101
|
Cao H, Deterding LJ, Blackshear PJ. Identification of a major phosphopeptide in human tristetraprolin by phosphopeptide mapping and mass spectrometry. PLoS One 2014; 9:e100977. [PMID: 25010646 PMCID: PMC4091943 DOI: 10.1371/journal.pone.0100977] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/02/2014] [Indexed: 11/18/2022] Open
Abstract
Tristetraprolin/zinc finger protein 36 (TTP/ZFP36) binds and destabilizes some pro-inflammatory cytokine mRNAs. TTP-deficient mice develop a profound inflammatory syndrome due to excessive production of pro-inflammatory cytokines. TTP expression is induced by various factors including insulin and extracts from cinnamon and green tea. TTP is highly phosphorylated in vivo and is a substrate for several protein kinases. Multiple phosphorylation sites are identified in human TTP, but it is difficult to assign major vs. minor phosphorylation sites. This study aimed to generate additional information on TTP phosphorylation using phosphopeptide mapping and mass spectrometry (MS). Wild-type and site-directed mutant TTP proteins were expressed in transfected human cells followed by in vivo radiolabeling with [32P]-orthophosphate. Histidine-tagged TTP proteins were purified with Ni-NTA affinity beads and digested with trypsin and lysyl endopeptidase. The digested peptides were separated by C18 column with high performance liquid chromatography. Wild-type and all mutant TTP proteins were localized in the cytosol, phosphorylated extensively in vivo and capable of binding to ARE-containing RNA probes. Mutant TTP with S90 and S93 mutations resulted in the disappearance of a major phosphopeptide peak. Mutant TTP with an S197 mutation resulted in another major phosphopeptide peak being eluted earlier than the wild-type. Additional mutations at S186, S296 and T271 exhibited little effect on phosphopeptide profiles. MS analysis identified the peptide that was missing in the S90 and S93 mutant protein as LGPELSPSPTSPTATSTTPSR (corresponding to amino acid residues 83–103 of human TTP). MS also identified a major phosphopeptide associated with the first zinc-finger region. These analyses suggest that the tryptic peptide containing S90 and S93 is a major phosphopeptide in human TTP.
Collapse
Affiliation(s)
- Heping Cao
- U. S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana, United States of America
- * E-mail:
| | - Leesa J. Deterding
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Perry J. Blackshear
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America and Departments of Biochemistry and Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
102
|
Shen Y, Jia LN, Honma N, Hosono T, Ariga T, Seki T. Beneficial effects of cinnamon on the metabolic syndrome, inflammation, and pain, and mechanisms underlying these effects - a review. J Tradit Complement Med 2014; 2:27-32. [PMID: 24716111 PMCID: PMC3943007 DOI: 10.1016/s2225-4110(16)30067-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cinnamon is one of the most important herbal drugs and has been widely used in Asia for more than 4000 years. As a folk medicine, cinnamon has been traditionally applied to the treatment of inflammatory disorders and gastric diseases. After chemical profiling of cinnamon's components, their biological activities including antimicrobial, antiviral, antioxidant, antitumor, antihypertension, antilipemic, antidiabetes, gastroprotective and immunomodulatory were reported by many investigators. As a result, current studies have been performed mostly focusing on the bioactivity of cinnamon toward the recently generalized metabolic syndrome involving diabetes. In this review article, we provide an overview of the recent literature describing cinnamon's potential for preventing the metabolic syndrome.
Collapse
Affiliation(s)
- Yan Shen
- Laboratory of Nutrition and Physiology, Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa 252-0880, Japan
| | - Liu-Nan Jia
- School of Pharmacy, Nihon University; 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Natsumi Honma
- Laboratory of Nutrition and Physiology, Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa 252-0880, Japan
| | - Takashi Hosono
- Laboratory of Nutrition and Physiology, Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa 252-0880, Japan
| | - Toyohiko Ariga
- Laboratory of Nutrition and Physiology, Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa 252-0880, Japan
| | - Taiichiro Seki
- Laboratory of Nutrition and Physiology, Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa 252-0880, Japan
| |
Collapse
|
103
|
Kang BH, Racicot K, Pilkenton SJ, Apostolidis E. Evaluation of the in vitro anti-hyperglycemic effect of Cinnamomum cassia derived phenolic phytochemicals, via carbohydrate hydrolyzing enzyme inhibition. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2014; 69:155-160. [PMID: 24706251 DOI: 10.1007/s11130-014-0415-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cinnamomum cassia (cinnamon) proanthocyanidins (PACs) are believed to have anti-hyperglycemic potential via stimulation of insulin sensitivity. The present study investigates the carbohydrate hydrolyzing enzyme inhibition of cinnamon PACs. Five grams of cinnamon bark powder were extracted in 100 mL acetone solution (CAE) (acetone: water: hydrochloric acid, 70:29.9:0.01) for 2 h at room temperature and in 100 mL deionized water for 30 min at 90 °C (CWE). PACs were purified from CAE using LH-20 (CAE-PAC) to be further evaluated. PAC contents were evaluated by 4-Dimethylaminocinnamaldehyde (DMAC) assay and yielded 795, 177 and 123 mg/g, for CAE-PAC, CAE and CWE respectively. The total phenolic contents of CAE and CWE were determined to be 152 and 134 mg/g respectively. All extracts were adjusted to the same PAC content (180, 90, 45 and 20 μg) and the inhibitory activity against rat α-glucosidase was determined. The CAE-PAC fraction had very low rat α-glucosidase inhibitory activity, CAE had the highest (IC50 0.474 mg/mL total phenolic (TP) basis) followed by CWE (IC50 0.697 mg/mL TP basis). The specific maltase and sucrase inhibitory activities were determined and CAE (IC50 0.38 and 0.10 mg/mL TP basis) had higher inhibition than CWE (IC50 0.74 and 0.37 mg/mL TP basis). Results suggest that the observed bioactivity is not PAC dependent and that CAE has a higher anti-hyperglycemic potential than CWE via inhibition of carbohydrate hydrolyzing enzymes.
Collapse
Affiliation(s)
- B-H Kang
- Department of Chemistry and Food Science, Framingham State University, Framingham, MA, 01701, USA
| | | | | | | |
Collapse
|
104
|
Vindry C, Vo Ngoc L, Kruys V, Gueydan C. RNA-binding protein-mediated post-transcriptional controls of gene expression: integration of molecular mechanisms at the 3' end of mRNAs? Biochem Pharmacol 2014; 89:431-40. [PMID: 24735612 DOI: 10.1016/j.bcp.2014.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 01/17/2023]
Abstract
Initially identified as an occasional and peculiar mode of gene regulation in eukaryotes, RNA-binding protein-mediated post-transcriptional control of gene expression has emerged, over the last two decades, as a major contributor in the control of gene expression. A large variety of RNA-binding proteins (RBPs) allows the recognition of very diverse messenger RNA sequences and participates in the regulation of basically all cellular processes. Nevertheless, the rapid outcome of post-transcriptional regulations on the level of gene expression has favored the expansion of this type of regulation in cellular processes prone to rapid and frequent modulations such as the control of the inflammatory response. At the molecular level, the 3'untranslated region (3'UTR) of mRNA is a favored site of RBP recruitment. RBPs binding to these regions control gene expression through two major modes of regulation, namely mRNA decay and modulation of translational activity. Recent progresses suggest that these two mechanisms are often interdependent and might result one from the other. Therefore, different RBPs binding distinct RNA subsets could share similar modes of action at the molecular level. RBPs are frequent targets of post-translational modifications, thereby disclosing numerous possibilities for pharmacological interventions. However, redundancies of the transduction pathways controlling these modifications have limited the perspectives to define RBPs as new therapeutic targets. Through the analysis of several examples of RBPs binding to 3'untranslated region of mRNA, we present here recent progress and perspectives regarding this rapidly evolving field of molecular biology.
Collapse
Affiliation(s)
- Caroline Vindry
- Laboratoire de Biologie moléculaire du gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 12 rue des Profs. Jeener et Brachet, Gosselies 6041, Belgium
| | - Long Vo Ngoc
- Laboratoire de Biologie moléculaire du gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 12 rue des Profs. Jeener et Brachet, Gosselies 6041, Belgium
| | - Véronique Kruys
- Laboratoire de Biologie moléculaire du gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 12 rue des Profs. Jeener et Brachet, Gosselies 6041, Belgium
| | - Cyril Gueydan
- Laboratoire de Biologie moléculaire du gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 12 rue des Profs. Jeener et Brachet, Gosselies 6041, Belgium.
| |
Collapse
|
105
|
Cinnamon: a multifaceted medicinal plant. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:642942. [PMID: 24817901 PMCID: PMC4003790 DOI: 10.1155/2014/642942] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 03/12/2014] [Indexed: 12/11/2022]
Abstract
Cinnamon (Cinnamomum zeylanicum, and Cinnamon cassia), the eternal tree of tropical medicine, belongs to the Lauraceae family. Cinnamon is one of the most important spices used daily by people all over the world. Cinnamon primarily contains vital oils and other derivatives, such as cinnamaldehyde, cinnamic acid, and cinnamate. In addition to being an antioxidant, anti-inflammatory, antidiabetic, antimicrobial, anticancer, lipid-lowering, and cardiovascular-disease-lowering compound, cinnamon has also been reported to have activities against neurological disorders, such as Parkinson's and Alzheimer's diseases. This review illustrates the pharmacological prospective of cinnamon and its use in daily life.
