101
|
Schwarz D, Varum S, Zemke M, Schöler A, Baggiolini A, Draganova K, Koseki H, Schübeler D, Sommer L. Ezh2 is required for neural crest-derived cartilage and bone formation. Development 2014; 141:867-77. [PMID: 24496623 DOI: 10.1242/dev.094342] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The emergence of craniofacial skeletal elements, and of the jaw in particular, was a crucial step in the evolution of higher vertebrates. Most facial bones and cartilage are generated during embryonic development by cranial neural crest cells, while an osteochondrogenic fate is suppressed in more posterior neural crest cells. Key players in this process are Hox genes, which suppress osteochondrogenesis in posterior neural crest derivatives. How this specific pattern of osteochondrogenic competence is achieved remains to be elucidated. Here we demonstrate that Hox gene expression and osteochondrogenesis are controlled by epigenetic mechanisms. Ezh2, which is a component of polycomb repressive complex 2 (PRC2), catalyzes trimethylation of lysine 27 in histone 3 (H3K27me3), thereby functioning as transcriptional repressor of target genes. Conditional inactivation of Ezh2 does not interfere with localization of neural crest cells to their target structures, neural development, cell cycle progression or cell survival. However, loss of Ezh2 results in massive derepression of Hox genes in neural crest cells that are usually devoid of Hox gene expression. Accordingly, craniofacial bone and cartilage formation is fully prevented in Ezh2 conditional knockout mice. Our data indicate that craniofacial skeleton formation in higher vertebrates is crucially dependent on epigenetic regulation that keeps in check inhibitors of an osteochondrogenic differentiation program.
Collapse
Affiliation(s)
- Daniel Schwarz
- Cell and Developmental Biology, Institute of Anatomy, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Abstract
The Hox genes are an evolutionarily conserved family of genes, which encode a class of important transcription factors that function in numerous developmental processes. Following their initial discovery, a substantial amount of information has been gained regarding the roles Hox genes play in various physiologic and pathologic processes. These processes range from a central role in anterior-posterior patterning of the developing embryo to roles in oncogenesis that are yet to be fully elucidated. In vertebrates there are a total of 39 Hox genes divided into 4 separate clusters. Of these, mutations in 10 Hox genes have been found to cause human disorders with significant variation in their inheritance patterns, penetrance, expressivity and mechanism of pathogenesis. This review aims to describe the various phenotypes caused by germline mutation in these 10 Hox genes that cause a human phenotype, with specific emphasis paid to the genotypic and phenotypic differences between allelic disorders. As clinical whole exome and genome sequencing is increasingly utilized in the future, we predict that additional Hox gene mutations will likely be identified to cause distinct human phenotypes. As the known human phenotypes closely resemble gene-specific murine models, we also review the homozygous loss-of-function mouse phenotypes for the 29 Hox genes without a known human disease. This review will aid clinicians in identifying and caring for patients affected with a known Hox gene disorder and help recognize the potential for novel mutations in patients with phenotypes informed by mouse knockout studies.
Collapse
Affiliation(s)
- Shane C Quinonez
- University of Michigan, Department of Pediatrics, Division of Pediatric Genetics, 1500 East Medical Center Drive, D5240 MPB/Box 5718, Ann Arbor, MI 48109-5718, USA.
| | - Jeffrey W Innis
- University of Michigan, Department of Pediatrics, Division of Pediatric Genetics, 1500 East Medical Center Drive, D5240 MPB/Box 5718, Ann Arbor, MI 48109-5718, USA; University of Michigan, Department of Human Genetics, 1241 E. Catherine, 4909 Buhl Building, Ann Arbor, MI 48109-5618, USA.
| |
Collapse
|
103
|
Coelho-Aguiar JM, Le Douarin NM, Dupin E. Environmental factors unveil dormant developmental capacities in multipotent progenitors of the trunk neural crest. Dev Biol 2013; 384:13-25. [DOI: 10.1016/j.ydbio.2013.09.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 12/13/2022]
|
104
|
Cerdá-Esteban N, Spagnoli FM. Glimpse into Hox and tale regulation of cell differentiation and reprogramming. Dev Dyn 2013; 243:76-87. [PMID: 24123411 DOI: 10.1002/dvdy.24075] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 09/15/2013] [Accepted: 10/04/2013] [Indexed: 12/20/2022] Open
Abstract
During embryonic development, cells become gradually restricted in their developmental potential and start elaborating lineage-specific transcriptional networks to ultimately acquire a unique differentiated state. Hox genes play a central role in specifying regional identities, thereby providing the cell with critical information on positional value along its differentiation path. The exquisite DNA-binding specificity of the Hox proteins is frequently dependent upon their interaction with members of the TALE family of homeodomain proteins. In addition to their function as Hox-cofactors, TALE homeoproteins control multiple crucial developmental processes through Hox-independent mechanisms. Here, we will review recent findings on the function of both Hox and TALE proteins in cell differentiation, referring mostly to vertebrate species. In addition, we will discuss the direct implications of this knowledge on cell plasticity and cell reprogramming.
Collapse
Affiliation(s)
- Nuria Cerdá-Esteban
- Laboratory of Molecular and Cellular Basis of Embryonic Development, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | |
Collapse
|
105
|
Sandell LL, Butler Tjaden NE, Barlow AJ, Trainor PA. Cochleovestibular nerve development is integrated with migratory neural crest cells. Dev Biol 2013; 385:200-10. [PMID: 24252775 DOI: 10.1016/j.ydbio.2013.11.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/01/2013] [Accepted: 11/08/2013] [Indexed: 02/04/2023]
Abstract
The cochleovestibular (CV) nerve, which connects the inner ear to the brain, is the nerve that enables the senses of hearing and balance. The aim of this study was to document the morphological development of the mouse CV nerve with respect to the two embryonic cells types that produce it, specifically, the otic vesicle-derived progenitors that give rise to neurons, and the neural crest cell (NCC) progenitors that give rise to glia. Otic tissues of mouse embryos carrying NCC lineage reporter transgenes were whole mount immunostained to identify neurons and NCC. Serial optical sections were collected by confocal microscopy and were compiled to render the three dimensional (3D) structure of the developing CV nerve. Spatial organization of the NCC and developing neurons suggest that neuronal and glial populations of the CV nerve develop in tandem from early stages of nerve formation. NCC form a sheath surrounding the CV ganglia and central axons. NCC are also closely associated with neurites projecting peripherally during formation of the vestibular and cochlear nerves. Physical ablation of NCC in chick embryos demonstrates that survival or regeneration of even a few individual NCC from ectopic positions in the hindbrain results in central projection of axons precisely following ectopic pathways made by regenerating NCC.
Collapse
Affiliation(s)
- Lisa L Sandell
- University of Louisville, Department of Molecular, Cellular and Craniofacial Biology, Louisville, KY 40201, USA.
| | - Naomi E Butler Tjaden
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Amanda J Barlow
- Department of Surgery, University of Wisconsin, Madison, WI 53792, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
106
|
Bergiers I, Bridoux L, Nguyen N, Twizere JC, Rezsöhazy R. The homeodomain transcription factor Hoxa2 interacts with and promotes the proteasomal degradation of the E3 ubiquitin protein ligase RCHY1. PLoS One 2013; 8:e80387. [PMID: 24244684 PMCID: PMC3820564 DOI: 10.1371/journal.pone.0080387] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/02/2013] [Indexed: 12/19/2022] Open
Abstract
Hox proteins are conserved homeodomain transcription factors known to be crucial regulators of animal development. As transcription factors, the functions and modes of action (co-factors, target genes) of Hox proteins have been very well studied in a multitude of animal models. However, a handful of reports established that Hox proteins may display molecular activities distinct from gene transcription regulation. Here, we reveal that Hoxa2 interacts with 20S proteasome subunits and RCHY1 (also known as PIRH2), an E3 ubiquitin ligase that targets p53 for degradation. We further show that Hoxa2 promotes proteasome-dependent degradation of RCHY1 in an ubiquitin-independent manner. Correlatively, Hoxa2 alters the RCHY1-mediated ubiquitination of p53 and promotes p53 stabilization. Together, our data establish that Hoxa2 can regulate the proteasomal degradation of RCHY1 and stabilization of p53.
