. Toxicology 2009; 259:69-76. [DOI: 10.1016/j.tox.2009.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/05/2009] [Accepted: 02/08/2009] [Indexed: 11/16/2022]
|
140
|
Yu AL, Lorenz RL, Haritoglou C, Kampik A, Welge-Lussen U. Biological effects of native and oxidized low-density lipoproteins in cultured human retinal pigment epithelial cells. Exp Eye Res 2009; 88:495-503. [DOI: 10.1016/j.exer.2008.10.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 10/17/2008] [Accepted: 10/30/2008] [Indexed: 01/24/2023]
|
141
|
Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL. Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 2009; 390:191-214. [PMID: 19166318 PMCID: PMC2756154 DOI: 10.1515/bc.2009.033] [Citation(s) in RCA: 762] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glutathione (GSH) plays an important role in a multitude of cellular processes, including cell differentiation, proliferation, and apoptosis, and as a result, disturbances in GSH homeostasis are implicated in the etiology and/or progression of a number of human diseases, including cancer, diseases of aging, cystic fibrosis, and cardiovascular, inflammatory, immune, metabolic, and neurodegenerative diseases. Owing to the pleiotropic effects of GSH on cell functions, it has been quite difficult to define the role of GSH in the onset and/or the expression of human diseases, although significant progress is being made. GSH levels, turnover rates, and/or oxidation state can be compromised by inherited or acquired defects in the enzymes, transporters, signaling molecules, or transcription factors that are involved in its homeostasis, or from exposure to reactive chemicals or metabolic intermediates. GSH deficiency or a decrease in the GSH/glutathione disulfide ratio manifests itself largely through an increased susceptibility to oxidative stress, and the resulting damage is thought to be involved in diseases, such as cancer, Parkinson's disease, and Alzheimer's disease. In addition, imbalances in GSH levels affect immune system function, and are thought to play a role in the aging process. Just as low intracellular GSH levels decrease cellular antioxidant capacity, elevated GSH levels generally increase antioxidant capacity and resistance to oxidative stress, and this is observed in many cancer cells. The higher GSH levels in some tumor cells are also typically associated with higher levels of GSH-related enzymes and transporters. Although neither the mechanism nor the implications of these changes are well defined, the high GSH content makes cancer cells chemoresistant, which is a major factor that limits drug treatment. The present report highlights and integrates the growing connections between imbalances in GSH homeostasis and a multitude of human diseases.
Collapse
Affiliation(s)
- Nazzareno Ballatori
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | | | | | | | | | | |
Collapse
|
142
|
Feigl B. Age-related maculopathy – Linking aetiology and pathophysiological changes to the ischaemia hypothesis. Prog Retin Eye Res 2009; 28:63-86. [PMID: 19070679 DOI: 10.1016/j.preteyeres.2008.11.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Beatrix Feigl
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, 4059 QLD, Australia.
