101
|
Lemke R, Rossner S, Schliebs R. Leukemia inhibitory factor expression is not induced in activated microglia and reactive astrocytes in response to rat basal forebrain cholinergic lesion. Neurosci Lett 1999; 267:53-6. [PMID: 10400247 DOI: 10.1016/s0304-3940(99)00332-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In adult intact rat brain, leukemia inhibitory factor (LIF) mRNA has been found to be constitutively expressed in basal forebrain cholinergic neurons. To reveal a functional role of LIF in neurodegenerative events, the cellular expression pattern of LIF was determined by combining in situ hybridization and immunocytochemistry after specific and selective degeneration of basal forebrain cholinergic cells by a single intracerebroventricular application of the cholinergic immunotoxin 192IgG-saporin. Although basal forebrain cholinergic lesion resulted in a dramatic activation of micro- and astroglial cells at the lesion site, LIF mRNA expression was not detected in any of the lesion-induced activated glial cell types. As the cholinergic immunotoxin exerts its degenerative action by the ribosome-inactivating property of saporin, the lack of glial LIF induction might be due to the incapability of the dying cholinergic cell to form and release factors which induce LIF expression in activated glial cells.
Collapse
Affiliation(s)
- R Lemke
- Paul Flechsig Institute for Brain Research, University of Leipzig, Medical Faculty, Germany
| | | | | |
Collapse
|
102
|
Leukemia inhibitory factor augments neurotrophin expression and corticospinal axon growth after adult CNS injury. J Neurosci 1999. [PMID: 10212315 DOI: 10.1523/jneurosci.19-09-03556.1999] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cytokine leukemia inhibitory factor (LIF) modulates glial and neuronal function in development and after peripheral nerve injury, but little is known regarding its role in the injured adult CNS. To further understand the biological role of LIF and its potential mechanisms of action after CNS injury, effects of cellularly delivered LIF on axonal growth, glial activation, and expression of trophic factors were examined after adult mammalian spinal cord injury. Fibroblasts genetically modified to produce high amounts of LIF were grafted to the injured spinal cords of adult Fischer 344 rats. Two weeks after injury, animals with LIF-secreting cells showed a specific and significant increase in corticospinal axon growth compared with control animals. Furthermore, expression of neurotrophin-3, but not nerve growth factor, brain-derived neurotrophic factor, glia cell line-derived neurotrophic factor, or ciliary neurotrophic factor, was increased at the lesion site in LIF-grafted but not in control subjects. No differences in astroglial and microglial/macrophage activation were observed. Thus, LIF can directly or indirectly modulate molecular and cellular responses of the adult CNS to injury. These findings also demonstrate that neurotrophic molecules can augment expression of other trophic factors in vivo after traumatic injury in the adult CNS.
Collapse
|
103
|
Nagamoto-Combs K, Vaccariello SA, Zigmond RE. The levels of leukemia inhibitory factor mRNA in a Schwann cell line are regulated by multiple second messenger pathways. J Neurochem 1999; 72:1871-81. [PMID: 10217263 DOI: 10.1046/j.1471-4159.1999.0721871.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Axotomy of sympathetic and sensory neurons leads to changes in their neuropeptide phenotypes. These changes are mediated in part by the induction of leukemia inhibitory factor (LIF) by nonneuronal cells. In the present study, we identified satellite/Schwann cells as a possible source of the injury-induced LIF. Using a Schwann cell line, SC-1 cells, we examined mechanisms of LIF induction. LIF mRNA levels increased rapidly when the cells were treated with 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate, phorbol 12-myristate 13-acetate (PMA), or A23187. Among these reagents, PMA was the most efficacious. Inhibition of protein kinase C (PKC) by GF-1 09203X significantly reduced the PMA-induced LIF mRNA levels. As PKC is known to activate the extracellular signal-regulated kinase (ERK) signaling pathway, the involvement of this pathway in the PMA-stimulated induction of LIF mRNA was examined. Phosphorylation of ERKs was increased following PMA treatment in SC-1 cells. Moreover, inhibition of ERK kinase activity by PD98059 dramatically reduced PMA-stimulated phosphorylation of ERKs and induction of LIF mRNA. These results indicate that LIF mRNA levels can be regulated by ERK activation via stimulation of PKC in Schwann cells.
Collapse
Affiliation(s)
- K Nagamoto-Combs
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
104
|
Haines BP, Voyle RB, Pelton TA, Forrest R, Rathjen PD. Complex Conserved Organization of the Mammalian Leukemia Inhibitory Factor Gene: Regulated Expression of Intracellular and Extracellular Cytokines. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.8.4637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Leukemia inhibitory factor (LIF) is a member of the IL-6 family of pleiotropic cytokines, which are extensively involved in modulating hematopoiesis and immunity. We have undertaken a detailed analysis of LIF genomic organization and gene transcription and investigated the proteins expressed from alternate transcripts. Previously unidentified LIF transcripts, containing alternate first exons spliced onto common second and third exons, were cloned from murine embryonic stem cells, human embryonal carcinoma cells, and primary porcine fibroblasts. Based on sequence homology and position within the genomic sequence, this confirmed the existence of the LIF-M transcript in species other than the mouse and identified a new class of transcript, designated LIF-T. Thus, a complex genomic organization of the LIF gene, conserved among eutherian mammals, results in the expression of three LIF transcripts (LIF-D, LIF-M, and LIF-T) differentially expressed from alternate promoters. The first exon of the LIF-T transcript contained no in-frame AUG, causing translation to initiate downstream of the secretory signal sequence at the first AUG in exon two, producing a truncated LIF protein that was localized within the cell. Enforced secretion of this protein demonstrated that it could act as a LIF receptor agonist. Regulated expression of biologically active intracellular and extracellular LIF cytokine could thus provide alternate mechanisms for the modulation of hematopoiesis and immune system function.
Collapse
Affiliation(s)
- Bryan P. Haines
- Department of Biochemistry, University of Adelaide, Adelaide, Australia
| | - Roger B. Voyle
- Department of Biochemistry, University of Adelaide, Adelaide, Australia
| | - Tricia A. Pelton
- Department of Biochemistry, University of Adelaide, Adelaide, Australia
| | - Regan Forrest
- Department of Biochemistry, University of Adelaide, Adelaide, Australia
| | - Peter D. Rathjen
- Department of Biochemistry, University of Adelaide, Adelaide, Australia
| |
Collapse
|
105
|
Abstract
The development of the sympathetic nervous system can be divided into three overlapping stages. First, the precursors of sympathetic neurons arise from undifferentiated neural crest cells that migrate ventrally, aggregate adjacent to the dorsal aorta, and ultimately differentiate into catecholaminergic neurons. Second, cell number is refined during a period of cell death when neurotrophic factors determine the number of neuronal precursors and neurons that survive. The final stage of sympathetic development is the establishment and maturation of synaptic connections, which for sympathetic neurons can include alterations in neurotransmitter phenotype. Considerable progress has been made recently in elucidating the cellular and molecular mechanisms that direct each of these developmental decisions. We review the current understanding of each of these, focusing primarily on events in the peripheral nervous system of rodents.
Collapse
Affiliation(s)
- N J Francis
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
106
|
Leukemia inhibitory factor and ciliary neurotrophic factor cause dendritic retraction in cultured rat sympathetic neurons. J Neurosci 1999. [PMID: 10066264 DOI: 10.1523/jneurosci.19-06-02113.1999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dendritic retraction occurs in many regions of the developing brain and also after neural injury. However, the molecules that regulate this important regressive process remain largely unknown. Our data indicate that leukemia inhibitory factor (LIF) and ciliary neurotrophic factor (CNTF) cause sympathetic neurons to retract their dendrites in vitro, ultimately leading to an approximately 80% reduction in the size of the arbor. The dendritic retraction induced by LIF exhibited substantial specificity because it was not accompanied by changes in cell number, in the rate of axonal growth, or in the expression of axonal cytoskeletal elements. An antibody to gp130 blocked the effects of LIF and CNTF, and both cytokines induced phosphorylation and nuclear translocation of stat3. Moreover, addition of soluble interleukin-6 (IL-6) receptor to the medium endowed IL-6 with the ability to cause dendritic regression. These data indicate that ligands activating the gp130 pathway have the ability to profoundly alter neuronal cell shape and polarity by selectively causing the retraction of dendrites.
