101
|
Star-shaped polycaprolactone bearing mussel-inspired catechol end-groups as a promising bio-adhesive. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
102
|
Wet-adhesive, haemostatic and antimicrobial bilayered composite nanosheets for sealing and healing soft-tissue bleeding wounds. Biomaterials 2020; 252:120018. [DOI: 10.1016/j.biomaterials.2020.120018] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/21/2022]
|
103
|
Cassano R, Trapani A, Di Gioia ML, Mandracchia D, Pellitteri R, Tripodo G, Trombino S, Di Gioia S, Conese M. Synthesis and characterization of novel chitosan-dopamine or chitosan-tyrosine conjugates for potential nose-to-brain delivery. Int J Pharm 2020; 589:119829. [PMID: 32877724 DOI: 10.1016/j.ijpharm.2020.119829] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
This work aims to the synthesis of novel carboxylated chitosan-dopamine (DA) and -tyrosine (Tyr) conjugates as systems for improving the brain delivery of the neurotransmitter DA following nasal administration. For this purpose, ester or amide conjugates were synthesized by N,N-dicyclohexylcarbodiimide (DCC) mediated coupling reactions between the appropriate N-tert-butyloxycarbonyl (Boc) protected starting polymers N,O-carboxymethyl chitosan and 6-carboxy chitosan and DA or O-tert-Butyl-L-tyrosine-tert-butyl ester hydrochloride. The resulting conjugates were characterized by FT-IR and 1H- and 13C NMR spectroscopies and their in vitro mucoadhesive properties in simulated nasal fluid (SNF), toxicity and uptake from Olfactory Ensheathing Cells (OECs) were assessed. Results demonstrated that N,O-carboxymethyl chitosan-DA conjugate was the most mucoadhesive polymer in the series examined and, together with the 6-carboxy chitosan-DA-conjugate were able to release the neurotransmitter in SNF. The MTT assay showed that the starting polymers as well as all the prepared conjugates in OECs resulted not toxic at any concentration tested. Likewise, the three synthesized conjugates were not cytotoxic as well. Cytofluorimetric analysis revealed that the N,O-carboxymethyl chitosan DA conjugate was internalized by OECs in a superior manner at 24 h as compared with the starting polymer. Overall, the N,O-CMCS-DA conjugate seems promising for improving the delivery of DA by nose-to-brain administration.
Collapse
Affiliation(s)
- Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy.
| | - Maria Luisa Di Gioia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Delia Mandracchia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation (IRIB-CNR), 95126 Catania, Italy
| | - Giuseppe Tripodo
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy.
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
104
|
Park MK, Li MX, Yeo I, Jung J, Yoon BI, Joung YK. Balanced adhesion and cohesion of chitosan matrices by conjugation and oxidation of catechol for high-performance surgical adhesives. Carbohydr Polym 2020; 248:116760. [PMID: 32919558 DOI: 10.1016/j.carbpol.2020.116760] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022]
Abstract
Catechol-conjugated chitosan (CCs), used as tissue adhesive, wound dressing, and hemostatic materials, has been drawing much more attention. However, most CCs tissue adhesives exhibit poor adhesion strength, and few studies on optimization of cohesion and adhesion strength of CCs derivatives have been conducted. This work focused on the balance between cohesion and adhesion strength of catechol-conjugated chitosan (CCs) derivatives via different mechanisms of chemical and enzymatic conjugation. CCs derivatives were characterized regarding its mechanical property, cytotoxicity, platelet adhesion and wound healing test. Mechanical properties could be optimized by the degree of catechol substitution, pH and the presence of oxidizing agent, resulting in that the highest value of adhesive shear strength to the porcine tissue is 64.8 ± 5.7 kPa. In addition, CCs derivatives exhibit decreased toxicity and promoted in vivo wound healing effects as comparing to a commercially available adhesive (Dermabond®). All the results demonstrate that CCs derivatives can be used as well-optimized tissue adhesives as well as a hemostat.
Collapse
Affiliation(s)
- Mi Kyung Park
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea; Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Mei-Xian Li
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Ingyu Yeo
- Medical Device Development Center, Deagu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-Ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Jaehoon Jung
- Medical Device Development Center, Deagu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-Ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Byung-Il Yoon
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Gangwondaehak-gil, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea; Division of Bio-Medical Science and Technology, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
105
|
Mussel-inspired antimicrobial gelatin/chitosan tissue adhesive rapidly activated in situ by H 2O 2/ascorbic acid for infected wound closure. Carbohydr Polym 2020; 247:116692. [PMID: 32829820 DOI: 10.1016/j.carbpol.2020.116692] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/16/2020] [Accepted: 06/24/2020] [Indexed: 02/05/2023]
Abstract
The development of minimally invasive surgery has created a demand for ideal medical adhesives exhibiting biocompatibility, biodegradability, antimicrobial activity, and strong adhesion to tissues in wet environments. However, as clinically approved surgical tissue glues suffer from poor adhesion activation, limited adhesion strength, and toxicity, novel tissue glues are highly sought after. Herein, a mussel-inspired injectable hydrogel was prepared from catechol- and methacrylate-modified chitosan/gelatin and shown to exhibit biocompatibility, inherent antimicrobial activity, and good adhesion to wet tissues. Moreover, as this gel could be applied onto tissue surfaces and cured in situ within seconds of body contact by a biocompatible and multifunctional redox initiator (H2O2-ascorbic acid), it was concluded to be a promising surgical sealant and wound dressing (even for infected wounds) accelerating wound healing.
Collapse
|
106
|
Mechanically and functionally strengthened tissue adhesive of chitin whisker complexed chitosan/dextran derivatives based hydrogel. Carbohydr Polym 2020; 237:116138. [DOI: 10.1016/j.carbpol.2020.116138] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/21/2020] [Accepted: 03/06/2020] [Indexed: 01/08/2023]
|
107
|
Włodarczyk-Biegun MK, Paez JI, Villiou M, Feng J, del Campo A. Printability study of metal ion crosslinked PEG-catechol based inks. Biofabrication 2020; 12:035009. [DOI: 10.1088/1758-5090/ab673a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
108
|
Kim MH, Lee JN, Lee J, Lee H, Park WH. Enzymatically Cross-Linked Poly(γ-glutamic acid) Hydrogel with Enhanced Tissue Adhesive Property. ACS Biomater Sci Eng 2020; 6:3103-3113. [DOI: 10.1021/acsbiomaterials.0c00411] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Min Hee Kim
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Jee Na Lee
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Jeehee Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34134, South Korea
| | - Haeshin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34134, South Korea
| | - Won Ho Park
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| |
Collapse
|
109
|
Ge L, Chen S. Recent Advances in Tissue Adhesives for Clinical Medicine. Polymers (Basel) 2020; 12:polym12040939. [PMID: 32325657 PMCID: PMC7240468 DOI: 10.3390/polym12040939] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 12/22/2022] Open
Abstract
Tissue adhesives have attracted more attention to the applications of non-invasive wound closure. The purpose of this review article is to summarize the recent progress of developing tissue adhesives, which may inspire researchers to develop more outstanding tissue adhesives. It begins with a brief introduction to the emerging potential use of tissue adhesives in the clinic. Next, several critical mechanisms for adhesion are discussed, including van der Waals forces, capillary forces, hydrogen bonding, static electric forces, and chemical bonds. This article further details the measurement methods of adhesion and highlights the different types of adhesive, including natural or biological, synthetic and semisynthetic, and biomimetic adhesives. Finally, this review article concludes with remarks on the challenges and future directions for design, fabrication, and application of tissue adhesives in the clinic. This review article has promising potential to provide novel creative design principles for the generation of future tissue adhesives.