Collapse
Affiliation(s)
- Isabelle Bergiers
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Laure Bridoux
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Nathan Nguyen
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jean-Claude Twizere
- Laboratory of Signaling and Protein Interactions, GIGA-R, University of Liege, Liège, Belgium
| | - René Rezsöhazy
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- * E-mail:
| |
Collapse
|
107
|
Minoux M, Kratochwil CF, Ducret S, Amin S, Kitazawa T, Kurihara H, Bobola N, Vilain N, Rijli FM. Mouse Hoxa2 mutations provide a model for microtia and auricle duplication. Development 2013; 140:4386-97. [DOI: 10.1242/dev.098046] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
External ear abnormalities are frequent in newborns ranging from microtia to partial auricle duplication. Little is known about the molecular mechanisms orchestrating external ear morphogenesis. In humans, HOXA2 partial loss of function induces a bilateral microtia associated with an abnormal shape of the auricle. In mice, Hoxa2 inactivation at early gestational stages results in external auditory canal (EAC) duplication and absence of the auricle, whereas its late inactivation results in a hypomorphic auricle, mimicking the human HOXA2 mutant condition. By genetic fate mapping we found that the mouse auricle (or pinna) derives from the Hoxa2-expressing neural crest-derived mesenchyme of the second pharyngeal arch, and not from a composite of first and second arch mesenchyme as previously proposed based on morphological observation of human embryos. Moreover, the mouse EAC is entirely lined by Hoxa2-negative first arch mesenchyme and does not develop at the first pharyngeal cleft, as previously assumed. Conditional ectopic Hoxa2 expression in first arch neural crest is sufficient to induce a complete duplication of the pinna and a loss of the EAC, suggesting transformation of the first arch neural crest-derived mesenchyme lining the EAC into an ectopic pinna. Hoxa2 partly controls the morphogenesis of the pinna through the BMP signalling pathway and expression of Eya1, which in humans is involved in branchio-oto-renal syndrome. Thus, Hoxa2 loss- and gain-of-function approaches in mice provide a suitable model to investigate the molecular aetiology of microtia and auricle duplication.
Collapse
Affiliation(s)
- Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
- INSERM UMR 1121, Université de Strasbourg, Faculté de Chirurgie Dentaire, 1, place de l’hôpital, 67 000 Strasbourg, France
| | - Claudius F. Kratochwil
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
- University of Basel, CH-4056 Basel, Switzerland
| | - Sébastien Ducret
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Shilu Amin
- School of Dentistry, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Taro Kitazawa
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nicoletta Bobola
- School of Dentistry, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Nathalie Vilain
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Filippo M. Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
- University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
108
|
Oisi Y, Ota KG, Fujimoto S, Kuratani S. Development of the Chondrocranium in Hagfishes, with Special Reference to the Early Evolution of Vertebrates. Zoolog Sci 2013; 30:944-61. [DOI: 10.2108/zsj.30.944] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Yasuhiro Oisi
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Kinya G. Ota
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan 26242, Taiwan
| | - Satoko Fujimoto
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| |
Collapse
|
109
|
Philippidou P, Dasen JS. Hox genes: choreographers in neural development, architects of circuit organization. Neuron 2013; 80:12-34. [PMID: 24094100 DOI: 10.1016/j.neuron.2013.09.020] [Citation(s) in RCA: 298] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The neural circuits governing vital behaviors, such as respiration and locomotion, are comprised of discrete neuronal populations residing within the brainstem and spinal cord. Work over the past decade has provided a fairly comprehensive understanding of the developmental pathways that determine the identity of major neuronal classes within the neural tube. However, the steps through which neurons acquire the subtype diversities necessary for their incorporation into a particular circuit are still poorly defined. Studies on the specification of motor neurons indicate that the large family of Hox transcription factors has a key role in generating the subtypes required for selective muscle innervation. There is also emerging evidence that Hox genes function in multiple neuronal classes to shape synaptic specificity during development, suggesting a broader role in circuit assembly. This Review highlights the functions and mechanisms of Hox gene networks and their multifaceted roles during neuronal specification and connectivity.
Collapse
Affiliation(s)
- Polyxeni Philippidou
- Howard Hughes Medical Institute, NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
110
|
Regional and segmental differences in the embryonic expression of a putative leech Hox gene, Lox2, by central neurons immunoreactive to FMRFamide-like neuropeptides. INVERTEBRATE NEUROSCIENCE 2013; 14:51-8. [PMID: 23958799 DOI: 10.1007/s10158-013-0161-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
Abstract
We performed immunofluorescence experiments using a rat polyclonal antibody on formaldehyde-fixed whole-mount embryos to characterize the expression of a putative leech Hox gene, Lox2, during embryonic development. The main goal was to determine whether the differentiation of subsets of FMRFamide-like immunoreactive (FLI) neurons coincide with the expression domain of Lox2. The earliest expression of Lox2 was detected in relatively large, prominent nuclei in the posterior region at embryonic day 4, a very early stage. Lox2 expression was also detected in subsets of central neurons (neurons located in the CNS) located in midbody ganglia 6 (M6)-M21. In addition, Lox2 was expressed by a number of segment-specific and segmentally repeated central FLI neurons. Lox2-positive FLI neurons of interest included some of those previously identified: the rostral most ventral (RMV) neurons, the circular ventral (CV) neurons, and cell 261. The paired RMVs, which are located in all midbody ganglia, expressed Lox2 only in M7-M19. The CV neurons, specialized motor neurons that innervate the circular ventral muscles of the body wall, expressed Lox2 in M7-M19. The putative cell 261 expressed Lox2 in M7-M12, where Lox1 is also expressed. FMRFamide staining in putative segmental homologs of cell 261 was not detected in other segmental ganglia. Our results suggest a role for Lox2 in very early embryonic development (before the formation of the CNS), and in the differentiation of segmentally repeated and region-specific FLI neurons.
Collapse
|
111
|
Vieux-Rochas M, Mascrez B, Krumlauf R, Duboule D. Combined function of HoxA and HoxB clusters in neural crest cells. Dev Biol 2013; 382:293-301. [PMID: 23850771 DOI: 10.1016/j.ydbio.2013.06.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
The evolution of chordates was accompanied by critical anatomical innovations in craniofacial development, along with the emergence of neural crest cells. The potential of these cells to implement a craniofacial program in part depends upon the (non-)expression of Hox genes. For instance, the development of jaws requires the inhibition of Hox genes function in the first pharyngeal arch. In contrast, Hox gene products induce craniofacial structures in more caudal territories. To further investigate which Hox gene clusters are involved in this latter role, we generated HoxA;HoxB cluster double mutant animals in cranial neural crest cells. We observed the appearance of a supernumerary dentary-like bone with an endochondral ossification around a neo-Meckel's cartilage matrix and an attachment of neo-muscle demonstrating that HoxB genes enhance the phenotype induced by the deletion of the HoxA cluster alone. In addition, a cervical and hypertrophic thymus was associated with the supernumerary dentary-like bone, which may reflect its ancestral position near the filtrating system. Altogether these results show that the HoxA and HoxB clusters cooperated during evolution to lead to present craniofacial diversity.
Collapse
Affiliation(s)
- Maxence Vieux-Rochas
- School of Life Sciences, Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | | | | | | |
Collapse
|
112
|
Brown KK, Viana LM, Helwig CC, Artunduaga MA, Quintanilla-Dieck L, Jarrin P, Osorno G, McDonough B, DePalma SR, Eavey RD, Seidman JG, Seidman CE. HOXA2 haploinsufficiency in dominant bilateral microtia and hearing loss. Hum Mutat 2013; 34:1347-51. [PMID: 23775976 PMCID: PMC3883620 DOI: 10.1002/humu.22367] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/04/2013] [Indexed: 02/06/2023]
Abstract
Microtia is a rare, congenital malformation of the external ear that in some cases has a genetic etiology. We ascertained a three-generation family with bilateral microtia and hearing loss segregating as an autosomal dominant trait. Exome sequencing of affected family members detected only seven shared, rare, heterozygous, nonsynonymous variants, including one protein truncating variant, a HOXA2 nonsense change (c.703C>T, p.Q235*). The HOXA2 variant was segregated with microtia and hearing loss in the family and was not seen in 6,500 individuals sequenced by the NHLBI Exome Sequencing Project or in 218 control individuals sequenced in this study. HOXA2 has been shown to be critical for outer and middle ear development through mouse models and has previously been associated with autosomal recessive bilateral microtia. Our data extend these conclusions and define HOXA2 haploinsufficiency as the first genetic cause for autosomal-dominant nonsyndromic microtia.