Collapse
|
107
|
Klimaschewski L, Meisinger C, Grothe C. Localization and regulation of basic fibroblast growth factor (FGF-2) and FGF receptor-1 in rat superior cervical ganglion after axotomy. JOURNAL OF NEUROBIOLOGY 1999; 38:499-506. [PMID: 10084685 DOI: 10.1002/(sici)1097-4695(199903)38:4<499::aid-neu6>3.0.co;2-o] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In response to peripheral nerve lesion, synthesis of basic fibroblast growth factor (FGF-2) increases in sensory ganglia and motoneurons. Here, we investigated the axotomy-induced regulation of FGF-2 and FGF receptor-1 (FGFR-1) expression in the autonomic nervous system using the sympathetic superior cervical ganglion of the adult rat as a model. Transcripts for both proteins were detected by ribonuclease protection assay. Western blotting indicated the presence of all three FGF-2 isoforms (18, 21, and 23 kD) in the superior cervical ganglion. Immunohistochemical analysis revealed FGF-2 localization in nuclei of satellite cells surrounding postganglionic perikarya. After transection of the carotid nerves, the number of FGF-2-immunoreactive glial cells increased. FGF-2 mRNA was up-regulated within 6 h and remained elevated for 3 weeks. The 18-, 21-, and 23-kD isoforms were all increased 7 days after axotomy. FGFR-1 immunoreactivity was observed in neuronal and nonneuronal nuclei in the normal rat superior cervical ganglion. In contrast to FGF-2, expression of FGFR-1 was unchanged in ganglia after axotomy. Taken together, the present results suggest that FGF-2 participates in neuron-glial interactions of sympathetic ganglia and may be involved in sympathetic neuron survival or nerve regeneration after nerve lesion.
Collapse
Affiliation(s)
- L Klimaschewski
- Institute of Anatomy and Cell Biology, University of Heidelberg, Germany
| | | | | |
Collapse
|
108
|
Mehler MF, Kessler JA. Cytokines in brain development and function. ADVANCES IN PROTEIN CHEMISTRY 1999; 52:223-51. [PMID: 9917922 DOI: 10.1016/s0065-3233(08)60437-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- M F Mehler
- Department of Neurology, Rose F. Kennedy Center for Research in Mental Retardation and Human Development, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
109
|
Socolovsky M, Constantinescu SN, Bergelson S, Sirotkin A, Lodish HF. Cytokines in hematopoiesis: specificity and redundancy in receptor function. ADVANCES IN PROTEIN CHEMISTRY 1999; 52:141-98. [PMID: 9917920 DOI: 10.1016/s0065-3233(08)60435-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- M Socolovsky
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | | | |
Collapse
|
110
|
Nicola NA, Hilton DJ. General classes and functions of four-helix bundle cytokines. ADVANCES IN PROTEIN CHEMISTRY 1999; 52:1-65. [PMID: 9917917 DOI: 10.1016/s0065-3233(08)60432-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- N A Nicola
- Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Victoria, Australia
| | | |
Collapse
|
111
|
Abstract
The highly disagreeable sensation of pain results from an extraordinarily complex and interactive series of mechanisms integrated at all levels of the neuroaxis, from the periphery, via the dorsal horn to higher cerebral structures. Pain is usually elicited by the activation of specific nociceptors ('nociceptive pain'). However, it may also result from injury to sensory fibres, or from damage to the CNS itself ('neuropathic pain'). Although acute and subchronic, nociceptive pain fulfils a warning role, chronic and/or severe nociceptive and neuropathic pain is maladaptive. Recent years have seen a progressive unravelling of the neuroanatomical circuits and cellular mechanisms underlying the induction of pain. In addition to familiar inflammatory mediators, such as prostaglandins and bradykinin, potentially-important, pronociceptive roles have been proposed for a variety of 'exotic' species, including protons, ATP, cytokines, neurotrophins (growth factors) and nitric oxide. Further, both in the periphery and in the CNS, non-neuronal glial and immunecompetent cells have been shown to play a modulatory role in the response to inflammation and injury, and in processes modifying nociception. In the dorsal horn of the spinal cord, wherein the primary processing of nociceptive information occurs, N-methyl-D-aspartate receptors are activated by glutamate released from nocisponsive afferent fibres. Their activation plays a key role in the induction of neuronal sensitization, a process underlying prolonged painful states. In addition, upon peripheral nerve injury, a reduction of inhibitory interneurone tone in the dorsal horn exacerbates sensitized states and further enhance nociception. As concerns the transfer of nociceptive information to the brain, several pathways other than the classical spinothalamic tract are of importance: for example, the postsynaptic dorsal column pathway. In discussing the roles of supraspinal structures in pain sensation, differences between its 'discriminative-sensory' and 'affective-cognitive' dimensions should be emphasized. The purpose of the present article is to provide a global account of mechanisms involved in the induction of pain. Particular attention is focused on cellular aspects and on the consequences of peripheral nerve injury. In the first part of the review, neuronal pathways for the transmission of nociceptive information from peripheral nerve terminals to the dorsal horn, and therefrom to higher centres, are outlined. This neuronal framework is then exploited for a consideration of peripheral, spinal and supraspinal mechanisms involved in the induction of pain by stimulation of peripheral nociceptors, by peripheral nerve injury and by damage to the CNS itself. Finally, a hypothesis is forwarded that neurotrophins may play an important role in central, adaptive mechanisms modulating nociception. An improved understanding of the origins of pain should facilitate the development of novel strategies for its more effective treatment.
Collapse
Affiliation(s)
- M J Millan
- Institut de Recherches Servier, Psychopharmacology Department, Paris, France
| |
Collapse
|
112
|
Corness J, Hökfelt T. Analysis of selected regulatory pathways for rat galanin gene transcription and their suitability as putative models for negative regulation by NGF. Ann N Y Acad Sci 1998; 863:14-21. [PMID: 9928156 DOI: 10.1111/j.1749-6632.1998.tb10680.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nerve growth factor (NGF) is known to negatively regulate the transcription of the rat galanin gene both in vivo and in vitro in dorsal root ganglion neurons, yet it is unclear how this regulation actually occurs. We propose here several possible pathways whereby NGF could interact to exert negative control on galanin regulation. These include: (1) repression of AP1-mediated transcription, (2) repression of nuclear binding protein-mediated transcription, and (3) repression of cytokine-mediated transcription. Although not enough data are available for speculation on which, if any, of these pathways is most relevant for NGF repression of galanin transcription, the mechanisms we describe can provide putative models for regulatory pathways. From here we can carry out further experiments that may help to elucidate the possible mechanisms of NGF repression in vivo.
Collapse
Affiliation(s)
- J Corness
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
113
|
Geissen M, Heller S, Pennica D, Ernsberger U, Rohrer H. The specification of sympathetic neurotransmitter phenotype depends on gp130 cytokine receptor signaling. Development 1998; 125:4791-801. [PMID: 9806927 DOI: 10.1242/dev.125.23.4791] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sympathetic ganglia are composed of noradrenergic and cholinergic neurons. The differentiation of cholinergic sympathetic neurons is characterized by the expression of choline acetyltransferase (ChAT) and vasoactive intestinal peptide (VIP), induced in vitro by a subfamily of cytokines, including LIF, CNTF, GPA, OSM and cardiotrophin-1 (CT-1). To interfere with the function of these neuropoietic cytokines in vivo, antisense RNA for gp130, the common signal-transducing receptor subunit for neuropoietic cytokines, was expressed in chick sympathetic neurons, using retroviral vectors. A strong reduction in the number of VIP-expressing cells, but not of cells expressing ChAT or the adrenergic marker tyrosine hydroxylase (TH), was observed. These results reveal a physiological role of neuropoietic cytokines for the control of VIP expression during the development of cholinergic sympathetic neurons.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/physiology
- Cells, Cultured
- Chick Embryo
- Choline O-Acetyltransferase/genetics
- Cytokine Receptor gp130
- Cytokines/physiology
- Ganglia, Sympathetic/cytology
- Ganglia, Sympathetic/embryology
- Gene Expression Regulation
- Gene Expression Regulation, Developmental
- Humans
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Molecular Sequence Data
- Neurons/classification
- Neurons/cytology
- Neurons/physiology
- Phenotype
- RNA, Antisense
- Receptors, Cytokine/physiology
- Recombinant Proteins/biosynthesis
- Retroviridae
- Sequence Alignment
- Sequence Homology, Amino Acid
- Signal Transduction
- Transfection
- Tyrosine 3-Monooxygenase/genetics
- Vasoactive Intestinal Peptide/genetics
Collapse
Affiliation(s)
- M Geissen
- Max-Planck-Institut für Hirnforschung, Abt. Neurochemie, Deutschordenstr. 46, Germany
| | | | | | | | | |
Collapse
|
114
|
|
115
|
Bugga L, Gadient RA, Kwan K, Stewart CL, Patterson PH. Analysis of neuronal and glial phenotypes in brains of mice deficient in leukemia inhibitory factor. JOURNAL OF NEUROBIOLOGY 1998; 36:509-24. [PMID: 9740023 DOI: 10.1002/(sici)1097-4695(19980915)36:4<509::aid-neu5>3.0.co;2-#] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Leukemia inhibitory factor (LIF) can regulate the survival and differentiation of certain neurons and glial cells in culture. To determine the role of this cytokine in the central nervous system in vivo, we examined the brains of young and adult mice in which the LIF gene was disrupted. Immunohistochemical staining of neurons for choline acetyltransferase, tyrosine hydroxylase, serotonin, parvalbumin, calbindin, neuropeptide Y, vasoactive intestinal polypeptide, and calcitonin gene-related peptide revealed no significant differences between null mutant and wild-type (WT) brains. In contrast, analysis of glial phenotypes demonstrated striking deficits in the LIF-knockout brain. Staining with several anti-glial fibrillary acidic protein (GFAP) antibodies showed that the number of GFAP-positive cells in various regions of the hippocampus in the female mutant is much lower than in the WT. The null male hippocampus also displays a significant, though less marked deficit. The number of astrocytes in the mutant hippocampus, as determined by S-100 staining, is not, however, significantly different from WT. In addition, quantification of immunohistochemical staining of female, but not male, mutants reveals a significant deficit in myelin basic protein content in three brain regions, suggesting alterations in oligodendrocytes as well. Thus, while overall brain histology appears normal, the absence of LIF in vivo leads to specific, sexually dimorphic alterations in glial phenotype.