| |
Collapse
|
143
|
Kim YJ, Chin HS. Effects of Oxidative Stress and Antioxidant on the Expression of Heme Oxygenase-1 in Human RPE. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2009. [DOI: 10.3341/jkos.2009.50.8.1247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Young Jun Kim
- Department of Ophthalmology, Inha University School of Medicine, Incheon, Korea
| | - Hee Seung Chin
- Department of Ophthalmology, Inha University School of Medicine, Incheon, Korea
| |
Collapse
|
144
|
Zhu J, Wang YS, Zhang J, Zhao W, Yang XM, Li X, Jiang TS, Yao LB. Focal adhesion kinase signaling pathway participates in the formation of choroidal neovascularization and regulates the proliferation and migration of choroidal microvascular endothelial cells by acting through HIF-1 and VEGF expression in RPE cells. Exp Eye Res 2008; 88:910-8. [PMID: 19111720 DOI: 10.1016/j.exer.2008.11.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 11/14/2008] [Accepted: 11/25/2008] [Indexed: 12/27/2022]
Abstract
Choroidal neovascularization (CNV) is one of the most frequent causes of severe and progressive vision loss, while its pathogenesis is still poorly understood. Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, plays a crucial role in linking signals initiated by both the extracellular matrix (ECM) and soluble signaling factors and controls essential cellular processes. Extensive evidence has shown that FAK is activated in angiogenic response. This study aims to investigate the effect of FAK on CNV formation. The Brown-Norway (BN) rats underwent laser rupture of Bruch's membrane to induce CNV and were then killed at 1, 3, 7, and 14 days following laser injury. Immunofluorescence and Western blot were processed to detect FAK protein. Retinal pigment epithelial (RPE) cells were cultured under hypoxia and RNA interference (RNAi) technique was used to knock down the FAK gene in RPE cells. Expression of hypoxia inducible factor-1 (HIF-1alpha) and vascular endothelial growth factor (VEGF) in RPE cells were investigated by RT-PCR and Western blot. Two kinds of coculture models were used to observe the effects of specific blockade of FAK in RPE cells on the proliferation and migration of choroidal microvascular endothelial cells (CECs), respectively. FAK was highly expressed in the rat RPE-choroid tissue after photocoagulation. In vitro experiment showed that FAK was involved in hypoxia signaling in cultured RPE cells. The absence of FAK effectively reduced the expression of hypoxia-induced HIF-1alpha and VEGF in RPE cells, resulting in the inhibition of proliferation and migration of CECs. Our results suggest that FAK pathway activation plays a role in the development of CNV, and regulates the proliferation and migration of CECs by acting through HIF-1 and then up-regulating the expression of the angiogenic factor VEGF in RPE cells. It is reasonable to propose that FAK siRNA will potentially provides a means to attenuate the strong stimuli for neovascularization in CNV-dependent disorders, which could present a therapeutically relevant strategy for the inhibition of CNV.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Shaanxi Province, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Striker GE, Praddaude F, Alcazar O, Cousins SW, Marin-Castaño ME. Regulation of angiotensin II receptors and extracellular matrix turnover in human retinal pigment epithelium: role of angiotensin II. Am J Physiol Cell Physiol 2008; 295:C1633-46. [PMID: 18923060 PMCID: PMC2603567 DOI: 10.1152/ajpcell.00092.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 10/11/2008] [Indexed: 11/22/2022]
Abstract
The early stage of age-related macular degeneration (AMD) is characterized by the formation of subretinal pigment epithelium (RPE) deposits as a result of the dysregulation in the turnover of extracellular matrix (ECM) molecules. However, the mechanism involved remains unclear. Hypertension (HTN) is an important risk factor for AMD, and angiotensin II (ANG II) is the most important hormone associated with HTN. However, the relevance of ANG II receptors and ANG II effects on RPE have not been investigated yet. Therefore, the expression and regulation of ANG II receptors as well as the ECM turnover were studied in human RPE. ANG II receptors were expressed and upregulated by ANG II in human RPE. This regulation resulted in functional receptor expression, since an increase in intracellular concentration of calcium was observed upon ANG II stimulation. ANG II also increased matrix metalloproteinase (MMP)-2 activity and MMP-14 at the mRNA and protein levels as well as type IV collagen degradation. These ANG II effects were abolished in the presence of the ANG II receptor subtype 1 (AT1) receptor antagonist candesartan. In contrast, ANG II decreased type IV collagen via both AT1 and AT2 receptors, suggesting a synergistic effect of the two receptor subtypes. In conclusion, we have confirmed the presence of ANG II receptors in human RPE and their regulation by ANG II as well as the regulation of ECM molecules via ANG II receptors. Our data support the hypothesis that ANG II may exert biological function in RPE through ANG II receptors and that ANG II may cause dysregulation of molecules that play a major role in the turnover of ECM in RPE basement membrane and Bruch's membrane, suggesting a pathogenic mechanism to explain the link between HTN and AMD.
