101
|
Bchir S, ben Nasr H, Garrouch A, ben Anes A, Abbassi A, Tabka Z, Chahed K. MMP-3 (-1171 5A/6A; Lys45Glu) variants affect serum levels of matrix metalloproteinase (MMP)-3 and correlate with severity of COPD: A study of MMP-3, MMP-7 and MMP-12 in a Tunisian population. J Gene Med 2017; 20. [DOI: 10.1002/jgm.2999] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/04/2017] [Accepted: 11/11/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- Sarra Bchir
- Unité de recherche UR12ES06, Physiologie de l'Exercice et Physiopathologie: de l'Intégré au Moléculaire ‘Biologie, Médecine et Santé’; Université de Sousse, Faculté de Médecine de Sousse; Tunisia
- Department of Biology; Institut Supérieur de Biotechnologie de Monastir, Université de Monastir; Tunisia
| | - Hela ben Nasr
- Unité de recherche UR12ES06, Physiologie de l'Exercice et Physiopathologie: de l'Intégré au Moléculaire ‘Biologie, Médecine et Santé’; Université de Sousse, Faculté de Médecine de Sousse; Tunisia
- Department of Biology; Institut des Sciences Infirmières; Sousse Tunisia
| | | | - Amel ben Anes
- Unité de recherche UR12ES06, Physiologie de l'Exercice et Physiopathologie: de l'Intégré au Moléculaire ‘Biologie, Médecine et Santé’; Université de Sousse, Faculté de Médecine de Sousse; Tunisia
| | - Ammar Abbassi
- Unité de recherche UR12ES06, Physiologie de l'Exercice et Physiopathologie: de l'Intégré au Moléculaire ‘Biologie, Médecine et Santé’; Université de Sousse, Faculté de Médecine de Sousse; Tunisia
- District Medical du Centre; CNAM; Sousse Tunisia
| | - Zouhair Tabka
- Unité de recherche UR12ES06, Physiologie de l'Exercice et Physiopathologie: de l'Intégré au Moléculaire ‘Biologie, Médecine et Santé’; Université de Sousse, Faculté de Médecine de Sousse; Tunisia
| | - Karim Chahed
- Unité de recherche UR12ES06, Physiologie de l'Exercice et Physiopathologie: de l'Intégré au Moléculaire ‘Biologie, Médecine et Santé’; Université de Sousse, Faculté de Médecine de Sousse; Tunisia
- Department of Biochemistry; Université de Sfax, Faculté des Sciences de Sfax; Tunisia
| |
Collapse
|
102
|
Padwal M, Siddique I, Wu L, Tang K, Boivin F, Liu L, Robertson J, Bridgewater D, West-Mays J, Gangji A, Brimble KS, Margetts PJ. Matrix metalloproteinase 9 is associated with peritoneal membrane solute transport and induces angiogenesis through β-catenin signaling. Nephrol Dial Transplant 2017; 32:50-61. [PMID: 27190383 DOI: 10.1093/ndt/gfw076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 03/16/2016] [Indexed: 12/21/2022] Open
Abstract
Background For patients using peritoneal dialysis (PD), the peritoneal membrane can develop fibrosis and angiogenesis, leading to ultrafiltration failure, chronic hypervolemia and increased risk of technique failure and mortality. Matrix metalloproteinases (MMPs), and specifically the gelatinases (MMP2 and MMP9), may be involved in peritoneal membrane injury. Methods From stable PD patients, mesothelial cells were assayed for MMP gene expression. MMP9 was overexpressed in mouse peritoneum by adenovirus, and MMP9 -/- mice were subjected to transforming growth factor β (TGF-β)-induced peritoneal fibrosis. Results MMP9 mRNA expression correlated with peritoneal membrane solute transport properties. Overexpression of MMP9 in the mouse peritoneum induced submesothelial thickening and angiogenesis. MMP9 induced mesothelial cell transition to a myofibroblast phenotype measured by increased alpha smooth muscle actin and decreased E-cadherin expression. Angiogenesis was markedly reduced in MMP9 -/- mice treated with an adenovirus expressing active TGF-β compared with wild-type mice. TGF-β-mediated E-cadherin cleavage was MMP9 dependent, and E-cadherin cleavage led to β-catenin-mediated signaling. A β-catenin inhibitor blocked the angiogenic response induced by AdMMP9. Conclusions Our data suggest that MMP9 is involved in peritoneal membrane injury possibly through cleavage of E-cadherin and induction of β-catenin signaling. MMP9 is a potential biomarker for peritoneal membrane injury and is a therapeutic target to protect the peritoneal membrane in PD patients.
Collapse
Affiliation(s)
- Manreet Padwal
- Division of Nephrology, St. Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Imad Siddique
- Division of Nephrology, St. Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Lili Wu
- Institute of Traditional Chinese Medicine, Beijing, China
| | - Katelynn Tang
- Division of Nephrology, St. Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Felix Boivin
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Limin Liu
- Division of Nephrology, St. Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jennifer Robertson
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Darren Bridgewater
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Judith West-Mays
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Azim Gangji
- Division of Nephrology, St. Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Kenneth Scott Brimble
- Division of Nephrology, St. Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Peter J Margetts
- Division of Nephrology, St. Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
103
|
Radisky ES, Raeeszadeh-Sarmazdeh M, Radisky DC. Therapeutic Potential of Matrix Metalloproteinase Inhibition in Breast Cancer. J Cell Biochem 2017; 118:3531-3548. [PMID: 28585723 PMCID: PMC5621753 DOI: 10.1002/jcb.26185] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc endopeptidases that cleave nearly all components of the extracellular matrix as well as many other soluble and cell-associated proteins. MMPs have been implicated in normal physiological processes, including development, and in the acquisition and progression of the malignant phenotype. Disappointing results from a series of clinical trials testing small molecule, broad spectrum MMP inhibitors as cancer therapeutics led to a re-evaluation of how MMPs function in the tumor microenvironment, and ongoing research continues to reveal that these proteins play complex roles in cancer development and progression. It is now clear that effective targeting of MMPs for therapeutic benefit will require selective inhibition of specific MMPs. Here, we provide an overview of the MMP family and its biological regulators, the tissue inhibitors of metalloproteinases (TIMPs). We then summarize recent research from model systems that elucidate how specific MMPs drive the malignant phenotype of breast cancer cells, including acquisition of cancer stem cell features and induction of the epithelial-mesenchymal transition, and we also outline clinical studies that implicate specific MMPs in breast cancer outcomes. We conclude by discussing ongoing strategies for development of inhibitors with therapeutic potential that are capable of selectively targeting the MMPs most responsible for tumor promotion, with special consideration of the potential of biologics including antibodies and engineered proteins based on the TIMP scaffold. J. Cell. Biochem. 118: 3531-3548, 2017. © 2017 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville 32224, Florida
| | | | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville 32224, Florida
| |
Collapse
|
104
|
Funke M, Knudsen L, Lagares D, Ebener S, Probst CK, Fontaine BA, Franklin A, Kellner M, Kühnel M, Matthieu S, Grothausmann R, Chun J, Roberts JD, Ochs M, Tager AM. Lysophosphatidic Acid Signaling through the Lysophosphatidic Acid-1 Receptor Is Required for Alveolarization. Am J Respir Cell Mol Biol 2017; 55:105-16. [PMID: 27082727 DOI: 10.1165/rcmb.2015-0152oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Lysophosphatidic acid (LPA) signaling through one of its receptors, LPA1, contributes to both the development and the pathological remodeling after injury of many organs. Because we found previously that LPA-LPA1 signaling contributes to pulmonary fibrosis, here we investigated whether this pathway is also involved in lung development. Quantitative assessment of lung architecture of LPA1-deficient knock-out (KO) and wild-type (WT) mice at 3, 12, and 24 weeks of age using design-based stereology suggested the presence of an alveolarization defect in LPA1 KO mice at 3 weeks, which persisted as alveolar numbers increased in WT mice into adulthood. Across the ages examined, the lungs of LPA1 KO mice exhibited decreased alveolar numbers, septal tissue volumes, and surface areas, and increased volumes of the distal airspaces. Elastic fibers, critical to the development of alveolar septa, appeared less organized and condensed and more discontinuous in KO alveoli starting at P4. Tropoelastin messenger RNA expression was decreased in KO lungs, whereas expression of matrix metalloproteinases degrading elastic fibers was either decreased or unchanged. These results are consistent with the abnormal lung phenotype of LPA1 KO mice, being attributable to reduced alveolar septal formation during development, rather than to increased septal destruction as occurs in the emphysema of chronic obstructive pulmonary disease. Peripheral septal fibroblasts and myofibroblasts, which direct septation in late alveolarization, demonstrated reduced production of tropoelastin and matrix metalloproteinases, and diminished LPA-induced migration, when isolated from LPA1 KO mice. Taken together, our data suggest that LPA-LPA1 signaling is critically required for septation during alveolarization.
Collapse
Affiliation(s)
- Manuela Funke
- 1 Departments of Pulmonary Medicine, Inselspital Berne, and.,2 Clinical Research, University of Berne, Berne, Switzerland.,3 Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases, and
| | - Lars Knudsen
- 4 Institute of Functional and Applied Anatomy, Hannover Medical School, and Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, REBIRTH Cluster of Excellence, Hannover, Germany; and
| | - David Lagares
- 3 Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases, and
| | - Simone Ebener
- 1 Departments of Pulmonary Medicine, Inselspital Berne, and.,2 Clinical Research, University of Berne, Berne, Switzerland
| | - Clemens K Probst
- 3 Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases, and
| | - Benjamin A Fontaine
- 3 Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases, and
| | - Alicia Franklin
- 3 Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases, and
| | - Manuela Kellner
- 4 Institute of Functional and Applied Anatomy, Hannover Medical School, and Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, REBIRTH Cluster of Excellence, Hannover, Germany; and
| | - Mark Kühnel
- 4 Institute of Functional and Applied Anatomy, Hannover Medical School, and Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, REBIRTH Cluster of Excellence, Hannover, Germany; and
| | - Stephanie Matthieu
- 4 Institute of Functional and Applied Anatomy, Hannover Medical School, and Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, REBIRTH Cluster of Excellence, Hannover, Germany; and
| | - Roman Grothausmann
- 4 Institute of Functional and Applied Anatomy, Hannover Medical School, and Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, REBIRTH Cluster of Excellence, Hannover, Germany; and
| | - Jerold Chun
- 5 Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, Scripps Research Institute, La Jolla, California
| | - Jesse D Roberts
- 6 Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Matthias Ochs
- 4 Institute of Functional and Applied Anatomy, Hannover Medical School, and Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, REBIRTH Cluster of Excellence, Hannover, Germany; and
| | - Andrew M Tager
- 3 Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases, and
| |
Collapse
|
105
|
Identification of Key Modules and Hub Genes of Keloids with Weighted Gene Coexpression Network Analysis. Plast Reconstr Surg 2017; 139:376-390. [PMID: 28121871 DOI: 10.1097/prs.0000000000003014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Keloid scarring impairs patients' quality of life, and although many therapeutic strategies have been developed, most remain unsatisfactory because of limited understanding of the mechanisms underlying keloid development. METHODS A microarray gene expression data set from keloid tissue was acquired from the Gene Expression Omnibus. Differentially expressed genes in fibroblasts and keratinocytes underwent functional annotation and pathway analysis. Weighted gene coexpression network analysis was applied to identify the gene targets of keloid scars within differentially expressed genes. Modules and hub genes for keloids were identified. Enrichment analysis was undertaken to verify the modules' and hub genes' relationship with keloids. RESULTS Enrichment analysis and pathway analysis showed gene ontology terms and pathways related to keloids. Each cell type generated three modules in weighted gene coexpression network analysis, with one module most related to keloids. Enrichment analysis showed that the modules concerned are enriched with terms related to keloids. Three hub genes were selected for fibroblasts and keratinocytes, and their relationship to keloids was verified. Immunohistochemical staining verified expression change of some hub genes. CONCLUSIONS This is the first study to describe the gene networks underlying keloids. Modules and hub genes generated in the present study are highly related to keloids and may identify novel therapeutic targets for treatment of keloids. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, V.