Collapse
Affiliation(s)
- Liangpeng Ge
- Chongqing Academy of Animal Sciences and Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
- Correspondence: (L.G.); (S.C.)
| | - Shixuan Chen
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Correspondence: (L.G.); (S.C.)
| |
Collapse
|
110
|
Hauser D, Septiadi D, Turner J, Petri-Fink A, Rothen-Rutishauser B. From Bioinspired Glue to Medicine: Polydopamine as a Biomedical Material. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1730. [PMID: 32272786 PMCID: PMC7178714 DOI: 10.3390/ma13071730] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
Biological structures have emerged through millennia of evolution, and nature has fine-tuned the material properties in order to optimise the structure-function relationship. Following this paradigm, polydopamine (PDA), which was found to be crucial for the adhesion of mussels to wet surfaces, was hence initially introduced as a coating substance to increase the chemical reactivity and surface adhesion properties. Structurally, polydopamine is very similar to melanin, which is a pigment of human skin responsible for the protection of underlying skin layers by efficiently absorbing light with potentially harmful wavelengths. Recent findings have shown the subsequent release of the energy (in the form of heat) upon light excitation, presenting it as an ideal candidate for photothermal applications. Thus, polydopamine can both be used to (i) coat nanoparticle surfaces and to (ii) form capsules and ultra-small (nano)particles/nanocomposites while retaining bulk characteristics (i.e., biocompatibility, stability under UV irradiation, heat conversion, and activity during photoacoustic imaging). Due to the aforementioned properties, polydopamine-based materials have since been tested in adhesive and in energy-related as well as in a range of medical applications such as for tumour ablation, imaging, and drug delivery. In this review, we focus upon how different forms of the material can be synthesised and the use of polydopamine in biological and biomedical applications.
Collapse
Affiliation(s)
- Daniel Hauser
- Division of Surgery & Interventional Science, Royal Free Hospital, University College London, London NW3 2PS, UK;
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland; (D.S.); (A.P.-F.)
| | - Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland; (D.S.); (A.P.-F.)
| | - Joel Turner
- Division of Surgery & Interventional Science, Royal Free Hospital, University College London, London NW3 2PS, UK;
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland; (D.S.); (A.P.-F.)
| | | |
Collapse
|
111
|
Gillman N, Lloyd D, Bindra R, Ruan R, Zheng M. Surgical applications of intracorporal tissue adhesive agents: current evidence and future development. Expert Rev Med Devices 2020; 17:443-460. [PMID: 32176853 DOI: 10.1080/17434440.2020.1743682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction: Traditional mechanical closure techniques pose many challenges including the risk of infection, tissue reaction, and injury to both patients and clinicians. There is an urgent need to develop tissue adhesive agents to reform closure technique. This review examined a variety of tissue adhesive agents available in the market in an attempt to gain a better understanding of intracorporal tissue adhesive agents as medical devices.Areas covered: Fundamental principles and clinical determinants of the tissue adhesives were summarized. The available tissue adhesives for intracorporal use and their relevant clinical evidence were then presented. Lastly, the perspective of future development for intracorporal tissue adhesive were discussed. Clinical evidence shows current agents are efficacious as adjunctive measures to mechanical closure and these agents have been trialed outside of clinical indications with varied results.Expert opinion: Despite some advancements in the development of tissue adhesives, there is still a demand to develop novel technologies in order to address unmet clinical needs, including low tensile strength in wet conditions, non-controllable polimerization and sub-optimal biocompatibility. Research trends focus on producing novel adhesive agents to remit these challenges. Examples include the development of biomimetic adhesives, externally activated adhesives, and multiple crosslinking strategies. Economic feasibility and biosafety are limiting factors for clinical implementation.
Collapse
Affiliation(s)
- Nicholas Gillman
- School of Medicine, Griffith University School of Medicine, Gold Coast, QLD, Australia.,Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - David Lloyd
- Griffith Centre for Orthopaedic Research and Engineering, Menzies Health Institute, Gold Coast, QLD, Australia
| | - Randy Bindra
- School of Medicine, Griffith University School of Medicine, Gold Coast, QLD, Australia.,Department of Plastic and Reconstructive Surgery, Gold Coast University Hospital, Southport, QLD, Australia
| | - Rui Ruan
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia.,Griffith Centre for Orthopaedic Research and Engineering, Menzies Health Institute, Gold Coast, QLD, Australia
| | - Minghao Zheng
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, 6009, Australia
| |
Collapse
|
112
|
Pandey N, Soto-Garcia LF, Liao J, Zimmern P, Nguyen KT, Hong Y. Mussel-inspired bioadhesives in healthcare: design parameters, current trends, and future perspectives. Biomater Sci 2020; 8:1240-1255. [PMID: 31984389 PMCID: PMC7056592 DOI: 10.1039/c9bm01848d] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mussels are well-known for their extraordinary capacity to adhere onto different surfaces in various hydrophillic conditions. Their unique adhesion ability under water or in wet conditions has generated considerable interest towards developing mussel inspired polymeric systems that can mimic the chemical mechanisms used by mussels for their adhesive properties. Catechols like 3,4-dihydroxy phenylalanine (DOPA) and their biochemical interactions have been largely implicated in mussels' strong adhesion to various substrates and have been the centerpoint of research and development efforts towards creating superior tissue adhesives for surgical and tissue engineering applications. In this article, we review bioadhesion and adhesives from an engineering standpoint, specifically the requirements of a good tissue glue, the relevance that DOPA and other catechols have in tissue adhesion, current trends in mussel-inspired bioadhesives, strategies to develop mussel-inspired tissue glues, and perspectives for future development of these materials.
