101
|
Silva-Cardoso GK, Lazarini-Lopes W, Hallak JE, Crippa JA, Zuardi AW, Garcia-Cairasco N, Leite-Panissi CRA. Cannabidiol effectively reverses mechanical and thermal allodynia, hyperalgesia, and anxious behaviors in a neuropathic pain model: Possible role of CB1 and TRPV1 receptors. Neuropharmacology 2021; 197:108712. [PMID: 34274349 DOI: 10.1016/j.neuropharm.2021.108712] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 01/03/2023]
Abstract
The incidence of chronic pain is high in the general population and it is closely related to anxiety disorders, which promote negative effects on the quality of life. The cannabinoid system has essential participation in the pain sensitivity circuit. In this perspective, cannabidiol (CBD) is considered a promising strategy for treating neuropathic pain. Our study aimed to evaluate the effects of sub-chronic systemic treatment with CBD (0.3, 3, 10, or 30 mg/kg, i.p.) in male in rats submitted to chronic constriction injury of the sciatic nerve (CCI) or not (SHAM) and assessed in nociceptive tests (von Frey, acetone, and hot plate, three days CBD's treatment) and in the open field test (OFT, two days CBD's treatment). We performed a screening immunoreactivity of CB1 and TRPV1 receptors in cortical and limbic regions tissues, which were collected after 1.5 h of behavioral tests on the 24th experimental day. This study presents a dose-response curve to understand better the effects of low doses (3 mg/kg) on CBD's antiallodynic and anxiolytic effects. Also, low doses of CBD were able to (1) reverse mechanical and thermal allodynia (cold) and hyperalgesia, (2) reverse anxious behaviors (reduction of the % of grooming and freezing time, and increase of the % of center time in the OFT) induced by chronic pain. The peripheral neuropathy promoted the increase in the expression of CB1 and TRPV1 receptors in the anterior cingulate cortex (ACC), anterior insular cortex (AIC), basolateral amygdala (BLA), dorsal hippocampus (DH), and ventral hippocampus (VH). CBD potentiated this effect in the ACC, AIC, BLA, DH, and VH regions. These results provide substantial evidence of the role of the ACC-AIC-BLA corticolimbic circuit, and BLA-VH for pain regulation. These results can be clinically relevant since they contribute to the evidence of CBD's beneficial effects on treating chronic pain and associated comorbidities such as anxiety.
Collapse
Affiliation(s)
- Gleice K Silva-Cardoso
- Department of Psychology, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Brazil; National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo, Brazil
| | - Willian Lazarini-Lopes
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo, Brazil
| | - Jaime E Hallak
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo, Brazil
| | - José A Crippa
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo, Brazil
| | - Antonio W Zuardi
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Brazil
| | - Christie R A Leite-Panissi
- Department of Psychology, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Brazil; National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo, Brazil.
| |
Collapse
|
102
|
The Effects of Food on Cannabidiol Bioaccessibility. Molecules 2021; 26:molecules26123573. [PMID: 34208082 PMCID: PMC8230802 DOI: 10.3390/molecules26123573] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022] Open
Abstract
Cannabidiol (CBD) is a hydrophobic non-psychoactive compound with therapeutic characteristics. Animal and human studies have shown its poor oral bioavailability in vivo, and the impact of consuming lipid-soluble CBD with and without food on gut bioaccessibility has not been explored. The purpose of this research was to study the bioaccessibility of CBD after a three-phase upper digestion experiment with and without food, and to test lipase activity with different substrate concentrations. Our results showed that lipase enzyme activity and fatty acid absorption increased in the presence of bile salts, which may also contribute to an increase in CBD bioaccessibility. The food matrix used was a mixture of olive oil and baby food. Overall, the fed-state digestion revealed significantly higher micellarization efficiency for CBD (14.15 ± 0.6% for 10 mg and 22.67 ± 2.1% for 100 mg CBD ingested) than the fasted state digestion of CBD (0.65 ± 0.7% for 10 mg and 0.14 ± 0.1% for 100 mg CBD ingested). The increase in bioaccessibility of CBD with food could be explained by the fact that micelle formation from hydrolyzed lipids aid in bioaccessibility of hydrophobic molecules. In conclusion, the bioaccessibility of CBD depends on the food matrix and the presence of lipase and bile salts.
Collapse
|
103
|
Miranzadeh Mahabadi H, Bhatti H, Laprairie RB, Taghibiglou C. Cannabinoid receptors distribution in mouse cortical plasma membrane compartments. Mol Brain 2021; 14:89. [PMID: 34099009 PMCID: PMC8183067 DOI: 10.1186/s13041-021-00801-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
The type 1 and type 2 cannabinoid receptors (CB1 and CB2 receptors) are class A G protein-coupled receptors (GPCRs) that are activated by endogenous lipids called endocannabinoids to modulate neuronal excitability and synaptic transmission in neurons throughout the central nervous system (CNS), and inflammatory processes throughout the body. CB1 receptor is one of the most abundant GPCRs in the CNS and is involved in many physiological and pathophysiological processes, including mood, appetite, and nociception. CB2 receptor is primarily found on immunomodulatory cells of both the CNS and the peripheral immune system. In this study, we isolated lipid raft and non-lipid raft fractions of plasma membrane (PM) from mouse cortical tissue by using cold non-ionic detergent and sucrose gradient centrifugation to study the localization of CB1 receptor and CB2 receptor. Lipid raft and non-lipid raft fractions were confirmed by flotillin-1, caveolin-1 and transferrin receptor as their protein biomarkers. Both CB1 receptor and CB2 receptor were found in non-raft compartments that is inconsistent with previous findings in cultured cell lines. This study demonstrates compartmentalization of both CB1 receptor and CB2 receptor in cortical tissue and warrants further investigation of CB1 receptor and CB2 receptor compartmental distribution in various brain regions and cell types.
Collapse
Affiliation(s)
- Hajar Miranzadeh Mahabadi
- Department of Anatomy, Physiology, Pharmacology; College of Medicine, University of Saskatchewan, 105 Wiggins Road, Health Sciences Bldg. Room GD30.5, Saskatoon, SK, S7N 5E5, Canada
| | - Haseeb Bhatti
- Department of Anatomy, Physiology, Pharmacology; College of Medicine, University of Saskatchewan, 105 Wiggins Road, Health Sciences Bldg. Room GD30.5, Saskatoon, SK, S7N 5E5, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, 105 Wiggins Road, Health Sciences Bldg. Room 3B36, Saskatoon, SK, S7N 5E5, Canada
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, 105 Wiggins Road, Health Sciences Bldg. Room 3B36, Saskatoon, SK, S7N 5E5, Canada.
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada.
| | - Changiz Taghibiglou
- Department of Anatomy, Physiology, Pharmacology; College of Medicine, University of Saskatchewan, 105 Wiggins Road, Health Sciences Bldg. Room GD30.5, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
104
|
Bhatt HK, Song D, Musgrave G, Rao PSS. Cannabinoid-induced changes in the immune system: The role of microRNAs. Int Immunopharmacol 2021; 98:107832. [PMID: 34107381 DOI: 10.1016/j.intimp.2021.107832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Naturally occurring cannabinoids have been used by humans for their medicinal benefits for over several millennia. While the use of cannabinoids has been strictly regulated in the past century, easing of state regulations has been associated with an increase in use of cannabinoids in the United States. The potential therapeutic applications of cannabinoids have been explored and the anti-inflammatory effect of cannabis-derived cannabinoids has been well-documented. The pharmacological effects of cannabinoids are governed by the modulation of cannabinoid receptors, CB1 and CB2, expressed in the central and peripheral tissues. Moreover, growing scientific evidence suggests that the cannabinoid-mediated changes in the immune system involves change in expression of microRNAs (miRNAs). MiRNAs are short non-coding, single-stranded RNA which have the ability to affect post-translational regulation of gene expression. Studies over the past decade have investigated the changes in expression of miRNAs following treatment of various components of the immune system with different chemical modulators of the cannabinoid receptors. Such studies have highlighted the key role played by various miRNAs in driving the observed immunomodulatory effects of cannabinoids. The aim of this review article, therefore, is to summarize the role of miRNAs behind the observed effects of cannabinoids on the overall immune system, rather than focusing on a single disease state.
Collapse
Affiliation(s)
- Hirva K Bhatt
- College of Pharmacy, The University of Findlay, Findlay, OH 45840, United States
| | - Dana Song
- College of Pharmacy, The University of Findlay, Findlay, OH 45840, United States
| | - Gyen Musgrave
- Greenleaf Apothecaries, LLC, 15335 Madison Road, Middlefield, OH 44062, United States
| | - P S S Rao
- College of Pharmacy, The University of Findlay, Findlay, OH 45840, United States.
| |
Collapse
|
105
|
Zádor F, Joca S, Nagy-Grócz G, Dvorácskó S, Szűcs E, Tömböly C, Benyhe S, Vécsei L. Pro-Inflammatory Cytokines: Potential Links between the Endocannabinoid System and the Kynurenine Pathway in Depression. Int J Mol Sci 2021; 22:ijms22115903. [PMID: 34072767 PMCID: PMC8199129 DOI: 10.3390/ijms22115903] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Substance use/abuse is one of the main causes of depressive symptoms. Cannabis and synthetic cannabinoids in particular gained significant popularity in the past years. There is an increasing amount of clinical data associating such compounds with the inflammatory component of depression, indicated by the up-regulation of pro-inflammatory cytokines. Pro-inflammatory cytokines are also well-known to regulate the enzymes of the kynurenine pathway (KP), which is responsible for metabolizing tryptophan, a precursor in serotonin synthesis. Enhanced pro-inflammatory cytokine levels may over-activate the KP, leading to tryptophan depletion and reduced serotonin levels, which can subsequently precipitate depressive symptoms. Therefore, such mechanism might represent a possible link between the endocannabinoid system (ECS) and the KP in depression, via the inflammatory and dysregulated serotonergic component of the disorder. This review will summarize the data regarding those natural and synthetic cannabinoids that increase pro-inflammatory cytokines. Furthermore, the data on such cytokines associated with KP activation will be further reviewed accordingly. The interaction of the ECS and the KP has been postulated and demonstrated in some studies previously. This review will further contribute to this yet less explored connection and propose the KP to be the missing link between cannabinoid-induced inflammation and depressive symptoms.
Collapse
Affiliation(s)
- Ferenc Zádor
- Institute of Biochemistry, Biological Research Center, H-6726 Szeged, Hungary; (F.Z.); (S.D.); (E.S.); (C.T.); (S.B.)
| | - Sâmia Joca
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark;
| | - Gábor Nagy-Grócz
- Faculty of Health Sciences and Social Studies, University of Szeged, H-6726 Szeged, Hungary;
- Albert Szent-Györgyi Clinical Center, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - Szabolcs Dvorácskó
- Institute of Biochemistry, Biological Research Center, H-6726 Szeged, Hungary; (F.Z.); (S.D.); (E.S.); (C.T.); (S.B.)
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - Edina Szűcs
- Institute of Biochemistry, Biological Research Center, H-6726 Szeged, Hungary; (F.Z.); (S.D.); (E.S.); (C.T.); (S.B.)
- Doctoral School of Theoretical Medicine, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Csaba Tömböly
- Institute of Biochemistry, Biological Research Center, H-6726 Szeged, Hungary; (F.Z.); (S.D.); (E.S.); (C.T.); (S.B.)
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Center, H-6726 Szeged, Hungary; (F.Z.); (S.D.); (E.S.); (C.T.); (S.B.)
| | - László Vécsei
- Albert Szent-Györgyi Clinical Center, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, University of Szeged, H-6725 Szeged, Hungary
- Department of Neurology, Interdisciplinary Excellence Center, University of Szeged, H-6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-351
| |
Collapse
|
106
|
Zagzoog A, Brandt AL, Black T, Kim ED, Burkart R, Patel M, Jin Z, Nikolaeva M, Laprairie RB. Assessment of select synthetic cannabinoid receptor agonist bias and selectivity between the type 1 and type 2 cannabinoid receptor. Sci Rep 2021; 11:10611. [PMID: 34012003 PMCID: PMC8134483 DOI: 10.1038/s41598-021-90167-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/07/2021] [Indexed: 01/01/2023] Open
Abstract
The first synthetic cannabinoid receptor agonists (SCRAs) were designed as tool compounds to study the endocannabinoid system's two predominant cannabinoid receptors, CB1R and CB2R. Unfortunately, novel SCRAs now represent the most rapidly proliferating novel psychoactive substances (NPS) of abuse globally. Unlike ∆9-tetrahydrocannabinol, the CB1R and CB2R partial agonist and the intoxicating constituent of Cannabis, many SCRAs characterized to date are full agonists of CB1R. Gaining additional insight into the pharmacological activity of these SCRAs is critical to assess and regulate NPSs as they enter the marketplace. The purpose of this study was to assess select SCRAs recently identified by Canadian police, border service agency, private companies and the illicit market as potential CB1R and CB2R agonists. To this end, fifteen SCRAs were screened for in vitro activity and in silico interactions at CB1R and CB2R. Several SCRAs were identified as being highly biased for cAMP inhibition or βarrestin2 recruitment and receptor subtype selectivity between CB1R and CB2R. The indazole ring and halogen-substituted butyl or pentyl moieties were identified as two structural features that may direct βarrestin2 bias. Two highly-biased SCRAs-JWH-018 2'-napthyl-N-(3-methylbutyl) isomer (biased toward cAMP inhibition) and 4-fluoro MDMB-BINACA (biased toward βarrestin2 recruitment) displayed unique and differential in vivo activity in mice. These data provide initial insight into the correlations between structure, signalling bias, and in vivo activity of the SCRAs.