Collapse
|
106
|
Shen Y, Honma N, Kobayashi K, Jia LN, Hosono T, Shindo K, Ariga T, Seki T. Cinnamon extract enhances glucose uptake in 3T3-L1 adipocytes and C2C12 myocytes by inducing LKB1-AMP-activated protein kinase signaling. PLoS One 2014; 9:e87894. [PMID: 24551069 PMCID: PMC3925101 DOI: 10.1371/journal.pone.0087894] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/04/2014] [Indexed: 12/31/2022] Open
Abstract
We previously demonstrated that cinnamon extract (CE) ameliorates type 1 diabetes induced by streptozotocin in rats through the up-regulation of glucose transporter 4 (GLUT4) translocation in both muscle and adipose tissues. This present study was aimed at clarifying the detailed mechanism(s) with which CE increases the glucose uptake in vivo and in cell culture systems using 3T3-L1 adipocytes and C2C12 myotubes in vitro. Specific inhibitors of key enzymes in insulin signaling and AMP-activated protein kinase (AMPK) signaling pathways, as well as small interference RNA, were used to examine the role of these kinases in the CE-induced glucose uptake. The results showed that CE stimulated the phosphorylation of AMPK and acetyl-CoA carboxylase. An AMPK inhibitor and LKB1 siRNA blocked the CE-induced glucose uptake. We also found for the first time that insulin suppressed AMPK activation in the adipocyte. To investigate the effect of CE on type 2 diabetes in vivo, we further performed oral glucose tolerance tests and insulin tolerance tests in type 2 diabetes model rats administered with CE. The CE improved glucose tolerance in oral glucose tolerance tests, but not insulin sensitivity in insulin tolerance test. In summary, these results indicate that CE ameliorates type 2 diabetes by inducing GLUT4 translocation via the AMPK signaling pathway. We also found insulin antagonistically regulates the activation of AMPK.
Collapse
Affiliation(s)
- Yan Shen
- Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa, Japan
| | - Natsumi Honma
- Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa, Japan
| | - Katsuya Kobayashi
- Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa, Japan
| | - Liu Nan Jia
- School of Pharmacy, Nihon University, Chiba, Japan
| | - Takashi Hosono
- Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa, Japan
- * E-mail:
| | - Kazutoshi Shindo
- Department of Food and Nutrition, Japan Women’s University, Tokyo, Japan
| | - Toyohiko Ariga
- Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa, Japan
| | - Taiichiro Seki
- Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa, Japan
| |
Collapse
|
107
|
Cao H, Zhang L, Tan X, Long H, Shockey JM. Identification, classification and differential expression of oleosin genes in tung tree (Vernicia fordii). PLoS One 2014; 9:e88409. [PMID: 24516650 PMCID: PMC3916434 DOI: 10.1371/journal.pone.0088409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/06/2014] [Indexed: 11/19/2022] Open
Abstract
Triacylglycerols (TAG) are the major molecules of energy storage in eukaryotes. TAG are packed in subcellular structures called oil bodies or lipid droplets. Oleosins (OLE) are the major proteins in plant oil bodies. Multiple isoforms of OLE are present in plants such as tung tree (Vernicia fordii), whose seeds are rich in novel TAG with a wide range of industrial applications. The objectives of this study were to identify OLE genes, classify OLE proteins and analyze OLE gene expression in tung trees. We identified five tung tree OLE genes coding for small hydrophobic proteins. Genome-wide phylogenetic analysis and multiple sequence alignment demonstrated that the five tung OLE genes represented the five OLE subfamilies and all contained the "proline knot" motif (PX5SPX3P) shared among 65 OLE from 19 tree species, including the sequenced genomes of Prunus persica (peach), Populus trichocarpa (poplar), Ricinus communis (castor bean), Theobroma cacao (cacao) and Vitis vinifera (grapevine). Tung OLE1, OLE2 and OLE3 belong to the S type and OLE4 and OLE5 belong to the SM type of Arabidopsis OLE. TaqMan and SYBR Green qPCR methods were used to study the differential expression of OLE genes in tung tree tissues. Expression results demonstrated that 1) All five OLE genes were expressed in developing tung seeds, leaves and flowers; 2) OLE mRNA levels were much higher in seeds than leaves or flowers; 3) OLE1, OLE2 and OLE3 genes were expressed in tung seeds at much higher levels than OLE4 and OLE5 genes; 4) OLE mRNA levels rapidly increased during seed development; and 5) OLE gene expression was well-coordinated with tung oil accumulation in the seeds. These results suggest that tung OLE genes 1-3 probably play major roles in tung oil accumulation and/or oil body development. Therefore, they might be preferred targets for tung oil engineering in transgenic plants.
Collapse
Affiliation(s)
- Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, Louisiana, United States of America
- * E-mail:
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan Province, People's Republic of China
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan Province, People's Republic of China
| | - Hongxu Long
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan Province, People's Republic of China
| | - Jay M. Shockey
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, Louisiana, United States of America
| |
Collapse
|
108
|
Nikzamir A, Palangi A, Kheirollaha A, Tabar H, Malakaskar A, Shahbazian H, Fathi M. Expression of Glucose Transporter 4 (GLUT4) is Increased by Cinnamaldehyde in C2C12 Mouse Muscle Cells. IRANIAN RED CRESCENT MEDICAL JOURNAL 2014; 16:e13426. [PMID: 24719730 PMCID: PMC3965863 DOI: 10.5812/ircmj.13426] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 09/12/2013] [Accepted: 11/06/2013] [Indexed: 11/29/2022]
Abstract
Background: In diabetes mellitus because of the absence or insufficient sensitivity to insulin, glucose transporter protein in cell membrane, glucose transporter 4, is decreased. GLUT4 is the major glucose transporter in skeletal muscle and adipose tissue, which is under control of insulin. It remains, however, unclear whether cinnamaldehyde plays a regulatory role(s) or not. Objectives: The objective of this study was to investigate the effects of cinnamaldehyde on GLUT4 gene expression. Materials and Methods: This study was an experimental trial. Tests were performed in triplicates. This study examined effects of cinnamaldehyde on Glut4 gene expression in C2C12 skeletal muscle cells by using Real Time PCR. C2C12 myoblasts were cultured in DMEM + 10 % FBS. After differentiation of myoblasts to myotubes, the cells were serum deprived for 5 hours and then treated with 10, 20, or 50 µM of cinnamaldehyde for 1 hour. Results: Our data revealed a significant increase in the expression of Glut4 in cinnamaldehyde treated cells. In addition, GLUT4 mRNA level was increased in a dose dependent manner. Analyses were performed using the SPSS 16 for Windows software. Differences between the groups were determined by one-way ANOVA. Conclusions: These results demonstrate that cinnamaldehyde up regulates the expression of mouse skeletal muscle GLUT4 gene expression.
Collapse
Affiliation(s)
- Abdolrahim Nikzamir
- Department of Biochemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
- Endocrinology and Metabolism Research Center (EMRC), Tehran University of Medical Sciences, Tehran, IR Iran
| | - Alireza Palangi
- Department of Biochemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Alireza Kheirollaha
- Department of Biochemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Hashemi Tabar
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Alimohamad Malakaskar
- Department of Biochemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Hajieh Shahbazian
- Diabetes Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Mohammad Fathi
- Department of Anesthesiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
- Corresponding Author: Mohammad Fathi, Department of Anesthesiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran. Tel: +98-2181453074, Fax: +98-2181453074, E-mail:
| |
Collapse
|
109
|
Mohamed S. Functional foods against metabolic syndrome (obesity, diabetes, hypertension and dyslipidemia) and cardiovasular disease. Trends Food Sci Technol 2014. [DOI: 10.1016/j.tifs.2013.11.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
110
|
Anderson RA, Qin B, Canini F, Poulet L, Roussel AM. Cinnamon counteracts the negative effects of a high fat/high fructose diet on behavior, brain insulin signaling and Alzheimer-associated changes. PLoS One 2013; 8:e83243. [PMID: 24349472 PMCID: PMC3862724 DOI: 10.1371/journal.pone.0083243] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/22/2013] [Indexed: 11/18/2022] Open
Abstract
Insulin resistance leads to memory impairment. Cinnamon (CN) improves peripheral insulin resistance but its effects in the brain are not known. Changes in behavior, insulin signaling and Alzheimer-associated mRNA expression in the brain were measured in male Wistar rats fed a high fat/high fructose (HF/HFr) diet to induce insulin resistance, with or without CN, for 12 weeks. There was a decrease in insulin sensitivity associated with the HF/HFr diet that was reversed by CN. The CN fed rats were more active in a Y maze test than rats fed the control and HF/HFr diets. The HF/HFr diet fed rats showed greater anxiety in an elevated plus maze test that was lessened by feeding CN. The HF/HFr diet also led to a down regulation of the mRNA coding for GLUT1 and GLUT3 that was reversed by CN in the hippocampus and cortex. There were increases in Insr, Irs1 and Irs2 mRNA in the hippocampus and cortex due to the HF/HFr diet that were not reversed by CN. Increased peripheral insulin sensitivity was also associated with increased glycogen synthase in both hippocampus and cortex in the control and HF/HFr diet animals fed CN. The HF/HFr diet induced increases in mRNA associated with Alzheimers including PTEN, Tau and amyloid precursor protein (App) were also alleviated by CN. In conclusion, these data suggest that the negative effects of a HF/HFr diet on behavior, brain insulin signaling and Alzheimer-associated changes were alleviated by CN suggesting that neuroprotective effects of CN are associated with improved whole body insulin sensitivity and related changes in the brain.