Collapse
Affiliation(s)
- Kerry K Brown
- Department of Genetics, Harvard Medical School, Boston, Massachusetts; Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Differential distribution of the Ca (2+) regulator Pcp4 in the branchial arches is regulated by Hoxa2. PLoS One 2013; 8:e63160. [PMID: 23671666 PMCID: PMC3650044 DOI: 10.1371/journal.pone.0063160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/29/2013] [Indexed: 12/31/2022] Open
Abstract
Branchial arches are externally visible tissue bands in the head region of all vertebrate embryos. Although initially formed from similar components, each arch will give rise to different head and neck structures. In a screen designed to characterize the molecular control of branchial arch identity in mouse, we identified Pcp4 as a second branchial arch-specific molecular signature. We further show that the transcription factor Hoxa2 binds to Pcp4 chromatin and regulates Pcp4 expression in the second arch. Hoxa2 is also sufficient to induce Pcp4 expression in anterior first arch cells, which are Pcp4-negative.
Collapse
|
114
|
Chen JW, Zahid S, Shilts MH, Weaver SJ, Leskowitz RM, Habbsa S, Aronowitz D, Rokins KP, Chang Y, Pinnella Z, Holloway L, Mansfield JH. Hoxa-5 acts in segmented somites to regulate cervical vertebral morphology. Mech Dev 2013; 130:226-40. [DOI: 10.1016/j.mod.2013.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 02/09/2013] [Accepted: 02/12/2013] [Indexed: 01/25/2023]
|
115
|
Compagnucci C, Debiais-Thibaud M, Coolen M, Fish J, Griffin JN, Bertocchini F, Minoux M, Rijli FM, Borday-Birraux V, Casane D, Mazan S, Depew MJ. Pattern and polarity in the development and evolution of the gnathostome jaw: both conservation and heterotopy in the branchial arches of the shark, Scyliorhinus canicula. Dev Biol 2013; 377:428-48. [PMID: 23473983 DOI: 10.1016/j.ydbio.2013.02.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 01/26/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
The acquisition of jaws constitutes a landmark event in vertebrate evolution, one that in large part potentiated their success and diversification. Jaw development and patterning involves an intricate spatiotemporal series of reciprocal inductive and responsive interactions between the cephalic epithelia and the cranial neural crest (CNC) and cephalic mesodermal mesenchyme. The coordinated regulation of these interactions is critical for both the ontogenetic registration of the jaws and the evolutionary elaboration of variable jaw morphologies and designs. Current models of jaw development and evolution have been built on molecular and cellular evidence gathered mostly in amniotes such as mice, chicks and humans, and augmented by a much smaller body of work on the zebrafish. These have been partnered by essential work attempting to understand the origins of jaws that has focused on the jawless lamprey. Chondrichthyans (cartilaginous fish) are the most distant group to amniotes within extant gnathostomes, and comprise the crucial clade uniting amniotes and agnathans; yet despite their critical phylogenetic position, evidence of the molecular and cellular underpinnings of jaw development in chondrichthyans is still lacking. Recent advances in genome and molecular developmental biology of the lesser spotted dogfish shark, Scyliorhinus canicula, make it ideal for the molecular study of chondrichthyan jaw development. Here, following the 'Hinge and Caps' model of jaw development, we have investigated evidence of heterotopic (relative changes in position) and heterochronic (relative changes in timing) shifts in gene expression, relative to amniotes, in the jaw primordia of S. canicula embryos. We demonstrate the presence of clear proximo-distal polarity in gene expression patterns in the shark embryo, thus establishing a baseline molecular baüplan for branchial arch-derived jaw development and further validating the utility of the 'Hinge and Caps' model in comparative studies of jaw development and evolution. Moreover, we correlate gene expression patterns with the absence of a lambdoidal junction (formed where the maxillary first arch meets the frontonasal processes) in chondrichthyans, further highlighting the importance of this region for the development and evolution of jaw structure in advanced gnathostomes.
Collapse
Affiliation(s)
- Claudia Compagnucci
- Department of Craniofacial Development, King's College London, Floor 27, Guy's Hospital, London Bridge, London SE1 9RT, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Di Bonito M, Narita Y, Avallone B, Sequino L, Mancuso M, Andolfi G, Franzè AM, Puelles L, Rijli FM, Studer M. Assembly of the auditory circuitry by a Hox genetic network in the mouse brainstem. PLoS Genet 2013; 9:e1003249. [PMID: 23408898 PMCID: PMC3567144 DOI: 10.1371/journal.pgen.1003249] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 12/02/2012] [Indexed: 12/24/2022] Open
Abstract
Rhombomeres (r) contribute to brainstem auditory nuclei during development. Hox genes are determinants of rhombomere-derived fate and neuronal connectivity. Little is known about the contribution of individual rhombomeres and their associated Hox codes to auditory sensorimotor circuitry. Here, we show that r4 contributes to functionally linked sensory and motor components, including the ventral nucleus of lateral lemniscus, posterior ventral cochlear nuclei (VCN), and motor olivocochlear neurons. Assembly of the r4-derived auditory components is involved in sound perception and depends on regulatory interactions between Hoxb1 and Hoxb2. Indeed, in Hoxb1 and Hoxb2 mutant mice the transmission of low-level auditory stimuli is lost, resulting in hearing impairments. On the other hand, Hoxa2 regulates the Rig1 axon guidance receptor and controls contralateral projections from the anterior VCN to the medial nucleus of the trapezoid body, a circuit involved in sound localization. Thus, individual rhombomeres and their associated Hox codes control the assembly of distinct functionally segregated sub-circuits in the developing auditory brainstem. Sound perception and sound localization are controlled by two distinct circuits in the central nervous system. However, the cellular and molecular determinants underlying their development are poorly understood. Here, we show that a spatially restricted region of the brainstem, the rhombomere 4, and two members of the Hox gene family, Hoxb1 and Hoxb2, are directly implicated in the development of the circuit leading to sound perception and sound amplification. In the absence of Hoxb1 and Hoxb2 function, we found severe morphological defects in the hair cell population implicated in transducing the acoustic signal, leading ultimately to severe hearing impairments in adult mutant mice. In contrast, the expression in the cochlear nucleus of another Hox member, Hoxa2, regulates the guidance receptor Rig1 and contralateral connectivity in the sound localization circuit. Some of the auditory dysfunctions described in our mouse models resemble pathological hearing conditions in humans, in which patients have an elevated hearing threshold sensitivity, as recorded in audiograms. Thus, this study provides mechanistic insight into the genetic and functional regulation of Hox genes during development and assembly of the auditory system.
Collapse
Affiliation(s)
- Maria Di Bonito
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Université de Nice-Sophia Antipolis, Nice, France
- INSERM UMR 1091, Nice, France
| | - Yuichi Narita
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Bice Avallone
- Department of Biological Sciences, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Luigi Sequino
- Institute of Audiology, University “Federico II”, Naples, Italy
| | - Marta Mancuso
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Gennaro Andolfi
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Anna Maria Franzè
- Institute of Genetics and Biophysics “A. Buzzati Traverso” C.N.R., Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, University of Murcia, Murcia, Spain
| | - Filippo M. Rijli
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail: (FMR); (MS)
| | - Michèle Studer
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Université de Nice-Sophia Antipolis, Nice, France
- INSERM UMR 1091, Nice, France
- * E-mail: (FMR); (MS)
| |
Collapse
|
117
|
Bhatt S, Diaz R, Trainor PA. Signals and switches in Mammalian neural crest cell differentiation. Cold Spring Harb Perspect Biol 2013; 5:5/2/a008326. [PMID: 23378583 DOI: 10.1101/cshperspect.a008326] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neural crest cells (NCCs) comprise a multipotent, migratory cell population that generates a diverse array of cell and tissue types during vertebrate development. These include cartilage and bone, tendons, and connective tissue, as well as neurons, glia, melanocytes, and endocrine and adipose cells; this remarkable lineage potential persists into adult life. Taken together with a limited capacity for self-renewal, neural crest cells bear the hallmarks of stem and progenitor cells and are considered to be synonymous with vertebrate evolution. The neural crest has provided a system for exploring the mechanisms that govern developmental processes such as morphogenetic induction, cell migration, and fate determination. Today, much of the focus on neural crest cells revolves around their stem cell-like characteristics and potential for use in regenerative medicine. A thorough understanding of the signals and switches that govern mammalian neural crest patterning is central to potential therapeutic application of these cells and better appreciation of the role that neural crest cells play in vertebrate evolution, development, and disease.