Collapse
Affiliation(s)
- L Bugga
- Biology Division, California Institute of Technology, Pasadena 91125, USA
| | | | | | | | | |
Collapse
|
116
|
Rajan P, Gearan T, Fink JS. Leukemia inhibitory factor and NGF regulate signal transducers and activators of transcription activation in sympathetic ganglia: convergence of cytokine- and neurotrophin-signaling pathways. Brain Res 1998; 802:198-204. [PMID: 9748576 DOI: 10.1016/s0006-8993(98)00611-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have used the response of the superior cervical ganglia (SCG) to axotomy to investigate interactions between neuropoietic cytokines and neurotrophins. Postganglionic sympathetic axotomy leads to a prolonged leukemia inhibitory factor (LIF)-dependent activation of signal transducers and activators of transcription (STAT) factors. To study regulation of LIF-dependent activation of STAT proteins and to mimic the loss of target-derived NGF resulting from postganglionic axotomy in vivo, SCG were explanted into media lacking NGF and activation of STAT proteins was assessed by electrophoretic mobility shift assay. Like postganglionic axotomy in vivo. STAT proteins were activated for up to 8 days after explantation of SCG in vitro. SCG cultured in the presence of NGF showed decreased STAT binding when compared to ganglia cultured in NGF-free media. This inhibition of STAT activation by NGF was only present in ganglia cultured for more than 5 days and was mimicked by brain-derived neurotrophic factor (BDNF). The serine kinase inhibitor H7 augmented the increase of STAT binding produced by explantation, suggesting the presence of a labile repressor of STAT activation in the SCG. These data indicated that the neuropoietic cytokine-signaling pathway interacts with neurotrophin and H7-sensitive-signaling pathways to regulate activation of STAT proteins in sympathetic neurons. Moreover, these data suggest that one of the mechanisms leading to prolonged activation of STAT proteins after postganglionic axotomy in vivo is loss of target-derived neurotrophins.
Collapse
Affiliation(s)
- P Rajan
- Molecular Neurobiology Laboratory, Massachusetts General Hospital, Boston 02114, USA.
| | | | | |
Collapse
|
117
|
Abstract
The mRNA for leukemia inhibitory factor (LIF), a neuroimmune signaling molecule, is elevated during skin inflammation produced by intraplantar injection of complete Freund's adjuvant (CFA). Moreover, although LIF knock-out mice display normal sensitivity to cutaneous mechanical and thermal stimulation compared with wild-type mice, the degree of CFA-induced inflammation in mice lacking LIF is enhanced in spatial extent, amplitude, cellular infiltrate, and interleukin (IL)-1beta and nerve growth factor (NGF) expression. Conversely, local injection of low doses of recombinant LIF diminishes mechanical and thermal hypersensitivity as well as the IL-1beta and NGF expression induced by CFA. These data show that upregulation of LIF during peripheral inflammation serves a key, early anti-inflammatory role and that exogenous LIF can reduce inflammatory hyperalgesia.
Collapse
|
118
|
Abstract
Neurons in the adult rat superior cervical sympathetic ganglion (SCG) dramatically increase their content of vasoactive intestinal peptide (VIP) and its mRNA after axotomy in vivo and after explantation. Because the VIP gene contains a functional cAMP response element, the effects of cAMP-elevating agents on VIP expression were examined. VIP, forskolin, or isoproterenol increased cAMP accumulation in explanted ganglia. Secretin, a peptide chemically related to VIP, or forskolin increased VIP levels above those seen in ganglia cultured in control medium, whereas treatment with VIP or secretin increased the level of peptide histidine isoleucine (PHI), a peptide coded for by the same mRNA that encodes VIP. VIP or forskolin also increased VIP-PHI mRNA. In contrast, isoproterenol did not alter levels of VIP, PHI, or VIP-PHI mRNA. Although VIP or forskolin increased cAMP levels in both dissociated neurons and in non-neuronal cells, isoproterenol significantly stimulated cAMP accumulation only in the latter. VIP6-28 was an effective antagonist of the actions of exogenous VIP on cAMP and VIP-PHI mRNA in neuron-enriched cultures. When adult SCG explants were cultured in defined medium, endogenous VIP immunoreactivity was released. When VIP6-28 was added to such cultures, it significantly inhibited the increase in VIP-PHI mRNA that normally occurs. These data indicate that VIP, or a closely related molecule, produced by adult neurons after injury can enhance the expression of VIP. Such a mechanism may prolong the period during which VIP is elevated after axonal damage. The possibility is also discussed that, because VIP is present in preganglionic neurons in normal animals, its release during periods of increased sympathetic nerve activity could alter VIP expression in the SCG.
Collapse
|
119
|
Gadient RA, Lein P, Higgins D, Patterson PH. Effect of leukemia inhibitory factor (LIF) on the morphology and survival of cultured hippocampal neurons and glial cells. Brain Res 1998; 798:140-6. [PMID: 9666105 DOI: 10.1016/s0006-8993(98)00236-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Leukemia inhibitory factor (LIF) is a cytokine involved in the survival, differentiation and regeneration of sympathetic, sensory and motor neurons. Its effects in the brain are less well characterized. In a previous study, we found LIF transcripts to be predominantly expressed in neurons of the adult rat brain. Highest levels were observed in the hippocampus, particularly in granular neurons of the dentate gyrus and in hilar interneurons. Here we report the effects of LIF on survival and differentiation of postnatal rat hippocampal cells in vitro. We find that LIF minimally influences the survival and differentiation of dentate gyrus neurons, causing a slight reduction of the number of dendrites per neuron. In contrast, LIF induces a pronounced increase in the number of astrocytes. This increase does not appear to be due to enhanced proliferation but rather to increased cell survival. On the other hand, epidermal growth factor (EGF) induces astrocyte proliferation, and addition of LIF inhibits the EGF effect. In summary, LIF does not appear to be crucial for the survival or differentiation of cultured dentate gyrus neurons. This cytokine increases astrocyte survival but does not enhance astrocyte proliferation, and LIF is able to counteract the growth stimulation elicited by EGF.
Collapse
Affiliation(s)
- R A Gadient
- Biology Division, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
120
|
Shadiack AM, Vaccariello SA, Sun Y, Zigmond RE. Nerve growth factor inhibits sympathetic neurons' response to an injury cytokine. Proc Natl Acad Sci U S A 1998; 95:7727-30. [PMID: 9636218 PMCID: PMC22738 DOI: 10.1073/pnas.95.13.7727] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Axonal damage to adult peripheral neurons causes changes in neuronal gene expression. For example, axotomized sympathetic, sensory, and motor neurons begin to express galanin mRNA and protein, and recent evidence suggests that galanin plays a role in peripheral nerve regeneration. Previous studies in sympathetic and sensory neurons have established that galanin expression is triggered by two consequences of nerve transection: the induction of leukemia inhibitory factor (LIF) and the reduction in the availability of the target-derived factor, nerve growth factor. It is shown in the present study that no stimulation of galanin expression occurs following direct application of LIF to intact neurons in the superior cervical sympathetic ganglion. Injection of animals with an antiserum to nerve growth factor concomitant with the application of LIF, on the other hand, does stimulate galanin expression. The data suggest that the response of neurons to an injury factor, LIF, is affected by whether the neurons still receive trophic signals from their targets.
Collapse
Affiliation(s)
- A M Shadiack
- Department of Neurosciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4975, USA
| | | | | | | |
Collapse
|
121
|
Thompson SW, Priestley JV, Southall A. gp130 cytokines, leukemia inhibitory factor and interleukin-6, induce neuropeptide expression in intact adult rat sensory neurons in vivo: time-course, specificity and comparison with sciatic nerve axotomy. Neuroscience 1998; 84:1247-55. [PMID: 9578410 DOI: 10.1016/s0306-4522(97)00553-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The gp130 cytokines leukemia inhibitory factor and interleukin-6 are neuroactive cytokines associated with peripheral nerve injury. Here we show that exogenous administration of these factors selectively regulates neuropeptide phenotype in intact sensory neurons in a manner consistent with their role as injury-induced factors. Intraneural injection of leukemia inhibitory factor into the intact sciatic nerve of adult rats induces a significant increase in the percentage of neuronal profiles immunoreactive for galanin in the L4 and L5 dorsal root ganglia without altering the percentage profiles immunoreactive for vasoactive intestinal polypeptide or neuropeptide Y. Galanin-immunoreactivity was predominantly confined to those neurons which retrogradely transported and accumulated leukemia inhibitory factor. The up-regulation of galanin-immunoreactivity observed in L4 and L5 dorsal root ganglia following unilateral axotomy of the sciatic nerve was significantly reduced following continuous treatment for two weeks with a monoclonal antibody against the gp130 receptor motif. Intraneural injection of interleukin-6 into the intact sciatic nerve also significantly increased the percentage of neuronal profiles which displayed galanin-immunoreactivity but not vasoactive intestinal polypeptide or neuropeptide Y-immunoreactivity. Our results indicate that cytokines which interact with the gp130 receptor at the site of peripheral nerve injury contribute to the cell body response to axotomy. Changes in the levels of such cytokines however are insufficient to account for the complete repertoire of neuropeptide phenotypic changes associated with peripheral nerve injury.