Collapse
Affiliation(s)
- Richard A. Anderson
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
- * E-mail:
| | - Bolin Qin
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
- Integrity Nutraceuticals International, Spring Hill, Tennessee, United States of America
| | - Frederic Canini
- Army Institute for Research in Biology, Grenoble, France
- Ecole du Val de Grâce, 1 place Laveran, Paris, France
| | - Laurent Poulet
- Army Institute for Research in Biology, Grenoble, France
- National Institute for Health, Joseph Fourier University, Grenoble, France
| | - Anne Marie Roussel
- National Institute for Health, Joseph Fourier University, Grenoble, France
| |
Collapse
|
111
|
Askari F, Rashidkhani B, Hekmatdoost A. Cinnamon may have therapeutic benefits on lipid profile, liver enzymes, insulin resistance, and high-sensitivity C-reactive protein in nonalcoholic fatty liver disease patients. Nutr Res 2013; 34:143-8. [PMID: 24461315 DOI: 10.1016/j.nutres.2013.11.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/19/2013] [Accepted: 11/27/2013] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent cause of hepatic injury in the world. One of the most important therapeutic strategies for this disease is modulating insulin resistance and oxidative stress. In this study, we investigated the hypothesis that supplementation with cinnamon exerts an insulin sensitizer effect in patients with NAFLD. In a double-blind, placebo-controlled trial with two parallel groups, fifty patients with NAFLD were randomized to receive daily supplementation with either two capsules of cinnamon (each capsule contain 750 mg cinnamon) or 2 placebo capsules, daily for 12 weeks. During the intervention, all patients were given advice on how to implement a balanced diet and physical activity into their daily lives. In the treatment group (P < .05), significant decreases in HOMA (Homeostatic Model Assessment) index, FBS (fasting blood glucose), total cholesterol, triglyceride, ALT (alanine aminotransferase), AST (aspartate aminotransferase), GGT (gamma glutamine transpeptidase), and high-sensitivity C-reactive protein were seen, but there was no significant change in serum high-density lipoproteins levels (P = .122). In both groups, low-density lipoproteins decreased significantly (P < .05). In conclusion, the study suggests that taking 1500 mg cinnamon daily may be effective in improving NAFLD characteristics.
Collapse
Affiliation(s)
- Faezeh Askari
- Department Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Rashidkhani
- Department Community Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
112
|
Dong Y, Lu N, Cole RB. Analysis of the volatile organic compounds inCinnamomum cassiabark by direct sample introduction thermal desorption gas chromatography–mass spectrometry. JOURNAL OF ESSENTIAL OIL RESEARCH 2013. [DOI: 10.1080/10412905.2013.796494] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
113
|
Cao H, Shockey JM, Klasson KT, Chapital DC, Mason CB, Scheffler BE. Developmental regulation of diacylglycerol acyltransferase family gene expression in tung tree tissues. PLoS One 2013; 8:e76946. [PMID: 24146944 PMCID: PMC3795650 DOI: 10.1371/journal.pone.0076946] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/26/2013] [Indexed: 11/29/2022] Open
Abstract
Diacylglycerol acyltransferases (DGAT) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. DGAT genes have been identified in numerous organisms. Multiple isoforms of DGAT are present in eukaryotes. We previously cloned DGAT1 and DGAT2 genes of tung tree (Vernicia fordii), whose novel seed TAGs are useful in a wide range of industrial applications. The objective of this study was to understand the developmental regulation of DGAT family gene expression in tung tree. To this end, we first cloned a tung tree gene encoding DGAT3, a putatively soluble form of DGAT that possesses 11 completely conserved amino acid residues shared among 27 DGAT3s from 19 plant species. Unlike DGAT1 and DGAT2 subfamilies, DGAT3 is absent from animals. We then used TaqMan and SYBR Green quantitative real-time PCR, along with northern and western blotting, to study the expression patterns of the three DGAT genes in tung tree tissues. Expression results demonstrate that 1) all three isoforms of DGAT genes are expressed in developing seeds, leaves and flowers; 2) DGAT2 is the major DGAT mRNA in tung seeds, whose expression profile is well-coordinated with the oil profile in developing tung seeds; and 3) DGAT3 is the major form of DGAT mRNA in tung leaves, flowers and immature seeds prior to active tung oil biosynthesis. These results suggest that DGAT2 is probably the major TAG biosynthetic isoform in tung seeds and that DGAT3 gene likely plays a significant role in TAG metabolism in other tissues. Therefore, DGAT2 should be a primary target for tung oil engineering in transgenic organisms.
Collapse
Affiliation(s)
- Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, Louisiana, United States of America
- * E-mail:
| | - Jay M. Shockey
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, Louisiana, United States of America
| | - K. Thomas Klasson
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, Louisiana, United States of America
| | - Dorselyn C. Chapital
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, Louisiana, United States of America
| | - Catherine B. Mason
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, Louisiana, United States of America
| | - Brian E. Scheffler
- U.S. Department of Agriculture, Agricultural Research Service, Genomics and Bioinformatics Research Unit, Stoneville, Mississippi, United States of America
| |
Collapse
|
114
|
Akilen R, Pimlott Z, Tsiami A, Robinson N. Effect of short-term administration of cinnamon on blood pressure in patients with prediabetes and type 2 diabetes. Nutrition 2013; 29:1192-6. [DOI: 10.1016/j.nut.2013.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 10/26/2022]
|
115
|
Ahmad M, Lim CP, Akowuah GA, Ismail NN, Hashim MA, Hor SY, Ang LF, Yam MF. Safety assessment of standardised methanol extract of Cinnamomum burmannii. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:1124-1130. [PMID: 23827665 DOI: 10.1016/j.phymed.2013.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 04/27/2013] [Accepted: 05/22/2013] [Indexed: 06/02/2023]
Abstract
The present study aims to evaluate the safety of methanol extract of Cinnamomum burmannii (MECB) by acute 14-day (single dose) and sub-chronic 28-day (repeated doses) oral administration to Sprague-Dawley rats. Our results showed that no toxicity was found in either acute or sub-chronic toxicity studies. MECB (containing 0.07% and 0.20% (w/w) of coumarin and trans-cinnamaldehyde, respectively), which was given orally at doses of 500, 1000 and 2000 mg/kg caused neither visible signs of toxicity nor mortality. No significant differences were observed in general condition, growth, organ weight, hematological parameters, biochemical values, or the gross and microscopic appearance of the organs from the treatment groups as compared to the control group. In conclusion, MECB did not cause any mortality nor did it cause any abnormalities in the necropsy and histopathology findings of treated rats. The LD50 for the MECB was found to be more than 2000 mg/kg. No adverse effects were observed in the treated rats at all the doses tested. The no-observed-adverse-effect level (NOAEL) for the 28-day study was determined to be 2000 mg/kg body weight/day.
Collapse
Affiliation(s)
- Mariam Ahmad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia.
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Farrell TL, Ellam SL, Forrelli T, Williamson G. Attenuation of glucose transport across Caco-2 cell monolayers by a polyphenol-rich herbal extract: interactions with SGLT1 and GLUT2 transporters. Biofactors 2013; 39:448-56. [PMID: 23361943 DOI: 10.1002/biof.1090] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/20/2012] [Indexed: 12/21/2022]
Abstract
Previous studies have indicated that secondary plant metabolites may modulate glucose absorption in the small intestine. We have characterized a polyphenol-rich herbal extract and its potential intestinal metabolites by LC-MS(2) and investigated the inhibition of glucose transporters SGLT1 and GLUT2 using the well-characterized Caco-2 intestinal model. Differentiated Caco-2 monolayers were incubated with an extract of a mixture of herbs and spices. Glucose transport under sodium-dependent and sodium-free conditions was determined by radiochemical detection of D-[U-(14) C]-glucose. A 54% decrease in transport was observed compared to control. Using sodium-dependent and sodium-free conditions, we demonstrate that the inhibition of GLUT2 was greater than SGLT1. Glycosidase and esterase enzymatic hydrolysis was used to assess the impact of metabolism on the efficacy of inhibition. Glucose transport across the membrane was reduced by 70% compared to the control and was associated with significant increases in flavonoid aglycones, caffeic acid, and p-coumaric acid. These results suggest that intact and hydrolyzed polyphenols, likely to be found in the lumen after ingestion of the supplement, play an important role in the attenuation of glucose absorption and may have potentially beneficial antiglycemic effects in the body.
Collapse
Affiliation(s)
- Tracy L Farrell
- School of Food Science and Nutrition, University of Leeds, Leeds, West Yorkshire, UK
| | | | | | | |
Collapse
|
117
|
Li J, Liu T, Wang L, Guo X, Xu T, Wu L, Qin L, Sun W. Antihyperglycemic and antihyperlipidemic action of cinnamaldehyde in C57BLKS/J db/db mice. J TRADIT CHIN MED 2013; 32:446-52. [PMID: 23297571 DOI: 10.1016/s0254-6272(13)60053-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To investigate the effects of cinnamaldehyde (CA), an active and major compound in cinnamon, on glucose metabolism and insulin resistance in C57BLKS/J db/db mice. METHODS Sixteen male C57BLKS db/db mice were randomly divided into control and CA treatment groups. CA was given (20 mg x kg(-1) x day(-1), p. o.) for 4 weeks. Pure water was given to control and db/+ mice. Subsequently, the levels of fasting blood glucose (FBG), fasting serum insulin, triglyeride, cholesterol, low-density lipoprotein-cholesterol (LDL-C), high-density lipoprotein-cholesterol (HDL-C), and free fatty acids (FFA), as well as the mRNA content of adiponectin and tumor necrosis factor (TNF)-alpha in adipose tissue, glucose transporter type 4 (GLUT-4) in skeletal muscle, and protein expressions of Akt, phospho-Akt (Thr308), AMPKalpha, phospho-AMPKalpha (Thr172) in skeletal muscle were measured. RESULTS 1) CA decreased serum levels of FBG and insulin as well as body weight in db/db mice; 2) CA increased serum HDL-C levels; 3) CA significantly decreased the mRNA expression of TNF-alpha in adipose tissue and upregulated mRNA expression of GLUT-4 in skeletal muscle; 4) protein expression of p-Akt was increased in CA-treated mice, but Akt, AMPKalpha and p-AMPKalpha showed no change. CONCLUSION CA has antihyperglycemic and antihyperlipidemic actions in db/db mice and could be useful in the treatment of type-2 diabetes.