Collapse
Affiliation(s)
- Shachi Bhatt
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
118
|
Di Meglio T, Kratochwil CF, Vilain N, Loche A, Vitobello A, Yonehara K, Hrycaj SM, Roska B, Peters AHFM, Eichmann A, Wellik D, Ducret S, Rijli FM. Ezh2 orchestrates topographic migration and connectivity of mouse precerebellar neurons. Science 2013; 339:204-7. [PMID: 23307742 DOI: 10.1126/science.1229326] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We investigated the role of histone methyltransferase Ezh2 in tangential migration of mouse precerebellar pontine nuclei, the main relay between neocortex and cerebellum. By counteracting the sonic hedgehog pathway, Ezh2 represses Netrin1 in dorsal hindbrain, which allows normal pontine neuron migration. In Ezh2 mutants, ectopic Netrin1 derepression results in abnormal migration and supernumerary nuclei integrating in brain circuitry. Moreover, intrinsic topographic organization of pontine nuclei according to rostrocaudal progenitor origin is maintained throughout migration and correlates with patterned cortical input. Ezh2 maintains spatially restricted Hox expression, which, in turn, regulates differential expression of the repulsive receptor Unc5b in migrating neurons; together, they generate subsets with distinct responsiveness to environmental Netrin1. Thus, Ezh2-dependent epigenetic regulation of intrinsic and extrinsic transcriptional programs controls topographic neuronal guidance and connectivity in the cortico-ponto-cerebellar pathway.
Collapse
Affiliation(s)
- Thomas Di Meglio
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Smith TM, Lozanoff S, Iyyanar PP, Nazarali AJ. Molecular signaling along the anterior-posterior axis of early palate development. Front Physiol 2013; 3:488. [PMID: 23316168 PMCID: PMC3539680 DOI: 10.3389/fphys.2012.00488] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 12/14/2012] [Indexed: 01/11/2023] Open
Abstract
Cleft palate is a common congenital birth defect in humans. In mammals, the palatal tissue can be distinguished into anterior bony hard palate and posterior muscular soft palate that have specialized functions in occlusion, speech or swallowing. Regulation of palate development appears to be the result of distinct signaling and genetic networks in the anterior and posterior regions of the palate. Development and maintenance of expression of these region-specific genes is crucial for normal palate development. Numerous transcription factors and signaling pathways are now recognized as either anterior- (e.g., Msx1, Bmp4, Bmp2, Shh, Spry2, Fgf10, Fgf7, and Shox2) or posterior-specific (e.g., Meox2, Tbx22, and Barx1). Localized expression and function clearly highlight the importance of regional patterning and differentiation within the palate at the molecular level. Here, we review how these molecular pathways and networks regulate the anterior-posterior patterning and development of secondary palate. We hypothesize that the anterior palate acts as a signaling center in setting up development of the secondary palate.
Collapse
Affiliation(s)
- Tara M Smith
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan Saskatoon, SK, Canada
| | | | | | | |
Collapse
|
120
|
Manley GA, Sienknecht UJ. The Evolution and Development of Middle Ears in Land Vertebrates. THE MIDDLE EAR 2013. [DOI: 10.1007/978-1-4614-6591-1_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
121
|
Gharbaran R, Aisemberg GO. Identification of leech embryonic neurons that express a Hox gene required for the differentiation of a paired, segment‐specific motor neuron. Int J Dev Neurosci 2012; 31:105-15. [DOI: 10.1016/j.ijdevneu.2012.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 10/10/2012] [Accepted: 11/16/2012] [Indexed: 10/27/2022] Open
Affiliation(s)
- Rajendra Gharbaran
- Department of Biological SciencesLehman College of City University of New YorkBronxNY10468United States
| | - Gabriel O. Aisemberg
- Department of Biological SciencesLehman College of City University of New YorkBronxNY10468United States
| |
Collapse
|
122
|
Zhang P, Men J, Fu Y, Shan T, Ye J, Wu Y, Tao Z, Liu L, Jiang H. Contribution of SATB2 to the stronger osteogenic potential of bone marrow stromal cells from craniofacial bones. Cell Tissue Res 2012; 350:425-37. [DOI: 10.1007/s00441-012-1487-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 08/15/2012] [Indexed: 12/01/2022]
|
123
|
New perspectives on pharyngeal dorsoventral patterning in development and evolution of the vertebrate jaw. Dev Biol 2012; 371:121-35. [PMID: 22960284 DOI: 10.1016/j.ydbio.2012.08.026] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/22/2012] [Accepted: 08/22/2012] [Indexed: 12/27/2022]
Abstract
Patterning of the vertebrate facial skeleton involves the progressive partitioning of neural-crest-derived skeletal precursors into distinct subpopulations along the anteroposterior (AP) and dorsoventral (DV) axes. Recent evidence suggests that complex interactions between multiple signaling pathways, in particular Endothelin-1 (Edn1), Bone Morphogenetic Protein (BMP), and Jagged-Notch, are needed to pattern skeletal precursors along the DV axis. Rather than directly determining the morphology of individual skeletal elements, these signals appear to act through several families of transcription factors, including Dlx, Msx, and Hand, to establish dynamic zones of skeletal differentiation. Provocatively, this patterning mechanism is largely conserved from mouse and zebrafish to the jawless vertebrate, lamprey. This implies that the diversification of the vertebrate facial skeleton, including the evolution of the jaw, was driven largely by modifications downstream of a conversed pharyngeal DV patterning program.
Collapse
|
124
|
Thompson H, Ohazama A, Sharpe PT, Tucker AS. The origin of the stapes and relationship to the otic capsule and oval window. Dev Dyn 2012; 241:1396-404. [PMID: 22778034 DOI: 10.1002/dvdy.23831] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2012] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The stapes, an ossicle found within the middle ear, is involved in transmitting sound waves to the inner ear by means of the oval window. There are several developmental problems associated with this ossicle and the oval window, which cause hearing loss. The developmental origin of these tissues has not been fully elucidated. RESULTS Using transgenic reporter mice, we have shown that the stapes is of dual origin with the stapedial footplate being composed of cells of both neural crest and mesodermal origin. Wnt1cre/Dicer mice fail to develop neural crest-derived cartilages, therefore, have no middle ear ossicles. We have shown in these mice the mesodermal stapedial footplate fails to form and the oval window is induced but underdeveloped. CONCLUSIONS If the neural crest part of the stapes fails to form the mesodermal part does not develop, indicating that the two parts are interdependent. The stapes develops tightly associated with the otic capsule, however, it is not essential for the positioning of the oval window, suggesting that other tissues, perhaps within the inner ear are needed for oval window placement.
Collapse
Affiliation(s)
- Hannah Thompson
- Department of Craniofacial Development and Stem Cell Biology, Kings College London, Guy's Tower, Guy's Hospital, London Bridge, London, UK
| | | | | | | |
Collapse
|
125
|
Anthwal N, Joshi L, Tucker AS. Evolution of the mammalian middle ear and jaw: adaptations and novel structures. J Anat 2012; 222:147-60. [PMID: 22686855 DOI: 10.1111/j.1469-7580.2012.01526.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Having three ossicles in the middle ear is one of the defining features of mammals. All reptiles and birds have only one middle ear ossicle, the stapes or columella. How these two additional ossicles came to reside and function in the middle ear of mammals has been studied for the last 200 years and represents one of the classic example of how structures can change during evolution to function in new and novel ways. From fossil data, comparative anatomy and developmental biology it is now clear that the two new bones in the mammalian middle ear, the malleus and incus, are homologous to the quadrate and articular, which form the articulation for the upper and lower jaws in non-mammalian jawed vertebrates. The incorporation of the primary jaw joint into the mammalian middle ear was only possible due to the evolution of a new way to articulate the upper and lower jaws, with the formation of the dentary-squamosal joint, or TMJ in humans. The evolution of the three-ossicle ear in mammals is thus intricately connected with the evolution of a novel jaw joint, the two structures evolving together to create the distinctive mammalian skull.