Collapse
Affiliation(s)
- Nikhil Pandey
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Luis F. Soto-Garcia
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Philippe Zimmern
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kytai T. Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
| |
Collapse
|
113
|
Bao Z, Gao M, Sun Y, Nian R, Xian M. The recent progress of tissue adhesives in design strategies, adhesive mechanism and applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110796. [PMID: 32279807 DOI: 10.1016/j.msec.2020.110796] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 04/15/2019] [Accepted: 02/29/2020] [Indexed: 02/07/2023]
Abstract
Tissue adhesives have emerged as an effective method for wound closure and hemostasis in recent decades, due to their ability to bond tissues together, preventing separation from one tissue to another. However, existing tissue adhesives still have several limitations. Tremendous efforts have been invested into developing new tissue adhesives by improving upon existing adhesives through different strategies. Therefore, highlighting and analyzing these design strategies are essential for developing the next generation of advanced adhesives. To this end, we reviewed the available strategies for modifying traditional adhesives (including cyanoacrylate glues, fibrin sealants and BioGlue), as well as design of emerging adhesives (including gelatin sealants, methacrylated sealants and bioinspired adhesives), focusing on their structures, adhesive mechanisms, advantages, limitations, and current applications. The bioinspired adhesives have numerous advantages over traditional adhesives, which will be a wise direction for achieving tissue adhesives with superior properties.
Collapse
Affiliation(s)
- Zixian Bao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | - Minghong Gao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | - Yue Sun
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | - Rui Nian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China.
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China.
| |
Collapse
|
114
|
Wu T, Cui C, Huang Y, Liu Y, Fan C, Han X, Yang Y, Xu Z, Liu B, Fan G, Liu W. Coadministration of an Adhesive Conductive Hydrogel Patch and an Injectable Hydrogel to Treat Myocardial Infarction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2039-2048. [PMID: 31859471 DOI: 10.1021/acsami.9b17907] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Over the past decade, tissue-engineering strategies, mainly involving injectable hydrogels and epicardial biomaterial patches, have been pursued to treat myocardial infarction. However, only limited therapeutic efficacy is achieved with a single means. Here, a combined therapy approach is proposed, that is, the coadministration of a conductive hydrogel patch and injectable hydrogel to the infarcted myocardium. The self-adhesive conductive hydrogel patch is fabricated based on Fe3+-induced ionic coordination between dopamine-gelatin (GelDA) conjugates and dopamine-functionalized polypyrrole (DA-PPy), which form a homogeneous network. The injectable and cleavable hydrogel is formed in situ via a Schiff base reaction between oxidized sodium hyaluronic acid (HA-CHO) and hydrazided hyaluronic acid (HHA). Compared with a single-mode system, injecting the HA-CHO/HHA hydrogel intramyocardially followed by painting a conductive GelDA/DA-PPy hydrogel patch on the heart surface results in a more pronounced improvement of the cardiac function in terms of echocardiographical, histological, and angiogenic outcomes.
Collapse
Affiliation(s)
- Tengling Wu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Chunyan Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Yuting Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Medical Experiment Center , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Yang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Chuanchuan Fan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Xiaoxu Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Yang Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Ziyang Xu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Bo Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Medical Experiment Center , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| |
Collapse
|
115
|
Fuchs S, Shariati K, Ma M. Specialty Tough Hydrogels and Their Biomedical Applications. Adv Healthc Mater 2020; 9:e1901396. [PMID: 31846228 PMCID: PMC7586320 DOI: 10.1002/adhm.201901396] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/23/2019] [Indexed: 02/06/2023]
Abstract
Hydrogels have long been explored as attractive materials for biomedical applications given their outstanding biocompatibility, high water content, and versatile fabrication platforms into materials with different physiochemical properties and geometries. Nonetheless, conventional hydrogels suffer from weak mechanical properties, restricting their use in persistent load-bearing applications often required of materials used in medical settings. Thus, the fabrication of mechanically robust hydrogels that can prolong the lifetime of clinically suitable materials under uncompromising in vivo conditions is of great interest. This review focuses on design considerations and strategies to construct such tough hydrogels. Several promising advances in the proposed use of specialty tough hydrogels for soft actuators, drug delivery vehicles, adhesives, coatings, and in tissue engineering settings are highlighted. While challenges remain before these specialty tough hydrogels will be deemed translationally acceptable for clinical applications, promising preliminary results undoubtedly spur great hope in the potential impact this embryonic research field can have on the biomedical community.
Collapse
Affiliation(s)
- Stephanie Fuchs
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| | - Kaavian Shariati
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| |
Collapse
|
116
|
Zheng C, Zeng Q, Pimpi S, Wu W, Han K, Dong K, Lu T. Research status and development potential of composite hemostatic materials. J Mater Chem B 2020; 8:5395-5410. [DOI: 10.1039/d0tb00906g] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Through the discussion of the coagulation mechanism of compositehemostatic materials, the future development potential of hemostatic materials is proposed.
Collapse
Affiliation(s)
- Caiyun Zheng
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an Shaanxi
- P. R. China
| | - Qingyan Zeng
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an Shaanxi
- P. R. China
| | - SaHu Pimpi
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an Shaanxi
- P. R. China
| | - Wendong Wu
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an Shaanxi
- P. R. China
| | - Kai Han
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an Shaanxi
- P. R. China
| | - Kai Dong
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an Shaanxi
- P. R. China
| | - Tingli Lu
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an Shaanxi
- P. R. China
| |
Collapse
|
117
|
Cui R, Chen F, Zhao Y, Huang W, Liu C. A novel injectable starch-based tissue adhesive for hemostasis. J Mater Chem B 2020; 8:8282-8293. [DOI: 10.1039/d0tb01562h] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The starch which is modified by catechol can form hydrogel in situ so that seal the wound and reduce bleeding.
Collapse
Affiliation(s)
- Ruihua Cui
- Engineering Research Center for Biomedical Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Fangping Chen
- Engineering Research Center for Biomedical Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
- Key Laboratory for Ultrafine Materials of Ministry of Education
| | - Yujiao Zhao
- Engineering Research Center for Biomedical Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Wenjie Huang
- Engineering Research Center for Biomedical Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Changsheng Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
- Key Laboratory for Ultrafine Materials of Ministry of Education
| |
Collapse
|
118
|
Catechol-modified poly(oxazoline)s with tunable degradability facilitate cell invasion and lateral cartilage integration. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.06.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
119
|
Zhou Y, Kang L, Yue Z, Liu X, Wallace GG. Composite Tissue Adhesive Containing Catechol-Modified Hyaluronic Acid and Poly-l-lysine. ACS APPLIED BIO MATERIALS 2019; 3:628-638. [DOI: 10.1021/acsabm.9b01003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ying Zhou
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Lingzhi Kang
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Xiao Liu
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
120
|
Homaeigohar S, Tsai TY, Young TH, Yang HJ, Ji YR. An electroactive alginate hydrogel nanocomposite reinforced by functionalized graphite nanofilaments for neural tissue engineering. Carbohydr Polym 2019; 224:115112. [DOI: 10.1016/j.carbpol.2019.115112] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/04/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
|
121
|
Cheng W, Zeng X, Chen H, Li Z, Zeng W, Mei L, Zhao Y. Versatile Polydopamine Platforms: Synthesis and Promising Applications for Surface Modification and Advanced Nanomedicine. ACS NANO 2019; 13:8537-8565. [PMID: 31369230 DOI: 10.1021/acsnano.9b04436] [Citation(s) in RCA: 489] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As a mussel-inspired material, polydopamine (PDA), possesses many properties, such as a simple preparation process, good biocompatibility, strong adhesive property, easy functionalization, outstanding photothermal conversion efficiency, and strong quenching effect. PDA has attracted increasingly considerable attention because it provides a simple and versatile approach to functionalize material surfaces for obtaining a variety of multifunctional nanomaterials. In this review, recent significant research developments of PDA including its synthesis and polymerization mechanism, physicochemical properties, different nano/microstructures, and diverse applications are summarized and discussed. For the sections of its applications in surface modification and biomedicine, we mainly highlight the achievements in the past few years (2016-2019). The remaining challenges and future perspectives of PDA-based nanoplatforms are discussed rationally at the end. This timely and overall review should be desirable for a wide range of scientists and facilitate further development of surface coating methods and the production of PDA-based materials.