Collapse
Affiliation(s)
- Juane Li
- Shaanxi Provincial People's Hospital, Xi'an, Shaanxi710068, China
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Herbal medicines for the management of diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 771:396-413. [PMID: 23393692 DOI: 10.1007/978-1-4614-5441-0_28] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herbal medicines have been used in the management of diabetes in traditional medicine. This chapter reviews recent findings of the most popular herbs reported to treat diabetes through their relevant mechanistic pathways. These include increased insulin secretion, improvement in insulin sensitivity, enhanced glucose uptake by adipose and muscle tissues, inhibition of glucose absorption from intestine, inhibition of glucose production from hepatocytes and anti-inflammatory activities. The pharmacological activities have highlighted the potential efficacy of these herbal medicines in the management of diabetes.
Collapse
|
119
|
Cao H, Shockey JM. Comparison of TaqMan and SYBR Green qPCR methods for quantitative gene expression in tung tree tissues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:12296-303. [PMID: 23176309 DOI: 10.1021/jf304690e] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Quantitative real-time-PCR (qPCR) is widely used for gene expression analysis due to its large dynamic range, tremendous sensitivity, high sequence specificity, little to no postamplification processing, and sample throughput. TaqMan and SYBR Green qPCR are two frequently used methods. However, direct comparison of both methods using the same primers and biological samples is still limited. We compared both assays using seven RNAs from the seeds, leaves, and flowers of tung tree (Vernicia fordii), which produces high-value industrial oil. High-quality RNA were isolated from tung tissues, as indicated by a high rRNA ratio and RNA integrity number. qPCR primers and TaqMan probes were optimized. Under optimized conditions, both qPCR gave high correlation coefficiency and similar amplification efficiency, but TaqMan qPCR generated higher y-intercepts than SYBR Green qPCR, which overestimated the expression levels regardless of the genes and tissues tested. This is validated using well-known Dgat2 and Fadx gene expression in tung tissues. The results demonstrate that both assays are reliable for determining gene expression in tung tissues and that the TaqMan assay is more sensitive but generates lower calculated expression levels than the SYBR Green assay. This study suggests that any discussion of gene expression levels needs to be linked to which qPCR method is used in the analysis.
Collapse
Affiliation(s)
- Heping Cao
- U.S. Department of Agriculture, New Orleans, LA 70124, USA.
| | | |
Collapse
|
120
|
Ranasinghe P, Jayawardana R, Galappaththy P, Constantine GR, de Vas Gunawardana N, Katulanda P. Efficacy and safety of 'true' cinnamon (Cinnamomum zeylanicum) as a pharmaceutical agent in diabetes: a systematic review and meta-analysis. Diabet Med 2012; 29:1480-92. [PMID: 22671971 DOI: 10.1111/j.1464-5491.2012.03718.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS Diabetes is a leading cause of morbidity and mortality worldwide. Studies have frequently looked at dietary components beneficial in treatment and prevention. We aim to systematically evaluate the literature on the safety and efficacy of Cinnamomum zeylanicum on diabetes. METHODS A comprehensive search of the literature was conducted in the following databases; PubMed, Web of Science, Biological Abstracts, SciVerse Scopus, SciVerse ScienceDierect, CINAHL and The Cochrane Library. A meta-analysis of studies examining the effect of C. zeylanicum extracts on clinical and biochemical parameters was conducted. Data were analysed using RevMan v5.1.2. RESULTS The literature search identified 16 studies on C. zeylanicum (five in-vitro, six in-vivo and five in-vivo/in-vitro). However, there were no human studies. In-vitro C. zeylanicum demonstrated a potential for reducing post-prandial intestinal glucose absorption by inhibiting pancreatic α-amylase and α-glucosidase, stimulating cellular glucose uptake by membrane translocation of glucose transporter-4, stimulating glucose metabolism and glycogen synthesis, inhibiting gluconeogenesis and stimulating insulin release and potentiating insulin receptor activity. The beneficial effects of C. zeylanicum in animals include attenuation of diabetes associated weight loss, reduction of fasting blood glucose, LDL and HbA(1c) , increasing HDL cholesterol and increasing circulating insulin levels. Cinnamomum zeylanicum also significantly improved metabolic derangements associated with insulin resistance. It also showed beneficial effects against diabetic neuropathy and nephropathy, with no significant toxic effects on liver and kidney and a significantly high therapeutic window. CONCLUSION Cinnamomum zeylanicum demonstrates numerous beneficial effects both in vitro and in vivo as a potential therapeutic agent for diabetes. However, further randomized clinical trials are required to establish therapeutic safety and efficacy.
Collapse
Affiliation(s)
- P Ranasinghe
- Department of Clinical Medicine, University of Colombo, Brisbane, Queensland
| | | | | | | | | | | |
Collapse
|
121
|
Qin B, Dawson HD, Schoene NW, Polansky MM, Anderson RA. Cinnamon polyphenols regulate multiple metabolic pathways involved in insulin signaling and intestinal lipoprotein metabolism of small intestinal enterocytes. Nutrition 2012; 28:1172-9. [DOI: 10.1016/j.nut.2012.03.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 12/19/2022]
|
122
|
Magistrelli A, Chezem JC. Effect of Ground Cinnamon on Postprandial Blood Glucose Concentration in Normal-Weight and Obese Adults. J Acad Nutr Diet 2012; 112:1806-9. [PMID: 23102179 DOI: 10.1016/j.jand.2012.07.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 07/30/2012] [Indexed: 01/10/2023]
|
123
|
Al-Dhubiab BE. Pharmaceutical applications and phytochemical profile of Cinnamomum burmannii. Pharmacogn Rev 2012; 6:125-31. [PMID: 23055638 PMCID: PMC3459454 DOI: 10.4103/0973-7847.99946] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/15/2012] [Accepted: 08/23/2012] [Indexed: 11/04/2022] Open
Abstract
Extensive studies have been carried out in the last decade to assess the pharmaceutical potential and screen the phytochemical constituents of Cinnamomum burmannii. Databases such as PubMed (MEDLINE), Science Direct (Embase, Biobase, biosis), Scopus, Scifinder, Google Scholar, Google Patent, Cochrane database, and web of science were searched using a defined search strategy. This plant is a member of the genus Cinnamomum and is traditionally used as a spice. Cinnamomum burmannii have been demonstrated to exhibit analgesic, antibacterial, anti-diabetic, anti-fungal, antioxidant, antirheumatic, anti-thrombotic, and anti-tumor activities. The chemical constituents are mostly cinnamyl alcohol, coumarin, cinnamic acid, cinnamaldehyde, anthocynin, and essential oils together with constituents of sugar, protein, crude fats, pectin, and others. This review presents an overview of the current status and knowledge on the traditional usage, the pharmaceutical, biological activities, and phytochemical constituents reported for C. burmannii.
Collapse
Affiliation(s)
- Bandar E Al-Dhubiab
- Department of Pharmaceutical Science, College of Clinical Pharmacy, King Faisal University, Saudi Arabia
| |
Collapse
|
124
|
Akilen R, Tsiami A, Devendra D, Robinson N. Cinnamon in glycaemic control: Systematic review and meta analysis. Clin Nutr 2012; 31:609-15. [DOI: 10.1016/j.clnu.2012.04.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 03/23/2012] [Accepted: 04/01/2012] [Indexed: 10/28/2022]
|
125
|
Rafehi H, Ververis K, Karagiannis TC. Controversies surrounding the clinical potential of cinnamon for the management of diabetes. Diabetes Obes Metab 2012; 14:493-9. [PMID: 22093965 DOI: 10.1111/j.1463-1326.2011.01538.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity levels have increased significantly in the past five decades and are predicted to continue rising, resulting in important health implications. In particular, this has translated to an increase in the occurrence of type II diabetes mellitus (T2D). To alleviate associated problems, certain nutraceuticals have been considered as potential adjuncts or alternatives to conventional prescription drugs. Cinnamon, a commonly consumed spice originating from South East Asia, is currently being investigated as a potential preventative supplement and treatment for insulin resistance, metabolic syndrome and T2D. Extensive in vitro evidence has shown that cinnamon may improve insulin resistance by preventing and reversing impairments in insulin signalling in skeletal muscle. In adipose tissue, it has been shown that cinnamon increases the expression of peroxisome proliferator-activated receptors including, PPARγ. This is comparable to the action of commonly used thiazolinediones, which are PPAR agonists. Studies have also shown that cinnamon has potent anti-inflammatory properties. However, numerous human clinical trials with cinnamon have been conducted with varying findings. While some studies have showed no beneficial effect, others have indicated improvements in cholesterol levels, systolic blood pressure, insulin sensitivity and postprandial glucose levels with cinnamon. However, the only measurement consistently improved by cinnamon consumption is fasting glucose levels. While it is still premature to suggest the use of cinnamon supplementation based on the evidence, further investigation into mechanisms of action is warranted. Apart from further characterization of genetic and epigenetic changes in model systems, systematic large-scale clinical trials are required. In this study, we discuss the mechanisms of action of cinnamon in the context of T2D and we highlight some of the associated controversies.