Collapse
Affiliation(s)
- Neal Anthwal
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, London, UK
| | | | | |
Collapse
|
126
|
Kuratani S, Adachi N, Wada N, Oisi Y, Sugahara F. Developmental and evolutionary significance of the mandibular arch and prechordal/premandibular cranium in vertebrates: revising the heterotopy scenario of gnathostome jaw evolution. J Anat 2012; 222:41-55. [PMID: 22500853 DOI: 10.1111/j.1469-7580.2012.01505.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The cephalic neural crest produces streams of migrating cells that populate pharyngeal arches and a more rostral, premandibular domain, to give rise to an extensive ectomesenchyme in the embryonic vertebrate head. The crest cells forming the trigeminal stream are the major source of the craniofacial skeleton; however, there is no clear distinction between the mandibular arch and the premandibular domain in this ectomesenchyme. The question regarding the evolution of the gnathostome jaw is, in part, a question about the differentiation of the mandibular arch, the rostralmost component of the pharynx, and in part a question about the developmental fate of the premandibular domain. We address the developmental definition of the mandibular arch in connection with the developmental origin of the trabeculae, paired cartilaginous elements generally believed to develop in the premandibular domain, and also of enigmatic cartilaginous elements called polar cartilages. Based on comparative embryology, we propose that the mandibular arch ectomesenchyme in gnathostomes can be defined as a Dlx1-positive domain, and that the polar cartilages, which develop from the Dlx1-negative premandibular ectomesenchyme, would represent merely posterior parts of the trabeculae. We also show, in the lamprey embryo, early migration of mandibular arch mesenchyme into the premandibular domain, and propose an updated version of the heterotopy theory on the origin of the jaw.
Collapse
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan.
| | | | | | | | | |
Collapse
|
127
|
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology; RIKEN Center for Developmental Biology; Kobe Hyogo 650-0047 Japan
| |
Collapse
|
128
|
Theveneau E, Mayor R. Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. Dev Biol 2012; 366:34-54. [PMID: 22261150 DOI: 10.1016/j.ydbio.2011.12.041] [Citation(s) in RCA: 375] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 12/26/2011] [Indexed: 10/25/2022]
Abstract
After induction and specification in the ectoderm, at the border of the neural plate, the neural crest (NC) population leaves its original territory through a delamination process. Soon afterwards, the NC cells migrate throughout the embryo and colonize a myriad of tissues and organs where they settle and differentiate. The delamination involves a partial or complete epithelium-to-mesenchyme transition (EMT) regulated by a complex network of transcription factors including several proto-oncogenes. Studying the relationship between these genes at the time of emigration, and their individual or collective impact on cell behavior, provides valuable information about their role in EMT in other contexts such as cancer metastasis. During migration, NC cells are exposed to large number of positive and negative regulators that control where they go by generating permissive and restricted areas and by modulating their motility and directionality. In addition, as most NC cells migrate collectively, cell-cell interactions play a crucial role in polarizing the cells and interpreting external cues. Cell cooperation eventually generates an overall polarity to the population, leading to directional collective cell migration. This review will summarize our current knowledge on delamination, EMT and migration of NC cells using key examples from chicken, Xenopus, zebrafish and mouse embryos. Given the similarities between neural crest migration and cancer invasion, these cells may represent a useful model for understanding the mechanisms of metastasis.
Collapse
Affiliation(s)
- Eric Theveneau
- Department of Cell and Developmental Biology, University College London, UK
| | | |
Collapse
|
129
|
Donaldson IJ, Amin S, Hensman JJ, Kutejova E, Rattray M, Lawrence N, Hayes A, Ward CM, Bobola N. Genome-wide occupancy links Hoxa2 to Wnt-β-catenin signaling in mouse embryonic development. Nucleic Acids Res 2012; 40:3990-4001. [PMID: 22223247 PMCID: PMC3351182 DOI: 10.1093/nar/gkr1240] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The regulation of gene expression is central to developmental programs and largely depends on the binding of sequence-specific transcription factors with cis-regulatory elements in the genome. Hox transcription factors specify the spatial coordinates of the body axis in all animals with bilateral symmetry, but a detailed knowledge of their molecular function in instructing cell fates is lacking. Here, we used chromatin immunoprecipitation with massively parallel sequencing (ChIP-seq) to identify Hoxa2 genomic locations in a time and space when it is actively instructing embryonic development in mouse. Our data reveals that Hoxa2 has large genome coverage and potentially regulates thousands of genes. Sequence analysis of Hoxa2-bound regions identifies high occurrence of two main classes of motifs, corresponding to Hox and Pbx-Hox recognition sequences. Examination of the binding targets of Hoxa2 faithfully captures the processes regulated by Hoxa2 during embryonic development; in addition, it uncovers a large cluster of potential targets involved in the Wnt-signaling pathway. In vivo examination of canonical Wnt-β-catenin signaling reveals activity specifically in Hoxa2 domain of expression, and this is undetectable in Hoxa2 mutant embryos. The comprehensive mapping of Hoxa2-binding sites provides a framework to study Hox regulatory networks in vertebrate developmental processes.
Collapse
Affiliation(s)
- Ian J Donaldson
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Huber L, Ferdin M, Holzmann J, Stubbusch J, Rohrer H. HoxB8 in noradrenergic specification and differentiation of the autonomic nervous system. Dev Biol 2011; 363:219-33. [PMID: 22236961 DOI: 10.1016/j.ydbio.2011.12.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 10/25/2022]
Abstract
Different prespecification of mesencephalic and trunk neural crest cells determines their response to environmental differentiation signals and contributes to the generation of different autonomic neuron subtypes, parasympathetic ciliary neurons in the head and trunk noradrenergic sympathetic neurons. The differentiation of ciliary and sympathetic neurons shares many features, including the initial BMP-induced expression of noradrenergic characteristics that is, however, subsequently lost in ciliary but maintained in sympathetic neurons. The molecular basis of specific prespecification and differentiation patterns has remained unclear. We show here that HoxB gene expression in trunk neural crest is maintained in sympathetic neurons. Ectopic expression of a single HoxB gene, HoxB8, in mesencephalic neural crest results in a strongly increased expression of sympathetic neuron characteristics like the transcription factor Hand2, tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) in ciliary neurons. Other subtype-specific properties like RGS4 and RCad are not induced. HoxB8 has only minor effects in postmitotic ciliary neurons and is unable to induce TH and DBH in the enteric nervous system. Thus, we conclude that HoxB8 acts by maintaining noradrenergic properties transiently expressed in ciliary neuron progenitors during normal development. HoxC8, HoxB9, HoxB1 and HoxD10 elicit either small and transient or no effects on noradrenergic differentiation, suggesting a selective effect of HoxB8. These results implicate that Hox genes contribute to the differential development of autonomic neuron precursors by maintaining noradrenergic properties in the trunk sympathetic neuron lineage.
Collapse
Affiliation(s)
- Leslie Huber
- Research Group Developmental Neurobiology, Max Planck Institute for Brain Research, Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
131
|
Trinh LA, Hochgreb T, Graham M, Wu D, Ruf-Zamojski F, Jayasena CS, Saxena A, Hawk R, Gonzalez-Serricchio A, Dixson A, Chow E, Gonzales C, Leung HY, Solomon I, Bronner-Fraser M, Megason SG, Fraser SE. A versatile gene trap to visualize and interrogate the function of the vertebrate proteome. Genes Dev 2011; 25:2306-20. [PMID: 22056673 DOI: 10.1101/gad.174037.111] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report a multifunctional gene-trapping approach, which generates full-length Citrine fusions with endogenous proteins and conditional mutants from a single integration event of the FlipTrap vector. We identified 170 FlipTrap zebrafish lines with diverse tissue-specific expression patterns and distinct subcellular localizations of fusion proteins generated by the integration of an internal citrine exon. Cre-mediated conditional mutagenesis is enabled by heterotypic lox sites that delete Citrine and "flip" in its place mCherry with a polyadenylation signal, resulting in a truncated fusion protein. Inducing recombination with Cerulean-Cre results in fusion proteins that often mislocalize, exhibit mutant phenotypes, and dramatically knock down wild-type transcript levels. FRT sites in the vector enable targeted genetic manipulation of the trapped loci in the presence of Flp recombinase. Thus, the FlipTrap captures the functional proteome, enabling the visualization of full-length fluorescent fusion proteins and interrogation of function by conditional mutagenesis and targeted genetic manipulation.