Collapse
Affiliation(s)
- S W Thompson
- Division of Physiology, UMDS. St Thomas's Hospital, London, UK
| | | | | |
Collapse
|
122
|
Shadiack AM, Zigmond RE. Galanin induced in sympathetic neurons after axotomy is anterogradely transported toward regenerating nerve endings. Neuropeptides 1998; 32:257-64. [PMID: 10189060 DOI: 10.1016/s0143-4179(98)90045-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Peripheral neurons begin to express galanin after axotomy. When neurons in the superior cervical ganglion were axotomized near (about 2 mm) from the ganglion, galanin-like immunoreactivity (IR) was maximal within 72 h. Axotomy of neurons in the middle and inferior cervical ganglion complex (MICG), which could be performed 2 cm from the ganglia, led to an additional galanin increase 7 and 14 days later. This second increase was not accompanied by changes in galanin mRNA or the number of galanin-immunostained neurons. Galanin-IR was detectable in a postganglionic trunk of the MICG 2 days after axotomy. At this time, immunoreactive fibers were only seen near the lesion site, while later they were found throughout the trunk. The data suggest that galanin is actively transported toward the site of nerve crush/transection and that the second increase in galanin-IR found in the MICG may be due to a saturation of the axonal transport system.
Collapse
Affiliation(s)
- A M Shadiack
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106-4975, USA
| | | |
Collapse
|
123
|
Smith DK, Treutlein HR. LIF receptor-gp130 interaction investigated by homology modeling: implications for LIF binding. Protein Sci 1998; 7:886-96. [PMID: 9568895 PMCID: PMC2143991 DOI: 10.1002/pro.5560070406] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Leukemia inhibitory factor (LIF), a member of the gp130 family of helical cytokines, is involved in the hemopoietic and neural systems. The LIF signal transducing complex contains two receptor molecules, the LIF receptor (LIFR) and gp130. The extracellular region of the LIFR is unique in that it includes three membrane-proximal fibronectin type III domains and two cytokine binding domains (CBDs) separated by an immunoglobulin-like domain. Although some mutagenesis data on LIF are available, it is not yet known which regions of LIFR or gp130 bind LIF. Nor is it known whether LIFR contacts gp130 in a manner similar to the growth hormone receptor dimer and, if so, through which of its CBDs. To attempt to elucidate these matters and to investigate the receptor complex, models of the CBDs of LIFR and the CBD of gp130 were constructed. Analyses of the electrostatic isopotential surfaces of the CBD models suggest that gp130 and the membrane-proximal CBD of LIFR hetero-dimerize and bind LIF through contacts similar to those seen in the growth hormone receptor dimer. This work further demonstrates the utility of electrostatic analyses of homology models and suggests a strategy for biochemical investigations of the LIF-receptor complex.
Collapse
Affiliation(s)
- D K Smith
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
124
|
Zhou Y, Deneris E, Zigmond RE. Differential regulation of levels of nicotinic receptor subunit transcripts in adult sympathetic neurons after axotomy. JOURNAL OF NEUROBIOLOGY 1998; 34:164-78. [PMID: 9468387 DOI: 10.1002/(sici)1097-4695(19980205)34:2<164::aid-neu6>3.0.co;2-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Axotomy of adult peripheral neurons produces decreases in the levels of transcripts for a number of proteins involved in synaptic transmission. For example, tyrosine hydroxylase and neuropeptide Y mRNA decrease in axotomized sympathetic neurons in the superior cervical ganglion (SCG). In the present study, the effects of axotomy on the expression of nicotinic receptor subunit transcripts were examined in the SCG and the results were compared to those produced by deafferentation and explantation. Normally, neurons in the SCG express five different nicotinic subunits: alpha3, alpha5, alpha7, beta2, and beta4. Forty-eight hours after axotomy in vivo or explantation, dramatic decreases in these transcripts were seen, except for beta2, which increased. In contrast, deafferentation of the SCG had negligible effects on any of these transcripts. Both leukemia inhibitory factor (LIF) and nerve growth factor (NGF) have been shown to play a role in the decrease in neuropeptide Y mRNA expression after axotomy. In the cases of these nicotinic receptor transcripts, however, similar decreases were seen in wild-type and LIF knockout animals. Furthermore, administration of an antiserum to NGF in intact animals produced no changes in transcript levels. On the other hand, providing exogenous NGF to axotomized SCG in vivo or in explant cultures partially prevented the decreases in the transcripts for alpha3, alpha5, alpha7, and beta4. These data indicate that axotomy produces dramatic decreases in the expression of several nicotinic receptor subunit transcripts, and that the molecular signals underlying these changes differ from those previously shown to mediate the decrease in neuropeptide Y expression.
Collapse
Affiliation(s)
- Y Zhou
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4975, USA
| | | | | |
Collapse
|
125
|
Thompson SW, Majithia AA. Leukemia inhibitory factor induces sympathetic sprouting in intact dorsal root ganglia in the adult rat in vivo. J Physiol 1998; 506 ( Pt 3):809-16. [PMID: 9503339 PMCID: PMC2230752 DOI: 10.1111/j.1469-7793.1998.809bv.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. The role of the cytokine leukemia inhibitory factor (LIF) in axotomy-induced sprouting of postganglionic sympathetic fibres into the dorsal root ganglia was examined in the adult rat. 2. Immunocytochemistry was used to study the distribution and density of tyrosine hydroxylase-immunoreactive (TH-IR) fibres within the lumbar dorsal root ganglia and lumbar spinal nerves 14 days following continuous intrathecal infusion of LIF (0.33 mg ml-1), or 14 days following unilateral peripheral nerve axotomy. 3. In LIF-treated animals, numerous pericellular TH-IR basket-like structures were observed surrounding sensory neurones, which were absent from controls. 4. The number of TH-IR fibres within the L3, L4 and L5 spinal nerves was significantly higher in LIF-treated animals than in control or saline-treated animals (P < 0.01, Student's t test). 5. Unilateral ligation of the L4 spinal nerve or unilateral sciatic nerve ligation was also associated with the formation of TH-IR baskets around sensory neurons and a significant increase in the number of TH-IR fibres within the lumbar spinal nerves (P < 0.01, Student's t test). 6. The percentage of neurones surrounded by TH-IR baskets within the L3 and L4 dorsal root ganglia following sciatic axotomy was significantly reduced in animals treated continuously for 2 weeks with a monoclonal antibody against the LIF receptor motif, gp130 (0.833 mg ml-1) (P < 0.05, Mann-Whitney U test). Antibody treatment did not reduce the axotomy-induced increase in TH-IR fibres within lumbar spinal nerves. 7. These results demonstrate that exogenous application of the axotomy-associated cytokine LIF is associated with sprouting of uninjured postganglionic sympathetic neurones around sensory neurones within the dorsal root ganglion. It is likely that increased LIF expression following peripheral axotomy plays an important role in the novel sympathetic sprouting observed within sensory ganglia following peripheral nerve injury.
Collapse
Affiliation(s)
- S W Thompson
- Division of Physiology, UMDS, St Thomas' Hospital, London, UK.
| | | |
Collapse
|
126
|
Abstract
Retrograde signaling from the postsynaptic cell to the presynaptic neuron is essential for the development, maintenance, and activity-dependent modification of synaptic connections. This review covers various forms of retrograde interactions at developing and mature synapses. First, we discuss evidence for early retrograde inductive events during synaptogenesis and how maturation of presynaptic structure and function is affected by signals from the postsynaptic cell. Second, we review the evidence that retrograde interactions are involved in activity-dependent synapse competition and elimination in developing nervous systems and in long-term potentiation and depression at mature synapses. Third, we review evidence for various forms of retrograde signaling via membrane-permeant factors, secreted factors, and membrane-bound factors. Finally, we discuss the evidence and physiological implications of the long-range propagation of retrograde signals to the cell body and other parts of the presynaptic neuron.