Collapse
Affiliation(s)
- Ayat Zagzoog
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 104 Clinic Place, Saskatoon, SK, S7N 5E5, Canada
| | - Asher L Brandt
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 104 Clinic Place, Saskatoon, SK, S7N 5E5, Canada
| | - Tallan Black
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 104 Clinic Place, Saskatoon, SK, S7N 5E5, Canada
| | - Eunhyun D Kim
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 104 Clinic Place, Saskatoon, SK, S7N 5E5, Canada
| | - Riley Burkart
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 104 Clinic Place, Saskatoon, SK, S7N 5E5, Canada
| | | | | | | | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 104 Clinic Place, Saskatoon, SK, S7N 5E5, Canada.
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
107
|
Jha NK, Sharma C, Hashiesh HM, Arunachalam S, Meeran MN, Javed H, Patil CR, Goyal SN, Ojha S. β-Caryophyllene, A Natural Dietary CB2 Receptor Selective Cannabinoid can be a Candidate to Target the Trinity of Infection, Immunity, and Inflammation in COVID-19. Front Pharmacol 2021; 12:590201. [PMID: 34054510 PMCID: PMC8163236 DOI: 10.3389/fphar.2021.590201] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/04/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease (COVID-19), caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing pandemic and presents a public health emergency. It has affected millions of people and continues to affect more, despite tremendous social preventive measures. Identifying candidate drugs for the prevention and treatment of COVID-19 is crucial. The pathogenesis and the complications with advanced infection mainly involve an immune-inflammatory cascade. Therefore, therapeutic strategy relies on suppressing infectivity and inflammation, along with immune modulation. One of the most promising therapeutic targets for the modulation of immune-inflammatory responses is the endocannabinoid system, particularly the activation of cannabinoid type 2 receptors (CB2R), a G-protein coupled receptor which mediates the anti-inflammatory properties by modulating numerous signaling pathways. To pharmacologically activate the CB2 receptors, a naturally occurring cannabinoid ligand, beta-caryophyllene (BCP), received attention due to its potent anti-inflammatory, antiviral, and immunomodulatory properties. BCP is recognized as a full selective functional agonist on CB2 receptors and produces therapeutic effects by activating CB2 and the nuclear receptors, peroxisome proliferator-activated receptors (PPARs). BCP is regarded as the first dietary cannabinoid with abundant presence across cannabis and non-cannabis plants, including spices and other edible plants. BCP showed tissue protective properties and favorably modulates numerous signaling pathways and inhibits inflammatory mediators, including cytokines, chemokines, adhesion molecules, prostanoids, and eicosanoids. Based on its pharmacological properties, molecular mechanisms, and the therapeutic potential of BCP as an immunomodulator, anti-inflammatory, organ-protective, and antiviral, we hypothesize that BCP could be a promising therapeutic and/or preventive candidate to target the triad of infection, immunity, and inflammation in COVID-19. In line with numerous studies that proposed the potential of cannabinoids in COVID-19, BCP may be a novel candidate compound for pharmaceutical and nutraceutical development due to its unique functional receptor selectivity, wide availability and accessibility, dietary bioavailability, nonpsychoactivity, and negligible toxicity along with druggable properties, including favorable pharmacokinetic and physicochemical properties. Based on reasonable pharmacological mechanisms and therapeutic properties, we speculate that BCP has potential to be investigated against COVID-19 and will inspire further preclinical and clinical studies.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Seenipandi Arunachalam
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mf Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Chandragouda R Patil
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Sameer N Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
108
|
The Endocannabinoid System in the Mediterranean Mussel Mytilus galloprovincialis: Possible Mediators of the Immune Activity? Int J Mol Sci 2021; 22:ijms22094954. [PMID: 34066927 PMCID: PMC8125337 DOI: 10.3390/ijms22094954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 01/11/2023] Open
Abstract
Anandamide (AEA) is one of the best characterized members of the endocannabinoid family and its involvement in many pathophysiological processes has been well documented in vertebrates and invertebrates. Here, we report the biochemical and functional characterization of key elements of the endocannabinoid system in hemocytes isolated from the Mediterranean mussel Mytilus galloprovincialis. We also show the effects of exogenous AEA, as well as of capsaicin, on the cell ability to migrate and to activate the respiratory burst, upon in vitro stimulation of phagocytosis. Interestingly, our findings show that both AEA and capsaicin suppress the hemocyte response and that the use of selective antagonists of CB2 and TRPV1 receptors revert their inhibitory effects. Overall, present data support previous evidence on the presence of endocannabinoid signaling in mollusks and advance our knowledge about the evolutionary origins of this endogenous system and its role in the innate response of mollusks.
Collapse
|
109
|
Pike E, Grafinger KE, Cannaert A, Ametovski A, Luo JL, Sparkes E, Cairns EA, Ellison R, Gerona R, Stove CP, Auwärter V, Banister SD. Systematic evaluation of a panel of 30 synthetic cannabinoid receptor agonists structurally related to MMB-4en-PICA, MDMB-4en-PINACA, ADB-4en-PINACA, and MMB-4CN-BUTINACA using a combination of binding and different CB 1 receptor activation assays: Part I-Synthesis, analytical characterization, and binding affinity for human CB 1 receptors. Drug Test Anal 2021; 13:1383-1401. [PMID: 33787091 DOI: 10.1002/dta.3037] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are one of the largest and most structurally diverse classes of new psychoactive substances (NPS). Despite this, pharmacological data are often lacking following the identification of a new SCRA in drug markets. In this first of a three-part series, we describe the synthesis, analytical characterization, and binding affinity of a proactively generated, systematic library of 30 indole, indazole, and 7-azaindole SCRAs related to MMB-4en-PICA, MDMB-4en-PINACA, ADB-4en-PINACA, and MMB-4CN-BUTINACA featuring a 4-pentenyl (4en-P), butyl (B/BUT), or 4-cyanobutyl (4CN-B/BUT) tail and a methyl l-valinate (MMB), methyl l-tert-leucinate (MDMB), methyl l-phenylalaninate (MPP), l-valinamide (AB), l-tert-leucinamide (ADB), l-phenylalaninamide (APP), adamantyl (A), or cumyl head group. Competitive radioligand binding assays demonstrated that the indazole core conferred the highest CB1 binding affinity (Ki = 0.17-39 nM), followed by indole- (Ki = 0.95-160 nM) and then 7-azaindole-derived SCRAs (Ki = 5.4-271 nM). Variation of the head group had the greatest effect on binding, with tert-leucine amides and methyl esters (Ki = 0.17-14 nM) generally showing the greatest affinities, followed by valine derivatives (Ki = 0.72-180 nM), and then phenylalanine derivatives (Ki = 2.5-271 nM). Adamantyl head groups (Ki = 8.8-59 nM) were suboptimal for binding, whereas the cumyl analogues consistently conferred high affinity (Ki = 0.62-36 nM). Finally, both butyl (Ki = 3.1-163 nM) and 4-cyanobutyl (Ki = 5.5-44 nM) tail groups were less favorable for CB1 binding than their corresponding 4-pentenyl counterparts (Ki = 0.72-25 nM).
Collapse
Affiliation(s)
- Edward Pike
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia.,School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia.,Department of Chemistry, University of York, York, UK
| | - Katharina Elisabeth Grafinger
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Annelies Cannaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Adam Ametovski
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia.,School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
| | - Jia Lin Luo
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia.,School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
| | - Eric Sparkes
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia.,School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
| | - Elizabeth A Cairns
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia.,School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
| | - Ross Ellison
- Clinical Toxicology and Environmental Biomonitoring Laboratory, School of Medicine, University of California, San Francisco, California, USA
| | - Roy Gerona
- Clinical Toxicology and Environmental Biomonitoring Laboratory, School of Medicine, University of California, San Francisco, California, USA
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Samuel D Banister
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia.,School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
110
|
Rodríguez-Soacha DA, Fender J, Ramírez YA, Collado JA, Muñoz E, Maitra R, Sotriffer C, Lorenz K, Decker M. "Photo-Rimonabant": Synthesis and Biological Evaluation of Novel Photoswitchable Molecules Derived from Rimonabant Lead to a Highly Selective and Nanomolar " Cis-On" CB 1R Antagonist. ACS Chem Neurosci 2021; 12:1632-1647. [PMID: 33856764 DOI: 10.1021/acschemneuro.1c00086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human cannabinoid receptor type 1 (hCB1R) plays important roles in the regulation of appetite and development of addictive behaviors. Herein, we describe the design, synthesis, photocharacterization, molecular docking, and in vitro characterization of "photo-rimonabant", i.e., azo-derivatives of the selective hCB1R antagonist SR1411716A (rimonabant). By applying azo-extension strategies, we yielded compound 16a, which shows marked affinity for CB1R (Ki (cis form) = 29 nM), whose potency increases by illumination with ultraviolet light (CB1R Kitrans/cis ratio = 15.3). Through radioligand binding, calcium mobilization, and cell luminescence assays, we established that 16a is highly selective for hCB1R over hCB2R. These selective antagonists can be valuable molecular tools for optical modulation of CBRs and better understanding of disorders associated with the endocannabinoid system.
Collapse
Affiliation(s)
- Diego A. Rodríguez-Soacha
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Julia Fender
- Institut für Pharmakologie und Toxikologie, Julius-Maximilians-Universität Würzburg, Versbacher Straße 9, D-97078 Würzburg, Germany
| | - Yesid A. Ramírez
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
- Departmento de Ciencias Farmacéuticas, Facultad de Ciencias Naturales, Universidad Icesi, 760031 Cali, Valle del Cauca, Colombia
| | - Juan Antonio Collado
- Instituto Maimónides de Investigación Biomédica de Córdoba, Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Hospital Universitario Reina Sofía, Avda Menendez Pidal s/n, 14004 Córdoba, Spain
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba, Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Hospital Universitario Reina Sofía, Avda Menendez Pidal s/n, 14004 Córdoba, Spain
| | - Rangan Maitra
- Discovery Science and Technology, RTI International, 3040 Cornwallis Road, Research Triangle Park, North Carolina 27709-2194, United States
| | - Christoph Sotriffer
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Kristina Lorenz
- Institut für Pharmakologie und Toxikologie, Julius-Maximilians-Universität Würzburg, Versbacher Straße 9, D-97078 Würzburg, Germany
- Leibniz-Institut für Analytische Wissenschaften—ISAS e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Michael Decker
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
111
|
Papariello A, Taylor D, Soderstrom K, Litwa K. CB 1 antagonism increases excitatory synaptogenesis in a cortical spheroid model of fetal brain development. Sci Rep 2021; 11:9356. [PMID: 33931678 PMCID: PMC8087674 DOI: 10.1038/s41598-021-88750-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/09/2021] [Indexed: 02/02/2023] Open
Abstract
The endocannabinoid system (ECS) plays a complex role in the development of neural circuitry during fetal brain development. The cannabinoid receptor type 1 (CB1) controls synaptic strength at both excitatory and inhibitory synapses and thus contributes to the balance of excitatory and inhibitory signaling. Imbalances in the ratio of excitatory to inhibitory synapses have been implicated in various neuropsychiatric disorders associated with dysregulated central nervous system development including autism spectrum disorder, epilepsy, and schizophrenia. The role of CB1 in human brain development has been difficult to study but advances in induced pluripotent stem cell technology have allowed us to model the fetal brain environment. Cortical spheroids resemble the cortex of the dorsal telencephalon during mid-fetal gestation and possess functional synapses, spontaneous activity, an astrocyte population, and pseudo-laminar organization. We first characterized the ECS using STORM microscopy and observed synaptic localization of components similar to that which is observed in the fetal brain. Next, using the CB1-selective antagonist SR141716A, we observed an increase in excitatory, and to a lesser extent, inhibitory synaptogenesis as measured by confocal image analysis. Further, CB1 antagonism increased the variability of spontaneous activity within developing neural networks, as measured by microelectrode array. Overall, we have established that cortical spheroids express ECS components and are thus a useful model for exploring endocannabinoid mediation of childhood neuropsychiatric disease.
Collapse
Affiliation(s)
- Alexis Papariello
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - David Taylor
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Ken Soderstrom
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| | - Karen Litwa
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
112
|
An D, Peigneur S, Tytgat J. WIN55,212-2, a Dual Modulator of Cannabinoid Receptors and G Protein-Coupled Inward Rectifier Potassium Channels. Biomedicines 2021; 9:484. [PMID: 33924979 PMCID: PMC8146939 DOI: 10.3390/biomedicines9050484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
The coupling of cannabinoid receptors, CB1 and CB2, to G protein-coupled inward rectifier potassium channels, GIRK1 and GIRK2, modulates neuronal excitability in the human brain. The present study established and validated the functional expression in a Xenopus laevis oocyte expression system of CB1 and CB2 receptors, interacting with heteromeric GIRK1/2 channels and a regulator of G protein signaling, RGS4. This ex vivo system enables the discovery of a wide range of ligands interacting orthosterically or allosterically with CB1 and/or CB2 receptors. WIN55,212-2, a non-selective agonist of CB1 and CB2, was used to explore the CB1- or CB2-GIRK1/2-RGS4 signaling cascade. We show that WIN55,212-2 activates CB1 and CB2 at low concentrations whereas at higher concentrations it exerts a direct block of GIRK1/2. This illustrates a dual modulatory function, a feature not described before, which helps to explain the adverse effects induced by WIN55,212-2 in vivo. When comparing the effects with other typical cannabinoids such as Δ9-THC, CBD, CP55,940, and rimonabant, only WIN55,212-2 can significantly block GIRK1/2. Interestingly, the inward rectifier potassium channel, IRK1, a non-G protein-coupled potassium channel important for setting the resting membrane voltage and highly similar to GIRK1 and GIRK2, is not sensitive to WIN55,212-2, Δ9-THC, CBD, CP55,940, or rimonabant. From this, it is concluded that WIN55,212-2 selectively blocks GIRK1/2.