Collapse
Affiliation(s)
- Wei Cheng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 Singapore
| | - Hongzhong Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 Singapore
| | - Zimu Li
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
| | - Wenfeng Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
| | - Lin Mei
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 Singapore
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
| |
Collapse
|
122
|
Quan WY, Hu Z, Liu HZ, Ouyang QQ, Zhang DY, Li SD, Li PW, Yang ZM. Mussel-Inspired Catechol-Functionalized Hydrogels and Their Medical Applications. Molecules 2019; 24:E2586. [PMID: 31315269 PMCID: PMC6680511 DOI: 10.3390/molecules24142586] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/13/2019] [Accepted: 07/13/2019] [Indexed: 12/19/2022] Open
Abstract
Mussel adhesive proteins (MAPs) have a unique ability to firmly adhere to different surfaces in aqueous environments via the special amino acid, 3,4-dihydroxyphenylalanine (DOPA). The catechol groups in DOPA are a key group for adhesive proteins, which is highly informative for the biomedical domain. By simulating MAPs, medical products can be developed for tissue adhesion, drug delivery, and wound healing. Hydrogel is a common formulation that is highly adaptable to numerous medical applications. Based on a discussion of the adhesion mechanism of MAPs, this paper reviews the formation and adhesion mechanism of catechol-functionalized hydrogels, types of hydrogels and main factors affecting adhesion, and medical applications of hydrogels, and future the development of catechol-functionalized hydrogels.
Collapse
Affiliation(s)
- Wei-Yan Quan
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Zhang Hu
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China.
| | - Hua-Zhong Liu
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Qian-Qian Ouyang
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Dong-Ying Zhang
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Si-Dong Li
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Pu-Wang Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China.
| | - Zi-Ming Yang
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| |
Collapse
|
123
|
Abstract
Medical adhesives that are strong, easy to apply and biocompatible are promising alternatives to sutures and staples in a large variety of surgical and clinical procedures. Despite progress in the development and regulatory approval of adhesives for use in the clinic, adhesion to wet tissue remains challenging. Marine organisms have evolved a diverse set of highly effective wet adhesive approaches that have inspired the design of new medical adhesives. Here we provide an overview of selected marine animals and their chemical and physical adhesion strategies, the state of clinical translation of adhesives inspired by these organisms, and target applications where marine-inspired adhesives can have a significant impact. We will focus on medical adhesive polymers inspired by mussels, sandcastle worms, and cephalopods, emphasize the history of bioinspired medical adhesives from the peer reviewed and patent literature, and explore future directions including overlooked sources of bioinspiration and materials that exploit multiple bioinspired strategies.
Collapse
Affiliation(s)
- Diederik W. R. Balkenende
- Departments of Bioengineering and Materials Science and Engineering, University of California Berkeley, Berkeley, CA 94720-1760, USA
| | - Sally M. Winkler
- Departments of Bioengineering and Materials Science and Engineering, University of California Berkeley, Berkeley, CA 94720-1760, USA
- University of California, Berkeley–University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Phillip B. Messersmith
- Departments of Bioengineering and Materials Science and Engineering, University of California Berkeley, Berkeley, CA 94720-1760, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| |
Collapse
|
124
|
Luo J, Liu C, Wu J, Zhao D, Lin L, Fan H, Sun Y. In situ forming gelatin/hyaluronic acid hydrogel for tissue sealing and hemostasis. J Biomed Mater Res B Appl Biomater 2019; 108:790-797. [PMID: 31225694 DOI: 10.1002/jbm.b.34433] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Jing‐Wan Luo
- Shenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen China
| | - Chang Liu
- Shenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen China
| | | | | | - Long‐Xiang Lin
- Shenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen China
| | - Hai‐Ming Fan
- Shenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen China
| | - Yu‐Long Sun
- Shenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen China
| |
Collapse
|
125
|
A highly efficient, in situ wet-adhesive dextran derivative sponge for rapid hemostasis. Biomaterials 2019; 205:23-37. [DOI: 10.1016/j.biomaterials.2019.03.016] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 01/15/2023]
|
126
|
Design of bio-inspired adhesive surface composed of hexanoyl group-modified gelatin and silicon nanowire. Colloids Surf B Biointerfaces 2019; 178:111-119. [DOI: 10.1016/j.colsurfb.2019.02.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/06/2018] [Accepted: 02/27/2019] [Indexed: 11/18/2022]
|
127
|
Huang L, Du X, Fan S, Yang G, Shao H, Li D, Cao C, Zhu Y, Zhu M, Zhang Y. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Carbohydr Polym 2019; 221:146-156. [PMID: 31227153 DOI: 10.1016/j.carbpol.2019.05.080] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/19/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022]
Abstract
One of the latest trends in the regenerative medicine is the development of 3D-printing hydrogel scaffolds with biomimetic structures for tissue regeneration and organ reconstruction. However, it has been practically difficult to achieve a highly biomimetic hydrogel scaffolds with proper mechanical properties matching the natural tissue. Here, bacterial cellulose nanofibers (BCNFs) were applied to improve the structural resolution and enhance mechanical properties of silk fibroin (SF)/gelatin composite hydrogel scaffolds. The SF-based hydrogel scaffolds with hierarchical pores were fabricated via 3D-printing followed by lyophilization. Results showed that the tensile strength of printed sample increased significantly with the addition of BCNFs in the bioink. Large pores and micropores in the scaffolds were achieved by designing printing pattern and lyophilization after extrusion. The pores ranging from 10 to 20 μm inside the printed filaments served as host for cellular infiltration, while the pores with a diameter from 300 to 600 μm circled by printed filaments ensured sufficient nutrient supply. These 3D-printed composite scaffolds with remarkable mechanical properties and hierarchical pore structures are promising for further tissue engineering applications.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Xiaoyu Du
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, PR China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China.