Collapse
Affiliation(s)
- Le A Trinh
- Beckman Institute, Division of Biology, California Institute of Technology, Pasadena, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Lorente-Cánovas B, Marín F, Corral-San-Miguel R, Hidalgo-Sánchez M, Ferrán JL, Puelles L, Aroca P. Multiple origins, migratory paths and molecular profiles of cells populating the avian interpeduncular nucleus. Dev Biol 2011; 361:12-26. [PMID: 22019302 DOI: 10.1016/j.ydbio.2011.09.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/26/2011] [Accepted: 09/27/2011] [Indexed: 01/22/2023]
Abstract
The interpeduncular nucleus (IP) is a key limbic structure, highly conserved evolutionarily among vertebrates. The IP receives indirect input from limbic areas of the telencephalon, relayed by the habenula via the fasciculus retroflexus. The function of the habenulo-IP complex is poorly understood, although there is evidence that in rodents it modulates behaviors such as learning and memory, avoidance, reward and affective states. The IP has been an important subject of interest for neuroscientists, and there are multiple studies about the adult structure, chemoarchitecture and its connectivity, with complex results, due to the presence of multiple cell types across a variety of subnuclei. However, the ontogenetic origins of these populations have not been examined, and there is some controversy about its location in the midbrain-anterior hindbrain area. To address these issues, we first investigated the anteroposterior (AP) origin of the IP complex by fate-mapping its neuromeric origin in the chick, discovering that the IP develops strictly within isthmus and rhombomere 1. Next, we studied the dorsoventral (DV) positional identity of subpopulations of the IP complex. Our results indicate that there are at least four IP progenitor domains along the DV axis. These specific domains give rise to distinct subtypes of cell populations that target the IP with variable subnuclear specificity. Interestingly, these populations can be characterized by differential expression of the transcription factors Pax7, Nkx6.1, Otp, and Otx2. Each of these subpopulations follows a specific route of migration from its source, and all reach the IP roughly at the same stage. Remarkably, IP progenitor domains were found both in the alar and basal plates. Some IP populations showed rostrocaudal restriction in their origins (isthmus versus anterior or posterior r1 regions). A tentative developmental model of the structure of the avian IP is proposed. The IP emerges as a plurisegmental and developmentally heterogeneous formation that forms ventromedially within the isthmus and r1. These findings are relevant since they help to understand the highly complex chemoarchitecture, hodology and functions of this important brainstem structure.
Collapse
Affiliation(s)
- Beatriz Lorente-Cánovas
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, 30100 Murcia, Spain.
| | | | | | | | | | | | | |
Collapse
|
133
|
Wang M, Doucette JR, Nazarali AJ. Conditional Tet-regulated over-expression of Hoxa2 in CG4 cells increases their proliferation and delays their differentiation into oligodendrocyte-like cells expressing myelin basic protein. Cell Mol Neurobiol 2011; 31:875-86. [PMID: 21479584 PMCID: PMC11498525 DOI: 10.1007/s10571-011-9685-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 03/16/2011] [Indexed: 12/11/2022]
Abstract
Hoxa2 gene was reported to be expressed by oligodendrocytes (OLs) and down-regulated at the terminal differentiation stage during oligodendrogenesis in mice (Nicolay et al. 2004b). To further investigate the role of Hoxa2 in oligodendroglial development, a tetracycline regulated controllable expression system was utilized to establish a stable cell line (CG4-SHoxa2 [sense Hoxa2]), where the expression level of Hoxa2 gene could be up-regulated. The impact of Hoxa2 over-expression on the proliferation and differentiation of CG4-SHoxa2 cells was investigated. Up-regulation of Hoxa2 increased the proliferation of CG4-SHoxa2 cells. The mRNA levels of PDGFαR (platelet-derived growth factor [PDGF] alpha receptor), which is expressed by OL progenitor cells, were not different in CG4-SHoxa2 cells compared to wild-type CG4 cells. Semi-quantitative RT-PCR revealed that the mRNA levels of myelin basic protein (MBP) was lower in CG4-SHoxa2 cells than in wild-type CG4 cells indicating the differentiation of CG4-SHoxa2 cells was delayed when the Hoxa2 gene was up-regulated.
Collapse
Affiliation(s)
- Monica Wang
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, 116 Thorvaldson Building, 110 Science Place, Saskatoon, SK S7N 5C9 Canada
| | - J. Ronald Doucette
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5 Canada
- Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital, Saskatoon, SK Canada
| | - Adil J. Nazarali
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, 116 Thorvaldson Building, 110 Science Place, Saskatoon, SK S7N 5C9 Canada
- Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital, Saskatoon, SK Canada
| |
Collapse
|
134
|
Liu Y, Xiao A. Epigenetic regulation in neural crest development. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2011; 91:788-96. [PMID: 21618405 DOI: 10.1002/bdra.20797] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/16/2010] [Accepted: 02/02/2011] [Indexed: 12/31/2022]
Abstract
The neural crest (NC) is a multipotent, migratory cell population that arises from the developing dorsal neural fold of vertebrate embryos. Once their fates are specified, neural crest cells (NCCs) migrate along defined routes and differentiate into a variety of tissues, including bone and cartilage of the craniofacial skeleton, peripheral neurons, glia, pigment cells, endocrine cells, and mesenchymal precursor cells (Santagati and Rijli,2003; Dupin et al.,2006; Hall,2009). Abnormal development of NCCs causes a number of human diseases, including ear abnormalities (including deafness), heart anomalies, neuroblastomas, and mandibulofacial dysostosis (Hall,2009). For more than a century, NCCs have attracted the attention of geneticists and developmental biologists for their stem cell-like properties, including self-renewal and multipotent differentiation potential. However, we have only begun to understand the underlying mechanisms responsible for their formation and behavior. Recent studies have demonstrated that epigenetic regulation plays important roles in NC development. In this review, we focused on some of the most recent findings on chromatin-mediated mechanisms for vertebrate NCC development.
Collapse
Affiliation(s)
- Yifei Liu
- Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
135
|
Oulion S, Borday-Birraux V, Debiais-Thibaud M, Mazan S, Laurenti P, Casane D. Evolution of repeated structures along the body axis of jawed vertebrates, insights from the Scyliorhinus canicula Hox code. Evol Dev 2011; 13:247-59. [DOI: 10.1111/j.1525-142x.2011.00477.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
136
|
Gouti M, Briscoe J, Gavalas A. Anterior Hox genes interact with components of the neural crest specification network to induce neural crest fates. Stem Cells 2011; 29:858-70. [PMID: 21433221 PMCID: PMC3184476 DOI: 10.1002/stem.630] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 03/02/2011] [Indexed: 12/29/2022]
Abstract
Hox genes play a central role in neural crest (NC) patterning particularly in the cranial region of the body. Despite evidence that simultaneous loss of Hoxa1 and Hoxb1 function resulted in NC specification defects, the role of Hox genes in NC specification has remained unclear due to extended genetic redundancy among Hox genes. To circumvent this problem, we expressed anterior Hox genes in the trunk neural tube of the developing chick embryo. This demonstrated that anterior Hox genes play a central role in NC cell specification by rapidly inducing the key transcription factors Snail2 and Msx1/2 and a neural progenitor to NC cell fate switch characterized by cell adhesion changes and an epithelial-to-mesenchymal transition (EMT). Cells delaminated from dorsal and medial neural tube levels and generated ectopic neurons, glia progenitors, and melanocytes. The mobilization of the NC genetic cascade was dependent upon bone morphogenetic protein signaling and optimal levels of Notch signaling. Therefore, anterior Hox patterning genes participate in NC specification and EMT by interacting with NC-inducing signaling pathways and regulating the expression of key genes involved in these processes.