Collapse
Affiliation(s)
| | - Steve Peigneur
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, O & N2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium;
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, O & N2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium;
| |
Collapse
|
113
|
Franklin JM, Broseguini de Souza RK, Carrasco GA. Cannabinoid 2 receptors regulate dopamine 2 receptor expression by a beta-arrestin 2 and GRK5-dependent mechanism in neuronal cells. Neurosci Lett 2021; 753:135883. [PMID: 33838258 DOI: 10.1016/j.neulet.2021.135883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/25/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022]
Abstract
We have previously reported that the repeated exposure to cannabinoids upregulates and enhances the activity of serotonin 2A (5-HT2A) and dopamine 2 (D2) receptors and facilitates the formation of D2-5-HT2A receptor heterodimers in the rat prefrontal cortex and two neuronal cell lines. Because the repeated exposure to cannabinoids has been associated with adverse neuropsychiatric disorders, this study investigated the mechanisms that underly the cannabinoid-mediated regulation of D2 receptor expression in a neuronal cell model, CLU213 cells. We initially tested the effects of repeated exposure (72 h) to a non-selective cannabinoid agonist (1 nM CP55940), a selective CB1 receptor agonist (15 nM ACEA), or a selective CB2 receptor drug (1 nM GP1a) on the expression of postsynaptic D2 (D2L) receptors in CLU213 cells. Repeated CP55940, GP1a, or ACEA treatments significantly increased D2L receptor protein levels (99 % ± 7%, 30 % ± 7%, and 39 % ± 5% increases compared with control levels, respectively). Repeated exposure to both GP1a and ACEA increased D2L receptor protein levels by 73 % ± 8%. Interestingly, CP55940 and GP1a, but not ACEA, upregulated D2 mRNA. Using cells that were stably transfected with short-hairpin RNA (shRNA) lentiviral particles targeting CB2 receptors, G protein-coupled receptor kinase 5 (GRK5), and β-arrestin 2, we found that CB2 receptors regulated D2 expression through a mechanism that is dependent on GRK5, β-arrestin 2, and extracellular signal-related kinase (ERK)1/2. We also found that repeated exposure to either ACEA or GP1a selectively stimulated the protein and mRNA expression of GRK proteins. ACEA significantly upregulated GRK2 proteins, whereas GP1a upregulated GRK5 protein expression. Our results identified mechanisms associated with the upregulation of D2 receptors in neuronal cells after the repeated exposure to cannabinoids. These data can shed light on the mechanisms that can be targeted to prevent potential adverse effects, while simultaneously determining the therapeutic benefits of cannabinoids.
Collapse
Affiliation(s)
- Jade M Franklin
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Kansas, United States
| | | | - Gonzalo A Carrasco
- Department of Biomedical Sciences, Copper Medical School of Rowan University, New Jersey, United States; Rowan University Institute for Cannabis Research, Policy, & Workforce Development, New Jersey, United States.
| |
Collapse
|
114
|
Song CG, Kang X, Yang F, Du WQ, Zhang JJ, Liu L, Kang JJ, Jia N, Yue H, Fan LY, Wu SX, Jiang W, Gao F. Endocannabinoid system in the neurodevelopment of GABAergic interneurons: implications for neurological and psychiatric disorders. Rev Neurosci 2021; 32:803-831. [PMID: 33781002 DOI: 10.1515/revneuro-2020-0134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/20/2021] [Indexed: 02/07/2023]
Abstract
In mature mammalian brains, the endocannabinoid system (ECS) plays an important role in the regulation of synaptic plasticity and the functioning of neural networks. Besides, the ECS also contributes to the neurodevelopment of the central nervous system. Due to the increase in the medical and recreational use of cannabis, it is inevitable and essential to elaborate the roles of the ECS on neurodevelopment. GABAergic interneurons represent a group of inhibitory neurons that are vital in controlling neural network activity. However, the role of the ECS in the neurodevelopment of GABAergic interneurons remains to be fully elucidated. In this review, we provide a brief introduction of the ECS and interneuron diversity. We focus on the process of interneuron development and the role of ECS in the modulation of interneuron development, from the expansion of the neural stem/progenitor cells to the migration, specification and maturation of interneurons. We further discuss the potential implications of the ECS and interneurons in the pathogenesis of neurological and psychiatric disorders, including epilepsy, schizophrenia, major depressive disorder and autism spectrum disorder.
Collapse
Affiliation(s)
- Chang-Geng Song
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China.,Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Xin Kang
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Fang Yang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Wan-Qing Du
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Jia-Jia Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Long Liu
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Jun-Jun Kang
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Ning Jia
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Hui Yue
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Lu-Yu Fan
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Sheng-Xi Wu
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Fang Gao
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| |
Collapse
|
115
|
Endocannabinoid System Dysregulation from Acetaminophen Use May Lead to Autism Spectrum Disorder: Could Cannabinoid Treatment Be Efficacious? Molecules 2021; 26:molecules26071845. [PMID: 33805951 PMCID: PMC8037883 DOI: 10.3390/molecules26071845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
Persistent deficits in social communication and interaction, and restricted, repetitive patterns of behavior, interests or activities, are the core items characterizing autism spectrum disorder (ASD). Strong inflammation states have been reported to be associated with ASD. The endocannabinoid system (ECS) may be involved in ASD pathophysiology. This complex network of lipid signaling pathways comprises arachidonic acid and 2-arachidonoyl glycerol-derived compounds, their G-protein-coupled receptors (cannabinoid receptors CB1 and CB2) and the associated enzymes. Alterations of the ECS have been reported in both the brain and the immune system of ASD subjects. ASD children show low EC tone as indicated by low blood levels of endocannabinoids. Acetaminophen use has been reported to be associated with an increased risk of ASD. This drug can act through the ECS to produce analgesia. It may be that acetaminophen use in children increases the risk for ASD by interfering with the ECS.This mini-review article summarizes the current knowledge on this topic.
Collapse
|
116
|
Bartoli F, Riboldi I, Bachi B, Calabrese A, Moretti F, Crocamo C, Carrà G. Efficacy of Cannabidiol for Δ-9-Tetrahydrocannabinol-Induced Psychotic Symptoms, Schizophrenia, and Cannabis Use Disorders: A Narrative Review. J Clin Med 2021; 10:jcm10061303. [PMID: 33810033 PMCID: PMC8005219 DOI: 10.3390/jcm10061303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/17/2023] Open
Abstract
Although cannabis’ major psychoactive component, Δ-9-tetrahydrocannabinol (THC), has been linked to both earlier onset and poorer outcomes of psychotic disorders, Cannabidiol (CBD) seems to have different pharmacological mechanisms and potential therapeutic properties. However, no clinical study has investigated CBD for the treatment of co-occurring psychotic and cannabis use disorders so far, even though its utility seems grounded in a plausible biological basis. The aim of this work is thus to provide an overview of available clinical studies evaluating the efficacy of CBD for psychotic symptoms induced by THC, schizophrenia, and cannabis use disorders. After searching for relevant studies in PubMed, Cochrane Library, and ClinicalTrials.gov, we included 10 clinical studies. Available evidence suggests that CBD may attenuate both psychotic-like symptoms induced by THC in healthy volunteers and positive symptoms in individuals with schizophrenia. In addition, preliminary data on the efficacy of CBD for cannabis use disorders show mixed findings. Evidence from ongoing clinical studies will provide insight into the possible role of CBD for treating psychotic and cannabis use disorders.
Collapse
Affiliation(s)
- Francesco Bartoli
- Department of Medicine and Surgery, University of Milano Bicocca, via Cadore 48, 20900 Monza, Italy; (I.R.); (B.B.); (A.C.); (F.M.); (C.C.)
- Correspondence: (F.B.); (G.C.); Tel.: +39-025-799-8644 (F.B.); +39-025-799-8645 (G.C.)
| | - Ilaria Riboldi
- Department of Medicine and Surgery, University of Milano Bicocca, via Cadore 48, 20900 Monza, Italy; (I.R.); (B.B.); (A.C.); (F.M.); (C.C.)
| | - Bianca Bachi
- Department of Medicine and Surgery, University of Milano Bicocca, via Cadore 48, 20900 Monza, Italy; (I.R.); (B.B.); (A.C.); (F.M.); (C.C.)
| | - Angela Calabrese
- Department of Medicine and Surgery, University of Milano Bicocca, via Cadore 48, 20900 Monza, Italy; (I.R.); (B.B.); (A.C.); (F.M.); (C.C.)
| | - Federico Moretti
- Department of Medicine and Surgery, University of Milano Bicocca, via Cadore 48, 20900 Monza, Italy; (I.R.); (B.B.); (A.C.); (F.M.); (C.C.)
| | - Cristina Crocamo
- Department of Medicine and Surgery, University of Milano Bicocca, via Cadore 48, 20900 Monza, Italy; (I.R.); (B.B.); (A.C.); (F.M.); (C.C.)
| | - Giuseppe Carrà
- Department of Medicine and Surgery, University of Milano Bicocca, via Cadore 48, 20900 Monza, Italy; (I.R.); (B.B.); (A.C.); (F.M.); (C.C.)
- Division of Psychiatry, University College London, Maple House 149, London W1T 7BN, UK
- Correspondence: (F.B.); (G.C.); Tel.: +39-025-799-8644 (F.B.); +39-025-799-8645 (G.C.)
| |
Collapse
|
117
|
Mielnik CA, Lam VM, Ross RA. CB 1 allosteric modulators and their therapeutic potential in CNS disorders. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110163. [PMID: 33152384 DOI: 10.1016/j.pnpbp.2020.110163] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/30/2020] [Accepted: 10/29/2020] [Indexed: 01/05/2023]
Abstract
CB1 is the most abundant GPCR found in the mammalian brain. It has garnered considerable attention as a potential therapeutic drug target. CB1 is involved in a wide range of physiological and psychiatric processes and has the potential to be targeted in a wide range of disease states. However, most of the selective and non-selective synthetic CB1 agonists and antagonists/inverse agonists developed to date are primarily used as research tools. No novel synthetic cannabinoids are currently in the clinic for use in psychiatric illness; synthetic analogues of the phytocannabinoid THC are on the market to treat nausea and vomiting caused by cancer chemotherapy, along with off-label use for pain. Novel strategies are being explored to target CB1, but with emphasis on the elimination or mitigation of the potential psychiatric adverse effects that are observed by central agonism/antagonism of CB1. New pharmacological options are being pursued that may avoid these adverse effects while preserving the potential therapeutic benefits of CB1 modulation. Allosteric modulation of CB1 is one such approach. In this review, we will summarize and critically analyze both the in vitro characterization and in vivo validation of CB1 allosteric modulators developed to date, with a focus on CNS therapeutic effects.
Collapse
Affiliation(s)
- Catharine A Mielnik
- Department of Pharmacology & Toxicology, University of Toronto, ON M5S 1A8, Canada
| | - Vincent M Lam
- Department of Pharmacology & Toxicology, University of Toronto, ON M5S 1A8, Canada
| | - Ruth A Ross
- Department of Pharmacology & Toxicology, University of Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
118
|
Breijyeh Z, Jubeh B, Bufo SA, Karaman R, Scrano L. Cannabis: A Toxin-Producing Plant with Potential Therapeutic Uses. Toxins (Basel) 2021; 13:117. [PMID: 33562446 PMCID: PMC7915118 DOI: 10.3390/toxins13020117] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
For thousands of years, Cannabis sativa has been utilized as a medicine and for recreational and spiritual purposes. Phytocannabinoids are a family of compounds that are found in the cannabis plant, which is known for its psychotogenic and euphoric effects; the main psychotropic constituent of cannabis is Δ9-tetrahydrocannabinol (Δ9-THC). The pharmacological effects of cannabinoids are a result of interactions between those compounds and cannabinoid receptors, CB1 and CB2, located in many parts of the human body. Cannabis is used as a therapeutic agent for treating pain and emesis. Some cannabinoids are clinically applied for treating chronic pain, particularly cancer and multiple sclerosis-associated pain, for appetite stimulation and anti-emesis in HIV/AIDS and cancer patients, and for spasticity treatment in multiple sclerosis and epilepsy patients. Medical cannabis varies from recreational cannabis in the chemical content of THC and cannabidiol (CBD), modes of administration, and safety. Despite the therapeutic effects of cannabis, exposure to high concentrations of THC, the main compound that is responsible for most of the intoxicating effects experienced by users, could lead to psychological events and adverse effects that affect almost all body systems, such as neurological (dizziness, drowsiness, seizures, coma, and others), ophthalmological (mydriasis and conjunctival hyperemia), cardiovascular (tachycardia and arterial hypertension), and gastrointestinal (nausea, vomiting, and thirst), mainly associated with recreational use. Cannabis toxicity in children is more concerning and can cause serious adverse effects such as acute neurological symptoms (stupor), lethargy, seizures, and even coma. More countries are legalizing the commercial production and sale of cannabis for medicinal use, and some for recreational use as well. Liberalization of cannabis laws has led to increased incidence of toxicity, hyperemesis syndrome, lung disease cardiovascular disease, reduced fertility, tolerance, and dependence with chronic prolonged use. This review focuses on the potential therapeutic effects of cannabis and cannabinoids, as well as the acute and chronic toxic effects of cannabis use on various body systems.
Collapse
Affiliation(s)
- Zeinab Breijyeh
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem Abu Dis P144, Palestine; (Z.B.); (B.J.)
| | - Buthaina Jubeh
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem Abu Dis P144, Palestine; (Z.B.); (B.J.)
| | - Sabino A. Bufo
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
- Department of Geography, Environmental Management & Energy Studies, University of Johannesburg, Johannesburg 2092, South Africa
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem Abu Dis P144, Palestine; (Z.B.); (B.J.)