Collapse
Affiliation(s)
- H Rafehi
- Epigenomic Medicine Laboratory, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
126
|
Absalan A, Mohiti-Ardakani J, Hadinedoushan H, Khalili MA. Hydro-Alcoholic Cinnamon Extract, Enhances Glucose Transporter Isotype-4 Translocation from Intracellular Compartments into the Cytoplasmic Membrane of C2C12 Myotubes. Indian J Clin Biochem 2012; 27:351-6. [PMID: 24082459 DOI: 10.1007/s12291-012-0214-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/08/2012] [Indexed: 10/28/2022]
Abstract
Cinnamon has been used as an anti-diabetic agent for centuries but only in recent few years its mechanism of action has been under investigation. Previous studies showed that cinnamon might exert its anti-diabetic effect via increasing glucose transporter isotype-4 (GLUT4) gene and glycoprotein contents in fat cells. To study if hydro-alcoholic cinnamon extract (HACE) enhances GLUT4 translocation from intracellular compartments of nuclear or endoplasmic reticulum membranes (N/ER) into the cytoplasmic membrane (CM). C2C12 myoblastic cell line were seeded in DMEM plus 20 % FBS and differentiated to myotubes using 2 % horse serum. After myotubes formation, 100 or 1,000 μg/ml HACE, as intervention, and as control 1 % DMSO were added for 3 h. Cells were washed and homogenized followed by ultracentrifuge fractionation, protein separation by SDS-PAGE and GLUT4 detection using semi-quantitative Western blotting. Data analysis was done by two-independent samples t test for comparison of mean ± SD of GLUT4 percent in categories. GLUT4 contents were higher in CM of groups 100 and 1,000 μg/ml HACE and lower in 1 % DMSO treated myotubes (CI = 0.95, P < 0.05). For N/ER reverse results were obtained (CI = 0.95, P < 0.05). As our results have shown HACE induces GLUT4 translocation from intra-cell into cell surface. We conclude that cinnamon maybe a choice of type-2 diabetes mellitus treatment because its extract enhances GLUT4 contents in CM where it facilitates glucose entrance into the cell. However it is necessary to trace the signaling pathways which are activated by HACE in muscular tissue.
Collapse
Affiliation(s)
- Abdorrahim Absalan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Yazd Province Islamic Republic of Iran ; Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | | | | | | |
Collapse
|
127
|
M. Elshafi M, Azer Nawar I, A. Algamal M, Mohammad A S. Evaluation of the Biological Effects for Adding Cinnamon Volatile Oil and
TBHQ as Antioxidant on Rats’ Lipid
Profiles. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ajps.2012.100.108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
128
|
Ranasinghe P, Perera S, Gunatilake M, Abeywardene E, Gunapala N, Premakumara S, Perera K, Lokuhetty D, Katulanda P. Effects of Cinnamomum zeylanicum (Ceylon cinnamon) on blood glucose and lipids in a diabetic and healthy rat model. Pharmacognosy Res 2012; 4:73-9. [PMID: 22518078 PMCID: PMC3326760 DOI: 10.4103/0974-8490.94719] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 09/07/2011] [Accepted: 04/07/2012] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES To evaluate short- and long-term effects of Cinnamomum zeylanicum on food consumption, body weight, glycemic control, and lipids in healthy and diabetes-induced rats. MATERIALS AND METHODS The study was conducted in two phases (Phase I and Phase II), using Sprague-Dawley rats in four groups. Phase I evaluated acute effects on fasting blood glucose (FBG) (Groups 1 and 2) and on post-oral glucose (Groups 3 and 4) blood glucose. Groups 1 and 3 received distilled-water and Groups 2 and 4 received cinnamon-extracts. Phase II evaluated effects on food consumption, body weight, blood glucose, and lipids over 1 month. Group A (n = 8, distilled-water) and Group B (n = 8, cinnamon-extracts) were healthy rats, while Group C (n = 5, distilled-water) and Group D (n = 5, cinnamon-extracts) were diabetes-induced rats. Serum lipid profile and HbA1c were measured on D-0 and D-30. FBG, 2-h post-prandial blood glucose, body weight, and food consumption were measured on every fifth day. RESULTS PHASE I There was no significant difference in serial blood glucose values in cinnamon-treated group from time 0 (P > 0.05). Following oral glucose, the cinnamon group demonstrated a faster decline in blood glucose compared to controls (P < 0.05). Phase II: Between D0 and D30, the difference in food consumption was shown only in diabetes-induced rats (P < 0.001). Similarly, the significant difference following cinnamon-extracts in FBG and 2-h post-prandial blood glucose from D0 to D30 was shown only in diabetes-induced rats. In cinnamon-extracts administered groups, total and LDL cholesterol levels were lower on D30 in both healthy and diabetes-induced animals (P < 0.001). CONCLUSIONS C. zeylanicum lowered blood glucose, reduced food intake, and improved lipid parameters in diabetes-induced rats.
Collapse
Affiliation(s)
- Priyanga Ranasinghe
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Sri Lanka
| | - Sanja Perera
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Sri Lanka
| | - Mangala Gunatilake
- Department of Physiology, Faculty of Medicine, University of Colombo, Sri Lanka
| | - Eranga Abeywardene
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Sri Lanka
| | - Nuwan Gunapala
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Sri Lanka
| | | | - Kamal Perera
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Sri Lanka
| | - Dilani Lokuhetty
- Department of Pathology, Faculty of Medicine, University of Colombo, Sri Lanka
| | - Prasad Katulanda
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Sri Lanka
| |
Collapse
|
129
|
Sanduja S, Blanco FF, Dixon DA. The roles of TTP and BRF proteins in regulated mRNA decay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 2:42-57. [PMID: 21278925 DOI: 10.1002/wrna.28] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adenylate- and uridylate-rich element (ARE) motifs are cis-acting elements present in the 3′ untranslated region of mRNA transcripts that encode many inflammation- and cancer-associated genes. The TIS11 family of RNA-binding proteins, composed of tristetraprolin (TTP) and butyrate response factors 1 and 2 (BRF-1 and -2), plays a critical role in regulating the expression of ARE-containing mRNAs. Through their ability to bind and target ARE-containing mRNAs for rapid degradation, this class of RNA-binding proteins serves a fundamental role in limiting the expression of a number of critical genes, thereby exerting anti-inflammatory and anti-cancer effects. Regulation of TIS11 family members occurs on a number of levels through cellular signaling events to control their transcription, mRNA turnover, phosphorylation status, cellular localization, association with other proteins, and proteosomal degradation, all of which impact TIS11 members' ability to promote ARE-mediated mRNA decay along with decay-independent functions. This review summarizes our current understanding of posttranscriptional regulation of ARE-containing gene expression by TIS11 family members and discusses their role in maintaining normal physiological processes and the pathological consequences in their absence.
Collapse
Affiliation(s)
- Sandhya Sanduja
- Department of Biological Sciences and Cancer Research Center, University of South Carolina, Columbia, SC, USA
| | | | | |
Collapse
|
130
|
Etxeberria U, de la Garza AL, Campión J, Martínez JA, Milagro FI. Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase. Expert Opin Ther Targets 2012; 16:269-97. [PMID: 22360606 DOI: 10.1517/14728222.2012.664134] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The increasing prevalence of type 2 diabetes mellitus and the negative clinical outcomes observed with the commercially available anti-diabetic drugs have led to the investigation of new therapeutic approaches focused on controlling postprandrial glucose levels. The use of carbohydrate digestive enzyme inhibitors from natural resources could be a possible strategy to block dietary carbohydrate absorption with less adverse effects than synthetic drugs. AREAS COVERED This review covers the latest evidence regarding in vitro and in vivo studies in relation to pancreatic alpha-amylase inhibitors of plant origin, and presents bioactive compounds of phenolic nature that exhibit anti-amylase activity. EXPERT OPINION Pancreatic alpha-amylase inhibitors from traditional plant extracts are a promising tool for diabetes treatment. Many studies have confirmed the alpha-amylase inhibitory activity of plants and their bioactive compounds in vitro, but few studies corroborate these findings in rodents and very few in humans. Thus, despite some encouraging results, more research is required for developing a valuable anti-diabetic therapy using pancreatic alpha-amylase inhibitors of plant origin.
Collapse
Affiliation(s)
- Usune Etxeberria
- University of Navarra, Department of Nutrition, Food Science, Physiology and Toxicology, C/Irunlarrea, 1 31008, Pamplona, Spain
| | | | | | | | | |
Collapse
|
131
|
Rafehi H, Ververis K, Balcerczyk A, Ziemann M, Ooi J, Hu S, Kwa FAA, Loveridge SJ, Georgiadis GT, El-Osta A, Karagiannis TC. Investigation of the biological properties of Cinnulin PF in the context of diabetes: mechanistic insights by genome-wide mRNA-Seq analysis. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2012; 2:PBA-2-11905. [PMID: 22953038 PMCID: PMC3417697 DOI: 10.3402/pba.v2i0.11905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/17/2012] [Accepted: 02/01/2012] [Indexed: 01/20/2023]
Abstract
The accumulating evidence of the beneficial effects of cinnamon (Cinnamomum burmanni) in type-2 diabetes, a chronic age-associated disease, has prompted the commercialisation of various supplemental forms of the spice. One such supplement, Cinnulin PF®, represents the water soluble fraction containing relatively high levels of the double-linked procyanidin type-A polymers of flavanoids. The overall aim of this study was to utilize genome-wide mRNA-Seq analysis to characterise the changes in gene expression caused by Cinnulin PF in immortalised human keratinocytes and microvascular endothelial cells, which are relevant with respect to diabetic complications. In summary, our findings provide insights into the mechanisms of action of Cinnulin PF in diabetes and diabetic complications. More generally, we identify relevant candidate genes which could provide the basis for further investigation.