| | - Gesheng Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Huili Shao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201301, PR China
| | - Chengbo Cao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China; School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Yufang Zhu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, PR China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
128
|
Luo JW, Liu C, Wu JH, Lin LX, Fan HM, Zhao DH, Zhuang YQ, Sun YL. In situ injectable hyaluronic acid/gelatin hydrogel for hemorrhage control. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:628-634. [DOI: 10.1016/j.msec.2019.01.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 12/23/2018] [Accepted: 01/08/2019] [Indexed: 12/26/2022]
|
129
|
Jahan I, George E, Saxena N, Sen S. Silver-Nanoparticle-Entrapped Soft GelMA Gels as Prospective Scaffolds for Wound Healing. ACS APPLIED BIO MATERIALS 2019; 2:1802-1814. [DOI: 10.1021/acsabm.8b00663] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
130
|
Andersen A, Chen Y, Birkedal H. Bioinspired Metal⁻Polyphenol Materials: Self-Healing and Beyond. Biomimetics (Basel) 2019; 4:E30. [PMID: 31105215 PMCID: PMC6632061 DOI: 10.3390/biomimetics4020030] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 11/17/2022] Open
Abstract
The blue mussel incorporates the polyphenolic amino acid l-3,4-dihydroxyphenylalanine (DOPA) to achieve self-healing, pH-responsiveness, and impressive underwater adhesion in the byssus threads that ensure the survival of the animal. This is achieved by a pH-dependent and versatile reaction chemistry of polyphenols, including both physical interactions as well as reversible and irreversible chemical bonding. With a short introduction to the biological background, we here review the latest advances in the development of smart materials based on the metal-chelating capabilities of polyphenols. We focus on new ways of utilizing the polyphenolic properties, including studies on the modifications of the nearby chemical environment (on and near the polyphenolic moiety) and on the incorporation of polyphenols into untraditional materials.
Collapse
Affiliation(s)
- Amanda Andersen
- Department of Chemistry and iNANO, Aarhus University, 14 Gustav Wieds Vej, 8000 Aarhus, Denmark.
| | - Yaqing Chen
- Department of Chemistry and iNANO, Aarhus University, 14 Gustav Wieds Vej, 8000 Aarhus, Denmark.
| | - Henrik Birkedal
- Department of Chemistry and iNANO, Aarhus University, 14 Gustav Wieds Vej, 8000 Aarhus, Denmark.
| |
Collapse
|
131
|
Du X, Wu L, Yan H, Qu L, Wang L, Wang X, Ren S, Kong D, Wang L. Multifunctional Hydrogel Patch with Toughness, Tissue Adhesiveness, and Antibacterial Activity for Sutureless Wound Closure. ACS Biomater Sci Eng 2019; 5:2610-2620. [DOI: 10.1021/acsbiomaterials.9b00130] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xinchen Du
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Le Wu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Hongyu Yan
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Lijie Qu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Lina Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Xin Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Shuo Ren
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Lianyong Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
132
|
Jia L, Han F, Wang H, Zhu C, Guo Q, Li J, Zhao Z, Zhang Q, Zhu X, Li B. Polydopamine-assisted surface modification for orthopaedic implants. J Orthop Translat 2019; 17:82-95. [PMID: 31194087 PMCID: PMC6551362 DOI: 10.1016/j.jot.2019.04.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/27/2019] [Accepted: 04/03/2019] [Indexed: 01/03/2023] Open
Abstract
Along with the massive use of implants in orthopaedic surgeries in recent few decades, there has been a tremendous demand for the surface modification of the implants to avoid surgery failure and improve their function. Polydopamine (PDA), being able to adhere to almost all kinds of substrates and possessing copious functional groups for covalently immobilizing biomolecules and anchoring metal ions, has been widely used for surface modification of materials since its discovery in the last decade. PDA and its derivatives can be used for the surface modification of orthopaedic implants to modulate cellular responses, including cell spreading, migration, proliferation, and differentiation, and may thereby enhance the function of existing implants. In addition, the osseointegration and antimicrobial properties of orthopaedic implants may also be improved by PDA-based coatings. The aim of this review is to provide a brief overview of current advances of surface modification technologies for orthopaedic implants using PDA and its derivatives as a medium. Given the versatility of PDA-based adhesion, such PDA-assisted surface modification technologies will certainly benefit the development of new orthopaedic implants. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Surface treatments of orthopaedic implants, which are normally inert materials, are essential for their performance in vivo. This review summarizes recent advances in the surface modification of orthopaedic implants using facile and highly versatile techniques based on the use of polydopamine (PDA) and its derivatives.
Collapse
Affiliation(s)
- Luanluan Jia
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Fengxuan Han
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Huan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Caihong Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Qianping Guo
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Jiaying Li
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Zhongliang Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Qiang Zhang
- Second Orthopedics Department, Pingxiang Traditional Chinese Medicine Hospital, Pingxiang, Jiangxi, China
| | - Xuesong Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang, China
| |
Collapse
|
133
|
Tan H, Jin D, Qu X, Liu H, Chen X, Yin M, Liu C. A PEG-Lysozyme hydrogel harvests multiple functions as a fit-to-shape tissue sealant for internal-use of body. Biomaterials 2019; 192:392-404. [DOI: 10.1016/j.biomaterials.2018.10.047] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022]
|
134
|
Liu Y, Cheong NG S, Yu J, Tsai WB. Modification and crosslinking of gelatin-based biomaterials as tissue adhesives. Colloids Surf B Biointerfaces 2019; 174:316-323. [DOI: 10.1016/j.colsurfb.2018.10.077] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 09/29/2018] [Accepted: 10/27/2018] [Indexed: 11/29/2022]
|
135
|
Zhu X, Wei C, Zhang F, Tang Q, Zhao Q. A Robust Salty Water Adhesive by Counterion Exchange Induced Coacervate. Macromol Rapid Commun 2019; 40:e1800758. [DOI: 10.1002/marc.201800758] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/09/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Xiangwei Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Wuhan 430074 China
| | - Congying Wei
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Wuhan 430074 China
| | - Fang Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Wuhan 430074 China
| | - Qingquan Tang
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Wuhan 430074 China
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
136
|
Guan L, Yan S, Liu X, Li X, Gao G. Wearable strain sensors based on casein-driven tough, adhesive and anti-freezing hydrogels for monitoring human-motion. J Mater Chem B 2019; 7:5230-5236. [DOI: 10.1039/c9tb01340g] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Flexible hydrogel-based sensors have attracted significant attention due to promising applications of wearable devices.