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Laura Scrano
- Department of European Cultures (DICEM), University of Basilicata, 75100 Matera, Italy;
| |
Collapse
|
119
|
Li X, Hempel BJ, Yang HJ, Han X, Bi GH, Gardner EL, Xi ZX. Dissecting the role of CB 1 and CB 2 receptors in cannabinoid reward versus aversion using transgenic CB 1- and CB 2-knockout mice. Eur Neuropsychopharmacol 2021; 43:38-51. [PMID: 33334652 PMCID: PMC7854511 DOI: 10.1016/j.euroneuro.2020.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/28/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022]
Abstract
Cannabinoids produce both rewarding and aversive effects in humans and experimental animals. However, the mechanisms underlying these conflicting findings are unclear. Here we examined the potential involvement of CB1 and CB2 receptors in cannabinoid action using transgenic CB1-knockout (CB1-KO) and CB2-knockout (CB2-KO) mice. We found that Δ9-tetrahydrocannabinol (Δ9-THC) induced conditioned place preference at a low dose (1 mg/kg) in WT mice that was attenuated by deletion of the CB1 receptor. At 5 mg/kg, no subjective effects of Δ9-THC were detected in WT mice, but CB1-KO mice exhibited a trend towards place aversion and CB2-KO mice developed significant place preferences. This data suggests that activation of the CB1 receptor is rewarding, while CB2R activation is aversive. We then examined the nucleus accumbens (NAc) dopamine (DA) response to Δ9-THC using in vivo microdialysis. Unexpectedly, Δ9-THC produced a dose-dependent decrease in extracellular DA in WT mice, that was potentiated in CB1-KO mice. However, in CB2-KO mice Δ9-THC produced a dose-dependent increase in extracellular DA, suggesting that activation of the CB2R inhibits DA release in the NAc. In contrast, Δ9-THC, when administered systemically or locally into the NAc, failed to alter extracellular DA in rats. Lastly, we examined the locomotor response to Δ9-THC. Both CB1 and CB2 receptor mechanisms were shown to underlie Δ9-THC-induced hypolocomotion. These findings indicate that Δ9-THC's variable subjective effects reflect differential activation of cannabinoid receptors. Specifically, the opposing actions of CB1 and CB2 receptors regulate cannabis reward and aversion, with CB2-mediated effects predominant in mice.
Collapse
Affiliation(s)
- Xia Li
- Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, NIDA IRP, BRC Suite 200, Baltimore, MD 21224, USA; Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Briana J Hempel
- Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, NIDA IRP, BRC Suite 200, Baltimore, MD 21224, USA
| | - Hong-Ju Yang
- Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, NIDA IRP, BRC Suite 200, Baltimore, MD 21224, USA
| | - Xiao Han
- Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, NIDA IRP, BRC Suite 200, Baltimore, MD 21224, USA
| | - Guo-Hua Bi
- Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, NIDA IRP, BRC Suite 200, Baltimore, MD 21224, USA
| | - Eliot L Gardner
- Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, NIDA IRP, BRC Suite 200, Baltimore, MD 21224, USA
| | - Zheng-Xiong Xi
- Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, NIDA IRP, BRC Suite 200, Baltimore, MD 21224, USA.
| |
Collapse
|
120
|
Cabral-Pereira G, Sánchez-Benito D, Díaz-Rodríguez SM, Gonçalves J, Sancho C, Castellano O, Muñoz LJ, López DE, Gómez-Nieto R. Behavioral and Molecular Effects Induced by Cannabidiol and Valproate Administration in the GASH/Sal Model of Acute Audiogenic Seizures. Front Behav Neurosci 2021; 14:612624. [PMID: 33551767 PMCID: PMC7862126 DOI: 10.3389/fnbeh.2020.612624] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022] Open
Abstract
Despite evidence that supports cannabidiol (CBD) as an anticonvulsant agent, there remains controversy over the antiseizure efficacy, possible adverse effects, and synergistic interactions with classic antiepileptics such as valproate (VPA). The genetic audiogenic seizure hamster from the University of Salamanca (GASH/Sal) is a reliable experimental model of generalized tonic–clonic seizures in response to intense sound stimulation. The present study examines the behavioral and molecular effects of acute and chronic intraperitoneal administrations of VPA (300 mg/kg) and CBD (100 mg/kg) on the GASH/Sal audiogenic seizures, as well as the coadministration of both drugs. The GASH/Sal animals were examined prior to and after the corresponding treatment at 45 min, 7 days, and 14 days for seizure severity and neuroethology, open-field behaviors, body weight variations, and various hematological and biochemical parameters. Furthermore, the brain tissue containing the inferior colliculus (so-called epileptogenic nucleus) was processed for reverse transcription–quantitative polymerase chain reaction analysis to determine the treatment effects on the gene expression of neuronal receptors associated with drug actions and ictogenesis. Our results indicated that single dose of VPA helps prevent the animals from getting convulsions, showing complete elimination of seizures, whereas 7 days of chronic VPA treatment had few effects in seizure behaviors. Acute CBD administration showed subtle attenuation of seizure behaviors, increasing seizure latency and decreasing the duration of the convulsion phase, but without entirely seizure abolition. Chronic CBD treatments had no significant effects on sound-induced seizures, although some animals slightly improved seizure severity. Acute and chronic CBD treatments have no significant adverse effects on body weight, hematological parameters, and liver function, although locomotor activity was reduced. The combination of VPA and CBD did not alter the therapeutic outcome of the VPA monotherapy, showing no apparent synergistic effects. As compared to sham animals, chronic treatments with CBD caused abnormal mRNA expression levels for Trpv1, Adora1, Slc29a1, and Cnr1 genes, whereas no differences in gene expression were found for Htr1a and Sigmar1. Our study shed light on the behavioral and molecular effects of CBD and VPA on the GASH/Sal model and constituted the basis to develop further studies on the pharmacological effects of CBD and its interactions with other anticonvulsants.
Collapse
Affiliation(s)
- Giselda Cabral-Pereira
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - David Sánchez-Benito
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Sandra M Díaz-Rodríguez
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain.,Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Jaime Gonçalves
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain.,Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Consuelo Sancho
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain.,Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Orlando Castellano
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain.,Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Luis J Muñoz
- Animal Research and Service Center, University of Salamanca, Salamanca, Spain
| | - Dolores E López
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain.,Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Ricardo Gómez-Nieto
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain.,Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| |
Collapse
|
121
|
Laguerre A, Keutler K, Hauke S, Schultz C. Regulation of Calcium Oscillations in β-Cells by Co-activated Cannabinoid Receptors. Cell Chem Biol 2021; 28:88-96.e3. [PMID: 33147441 DOI: 10.1016/j.chembiol.2020.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/26/2020] [Accepted: 10/16/2020] [Indexed: 01/07/2023]
Abstract
Pharmacological treatment of pancreatic β cells targeting cannabinoid receptors 1 and 2 (CB1 and CB2) has been shown to result in significant effects on insulin release, possibly by modulating intracellular calcium levels ([Ca2+]i). It is unclear how the interplay of CB1 and CB2 affects insulin secretion. Here, we demonstrate by the use of highly specific receptor antagonists and the recently developed photo-releasable endocannabinoid 2-arachidonoylglycerol that both receptors have counteracting effects on cytosolic calcium oscillations. We further show that both receptors are juxtaposed in a way that increases [Ca2+]i oscillations in silent β cells but dampens them in active ones. This study highlights a functional role of CB1 and CB2 acting in concert as a compensator/attenuator switch for regulating β cell excitability.
Collapse
Affiliation(s)
- Aurélien Laguerre
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA.
| | - Kaya Keutler
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Sebastian Hauke
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, 69117 Heidelberg, Germany
| | - Carsten Schultz
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
122
|
Qi X, Liu C, Li G, Al-Alfe D, Paurazas S, Askar M, Yang D, Zhou Z. Evaluation of Cannabinoids on the Odonto/Osteogenesis in Human Dental Pulp Cells In Vitro. J Endod 2021; 47:444-450. [PMID: 33352148 DOI: 10.1016/j.joen.2020.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/28/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Cannabinoids possess anti-inflammatory, analgesic, and osteogenic effects in different cell types and tissues. The null hypothesis is delta-9-tetrahydrocannabinol (THC) might induce dental tissue repair and regeneration. The aim of this study was to investigate the effect of THC on human dental pulp cell (HDPC) viability and biomineralization as well as the molecular mechanism of THC-induced odonto/osteogenic differentiation of HDPCs. METHODS The toxicity of THC on HDPCs was determined by 3-(4,5-dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide assay. The odonto/osteogenic differentiation marker genes of HDPCs were assessed by real-time polymerase chain reaction with or without THC treatment. HDPC biomineralization was examined by collagen synthesis and calcium nodule deposition. The molecular mechanism of THC on HDPCs was investigated by examining the mitogen-activated protein kinase (MAPK) signaling pathway via blocking cannabinoid receptor type 1 or 2 receptors. RESULTS We found that THC had no inhibition of HDPC vitality in the testing concentration (0-100 μmol/L). THC showed biphasic effects on HDPC proliferation. At a low dose (<5 μmol/L), THC considerably increased HDPC cell division. HDPC proliferation reduced with higher THC concentrations (>5 μmol/L). The expression of odonto/osteogenic marker genes were up-regulated in the presence of cannabinoids. These were confirmed by increased collagen synthesis and mineralized calcium nodule formation in the cannabinoid group. The effect of THC-induced odonto/osteogenesis occurred via MAPK signaling. CONCLUSIONS THC was biocompatible to HDPCs by promoting their mitogenic division in a biphasic pattern depending on the concentration. THC induced HDPC odonto/osteogenic differentiation through the activation of MAPK mediated by CB1 and CB2 receptors. Cannabinoids may play an important role in the HDPC regeneration process and potentially be used as a pulp-capping agent.
Collapse
Affiliation(s)
- Xia Qi
- Graduate Periodontics, School of Dentistry, University of Detroit Mercy, Detroit, Michigan; Department of Periodontics, School and Hospital of Stomatology, Hebei Medical University and Hebei Key Laboratory of Stomatology, Shijiazhuang, Hebei, China
| | - Chunyan Liu
- Graduate Periodontics, School of Dentistry, University of Detroit Mercy, Detroit, Michigan; Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University and Hebei Key Laboratory of Stomatology, Shijiazhuang, Hebei, China
| | - Guohua Li
- Graduate Periodontics, School of Dentistry, University of Detroit Mercy, Detroit, Michigan
| | - Dalia Al-Alfe
- Graduate Endodontics, School of Dentistry, University of Detroit Mercy, Detroit, Michigan
| | - Susan Paurazas
- Graduate Endodontics, School of Dentistry, University of Detroit Mercy, Detroit, Michigan
| | - Mazin Askar
- Graduate Endodontics, School of Dentistry, University of Detroit Mercy, Detroit, Michigan
| | - Dongru Yang
- Department of Periodontics, School and Hospital of Stomatology, Hebei Medical University and Hebei Key Laboratory of Stomatology, Shijiazhuang, Hebei, China; Graduate Periodontics, School of Dentistry, University of Detroit Mercy, Detroit, Michigan.
| | - Zheng Zhou
- Graduate Periodontics, School of Dentistry, University of Detroit Mercy, Detroit, Michigan.
| |
Collapse
|
123
|
Ritter JK, Ahmad A, Mummalaneni S, Daneva Z, Dempsey SK, Li N, Li PL, Lyall V. Mechanism of Diuresis and Natriuresis by Cannabinoids: Evidence for Inhibition of Na +-K +-ATPase in Mouse Kidney Thick Ascending Limb Tubules. J Pharmacol Exp Ther 2021; 376:1-11. [PMID: 33087396 PMCID: PMC7745087 DOI: 10.1124/jpet.120.000163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid, anandamide (AEA), stimulates cannabinoid receptors (CBRs) and is enriched in the kidney, especially the renal medulla. AEA infused into the renal outer medulla of mice stimulates urine flow rate and salt excretion. Here we show that these effects are blocked by the CBR type 1 (CB1) inverse agonist, rimonabant. Immunohistochemical analysis demonstrated the presence of CB1 in thick ascending limb (TAL) tubules. Western immunoblotting demonstrated the presence of CB1 (52 kDa) in the cortex and outer medulla of mouse kidney. The effect of direct [CP55940 (CP) or AEA] or indirect [fatty acyl amide hydrolase (FAAH) inhibitor, PF3845 (PF)] cannabinoidimetics on Na+ transport in isolated mouse TAL tubules was studied using the Na+-sensitive dye, SBFI-AM. Switching from 0 Na+ solution to control Ringer's solution (CR) rapidly increased TAL cell [Na+]i Addition of CP to CR produced a further elevation, similar in magnitude to that of ouabain, a Na+-K+-ATPase inhibitor. This [Na+]i-elevating effect of CP was time-dependent, required the presence of Na+ in the bathing solution, and was insensitive to Na+-K+-2Cl- cotransporter inhibition. Addition of PF to CR elevated [Na+]i in FAAH wild-type but not FAAH knockout (KO) TALs, whereas the additions of CP and AEA to PF-treated FAAH KO TALs increased [Na+]i An interaction between cannabinoidimetics and ouabain (Ou) was observed. Ou produced less increase in [Na+]i after cannabinoidimetic treatment, whereas cannabinoidimetics had less effect after Ou treatment. It is concluded that cannabinoidimetics, including CP and AEA, inhibit Na+ transport in TALs by inhibiting Na+ exit via Na+-K+-ATPase. SIGNIFICANCE STATEMENT: Cannabinoids including endocannabinoids induce renal urine and salt excretion and are proposed to play a physiological role in the regulation of blood pressure. Our data suggest that the mechanism of the cannabinoids involves inhibition of the sodium pump, Na+-K+-ATPase, in thick ascending limb cells and, likely, other proximal and distal tubular segments of the kidney nephron.