Collapse
|
106
|
Hendrix AY, Kheradmand F. The Role of Matrix Metalloproteinases in Development, Repair, and Destruction of the Lungs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:1-29. [PMID: 28662821 DOI: 10.1016/bs.pmbts.2017.04.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Normal gas exchange after birth requires functional lung alveolar units that are lined with epithelial cells, parts of which are intricately fused with microvascular capillaries. A significant phase of alveolar lung development occurs in the perinatal period, continues throughout early stages in life, and requires activation of matrix-remodeling enzymes. Failure to achieve an optimum number of alveoli during lung maturation can cause several untoward medical consequences including disabling obstructive and/or restrictive lung diseases that limit physiological endurance and increase mortality. Several members of the matrix metalloproteinase (MMP) family are critical in lung remodeling before and after birth; however, their resurgence in response to environmental factors, infection, and injury can also compromise lung function. Therefore, temporal expression, regulation, and function of MMPs play key roles in developing and maintaining adequate oxygenation under steady state, as well as in diseased conditions. Broadly, with the exception of MMP2 and MMP14, most deletional mutations of MMPs fail to perturb lung development; however, their individual absence can alter the pathophysiology of respiratory diseases. Specifically, under stressed conditions such as acute respiratory infection and allergic inflammation, MMP2 and MMP9 can play a protective role through bacterial clearance and production of chemotactic gradient, while loss of MMP12 can protect mice from smoke-induced lung disease. Therefore, better understanding of the expression and function of MMPs under normal lung development and their resurgence in response respiratory diseases could provide new therapeutic options in the future.
Collapse
Affiliation(s)
- Amanda Y Hendrix
- Section of Pulmonary and Critical Care, and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Farrah Kheradmand
- Section of Pulmonary and Critical Care, and Immunology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
107
|
Tomos IP, Tzouvelekis A, Aidinis V, Manali ED, Bouros E, Bouros D, Papiris SA. Extracellular matrix remodeling in idiopathic pulmonary fibrosis. It is the 'bed' that counts and not 'the sleepers'. Expert Rev Respir Med 2017; 11:299-309. [PMID: 28274188 DOI: 10.1080/17476348.2017.1300533] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease characterized by irreversible fibrosis. Current disease pathogenesis assumes an aberrant wound healing process in response to repetitive injurious stimuli leading to apoptosis of epithelial cells, activation of fibroblasts and accumulation of extracellular matrix (ECM). Particularly, lung ECM is a highly dynamic structure that lies at the core of several physiological and developmental pathways. The scope of this review article is to summarize current knowledge on the role of ECM in the pathogenesis of IPF, unravel novel mechanistic data and identify future more effective therapeutic targets. Areas covered: The exact mechanisms through which lung microenvironment activates fibroblasts and inflammatory cells, regulates profibrotic signaling cascades through growth factors, integrins and degradation enzymes ultimately leading to excessive matrix deposition are discussed. Furthermore, the potential therapeutic usefulness of specific inhibitors of matrix deposition or activators of matrix degradation pathways are also presented. Expert commentary: With a gradually increasing worldwide incidence IPF still present a major challenge in clinical research due to its unknown etiopathogenesis and current ineffective treatment approaches. Today, there is an amenable need for more effective therapeutic targets and ECM components may represent one.
Collapse
Affiliation(s)
- Ioannis P Tomos
- a Respiratory Medicine Department , 'Attikon' University Hospital, Athens Medical School, National and Kapodistrian University of Athens , Athens , Greece
| | - Argyrios Tzouvelekis
- b Division of Immunology , Biomedical Sciences Research Center 'Alexander Fleming,' , Athens , Greece
| | - Vassilis Aidinis
- b Division of Immunology , Biomedical Sciences Research Center 'Alexander Fleming,' , Athens , Greece
| | - Effrosyni D Manali
- a Respiratory Medicine Department , 'Attikon' University Hospital, Athens Medical School, National and Kapodistrian University of Athens , Athens , Greece
| | - Evangelos Bouros
- c First Academic Department of Pneumonology, Hospital for Diseases of the Chest, 'Sotiria,' Medical School , National and Kapodistrian University of Athens , Athens , Greece
| | - Demosthenes Bouros
- c First Academic Department of Pneumonology, Hospital for Diseases of the Chest, 'Sotiria,' Medical School , National and Kapodistrian University of Athens , Athens , Greece
| | - Spyros A Papiris
- a Respiratory Medicine Department , 'Attikon' University Hospital, Athens Medical School, National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
108
|
|
109
|
Lung remodeling associated with recovery from acute lung injury. Cell Tissue Res 2016; 367:495-509. [DOI: 10.1007/s00441-016-2521-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/29/2016] [Indexed: 12/18/2022]
|
110
|
Puntorieri V, McCaig LA, Howlett CJ, Yao LJ, Lewis JF, Yamashita CM, Veldhuizen RAW. Lack of matrix metalloproteinase 3 in mouse models of lung injury ameliorates the pulmonary inflammatory response in female but not in male mice. Exp Lung Res 2016; 42:365-379. [PMID: 27676418 DOI: 10.1080/01902148.2016.1231243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND The acute respiratory distress syndrome (ARDS) is a complex pulmonary disorder in which the local release of cytokines and chemokines appears central to the pathophysiology. OBJECTIVE Based on the known role of matrix metalloproteinase-3 (MMP3) in inflammatory processes, the objective was to examine the role of MMP3 in the pathogenesis of ARDS through the modulation of pulmonary inflammation. MATERIALS AND METHODS Female and male, wild type (MMP3+/+) and knock out (MMP3-/-) mice were exposed to two, clinically relevant models of ARDS including (i) lipopolysaccharide (LPS)-induced lung injury, and (ii) hydrochloric acid-induced lung injury. Parameters of lung injury and inflammation were assessed through measurements in lung lavage including total protein content, inflammatory cell influx, and concentrations of mediators such as TNF-α, IL-6, G-CSF, CXCL1, CXCL2, and CCL2. Lung histology and compliance were also evaluated in the LPS model of injury. RESULTS Following intra-tracheal LPS instillation, all mice developed lung injury, as measured by an increase in lavage neutrophils, and decrease in lung compliance, with no overall effect of genotype observed. Increased concentrations of lavage inflammatory cytokines and chemokines were also observed following LPS injury, however, LPS-instilled female MMP3-/- mice had lower levels of inflammatory mediators compared to LPS-instilled female MMP3+/+ mice. This effect of the genotype was not observed in male mice. Similar findings, including the MMP3-related sex differences, were also observed after acid-induced lung injury. CONCLUSION MMP3 contributes to the pathogenesis of ARDS, by affecting the pulmonary inflammatory response in female mice in relevant models of lung injury.
Collapse
Affiliation(s)
- Valeria Puntorieri
- a Department of Physiology and Pharmacology , Lawson Health Research Institute, Western University , London , Ontario , Canada
| | - Lynda A McCaig
- a Department of Physiology and Pharmacology , Lawson Health Research Institute, Western University , London , Ontario , Canada
| | - Christopher J Howlett
- b Department of Pathology and Laboratory Medicine , Western University , London , Ontario , Canada
| | - Li-Juan Yao
- c Department of Medicine , Western University , London , Ontario , Canada
| | - James F Lewis
- c Department of Medicine , Western University , London , Ontario , Canada
| | - Cory M Yamashita
- a Department of Physiology and Pharmacology , Lawson Health Research Institute, Western University , London , Ontario , Canada.,c Department of Medicine , Western University , London , Ontario , Canada
| | - Ruud A W Veldhuizen
- a Department of Physiology and Pharmacology , Lawson Health Research Institute, Western University , London , Ontario , Canada.,c Department of Medicine , Western University , London , Ontario , Canada
| |
Collapse
|
111
|
Kolahian S, Fernandez IE, Eickelberg O, Hartl D. Immune Mechanisms in Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2016; 55:309-22. [DOI: 10.1165/rcmb.2016-0121tr] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
112
|
Matrix Metalloproteinases in Non-Neoplastic Disorders. Int J Mol Sci 2016; 17:ijms17071178. [PMID: 27455234 PMCID: PMC4964549 DOI: 10.3390/ijms17071178] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/16/2016] [Accepted: 07/04/2016] [Indexed: 12/23/2022] Open
Abstract
The matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases belonging to the metzincin superfamily. There are at least 23 members of MMPs ever reported in human, and they and their substrates are widely expressed in many tissues. Recent growing evidence has established that MMP not only can degrade a variety of components of extracellular matrix, but also can cleave and activate various non-matrix proteins, including cytokines, chemokines and growth factors, contributing to both physiological and pathological processes. In normal conditions, MMP expression and activity are tightly regulated via interactions between their activators and inhibitors. Imbalance among these factors, however, results in dysregulated MMP activity, which causes tissue destruction and functional alteration or local inflammation, leading to the development of diverse diseases, such as cardiovascular disease, arthritis, neurodegenerative disease, as well as cancer. This article focuses on the accumulated evidence supporting a wide range of roles of MMPs in various non-neoplastic diseases and provides an outlook on the therapeutic potential of inhibiting MMP action.
Collapse
|
113
|
A comparison of incidences of bladder neck contracture of 80- versus 180-W GreenLight laser photoselective vaporization of benign prostatic hyperplasia. Lasers Med Sci 2016; 31:1573-1581. [DOI: 10.1007/s10103-016-2017-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/24/2016] [Indexed: 02/01/2023]
|
114
|
Froidure A, Joannes A, Mailleux AA, Crestani B. New targets in idiopathic pulmonary fibrosis: from inflammation and immunity to remodeling and repair. Expert Opin Orphan Drugs 2016. [DOI: 10.1517/21678707.2016.1171140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
115
|
Pardo A, Cabrera S, Maldonado M, Selman M. Role of matrix metalloproteinases in the pathogenesis of idiopathic pulmonary fibrosis. Respir Res 2016; 17:23. [PMID: 26944412 PMCID: PMC4779202 DOI: 10.1186/s12931-016-0343-6] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/02/2016] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and devastating lung disorder of unknown origin, with very poor prognosis and no effective treatment. The disease is characterized by abnormal activation of alveolar epithelial cells, which secrete numerous mediators involved in the expansion of the fibroblast population, its differentiation to myofibroblasts, and in the exaggerated accumulation of extracellular matrix provoking the loss of lung architecture. Among the excessively produced mediators are several matrix metalloproteases (MMPs) which may contribute to modify the lung microenvironment by various mechanisms. Thus, these enzymes can not only degrade all the components of the extracellular matrix, but they are also able to release, cleave and activate a wide range of growth factors, cytokines, chemokines and cell surface receptors affecting numerous cell functions including adhesion, proliferation, differentiation, recruiting and transmigration, and apoptosis. Therefore, dysregulated expression of MMPs may have profound impact on the biopathological mechanisms implicated in the development of IPF. This review focuses on the current and emerging evidence regarding the role of MMPs on the fibrotic processes in IPF as well as in mouse models of lung fibrosis.