Collapse
Affiliation(s)
- Haloom Rafehi
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC., Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Abstract
With the diabetes epidemic reaching menacing proportions worldwide, there is an urgent need for the development of cost-efficient prevention strategies to be effective at the population level. Great potential in this direction lies in properly designed, large-scale dietary interventions. The macronutrient composition and the caloric content of our diet are major determinants of glucose homeostasis and there is a continuously growing list of foods, nutrients or individual compounds that have been associated with an increased or reduced incidence of diabetes mellitus. These include fat, carbohydrates, fibre, alcohol, polyphenols and other micronutrients or individual dietary compounds, which have been shown to either promote or prevent a progression towards a (pre-)diabetic state. This review aims to briefly summarize relevant epidemiological data linking foods to diabetes and to provide insights into the mechanisms through which these effects are mediated. These include improvement of insulin sensitivity or promotion of insulin resistance, regulation of inflammatory pathways, regulation of glucose transport and tissue glucose uptake, aggravation or attenuation of postprandial glycaemia/insulinaemia, interactions with hormonal responses and β-cell-dependent mechanisms.
Collapse
Affiliation(s)
- Theodoros Thomas
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.
| | | |
Collapse
|
133
|
Sanduja S, Blanco FF, Young LE, Kaza V, Dixon DA. The role of tristetraprolin in cancer and inflammation. Front Biosci (Landmark Ed) 2012; 17:174-88. [PMID: 22201737 DOI: 10.2741/3920] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Messenger RNA decay is a critical mechanism to control the expression of many inflammation- and cancer-associated genes. These transcripts are targeted for rapid degradation through AU-rich element (ARE) motifs present in the mRNA 3' untranslated region (3'UTR). Tristetraprolin (TTP) is an RNA-binding protein that plays a significant role in regulating the expression of ARE-containing mRNAs. Through its ability to bind AREs and target the bound mRNA for rapid degradation, TTP can limit the expression of a number of critical genes frequently overexpressed in inflammation and cancer. Regulation of TTP occurs on multiple levels through cellular signaling events to control transcription, mRNA turnover, phosphorylation status, cellular localization, association with other proteins, and proteosomal degradation, all of which impact TTP's ability to promote ARE-mediated mRNA decay along with decay-independent functions of TTP. This review summarizes the current understanding of post-transcriptional regulation of ARE-containing gene expression by TTP and discusses its role in maintaining homeostasis and the pathological consequences of losing TTP expression.
Collapse
Affiliation(s)
- Sandhya Sanduja
- Department of Biological Sciences and Cancer Research Center, University of South Carolina, Columbia, SC 29203, USA
| | | | | | | | | |
Collapse
|
134
|
Ballali S, Lanciai F. Functional food and diabetes: a natural way in diabetes prevention? Int J Food Sci Nutr 2011; 63 Suppl 1:51-61. [PMID: 22107597 DOI: 10.3109/09637486.2011.637487] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Diabetes shows a wide range of variation in prevalence around the world and it is expected to affect 300 million by the year 2025. In a prevention framework where banning policies and educational strategies lead the interventions, functional foods (FFs) with their specific health effects could, in the future, indicate a new mode of thinking about the relationships between food and health in everyday life. Functional ingredients, such as stevioside, cinnamon, bitter melon, garlic and onion, ginseng, Gymnema sylvestre and fenugreek, have been addressed for their specific actions towards different reactions involved in diabetes development. New strategies involving the use of FF should be validated through large-scale population trials, considering validated surrogate end points to evaluate the effect of FF in prevention of chronic diseases such as type 2 diabetes mellitus.
Collapse
|
135
|
Ulbricht C, Seamon E, Windsor RC, Armbruester N, Bryan JK, Costa D, Giese N, Gruenwald J, Iovin R, Isaac R, Grimes Serrano JM, Tanguay-Colucci S, Weissner W, Yoon H, Zhang J. An Evidence-Based Systematic Review of Cinnamon (Cinnamomumspp.) by the Natural Standard Research Collaboration. J Diet Suppl 2011; 8:378-454. [DOI: 10.3109/19390211.2011.627783] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
136
|
Couturier K, Qin B, Batandier C, Awada M, Hininger-Favier I, Canini F, Leverve X, Roussel AM, Anderson RA. Cinnamon increases liver glycogen in an animal model of insulin resistance. Metabolism 2011; 60:1590-7. [PMID: 21550075 DOI: 10.1016/j.metabol.2011.03.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 11/15/2022]
Abstract
The objective of this study was to determine the effects of cinnamon on glycogen synthesis, related gene expression, and protein levels in the muscle and liver using an animal model of insulin resistance, the high-fat/high-fructose (HF/HFr) diet-fed rat. Four groups of 22 male Wistar rats were fed for 12 weeks with (1) HF/HFr diet to induce insulin resistance, (2) HF/HFr diet containing 20 g cinnamon per kilogram of diet, (3) control diet, and (4) control diet containing 20 g cinnamon per kilogram of diet. In the liver, cinnamon added to the HF/HFr diet led to highly significant increases of liver glycogen. There were no significant changes in animals consuming the control diet plus cinnamon. In the liver, cinnamon also counteracted the decreases of the gene expressions due to the consumption of the HF/HFr diet for the insulin receptor, insulin receptor substrates 1 and 2, glucose transporters 1 and 2, and glycogen synthase 1. In muscle, the decreased expressions of these genes by the HF/HFr diet and glucose transporter 4 were also reversed by cinnamon. In addition, the overexpression of glycogen synthase 3β messenger RNA levels and protein observed in the muscle of HF/HFr fed rats was decreased in animals consuming cinnamon. These data demonstrate that, in insulin-resistant rats, cinnamon improves insulin sensitivity and enhances liver glycogen via regulating insulin signaling and glycogen synthesis. Changes due to cinnamon in control animals with normal insulin sensitivity were not significant.
Collapse
|
137
|
Viuda-Martos M, Ruiz-Navajas Y, Fernández-López J, Pérez-Alvarez JA. Spices as functional foods. Crit Rev Food Sci Nutr 2011; 51:13-28. [PMID: 21229415 DOI: 10.1080/10408390903044271] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Spices and aromatic herbs have been used since antiquity as preservatives, colorants, and flavor enhancers. Spices, which have long been the basis of traditional medicine in many countries, have also been the subject of study, particularly by the chemical, pharmaceutical, and food industries, because of their potential use for improving health. Both in vitro and in vivo studies have demonstrated how these substances act as antioxidants, digestive stimulants, and hypolipidemics and show antibacterial, anti-inflammatory, antiviral, and anticancerigenic activities. These beneficial physiological effects may also have possible preventative applications in a variety of pathologies. The aim of this review is to present an overview of the potential of spices and aromatic herbs as functional foods.
Collapse
Affiliation(s)
- M Viuda-Martos
- Grupo Industrialización de Productos de Origen Animal (IPOA), Generalitat Valenciana, Departamento de Tecnología Agroalimentaria, Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández, Orihuela Alicante
| | | | | | | |
Collapse
|
138
|
Fabian E, Töscher S, Elmadfa I, Pieber TR. Use of complementary and alternative medicine supplements in patients with diabetes mellitus. ANNALS OF NUTRITION AND METABOLISM 2011; 58:101-8. [PMID: 21474927 DOI: 10.1159/000326765] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 02/22/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS This study was conducted to evaluate the current use of biologically-based complementary and alternative medicine (CAM) therapies in diabetics, considering health awareness, motivation, and expectations for CAM use. Moreover, patients' attitudes toward cinnamon preparations and the need for appropriate information from health care professionals were determined. METHODS A total of 200 patients (59% men and 41% women) with type 1 (16%) or type 2 diabetes (84%) were interviewed using a standardized, validated questionnaire; the results from 198 respondents were analyzed. RESULTS A third of type 1 and type 2 diabetics (women > men; p < 0.01) reported current use of biologically-based CAM supplements, and intake was significantly (r = 0.203; p < 0.05) correlated to the degree of health awareness/interest in self-care in type 2 diabetics. The use of nutritional supplements (vitamins/multivitamins and minerals), herbal medicine, and cinnamon was reported most frequently. Prevention (36%) and improved well-being/quality of life (13%) but not the positive modulation of diabetes management (4%) were given as main motivations. Eighty-three percent of type 1 diabetics (women > men; p < 0.05) and 70% of type 2 diabetics already knew about the postulated positive effect of cinnamon on blood glucose. Up to 85% reported a willingness or a probable willingness to test the effect of cinnamon on blood glucose. Among patients with type 2 diabetes the subjectively felt disease burden was found to have a significant (r = 0.235; p < 0.01) impact on the willingness to use cinnamon preparations for better diabetes management. CONCLUSION This study indicates a remarkable interest in CAM remedies in the investigated group of diabetics as a strategy for active engagement in health and disease self-management. Healthcare professionals should be aware of the increasing number of patients using CAM supplements and hence incorporate these aspects into patient care in order to ensure patient satisfaction and optimize health care.