Collapse
Affiliation(s)
- Lin Guan
- Polymeric and Soft Materials Laboratory
- School of Chemical Engineering, and Advanced Institute of Materials Science
- Changchun University of Technology
- Changchun
- P. R. China
| | - Su Yan
- Polymeric and Soft Materials Laboratory
- School of Chemical Engineering, and Advanced Institute of Materials Science
- Changchun University of Technology
- Changchun
- P. R. China
| | - Xin Liu
- Polymeric and Soft Materials Laboratory
- School of Chemical Engineering, and Advanced Institute of Materials Science
- Changchun University of Technology
- Changchun
- P. R. China
| | - Xinyao Li
- Polymeric and Soft Materials Laboratory
- School of Chemical Engineering, and Advanced Institute of Materials Science
- Changchun University of Technology
- Changchun
- P. R. China
| | - Guanghui Gao
- Polymeric and Soft Materials Laboratory
- School of Chemical Engineering, and Advanced Institute of Materials Science
- Changchun University of Technology
- Changchun
- P. R. China
| |
Collapse
|
137
|
Zhu W, Iqbal J, Wang DA. A DOPA-functionalized chondroitin sulfate-based adhesive hydrogel as a promising multi-functional bioadhesive. J Mater Chem B 2018; 7:1741-1752. [PMID: 32254916 DOI: 10.1039/c8tb01990h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Great progress has been achieved on the study of hydrogels, which were presented for the first time in 1960 by Otto Wichterle and Drahoslav Lím. The two crucial properties of hydrogels, namely high water content and biocompatibility, have made hydrogels ideal compositions in the development of bioadhesives in recent years. Chondroitin sulfate (CS), a sulfated glycosaminoglycan (GAG), is distributed throughout animal bodies, including cartilage and the extracellular matrix (ECM), and it has been widely utilized in the dietary supplement and pharmaceutical industries. Besides, CS has been reported to have excellent pain-relief and anti-inflammation properties. Some studies have even reported CS's wound healing promoting ability. In this study, taking advantage of CS's excellent physical and chemical properties, DOPA groups were functionalized onto CS backbones. After that, the potential of the newly established CS-DOPA (CSD) hydrogel to work as a bioadhesive in multiple internal medical conditions was evaluated through in vitro and in vivo means. The outcomes of the in vivo assessments demonstrated CSD's promising potential to be further commercialized into an adhesive hydrogel product, and to be utilized in diverse clinical medications in the future.
Collapse
Affiliation(s)
- Wenzhen Zhu
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13, Singapore 637457, Singapore.
| | | | | |
Collapse
|
138
|
Biodegradable sheath-core biphasic monofilament braided stent for bio-functional treatment of esophageal strictures. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
139
|
George MN, Pedigo B, Carrington E. Hypoxia weakens mussel attachment by interrupting DOPA cross-linking during adhesive plaque curing. J R Soc Interface 2018; 15:20180489. [PMID: 30355807 PMCID: PMC6228490 DOI: 10.1098/rsif.2018.0489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022] Open
Abstract
Marine mussels (Mytilus spp.) attach to a wide variety of surfaces underwater using a network of byssal threads, each tipped with a protein-based adhesive plaque that uses the surrounding seawater environment as a curing agent. Plaques undergo environmental post-processing, requiring a basic seawater pH be maintained for up to 8 days for the adhesive to strengthen completely. Given the sensitivity of plaques to local pH conditions long after deposition, we investigated the effect of other aspects of the seawater environment that are known to vary in nearshore habitats on plaque curing. The effect of seawater temperature, salinity and dissolved oxygen concentration were investigated using tensile testing, atomic force microscopy and amino acid compositional analysis. High temperature (30°C) and hyposalinity (1 PSU) had no effect on adhesion strength, while incubation in hypoxia (0.9 mg l-1) caused plaques to have a mottled coloration and prematurely peel from substrates, leading to a 51% decrease in adhesion strength. AFM imaging of the plaque cuticle found that plaques cured in hypoxia had regions of lower stiffness throughout, indicative of reductions in DOPA cross-linking between adhesive proteins. A better understanding of the dynamics of plaque curing could aid in the design of better synthetic adhesives, particularly in medicine where adhesion must take place within wet body cavities.
Collapse
Affiliation(s)
- Matthew N George
- Friday Harbor Laboratories, 620 University Road, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, 24 Kincaid Hall, Seattle, WA 98195, USA
| | - Benjamin Pedigo
- Department of Bioengineering, University of Washington, 720 15th Avenue NE, Seattle, WA 98105, USA
| | - Emily Carrington
- Friday Harbor Laboratories, 620 University Road, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, 24 Kincaid Hall, Seattle, WA 98195, USA
| |
Collapse
|
140
|
Liang Y, Zhao X, Ma PX, Guo B, Du Y, Han X. pH-responsive injectable hydrogels with mucosal adhesiveness based on chitosan-grafted-dihydrocaffeic acid and oxidized pullulan for localized drug delivery. J Colloid Interface Sci 2018; 536:224-234. [PMID: 30368094 DOI: 10.1016/j.jcis.2018.10.056] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 11/27/2022]
Abstract
Injectable hydrogels with multifunctional properties, including tissue adhesiveness and pH-sensitivity are highly desired for localized drug delivery in disease treatment, and their design is still challenging. We developed a series of multifunctional injectable mucoadhesive and pH-responsive hydrogels based on chitosan-grafted-dihydrocaffeic acid (CS-DA) and oxidized pullulan (OP) via a Schiff base reaction. These hydrogels exhibited good injectability, suitable gelation time, in vitro pH-dependent equilibrated swelling ratios, morphologies, and rheological characteristics. The desirable in vitro pH-sensitive drug release behavior of these hydrogels was demonstrated by a drug release test with anti-cancer drug doxorubicin (DOX) loaded hydrogels at different pH values. The hydrogels showed good DOX release, effectively killing colon tumor cells (HCT116 cells) and good antibacterial properties against E. coli and S. aureus in vitro when the antibacterial model drug amoxicillin was encapsulated in the hydrogels. A lap-shear test was also carried out with these hydrogels. The hydrogels exhibited good mucosal adhesion, indicating their potential use in mucosa-localized drug delivery systems. All these results suggest that these injectable pH-responsive adhesive hydrogels are ideal candidates for development of colon cancer drug delivery carriers or mucoadhesive drug delivery systems.