Collapse
Affiliation(s)
- R M Fitzsimonds
- Department of Biology, University of California at San Diego, La Jolla, USA
| | | |
Collapse
|
127
|
Guo X, Metzler-Northrup J, Lein P, Rueger D, Higgins D. Leukemia inhibitory factor and ciliary neurotrophic factor regulate dendritic growth in cultures of rat sympathetic neurons. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 104:101-10. [PMID: 9466712 DOI: 10.1016/s0165-3806(97)00142-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cytokines such as leukemia inhibitory factor (LIF) and ciliary neurotrophic factor (CNTF) have previously been shown to regulate neurotransmitter and neuropeptide synthesis in sympathetic neurons [P.H. Patterson, Leukemia inhibitory factor, a cytokine at the interface between neurobiology and immunology, Proc. Natl. Acad. Sci. USA 91 (1994) 7833-7835]. We considered the possibility that these agents may also affect the development of neuronal cell shape. Intracellular dye injection and immunocytochemistry were used to assess dendritic growth in cultures of perinatal rat sympathetic neurons and the effects of LIF and CNTF were compared to those of osteogenic protein-1 (OP-1), a growth factor that induces profuse dendritic growth in these neurons [P. Lein, M. Johnson, X. Guo, D. Rueger, D. Higgins, Osteogenic protein-1 induces dendritic growth in rat sympathetic neurons, Neuron 15 (1995) 597-605]. Under control conditions, sympathetic neurons formed only axons. Exposure to either LIF or OP-1 stimulated dendritic growth, but the magnitude of the response to LIF was much less than that obtained with OP-1 with respect to both dendritic number and length. Simultaneous exposure to LIF and OP-1 resulted in dendritic growth equivalent to that observed in the presence of LIF alone, suggesting that LIF inhibits the response of neurons to OP-1. Both the stimulatory and inhibitory effects of LIF were mimicked by CNTF, but not by other growth factors. These data suggest that LIF and CNTF regulate dendritic development in a complex manner that is dependent on both the morphological state of the neuron and the presence of other growth factors. However, the net effect of exposure to these cytokines appears to be the production of a population of neurons with rudimentary arbors consisting of only one or two short dendrites.
Collapse
Affiliation(s)
- X Guo
- Department of Pharmacology and Toxicology, State University of New York, Buffalo 14214, USA
| | | | | | | | | |
Collapse
|
128
|
Habecker BA, Symes AJ, Stahl N, Francis NJ, Economides A, Fink JS, Yancopoulos GD, Landis SC. A sweat gland-derived differentiation activity acts through known cytokine signaling pathways. J Biol Chem 1997; 272:30421-8. [PMID: 9374533 DOI: 10.1074/jbc.272.48.30421] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The sympathetic innervation of sweat glands undergoes a target-induced noradrenergic to cholinergic/peptidergic switch during development. Similar changes are induced in cultured sympathetic neurons by sweat gland cells or by one of the following cytokines: leukemia inhibitory factor (LIF), ciliary neurotrophic factor (CNTF), or cardiotrophin-1 (CT-1). None of these is the sweat gland-derived differentiation activity. LIF, CNTF, and CT-1 act through the known receptors LIF receptor beta (LIFRbeta) and gp130 and well defined signaling pathways including receptor phosphorylation and STAT3 activation. Therefore, to determine whether the gland-derived differentiation activity was a member of the LIF/CNTF cytokine family, we tested whether it acted via these same receptors and signal cascades. Blockade of LIFRbeta inhibited the sweat gland differentiation activity in neuron/gland co-cultures, and extracts of gland-containing footpads stimulated tyrosine phosphorylation of LIFRbeta and gp130. An inhibitor (CGX) of molecules that bind the CNTFRalpha, which is required for CNTF signaling, did not affect the gland-derived differentiation activity. Soluble footpad extracts induced the same changes in NBFL neuroblastoma cells as LIF and CNTF, including increased vasoactive intestinal peptide mRNA, STAT3 dimerization, and DNA binding, and stimulation of transcription from the vasoactive intestinal peptide cytokine-responsive element. Thus, the sweat gland-derived differentiation activity uses the same signaling pathway as the neuropoietic cytokines, and is likely to be a family member.
Collapse
MESH Headings
- Animals
- Antigens, CD/physiology
- Cell Differentiation
- Cells, Cultured
- Cytokine Receptor gp130
- Cytokines/physiology
- DNA-Binding Proteins/physiology
- Gene Expression Regulation, Developmental
- Growth Inhibitors
- Interleukin-6
- Leukemia Inhibitory Factor
- Leukemia Inhibitory Factor Receptor alpha Subunit
- Lymphokines
- Membrane Glycoproteins/physiology
- Neurons/physiology
- Oncostatin M
- Peptides/genetics
- Phosphorylation
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- Rats
- Receptor Protein-Tyrosine Kinases/physiology
- Receptor, Ciliary Neurotrophic Factor
- Receptors, Cytokine/physiology
- Receptors, Nerve Growth Factor/physiology
- Receptors, OSM-LIF
- STAT3 Transcription Factor
- Signal Transduction
- Superior Cervical Ganglion/cytology
- Sweat Glands/cytology
- Sweat Glands/physiology
- Trans-Activators/physiology
- Transcription, Genetic
- Vasoactive Intestinal Peptide/genetics
Collapse
Affiliation(s)
- B A Habecker
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Abstract
Schwann cell is a cell type that forms myelin sheath and provides trophic supports for neuronal cells by producing neurotrophic factors such as neurotrophins and neurokines in both normal and traumatic situations. It was recently reported that after lesion of sciatic nerve, mRNA for cholinergic differentiation factor (CDF)/leukemia inhibitory factor (LIF) is induced in nonneuronal cells in the nerve. However, the source of LIF-mRNA and the mechanism of LIF-mRNA regulation have remained largely unknown. In the present study, we searched for factors regulating the LIF-mRNA expression in cultured Schwann cells isolated from newborn rat sciatic nerve. Among various growth factors and cytokines tested, TGF beta-1 exerted the most prominent effect on the induction of LIF-mRNA in the cultured Schwann cells. The effect of TGF-beta 1 on the increase of LIF-mRNA levels was suppressed by either staurosporine or H-7 suggesting the role of PKC or PKC-like protein kinase activity in the induction of LIF-mRNA. The induction of LIF mRNA by TGF-beta 1 was suppressed in the co-culture of the Schwann cells with embryonic rat DRG neurons. The addition of ascorbic acid, which is known to promote myelination in this co-culture system, further suppressed the TGF-beta 1 induction of LIF-mRNA. These results suggest that Schwann cells respond to TGF-beta 1 in a lesion situation to produce LIF, which supports neuronal survival and regeneration. The re-establishment of neuron-Schwann cell interaction would in turn suppress the LIF production to terminate its action during the lesion situation.
Collapse
Affiliation(s)
- I Matsuoka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | | | | |
Collapse
|
130
|
Abstract
Leukemia inhibitory factor (LIF) alters neuronal phenotypes both in vitro and in vivo. Since it can be produced by glia and other nonneural cells, LIF is a candidate target-derived differentiation factor as well as an injury-response factor. We here provide evidence that LIF can be produced by neurons and can act on the neurons that produce it. A reverse transcriptase-polymerase chain reaction assay detects LIF mRNA in rat sympathetic neuron cultures, and in situ hybridization combined with MAP2 immunocytochemistry indicates that most of the cells expressing LIF mRNA are, in fact, neurons. The neuronal lysate as well as the conditioned medium contains proteins that are specifically recognized by anti-LIF antibodies, and these antibodies also specifically stain the cultured neurons. In addition, concentrated sympathetic neuron conditioned medium can mimic the effects of LIF, and incubation of high-density sympathetic neuron cultures with anti-LIF antibodies reduces basal expression levels of LIF target genes such as particular neuropeptides, indicating that the endogenously produced cytokine is acting on the neurons under these conditions. Since we show that LIF transcript is expressed in sympathetic and sensory neurons in vivo as well, LIF could act in an autocrine fashion under a variety of physiological conditions.
Collapse
Affiliation(s)
- J G Cheng
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | |
Collapse
|
131
|
Moller K, Reimer M, Ekblad E, Hannibal J, Fahrenkrug J, Kanje M, Sundler F. The effects of axotomy and preganglionic denervation on the expression of pituitary adenylate cyclase activating peptide (PACAP), galanin and PACAP type 1 receptors in the rat superior cervical ganglion. Brain Res 1997; 775:166-82. [PMID: 9439840 DOI: 10.1016/s0006-8993(97)00923-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of axotomy, chemical sympathectomy and preganglionic denervation on the expression of the neuropeptides, pituitary adenylate cyclase-activating peptide (PACAP), galanin (GAL), and the PACAP type 1 receptor in the rat superior cervical ganglion (SCG) were investigated by immunocytochemistry, in situ hybridization and receptor autoradiography. An antibody recognizing the rat vesicular acetylcholine transporter (VAChT) was used for the detection of preganglionic cholinergic fibers. In the normal SCG, PACAP-immunoreactivity (-IR) was present in numerous, basket-forming, preganglionic nerve fibers, while very few SCG neurons expressed PACAP. GAL-IR was restricted to occasional neurons, and a few nerve fibers, most of which were, in addition, PACAP-IR. PACAP type 1 receptors were expressed in all nerve cell bodies. Axotomy resulted in a rapid and prominent upregulation of PACAP in a large number of nerve cell bodies. There was a large increase also in GAL expression in many nerve cell bodies. In contrast, there was a marked decline in PACAP type 1 receptor expression. Chemical sympathectomy by administration of the catcholaminergic neurotoxin, 6-hydroxydopamine (6-OHDA), gave rise to similar changes. Preganglionic denervation led to the disappearance of PACAP- and VAChT-IR baskets and to the upregulation of PACAP and GAL expression in neurons located close to the entrance of the sympathetic chain, whereas PACAP type 1 receptor expression was not affected. PACAP and GAL were coexpressed in most neurons after axotomy and chemical sympathectomy. Taken together, these results indicate that disruption of target contact and/or the infliction of an injury to the axons of the sympathetic neurons, rather than the preganglionic output, regulates the expression of PACAP, GAL and the PACAP type 1 receptor.