Collapse
Affiliation(s)
- Elisabeth Fabian
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria.
| | | | | | | |
Collapse
|
139
|
Lee BJ, Kim YJ, Cho DH, Sohn NW, Kang H. Immunomodulatory effect of water extract of cinnamon on anti-CD3-induced cytokine responses and p38, JNK, ERK1/2, and STAT4 activation. Immunopharmacol Immunotoxicol 2011; 33:714-22. [PMID: 22053946 DOI: 10.3109/08923973.2011.564185] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Cinnamon bark is a very popular herb used in traditional medicine to treat various disorders such as chronic gastric symptoms, arthritis, and the common cold. OBJECTIVE The immunomodulatory effect of water extract of cinnamon bark (CWE) on cytokine secretion and involvement of intracellular signaling molecules in activated T cells have been examined. MATERIALS AND METHODS Mice were orally administered CWE for 7 days. Serum was obtained 90 min after intravenous injection of anti-CD3 antibody (Ab). Splenocytes were cultured with anti-CD3 Ab and CWE for cytokine expression, cell cycle, apoptotic/necrotic changes, and viability. IκBα, p38, JNK, ERK1/2, STAT4, and STAT6 were analyzed using western blotting. RESULTS Administration of CWE decreased systemic levels of IFN-γ, but not the levels of IL-4 or IL-2. In vitro, CWE inhibited anti-CD3 Ab-stimulated IFN-γ and IL-4 at the mRNA and secreted protein levels. Despite its inhibition of IL-2 transcript, CWE enhanced IL-2 secretion. CWE treatment caused a reduction in the sub-G1 phase, accompanied by an increased ratio of apoptotic cells to necrotic cells. The increased IL-2 secretion by CWE was not mediated by its direct effect on CD4 T cells. CWE inhibited the activation of p38, JNK, ERK1/2, and STAT4, but not IκBα degradation or STAT6. DISCUSSION AND CONCLUSIONS These observations provided evidence that CWE was able to down-regulate IFN-γ expression in activated T cells without altering IL-2 production, involving inhibition of p38, JNK, ERK1/2, and STAT4. Our results contribute to a better understanding of the immunomodulatory action of cinnamon bark for the application of inflammatory disorders.
Collapse
Affiliation(s)
- Beom-Joon Lee
- Department of Internal Medicine, Kangnam Korean Hospital, Kyung Hee University, Seoul, South Korea
| | | | | | | | | |
Collapse
|
140
|
Cao H, Anderson RA. Cinnamon polyphenol extract regulates tristetraprolin and related gene expression in mouse adipocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:2739-2744. [PMID: 21329350 DOI: 10.1021/jf103527x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Cinnamon (Cinnamomum verum) has been widely used in spices, flavoring agents, and preservatives. Cinnamon polyphenol extract (CPE) may be important in the alleviation of chronic diseases, but the molecular evidence is not substantial. Tristetraprolin (TTP) family proteins have anti-inflammatory effects through the destabilization of pro-inflammatory mRNAs. TTP expression is reduced in fats of obese people with metabolic syndrome and brains of suicide victims. This study used quantitative real-time PCR to explore the effects of CPE on the regulation of TTP, VEGF, and related gene expression in mouse 3T3-L1 adipocytes. CPE (100 μg/mL) increased TTP mRNA levels by up to 10-fold, and this stimulation was sustained over 16 h. The levels of VEGF mRNA, a putative target of TTP, were decreased 40-50% by CPE. It also affected the expression of other genes coding for ZFP36L1 and ZFP36L3 (TTP homologues), GM-CSF, COX2, IL6, APP, G-CSF, and PAI1. This study demonstrated that CPE rapidly induces TTP mRNA and reduces VEGF mRNA and affects the expression of a number of other genes in the cultured adipocytes.
Collapse
Affiliation(s)
- Heping Cao
- Commodity Utilization Research Unit, Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 1100 Robert E. Lee Boulevard, New Orleans, Louisiana 70124, United States.
| | | |
Collapse
|
141
|
Abstract
Cinnamon has been used as a spice and as traditional herbal medicine for centuries. The available in vitro and animal in vivo evidence suggests that cinnamon has anti-inflammatory, antimicrobial, antioxidant, antitumor, cardiovascular, cholesterol-lowering, and immunomodulatory effects. In vitro studies have demonstrated that cinnamon may act as an insulin mimetic, to potentiate insulin activity or to stimulate cellular glucose metabolism. Furthermore, animal studies have demonstrated strong hypoglycemic properties. However, there are only very few well-controlled clinical studies, a fact that limits the conclusions that can be made about the potential health benefits of cinnamon for free-living humans. The use of cinnamon as an adjunct to the treatment of type 2 diabetes mellitus is the most promising area, but further research is needed before definitive recommendations can be made.
Collapse
|
142
|
Tinworth KD, Harris PA, Sillence MN, Noble GK. Potential treatments for insulin resistance in the horse: A comparative multi-species review. Vet J 2010; 186:282-91. [DOI: 10.1016/j.tvjl.2009.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 08/21/2009] [Accepted: 08/28/2009] [Indexed: 01/11/2023]
|
143
|
Cao H, Graves DJ, Anderson RA. Cinnamon extract regulates glucose transporter and insulin-signaling gene expression in mouse adipocytes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:1027-1032. [PMID: 20554184 DOI: 10.1016/j.phymed.2010.03.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 03/02/2010] [Accepted: 03/31/2010] [Indexed: 05/29/2023]
Abstract
Cinnamon extracts (CE) are reported to have beneficial effects on people with normal and impaired glucose tolerance, the metabolic syndrome, type 2 diabetes, and insulin resistance. However, clinical results are controversial. Molecular characterization of CE effects is limited. This study investigated the effects of CE on gene expression in cultured mouse adipocytes. Water-soluble CE was prepared from ground cinnamon (Cinnamomum burmannii). Quantitative real-time PCR was used to investigate CE effects on the expression of genes coding for adipokines, glucose transporter (GLUT) family, and insulin-signaling components in mouse 3T3-L1 adipocytes. CE (100 μg/ml) increased GLUT1 mRNA levels 1.91±0.15, 4.39±0.78, and 6.98±2.18-fold of the control after 2-, 4-, and 16-h treatments, respectively. CE decreased the expression of further genes encoding insulin-signaling pathway proteins including GSK3B, IGF1R, IGF2R, and PIK3R1. This study indicates that CE regulates the expression of multiple genes in adipocytes and this regulation could contribute to the potential health benefits of CE.
Collapse
Affiliation(s)
- Heping Cao
- Commodity Utilization Research Unit, Southern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA.
| | | | | |
Collapse
|
144
|
Plaisier C, Cok A, Scott J, Opejin A, Bushhouse KT, Salie MJ, Louters LL. Effects of cinnamaldehyde on the glucose transport activity of GLUT1. Biochimie 2010; 93:339-44. [PMID: 20955755 DOI: 10.1016/j.biochi.2010.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 10/11/2010] [Indexed: 01/09/2023]
Abstract
There is accumulating evidence that cinnamon extracts contain components that enhance insulin action. However, little is know about the effects of cinnamon on non-insulin stimulated glucose uptake. Therefore, the effects of cinnamaldehyde on the glucose transport activity of GLUT1 in L929 fibroblast cells were examined under both basal conditions and conditions where glucose uptake is activated by glucose deprivation. The data reveal that cinnamaldehyde has a dual action on the glucose transport activity of GLUT1. Under basal conditions it stimulates glucose uptake and reaches a 3.5 fold maximum stimulation at 2.0mM. However, cinnamaldehyde also inhibits the activation of glucose uptake by glucose deprivation in a dose dependent manner. Experiments with cinnamaldehyde analogs reveal that these activities are dependent on the α,β-unsaturated aldehyde structural motif in cinnamaldehyde. The inhibitory, but not the stimulatory activity of cinnamaldehyde was maintained after a wash-recovery period. Pretreatment of cinnamaldehyde with thiol-containing compounds, such as β-mercaptoethanol or cysteine, blocked the inhibitory activity of cinnamaldehyde. These results suggest that cinnamaldehyde inhibits the activation of GLUT1 by forming a covalent link to target cysteine residue/s. This dual activity of cinnamaldehyde on the transport activity of GLUT1 suggests that cinnamaldehyde is not a major contributor to the anti-diabetic properties of cinnamon.