Collapse
Affiliation(s)
- Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México, DF, Mexico.
| | - Sandra Cabrera
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México, DF, Mexico
| | - Mariel Maldonado
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México, DF, Mexico
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, México, DF, Mexico
| |
Collapse
|
116
|
Chen J, Cui G, Lu C, Ding Y, Gao H, Zhu Y, Wei Y, Wang L, Uede T, Li L, Diao H. Severe Infection With Avian Influenza A Virus is Associated With Delayed Immune Recovery in Survivors. Medicine (Baltimore) 2016; 95:e2606. [PMID: 26844470 PMCID: PMC4748887 DOI: 10.1097/md.0000000000002606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Human infection with avian influenza A virus (H7N9) is a concern because of the mortality rate. Previously, we characterized immunological responses during active infection with it and reported evidence of impaired antigen-presenting capability, particularly in severely affected individuals. Here we describe an investigation of immunological responses during a 1-year follow-up of survivors of H7N9 infection. Survivors of H7N9 infection were classified as having had mild (n = 42) or severe infection (n = 26). Their immune status, including human leukocyte antigen-DR expression on monocytes, and their ability to mount cytokine responses were assessed at 1, 3, and 12 months postinfection.The total lymphocyte count and the percentages of different types of lymphocytes had normalized by 1 month postinfection. However, there was evidence of ongoing impairment of immune responses in those who had had severe infection. This included reduced human leukocyte antigen-DR expression on CD14 monocytes, reduced interferon-γ production by T cells, and higher plasma levels of the matrix metalloproteinases 2, 3, and 9. By 3 months postinfection, these had all normalized.After severe H7N9 infection, recovery of the antigen-presenting capability of monocytes and T-cell responses are delayed. This may lead to an increased vulnerability to secondary bacterial infections.
Collapse
Affiliation(s)
- Jianing Chen
- From the State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (JC, GC, CL, YD, HG, YZ, YW, LW, LL, HD); and Molecular Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan (TU)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Tumor cell expression of MMP3 as a prognostic factor for poor survival in pancreatic, pulmonary, and mammary carcinoma. Genes Cancer 2016; 6:480-9. [PMID: 26807201 PMCID: PMC4701227 DOI: 10.18632/genesandcancer.90] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Breast, lung, and pancreatic cancers collectively represent one third of all diagnosed tumors and are responsible for almost 40% of overall cancer mortality. Despite improvements in current treatments, efforts to develop more specific therapeutic options are warranted. Here we identify matrix metalloproteinase 3 (MMP3) as a potential target within all three of these tumor types. MMP3 has previously been shown to induce expression of Rac1b, a tumorigenic splice isoform of Rac1. In this study we find that MMP3 and Rac1b proteins are both strongly expressed by the tumor cells of all three tumor types and that expression of MMP3 protein is prognostic of poor survival in pancreatic cancer patients. We also find that MMP3 gene expression can serve as a prognostic marker for patient survival in breast and lung cancer. These results suggest an oncogenic MMP3-Rac1b signaling axis as a driver of tumor progression in three common poor prognosis tumor types, further suggesting that new therapies to target these pathways could have substantial therapeutic benefit.
Collapse
|
118
|
Craig VJ, Zhang L, Hagood JS, Owen CA. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 2015; 53:585-600. [PMID: 26121236 PMCID: PMC4742954 DOI: 10.1165/rcmb.2015-0020tr] [Citation(s) in RCA: 311] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/29/2015] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a restrictive lung disease that is associated with high morbidity and mortality. Current medical therapies are not fully effective at limiting mortality in patients with IPF, and new therapies are urgently needed. Matrix metalloproteinases (MMPs) are proteinases that, together, can degrade all components of the extracellular matrix and numerous nonmatrix proteins. MMPs and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the pathogenesis of IPF based upon the results of clinical studies reporting elevated levels of MMPs (including MMP-1, MMP-7, MMP-8, and MMP-9) in IPF blood and/or lung samples. Surprisingly, studies of gene-targeted mice in murine models of pulmonary fibrosis (PF) have demonstrated that most MMPs promote (rather than inhibit) the development of PF and have identified diverse mechanisms involved. These mechanisms include MMPs: (1) promoting epithelial-to-mesenchymal transition (MMP-3 and MMP-7); (2) increasing lung levels or activity of profibrotic mediators or reducing lung levels of antifibrotic mediators (MMP-3, MMP-7, and MMP-8); (3) promoting abnormal epithelial cell migration and other aberrant repair processes (MMP-3 and MMP-9); (4) inducing the switching of lung macrophage phenotypes from M1 to M2 types (MMP-10 and MMP-28); and (5) promoting fibrocyte migration (MMP-8). Two MMPs, MMP-13 and MMP-19, have antifibrotic activities in murine models of PF, and two MMPs, MMP-1 and MMP-10, have the potential to limit fibrotic responses to injury. Herein, we review what is known about the contributions of MMPs and TIMPs to the pathogenesis of IPF and discuss their potential as therapeutic targets for IPF.
Collapse
Affiliation(s)
- Vanessa J. Craig
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California–San Diego, La Jolla, California
| | - Li Zhang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts
| | - James S. Hagood
- Division of Pediatric Respiratory Medicine, University of California–San Diego, La Jolla, California, and
- Rady Children’s Hospital of San Diego, San Diego, California; and
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| |
Collapse
|
119
|
Ji X, Wang L, Wu B, Han R, Han L, Wang T, Yang J, Ni C. Associations of MMP1, MMP2 and MMP3 Genes Polymorphism with Coal Workers' Pneumoconiosis in Chinese Han Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:13901-12. [PMID: 26528997 PMCID: PMC4661622 DOI: 10.3390/ijerph121113901] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/19/2015] [Accepted: 10/22/2015] [Indexed: 12/17/2022]
Abstract
Coal workers’ pneumoconiosis (CWP) has been associated with abnormalities in the extracellular matrix remodeling, as well as aberrant matrix metalloproteinases (MMPs) in lung tissues. We investigated the association of three functional polymorphisms in MMP gene promoters (MMP1 rs1799750, MMP2 rs2285053 and MMP3 rs522616) with the risk of CWP. A total of 693 CWP cases and 690 controls were included in a case-control study. Genotype analysis was performed by the TaqMan method. Statistically significant differences were found in distributions of MMP3 rs522616 under a recessive model (p = 0.047) between CWP cases and controls. In the stratification analysis, individuals with MMP3 rs522616 GG genotype decreased the risk of CWP (adjusted OR = 0.72, 95% CI = 0.52–0.99) compared to those with AA/AG genotype obviously, particularly among subgroups of no smokers (adjusted OR = 0.64, 95% CI = 0.41–1.00). Furthermore, serum MMP3 protein levels measured with enzyme-linked immune-sorbent assay in the control group was significantly lower than that in the CWP groups (p = 0.02). Extremely lower MMP3 among subjects with the rs522616 GG or AG genotype compared with the AA genotype carriers (p < 0.05, p < 0.01 respectively) in the normal serum. These findings indicate that the MMP3 rs522616 polymorphism may contribute to the etiology of CWP in the Chinese population and MMP3 might be a potential diagnostic biomarker for CWP, additional independent studies are warranted to validate our findings in different populations as well as in a larger series.
Collapse
Affiliation(s)
- Xiaoming Ji
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Lijuan Wang
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Baiqun Wu
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Ruhui Han
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Lei Han
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210029, China.
| | - Ting Wang
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jingjin Yang
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Chunhui Ni
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
120
|
Gao L, Tang H, He H, Liu J, Mao J, Ji H, Lin H, Wu T. Glycyrrhizic acid alleviates bleomycin-induced pulmonary fibrosis in rats. Front Pharmacol 2015; 6:215. [PMID: 26483688 PMCID: PMC4589765 DOI: 10.3389/fphar.2015.00215] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/14/2015] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive and lethal form of interstitial lung disease that lacks effective therapies at present. Glycyrrhizic acid (GA), a natural compound extracted from a traditional Chinese herbal medicine Glycyrrhiza glabra, was recently reported to benefit lung injury and liver fibrosis in animal models, yet whether GA has a therapeutic effect on pulmonary fibrosis is unknown. In this study, we investigated the potential therapeutic effect of GA on pulmonary fibrosis in a rat model with bleomycin (BLM)-induced pulmonary fibrosis. The results indicated that GA treatment remarkably ameliorated BLM-induced pulmonary fibrosis and attenuated BLM-induced inflammation, oxidative stress, epithelial-mesenchymal transition, and activation of transforming growth factor-beta signaling pathway in the lungs. Further, we demonstrated that GA treatment inhibited proliferation of 3T6 fibroblast cells, induced cell cycle arrest and promoted apoptosis in vitro, implying that GA-mediated suppression of fibroproliferation may contribute to the anti-fibrotic effect against BLM-induced pulmonary fibrosis. In summary, our study suggests a therapeutic potential of GA in the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Lili Gao
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian China
| | - Haiying Tang
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian China
| | - Huanyu He
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian China
| | - Jia Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian China
| | - Jingwei Mao
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian China
| | - Hong Ji
- Department of Pediatrics, The First Affiliated Hospital of Dalian Medical University, Dalian China
| | - Hongli Lin
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian China
| | - Taihua Wu
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian China
| |
Collapse
|
121
|
Sokai A, Handa T, Tanizawa K, Oga T, Uno K, Tsuruyama T, Kubo T, Ikezoe K, Nakatsuka Y, Tanimura K, Muro S, Hirai T, Nagai S, Chin K, Mishima M. Matrix metalloproteinase-10: a novel biomarker for idiopathic pulmonary fibrosis. Respir Res 2015; 16:120. [PMID: 26415518 PMCID: PMC4587921 DOI: 10.1186/s12931-015-0280-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/20/2015] [Indexed: 02/10/2023] Open
Abstract
Background Matrix metalloproteinases (MMPs) are believed to be involved in the pathogenesis of idiopathic pulmonary fibrosis (IPF), and MMP-7 has been described as a useful biomarker for IPF. However, little is known regarding the significance of MMP-10 as a biomarker for IPF. Methods This observational cohort study included 57 patients with IPF. Serum MMPs were comprehensively measured in all patients, and the relationships between these markers and both disease severity and prognosis were evaluated. Bronchoalveolar lavage fluid (BALF) MMP-7 and -10 levels were measured in 19 patients to investigate the correlation between these markers and their corresponding serum values. Immunohistochemical staining for MMP-10 was also performed in IPF lung tissue. Results Serum MMP-7 and -10 levels correlated significantly with both the percentage of predicted forced vital capacity (ρ = −0.31, p = 0.02 and ρ = −0.34, p < 0.01, respectively) and the percentage of predicted diffusing capacity of the lung for carbon monoxide (ρ = −0.32, p = 0.02 and ρ = −0.43, p < 0.01, respectively). BALF MMP-7 and -10 levels correlated with their corresponding serum concentrations. Only serum MMP-10 predicted clinical deterioration within 6 months and overall survival. In IPF lungs, the expression of MMP-10 was enhanced and localized to the alveolar epithelial cells, macrophages, and peripheral bronchiolar epithelial cells. Conclusions MMP-10 may be a novel biomarker reflecting both disease severity and prognosis in patients with IPF. Electronic supplementary material The online version of this article (doi:10.1186/s12931-015-0280-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akihiko Sokai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Tomohiro Handa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Kiminobu Tanizawa
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Toru Oga
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Kazuko Uno
- Louis Pasteur Center for Medical Research, Kyoto, Japan.