Collapse
Affiliation(s)
- Gary E Striker
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
146
|
Vugler A, Carr AJ, Lawrence J, Chen LL, Burrell K, Wright A, Lundh P, Semo M, Ahmado A, Gias C, da Cruz L, Moore H, Andrews P, Walsh J, Coffey P. Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation. Exp Neurol 2008; 214:347-61. [PMID: 18926821 DOI: 10.1016/j.expneurol.2008.09.007] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 08/12/2008] [Accepted: 09/05/2008] [Indexed: 01/12/2023]
Abstract
Healthy Retinal Pigment Epithelium (RPE) cells are required for proper visual function and the phenomenon of RPE derivation from Human Embryonic Stem Cells (HESC) holds great potential for the treatment of retinal diseases. However, little is known about formation, expansion and expression profile of RPE-like cells derived from HESC (HESC-RPE). By studying the genesis of pigmented foci we identified OTX1/2-positive cell types as potential HESC-RPE precursors. When pigmented foci were excised from culture, HESC-RPE expanded to form extensive monolayers, with pigmented cells at the leading edge assuming a precursor role: de-pigmenting, proliferating, expressing keratin 8 and subsequently re-differentiating. As they expanded and differentiated in vitro, HESC-RPE expressed markers of both developing and mature RPE cells which included OTX1/2, Pax6, PMEL17 and at low levels, RPE65. In vitro, without signals from a developing retinal environment, HESC-RPE could produce regular, polarised monolayers with developmentally important apical and basal features. Following transplantation of HESC-RPE into the degenerating retinal environment of Royal College of Surgeons (RCS) dystrophic rats, the cells survived in the subretinal space, where they maintained low levels of RPE65 expression and remained out of the cell cycle. The HESC-RPE cells responded to the in vivo environment by downregulating Pax6, while maintaining expression of other markers. The presence of rhodopsin-positive material within grafted HESC-RPE indicates that in the future, homogenous transplants of this cell type may be capable of supporting visual function following retinal dystrophy.
Collapse
Affiliation(s)
- Anthony Vugler
- Department of Ocular Biology and Therapeutics, Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
La Schiazza O, Bille JF. High-speed two-photon excited autofluorescence imaging of ex vivo human retinal pigment epithelial cells toward age-related macular degeneration diagnostic. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:064008. [PMID: 19123655 DOI: 10.1117/1.2999607] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Age-related macular degeneration (AMD) is among the major concerns in ophthalmology, as it is the primary cause for irreversible blindness in developed countries. Nevertheless, there is poor understanding of the origins and mechanisms that trigger this important ocular disease. In common clinical pratice, AMD is monitored by autofluorescence imaging of the retinal pigment epithelial (RPE) cells through a confocal scanning laser ophthalmoscope. The RPE cells derive their dominant autofluorescence from the lipofuscin granules that accumulate in the cytoplasm with increasing age and disease. We explored a different approach to retinal RPE imaging using two-photon excited autofluorescence, offering intrinsic three-dimensional resolution, larger sensing depth and reduced photodamage compared to single-photon excited fluorescence ophthalmoscopy. A two-photon microscope, based on the architecture of a conventional scanning laser ophthalmoscope (HRT, Heidelberg Engineering, Germany), was designed for autofluorescence imaging on retina samples from postmortem human-donor eyes. We were able to visualize at video-rate speed single RPE lipofuscin granules, demonstrating the potential to develop this method toward clinical practice for patients with RPE-related retinal disease like AMD.
Collapse
Affiliation(s)
- Olivier La Schiazza
- University of Heidelberg, Kirchhoff Institute for Physics, Heidelberg, Germany.