Collapse
Affiliation(s)
- Mina Gouti
- Developmental Biology Laboratory, Biomedical Research Foundation of the Academy of Athens (BRFAA)Athens, Greece
| | - James Briscoe
- Division of Developmental Neurobiology, MRC National Institute for Medical Research (NIMR)The Ridgeway, Mill Hill, London, United Kingdom
| | - Anthony Gavalas
- Developmental Biology Laboratory, Biomedical Research Foundation of the Academy of Athens (BRFAA)Athens, Greece
| |
Collapse
|
137
|
Capellini TD, Zappavigna V, Selleri L. Pbx homeodomain proteins: TALEnted regulators of limb patterning and outgrowth. Dev Dyn 2011; 240:1063-86. [PMID: 21416555 PMCID: PMC3081394 DOI: 10.1002/dvdy.22605] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2011] [Indexed: 12/14/2022] Open
Abstract
Limb development has long provided an excellent model for understanding the genetic principles driving embryogenesis. Studies utilizing chick and mouse have led to new insights into limb patterning and morphogenesis. Recent research has centered on the regulatory networks underlying limb development. Here, we discuss the hierarchical, overlapping, and iterative roles of Pbx family members in appendicular development that have emerged from genetic analyses in the mouse. Pbx genes are essential in determining limb bud positioning, early bud formation, limb axes establishment and coordination, and patterning and morphogenesis of most elements of the limb and girdle. Pbx proteins directly regulate critical effectors of limb and girdle development, including morphogen-encoding genes like Shh in limb posterior mesoderm, and transcription factor-encoding genes like Alx1 in pre-scapular domains. Interestingly, at least in limb buds, Pbx appear to act not only as Hox cofactors, but also in the upstream control of 5' HoxA/D gene expression.
Collapse
Affiliation(s)
- Terence D. Capellini
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | - Vincenzo Zappavigna
- Department of Biology, University of Modena and Reggio-Emilia, Via Campi 213d, 41100 Modena, Italy
| | - Licia Selleri
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| |
Collapse
|
138
|
Mansfield JH, Abzhanov A. Hox expression in the American alligator and evolution of archosaurian axial patterning. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 314:629-44. [PMID: 20623505 DOI: 10.1002/jez.b.21364] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The avian body plan has undergone many modifications, most associated with adaptation to flight and bipedal walking. Some of these modifications may be owing to avian-specific changes in the embryonic Hox expression code. Here, we have examined Hox expression in alligator, the closest living relative of birds, and an archosaur with a more conservative body plan. Two differences in Hox expression between chick, alligator, and other tetrapods correlate with aspects of alligator or bird-specific skeletal morphology. First, absence of a thoracic subdomain of Hoxc-8 expression in alligator correlates with morphological adaptations in crocodilian thoracic segments. Second, Hoxa-5, a gene required to pattern the cervical-thoracic transition, shows unique patterns of expression in chick, alligator, and mouse, correlating with species-specific morphological patterning of this region. Given that cervical vertebral morphologies evolved independently in the bird and mammalian lineages, the underlying developmental mechanisms, including refinement of Hox expression domains, may be distinct.
Collapse
Affiliation(s)
- Jennifer H Mansfield
- Department of Biological Sciences, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, USA.
| | | |
Collapse
|
139
|
Jin ZW, Li CA, Kim JH, Shibata S, Murakami G, Cho BH. Fetal head anomaly restricted to the eye, the mandible, and the pterygoid process of the sphenoid: A histological study. Clin Anat 2011; 24:599-606. [DOI: 10.1002/ca.21135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/14/2010] [Accepted: 12/18/2010] [Indexed: 11/10/2022]
|
140
|
Kirilenko P, He G, Mankoo BS, Mallo M, Jones R, Bobola N. Transient activation of meox1 is an early component of the gene regulatory network downstream of hoxa2. Mol Cell Biol 2011; 31:1301-8. [PMID: 21245383 PMCID: PMC3067911 DOI: 10.1128/mcb.00705-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/10/2010] [Accepted: 01/02/2011] [Indexed: 11/20/2022] Open
Abstract
Hox genes encode transcription factors that regulate morphogenesis in all animals with bilateral symmetry. Although Hox genes have been extensively studied, their molecular function is not clear in vertebrates, and only a limited number of genes regulated by Hox transcription factors have been identified. Hoxa2 is required for correct development of the second branchial arch, its major domain of expression. We now show that Meox1 is genetically downstream from Hoxa2 and is a direct target. Meox1 expression is downregulated in the second arch of Hoxa2 mouse mutant embryos. In chromatin immunoprecipitation (ChIP), Hoxa2 binds to the Meox1 proximal promoter. Two highly conserved binding sites contained in this sequence are required for Hoxa2-dependent activation of the Meox1 promoter. Remarkably, in the absence of Meox1 and its close homolog Meox2, the second branchial arch develops abnormally and two of the three skeletal elements patterned by Hoxa2 are malformed. Finally, we show that Meox1 can specifically bind the DNA sequences recognized by Hoxa2 on its functional target genes. These results provide new insight into the Hoxa2 regulatory network that controls branchial arch identity.
Collapse
Affiliation(s)
- Pavel Kirilenko
- School of Dentistry, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom, Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom, Instituto Gulbenkian de Ciência, Oeiras, Portugal, Genetic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Guiyuan He
- School of Dentistry, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom, Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom, Instituto Gulbenkian de Ciência, Oeiras, Portugal, Genetic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Baljinder S. Mankoo
- School of Dentistry, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom, Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom, Instituto Gulbenkian de Ciência, Oeiras, Portugal, Genetic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Moises Mallo
- School of Dentistry, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom, Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom, Instituto Gulbenkian de Ciência, Oeiras, Portugal, Genetic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Richard Jones
- School of Dentistry, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom, Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom, Instituto Gulbenkian de Ciência, Oeiras, Portugal, Genetic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Nicoletta Bobola
- School of Dentistry, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom, Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom, Instituto Gulbenkian de Ciência, Oeiras, Portugal, Genetic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
141
|
Abstract
The middle ear is a composite organ formed from all three germ layers and the neural crest. It provides the link between the outside world and the inner ear, where sound is transduced and routed to the brain for processing. Extensive classical and modern studies have described the complex morphology and origin of the middle ear. Non-mammalian vertebrates have a single ossicle, the columella. Mammals have three functionally equivalent ossicles, designated the malleus, incus and stapes. In this review, I focus on the role of genes known to function in the middle ear. Genetic studies are beginning to unravel the induction and patterning of the multiple middle ear elements including the tympanum, skeletal elements, the air-filled cavity, and the insertion point into the inner ear oval window. Future studies that elucidate the integrated spatio-temporal signaling mechanisms required to pattern the middle ear organ system are needed. The longer-term translational benefits of understanding normal and abnormal ear development will have a direct impact on human health outcomes.
Collapse
|
142
|
Clouthier DE, Garcia E, Schilling TF. Regulation of facial morphogenesis by endothelin signaling: insights from mice and fish. Am J Med Genet A 2010; 152A:2962-73. [PMID: 20684004 PMCID: PMC2974943 DOI: 10.1002/ajmg.a.33568] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Craniofacial morphogenesis is accomplished through a complex set of developmental events, most of which are initiated in neural crest cells within the pharyngeal arches. Local patterning cues from the surrounding environment induce gene expression within neural crest cells, leading to formation of a diverse set of skeletal elements. Endothelin-1 (Edn1) is one of the primary signals that establishes the identity of neural crest cells within the mandibular portion of the first pharyngeal arch. Signaling through its cognate receptor, the endothelin-A receptor, is critical for patterning the ventral/distal portion of the arch (lower jaw) and also participates with Hox genes in patterning more posterior arches. Edn1/Ednra signaling is highly conserved between mouse and zebrafish, and genetic analyses in these two species have provided complementary insights into the patterning cues responsible for establishing the craniofacial complex as well as the genetic basis of facial birth defect syndromes.
