101
|
Comparative analyses of the neurobehavioral, molecular, and enzymatic effects of organophosphates on embryo-larval zebrafish (Danio rerio). Neurotoxicol Teratol 2019; 73:67-75. [DOI: 10.1016/j.ntt.2019.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022]
|
102
|
Shi Q, Wang Z, Chen L, Fu J, Han J, Hu B, Zhou B. Optical toxicity of triphenyl phosphate in zebrafish larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:139-147. [PMID: 30851488 DOI: 10.1016/j.aquatox.2019.02.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 05/28/2023]
Abstract
Triphenyl phosphate (TPhP) has been shown to cause developmental neurotoxicty. Considering the visual system is a sensitive target, in the present study, we investigated the potential toxicity of TPhP on the visual development and function in zebrafish larvae. Embryos were exposed to 0, 0.1, 1, 10, and 30 μg/L TPhP from 2 to 144 h post-fertilization (hpf). The transcription of photoreceptor opsin genes, and histopathological changes in the retina and visual behavior (optokinetic and phototactic responses) were evaluated. TPhP significantly downregulated the transcription of opsin genes (zfrho, opn1sw1, opn1sw2, opn1mw1, opn1mw2, opn1mw3, opn1mw4, opn1lw1 and opn1lw2) in all exposure groups. Histopathological analysis revealed that the areas of the outer nuclear layer (ONL), inner nuclear layer (INL), and inner plexiform layer (IPL) of the retina were significantly reduced in the 10 and 30 μg/L TPhP groups. The number of ganglion cells was reduced significantly in the 30 μg/L group. The optokinetic response (OKR) and phototactic response showed dose-dependent decreases caused by impaired visual function, which was confirmed by unchanged locomotor activity. The results indicated that exposure to environmentally relevant concentrations of TPhP could inhibit the transcription of genes related to visual function and impair retinal development, thus leading to visual impairment in zebrafish larvae.
Collapse
Affiliation(s)
- Qipeng Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongyi Wang
- Hefei National Laboratory for Physical Sciences at the Microscale School of Life Sciences, University of Science and Technology of China, Hefei, China; Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Juanjuan Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Bing Hu
- Hefei National Laboratory for Physical Sciences at the Microscale School of Life Sciences, University of Science and Technology of China, Hefei, China; Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
103
|
Qi Z, Chen M, Song Y, Wang X, Li B, Chen ZF, Tsang SY, Cai Z. Acute exposure to triphenyl phosphate inhibits the proliferation and cardiac differentiation of mouse embryonic stem cells and zebrafish embryos. J Cell Physiol 2019; 234:21235-21248. [PMID: 31032947 DOI: 10.1002/jcp.28729] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
Attention has recently paid to the interaction of triphenyl phosphate (TPHP) and body tissues, particularly within the reproductive and development systems, due to its endocrine-disrupting properties. However, the acute effects of TPHP on early embryonic development remain unclear. Here, we used mouse embryonic stem cells (mESC) and zebrafish embryos to investigate whether TPHP is an embryo toxicant. First, we found that continuous exposure of TPHP decreased the proliferation and increased the apoptotic populations of mESCs in a concentration-dependent manner. Results of mass spectrometry showed that the intracellular concentration of TPHP reached 39.45 ± 7.72 µg/g w/w after 3 hr of acute exposure with TPHP (38.35 μM) but gradually decreased from 3 hr to 48 hr. Additionally, DNA damage was detected in mESCs after a short-term treatment with TPHP, which in turn, activated DNA damage responses, leading to cell cycle arrest by changing the expression levels of p53, proliferating cell nuclear antigen, and Y15-phosphorylated Cdk I. Furthermore, our results revealed that short-term treatment with TPHP disturbed cardiac differentiation by decreasing the expression levels of Oct4, Sox2, and Nanog and transiently reduced the glycolysis capacity in mESCs. In zebrafish embryos, exposure to TPHP resulted in broad, concentration-dependent developmental defects and coupled with heart malformation and reduced heart rate. In conclusion, the two models demonstrate that acute exposure to TPHP affects early embryonic development and disturbs the cardiomyogenic differentiation.