Collapse
Affiliation(s)
- Joseph K Ritter
- Departments of Pharmacology and Toxicology (J.K.R., A.A., Z.D., S.K.D., N.L., P.-L.L.) and Physiology and Biophysics (S.M., V.L.), Virginia Commonwealth University, Richmond, Virginia
| | - Ashfaq Ahmad
- Departments of Pharmacology and Toxicology (J.K.R., A.A., Z.D., S.K.D., N.L., P.-L.L.) and Physiology and Biophysics (S.M., V.L.), Virginia Commonwealth University, Richmond, Virginia
| | - Shobha Mummalaneni
- Departments of Pharmacology and Toxicology (J.K.R., A.A., Z.D., S.K.D., N.L., P.-L.L.) and Physiology and Biophysics (S.M., V.L.), Virginia Commonwealth University, Richmond, Virginia
| | - Zdravka Daneva
- Departments of Pharmacology and Toxicology (J.K.R., A.A., Z.D., S.K.D., N.L., P.-L.L.) and Physiology and Biophysics (S.M., V.L.), Virginia Commonwealth University, Richmond, Virginia
| | - Sara K Dempsey
- Departments of Pharmacology and Toxicology (J.K.R., A.A., Z.D., S.K.D., N.L., P.-L.L.) and Physiology and Biophysics (S.M., V.L.), Virginia Commonwealth University, Richmond, Virginia
| | - Ningjun Li
- Departments of Pharmacology and Toxicology (J.K.R., A.A., Z.D., S.K.D., N.L., P.-L.L.) and Physiology and Biophysics (S.M., V.L.), Virginia Commonwealth University, Richmond, Virginia
| | - Pin-Lan Li
- Departments of Pharmacology and Toxicology (J.K.R., A.A., Z.D., S.K.D., N.L., P.-L.L.) and Physiology and Biophysics (S.M., V.L.), Virginia Commonwealth University, Richmond, Virginia
| | - Vijay Lyall
- Departments of Pharmacology and Toxicology (J.K.R., A.A., Z.D., S.K.D., N.L., P.-L.L.) and Physiology and Biophysics (S.M., V.L.), Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
124
|
Rea K, O' Mahony SM, Cryan JF. High and Mighty? Cannabinoids and the microbiome in pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 9:100061. [PMID: 33665479 PMCID: PMC7905370 DOI: 10.1016/j.ynpai.2021.100061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/21/2020] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
In this review, we will focus on the potential role of the endogenous cannabinoids in modulating microbiota-driven changes in peripheral and central pain processing. We also focus on the overlap in mechanisms whereby commensal gut microbiota and endocannabinoid ligands can regulate inflammation and further aim to exploit our understanding of their role in microbiota-gut-brain axis communication in pain processing.
Within the human gut, we each harbour a unique ecosystem represented by trillions of microbes that contribute to our health and wellbeing. These gut microbiota form part of a complex network termed the microbiota-gut-brain axis along with the enteric nervous system, sympathetic and parasympathetic divisions of the autonomic nervous system, and neuroendocrine and neuroimmune components of the central nervous system. Through endocrine, immune and neuropeptide/neurotransmitter systems, the microbiota can relay information about health status of the gut. This in turn can profoundly impact neuronal signalling not only in the periphery, but also in the brain itself and thus impact on emotional systems and behavioural responses. This may be true for pain, as the top-down facilitation or inhibition of pain processing occurs at a central level, while ascending afferent nociceptive information from the viscera and systemic areas travel through the periphery and spinal cord to the brain. The endogenous cannabinoid receptors are ubiquitously expressed throughout the gut, periphery and in brain regions associated with pain responding, and represent targets for endogenous and exogenous manipulation. In this review, we will focus on the potential role of the endogenous cannabinoids in modulating microbiota-driven changes in peripheral and central pain processing. We also focus on the overlap in mechanisms whereby commensal gut microbiota and endocannabinoid ligands can regulate inflammation and further aim to exploit our understanding of their role in microbiota-gut-brain axis communication in pain processing.
Collapse
Affiliation(s)
- Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Siobhain M O' Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
125
|
Riquelme-Sandoval A, de Sá-Ferreira CO, Miyakoshi LM, Hedin-Pereira C. New Insights Into Peptide Cannabinoids: Structure, Biosynthesis and Signaling. Front Pharmacol 2020; 11:596572. [PMID: 33362550 PMCID: PMC7759141 DOI: 10.3389/fphar.2020.596572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/19/2020] [Indexed: 01/01/2023] Open
Abstract
Classically, the endocannabinoid system (ECS) consists of endogenous lipids, of which the best known are anandamide (AEA) and 2 arachidonoylglycerol (2-AG), their enzyme machinery for synthesis and degradation and their specific receptors, cannabinoid receptor one (CB1) and cannabinoid receptor two (CB2). However, endocannabinoids also bind to other groups of receptors. Furthermore, another group of lipids are considered to be endocannabinoids, such as the fatty acid ethanolamides, the fatty acid primary amides and the monoacylglycerol related molecules. Recently, it has been shown that the hemopressin peptide family, derived from α and β chains of hemoglobins, is a new family of cannabinoids. Some studies indicate that hemopressin peptides are expressed in the central nervous system and peripheral tissues and act as ligands of these receptors, thus suggesting that they play a physiological role. In this review, we examine new evidence on lipid endocannabinoids, cannabinoid receptors and the modulation of their signaling pathways. We focus our discussion on the current knowledge of the pharmacological effects, the biosynthesis of the peptide cannabinoids and the new insights on the activation and modulation of cannabinoid receptors by these peptides. The novel peptide compounds derived from hemoglobin chains and their non-classical activation of cannabinoid receptors are only starting to be uncovered. It will be exciting to follow the ensuing discoveries, not only in reference to what is already known of the classical lipid endocannabinoids revealing more complex aspects of endocannabinoid system, but also as to its possibilities as a future therapeutic tool.
Collapse
Affiliation(s)
- Agustín Riquelme-Sandoval
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caio O de Sá-Ferreira
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leo M Miyakoshi
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cecilia Hedin-Pereira
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,VPPCB-Fiocruz, Rio de Janeiro, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
126
|
Moir M, Lane S, Montgomery AP, Hibbs D, Connor M, Kassiou M. The discovery of a potent and selective pyrazolo-[2,3-e]-[1,2,4]-triazine cannabinoid type 2 receptor agonist. Eur J Med Chem 2020; 210:113087. [PMID: 33321261 DOI: 10.1016/j.ejmech.2020.113087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 11/26/2022]
Abstract
The development of selective CB2 receptor agonists is a promising therapeutic approach for the treatment of inflammatory diseases, without CB1 receptor mediated psychoactive side effects. Preliminary structure-activity relationship studies on pyrazoylidene benzamide agonists revealed the -ylidene benzamide moiety was crucial for functional activity at the CB2 receptor. A small library of compounds with varying linkage moieties between the pyrazole and substituted phenyl group has culminated in the discovery of a potent and selective pyrazolo-[2,3-e]-[1,2,4]-triazine agonist 19 (CB2R EC50 = 19 nM, CB1R EC50 > 10 μM). Docking studies have revealed key structural features of the linkage group that are important for potent functional activity.
Collapse
Affiliation(s)
- Michael Moir
- School of Chemistry, The University of Sydney, NSW, 2006, Australia
| | - Samuel Lane
- Faculty of Health Sciences, The University of Sydney, NSW, 2006, Australia
| | | | - David Hibbs
- Sydney Pharmacy School, The University of Sydney, NSW, 2006, Australia
| | - Mark Connor
- Department of Biomedical Sciences, Macquarie University, NSW, 2109, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
127
|
Brunt TM, Bossong MG. The neuropharmacology of cannabinoid receptor ligands in central signaling pathways. Eur J Neurosci 2020; 55:909-921. [PMID: 32974975 PMCID: PMC9291836 DOI: 10.1111/ejn.14982] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 12/26/2022]
Abstract
The endocannabinoid system is a complex neuronal system involved in a number of biological functions, like attention, anxiety, mood, memory, appetite, reward, and immune responses. It is at the centre of scientific interest, which is driven by therapeutic promise of certain cannabinoid ligands and the changing legalization of herbal cannabis in many countries. The endocannabinoid system is a modulatory system, with endocannabinoids as retrograde neurotransmitters rather than direct neurotransmitters. Neuropharmacology of cannabinoid ligands in the brain can therefore be understood in terms of their modulatory actions through other neurotransmitter systems. The CB1 receptor is chiefly responsible for effects of endocannabinoids and analogous ligands in the brain. An overview of the neuropharmacology of several cannabinoid receptor ligands, including endocannabinoids, herbal cannabis and synthetic cannabinoid receptor ligands is given in this review. Their mechanism of action at the endocannabinoid system is described, mainly in the brain. In addition, effects of cannabinoid ligands on other neurotransmitter systems will also be described, such as dopamine, serotonin, glutamate, noradrenaline, opioid, and GABA. In light of this, therapeutic potential and adverse effects of cannabinoid receptor ligands will also be discussed.
Collapse
Affiliation(s)
- Tibor M. Brunt
- Department of Psychiatry Amsterdam Institute for Addiction ResearchAmsterdam UMCUniversity of Amsterdam Amsterdam The Netherlands
| | - Matthijs G. Bossong
- Department of Psychiatry University Medical Center Utrecht Brain CenterUtrecht University Utrecht The Netherlands
| |
Collapse
|
128
|
Abstract
Cannabinoid receptors, located throughout the body, are part of the endocannabinoid system. Cannabinoid CB1 and CB2 receptors are G protein-coupled receptors present from the early stages of gestation, which is involved in various physiological processes, including appetite, pain-sensation, mood, and memory. Due to the lipophilic nature of cannabinoids, it was initially thought that these compounds exert several biological effects by disrupting the cell membrane nonspecifically. Recent biochemical and behavioral findings have demonstrated that blockade of CB1 receptors engenders antidepressant-like neurochemical changes (increases in extracellular levels of monoamines in cortical but not subcortical brain regions) and behavioral effects consistent with antidepressant/antistress activity. We aim to define various roles of cannabinoid receptors in modulating signaling pathways and association with several pathophysiological conditions.
Collapse
|
129
|
Zagzoog A, Mohamed KA, Kim HJJ, Kim ED, Frank CS, Black T, Jadhav PD, Holbrook LA, Laprairie RB. In vitro and in vivo pharmacological activity of minor cannabinoids isolated from Cannabis sativa. Sci Rep 2020; 10:20405. [PMID: 33230154 PMCID: PMC7684313 DOI: 10.1038/s41598-020-77175-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
The Cannabis sativa plant contains more than 120 cannabinoids. With the exceptions of ∆9-tetrahydrocannabinol (∆9-THC) and cannabidiol (CBD), comparatively little is known about the pharmacology of the less-abundant plant-derived (phyto) cannabinoids. The best-studied transducers of cannabinoid-dependent effects are type 1 and type 2 cannabinoid receptors (CB1R, CB2R). Partial agonism of CB1R by ∆9-THC is known to bring about the 'high' associated with Cannabis use, as well as the pain-, appetite-, and anxiety-modulating effects that are potentially therapeutic. CB2R activation by certain cannabinoids has been associated with anti-inflammatory activities. We assessed the activity of 8 phytocannabinoids at human CB1R, and CB2R in Chinese hamster ovary (CHO) cells stably expressing these receptors and in C57BL/6 mice in an attempt to better understand their pharmacodynamics. Specifically, ∆9-THC, ∆9-tetrahydrocannabinolic acid (∆9-THCa), ∆9-tetrahydrocannabivarin (THCV), CBD, cannabidiolic acid (CBDa), cannabidivarin (CBDV), cannabigerol (CBG), and cannabichromene (CBC) were evaluated. Compounds were assessed for their affinity to receptors, ability to inhibit cAMP accumulation, βarrestin2 recruitment, receptor selectivity, and ligand bias in cell culture; and cataleptic, hypothermic, anti-nociceptive, hypolocomotive, and anxiolytic effects in mice. Our data reveal partial agonist activity for many phytocannabinoids tested at CB1R and/or CB2R, as well as in vivo responses often associated with activation of CB1R. These data build on the growing body of literature showing cannabinoid receptor-dependent pharmacology for these less-abundant phytocannabinoids and are critical in understanding the complex and interactive pharmacology of Cannabis-derived molecules.