Collapse
Affiliation(s)
- K Moller
- Department of Physiology and Neuroscience, University Hospital, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
132
|
Banner LR, Moayeri NN, Patterson PH. Leukemia inhibitory factor is expressed in astrocytes following cortical brain injury. Exp Neurol 1997; 147:1-9. [PMID: 9294397 DOI: 10.1006/exnr.1997.6536] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The neuropoietic cytokine leukemia inhibitory factor (LIF) can act as a trophic factor, enhancing neuronal survival, and as a differentiation factor altering neuronal and glial gene expression. LIF also plays a role in the response to injury of the peripheral nervous system, as indicated by an increase in the amount of its mRNA within nonneuronal injury response in LIF knock-out mice. To determine if LIF is regulated after injury to the central nervous system, we surgically lesioned the cortex in adult rat brain. Using a quantitative RNAse protection assay, we find that LIF mRNA increases 30-fold following injury. The amount of this transcript goes up within 6 h after injury, reaches a peak at 24 h and returns to baseline by 7 days postlesion. In situ hybridization analysis reveals LIF transcript-containing cells scattered throughout the ipsilateral cortex close, but not immediately adjacent to the lesion site. Double-labeling with a variety of antibodies reveals that LIF mRNA is induced in GFAP-positive astrocytes as well as in a small number of microglial cells. The striking induction of LIF transcripts in glia suggests that this cytokine may play a key injury-response role in the CNS as it does in the PNS, where LIF has been demonstrated to regulate neuropeptide expression both in vivo and in vitro.
Collapse
Affiliation(s)
- L R Banner
- Division of Biology, California Institute of Technology, Pasadena 92115, USA
| | | | | |
Collapse
|
133
|
Murphy M, Dutton R, Koblar S, Cheema S, Bartlett P. Cytokines which signal through the LIF receptor and their actions in the nervous system. Prog Neurobiol 1997; 52:355-78. [PMID: 9304697 DOI: 10.1016/s0301-0082(97)00020-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A number of different cytokines, each initially characterized on the basis of very different biological activities, all have very similar signalling pathways and share a similar tertiary structure. These cytokines include leukaemia inhibitory factor, ciliary neuronotrophic factor, oncostatin M, growth-promoting activity and cardiotrophin 1. They all have been found to regulate a number of properties of cells of the developing and mature nervous system in vitro and thus are neuroregulatory cytokines. The actions of these cytokines include regulation of neurotransmitter phenotype, differentiation of neuronal precursor cells both in the peripheral nervous system and in the spinal cord, survival of differentiated neurons, and regulation of development of both astrocytes and oligodendrocytes. In addition, studies in animal models show that these factors can rescue sensory and motor neurons from axotomy-induced cell death, which suggests that they can act as trauma factors for injured neurons. Analysis of the expression patterns of the different neuroregulatory cytokines and their receptors reveals that the receptors are expressed throughout nervous system development and following trauma, whereas the cytokines show temporal and spatial specific expression patterns. This is consistent with the idea that specific cytokines have specific roles in neural development and repair, but that their signalling pathways are shared. The phenotypes of the receptor knockouts show clear deficits in nervous system development, indicating a crucial role for LIF receptor signalling. Knockouts of individual cytokines are less dramatic, but LIF and CNTF knockouts do reveal deficits in maintenance of motor neurons or following trauma. Thus, whereas LIF and CNTF have clear roles in maintenance and following trauma, it is unclear which of the cytokines is involved in nervous system development. In clinical terms, these findings add further support to the use of these cytokines in nervous system trauma and disease.
Collapse
Affiliation(s)
- M Murphy
- Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
134
|
Corness JD, Burbach JP, Hökfelt T. The rat galanin-gene promoter: response to members of the nuclear hormone receptor family, phorbol ester and forskolin. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 47:11-23. [PMID: 9221897 DOI: 10.1016/s0169-328x(97)00004-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have cloned a rat genomic DNA fragment of approximately 12.5 kb. Nine kb of the cloned fragment lie in the 5'-flanking region of the gene and contain the promoter elements, while the remaining 3.5 kb contain the first four complete exons, the first three introns, and part of the fourth intron of the rat galanin gene. We have partially analysed some of the elements within the proximal sequence of this promoter which may influence the transcriptional regulation of the rat galanin gene. The rat galanin-gene promoter contains many regions which share homology with both the human and the bovine galanin genes and certain cis-elements appear to be conserved among the three species. In an attempt to test whether some of these elements are functional in the rat gene, transient transfection studies were carried out in selected cell lines. Estrogen, thyroid hormone and retinoic acid all showed a minimal degree of promoter stimulation when the rat galanin-gene promoter was co-transfected with the appropriate hormone receptors in Neuro 2A cells, while co-transfection of the nuclear orphan receptor ELP1 was able to stimulate transcription of a galanin promoter-driven reporter-gene construct (-374 bp) by 35-fold. The galanin promoter mediated a 3-4-fold induction in response to forskolin or TPA. Deletion of a 5-bp element at -50 bp from the start of transcription was able to greatly reduce the forskolin response but not the TPA response. These results point to several elements that may be targets of transcription factors linked to extracellular stimuli.
Collapse
Affiliation(s)
- J D Corness
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
135
|
Lemke R, Gadient RA, Patterson PH, Bigl V, Schliebs R. Leukemia inhibitory factor (LIF) mRNA-expressing neuronal subpopulations in adult rat basal forebrain. Neurosci Lett 1997; 229:69-71. [PMID: 9224804 DOI: 10.1016/s0304-3940(97)00421-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have previously found leukemia inhibitory factor (LIF) mRNA in neurons of the adult rat brain. To identify which neuronal subpopulations are expressing LIF transcripts, non-radioactive in situ hybridization was combined with immunocytochemistry for various neuronal markers. Studying the rat basal forebrain and cerebral cortex, we find LIF mRNA is expressed in both cholinergic and GABAergic neurons. These data suggest a role for LIF in the function of these mature neurons.
Collapse
Affiliation(s)
- R Lemke
- Paul Flechsig Institute for Brain Research, University of Leipzig, Medical Faculty, Germany
| | | | | | | | | |
Collapse
|
136
|
Thompson SW, Vernallis AB, Heath JK, Priestley JV. Leukaemia inhibitory factor is retrogradely transported by a distinct population of adult rat sensory neurons: co-localization with trkA and other neurochemical markers. Eur J Neurosci 1997; 9:1244-51. [PMID: 9215708 DOI: 10.1111/j.1460-9568.1997.tb01479.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sciatic sensory afferents that retrogradely transport and accumulate leukaemia inhibitory factor (LIF) within their soma were characterized in the adult rat in vivo. Twenty-four percent of neurons within the L4 and L5 dorsal root ganglia accumulated biotinylated LIF following intraneural injection of the cytokine into the sciatic nerve. Labelled cell bodies were predominantly of small diameter (20.1 +/- 0.5 microm). Retrograde transport was eliminated by excess unlabelled LIF but not by the related cytokines, ciliary-derived neurotrophic factor (CNTF) and interleukin-6 (IL-6). Double labelling revealed that the majority (81%) of LIF-accumulating neurons were immunopositive for CGRP and 34% were immunopositive for the cell surface glycoconjugate IB4. Sixty-two percent of LIF-accumulating neurons were immunopositive for trkA. Our results demonstrate a group of small-diameter sensory neurons that retrogradely transport LIF, comprising cells that constitutively express neuropeptides and those likely to be peptide-deficient. LIF-accumulating neurons expressing trkA are also potentially responsive to nerve growth factor. It is likely that the LIF-accumulating neurons described in this study are nociceptive in function.