| | | |
Collapse
|
148
|
Economou MA, Wu J, Vasilcanu D, Rosengren L, All-Ericsson C, van der Ploeg I, Menu E, Girnita L, Axelson M, Larsson O, Seregard S, Kvanta A. Inhibition of VEGF secretion and experimental choroidal neovascularization by picropodophyllin (PPP), an inhibitor of the insulin-like growth factor-1 receptor. Acta Ophthalmol 2008; 86 Thesis 4:42-9. [PMID: 19032681 DOI: 10.1111/j.1755-3768.2008.01185.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Choroidal neovascularization (CNV) is a debilitating complication of age-related macular degeneration (AMD) and a leading cause of vision loss. Along with other angiogenic factors like vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF-1) and its receptor, IGF-1R, have been implicated in CNV. PURPOSE We have previously shown that the cyclolignan picropodophyllin (PPP) efficiently blocks the insulin-like growth factor-1 receptor (IGF-1R) activity and causes cell death in uveal melanoma cell lines and in an in-vivo model. In this study we investigated the effect of PPP on VEGF expression both in vitro and in vivo and whether this effect has anti-angiogenic consequences in a murine CNV model. MATERIALS AND METHODS C57BL/6J mice with laser-induced CNVs were treated with PPP. Effects on CNV area were assayed by image analysis. VEGF levels in choroids and retinal pigment epithelial cells (APRE-19) were measured by Western blot or ELISA. Transcriptional activation of the VEGF promoter was determined by luciferase reporter gene assay. RESULTS Mice treated with PPP, administered intraperitoneally or orally, showed 22-32% (p = 0.002) decrease in CNV area. Furthermore, VEGF levels in the choroids were significantly reduced. In cultured APRE-19 cells, IGF-1 was shown to increase VEGF secretion. This increase was completely blocked by PPP. We could confirm that PPP reduced the level of transcriptional activity of VEGF promoter. CONCLUSIONS PPP reduces IGF-1 dependent VEGF expression and CNV in vivo. Accordingly, IGF-1R inhibitors may be useful tools in the therapy of conditions associated with CNV including neovascular AMD.
Collapse
Affiliation(s)
- Mario A Economou
- Cellular and Molecular Tumor Pathology, Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Striker GE, Praddaude F, Alcazar O, Cousins SW, Marin-Castaño ME. Regulation of angiotensin II receptors and extracellular matrix turnover in human retinal pigment epithelium: role of angiotensin II. Am J Physiol Cell Physiol 2008. [PMID: 18923060 DOI: 10.1152/ajpcell.00092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The early stage of age-related macular degeneration (AMD) is characterized by the formation of subretinal pigment epithelium (RPE) deposits as a result of the dysregulation in the turnover of extracellular matrix (ECM) molecules. However, the mechanism involved remains unclear. Hypertension (HTN) is an important risk factor for AMD, and angiotensin II (ANG II) is the most important hormone associated with HTN. However, the relevance of ANG II receptors and ANG II effects on RPE have not been investigated yet. Therefore, the expression and regulation of ANG II receptors as well as the ECM turnover were studied in human RPE. ANG II receptors were expressed and upregulated by ANG II in human RPE. This regulation resulted in functional receptor expression, since an increase in intracellular concentration of calcium was observed upon ANG II stimulation. ANG II also increased matrix metalloproteinase (MMP)-2 activity and MMP-14 at the mRNA and protein levels as well as type IV collagen degradation. These ANG II effects were abolished in the presence of the ANG II receptor subtype 1 (AT1) receptor antagonist candesartan. In contrast, ANG II decreased type IV collagen via both AT1 and AT2 receptors, suggesting a synergistic effect of the two receptor subtypes. In conclusion, we have confirmed the presence of ANG II receptors in human RPE and their regulation by ANG II as well as the regulation of ECM molecules via ANG II receptors. Our data support the hypothesis that ANG II may exert biological function in RPE through ANG II receptors and that ANG II may cause dysregulation of molecules that play a major role in the turnover of ECM in RPE basement membrane and Bruch's membrane, suggesting a pathogenic mechanism to explain the link between HTN and AMD.
Collapse
Affiliation(s)
- Gary E Striker
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
150
|
Iriyama A, Iriyama T, Tamaki Y, Yanagi Y. Effects of white light on β-catenin signaling pathway in retinal pigment epithelium. Biochem Biophys Res Commun 2008; 375:173-7. [DOI: 10.1016/j.bbrc.2008.07.158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 07/31/2008] [Indexed: 10/21/2022]
|