Collapse
Affiliation(s)
- Ayat Zagzoog
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 2Z4, Canada
| | - Kawthar A Mohamed
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 2Z4, Canada
| | - Hye Ji J Kim
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 2Z4, Canada
| | - Eunhyun D Kim
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 2Z4, Canada
| | - Connor S Frank
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 2Z4, Canada
| | - Tallan Black
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 2Z4, Canada
| | | | | | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 2Z4, Canada. .,Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
130
|
Elmazoglu Z, Rangel-López E, Medina-Campos ON, Pedraza-Chaverri J, Túnez I, Aschner M, Santamaría A, Karasu Ç. Cannabinoid-profiled agents improve cell survival via reduction of oxidative stress and inflammation, and Nrf2 activation in a toxic model combining hyperglycemia+Aβ 1-42 peptide in rat hippocampal neurons. Neurochem Int 2020; 140:104817. [PMID: 32781098 PMCID: PMC7572748 DOI: 10.1016/j.neuint.2020.104817] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/29/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder linked to various converging toxic mechanisms. Evidence suggests that hyperglycemia induces oxidative stress, mitochondrial dysfunction, inflammation and excitotoxicity, all of which play important roles in the onset and progression of AD pathogenesis. The endocannabinoid system (ECS) orchestrates major physiological responses, including neuronal plasticity, neuroprotection, and redox homeostasis, to name a few. The multi-targeted effectiveness of the ECS emerges as a potential approach to treat AD. Here we characterized the protective properties of the endocannabinoids arachidonylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), the synthetic cannabinoids CP 55-940 and WIN 55,212-2, and the fatty acid amide hydrolase (FAAH) inhibitor URB597, on a combined hyperglycemia + oligomeric amyloid β peptide (Aβ1-42) neurotoxic model in primary hippocampal neurons which exhibit several AD features. Cells were treated with cannabinoid agents at increased concentrations (1 nM-1 μM) for 6 h, and then co-treated with 150 mM glucose (GLU, 24 h), followed by incubation with 500 nM Aβ1-42 (24 h). Cell viability/survival, reactive oxygen species (ROS) levels, antioxidant enzyme (SOD, CAT, GPx and GRx) activities, biological products of oxidative damage (AGE and HNE adducts) and nitrosative stress (3-NT), several endpoints of inflammation (iNOS, IL-1β and TNF-α), amyloid quantification, mitochondrial membrane potential, and the involvement of the Nrf2 pathway, were all evaluated. The combined high glucose + amyloid beta 1-42 (GLU + Aβ1-42) condition decreased cell viability and mitochondrial membrane potential, while augmenting oxidative damage and inflammation. All agents tested preserved cell viability and stimulated mitochondrial membrane potential, while reducing all the evaluated toxic endpoints in a differential manner, with URB597 showing the highest efficacy. The neuroprotective efficacy of all cannabinoid agents, except for URB597, led to partial recruitment of specific antioxidant activity and Nrf2 pathway regulation. Our results support the neuroprotective potential of these agents at low concentrations against the damaging effects of GLU + Aβ1-42, affording new potential modalities for the design of AD therapies.
Collapse
Affiliation(s)
- Zubeyir Elmazoglu
- Cellular Stress Response and Signal Transduction Research Laboratory, Faculty of Medicine, Department of Medical Pharmacology, Gazi University, Beşevler, 06500, Ankara, Turkey
| | - Edgar Rangel-López
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, 14269, Mexico
| | - Omar Noel Medina-Campos
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Isaac Túnez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Córdoba, 14004, Spain
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, 14269, Mexico.
| | - Çimen Karasu
- Cellular Stress Response and Signal Transduction Research Laboratory, Faculty of Medicine, Department of Medical Pharmacology, Gazi University, Beşevler, 06500, Ankara, Turkey.
| |
Collapse
|
131
|
Seltzer ES, Watters AK, MacKenzie D, Granat LM, Zhang D. Cannabidiol (CBD) as a Promising Anti-Cancer Drug. Cancers (Basel) 2020; 12:E3203. [PMID: 33143283 PMCID: PMC7693730 DOI: 10.3390/cancers12113203] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 12/26/2022] Open
Abstract
Recently, cannabinoids, such as cannabidiol (CBD) and Δ9 -tetrahydrocannabinol (THC), have been the subject of intensive research and heavy scrutiny. Cannabinoids encompass a wide array of organic molecules, including those that are physiologically produced in humans, synthesized in laboratories, and extracted primarily from the Cannabis sativa plant. These organic molecules share similarities in their chemical structures as well as in their protein binding profiles. However, pronounced differences do exist in their mechanisms of action and clinical applications, which will be briefly compared and contrasted in this review. The mechanism of action of CBD and its potential applications in cancer therapy will be the major focus of this review article.
Collapse
Affiliation(s)
- Emily S. Seltzer
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (E.S.S.); (A.K.W.); (D.M.J.)
| | - Andrea K. Watters
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (E.S.S.); (A.K.W.); (D.M.J.)
| | - Danny MacKenzie
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (E.S.S.); (A.K.W.); (D.M.J.)
| | - Lauren M. Granat
- Department of Internal Medicine, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Dong Zhang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (E.S.S.); (A.K.W.); (D.M.J.)
| |
Collapse
|
132
|
Rodríguez-Rodríguez I, Kalafut J, Czerwonka A, Rivero-Müller A. A novel bioassay for quantification of surface Cannabinoid receptor 1 expression. Sci Rep 2020; 10:18191. [PMID: 33097803 PMCID: PMC7584592 DOI: 10.1038/s41598-020-75331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/14/2020] [Indexed: 12/04/2022] Open
Abstract
The cannabinoid receptor type 1 (CB1) plays critical roles in multiple physiological processes such as pain perception, brain development and body temperature regulation. Mutations on this gene (CNR1), results in altered functionality and/or biosynthesis such as reduced membrane expression, changes in mRNA stability or changes in downstream signaling that act as triggers for diseases such as obesity, Parkinson’s, Huntington’s, among others; thus, it is considered as a potential pharmacological target. To date, multiple quantification methods have been employed to determine how these mutations affect receptor expression and localization; however, they present serious disadvantages that may arise quantifying errors. Here, we describe a sensitive bioassay to quantify receptor surface expression; in this bioassay the Gaussia Luciferase (GLuc) was fused to the extracellular portion of the CB1. The GLuc activity was assessed by coelenterazine addition to the medium followed by immediate readout. Based on GLuc activity assay, we show that the GLuc signals corelate with CB1 localization, besides, we showed the assay’s functionality and reliability by comparing its results with those generated by previously reported mutations on the CNR1 gene and by using flow cytometry to determine the cell surface receptor expression. Detection of membrane-bound CB1, and potentially other GPCRs, is able to quickly screen for receptor levels and help to understand the effect of clinically relevant mutations or polymorphisms.
Collapse
Affiliation(s)
| | - Joanna Kalafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland.,Department of Virology and Immunology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
133
|
Ahmad H, Rauf K, Zada W, McCarthy M, Abbas G, Anwar F, Shah AJ. Kaempferol Facilitated Extinction Learning in Contextual Fear Conditioned Rats via Inhibition of Fatty-Acid Amide Hydrolase. Molecules 2020; 25:molecules25204683. [PMID: 33066366 PMCID: PMC7587337 DOI: 10.3390/molecules25204683] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Fear, stress, and anxiety-like behaviors originate from traumatic events in life. Stress response is managed by endocannabinoids in the body by limiting the uncontrolled retrieval of aversive memories. Pharmacotherapy-modulating endocannabinoids, especially anandamide, presents a promising tool for treating anxiety disorders. Here, we investigated the effect of kaempferol, a flavonoid, in the extinction of fear related memories and associated anxiety-like behavior. Methods: The ability of kaempferol to inhibit fatty-acid amide hydrolase (FAAH, the enzyme that catabolizes anandamide) was assessed in vitro using an enzyme-linked immunosorbent assay (ELISA) kit. For animal studies (in vivo), the extinction learning was evaluated using contextual fear conditioning (CFC, a behavioral paradigm based on ability to learn and remember aversive stimuli). Furthermore, an elevated plus-maze (EPM) model was used for measuring anxiety-like behavior, while serum corticosterone served as a biochemical indicator of anxiety. Lastly, the interaction of kaempferol with FAAH enzyme was also assessed in silico (computational study). Results: Our data showed that kaempferol inhibited the FAAH enzyme with an IC50 value of 1 µM. In CFC, it reduced freezing behavior in rats. EPM data demonstrated anxiolytic activity as exhibited by enhanced number of entries and time spent in the open arm. No change in blood corticosterone levels was noted. Our computational study showed that Kaempferol interacted with the catalytic amino acids (SER241, PHE192, PHE381, and THR377) of FAAH enzyme Conclusion: Our study demonstrate that kaempferol facilitated the extinction of aversive memories along with a reduction of anxiety. The effect is mediated through the augmentation of endocannabinoids via the inhibition of FAAH enzyme.
Collapse
Affiliation(s)
- Hammad Ahmad
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Khyber Pakhtunkhwa 22060, Pakistan; (H.A.); (K.R.); (W.Z.)
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Khyber Pakhtunkhwa 22060, Pakistan; (H.A.); (K.R.); (W.Z.)
| | - Wahid Zada
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Khyber Pakhtunkhwa 22060, Pakistan; (H.A.); (K.R.); (W.Z.)
| | - Margaret McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Ghulam Abbas
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi 75000, Pakistan;
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore 54000, Pakistan;
| | - Abdul Jabbar Shah
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Khyber Pakhtunkhwa 22060, Pakistan; (H.A.); (K.R.); (W.Z.)
- Correspondence: ; Tel.: +(92)992-383591-6
| |
Collapse
|
134
|
Lyons EL, Leone-Kabler S, Kovach AL, Thomas BF, Howlett AC. Cannabinoid receptor subtype influence on neuritogenesis in human SH-SY5Y cells. Mol Cell Neurosci 2020; 109:103566. [PMID: 33049367 DOI: 10.1016/j.mcn.2020.103566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022] Open
Abstract
Human SH-SY5Y neuroblastoma cells stably expressing exogenous CB1 (CB1XS) or CB2 (CB2XS) receptors were developed to investigate endocannabinoid signaling in the extension of neuronal projections. Expression of cannabinoid receptors did not alter proliferation rate, viability, or apoptosis relative to parental SH-SY5Y. Transcripts for endogenous cannabinoid system enzymes (diacylglycerol lipase, monoacylglycerol lipase, α/β-hydrolase domain containing proteins 6 and 12, N-acyl phosphatidylethanolamine-phospholipase D, and fatty acid amide hydrolase) were not altered by CB1 or CB2 expression. Endocannabinoid ligands 2-arachidonoylglycerol (2-AG) and anandamide were quantitated in SH-SY5Y cells, and diacylglycerol lipase inhibitor tetrahydrolipstatin decreased 2-AG abundance by 90% but did not alter anandamide abundance. M3 muscarinic agonist oxotremorine M, and inhibitors of monoacylglycerol lipase and α/β hydrolase domain containing proteins 6 &12 increased 2-AG abundance. CB1 receptor expression increased lengths of short (<30 μm) and long (>30 μm) projections, and this effect was significantly reduced by tetrahydrolipstatin, indicative of stimulation by endogenously produced 2-AG. Pertussis toxin, Gβγ inhibitor gallein, and β-arrestin inhibitor barbadin did not significantly alter long projection length in CB1XS, but significantly reduced short projections, with gallein having the greatest inhibition. The rho kinase inhibitor Y27632 increased CB1 receptor-mediated long projection extension, indicative of actin cytoskeleton involvement. CB1 receptor expression increased GAP43 and ST8SIA2 mRNA and decreased ITGA1 mRNA, whereas CB2 receptor expression increased NCAM and SYT mRNA. We propose that basal endogenous production of 2-AG provides autocrine stimulation of CB1 receptor signaling through Gi/o, Gβγ, and β-arrestin mechanisms to promote neuritogenesis, and rho kinase influences process extension.
Collapse
Affiliation(s)
- Erica L Lyons
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, One Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | - Sandra Leone-Kabler
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, One Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | - Alexander L Kovach
- Discovery Sciences, RTI International, PO Box 12194, Research Triangle Park, NC 27709, USA.
| | - Brian F Thomas
- Discovery Sciences, RTI International, PO Box 12194, Research Triangle Park, NC 27709, USA.
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, One Medical Center Blvd., Winston-Salem, NC 27157, USA.
| |
Collapse
|
135
|
Lourenço DM, Ribeiro-Rodrigues L, Sebastião AM, Diógenes MJ, Xapelli S. Neural Stem Cells and Cannabinoids in the Spotlight as Potential Therapy for Epilepsy. Int J Mol Sci 2020; 21:E7309. [PMID: 33022963 PMCID: PMC7582633 DOI: 10.3390/ijms21197309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/18/2023] Open
Abstract
Epilepsy is one of the most common brain diseases worldwide, having a huge burden in society. The main hallmark of epilepsy is the occurrence of spontaneous recurrent seizures, having a tremendous impact on the lives of the patients and of their relatives. Currently, the therapeutic strategies are mostly based on the use of antiepileptic drugs, and because several types of epilepsies are of unknown origin, a high percentage of patients are resistant to the available pharmacotherapy, continuing to experience seizures overtime. Therefore, the search for new drugs and therapeutic targets is highly important. One key aspect to be targeted is the aberrant adult hippocampal neurogenesis (AHN) derived from Neural Stem Cells (NSCs). Indeed, targeting seizure-induced AHN may reduce recurrent seizures and shed some light on the mechanisms of disease. The endocannabinoid system is a known modulator of AHN, and due to the known endogenous antiepileptic properties, it is an interesting candidate for the generation of new antiepileptic drugs. However, further studies and clinical trials are required to investigate the putative mechanisms by which cannabinoids can be used to treat epilepsy. In this manuscript, we will review how cannabinoid-induced modulation of NSCs may promote neural plasticity and whether these drugs can be used as putative antiepileptic treatment.
Collapse
Affiliation(s)
- Diogo M. Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Leonor Ribeiro-Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria J. Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
136
|
Vecchio D, Varrasi C, Virgilio E, Spagarino A, Naldi P, Cantello R. Cannabinoids in multiple sclerosis: A neurophysiological analysis. Acta Neurol Scand 2020; 142:333-338. [PMID: 32632918 DOI: 10.1111/ane.13313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/20/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To investigate the action of cannabinoids on spasticity and pain in secondary progressive multiple sclerosis, by means of neurophysiological indexes. MATERIAL AND METHODS We assessed 15 patients with progressive MS (11 females) using clinical scales for spasticity and pain, as well as neurophysiological variables (H/M ratio, cutaneous silent period or CSP). Testing occurred before (T0) and during (T1) a standard treatment with an oral spray containing delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Neurophysiological measures at T0 were compared with those of 14 healthy controls of similar age and sex (HC). We then compared the patient results at the two time points (T1 vs T0). RESULTS At T0, neurophysiological variables did not differ significantly between patients and controls. At T1, spasticity and pain scores improved, as detected by the Modified Ashworth Scale or MAS (P = .001), 9-Hole Peg Test or 9HPT (P = .018), numeric rating scale for spasticity or NRS (P = .001), and visual analogue scale for pain or VAS (P = .005). At the same time, the CSP was significantly prolonged (P = .001). CONCLUSIONS The THC-CBD spray improved spasticity and pain in secondary progressive MS patients. The spray prolonged CSP duration, which appears a promising tool for assessing and monitoring the analgesic effects of THC-CBD in MS.