Collapse
Affiliation(s)
- Zenghua Qi
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Min Chen
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Xiya Wang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Bingkun Li
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Zhi-Feng Chen
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Suk Ying Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Zongwei Cai
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong, China.,State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
104
|
Liu X, Cai Y, Wang Y, Xu S, Ji K, Choi K. Effects of tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and triphenyl phosphate (TPP) on sex-dependent alterations of thyroid hormones in adult zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:25-32. [PMID: 30508752 DOI: 10.1016/j.ecoenv.2018.11.058] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 05/28/2023]
Abstract
Organophosphate flame retardants (OPFRs) have been widely used as alternatives to polybrominated diphenyl ethers for fire prevention. OPFRs are suspected of causing potential thyroid disruption in humans. In fish, their thyroid hormone modulation is reported but the mechanisms of this modulation are less understood. Thyroid-disturbing effects of OPFRs were evaluated using adult zebrafish (Danio rerio) following 14d exposure to tris(1,3-dichloro-2-propyl) phosphate (TDCPP) or triphenyl phosphate (TPP). Plasma concentrations of thyroid hormones were measured and transcriptions of several genes involved in thyroid function were quantified in brain, thyroid, and liver. Exposure to TDCPP or TPP led to significant decreases in plasma triiodothyronine (T3) and thyroxine (T4) concentrations in the male fish, while the increases were observed in the female fish. Exposure to the OPFRs also altered the transcription of regulatory genes and receptors in hypothalamus, pituitary, and thyroid of the fish in sex-dependent manner. In the male fish, transcriptions of corticotropin-releasing hormone (crh) and thyroid-stimulating hormone (tsh) in the brain were significantly up-regulated, probably as a compensation for hypothyroidism, but thyroglobulin (tg) and deiodinase 2 (dio2) were down-regulated in thyroid or liver. In contrast, in the females, transcriptions of crh and tsh genes were significantly down-regulated. These observations show that TDCPP and TPP exposure can lead to sex-dependent disruptions of thyroid hormone balances in the adult zebrafish through alterations of the hypothalamus-pituitary-thyroid (HPT) axis.
Collapse
Affiliation(s)
- Xiaoshan Liu
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong 523-808, China
| | - Yi Cai
- Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518-060, China
| | - Yao Wang
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong 523-808, China
| | - Suhua Xu
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong 523-808, China
| | - Kyunghee Ji
- Department of Occupational and Environmental Health, Yongin University, Yongin 17092, Republic of Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
105
|
Doherty BT, Hoffman K, Keil AP, Engel SM, Stapleton HM, Goldman BD, Olshan AF, Daniels JL. Prenatal exposure to organophosphate esters and behavioral development in young children in the Pregnancy, Infection, and Nutrition Study. Neurotoxicology 2019; 73:150-160. [PMID: 30951742 DOI: 10.1016/j.neuro.2019.03.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 12/11/2022]
Abstract
Organophosphate esters (OPEs) are commonly used as plasticizers and flame retardants in consumer products, and exposure is relatively ubiquitous in most populations studied. This may be of concern as some OPEs may be neurotoxic, endocrine-disrupting, and interfere with behavioral development; however, observational evidence is limited. We used data from the Pregnancy, Infection, and Nutrition Study, a prospective birth cohort study, to investigate associations between maternal OPE metabolite concentrations during pregnancy and behavioral development in offspring. Women provided a urine sample during pregnancy that was analyzed for concentrations of OPE metabolites, including diphenyl phosphate (DPHP), bis(1,3-dichloro-2-propyl phosphate) (BDCIPP), isopropyl-phenyl phenyl phosphate (ip-PPP), and 1-hydroxyl-2-propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP). Offspring's behavioral development was assessed by the Behavioral Assessment System for Children (2nd Edition) (BASC-2) at approximately 36 months. Linear regression was used to estimate associations between tertiles in specific gravity-corrected OPE metabolite concentrations and children's scores on the BASC-2, adjusted for maternal age, maternal BMI, maternal race, maternal education, familial income, maternal depression, quality of the home environment, and sex. Higher BDCIPP concentrations were associated with higher scores on the Behavioral Symptoms Index (1st vs. 3rd tertile: β = 3.03; 95% CI = 0.40, 5.67) and Externalizing Problems (1st vs. 3rd tertile: β = 2.49; 95% CI: -0.12, 5.10) composites. Among BASC-2 scales, BDCIPP was most strongly associated with Withdrawal, Attention Problems, Depression, Hyperactivity, and Aggression. DPHP concentrations were also associated with higher scores on the Externalizing Problems and Behavioral Symptoms Index composites, but not as strongly as BDCIPP. Conversely, higher concentrations of ip-PPP were associated with fewer adverse behavioral symptoms, including an inverse association with the Internalizing Problems composite (1st vs. 3rd tertile: β = -3.74; 95% CI = -6.75, -0.74) and constituent scales. BCIPHIPP was not strongly associated with any measured behavioral outcomes. Our results suggest that greater maternal exposure to tris(1,3-dichloro-2-propyl phosphate) (TDCIPP, parent compound of BDCIPP) and, to a lesser degree, triphenyl phosphate (TPHP, parent compound of DPHP) during pregnancy is associated with adverse behavioral development in children. Our study contributes to the growing body of evidence pertaining to adverse developmental effects of prenatal OPE exposure and highlights the need for further research to characterize risks associated with this ubiquitous family of chemicals.
Collapse
Affiliation(s)
- Brett T Doherty
- Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, 2101 McGavran-Greenberg Hall, Chapel Hill, NC, 27599, USA.