| | - Tatsuaki Tsuruyama
- Department of Diagnostic Pathology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Takeshi Kubo
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Kohei Ikezoe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Yoshinari Nakatsuka
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Kazuya Tanimura
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Shigeo Muro
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Sonoko Nagai
- Kyoto Central Clinic/Clinical Research Center, Sakyo-ku, Kyoto, Japan.
| | - Kazuo Chin
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Michiaki Mishima
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
122
|
Zhou LL, He XY, Xu FY, Du BX, Zou Z, Shi XY. Chitosan aerosol inhalation alleviates lipopolysaccharide- induced pulmonary fibrosis in rats. Exp Lung Res 2015; 40:467-73. [PMID: 25322333 DOI: 10.3109/01902148.2014.948231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Pulmonary fibrosis (PF) is an insidiously progressive scarring disorder of the alveoli and is associated with high mortality. Currently, therapies available are associated with restricted efficacy and side effects. This study aimed to investigate the effect of chitosan aerosol inhalation on lipopolysaccharide (LPS)-induced pulmonary remodeling and fibrosis in rats. METHODS A rat model of PF was established by intratracheal injection of LPS (5 mg/kg). Chitosan was nebulized to rats from day 4 to 28 after LPS injection. We analyzed the effect of chitosan on LPS-induced pulmonary remodeling and fibrosis by hematoxylin-eosin staining (HE), Masson staining, and the determination of the hydroxyproline content. The expression intensities of matrix metalloproteinase-3 (MMP-3) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were analyzed by western blots. RESULTS Histological assessments showed that chitosan aerosol inhalation attenuated the fibrotic changes in LPS-induced PF in rats. Compared with the LPS group, the fibrosis parameters were significantly improved in the LPS + chitosan group (LCh group), although not as good as those of the control group. The expressions of MMP-3 and TIMP-1 in the LCh group were markedly less than that of the LPS group on the 28th day. CONCLUSIONS Our findings show that chitosan aerosol inhalation inhibits the expression of MMP-3 and TIMP-1, and ameliorates LPS-induced pulmonary remodeling and fibrosis in rats.
Collapse
Affiliation(s)
- Lu-Lu Zhou
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
123
|
Jenkins RG, Simpson JK, Saini G, Bentley JH, Russell AM, Braybrooke R, Molyneaux PL, McKeever TM, Wells AU, Flynn A, Hubbard RB, Leeming DJ, Marshall RP, Karsdal MA, Lukey PT, Maher TM. Longitudinal change in collagen degradation biomarkers in idiopathic pulmonary fibrosis: an analysis from the prospective, multicentre PROFILE study. THE LANCET RESPIRATORY MEDICINE 2015; 3:462-72. [DOI: 10.1016/s2213-2600(15)00048-x] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
124
|
Radisky ES, Radisky DC. Matrix metalloproteinases as breast cancer drivers and therapeutic targets. Front Biosci (Landmark Ed) 2015; 20:1144-63. [PMID: 25961550 DOI: 10.2741/4364] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Members of the matrix metalloproteinase (MMP) family have been identified as poor prognosis markers for breast cancer patients and as drivers of many facets of the tumor phenotype in experimental models. Early enthusiasm for MMPs as therapeutic targets was tempered following disappointing clinical trials that utilized broad spectrum, small molecule catalytic site inhibitors. However, subsequent research has continued to define key roles for MMPs as breast cancer promoters, to elucidate the complex roles that that these proteins play in breast cancer development and progression, and to identify how these roles are linked to specific and unique biochemical features of individual members of the MMP family. Here, we provide an overview of the structural features of the MMPs, then discuss clinical studies identifying which MMP family members are linked with breast cancer development and new experimental studies that reveal how these specific MMPs may play unique roles in the breast cancer microenvironment. We conclude with a discussion of the most promising avenues for development of therapeutic agents capable of targeting the tumor-promoting properties of MMPs.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224,
| | | |
Collapse
|
125
|
Xu X, Xiao L, Xiao P, Yang S, Chen G, Liu F, Kanwar YS, Sun L. A glimpse of matrix metalloproteinases in diabetic nephropathy. Curr Med Chem 2015; 21:3244-60. [PMID: 25039784 DOI: 10.2174/0929867321666140716092052] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/06/2014] [Accepted: 07/11/2014] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes belonging to the family of zinc-dependent endopeptidases that are capable of degrading almost all the proteinaceous components of the extracellular matrix (ECM). It is known that MMPs play a role in a number of renal diseases, such as, various forms of glomerulonephritis and tubular diseases, including some of the inherited kidney diseases. In this regard, ECM accumulation is considered to be a hallmark morphologic finding of diabetic nephropathy, which not only is related to the excessive synthesis of matrix proteins, but also to their decreased degradation by the MMPs. In recent years, increasing evidence suggest that there is a good correlation between the activity or expression of MMPs and progression of renal disease in patients with diabetic nephropathy and in various experimental animal models. In such a diabetic milieu, the expression of MMPs is modulated by high glucose, advanced glycation end products (AGEs), TGF-β, reactive oxygen species (ROS), transcription factors and some of the microRNAs. In this review, we focused on the structure and functions of MMPs, and their role in the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - L Sun
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan 415800, China..
| |
Collapse
|
126
|
Jara P, Calyeca J, Romero Y, Plácido L, Yu G, Kaminski N, Maldonado V, Cisneros J, Selman M, Pardo A. Matrix metalloproteinase (MMP)-19-deficient fibroblasts display a profibrotic phenotype. Am J Physiol Lung Cell Mol Physiol 2015; 308:L511-22. [PMID: 25575513 PMCID: PMC5243210 DOI: 10.1152/ajplung.00043.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 01/08/2015] [Indexed: 11/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and usually lethal interstitial lung disease of unknown etiology characterized by aberrant activation of epithelial cells that induce the migration, proliferation and activation of fibroblasts. The resulting distinctive fibroblastic/myofibroblastic foci are responsible for the excessive extracellular matrix (ECM) production and abnormal lung remodeling. We have recently found that matrix metalloproteinase 19 (MMP-19)-deficient (Mmp19-/-) mice develop an exaggerated bleomycin-induced lung fibrosis, but the mechanisms are unclear. In this study, we explored the effect of MMP-19 deficiency on fibroblast gene expression and cell behavior. Microarray analysis of Mmp19-/- lung fibroblasts revealed the dysregulation of several profibrotic pathways, including ECM formation, migration, proliferation, and autophagy. Functional studies confirmed these findings. Compared with wild-type mice, Mmp19-/- lung fibroblasts showed increased α1 (I) collagen gene and collagen protein production at baseline and after transforming growth factor-β treatment and increased smooth muscle-α actin expression (P < 0.05). Likewise, Mmp19-deficient lung fibroblasts showed a significant increase in proliferation (P < 0.01) and in transmigration and locomotion over Boyden chambers coated with type I collagen or with Matrigel (P < 0.05). These findings suggest that, in lung fibroblasts, MMP-19 has strong regulatory effects on the synthesis of key ECM components, on fibroblast to myofibroblast differentiation, and in migration and proliferation.
Collapse
Affiliation(s)
- Paul Jara
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jazmin Calyeca
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yair Romero
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Plácido
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guoying Yu
- Yale University School of Medicine, New Haven, Connecticut
| | | | - Vilma Maldonado
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - José Cisneros
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico;
| |
Collapse
|
127
|
Cichon MA, Nelson CM, Radisky DC. Regulation of epithelial-mesenchymal transition in breast cancer cells by cell contact and adhesion. Cancer Inform 2015; 14:1-13. [PMID: 25698877 PMCID: PMC4325704 DOI: 10.4137/cin.s18965] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/29/2014] [Accepted: 01/04/2015] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a physiological program that is activated during cancer cell invasion and metastasis. We show here that EMT-related processes are linked to a broad and conserved program of transcriptional alterations that are influenced by cell contact and adhesion. Using cultured human breast cancer and mouse mammary epithelial cells, we find that reduced cell density, conditions under which cell contact is reduced, leads to reduced expression of genes associated with mammary epithelial cell differentiation and increased expression of genes associated with breast cancer. We further find that treatment of cells with matrix metalloproteinase-3 (MMP-3), an inducer of EMT, interrupts a defined subset of cell contact-regulated genes, including genes encoding a variety of RNA splicing proteins known to regulate the expression of Rac1b, an activated splice isoform of Rac1 known to be a key mediator of MMP-3-induced EMT in breast, lung, and pancreas. These results provide new insights into how MMPs act in cancer progression and how loss of cell-cell interactions is a key step in the earliest stages of cancer development.
Collapse
Affiliation(s)
- Magdalena A Cichon
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, FL USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, FL USA
| |
Collapse
|
128
|
Giannandrea M, Parks WC. Diverse functions of matrix metalloproteinases during fibrosis. Dis Model Mech 2014; 7:193-203. [PMID: 24713275 PMCID: PMC3917240 DOI: 10.1242/dmm.012062] [Citation(s) in RCA: 379] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibrosis--a debilitating condition that can occur in most organs - is characterized by excess deposition of a collagen-rich extracellular matrix (ECM). At first sight, the activities of proteinases that can degrade matrix, such as matrix metalloproteinases (MMPs), might be expected to be under-expressed in fibrosis or, if present, could function to resolve the excess matrix. However, as we review here, some MMPs are indeed anti-fibrotic, whereas others can have pro-fibrotic functions. MMPs modulate a range of biological processes, especially processes related to immunity and tissue repair and/or remodeling. Although we do not yet know precisely how MMPs function during fibrosis--that is, the protein substrate or substrates that an individual MMP acts on to effect a specific process--experiments in mouse models demonstrate that MMP-dependent functions during fibrosis are not limited to effects on ECM turnover. Rather, data from diverse models indicate that these proteinases influence cellular activities as varied as proliferation and survival, gene expression, and multiple aspects of inflammation that, in turn, impact outcomes related to fibrosis.