Collapse
Affiliation(s)
- Yongping Liang
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin Zhao
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Peter X Ma
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Baolin Guo
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yaping Du
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Xuezhe Han
- Department of Orthopaedics, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
141
|
Liu C, Yao W, Tian M, Wei J, Song Q, Qiao W. Mussel-inspired degradable antibacterial polydopamine/silica nanoparticle for rapid hemostasis. Biomaterials 2018; 179:83-95. [DOI: 10.1016/j.biomaterials.2018.06.037] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/19/2018] [Accepted: 06/24/2018] [Indexed: 12/15/2022]
|
142
|
Xie Y, Zheng Y, Fan J, Wang Y, Yue L, Zhang N. Novel Electronic-Ionic Hybrid Conductive Composites for Multifunctional Flexible Bioelectrode Based on in Situ Synthesis of Poly(dopamine) on Bacterial Cellulose. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22692-22702. [PMID: 29895145 DOI: 10.1021/acsami.8b05345] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
With the rapid development of the wearable detector and medical devices, flexible biosensing materials have received more and more attention. In this work, a novel flexible and conductive biocompatible composite with electronic and ionic bioconductive ability was demonstrated to fabricate a new flexible bioelectrode used for electrophysiological signal detection. This composite was prepared by the in situ self-polymerization of dopamine on the nanofiber of bacterial cellulose (BC) under the neutral pH condition. By using this method, poly(dopamine) (PDA) could form a uniform and continuous wrapped layer on the BC nanofiber that can prevent the aggregation of PDA caused by rapid polymerization under the conventional alkaline condition. In addition, a fabricated film with a special structure is suitable for the transportation of electrons and ions existing in it. Moreover, the flexible conductive film (FCF) reveals an extremely tensile strength, which is 2 times higher than the pure BC in addition to a high electric conductivity, which reaches a value of 10-3 S/cm with a high PDA content. Furthermore, the result of electrocardiogram signal testing shows that the antibacterial property of the FCF bioelectrode has an excellent stability, which is comparable to or better than the commercially available electrode. The BC/PDA-FCF provides a platform for the creation of flexible conductive biomaterials for wearable response devices.
Collapse
Affiliation(s)
- Yajie Xie
- School of Materials Science and Engineering , University of Science and Technology Beijing , Beijing 100083 , PR China
| | - Yudong Zheng
- School of Materials Science and Engineering , University of Science and Technology Beijing , Beijing 100083 , PR China
| | - Jinsheng Fan
- School of Materials Science and Engineering , University of Science and Technology Beijing , Beijing 100083 , PR China
| | - Yansen Wang
- School of Materials Science and Engineering , University of Science and Technology Beijing , Beijing 100083 , PR China
| | - Lina Yue
- School of Environmental Engineering , North China Institute of Science and Technology , Yanjiao Beijing 101601 , PR China
| | - Nannan Zhang
- Shenzhen Institues of Adavanced Technology, Chinese Academy of Science , Shenzhen 518055 , PR China
| |
Collapse
|
143
|
Zeng Z, Mo X. Rapid in situ cross-linking of hydrogel adhesives based on thiol-grafted bio-inspired catechol-conjugated chitosan. J Biomater Appl 2018; 32:612-621. [PMID: 29113567 DOI: 10.1177/0885328217738403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this paper, a novel chitosan derivative, thiol-grafting bio-inspired catechol-conjugated chitosan was synthesized. The chemical structure of the synthesized catechol-conjugated chitosan was verified by 1H NMR, and its contents of thiol group and catechol group were determined by UV-vis spectrum. Four percent of catechol-conjugated chitosan aqueous solution could form hydrogels rapidly in situ in 1 min or less with the addition of sodium periodate. Rheological studies showed that the mechanical properties depend on the concentrations of catechol-conjugated chitosan and the molar ratio of sodium periodate to catechol groups. Additionally, the adhesive properties of the resulting adhesives were evaluated, and the adhesion strength of obtained adhesives was as high as 50 kPa because of the complex and multiple interactions, especially the anti-oxidation mechanism of thiol group. The in vitro cytotoxicity assays demonstrated an excellent biocompatibility of the catechol-conjugated chitosan hydrogels. Benefiting from the in situ fast cured, desired mechanical strength, biocompatibility and relatively high adhesion performance, these properties suggested that catechol-conjugated chitosan hydrogel adhesives have potential applications as tissue adhesive for soft tissues.
Collapse
Affiliation(s)
- Zhiwen Zeng
- 168286 College of Materials Science and Engineering, Donghua University , Shanghai, China
| | - Xiumei Mo
- 168286 College of Materials Science and Engineering, Donghua University , Shanghai, China
| |
Collapse
|
144
|
Patil N, Jérôme C, Detrembleur C. Recent advances in the synthesis of catechol-derived (bio)polymers for applications in energy storage and environment. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.04.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
145
|
Zhu W, Chuah YJ, Wang DA. Bioadhesives for internal medical applications: A review. Acta Biomater 2018; 74:1-16. [PMID: 29684627 DOI: 10.1016/j.actbio.2018.04.034] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/08/2018] [Accepted: 04/19/2018] [Indexed: 12/17/2022]
Abstract
Bioadhesives such as tissue adhesives, hemostatic agents, and tissue sealants have gained increasing popularity in different areas of clinical operations during the last three decades. Bioadhesives can be categorized into internal and external ones according to their application conditions. External bioadhesives are generally applied in topical medications such as wound closure and epidermal grafting. Internal bioadhesives are mainly used in intracorporal conditions with direct contact to internal environment including tissues, organs and body fluids, such as chronic organ leak repair and bleeding complication reduction. This review focuses on internal bioadhesives that, in contrast with external bioadhesives, emphasize much more on biocompatibility and adhesive ability to wet surfaces rather than on gluing time and intensity. The crosslinking mechanisms of present internal bioadhesives can be generally classified as follows: 1) chemical conjugation between reactive groups; 2) free radical polymerization by light or redox initiation; 3) biological or biochemical coupling with specificity; and 4) biomimetic adhesion inspired from natural phenomena. In this review, bioadhesive products of each class are summarized and discussed by comparing their designs, features, and applications as well as their prospects for future development. STATEMENT OF SIGNIFICANCE Despite the emergence of numerous novel bioadhesive formulations in recent years, thus far, the classification of internal and external bioadhesives has not been well defined and universally acknowledged. Many of the formulations have been proposed for treatment of several diseases even though they are not applicable for such conditions. This is because of the lack of a systematic standard or evaluation protocol during the development of a new adhesive product. In this review, the definition of internal and external bioadhesives is given for the first time, and with a focus on internal bioadhesives, the criteria of an ideal internal bioadhesive are adequately discussed; this is followed by the review of recently developed internal bioadhesives based on different gluing mechanisms.