Collapse
Affiliation(s)
- Domizia Vecchio
- Neurology Unit Department of Translational Medicine University of Piemonte Orientale Novara Italy
| | - Claudia Varrasi
- Neurology Unit Department of Translational Medicine University of Piemonte Orientale Novara Italy
| | - Eleonora Virgilio
- Neurology Unit Department of Translational Medicine University of Piemonte Orientale Novara Italy
| | - Antonio Spagarino
- Neurology Unit Department of Translational Medicine University of Piemonte Orientale Novara Italy
| | - Paola Naldi
- Neurology Unit Department of Translational Medicine University of Piemonte Orientale Novara Italy
| | - Roberto Cantello
- Neurology Unit Department of Translational Medicine University of Piemonte Orientale Novara Italy
| |
Collapse
|
137
|
Quiñonez‐Bastidas GN, Palomino‐Hernández O, López‐Ortíz M, Rocha‐González HI, González‐Anduaga GM, Regla I, Navarrete A. Antiallodynic effect of PhAR-DBH-Me involves cannabinoid and TRPV1 receptors. Pharmacol Res Perspect 2020; 8:e00663. [PMID: 32965798 PMCID: PMC7510332 DOI: 10.1002/prp2.663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/29/2022] Open
Abstract
The antiallodynic effect of PhAR-DBH-Me was evaluated on two models of neuropathic pain, and the potential roles of CB1, CB2, and TRPV1 receptors as molecular targets of PhAR-DBH-Me were studied. Female Wistar rats were submitted to L5/L6 spinal nerve ligation (SNL) or repeated doses of cisplatin (0.1 mg/kg, i.p.) to induce experimental neuropathy. Then, tactile allodynia was determined, and animals were treated with logarithmic doses of PhAR-DBH-Me (3.2-100 mg/kg, i.p.). To evaluate the mechanism of action of PhAR-DBH-Me, in silico studies using crystallized structures of CB1, CB2, and TRPV1 receptors were performed. To corroborate the computational insights, animals were intraperitoneally administrated with antagonists for CB1 (AM-251, 3 mg/kg), CB2 (AM-630, 1 mg/kg), and TRPV1 receptors (capsazepine, 3 mg/kg), 15 min before to PhAR-DBH-Me (100 mg/kg) administration. Vagal stimulation evoked on striated muscle contraction in esophagus, was used to elicited pharmacological response of PhAR-DBH-ME on nervous tissue. Systemic administration of PhAR-DBH-Me reduced the SNL- and cisplatin-induced allodynia. Docking studies suggested that PhAR-DBH-Me acts as an agonist for CB1, CB2, and TRPV1 receptors, with similar affinity to the endogenous ligand anandamide. Moreover antiallodynic effect of PhAR-DBH-Me was partially prevented by administration of AM-251 and AM-630, and completely prevented by capsazepine. Finally, PhAR-DBH-Me decreased the vagally evoked electrical response in esophagus rat. Taken together, results indicate that PhAR-DBH-Me induces an antiallodynic effect through partial activation of CB1 and CB2 receptors, as well as desensitization of TRPV1 receptors. Data also shed light on the novel vanilloid nature of the synthetic compound PhAR-DBH-Me.
Collapse
Affiliation(s)
| | - Oscar Palomino‐Hernández
- Computational Biomedicine ‐ Institute for Advanced Simulation (IAS‐5) and Institute of Neuroscience and Medicine (INM‐9)Forschungszentrum JülichJülichGermany
- Department of ChemistryRheinisch‐Westfälische Technische Hochschule AachenAachenGermany
| | - Manuel López‐Ortíz
- Facultad de Estudios Superiores ZaragozaUniversidad Nacional Autónoma de México (UNAM)MéxicoDFMéxico
| | - Héctor Isaac Rocha‐González
- Sección de Estudios de Posgrado e InvestigaciónEscuela Superior de MedicinaInstituto Politécnico NacionalMéxicoCiudad de MéxicoMéxico
| | - Gloria Melisa González‐Anduaga
- Facultad de QuímicaDepartamento de FarmaciaUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCoyoacánCiudad de MéxicoMéxico
| | - Ignacio Regla
- Facultad de Estudios Superiores ZaragozaUniversidad Nacional Autónoma de México (UNAM)MéxicoDFMéxico
| | - Andrés Navarrete
- Facultad de QuímicaDepartamento de FarmaciaUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCoyoacánCiudad de MéxicoMéxico
| |
Collapse
|
138
|
González-Naranjo P, Pérez C, Girón R, Sánchez-Robles EM, Martín-Fontelles MI, Carrillo-López N, Martín-Vírgala J, Naves M, Campillo NE, Páez JA. New cannabinoid receptor antagonists as pharmacological tool. Bioorg Med Chem 2020; 28:115672. [PMID: 32912440 DOI: 10.1016/j.bmc.2020.115672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 11/27/2022]
Abstract
Synthesis and pharmacological evaluation of a new series of cannabinoid receptor antagonists of indazole ether derivatives have been performed. Pharmacological evaluation includes radioligand binding assays with [3H]-CP55940 for CB1 and CB2 receptors and functional activity for cannabinoid receptors on isolated tissue. In addition, functional activity of the two synthetic cannabinoids antagonists 18 (PGN36) and 17 (PGN38) were carried out in the osteoblastic cell line MC3T3-E1 that is able to express CB2R upon osteogenic conditions. Both antagonists abolished the increase in collagen type I gene expression by the well-known inducer of bone activity, the HU308 agonist. The results of pharmacological tests have revealed that four of these derivatives behave as CB2R cannabinoid antagonists. In particular, the compounds 17 (PGN38) and 18 (PGN36) highlight as promising candidates as pharmacological tools.
Collapse
Affiliation(s)
| | - Concepción Pérez
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Rocío Girón
- Área de Farmacología, Nutrición y Bromatología, Unidad Asociada al IQM y al CIAL (CSIC), Departamento de C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. Atenas s/n, 28922 Alcorcón, Spain
| | - Eva M Sánchez-Robles
- Área de Farmacología, Nutrición y Bromatología, Unidad Asociada al IQM y al CIAL (CSIC), Departamento de C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. Atenas s/n, 28922 Alcorcón, Spain
| | - María I Martín-Fontelles
- Área de Farmacología, Nutrición y Bromatología, Unidad Asociada al IQM y al CIAL (CSIC), Departamento de C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. Atenas s/n, 28922 Alcorcón, Spain
| | - Natalia Carrillo-López
- U.G.C de Metabolismo Óseo, RedinREN del ISC III, Hospital Universitario Central de Asturias, Instituto de Investigaciones Sanitarias del Principado de Asturias, Edificio FINBA, Planta primera F1.1 (Aula 14), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Julia Martín-Vírgala
- U.G.C de Metabolismo Óseo, RedinREN del ISC III, Hospital Universitario Central de Asturias, Instituto de Investigaciones Sanitarias del Principado de Asturias, Edificio FINBA, Planta primera F1.1 (Aula 14), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Manuel Naves
- U.G.C de Metabolismo Óseo, RedinREN del ISC III, Hospital Universitario Central de Asturias, Instituto de Investigaciones Sanitarias del Principado de Asturias, Edificio FINBA, Planta primera F1.1 (Aula 14), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Nuria E Campillo
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Juan A Páez
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
139
|
Chesney E, McGuire P, Freeman TP, Strang J, Englund A. Lack of evidence for the effectiveness or safety of over-the-counter cannabidiol products. Ther Adv Psychopharmacol 2020; 10:2045125320954992. [PMID: 32973998 PMCID: PMC7491225 DOI: 10.1177/2045125320954992] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/28/2020] [Indexed: 01/07/2023] Open
Abstract
Over the past 5 years, public interest in the potential health benefits of cannabidiol (CBD) has increased exponentially, and a wide range of over-the-counter (OTC) preparations of CBD are now available. A substantial proportion of the population appears to have used these products, yet the extent to which they are effective or safe is unclear. We reviewed the evidence for whether CBD has significant pharmacological and symptomatic effects at the doses typically found in OTC preparations. We found that most of the evidence for beneficial effects is derived from studies of pure, pharmaceutical grade CBD at relatively high doses. Relatively few studies have examined the effect of OTC CBD preparations, or of CBD at low doses. Thus, at present, there is little evidence that OTC CBD products have health benefits, and their safety has not been investigated. Controlled trials of OTC and low-dose CBD preparations are needed to resolve these issues.
Collapse
Affiliation(s)
- Edward Chesney
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London SE5 8AF, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- National Institute for Health Research, Maudsley Biomedical Research Centre, London, UK
| | - Tom P. Freeman
- Addiction and Mental Health Group (AIM), Department of Psychology, University of Bath, London, UK
- Addictions Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - John Strang
- South London and Maudsley NHS Foundation Trust, London, UK
- Addictions Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Amir Englund
- Addictions Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
140
|
Ladha KS, Ajrawat P, Yang Y, Clarke H. Understanding the Medical Chemistry of the Cannabis Plant is Critical to Guiding Real World Clinical Evidence. Molecules 2020; 25:molecules25184042. [PMID: 32899678 PMCID: PMC7570835 DOI: 10.3390/molecules25184042] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/22/2020] [Accepted: 08/29/2020] [Indexed: 12/13/2022] Open
Abstract
While cannabis has been consumed for thousands of years, the medical-legal landscape surrounding its use has dramatically evolved over the past decades. Patients are turning to cannabis as a therapeutic option for several medical conditions. Given the surge in interest over the past decades there exists a major gap in the literature with respect to understanding the products that are currently being consumed by patients. The current perspective highlights the lack of relevance within the current literature towards understanding the medical chemistry of the products being consumed. The cannabis industry must rigorously invest into understanding what people are consuming from a chemical composition standpoint. This will inform what compounds in addition to Δ9-tetrahydrocannabinol and cannabidiol may be producing physiologic/therapeutic effects from plant based extracts. Only through real-world evidence and a formalized, granular data collection process within which we know the chemical inputs for patients already using or beginning to use medical cannabis, we can come closer to the ability to provide targeted clinical decision making and design future appropriate randomized controlled trials.
Collapse
Affiliation(s)
- Karim S. Ladha
- Department of Anesthesia and Pain Medicine, University of Toronto, Toronto, ON M5G 1E2, Canada;
- Department of Anesthesia, St, Michael′s Hospital, Toronto, ON M5B 1W8, Canada
- Centre For Cannabinoid Therapeutics, Toronto, ON M5G 2C4, Canada;
| | - Prabjit Ajrawat
- Centre For Cannabinoid Therapeutics, Toronto, ON M5G 2C4, Canada;
- Department of Anesthesia, Toronto General Hospital, Toronto, ON M5G 2C4, Canada
| | - Yi Yang
- Centre for Molecular Design and Preformulations and Krembil Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada;
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Hance Clarke
- Department of Anesthesia and Pain Medicine, University of Toronto, Toronto, ON M5G 1E2, Canada;
- Centre For Cannabinoid Therapeutics, Toronto, ON M5G 2C4, Canada;
- Department of Anesthesia, Toronto General Hospital, Toronto, ON M5G 2C4, Canada
- Transitional Pain Service, Toronto General Hospital, Toronto, ON M5G 2C4, Canada
- Correspondence: ; Tel.: +1-416-340-4800-5679; Fax: +1-416-340-3698
| |
Collapse
|
141
|
Fairhurst C, Kumar R, Checketts D, Tayo B, Turner S. Efficacy and safety of nabiximols cannabinoid medicine for paediatric spasticity in cerebral palsy or traumatic brain injury: a randomized controlled trial. Dev Med Child Neurol 2020; 62:1031-1039. [PMID: 32342496 DOI: 10.1111/dmcn.14548] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/02/2020] [Indexed: 01/24/2023]
Abstract
AIM To assess the efficacy, safety, and tolerability of oromucosal nabiximols cannabinoid medicine as adjunct therapy for children with spasticity due to cerebral palsy/traumatic central nervous system injury with inadequate response to existing treatment. METHOD Overall, 72 patients (mean [SD] age 12y 4mo [3y 1mo], range 8-18y) were randomized at a ratio of 2:1 to receive nabiximols (n=47; 29 males, 18 females) or placebo (n=25; 15 males, 10 females) for 12 weeks (12 sprays/day max. based on clinical response/tolerability). The primary outcome was change from baseline in level of spasticity on a 0 to 10 Numerical Rating Scale (NRS), assessed by the primary caregiver at 12 weeks. Secondary outcomes included additional measures for spasticity, sleep quality, pain, health-related quality of life, comfort, depression, and safety. RESULTS There was no significant difference in the spasticity 0 to 10 NRS between nabiximols versus placebo groups after 12 weeks. No statistically significant differences were observed for any secondary endpoint. Adverse events were predominantly mild or moderate in severity; however, three cases of hallucinations were reported. INTERPRETATION Nabiximols was generally well tolerated; however, neuropsychiatric adverse events were observed. No significant reduction in spasticity with nabiximols treatment versus placebo was observed. WHAT THIS PAPER ADDS Oromucosal nabiximols is generally well tolerated by paediatric patients. However, three cases of hallucinations were observed, one of which involved auditory hallucinations and a suicide attempt. Oromucosal nabiximols versus placebo did not reduce cerebral palsy/central nervous system injury-related spasticity.