Collapse
|
129
|
Aschner Y, Zemans RL, Yamashita CM, Downey GP. Matrix metalloproteinases and protein tyrosine kinases: potential novel targets in acute lung injury and ARDS. Chest 2014; 146:1081-1091. [PMID: 25287998 DOI: 10.1378/chest.14-0397] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury (ALI) and ARDS fall within a spectrum of pulmonary disease that is characterized by hypoxemia, noncardiogenic pulmonary edema, and dysregulated and excessive inflammation. While mortality rates have improved with the advent of specialized ICUs and lung protective mechanical ventilation strategies, few other therapies have proven effective in the management of ARDS, which remains a significant clinical problem. Further development of biomarkers of disease severity, response to therapy, and prognosis is urgently needed. Several novel pathways have been identified and studied with respect to the pathogenesis of ALI and ARDS that show promise in bridging some of these gaps. This review will focus on the roles of matrix metalloproteinases and protein tyrosine kinases in the pathobiology of ALI in humans, and in animal models and in vitro studies. These molecules can act independently, as well as coordinately, in a feed-forward manner via activation of tyrosine kinase-regulated pathways that are pivotal in the development of ARDS. Specific signaling events involving proteolytic processing by matrix metalloproteinases that contribute to ALI, including cytokine and chemokine activation and release, neutrophil recruitment, transmigration and activation, and disruption of the intact alveolar-capillary barrier, will be explored in the context of these novel molecular pathways.
Collapse
Affiliation(s)
- Yael Aschner
- Division of Pulmonary, Critical Care, and Sleep Medicine, Departments of Medicine and Pediatrics, National Jewish Health, Denver, CO; Division of Pulmonary Sciences and Critical Care Medicine, Departments of Medicine, University of Colorado Denver, Aurora, CO
| | - Rachel L Zemans
- Division of Pulmonary, Critical Care, and Sleep Medicine, Departments of Medicine and Pediatrics, National Jewish Health, Denver, CO; Division of Pulmonary Sciences and Critical Care Medicine, Departments of Medicine, University of Colorado Denver, Aurora, CO
| | - Cory M Yamashita
- Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Gregory P Downey
- Division of Pulmonary, Critical Care, and Sleep Medicine, Departments of Medicine and Pediatrics, National Jewish Health, Denver, CO; Division of Pulmonary Sciences and Critical Care Medicine, Departments of Medicine, University of Colorado Denver, Aurora, CO; Immunology, University of Colorado Denver, Aurora, CO.
| |
Collapse
|
130
|
Jenkins G. Endotyping idiopathic pulmonary fibrosis should improve outcomes for all patients with progressive fibrotic lung disease. Thorax 2014; 70:9-10. [PMID: 25410187 DOI: 10.1136/thoraxjnl-2014-206209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
131
|
Ley B, Brown KK, Collard HR. Molecular biomarkers in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2014; 307:L681-91. [PMID: 25260757 DOI: 10.1152/ajplung.00014.2014] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Molecular biomarkers are highly desired in idiopathic pulmonary fibrosis (IPF), where they hold the potential to elucidate underlying disease mechanisms, accelerated drug development, and advance clinical management. Currently, there are no molecular biomarkers in widespread clinical use for IPF, and the search for potential markers remains in its infancy. Proposed core mechanisms in the pathogenesis of IPF for which candidate markers have been offered include alveolar epithelial cell dysfunction, immune dysregulation, and fibrogenesis. Useful markers reflect important pathological pathways, are practically and accurately measured, have undergone extensive validation, and are an improvement upon the current approach for their intended use. The successful development of useful molecular biomarkers is a central challenge for the future of translational research in IPF and will require collaborative efforts among those parties invested in advancing the care of patients with IPF.
Collapse
Affiliation(s)
- Brett Ley
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California; and
| | - Kevin K Brown
- Department of Medicine, National Jewish Health and the University of Colorado, Denver, Colorado
| | - Harold R Collard
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California; and
| |
Collapse
|
132
|
DePianto DJ, Chandriani S, Abbas AR, Jia G, N'Diaye EN, Caplazi P, Kauder SE, Biswas S, Karnik SK, Ha C, Modrusan Z, Matthay MA, Kukreja J, Collard HR, Egen JG, Wolters PJ, Arron JR. Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis. Thorax 2014; 70:48-56. [PMID: 25217476 DOI: 10.1136/thoraxjnl-2013-204596] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND There is microscopic spatial and temporal heterogeneity of pathological changes in idiopathic pulmonary fibrosis (IPF) lung tissue, which may relate to heterogeneity in pathophysiological mediators of disease and clinical progression. We assessed relationships between gene expression patterns, pathological features, and systemic biomarkers to identify biomarkers that reflect the aggregate disease burden in patients with IPF. METHODS Gene expression microarrays (N=40 IPF; 8 controls) and immunohistochemical analyses (N=22 IPF; 8 controls) of lung biopsies. Clinical characterisation and blood biomarker levels of MMP3 and CXCL13 in a separate cohort of patients with IPF (N=80). RESULTS 2940 genes were significantly differentially expressed between IPF and control samples (|fold change| >1.5, p<0.05). Two clusters of co-regulated genes related to bronchiolar epithelium or lymphoid aggregates exhibited substantial heterogeneity within the IPF population. Gene expression in bronchiolar and lymphoid clusters corresponded to the extent of bronchiolisation and lymphoid aggregates determined by immunohistochemistry in adjacent tissue sections. Elevated serum levels of MMP3, encoded in the bronchiolar cluster, and CXCL13, encoded in the lymphoid cluster, corresponded to disease severity and shortened survival time (p<10(-7) for MMP3 and p<10(-5) for CXCL13; Cox proportional hazards model). CONCLUSIONS Microscopic pathological heterogeneity in IPF lung tissue corresponds to specific gene expression patterns related to bronchiolisation and lymphoid aggregates. MMP3 and CXCL13 are systemic biomarkers that reflect the aggregate burden of these pathological features across total lung tissue. These biomarkers may have clinical utility as prognostic and/or surrogate biomarkers of disease activity in interventional studies in IPF.
Collapse
Affiliation(s)
- Daryle J DePianto
- Genentech Research and Early Development, South San Francisco, California, USA
| | - Sanjay Chandriani
- Genentech Research and Early Development, South San Francisco, California, USA Novartis Institutes for Biomedical Research, Emeryville, California, USA
| | - Alexander R Abbas
- Genentech Research and Early Development, South San Francisco, California, USA
| | - Guiquan Jia
- Genentech Research and Early Development, South San Francisco, California, USA
| | - Elsa N N'Diaye
- Genentech Research and Early Development, South San Francisco, California, USA
| | - Patrick Caplazi
- Genentech Research and Early Development, South San Francisco, California, USA
| | - Steven E Kauder
- Genentech Research and Early Development, South San Francisco, California, USA
| | - Sabyasachi Biswas
- Genentech Research and Early Development, South San Francisco, California, USA
| | - Satyajit K Karnik
- Genentech Research and Early Development, South San Francisco, California, USA Gilead Sciences, Foster City, California, USA
| | - Connie Ha
- Genentech Research and Early Development, South San Francisco, California, USA
| | - Zora Modrusan
- Genentech Research and Early Development, South San Francisco, California, USA
| | - Michael A Matthay
- Department of Medicine, University of California, San Francisco, California, USA
| | - Jasleen Kukreja
- Department of Surgery, University of California, San Francisco, California, USA
| | - Harold R Collard
- Department of Medicine, University of California, San Francisco, California, USA
| | - Jackson G Egen
- Genentech Research and Early Development, South San Francisco, California, USA
| | - Paul J Wolters
- Department of Medicine, University of California, San Francisco, California, USA
| | - Joseph R Arron
- Genentech Research and Early Development, South San Francisco, California, USA
| |
Collapse
|
133
|
Choi EJ, Jin GY, Bok SM, Han YM, Lee YS, Jung MJ, Kwon KS. Serial micro-CT assessment of the therapeutic effects of rosiglitazone in a bleomycin-induced lung fibrosis mouse model. Korean J Radiol 2014; 15:448-55. [PMID: 25053904 PMCID: PMC4105807 DOI: 10.3348/kjr.2014.15.4.448] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 03/24/2014] [Indexed: 12/17/2022] Open
Abstract
Objective The aim of this study was to assess the therapeutic effects of rosiglitazone with serial micro-CT findings before and after rosiglitazone administration in a lung fibrosis mouse model induced with bleomycin. Materials and Methods We instilled the bleomycin solution directly into the trachea in twenty mice (female, C57BL/6 mice). After the instillation with bleomycin, mice were closely observed for 3 weeks and then all mice were scanned using micro-CT without sacrifice. At 3 weeks, the mice were treated with rosiglitazone on days 21 to 27 if they had abnormal CT findings (n = 9, 45%). For the mice treated with rosiglitazone, we performed micro-CT with mouse sacrifice 2 weeks after the rosiglitazone treatment completion. We assessed the abnormal CT findings (ground glass attenuation, consolidation, bronchiectasis, reticular opacity, and honeycombing) using a five-point scale at 3 and 6 weeks using Wilcoxon-signed ranked test. The micro-CT findings were correlated with the histopathologic results. Results One out of nine (11.1%) mice improved completely. In terms of consolidation, all mice (100%) showed marked decrease from 3.1 ± 1.4 at 3 weeks to 0.9 ± 0.9 at 6 weeks (p = 0.006). At 6 weeks, mild bronchiectasis (n = 6, 66.7%), mild reticular opacity (n = 7, 77.8%) and mild honeycomb patterns (n = 3, 33.3%) appeared. Conclusion A serial micro-CT enables the evaluation of drug effects in a lung fibrosis mouse model.
Collapse
Affiliation(s)
- Eun Jung Choi
- Department of Radiology, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Institute for Medical Sciences, Jeonju 561-712, Korea
| | - Gong Yong Jin
- Department of Radiology, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Institute for Medical Sciences, Jeonju 561-712, Korea
| | - Se Mi Bok
- Department of Radiology, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Institute for Medical Sciences, Jeonju 561-712, Korea
| | - Young Min Han
- Department of Radiology, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Institute for Medical Sciences, Jeonju 561-712, Korea
| | - Young Sun Lee
- Department of Radiology, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Institute for Medical Sciences, Jeonju 561-712, Korea
| | - Myung Ja Jung
- Department of Pathology, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Institute for Medical Sciences, Jeonju 561-712, Korea
| | - Keun Sang Kwon
- Department of Preventive Medicine, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Institute for Medical Sciences, Jeonju 561-712, Korea
| |
Collapse
|
134
|
Yamashita CM, Radisky DC, Aschner Y, Downey GP. The importance of matrix metalloproteinase-3 in respiratory disorders. Expert Rev Respir Med 2014; 8:411-21. [DOI: 10.1586/17476348.2014.909288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
135
|
Hance MW, Nolan KD, Isaacs JS. The double-edged sword: conserved functions of extracellular hsp90 in wound healing and cancer. Cancers (Basel) 2014; 6:1065-97. [PMID: 24805867 PMCID: PMC4074817 DOI: 10.3390/cancers6021065] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/16/2014] [Accepted: 04/24/2014] [Indexed: 12/17/2022] Open
Abstract
Heat shock proteins (Hsps) represent a diverse group of chaperones that play a vital role in the protection of cells against numerous environmental stresses. Although our understanding of chaperone biology has deepened over the last decade, the “atypical” extracellular functions of Hsps have remained somewhat enigmatic and comparatively understudied. The heat shock protein 90 (Hsp90) chaperone is a prototypic model for an Hsp family member exhibiting a duality of intracellular and extracellular functions. Intracellular Hsp90 is best known as a master regulator of protein folding. Cancers are particularly adept at exploiting this function of Hsp90, providing the impetus for the robust clinical development of small molecule Hsp90 inhibitors. However, in addition to its maintenance of protein homeostasis, Hsp90 has also been identified as an extracellular protein. Although early reports ascribed immunoregulatory functions to extracellular Hsp90 (eHsp90), recent studies have illuminated expanded functions for eHsp90 in wound healing and cancer. While the intended physiological role of eHsp90 remains enigmatic, its evolutionarily conserved functions in wound healing are easily co-opted during malignancy, a pathology sharing many properties of wounded tissue. This review will highlight the emerging functions of eHsp90 and shed light on its seemingly dichotomous roles as a benevolent facilitator of wound healing and as a sinister effector of tumor progression.