Collapse
Affiliation(s)
- David E Clouthier
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA.
| | | | | |
Collapse
|
143
|
Minoux M, Rijli FM. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development 2010; 137:2605-21. [DOI: 10.1242/dev.040048] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During vertebrate craniofacial development, neural crest cells (NCCs) contribute much of the cartilage, bone and connective tissue that make up the developing head. Although the initial patterns of NCC segmentation and migration are conserved between species, the variety of vertebrate facial morphologies that exist indicates that a complex interplay occurs between intrinsic genetic NCC programs and extrinsic environmental signals during morphogenesis. Here, we review recent work that has begun to shed light on the molecular mechanisms that govern the spatiotemporal patterning of NCC-derived skeletal structures – advances that are central to understanding craniofacial development and its evolution.
Collapse
Affiliation(s)
- Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
- Faculté de Chirurgie Dentaire, 1, Place de l'Hôpital, 67000 Strasbourg, France
| | - Filippo M. Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| |
Collapse
|
144
|
Aggarwal VS, Carpenter C, Freyer L, Liao J, Petti M, Morrow BE. Mesodermal Tbx1 is required for patterning the proximal mandible in mice. Dev Biol 2010; 344:669-81. [PMID: 20501333 PMCID: PMC2917794 DOI: 10.1016/j.ydbio.2010.05.496] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 05/13/2010] [Accepted: 05/17/2010] [Indexed: 11/23/2022]
Abstract
Defects in the lower jaw, or mandible, occur commonly either as isolated malformations or in association with genetic syndromes. Understanding its formation and genetic pathways required for shaping its structure in mammalian model organisms will shed light into the pathogenesis of malformations in humans. The lower jaw is derived from the mandibular process of the first pharyngeal arch (MdPA1) during embryogenesis. Integral to the development of the mandible is the signaling interplay between Fgf8 and Bmp4 in the rostral ectoderm and their downstream effector genes in the underlying neural crest derived mesenchyme. The non-neural crest MdPA1 core mesoderm is needed to form muscles of mastication, but its role in patterning the mandible is unknown. Here, we show that mesoderm specific deletion of Tbx1, a T-box transcription factor and gene for velo-cardio-facial/DiGeorge syndrome, results in defects in formation of the proximal mandible by shifting expression of Fgf8, Bmp4 and their downstream effector genes in mouse embryos at E10.5. This occurs without significant changes in cell proliferation or apoptosis at the same stage. Our results elucidate a new function for the non-neural crest core mesoderm and specifically, mesodermal Tbx1, in shaping the lower jaw.
Collapse
Affiliation(s)
- Vimla S. Aggarwal
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Courtney Carpenter
- Department of Surgery, Montefiore Medical Center, 111 East 210 Street, Bronx, NY 10467, USA
| | - Laina Freyer
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Jun Liao
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Marilena Petti
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Bernice E. Morrow
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
145
|
Inactivation of Six2 in mouse identifies a novel genetic mechanism controlling development and growth of the cranial base. Dev Biol 2010; 344:720-30. [PMID: 20515681 DOI: 10.1016/j.ydbio.2010.05.509] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 05/03/2010] [Accepted: 05/24/2010] [Indexed: 12/17/2022]
Abstract
The cranial base is essential for integrated craniofacial development and growth. It develops as a cartilaginous template that is replaced by bone through the process of endochondral ossification. Here, we describe a novel and specific role for the homeoprotein Six2 in the growth and elongation of the cranial base. Six2-null newborn mice display premature fusion of the bones in the cranial base. Chondrocyte differentiation is abnormal in the Six2-null cranial base, with reduced proliferation and increased terminal differentiation. Gain-of-function experiments indicate that Six2 promotes cartilage development and growth in other body areas and appears therefore to control general regulators of chondrocyte differentiation. Our data indicate that the main factors restricting Six2 function to the cranial base are tissue-specific transcription of the gene and compensatory effects of other Six family members. The comparable expression during human embryogenesis and the high protein conservation from mouse to human implicate SIX2 loss-of-function as a potential congenital cause of anterior cranial base defects in humans.
Collapse
|
146
|
Kuraku S, Takio Y, Sugahara F, Takechi M, Kuratani S. Evolution of oropharyngeal patterning mechanisms involving Dlx and endothelins in vertebrates. Dev Biol 2010; 341:315-23. [DOI: 10.1016/j.ydbio.2010.02.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Revised: 02/05/2010] [Accepted: 02/06/2010] [Indexed: 12/27/2022]
|
147
|
Zuniga E, Stellabotte F, Crump JG. Jagged-Notch signaling ensures dorsal skeletal identity in the vertebrate face. Development 2010; 137:1843-52. [PMID: 20431122 DOI: 10.1242/dev.049056] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The development of the vertebrate face relies on the regionalization of neural crest-derived skeletal precursors along the dorsoventral (DV) axis. Here we show that Jagged-Notch signaling ensures dorsal identity within the hyoid and mandibular components of the facial skeleton by repressing ventral fates. In a genetic screen in zebrafish, we identified a loss-of-function mutation in jagged 1b (jag1b) that results in dorsal expansion of ventral gene expression and partial transformation of the dorsal hyoid skeleton to a ventral morphology. Conversely, misexpression of human jagged 1 (JAG1) represses ventral gene expression and dorsalizes the ventral hyoid and mandibular skeletons. We further show that jag1b is expressed specifically in dorsal skeletal precursors, where it acts through the Notch2 receptor to activate hey1 expression. Whereas Jagged-Notch positive feedback propagates jag1b expression throughout the dorsal domain, Endothelin 1 (Edn1) inhibits jag1b and hey1 expression in the ventral domain. Strikingly, reduction of Jag1b or Notch2 function partially rescues the ventral defects of edn1 mutants, indicating that Edn1 promotes facial skeleton development in part by inhibiting Jagged-Notch signaling in ventral skeletal precursors. Together, these results indicate a novel function of Jagged-Notch signaling in ensuring dorsal identity within broad fields of facial skeletal precursors.
Collapse
Affiliation(s)
- Elizabeth Zuniga
- Eli and Edythe Broad Institute for Regenerative Medicine and Stem Cell Research, Department of Cell and Neurobiology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
148
|
Witte DP, Aronow BJ, Harmony JAK. Understanding Cardiac Development Through the Perspective of Gene Regulation and Gene Manipulation. ACTA ACUST UNITED AC 2010. [DOI: 10.1080/15513819609169282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
149
|
Huysseune A, Sire JY, Witten PE. Evolutionary and developmental origins of the vertebrate dentition. J Anat 2010; 214:465-76. [PMID: 19422425 DOI: 10.1111/j.1469-7580.2009.01053.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
According to the classical theory, teeth derive from odontodes that invaded the oral cavity in conjunction with the origin of jaws (the 'outside in' theory). A recent alternative hypothesis suggests that teeth evolved prior to the origin of jaws as endodermal derivatives (the 'inside out' hypothesis). We compare the two theories in the light of current data and propose a third scenario, a revised 'outside in' hypothesis. We suggest that teeth may have arisen before the origin of jaws, as a result of competent, odontode-forming ectoderm invading the oropharyngeal cavity through the mouth as well as through the gill slits, interacting with neural crest-derived mesenchyme. This hypothesis revives the homology between skin denticles (odontodes) and teeth. Our hypothesis is based on (1) the assumption that endoderm alone, together with neural crest, cannot form teeth; (2) the observation that pharyngeal teeth are present only in species known to possess gill slits, and disappear from the pharyngeal region in early tetrapods concomitant with the closure of gill slits, and (3) the observation that the dental lamina (sensu Reif, 1982) is not a prerequisite for teeth to form. We next discuss the progress that has been made to understand the spatially restricted loss of teeth from certain arches, and the many questions that remain regarding the ontogenetic loss of teeth in specific taxa. The recent advances that have been made in our knowledge on the molecular control of tooth formation in non-mammalians (mostly in some teleost model species) will undoubtedly contribute to answering these questions in the coming years.
Collapse
|
150
|
Takechi M, Kuratani S. History of studies on mammalian middle ear evolution: A comparative morphological and developmental biology perspective. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:417-33. [DOI: 10.1002/jez.b.21347] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|