Collapse
Affiliation(s)
- S W Thompson
- Division of Physiology, United Medical and Dental Schools, St Thomas' Hospital Medical School, London, UK
| | | | | | | |
Collapse
|
137
|
Kroesen S, Lang S, Fischer-Colbrie R, Klimaschewski L. Plasticity of neuropeptide Y in the rat superior cervical ganglion in response to nerve lesion. Neuroscience 1997; 78:251-8. [PMID: 9135105 DOI: 10.1016/s0306-4522(96)00587-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Axotomy of the rat superior cervical ganglion results in a two-fold increase of neuropeptide tyrosine as determined by radioimmunoassay. On the other hand, treatment of sympathetic neuron cultures with leukemia inhibitory factor, a cytokine that is known to be involved in the up-regulation of galanin after axotomy in vivo, decreases neuropeptide tyrosine messenger RNA. These, apparently contradictory findings, prompted us to investigate the regulation of neuropeptide tyrosine in the axotomized superior cervical ganglion in vivo. For comparison, the regulation of galanin was examined under the same conditions. Compared to control ganglia, the number of neuropeptide tyrosine-positive cell bodies decreased while the density of immunoreactive neuronal processes increased one week after transection of the major postganglionic nerves. The nerve fibres were identified as axons by the absence of MAP2, a somatodendritic marker protein. They extended into both carotid nerves and ramified at the lesion site. In situ hybridization revealed that, although the number of neuropeptide tyrosine messenger RNA-positive neurons was not different from controls, the average grain density/neuron decreased by 40%. When axotomized ganglia were decentralized simultaneously, a three-fold elevation of neuropeptide tyrosine immunoreactivity was detectable by radioimmunoassay and an additional increase in numerical density of neuropeptide tyrosine-immunoreactive nerve fibres was observed. Levels of neuropeptide tyrosine messenger RNA were significantly reduced within postganglionic neurons. This synergistic effect of combined axotomy and decentralization on peptide content was also detected for the neuropeptide galanin that, in contrast to neuropeptide tyrosine, is induced by axotomy or decentralization on protein and messenger RNA level. Therefore, while neuropeptide tyrosine messenger RNA is reduced in axotomized ganglia (most likely in response to leukemia inhibitory factor), the peptide accumulates in axonal processes resulting in increased peptide levels as determined by radioimmunoassay.
Collapse
Affiliation(s)
- S Kroesen
- Department of Pharmacology, University of Innsbruck, Austria
| | | | | | | |
Collapse
|
138
|
Zigmond RE, Sun Y. Regulation of neuropeptide expression in sympathetic neurons. Paracrine and retrograde influences. Ann N Y Acad Sci 1997; 814:181-97. [PMID: 9160971 DOI: 10.1111/j.1749-6632.1997.tb46157.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sympathetic neurons and other peripheral neurons exhibit a great deal of plasticity in their neuropeptide phenotype in adulthood. In this review, two phenotypes have been described in detail: that of normal sympathetic neurons and that of axotomized neurons. Two factors produced by nonneuronal cells, LIF and NGF, determine which of these phenotypes is expressed. Under normal conditions, the neurons receive NGF primarily, if not exclusively, from the target tissues they innervate. Prior to surgery, the nonneuronal cells within the ganglion and nerve tract express little, if any, LIF. This milieu favors the expression of NPY and suppresses the expression of VIP, galanin, and substance P (Fig. 6). After axotomy, however, this situation is reversed. The neuronal cell bodies are deprived of target-derived NGF and are exposed to LIF both within the ganglion and at the site of the injury (Fig 6). Both the removal of NGF and the exposure to LIF inhibit NPY expression, while promoting the expression of VIP and galanin. Expression of substance P after axotomy occurs primarily, if not entirely, because of the effects of LIF, with the removal of NGF playing no obvious role in the regulation of this peptide.
Collapse
Affiliation(s)
- R E Zigmond
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4975, USA.
| | | |
Collapse
|
139
|
Habecker BA, Asmus SA, Francis N, Landis SC. Target regulation of VIP expression in sympathetic neurons. Ann N Y Acad Sci 1997; 814:198-208. [PMID: 9160972 DOI: 10.1111/j.1749-6632.1997.tb46158.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- B A Habecker
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4975, USA.
| | | | | | | |
Collapse
|
140
|
Kerekes N, Landry M, Rydh-Rinder M, Hökfelt T. The effect of NGF, BDNF and bFGF on expression of galanin in cultured rat dorsal root ganglia. Brain Res 1997; 754:131-41. [PMID: 9134968 DOI: 10.1016/s0006-8993(97)00056-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Peripheral nerve injury causes a marked change in expression of the neuropeptide galanin in dorsal root ganglion (DRG) neurons. We have used DRG cell cultures to study whether growth factors, especially nerve growth factor (NGF), play a role in this regulation. Adult rat DRG cultures seem to represent a suitable model for this study, since the neurons are axotomized during culture preparation and are known to survive independently of added neurotrophic factors. The effect of NGF, brain derived neurotrophic factor (BDNF) and basic fibroblast growth factor (bFGF) was studied on the expression of galanin and galanin message-associated peptide (GMAP)-like immunoreactivities using immunohistochemistry, as well as of prepro-galanin (ppGAL) mRNA levels using radioactive and non-radioactive in situ hybridization. The results show that 100, but not 20 or 50 ng/ml NGF, as well as 10 ng/ml BDNF cause a 40% decrease in the number of GMAP expressing neurons in 72 h cell cultures. A 50% decrease was observed after treatment with 10 ng/ml bFGF. The high dose needed and the modest effect suggest that NGF is not a major factor involved in galanin regulation, whereas BDNF and bFGF may have a role. Moreover, the strong upregulation of galanin/GMAP and ppGAL mRNA levels in the untreated cultures indicates that DRG neurons in vitro have a phenotype similar to DRG neurons after axotomy, i.e. a phenotype distinctly different from normal DRG neurons.
Collapse
Affiliation(s)
- N Kerekes
- Department of Histology and Neurobiology, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
141
|
Taga T. The signal transducer gp130 is shared by interleukin-6 family of haematopoietic and neurotrophic cytokines. Ann Med 1997; 29:63-72. [PMID: 9073325 DOI: 10.3109/07853899708998744] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Receptors for many of the cytokines functioning in the haematopoietic system belong to the class I cytokine receptor family. In most cases these receptors share common signal transducing receptor components in the same family, which explains the functional redundancy of haematopoietic cytokines. Interleukin-6 and related cytokines, interleukin-11, leukaemia inhibitory factor, oncostatin M, ciliary neurotrophic factor and cardiotrophin-1, are all pleiotrophic, from the haematopoietic to the nervous system, and exhibit overlapping biological activities. Receptors for these cytokines fall into the class I cytokine receptor family. Functional receptor complexes for the interleukin-6 family of cytokines share a membrane glycoprotein 130 (gp130) as a critical component for signal transduction. In these receptor complexes, gp130 and ligand-specific chains possess no intrinsic tyrosine kinase domain but are associated with cytoplasmic tyrosine kinases. Ligand stimulation triggers homo- or heterodimerization of gp130, leading to activation of the associated cytoplasmic tyrosine kinases and subsequent modification of transcription factors. This paper reviews the recent progress in the study of gp130 and the background information from biomedical and biochemical viewpoints.
Collapse
Affiliation(s)
- T Taga
- Department of Molecular Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Japan
| |
Collapse
|
142
|
Francis NJ, Asmus SE, Landis SC. CNTF and LIF are not required for the target-directed acquisition of cholinergic and peptidergic properties by sympathetic neurons in vivo. Dev Biol 1997; 182:76-87. [PMID: 9073449 DOI: 10.1006/dbio.1996.8464] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
During development, the sympathetic innervation of two targets, sweat glands and periosteum, changes the neurotransmitters it expresses from noradrenaline to acetylcholine and vasoactive intestinal peptide (VIP). The target-derived molecules that induce, these changes have not been identified. Neuropoietic cytokines, including ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF), induce the same phenotypic changes in sympathetic neurons in vitro as sweat glands and periosteum do in vivo, raising the possibility that one of these factors mediates induction of cholinergic traits and VIP by these target tissues. Because CNTF and LIF have overlapping functions and signalling pathways, they could act interchangeably or in concert to influence neurotransmitter expression. To determine whether CNTF or CNTF and LIF together are responsible for the induction of cholinergic and peptidergic function in vivo, we analyzed the neurotransmitter properties of sweat gland innervation in mice lacking CNTF or CNTF and LIF. We find that, as in wild-type mice, gland innervation in mice lacking one or both molecules appropriately expresses cholinergic properties and VIP immunoreactivity. Furthermore, footpads of mice lacking one or both genes contain choline acetyltransferase activity comparable to that of wild-type mice, and CNTF- or CNTF/LIF-deficient mice possess the normal complement of active sweat glands. We analyzed the innervation of a second, recently identified cholinergic sympathetic target, the periosteum, which is the connective tissue surrounding bone. Periosteal innervation of mice lacking CNTF, LIF, or both, like that of wild-type mice, is immunoreactive for the vesicular acetylcholine transporter, a recently identified cholinergic marker, and VIP. These results provide evidence that neither CNTF, LIF, nor a combination of the two are required for the developmental change from noradrenergic to cholinergic function that occurs in sympathetic innervation of sweat glands and periosteum.