Collapse
Affiliation(s)
- Michael W Hance
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Hollings Cancer Center, Charleston, SC 29412, USA.
| | - Krystal D Nolan
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Hollings Cancer Center, Charleston, SC 29412, USA.
| | - Jennifer S Isaacs
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Hollings Cancer Center, Charleston, SC 29412, USA.
| |
Collapse
|
136
|
Bohonowych JE, Hance MW, Nolan KD, Defee M, Parsons CH, Isaacs JS. Extracellular Hsp90 mediates an NF-κB dependent inflammatory stromal program: implications for the prostate tumor microenvironment. Prostate 2014; 74:395-407. [PMID: 24338924 PMCID: PMC4306584 DOI: 10.1002/pros.22761] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/18/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND The tumor microenvironment (TME) plays an essential role in supporting and promoting tumor growth and progression. An inflammatory stroma is a widespread hallmark of the prostate TME, and prostate tumors are known to co-evolve with their reactive stroma. Cancer-associated fibroblasts (CAFs) within the reactive stroma play a salient role in secreting cytokines that contribute to this inflammatory TME. Although a number of inflammatory mediators have been identified, a clear understanding of key factors initiating the formation of reactive stroma is lacking. METHODS We explored whether tumor secreted extracellular Hsp90 alpha (eHsp90α) may initiate a reactive stroma. Prostate stromal fibroblasts (PrSFs) were exposed to exogenous Hsp90α protein, or to conditioned medium (CM) from eHsp90α-expressing prostate cancer cells, and evaluated for signaling, motility, and expression of prototypic reactive markers. In tandem, ELISA assays were utilized to characterize Hsp90α-mediated secreted factors. RESULTS We report that exposure of PrSFs to eHsp90 upregulates the transcription and protein secretion of IL-6 and IL-8, key inflammatory cytokines known to play a causative role in prostate cancer progression. Cytokine secretion was regulated in part via a MEK/ERK and NF-κB dependent pathway. Secreted eHsp90α also promoted the rapid and durable activation of the oncogenic inflammatory mediator signal transducer and activator of transcription (STAT3). Finally, eHsp90 induced the expression of MMP-3, a well-known mediator of fibrosis and the myofibroblast phenotype. CONCLUSIONS Our results provide compelling support for eHsp90α as a transducer of signaling events culminating in an inflammatory and reactive stroma, thereby conferring properties associated with prostate cancer progression.
Collapse
Affiliation(s)
- JE Bohonowych
- Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425
| | - MW Hance
- Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425
| | - KD Nolan
- Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425
| | - M Defee
- Department of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - CH Parsons
- Department of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - JS Isaacs
- Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
137
|
Aschner Y, Khalifah AP, Briones N, Yamashita C, Dolgonos L, Young SK, Campbell MN, Riches DWH, Redente EF, Janssen WJ, Henson PM, Sap J, Vacaresse N, Kapus A, McCulloch CAG, Zemans RL, Downey GP. Protein tyrosine phosphatase α mediates profibrotic signaling in lung fibroblasts through TGF-β responsiveness. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1489-502. [PMID: 24650563 DOI: 10.1016/j.ajpath.2014.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/23/2013] [Accepted: 01/14/2014] [Indexed: 02/07/2023]
Abstract
Fibrotic lung diseases represent a diverse group of progressive and often fatal disorders with limited treatment options. Although the pathogenesis of these conditions remains incompletely understood, receptor type protein tyrosine phosphatase α (PTP-α encoded by PTPRA) has emerged as a key regulator of fibroblast signaling. We previously reported that PTP-α regulates cellular responses to cytokines and growth factors through integrin-mediated signaling and that PTP-α promotes fibroblast expression of matrix metalloproteinase 3, a matrix-degrading proteinase linked to pulmonary fibrosis. Here, we sought to determine more directly the role of PTP-α in pulmonary fibrosis. Mice genetically deficient in PTP-α (Ptpra(-/-)) were protected from pulmonary fibrosis induced by intratracheal bleomycin, with minimal alterations in the early inflammatory response or production of TGF-β. Ptpra(-/-) mice were also protected from pulmonary fibrosis induced by adenoviral-mediated expression of active TGF-β1. In reciprocal bone marrow chimera experiments, the protective phenotype tracked with lung parenchymal cells but not bone marrow-derived cells. Because fibroblasts are key contributors to tissue fibrosis, we compared profibrotic responses in wild-type and Ptpra(-/-) mouse embryonic and lung fibroblasts. Ptpra(-/-) fibroblasts exhibited hyporesponsiveness to TGF-β, manifested by diminished expression of αSMA, EDA-fibronectin, collagen 1A, and CTGF. Ptpra(-/-) fibroblasts exhibited markedly attenuated TGF-β-induced Smad2/3 transcriptional activity. We conclude that PTP-α promotes profibrotic signaling pathways in fibroblasts through control of cellular responsiveness to TGF-β.
Collapse
Affiliation(s)
- Yael Aschner
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Anthony P Khalifah
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Natalie Briones
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Cory Yamashita
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Respirology, Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Lior Dolgonos
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Scott K Young
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Megan N Campbell
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - David W H Riches
- Department of Pediatrics, National Jewish Health, Denver, Colorado
| | | | - William J Janssen
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Peter M Henson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado; Department of Pediatrics, National Jewish Health, Denver, Colorado; Department of Immunology, University of Colorado, Aurora, Colorado
| | - Jan Sap
- Unit of Epigenetics and Cell Fate, UMR7216, University of Paris-Diderot, Paris, France
| | - Nathalie Vacaresse
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Andras Kapus
- Keenan Research Center, Li Ka Shing Knowledge Institute-St. Michael's Hospital, University of Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Ontario, Canada
| | | | - Rachel L Zemans
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Gregory P Downey
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado; Department of Pediatrics, National Jewish Health, Denver, Colorado; Department of Immunology, University of Colorado, Aurora, Colorado.
| |
Collapse
|
138
|
Nissinen L, Kähäri VM. Matrix metalloproteinases in inflammation. Biochim Biophys Acta Gen Subj 2014; 1840:2571-80. [PMID: 24631662 DOI: 10.1016/j.bbagen.2014.03.007] [Citation(s) in RCA: 301] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/03/2014] [Accepted: 03/05/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are a family of ubiquitously expressed zinc-dependent endopeptidases with broad substrate specificity and strictly regulated tissue specific expression. They are expressed in physiological situations and pathological conditions involving inflammation. MMPs regulate several functions related to inflammation including bioavailability and activity of inflammatory cytokines and chemokines. There is also evidence that MMPs regulate inflammation in tumor microenvironment, which plays an important role in cancer progression. SCOPE OF REVIEW Here, we discuss the current view on the role of MMPs in the regulation of inflammation. MAJOR CONCLUSIONS MMPs modulate inflammation by regulating bioavailability and activity of cytokines, chemokines, and growth factors, as well as integrity of physical tissue barriers. MMPs are also involved in immune evasion of tumor cells and in regulation of inflammation in tumor microenvironment. GENERAL SIGNIFICANCE There is increasing evidence for non-matrix substrates of MMPs that are related to regulation of inflammatory processes. New methods have been employed for identification of the substrates of MMPs in inflammatory processes in vivo. Detailed information on the substrates of MMPs may offer more specific and effective ways of inhibiting MMP function by blocking the cleavage site in substrate or by inhibition of the bioactivity of the substrate. It is expected, that more precise information on the MMP-substrate interaction may offer novel strategies for therapeutic intervention in inflammatory diseases and cancer without blocking beneficial actions of MMPs. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, FI-20521, Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, FI-20521, Turku, Finland.
| |
Collapse
|
139
|
Lee TH, McKleroy W, Khalifeh-Soltani A, Sakuma S, Lazarev S, Riento K, Nishimura SL, Nichols BJ, Atabai K. Functional genomic screen identifies novel mediators of collagen uptake. Mol Biol Cell 2014; 25:583-93. [PMID: 24403604 PMCID: PMC3937085 DOI: 10.1091/mbc.e13-07-0382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Tissue fibrosis occurs when matrix production outpaces matrix degradation. Degradation of collagen, the main component of fibrotic tissue, is mediated through an extracellular proteolytic pathway and intracellular pathway of cellular uptake and lysosomal digestion. Recent studies demonstrate that disruption of the intracellular pathways can exacerbate fibrosis. These pathways are poorly characterized. Here we identify novel mediators of the intracellular pathway of collagen turnover through a genome-wide RNA interference screen in Drosophila S2 cells. Screening of 7505 Drosophila genes conserved among metazoans identified 22 genes that were required for efficient internalization of type I collagen. These included proteins involved in vesicle transport, the actin cytoskeleton, and signal transduction. We show further that the flotillin genes have a conserved and central role in collagen uptake in Drosophila and human cells. Short hairpin RNA-mediated silencing of flotillins in human monocyte and fibroblasts impaired collagen uptake by promoting lysosomal degradation of the endocytic collagen receptors uPARAP/Endo180 and mannose receptor. These data provide an initial characterization of intracellular pathways of collagen turnover and identify the flotillin genes as critical regulators of this process. A better understanding of these pathways may lead to novel therapies that reduce fibrosis by increasing collagen turnover.
Collapse
Affiliation(s)
- Ting-Hein Lee
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158 Department of Medicine, University of California, San Francisco, San Francisco, CA 94158 Lung Biology Center, University of California, San Francisco, San Francisco, CA 94158 Department of Pathology, University of California, San Francisco, San Francisco, CA 94158 MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Clarke DL, Carruthers AM, Mustelin T, Murray LA. Matrix regulation of idiopathic pulmonary fibrosis: the role of enzymes. FIBROGENESIS & TISSUE REPAIR 2013; 6:20. [PMID: 24279676 PMCID: PMC4176485 DOI: 10.1186/1755-1536-6-20] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/13/2013] [Indexed: 12/22/2022]
Abstract
Repairing damaged tissues is an essential homeostatic mechanism that enables clearance of dead or damaged cells after injury, and the maintenance of tissue integrity. However, exaggeration of this process in the lung can lead to the development of fibrotic scar tissue. This is characterized by excessive accumulation of extracellular matrix (ECM) components such as fibronectin, proteoglycans, hyaluronic acid, and interstitial collagens. After tissue injury, or a breakdown of tissue integrity, a cascade of events unfolds to maintain normal tissue homeostasis. Inflammatory mediators are released from injured epithelium, leading to both platelet activation and inflammatory cell migration. Inflammatory cells are capable of releasing multiple pro-inflammatory and fibrogenic mediators such as transforming growth factor (TGF)β and interleukin (IL)-13, which can trigger myofibroblast proliferation and recruitment. The myofibroblast population is also expanded as a result of epithelial cells undergoing epithelial-to-mesenchymal transition and of the activation of resident fibroblasts, leading to ECM deposition and tissue remodeling. In the healthy lung, wound healing then proceeds to restore the normal architecture of the lung; however, fibrosis can develop when the wound is severe, the tissue injury persists, or the repair process becomes dysregulated. Understanding the processes regulating aberrant wound healing and the matrix in the chronic fibrotic lung disease idiopathic pulmonary fibrosis (IPF), is key to identifying new treatments for this chronic debilitating disease. This review focuses primarily on the emerging role of enzymes in the lungs of patients with IPF. Elevated expression of a number of enzymes that can directly modulate the ECM has been reported, and recent data indicates that modulating the activity of these enzymes can have a downstream effect on fibrotic tissue remodeling.