Collapse
Affiliation(s)
- Charlie Fairhurst
- Department of Paediatric Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Ram Kumar
- Department of Paediatric Neurology, Alder Hey Children's Hospital, Liverpool, UK
| | | | | | - Susie Turner
- Department of Paediatric Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
142
|
Focused structure-activity relationship profiling around the 2-phenylindole scaffold of a cannabinoid type-1 receptor agonist-positive allosteric modulator: site-III aromatic-ring congeners with enhanced activity and solubility. Bioorg Med Chem 2020; 28:115727. [PMID: 33065437 DOI: 10.1016/j.bmc.2020.115727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/06/2020] [Accepted: 08/19/2020] [Indexed: 12/31/2022]
Abstract
Specific tuning of cannabinoid 1 receptor (CB1R) activity by small-molecule allosteric modulators is a therapeutic modality with multiple properties inherently advantageous to therapeutic applications. We previously generated a library of unique CB1R positive allosteric modulators (PAMs) derived from GAT211, which has three pharmacophoric sites critical to its ago-PAM activity. To elaborate our CB1R PAM library, we report the rational design and molecular-pharmacology profiling of several 2-phenylindole analogs modified at the "site-III" aromatic ring. The comprehensive structure-activity relationship (SAR) investigation demonstrates that attaching small lipophilic functional groups on the ortho-position of the GAT211 site-III phenyl ring could markedly enhance CB1R ago-PAM activity. Select site-III modifications also improved GAT211's water solubility. The SAR reported both extends the structural diversity of this compound class and demonstrates the utility of GAT211's site-III for improving the parent compound's drug-like properties of potency and/or aqueous solubility.
Collapse
|
143
|
Basagni F, Rosini M, Decker M. Functionalized Cannabinoid Subtype 2 Receptor Ligands: Fluorescent, PET, Photochromic and Covalent Molecular Probes. ChemMedChem 2020; 15:1374-1389. [PMID: 32578963 PMCID: PMC7497013 DOI: 10.1002/cmdc.202000298] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 01/01/2023]
Abstract
Cannabinoid subtype 2 receptors (CB2 Rs) are G protein-coupled receptors (GPCRs) belonging to the endocannabinoid system, a complex network of signalling pathways leading to the regulation of key physiological processes. Interestingly, CB2 Rs are strongly up-regulated in pathological conditions correlated with the onset of inflammatory events like cancer and neurodegenerative diseases. Therefore, CB2 Rs represent an important biological target for therapeutic as well as diagnostic purposes. No CB2 R-selective drugs are yet on the market, thus underlining a that deeper comprehension of CB2 Rs' complex activation pathways and their role in the regulation of diseases is needed. Herein, we report an overview of pharmacological and imaging tools such as fluorescent, positron emission tomography (PET), photochromic and covalent selective CB2 R ligands. These molecular probes can be used in vitro as well as in vivo to investigate and explore the unravelled role(s) of CB2 Rs, and they can help to design suitable CB2 R-targeted drugs.
Collapse
Affiliation(s)
- Filippo Basagni
- Pharmaceutical and Medicinal Chemistry Institute of Pharmacy and Food ChemistryJulius Maximilian University of WürzburgAm Hubland97074WürzburgGermany
- Department of Pharmacy and BiotechnologyUniversity of BolognaVia Belmeloro 640126BolognaItaly
| | - Michela Rosini
- Department of Pharmacy and BiotechnologyUniversity of BolognaVia Belmeloro 640126BolognaItaly
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry Institute of Pharmacy and Food ChemistryJulius Maximilian University of WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
144
|
Abstract
Cannabis ranks among the most commonly used psychotropic drugs worldwide. In the context of the global movement toward more widespread legalisation, there is a growing need toward developing a better understanding of the physiological and pathological effects. We provide an overview of the current evidence on the effects of cannabinoids on the eye. Of the identified cannabinoids, Δ9-tetrahydrocannabinol is recognized to be the primary psychotropic compound, and cannabidiol is the predominant nonpsychoactive ingredient. Despite demonstrating ocular hypotensive and neuroprotective activity, the use of cannabinoids as a treatment for glaucoma is limited by a large number of potential systemic and ophthalmic side effects. Anterior segment effects of cannabinoids are complex, with preliminary evidence showing decreased corneal endothelial density in chronic cannabinoid users. Experiments in rodents, however, have shown potential promise for the treatment of ocular surface injury via antinociceptive and antiinflammatory effects. Electroretinography studies demonstrating adverse effects on photoreceptor, bipolar, and ganglion cell function suggest links between cannabis and neuroretinal dysfunction. Neuro-ophthalmic associations include ocular motility deficits and decrements in smooth pursuit and saccadic eye movements, although potential therapeutic effects for congenital and acquired nystagmus have been observed.
Collapse
|
145
|
Bioactive Chemical Composition of Cannabis Extracts and Cannabinoid Receptors. Molecules 2020; 25:molecules25153466. [PMID: 32751516 PMCID: PMC7436063 DOI: 10.3390/molecules25153466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/31/2022] Open
Abstract
Cannabis is widely used as a therapeutic drug, especially by patients suffering from psychiatric and neurodegenerative diseases. However, the complex interplay between phytocannabinoids and their targets in the human receptome remains largely a mystery, and there have been few investigations into the relationship between the chemical composition of medical cannabis and the corresponding biological activity. In this study, we investigated 59 cannabis samples used by patients for medical reasons. The samples were subjected to extraction (microwave and supercritical carbon dioxide) and chemical analyses, and the resulting extracts were assayed in vitro using the CB1 and CB2 receptors. Using a partial least squares regression analysis, the chemical compositions of the extracts were then correlated to their corresponding cannabinoid receptor activities, thus generating predictive models that describe the receptor potency as a function of major phytocannabinoid content. Using the current dataset, meaningful models for CB1 and CB2 receptor agonism were obtained, and these reveal the insignificant relationships between the major phytocannabinoid content and receptor affinity for CB1 but good correlations between the two at CB2 receptors. These results also explain the anomalies between the receptor activities of pure phytocannabinoids and cannabis extracts. Furthermore, the models for CB1 and CB2 agonism in cannabis extracts predict the cannabinoid receptor activities of individual phytocannabinoids with reasonable accuracy. Here for the first time, we disclose a method to predict the relationship between the chemical composition, including phytocannabinoids, of cannabis extracts and cannabinoid receptor responses.
Collapse
|
146
|
Li X, Shen L, Hua T, Liu ZJ. Structural and Functional Insights into Cannabinoid Receptors. Trends Pharmacol Sci 2020; 41:665-677. [PMID: 32739033 DOI: 10.1016/j.tips.2020.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/04/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Cannabinoid receptors type 1 (CB1) and 2 (CB2) are widely expressed in the human body, and are attractive drug targets in the prevention and management of central nervous system (CNS) and immune system dysfunction, respectively. Recent breakthroughs in the structural elucidation of cannabinoid receptors and their signaling complexes with G proteins, provide the important molecular basis of ligand-receptor interactions, activation and signaling mechanism, which will facilitate the next-generation drug design and the precise modulation of the endocannabinoid system. Here, we provide an overview on the structural features of cannabinoid receptors in different functional states and the diverse ligand binding modes. The major challenges and new strategies for future therapeutic applications targeting the endocannabinoid system (ECS) are also discussed.
Collapse
Affiliation(s)
- Xiaoting Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Ling Shen
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
147
|
An D, Peigneur S, Hendrickx LA, Tytgat J. Targeting Cannabinoid Receptors: Current Status and Prospects of Natural Products. Int J Mol Sci 2020; 21:E5064. [PMID: 32709050 PMCID: PMC7404216 DOI: 10.3390/ijms21145064] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cannabinoid receptors (CB1 and CB2), as part of the endocannabinoid system, play a critical role in numerous human physiological and pathological conditions. Thus, considerable efforts have been made to develop ligands for CB1 and CB2, resulting in hundreds of phyto- and synthetic cannabinoids which have shown varying affinities relevant for the treatment of various diseases. However, only a few of these ligands are clinically used. Recently, more detailed structural information for cannabinoid receptors was revealed thanks to the powerfulness of cryo-electron microscopy, which now can accelerate structure-based drug discovery. At the same time, novel peptide-type cannabinoids from animal sources have arrived at the scene, with their potential in vivo therapeutic effects in relation to cannabinoid receptors. From a natural products perspective, it is expected that more novel cannabinoids will be discovered and forecasted as promising drug leads from diverse natural sources and species, such as animal venoms which constitute a true pharmacopeia of toxins modulating diverse targets, including voltage- and ligand-gated ion channels, G protein-coupled receptors such as CB1 and CB2, with astonishing affinity and selectivity. Therefore, it is believed that discovering novel cannabinoids starting from studying the biodiversity of the species living on planet earth is an uncharted territory.
Collapse
Affiliation(s)
| | | | | | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, O&N 2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium; (D.A.); (S.P.); (L.A.H.)
| |
Collapse
|
148
|
Meini S, Gado F, Stevenson LA, Digiacomo M, Saba A, Codini S, Macchia M, Pertwee RG, Bertini S, Manera C. PSNCBAM-1 analogs: Structural evolutions and allosteric properties at cannabinoid CB1 receptor. Eur J Med Chem 2020; 203:112606. [PMID: 32682199 DOI: 10.1016/j.ejmech.2020.112606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/04/2023]
Abstract
Allosteric modulation of the CB1Rs could represent an alternative strategy for the treatment of diseases in which these receptors are involved, without the undesirable effects associated with their orthosteric stimulation. PSNCBAM-1 is a reference diaryl urea derivative that positively affects the binding affinity of orthosteric ligands (PAM) and negatively affects the functional activity of orthosteric ligands (NAM) at CB1Rs. In this work we reported the design, synthesis and biological evaluation of three different series of compounds, derived from structural modifications of PSNCBAM-1 and its analogs reported in the recent literature. Almost all the new compounds increased the percentage of binding affinity of CP55940 at CB1Rs, showing a PAM profile. When tested alone in the [35S]GTPγS functional assay, only a few derivatives lacked detectable activity, so were tested in the same functional assay in the presence of CP55940. Among these, compounds 11 and 18 proved to be functional NAMs at CB1Rs, dampening the orthosteric agonist-induced receptor functionality by approximately 30%. The structural features presented in this work provide new CB1R-allosteric modulators (with a profile similar to the reference compound PSNCBAM-1) and an extension of the structure-activity relationships for this type of molecule at CB1Rs.
Collapse
Affiliation(s)
- Serena Meini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Francesca Gado
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Lesley A Stevenson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, AB25 2ZD Aberdeen, Scotland, UK
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Alessandro Saba
- Department of Surgical Pathology, Molecular Medicine and of the Critical Area, University of Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Simone Codini
- Department of Surgical Pathology, Molecular Medicine and of the Critical Area, University of Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Roger G Pertwee
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, AB25 2ZD Aberdeen, Scotland, UK
| | - Simone Bertini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy.
| | - Clementina Manera
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| |
Collapse
|
149
|
Dhein S. Different Effects of Cannabis Abuse on Adolescent and Adult Brain. Pharmacology 2020; 105:609-617. [PMID: 32629444 DOI: 10.1159/000509377] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/11/2020] [Indexed: 11/19/2022]
Abstract
Cannabis abuse is a common phenomenon among adolescents. The dominant psychoactive substance in Cannabis sativa is tetrahydrocannabinol (THC). However, in the past 40 years the content of the psychoactive ingredient THC in most of the preparations is not constant but has increased due to other breeding and culturing conditions. THC acts as the endocannabinoids at CB1 and CB2 receptors but pharmacologically can be described as a partial (not a pure) agonist. Recent evidence shows that activation of the CB1 receptor by THC can diminish the production of neuronal growth factor in neurons and affect other signalling cascades involved in synapsis formation. Since these factors play an important role in the brain development and in the neuronal conversion processes during puberty, it seems reasonable that THC can affect the adolescent brain in another manner than the adult brain. Accordingly, in adolescent cannabis users structural changes were observed with loss of grey matter in certain brain areas. Moreover, recent studies show different effects of THC on adolescent and adult brains and on behaviour. These studies indicate that early THC abuse can result in neuropsychological deficits. This review gives an overview over the present knowledge in this field.
Collapse
Affiliation(s)
- Stefan Dhein
- Institute f. Pharmacology, University Leipzig, Leipzig, Germany, .,Fachdienst Gesundheit, Altenburg, Germany,
| |
Collapse
|
150
|
Leuti A, Fazio D, Fava M, Piccoli A, Oddi S, Maccarrone M. Bioactive lipids, inflammation and chronic diseases. Adv Drug Deliv Rev 2020; 159:133-169. [PMID: 32628989 DOI: 10.1016/j.addr.2020.06.028] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Endogenous bioactive lipids are part of a complex network that modulates a plethora of cellular and molecular processes involved in health and disease, of which inflammation represents one of the most prominent examples. Inflammation serves as a well-conserved defence mechanism, triggered in the event of chemical, mechanical or microbial damage, that is meant to eradicate the source of damage and restore tissue function. However, excessive inflammatory signals, or impairment of pro-resolving/anti-inflammatory pathways leads to chronic inflammation, which is a hallmark of chronic pathologies. All main classes of endogenous bioactive lipids - namely eicosanoids, specialized pro-resolving lipid mediators, lysoglycerophopsholipids and endocannabinoids - have been consistently involved in the chronic inflammation that characterises pathologies such as cancer, diabetes, atherosclerosis, asthma, as well as autoimmune and neurodegenerative disorders and inflammatory bowel diseases. This review gathers the current knowledge concerning the involvement of endogenous bioactive lipids in the pathogenic processes of chronic inflammatory pathologies.
Collapse
|