Collapse
Affiliation(s)
- Christina Plaisier
- Department of Chemistry and Biochemistry, Calvin College, 3201 Burton SE, Grand Rapids, MI 49546, USA
| | | | | | | | | | | | | |
Collapse
|
145
|
Aggarwal BB. Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annu Rev Nutr 2010; 30:173-99. [PMID: 20420526 DOI: 10.1146/annurev.nutr.012809.104755] [Citation(s) in RCA: 285] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extensive research within the past two decades has revealed that obesity, a major risk factor for type 2 diabetes, atherosclerosis, cancer, and other chronic diseases, is a proinflammatory disease. Several spices have been shown to exhibit activity against obesity through antioxidant and anti-inflammatory mechanisms. Among them, curcumin, a yellow pigment derived from the spice turmeric (an essential component of curry powder), has been investigated most extensively as a treatment for obesity and obesity-related metabolic diseases. Curcumin directly interacts with adipocytes, pancreatic cells, hepatic stellate cells, macrophages, and muscle cells. There, it suppresses the proinflammatory transcription factors nuclear factor-kappa B, signal transducer and activators of transcription-3, and Wnt/beta-catenin, and it activates peroxisome proliferator-activated receptor-gamma and Nrf2 cell-signaling pathways, thus leading to the downregulation of adipokines, including tumor necrosis factor, interleukin-6, resistin, leptin, and monocyte chemotactic protein-1, and the upregulation of adiponectin and other gene products. These curcumin-induced alterations reverse insulin resistance, hyperglycemia, hyperlipidemia, and other symptoms linked to obesity. Other structurally homologous nutraceuticals, derived from red chili, cinnamon, cloves, black pepper, and ginger, also exhibit effects against obesity and insulin resistance.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
146
|
Akilen R, Tsiami A, Devendra D, Robinson N. Glycated haemoglobin and blood pressure-lowering effect of cinnamon in multi-ethnic Type 2 diabetic patients in the UK: a randomized, placebo-controlled, double-blind clinical trial. Diabet Med 2010; 27:1159-67. [PMID: 20854384 DOI: 10.1111/j.1464-5491.2010.03079.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AIMS To determine the blood glucose lowering effect of cinnamon on HbA1c, blood pressure and lipid profiles in people with type 2 diabetes. METHODS 58 type 2 diabetic patients (25 males and 33 females), aged 54.9 ± 9.8, treated only with hypoglycemic agents and with an HbA1c more than 7% were randomly assigned to receive either 2g of cinnamon or placebo daily for 12 weeks. RESULTS After intervention, the mean HbA1c was significantly decreased (P<0.005) in the cinnamon group (8.22% to 7.86%) compared with placebo group (8.55% to 8.68%). Mean systolic and diastolic blood pressures (SBP and DBP) were also significantly reduced (P<0.001) after 12 weeks in the cinnamon group (SBP: 132.6 to 129.2 mmHg and DBP: 85.2 to 80.2 mmHg) compared with the placebo group (SBP: 134.5 to 134.9 mmHg and DBP: 86.8 to 86.1 mmHg). A significant reduction in fasting plasma glucose (FPG), waist circumference and body mass index (BMI) was observed at week 12 compared to baseline in the cinnamon group, however, the changes were not significant when compared to placebo group. There were no significant differences in serum lipid profiles of total cholesterol, triglycerides, HDL and LDL cholesterols neither between nor within the groups. CONCLUSIONS Intake of 2g of cinnamon for 12 weeks significantly reduces the HbA1c, SBP and DBP among poorly controlled type 2 diabetes patients. Cinnamon supplementation could be considered as an additional dietary supplement option to regulate blood glucose and blood pressure levels along with conventional medications to treat type 2 diabetes mellitus.
Collapse
Affiliation(s)
- R Akilen
- Faculty of Health and Human Science, Thames Valley University, London, UK.
| | | | | | | |
Collapse
|
147
|
Huang YC, Chang WL, Huang SF, Lin CY, Lin HC, Chang TC. Pachymic acid stimulates glucose uptake through enhanced GLUT4 expression and translocation. Eur J Pharmacol 2010; 648:39-49. [PMID: 20816811 DOI: 10.1016/j.ejphar.2010.08.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 07/14/2010] [Accepted: 08/24/2010] [Indexed: 12/28/2022]
Abstract
In an effort to investigate the effect and mechanism of Poria cocos on glucose uptake, six lanostane-type triterpenoids were isolated and analyzed. Among them, pachymic acid displayed the most significant stimulating activity on glucose uptake in 3T3-L1 adipocytes. The effect of pachymic acid on the expression profile of glucose transporters in differentiated 3T3-L1 adipocytes was also analyzed. Our results demonstrated that pachymic acid induced an increase in GLUT4, but not GLUT1, expression at both the mRNA and protein levels. The role of GLUT4 was further confirmed using the lentiviral vector-derived GLUT4 short hairpin RNA (shRNA). The stimulating activity of pachymic acid on glucose uptake was abolished when the endogenous GLUT4 expression was suppressed in 3T3-L1 adipocytes. In addition to increased GLUT4 expression, pachymic acid stimulated GLUT4 redistribution from intracellular vesicles to the plasma membrane in adipocytes. Exposure of the differentiated adipocytes to pachymic acid increased the phosphorylation of insulin receptor substrate (IRS)-1, AKT and AMP-activated kinase (AMPK). The involvement of PI3K and AMPK in the action of pachymic acid was further confirmed as PI3K and AMPK inhibitors completely blocked the pachymic acid-mediated activities in adipocytes. In addition, pachymic acid was shown to induce triglyceride accumulation and inhibit lipolysis in differentiated adipocytes. Taken together, we demonstrated the insulin-like activities of this compound in stimulating glucose uptake, GLUT4 gene expression and translocation, and promoting triglyceride accumulation in adipocytes. Our study provides important insights into the underlying mechanism of hypoglycemic activity of P. cocos.
Collapse
Affiliation(s)
- Yu-Chuan Huang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
148
|
Vignudelli T, Selmi T, Martello A, Parenti S, Grande A, Gemelli C, Zanocco-Marani T, Ferrari S. ZFP36L1 negatively regulates erythroid differentiation of CD34+ hematopoietic stem cells by interfering with the Stat5b pathway. Mol Biol Cell 2010; 21:3340-51. [PMID: 20702587 PMCID: PMC2947470 DOI: 10.1091/mbc.e10-01-0040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ZFP36L1 is a member of a family of CCCH tandem zinc finger proteins (TTP family) able to bind to AU-rich elements in the 3'-untranslated region of mRNAs, thereby triggering their degradation. The present study suggests that such mechanism is used during hematopoiesis to regulate differentiation by posttranscriptionally modulating the expression of specific target genes. In particular, it demonstrates that ZFP36L1 negatively regulates erythroid differentiation by directly binding the 3' untranslated region of Stat5b encoding mRNA. Stat5b down-regulation obtained by ZFP36L1 overexpression results, in human hematopoietic progenitors, in a drastic decrease of erythroid colonies formation. These observations have been confirmed by silencing experiments targeting Stat5b and by treating hematopoietic stem/progenitor cells with drugs able to induce ZFP36L1 expression. Moreover, this study shows that different members of ZFP36L1 family act redundantly, because cooverexpression of ZFP36L1 and family member ZFP36 determines a cumulative effect on Stat5b down-regulation. This work describes a mechanism underlying ZFP36L1 capability to regulate hematopoietic differentiation and suggests a new target for the therapy of hematopoietic diseases involving Stat5b/JAK2 pathway, such as chronic myeloproliferative disorders.
Collapse
Affiliation(s)
- Tatiana Vignudelli
- Università di Modena e Reggio Emilia, Dipartimento di Scienze Biomediche, Sezione di Chimica Biologica, 41100, Modena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Ping H, Zhang G, Ren G. Antidiabetic effects of cinnamon oil in diabetic KK-Ay mice. Food Chem Toxicol 2010; 48:2344-9. [PMID: 20561948 DOI: 10.1016/j.fct.2010.05.069] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 05/10/2010] [Accepted: 05/26/2010] [Indexed: 10/19/2022]
Abstract
The hypoglycemic effect of cinnamon oil (CO) in a type 2 diabetic animal model (KK-A(y) mice) was studied. The main component of CO was cinnamaldehyde, and other nineteen components were also determined. CO was administrated at doses of 25, 50 and 100mg/kg for 35 days. It was found that fasting blood glucose concentration was significantly decreased (P<0.05) with the 100mg/kg group (P<0.01) the most efficient compared with the diabetic control group. In addition, there was significant decrease in plasma C-peptide, serum triglyceride, total cholesterol and blood urea nitrogen levels while serum high density lipoprotein (HDL)-cholesterol levels were significantly increased after 35 days. Meanwhile, glucose tolerance was improved, and the immunoreactive of pancreatic islets beta-cells was promoted. These results suggest that CO had a regulative role in blood glucose level and lipids, and improved the function of pancreatic islets. Cinnamon oil may be useful in the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Hua Ping
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No.80 South Xueyuan Road, Haidian District, Beijing 100081, People's Republic of China
| | | | | |
Collapse
|
150
|
Qin B, Panickar KS, Anderson RA. Cinnamon: potential role in the prevention of insulin resistance, metabolic syndrome, and type 2 diabetes. J Diabetes Sci Technol 2010; 4:685-93. [PMID: 20513336 PMCID: PMC2901047 DOI: 10.1177/193229681000400324] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metabolic syndrome is associated with insulin resistance, elevated glucose and lipids, inflammation, decreased antioxidant activity, increased weight gain, and increased glycation of proteins. Cinnamon has been shown to improve all of these variables in in vitro, animal, and/or human studies. In addition, cinnamon has been shown to alleviate factors associated with Alzheimer's disease by blocking and reversing tau formation in vitro and in ischemic stroke by blocking cell swelling. In vitro studies also show that components of cinnamon control angiogenesis associated with the proliferation of cancer cells. Human studies involving control subjects and subjects with metabolic syndrome, type 2 diabetes mellitus, and polycystic ovary syndrome all show beneficial effects of whole cinnamon and/or aqueous extracts of cinnamon on glucose, insulin, insulin sensitivity, lipids, antioxidant status, blood pressure, lean body mass, and gastric emptying. However, not all studies have shown positive effects of cinnamon, and type and amount of cinnamon, as well as the type of subjects and drugs subjects are taking, are likely to affect the response to cinnamon. In summary, components of cinnamon may be important in the alleviation and prevention of the signs and symptoms of metabolic syndrome, type 2 diabetes, and cardiovascular and related diseases.
Collapse
Affiliation(s)
- Bolin Qin
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, United States Department of Agriculture, Agricultural Research ServiceBeltsville, Maryland
- Beltsville Human Nutrition Research Center, IntegritySpring Hill, Tennessee
| | - Kiran S. Panickar
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, United States Department of Agriculture, Agricultural Research ServiceBeltsville, Maryland
| | - Richard A. Anderson
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, United States Department of Agriculture, Agricultural Research ServiceBeltsville, Maryland
| |
Collapse
|