Collapse
Affiliation(s)
- Wenzhen Zhu
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Yon Jin Chuah
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 637335, Singapore
| | - Dong-An Wang
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore.
| |
Collapse
|
146
|
Liu Y, He W, Zhang Z, Lee BP. Recent Developments in Tough Hydrogels for Biomedical Applications. Gels 2018; 4:E46. [PMID: 30674822 PMCID: PMC6209285 DOI: 10.3390/gels4020046] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/15/2022] Open
Abstract
A hydrogel is a three-dimensional polymer network with high water content and has been attractive for many biomedical applications due to its excellent biocompatibility. However, classic hydrogels are mechanically weak and unsuitable for most physiological load-bearing situations. Thus, the development of tough hydrogels used in the biomedical field becomes critical. This work reviews various strategies to fabricate tough hydrogels with the introduction of non-covalent bonds and the construction of stretchable polymer networks and interpenetrated networks, such as the so-called double-network hydrogel. Additionally, the design of tough hydrogels for tissue adhesive, tissue engineering, and soft actuators is reviewed.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Weilue He
- FM Wound Care LLC, Hancock, MI 49930, USA.
| | - Zhongtian Zhang
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Bruce P Lee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| |
Collapse
|
147
|
Xu Q, A S, McMichael P, Creagh-Flynn J, Zhou D, Gao Y, Li X, Wang X, Wang W. Double-Cross-Linked Hydrogel Strengthened by UV Irradiation from a Hyperbranched PEG-Based Trifunctional Polymer. ACS Macro Lett 2018; 7:509-513. [PMID: 35632922 DOI: 10.1021/acsmacrolett.8b00138] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Conventional wound healing materials suffer from low efficiency, poor mechanical strength, and nontunable properties. Responsive hydrogels are appealing candidates for tissue engineering. Herein, we developed a double-cross-linked hydrogel system composed of hyperbranched PEG-based polymer, comprising pre-cross-linked acetal structure and numerous terminal acrylate groups, which can form hydrogels in situ and can be further strengthened by UV irradiation. The hyperbranched glycidyl methacrylate-co-poly(ethylene glycol) diacrylate polymers (HB-GMA-PEGs) were first synthesized via in situ deactivation enhanced atom transfer radical polymerization (DE-ATRP). A series of pre-cross-linked materials were achieved after postfunctionalization. The material can absorb a high amount of water to form hydrogels, and the gel stiffness was evaluated in detail before and after UV irradiation. The in vitro cytotoxicity experiments were conducted with the resulting materials and have demonstrated their good biocompatibility. The results indicate that this type of hydrogel with high water uptake capacity has appealing potential as a responsive biomaterial for wound closure.
Collapse
Affiliation(s)
- Qian Xu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Sigen A
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Peter McMichael
- Institut National Polytechnique - Ecole Nationale Supérieure des Ingénieurs en Arts Chimiques Et Technologiques (INP-ENSIACET), Toulouse, France
| | - Jack Creagh-Flynn
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Dezhong Zhou
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Yongsheng Gao
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Xiaolin Li
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Xi Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
- School of Mechanical & Materials Engineering, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
148
|
Peng X, Peng Y, Han B, Liu W, Zhang F, Linhardt RJ. IO4−-stimulated crosslinking of catechol-conjugated hydroxyethyl chitosan as a tissue adhesive. J Biomed Mater Res B Appl Biomater 2018; 107:582-593. [DOI: 10.1002/jbm.b.34150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/26/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Xiaoting Peng
- College of Marine Life Sciences, Ocean University of China; Qingdao China
| | - Yanfei Peng
- College of Marine Life Sciences, Ocean University of China; Qingdao China
| | - Baoqin Han
- College of Marine Life Sciences, Ocean University of China; Qingdao China
| | - Wanshun Liu
- College of Marine Life Sciences, Ocean University of China; Qingdao China
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute; Troy New York 12180
- Department of Chemical and Biological Engineering; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute; Troy New York 12180
- Department of Biology; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute; Troy New York 12180
- Department of Biomedical Engineering; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute; Troy New York 12180
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute; Troy New York 12180
- Department of Chemical and Biological Engineering; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute; Troy New York 12180
- Department of Biology; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute; Troy New York 12180
- Department of Biomedical Engineering; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute; Troy New York 12180
| |
Collapse
|
149
|
Guo J, Sun W, Kim JP, Lu X, Li Q, Lin M, Mrowczynski O, Rizk EB, Cheng J, Qian G, Yang J. Development of tannin-inspired antimicrobial bioadhesives. Acta Biomater 2018; 72:35-44. [PMID: 29555464 PMCID: PMC6328059 DOI: 10.1016/j.actbio.2018.03.008] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/03/2018] [Accepted: 03/05/2018] [Indexed: 12/25/2022]
Abstract
Tissue adhesives play an important role in surgery to close wounds, seal tissues, and stop bleeding, but existing adhesives are costly, cytotoxic, or bond weakly to tissue. Inspired by the water-resistant adhesion of plant-derived tannins, we herein report a new family of bioadhesives derived from a facile, one-step Michael addition of tannic acid and gelatin under oxidizing conditions and crosslinked by silver nitrate. The oxidized polyphenol groups of tannic acid enable wet tissue adhesion through catecholamine-like chemistry, while both tannic acid and silver nanoparticles reduced from silver nitrate provide antimicrobial sources inherent within the polymeric network. These tannin-inspired gelatin bioadhesives are low-cost and readily scalable and eliminate the concerns of potential neurological effect brought by mussel-inspired strategy due to the inclusion of dopamine; variations in gelatin source (fish, bovine, or porcine) and tannic acid feeding ratios resulted in tunable gelation times (36 s-8 min), controllable degradation (up to 100% degradation within a month), considerable wet tissue adhesion strengths (up to 3.7 times to that of fibrin glue), excellent cytocompatibility, as well as antibacterial and antifungal properties. The innate properties of tannic acid as a natural phenolic crosslinker, molecular glue, and antimicrobial agent warrant a unique and significant approach to bioadhesive design. STATEMENT OF SIGNIFICANCE This manuscript describes the development of a new family of tannin-inspired antimicrobial bioadhesives derived from a facile, one-step Michael addition of tannic acid and gelatin under oxidizing conditions and crosslinked by silver nitrate. Our strategy is new and can be easily extended to other polymer systems, low-cost and readily scalable, and eliminate the concerns of potential neurological effect brought by mussel-inspired strategy due to the inclusion of dopamine. The tannin-inspired gelatin bioadhesives hold great promise for a number of applications in wound closure, tissue sealant, hemostasis, antimicrobial and cell/drug delivery, and would be interested to the readers from biomaterials, tissue engineering, and drug delivery area.
Collapse
Affiliation(s)
- Jinshan Guo
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Wei Sun
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Zhejiang Provincial Top Key Discipline of Bioengineering, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Jimin Peter Kim
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xili Lu
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Institute of Materials Processing and Intelligent Manufacturing, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Qiyao Li
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Min Lin
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Emergency Center, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi 330006, China
| | - Oliver Mrowczynski
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey 17033, USA
| | - Elias B Rizk
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey 17033, USA
| | - Juange Cheng
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Zhejiang Provincial Top Key Discipline of Bioengineering, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Guoying Qian
- Zhejiang Provincial Top Key Discipline of Bioengineering, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China.
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
150
|
Liu F, Long Y, Zhao Q, Liu X, Qiu G, Zhang L, Ling Q, Gu H. Gallol-containing homopolymers and block copolymers: ROMP synthesis and gelation properties by metal-coordination and oxidation. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|