Collapse
|
141
|
Ware LB, Koyama T, Zhao Z, Janz DR, Wickersham N, Bernard GR, May AK, Calfee CS, Matthay MA. Biomarkers of lung epithelial injury and inflammation distinguish severe sepsis patients with acute respiratory distress syndrome. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:R253. [PMID: 24156650 PMCID: PMC4056313 DOI: 10.1186/cc13080] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/03/2013] [Indexed: 12/16/2022]
Abstract
Introduction Despite recent modifications, the clinical definition of the acute respiratory distress syndrome (ARDS) remains non-specific, leading to under-diagnosis and under-treatment. This study was designed to test the hypothesis that a biomarker panel would be useful for biologic confirmation of the clinical diagnosis of ARDS in patients at risk of developing ARDS due to severe sepsis. Methods This was a retrospective case control study of 100 patients with severe sepsis and no evidence of ARDS compared to 100 patients with severe sepsis and evidence of ARDS on at least two of their first four ICU days. A panel that included 11 biomarkers of inflammation, fibroblast activation, proteolytic injury, endothelial injury, and lung epithelial injury was measured in plasma from the morning of ICU day two. A backward elimination model building strategy on 1,000 bootstrapped data was used to select the best performing biomarkers for further consideration in a logistic regression model for diagnosis of ARDS. Results Using the five best-performing biomarkers (surfactant protein-D (SP-D), receptor for advanced glycation end-products (RAGE), interleukin-8 (IL-8), club cell secretory protein (CC-16), and interleukin-6 (IL-6)) the area under the receiver operator characteristic curve (AUC) was 0.75 (95% CI: 0.7 to 0.84) for the diagnosis of ARDS. The AUC improved to 0.82 (95% CI: 0.77 to 0.90) for diagnosis of severe ARDS, defined as ARDS present on all four of the first four ICU days. Conclusions Abnormal levels of five plasma biomarkers including three biomarkers generated by lung epithelium (SP-D, RAGE, CC-16) provided excellent discrimination for diagnosis of ARDS in patients with severe sepsis. Altered levels of plasma biomarkers may be useful biologic confirmation of the diagnosis of ARDS in patients with sepsis, and also potentially for selecting patients for clinical trials that are designed to reduce lung epithelial injury.
Collapse
|
142
|
Cooke G, Govender P, Watson CJ, Armstrong ME, O'Dwyer DN, Keane MP, King R, Tynan A, Dunn M, Donnelly SC. Sarcoidosis, alveolar β-actin and pulmonary fibrosis. QJM 2013; 106:897-902. [PMID: 23904517 DOI: 10.1093/qjmed/hct160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Sarcoidosis is a multisystem granulomatous disease of unknown aetiology. Proteins present within the alveolar space early in sarcoidosis disease may provide an insight into novel mechanisms for the development of fibrotic disease and in particular pulmonary fibrosis. METHODS A modified two-dimensional difference gel electrophoresis protocol was applied to the human bronchoalveolar lavage fluid (hBALF) of four patients with non-persistent pulmonary interstitial disease at 4-year follow-up (defined as mild disease) and four patients who developed pulmonary interstitial disease at 4-year follow-up (defined as severe disease). The protein β-actin was identified by LC-MS/MS from a preparative gel and found to be significantly elevated in early lavages from the severe disease group. To look at the potential pro-fibrotic effects of this protein, primary human pulmonary fibroblasts (CCD-19Lu) were treated with recombinant β-actin following which qPCR and ELISA assays were used to measure any effects. RESULTS We found that β-actin levels were significantly elevated in early hBALF samples in patients who subsequently developed severe disease when compared to the mild group. Treating primary human pulmonary fibroblasts with recombinant β-actin led to enhanced gene expression of the pro-fibrotic markers alpha smooth muscle actin and collagen 1 as well as the increased secretion of interleukin-13 and metalloproteinases 3 and 9. CONCLUSION Free β-actin within the lungs of sarcoidosis patients potentially may contribute to disease pathogenesis particularly in the context of abnormal remodelling and the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- G Cooke
- School of Medicine and Medical Science, Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Krafft E, Laurila HP, Peters IR, Bureau F, Peeters D, Day MJ, Rajamäki MM, Clercx C. Analysis of gene expression in canine idiopathic pulmonary fibrosis. Vet J 2013; 198:479-86. [PMID: 24120450 DOI: 10.1016/j.tvjl.2013.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 08/13/2013] [Accepted: 08/17/2013] [Indexed: 01/16/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) in dogs is a rare disease of unknown aetiology, seen in terrier breeds, particularly the West Highland white terrier (WHWT). The aim of this study was to determine pulmonary gene expression in canine IPF in order to gain insights into the pathogenesis of the disease and to identify possible biomarkers. Microarray analyses were conducted to determine gene expression profiles in the lungs of dogs with IPF and control dogs of various breeds. More than 700 genes were identified as having greater than two-fold difference in expression between the two groups. The significant biological functions associated with these genes were related to cellular growth and proliferation, developmental processes, cellular movement, cell to cell signalling and interaction, and antigen presentation. Altered levels of expression were confirmed by quantitative reverse transcriptase PCR for genes encoding chemokine (C-C) ligand (CCL) 2 (+4.9 times), CCL7 (+6.8 times), interleukin 8 (+4.32 times), chemokine (C-X-C) ligand 14 (+3.4 times), fibroblast activation protein (+4.7 times) and the palate, lung and nasal associated protein (PLUNC, -25 times). Serum CCL2 concentrations were significantly higher in WHWTs with IPF (mean 628.1 pg/mL, interquartile range 460.3-652.7 pg/mL) than unaffected WHWTs (mean 344.0 pg/mL, interquartile range 254.5-415.5 pg/mL; P=0.001). The results support CCL2 as a candidate biomarker for IPF in dogs.
Collapse
Affiliation(s)
- E Krafft
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster 20, 4000 Liège, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
144
|
McKleroy W, Lee TH, Atabai K. Always cleave up your mess: targeting collagen degradation to treat tissue fibrosis. Am J Physiol Lung Cell Mol Physiol 2013; 304:L709-21. [PMID: 23564511 PMCID: PMC3680761 DOI: 10.1152/ajplung.00418.2012] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/26/2013] [Indexed: 12/23/2022] Open
Abstract
Pulmonary fibrosis is a vexing clinical problem with no proven therapeutic options. In the normal lung there is continuous collagen synthesis and collagen degradation, and these two processes are precisely balanced to maintain normal tissue architecture. With lung injury there is an increase in the rate of both collagen production and collagen degradation. The increase in collagen degradation is critical in preventing the formation of permanent scar tissue each time the lung is exposed to injury. In pulmonary fibrosis, collagen degradation does not keep pace with collagen production, resulting in extracellular accumulation of fibrillar collagen. Collagen degradation occurs through both extracellular and intracellular pathways. The extracellular pathway involves cleavage of collagen fibrils by proteolytic enzyme including the metalloproteinases. The less-well-described intracellular pathway involves binding and uptake of collagen fragments by fibroblasts and macrophages for lysosomal degradation. The relationship between these two pathways and their relevance to the development of fibrosis is complex. Fibrosis in the lung, liver, and skin has been associated with an impaired degradative environment. Much of the current scientific effort in fibrosis is focused on understanding the pathways that regulate increased collagen production. However, recent reports suggest an important role for collagen turnover and degradation in regulating the severity of tissue fibrosis. The objective of this review is to evaluate the roles of the extracellular and intracellular collagen degradation pathways in the development of fibrosis and to examine whether pulmonary fibrosis can be viewed as a disease of impaired matrix degradation rather than a disease of increased matrix production.
Collapse
Affiliation(s)
- William McKleroy
- Cardiovascular Research Institute, Lung Biology Center, University of California San Francisco, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
145
|
Extracellular matrix remodeling genes polymorphisms and risk of chronic bronchitis and recurrent pneumonia in children. J Hum Genet 2013; 58:467-74. [DOI: 10.1038/jhg.2013.24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 03/05/2013] [Accepted: 03/11/2013] [Indexed: 01/16/2023]
|
146
|
Craig VJ, Quintero PA, Fyfe SE, Patel AS, Knolle MD, Kobzik L, Owen CA. Profibrotic activities for matrix metalloproteinase-8 during bleomycin-mediated lung injury. THE JOURNAL OF IMMUNOLOGY 2013; 190:4283-96. [PMID: 23487425 DOI: 10.4049/jimmunol.1201043] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Matrix metalloproteinase-8 (MMP-8) is a potent interstitial collagenase thought to be expressed mainly by polymorphonuclear neutrophils. To determine whether MMP-8 regulates lung inflammatory or fibrotic responses to bleomycin, we delivered bleomycin by the intratracheal route to wild-type (WT) versus Mmp-8(-/-) mice and quantified MMP-8 expression, and inflammation and fibrosis in the lung samples. Mmp-8 steady state mRNA and protein levels increase in whole lung and bronchoalveolar lavage samples when WT mice are treated with bleomycin. Activated murine lung fibroblasts express Mmp-8 in vitro. MMP-8 expression is increased in leukocytes in the lungs of patients with idiopathic pulmonary fibrosis compared with control lung samples. Compared with bleomycin-treated WT mice, bleomycin-treated Mmp-8(-/-) mice have greater lung inflammation, but reduced lung fibrosis. Whereas bleomycin-treated Mmp-8(-/-) and WT mice have similar lung levels of several pro- and antifibrotic mediators (TGF-β, IL-13, JE, and IFN-γ), Mmp-8(-/-) mice have higher lung levels of IFN-γ-inducible protein-10 (IP-10) and MIP-1α. Genetically deleting either Ip-10 or Mip-1α in Mmp-8(-/-) mice abrogates their lung inflammatory response to bleomycin, but reconstitutes their lung fibrotic response to bleomycin. Studies of bleomycin-treated Mmp-8 bone marrow chimeric mice show that both leukocytes and lung parenchymal cells are sources of profibrotic MMP-8 during bleomycin-mediated lung fibrosis. Thus, during bleomycin-mediated lung injury, MMP-8 dampens the lung acute inflammatory response, but promotes lung fibrosis by reducing lung levels of IP-10 and MIP-1α. These data indicate therapeutic strategies to reduce lung levels of MMP-8 may limit fibroproliferative responses to injury in the human lung.