Collapse
Affiliation(s)
- N J Francis
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4975, USA
| | | | | |
Collapse
|
143
|
Qiu L, Towle MF, Bernd P, Fukada K. Distribution of cholinergic neuronal differentiation factor/leukemia inhibitory factor binding sites in the developing and adult rat nervous system in vivo. JOURNAL OF NEUROBIOLOGY 1997; 32:163-92. [PMID: 9032660 DOI: 10.1002/(sici)1097-4695(199702)32:2<163::aid-neu3>3.0.co;2-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cholinergic neuronal differentiation factor/leukemia inhibitory factor (CDF/LIF) is a multifunctional cytokine that affects neurons as well as many other cell types. Toward elucidating its neural functions in vivo, we previously investigated the distribution of CDF/LIF binding sites with iodinated native CDF/LIF in embryonic to postnatal day 0 (P0) rats. In the present study, we have extended our examination to postnatal ages and find that specific CDF/LIF binding sites are present at defined developmental stages in additional brain regions not previously exhibiting binding by P0. High levels of binding are detected in all P7 sensory and autonomic ganglia examined, but only in restricted postnatal central nervous system structures. Cranial motor and mesencephalic trigeminal neurons maintain high levels throughout, while binding to spinal motor neurons, which decreases to low levels at P0, reappears by P14 and increases with age. Most other structures, which show detectable binding by P0, exhibit higher levels at postnatal ages, including the red, deep, ventral cochlear, trapezoid, superior olivary, vestibular, ventral tegmental, and ventral posterior thalamic nuclei as well as the glomerular layer of the olfactory bulb. High levels are also detected in several structures for the first time after P0, including the cerebellar cortex (molecular and Purkinje cell layers), lateral reticular nucleus of the medulla and reticular formation, as well as the reticulotegmental, medial geniculate, solitary (rostral, dorsomedial, and commissural regions), medial septal, lateral mammillary, and lateral habenular nuclei. These results not only identify regions of potential CDF/LIF-responsive neurons and glia throughout development but suggest new CDF/LIF roles in the nervous system.
Collapse
Affiliation(s)
- L Qiu
- Department of Anatomy and Cell Biology, State University of New York, Health Science Center at Brooklyn 11203, USA
| | | | | | | |
Collapse
|
144
|
Abstract
Functional recovery from peripheral nerve injury and repair depends on a multitude of factors, both intrinsic and extrinsic to neurons. Neuronal survival after axotomy is a prerequisite for regeneration and is facilitated by an array of trophic factors from multiple sources, including neurotrophins, neuropoietic cytokines, insulin-like growth factors (IGFs), and glial-cell-line-derived neurotrophic factors (GDNFs). Axotomized neurons must switch from a transmitting mode to a growth mode and express growth-associated proteins, such as GAP-43, tubulin, and actin, as well as an array of novel neuropeptides and cytokines, all of which have the potential to promote axonal regeneration. Axonal sprouts must reach the distal nerve stump at a time when its growth support is optimal. Schwann cells in the distal stump undergo proliferation and phenotypical changes to prepare the local environment to be favorable for axonal regeneration. Schwann cells play an indispensable role in promoting regeneration by increasing their synthesis of surface cell adhesion molecules (CAMs), such as N-CAM, Ng-CAM/L1, N-cadherin, and L2/HNK-1, by elaborating basement membrane that contains many extracellular matrix proteins, such as laminin, fibronectin, and tenascin, and by producing many neurotrophic factors and their receptors. However, the growth support provided by the distal nerve stump and the capacity of the axotomized neurons to regenerate axons may not be sustained indefinitely. Axonal regenerations may be facilitated by new strategies that enhance the growth potential of neurons and optimize the growth support of the distal nerve stump in combination with prompt nerve repair.
Collapse
Affiliation(s)
- S Y Fu
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
145
|
|
146
|
Fukada K, Korsching S, Towle MF. Tissue-specific and ontogenetic regulation of LIF protein levels determined by quantitative enzyme immunoassay. Growth Factors 1997; 14:279-95. [PMID: 9386992 DOI: 10.3109/08977199709021526] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To define the physiological role of leukemia inhibitory factor (LIF), it is essential to localize sites of LIF synthesis in vivo. We generated polyclonal antibodies specific for native rat LIF, and developed a two-site immunoassay to detect 10 pg LIF/ml. Using this immunoassay, we determined LIF content of 18 organs, CNS regions, and ganglia throughout postnatal development of rats. High levels of LIF protein (1.0-11.0 ng/g tissue) are present in relatively few tissues: the uterus at late proestrus to estrus and on day 5 of pregnancy, ovary at estrus to early metestrus-1, footpads during early postnatal development and thymus throughout. Intermediate levels (0.5-1.0 ng) are detected in the gut, skin, skeletal muscle, pancreas and lung at one or more postnatal ages. Low levels (0.1-0.5 ng) are observed in most other non-nervous and nervous tissues. LIF protein levels do not completely correspond to reported LIF mRNA levels.
Collapse
Affiliation(s)
- K Fukada
- Department of Anatomy and Cell Biology, State University of New York, Health Science Center at Brooklyn 11203, USA.
| | | | | |
Collapse
|
147
|
|
148
|
Abstract
Receptors for most interleukins and cytokines that regulate immune and hematopoietic systems belong to the class I cytokine receptor family. These molecules form multichain receptor complexes in order to exhibit high-affinity binding to, and mediate biological functions of, their respective cytokines. In most cases, these functional receptor complexes share common signal transducing receptor components that are also in the class I cytokine receptor family, i.e. gp130, common beta, and common gamma molecules. Interleukin-6 and related cytokines, interleukin-11, leukemia inhibitory factor, oncostatin M, ciliary neurotrophic factor, and cardiotrophin-1 are all pleiotropic and exhibit overlapping biological functions. Functional receptor complexes for this interleukin-6 family of cytokines share gp130 as a component critical for signal transduction. Unlike cytokines sharing common beta and common gamma chains that mainly function in hematopoietic and lymphoid cell systems, the interleukin-6 family of cytokines function extensively outside these systems as well, e.g. from the cardiovascular to the nervous system, owing to ubiquitously expressed gp130. Stimulation of cells with the interleukin-6 family of cytokines triggers homo- or hetero-dimerization of gp130. Although gp130 and its dimer partners possess no intrinsic tyrosine kinase domain, the dimerization of gp130 leads to activation of associated cytoplasmic tyrosine kinases and subsequent modification of transcription factors. This paper reviews recent progress in the study of the interleukin-6 family of cytokines and gp130.
Collapse
Affiliation(s)
- T Taga
- Institute for Molecular and Cellular Biology, Osaka University, Japan
| | | |
Collapse
|
149
|
Mulderry PK, Dobson SP. Regulation of VIP and other neuropeptides by c-Jun in sensory neurons: implications for the neuropeptide response to axotomy. Eur J Neurosci 1996; 8:2479-91. [PMID: 8996797 DOI: 10.1111/j.1460-9568.1996.tb01542.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Peripheral axotomy of adult rat sensory neurons causes induction of the transcription factor c-Jun and increased expression of the neuropeptides vasoactive intestinal polypeptide (VIP), galanin and neuropeptide Y. To determine whether VIP induction is dependent on transcriptional regulation by c-Jun, we exploited the fact that c-Jun and VIP are also induced in cultured sensory neurons. We blocked c-Jun synthesis by microinjecting antisense oligonucleotides and found that VIP expression, determined by quantitative immunofluorescence, was specifically reduced. Blockade of c-June expression also resulted in reduced neuropeptide Y expression but left galanin, substance P and calcitonin gene-related peptide unaffected. Since in vitro electrophoretic mobility shift assays showed that a nominal cyclic AMP responsive element (CRE) associated with the rat VIP gene could bind c-Jun-containing transcription factor complexes, we next investigated whether VIP expression in sensory neurons might depend on transcription factor binding to the CRE. When a DNA plasmid containing multiple copies of the CRE was injected into newly cultured sensory neurons to sequester transcription factors binding the endogenous CRE, there was a selective reduction in VIP expression. VIP induction in sensory neurons therefore probably results from transcriptional activation by c-Jun acting in combination with other factor(s), possibly acting through the CRE. These results show that c-Jun can regulate transcription of other genes affected by axotomy and imply that it could be a key regulator of the neuronal axotomy response.
Collapse
Affiliation(s)
- P K Mulderry
- MRC Brain Metabolism Unit, Royal Edinburgh Hospital, UK
| | | |
Collapse
|
150
|
Abstract
Compounds related to capsaicin and its ultrapotent analog, resiniferatoxin (RTX), collectively referred to as vanilloids, interact at a specific membrane recognition site (vanilloid receptor), expressed almost exclusively by primary sensory neurons involved in nociception and neurogenic inflammation. Desensitization to vanilloids is a promising therapeutic approach to mitigate neuropathic pain and pathological conditions (e.g. vasomotor rhinitis) in which neuropeptides released from primary sensory neurons play a major role. Capsaicin-containing preparations are already commercially available for these purposes. The use of capsaicin, however, is severely limited by its irritancy, and the synthesis of novel vanilloids with an improved pungency/desensitization ratio is an on-going objective. This review highlights the emerging evidence that the vanilloid receptor is not a single receptor but a family of receptors, and that these receptors recognize not simply RTX and capsaicin structural analogs but are broader in their ligand-binding selectivity. We further focus on ligand-induced messenger plasticity, a recently discovered mechanism underlying the analgesic actions of vanilloids. Lastly, we give a brief overview of the current clinical uses of vanilloids and their future therapeutic potential. The possibility is raised that vanilloid receptor subtype-specific drugs may be synthesized, devoid of the undesirable side-effects of capsaicin.
Collapse
Affiliation(s)
- A Szallasi
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|