Collapse
Affiliation(s)
- Vanessa J Craig
- Pulmonary Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
147
|
Lino Cardenas CL, Henaoui IS, Courcot E, Roderburg C, Cauffiez C, Aubert S, Copin MC, Wallaert B, Glowacki F, Dewaeles E, Milosevic J, Maurizio J, Tedrow J, Marcet B, Lo-Guidice JM, Kaminski N, Barbry P, Luedde T, Perrais M, Mari B, Pottier N. miR-199a-5p Is upregulated during fibrogenic response to tissue injury and mediates TGFbeta-induced lung fibroblast activation by targeting caveolin-1. PLoS Genet 2013; 9:e1003291. [PMID: 23459460 PMCID: PMC3573122 DOI: 10.1371/journal.pgen.1003291] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 12/16/2012] [Indexed: 01/06/2023] Open
Abstract
As miRNAs are associated with normal cellular processes, deregulation of miRNAs is thought to play a causative role in many complex diseases. Nevertheless, the precise contribution of miRNAs in fibrotic lung diseases, especially the idiopathic form (IPF), remains poorly understood. Given the poor response rate of IPF patients to current therapy, new insights into the pathogenic mechanisms controlling lung fibroblasts activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies for this devastating disease. To identify miRNAs with potential roles in lung fibrogenesis, we performed a genome-wide assessment of miRNA expression in lungs from two different mouse strains known for their distinct susceptibility to develop lung fibrosis after bleomycin exposure. This led to the identification of miR-199a-5p as the best miRNA candidate associated with bleomycin response. Importantly, miR-199a-5p pulmonary expression was also significantly increased in IPF patients (94 IPF versus 83 controls). In particular, levels of miR-199a-5p were selectively increased in myofibroblasts from injured mouse lungs and fibroblastic foci, a histologic feature associated with IPF. Therefore, miR-199a-5p profibrotic effects were further investigated in cultured lung fibroblasts: miR-199a-5p expression was induced upon TGFβ exposure, and ectopic expression of miR-199a-5p was sufficient to promote the pathogenic activation of pulmonary fibroblasts including proliferation, migration, invasion, and differentiation into myofibroblasts. In addition, we demonstrated that miR-199a-5p is a key effector of TGFβ signaling in lung fibroblasts by regulating CAV1, a critical mediator of pulmonary fibrosis. Remarkably, aberrant expression of miR-199a-5p was also found in unilateral ureteral obstruction mouse model of kidney fibrosis, as well as in both bile duct ligation and CCl4-induced mouse models of liver fibrosis, suggesting that dysregulation of miR-199a-5p represents a general mechanism contributing to the fibrotic process. MiR-199a-5p thus behaves as a major regulator of tissue fibrosis with therapeutic potency to treat fibroproliferative diseases. Fibrosis is the final common pathway in virtually all forms of chronic organ failure, including lung, liver, and kidney, and is a leading cause of morbidity and mortality worldwide. Fibrosis results from the excessive activity of fibroblasts, in particular a differentiated form known as myofibroblast that is responsible for the excessive and persistent accumulation of scar tissue and ultimately organ failure. Idiopathic Lung Fibrosis (IPF) is a chronic and often rapidly fatal pulmonary disorder of unknown origin characterized by fibrosis of the supporting framework (interstitium) of the lungs. Given the poor prognosis of IPF patients, new insights into the biology of (myo)fibroblasts is of major interest to develop new therapeutics aimed at reducing (myo)fibroblast activity to slow or even reverse disease progression, thereby preserving organ function and prolonging life. MicroRNAs (miRNAs), a class of non-coding RNA recently identified, are associated with normal cellular processes; and deregulation of miRNAs plays a causative role in a vast array of complex diseases. In this study, we identified a particular miRNA: miR-199a-5p that governs lung fibroblast activation and ultimately lung fibrosis. Overall we showed that miR-199a-5p is a major regulator of fibrosis with strong therapeutic potency to treat fibroproliferative diseases such as IPF.
Collapse
Affiliation(s)
| | - Imène Sarah Henaoui
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR-7275, Valbonne Sophia-Antipolis, France
- Université de Nice Sophia-Antipolis, Nice, France
| | | | - Christoph Roderburg
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Sébastien Aubert
- Institut National de la Santé et de la Recherche Médicale, U837, Jean-Pierre Aubert Research Center, Equipe 5 “Mucines, Différentiation et Cancérogenèse Épithéliales”, Lille, France
- Pôle de Pathologie, CHRU Lille, Lille, France
- Faculté de Médecine, Université de Lille 2, Lille, France
| | - Marie-Christine Copin
- Institut National de la Santé et de la Recherche Médicale, U837, Jean-Pierre Aubert Research Center, Equipe 5 “Mucines, Différentiation et Cancérogenèse Épithéliales”, Lille, France
- Pôle de Pathologie, CHRU Lille, Lille, France
- Faculté de Médecine, Université de Lille 2, Lille, France
| | - Benoit Wallaert
- Service de Pneumologie et Immunoallergologie, CHRU Lille, Lille, France
| | | | - Edmone Dewaeles
- EA4483, Faculté de Médecine de Lille, Pole Recherche, Lille, France
| | - Jadranka Milosevic
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Julien Maurizio
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR-7275, Valbonne Sophia-Antipolis, France
- Université de Nice Sophia-Antipolis, Nice, France
| | - John Tedrow
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Brice Marcet
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR-7275, Valbonne Sophia-Antipolis, France
- Université de Nice Sophia-Antipolis, Nice, France
| | | | - Naftali Kaminski
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Pascal Barbry
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR-7275, Valbonne Sophia-Antipolis, France
- Université de Nice Sophia-Antipolis, Nice, France
| | - Tom Luedde
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Michael Perrais
- Institut National de la Santé et de la Recherche Médicale, U837, Jean-Pierre Aubert Research Center, Equipe 5 “Mucines, Différentiation et Cancérogenèse Épithéliales”, Lille, France
- Faculté de Médecine, Université de Lille 2, Lille, France
| | - Bernard Mari
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR-7275, Valbonne Sophia-Antipolis, France
- Université de Nice Sophia-Antipolis, Nice, France
- * E-mail: (B Mari) (BM); (N Pottier) (NP)
| | - Nicolas Pottier
- EA4483, Faculté de Médecine de Lille, Pole Recherche, Lille, France
- * E-mail: (B Mari) (BM); (N Pottier) (NP)
| |
Collapse
|
148
|
Stallings-Mann ML, Waldmann J, Zhang Y, Miller E, Gauthier ML, Visscher DW, Downey GP, Radisky ES, Fields AP, Radisky DC. Matrix metalloproteinase induction of Rac1b, a key effector of lung cancer progression. Sci Transl Med 2013; 4:142ra95. [PMID: 22786680 DOI: 10.1126/scitranslmed.3004062] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lung cancer is more deadly than colon, breast, and prostate cancers combined, and treatment improvements have failed to improve prognosis significantly. Here, we identify a critical mediator of lung cancer progression, Rac1b, a tumor-associated protein with cell-transforming properties that are linked to the matrix metalloproteinase (MMP)-induced epithelial-mesenchymal transition (EMT) in lung epithelial cells. We show that expression of mouse Rac1b in lung epithelial cells of transgenic mice stimulated EMT and spontaneous tumor development and that activation of EMT by MMP-induced expression of Rac1b gave rise to lung adenocarcinoma in the transgenic mice through bypassing oncogene-induced senescence. Rac1b is expressed abundantly in stages 1 and 2 of human lung adenocarcinomas and, hence, is an attractive molecular target for the development of new therapies that prevent progression to later-stage lung cancers.
Collapse
|
149
|
Watanabe K, Iwahara C, Nakayama H, Iwabuchi K, Matsukawa T, Yokoyama K, Yamaguchi K, Kamiyama Y, Inada E. Sevoflurane suppresses tumour necrosis factor-α-induced inflammatory responses in small airway epithelial cells after anoxia/reoxygenation. Br J Anaesth 2013; 110:637-45. [PMID: 23295714 DOI: 10.1093/bja/aes469] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Lung ischaemia-reperfusion (I/R) injury is correlated with poor clinical outcome. The inflammatory cytokines interleukin (IL)-6, IL-8, and monocyte chemotactic protein-1 (MCP-1) are produced by pulmonary epithelial cells during lung transplantation and are considered to be involved in I/R injury. The volatile anaesthetic sevoflurane has been shown to exert a protective effect on I/R injury in various organs. We investigated the effect of sevoflurane on the inflammatory functions of pulmonary epithelial cells in vitro. METHODS Human normal small airway epithelial cells (SAEC) were incubated under anoxic conditions for 24 h with or without sevoflurane and then stimulated with tumour necrosis factor (TNF)-α under hyperoxic conditions for 5 h with or without sevoflurane. After incubation, IL-6, IL-8, and MCP-1 mRNA expression was analysed by quantitative real-time RT-PCR. The production of IL-6, IL-8, and MCP-1 was assayed by enzyme-linked immunosorbent assay, the effects of sevoflurane on inflammatory gene expression were examined by DNA microarray analysis, and the effects of sevoflurane on NF-κB-mediated inflammatory cytokine production were examined by immunoblotting. RESULTS Sevoflurane suppressed TNF-α-induced IL-6, IL-8, and MCP-1 gene expression and the production of IL-6 and IL-8 in SAEC under anoxia/reoxygenation conditions. DNA microarray analysis indicated that sevoflurane modulated NF-κB-related gene expression. Sevoflurane significantly inhibited TNF-α-induced translocation of p65 NF-κB into the nucleus. Sevoflurane enhanced TNF-α-induced gene expression of inhibitor κB (IκB) but not of NF-κB. CONCLUSIONS Sevoflurane suppressed the NF-κB-mediated production of pulmonary epithelial cell-derived inflammatory cytokines, including IL-6 and IL-8, which are capable of causing I/R injury.
Collapse
Affiliation(s)
- K Watanabe
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Tokyo 113-8421, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Abstract
PURPOSE OF REVIEW Pathogenesis of interstitial lung diseases (ILD) has largely been investigated in the context of the most frequent ILD, idiopathic pulmonary fibrosis (IPF). We review studies of epithelial-to-mesenchymal transition (EMT) and discuss its potential contribution to collagen-producing (myo)fibroblasts in IPF. RECENT FINDINGS Endoplasmic reticulum (ER) stress leading to epithelial apoptosis has been reported as a potential etiologic factor in fibrosis. Recent studies further suggest EMT as a link between ER stress and fibrosis. Combinatorial interactions among Smad3, β-catenin and other transcriptional co-activators at the α-smooth muscle actin (α-SMA) promoter provide direct evidence for crosstalk between transforming growth factor-β (TGFβ) and β-catenin pathways during EMT. Lineage tracing yielded conflicting results, with two recent studies supporting and one opposing a role for EMT in lung fibrosis. SUMMARY Advances have been made in elucidating causes and mechanisms of EMT, potentially leading to new treatment options, although contributions of EMT to lung fibrosis in vivo remain controversial. In addition to EMT providing a direct source of (myo)fibroblasts, expression of mesenchymal markers may reflect epithelial injury, in which case inhibition of EMT might be deleterious. EMT-derived cells may also contribute to aberrant epithelial-mesenchymal crosstalk that promotes fibrogenesis.
Collapse
|