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Nicholas School of the Environment, Duke University, 9 Circuit Drive, Box 27708, Durham, NC, 27708, USA
| | - Alexander P Keil
- Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, 2101 McGavran-Greenberg Hall, Chapel Hill, NC, 27599, USA
| | - Stephanie M Engel
- Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, 2101 McGavran-Greenberg Hall, Chapel Hill, NC, 27599, USA
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Nicholas School of the Environment, Duke University, 9 Circuit Drive, Box 27708, Durham, NC, 27708, USA
| | - Barbara D Goldman
- Frank Porter Graham Child Development Institute & Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Frank Porter Graham Child Development Institute, The University of North Carolina at Chapel Hill, CB 8180, 27599, NC, USA
| | - Andrew F Olshan
- Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, 2101 McGavran-Greenberg Hall, Chapel Hill, NC, 27599, USA
| | - Julie L Daniels
- Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, 2101 McGavran-Greenberg Hall, Chapel Hill, NC, 27599, USA
| |
Collapse
|
106
|
Mitchell CA, Reddam A, Dasgupta S, Zhang S, Stapleton HM, Volz DC. Diphenyl Phosphate-Induced Toxicity During Embryonic Development. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3908-3916. [PMID: 30864794 PMCID: PMC6445678 DOI: 10.1021/acs.est.8b07238] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Diphenyl phosphate (DPHP) is an aryl phosphate ester (APE) used as an industrial catalyst and chemical additive and is the primary metabolite of flame retardant APEs, including triphenyl phosphate (TPHP). Minimal DPHP-specific toxicity studies have been published despite ubiquitous exposure within human populations following metabolism of TPHP and other APEs. Therefore, the objective of this study was to determine the potential for DPHP-induced toxicity during embryonic development. Using zebrafish as a model, we found that DPHP significantly increased the distance between the sinus venosus and bulbus arteriosis (SV-BA) at 72 h postfertilization (hpf) following initiation of exposure before and after cardiac looping. Interestingly, pretreatment with d-mannitol mitigated DPHP-induced effects on SV-BA length despite the absence of DPHP effects on pericardial area, suggesting that DPHP-induced cardiac defects are independent of pericardial edema formation. Using mRNA-sequencing, we found that DPHP disrupts pathways related to mitochondrial function and heme biosynthesis; indeed, DPHP significantly decreased hemoglobin levels in situ at 72 hpf following exposure from 24 to 72 hpf. Overall, our findings suggest that, similar to TPHP, DPHP impacts cardiac development, albeit the potency of DPHP is significantly less than TPHP within developing zebrafish.
Collapse
Affiliation(s)
- Constance A. Mitchell
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Aalekhya Reddam
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Subham Dasgupta
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Sharon Zhang
- Division of Environmental Sciences and Policy, Duke University, Durham, North Carolina 27708, United States
| | - Heather M. Stapleton
- Division of Environmental Sciences and Policy, Duke University, Durham, North Carolina 27708, United States
| | - David C. Volz
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
- Corresponding Author Phone: (951) 827-4450. Fax: (951) 827-4652.,
| |
Collapse
|
107
|
Lee S, Kim C, Shin H, Kho Y, Choi K. Comparison of thyroid hormone disruption potentials by bisphenols A, S, F, and Z in embryo-larval zebrafish. CHEMOSPHERE 2019; 221:115-123. [PMID: 30639807 DOI: 10.1016/j.chemosphere.2019.01.019] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/31/2018] [Accepted: 01/03/2019] [Indexed: 05/25/2023]
Abstract
Several structural analogues of bisphenol A (BPA), e.g., bisphenol F (BPF), bisphenol S (BPS), and bisphenol Z (BPZ), have been used as its substitutes in many applications and consequently detected in the environment, and human specimen such as urine and serum. While BPA has been frequently reported for thyroid hormone disruption in both experimental and epidemiological studies, less is known for the BPA analogues. In the present study, thyroid hormone disrupting effects of BPF, BPS and BPZ, were investigated, and compared with those of BPA, using embryo-larval zebrafish (Danio rerio). At 120 hpf, significant increases in T3 and/or T4 were observed in the larval fish following exposure to BPA, BPF, or BPS. Moreover, transcriptional changes of the genes related to thyroid development (hhex and tg), thyroid hormone transport (ttr) and metabolism (ugt1ab) were observed as well. Thyroid hormone (T4) disruption by BPF was observed even at the concentration (2.0 mg/L) lower than the effective concentration determined for BPA (>2.0 mg/L). Delayed hatching was observed by all tested bisphenols. Our results clearly show that these BPA analogues can disrupt thyroid function of the larval fish, and their thyroid hormone disruption potencies could be even greater than that of BPA. The concentrations which disrupt thyroid function of the larval fish were orders of magnitude higher than those occurring in the ambient environment. However, thyroid hormone disruption by longer term exposure and its consequences in the fish population, deserve further investigation.
Collapse
Affiliation(s)
- Sangwoo Lee
- School of Public Health, Seoul National University, Seoul, 08826, South Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea
| | - Cheolmin Kim
- School of Public Health, Seoul National University, Seoul, 08826, South Korea; CRI Global Institute of Toxicology, Croen Research Inc., Suwon, 16614, South Korea
| | - Hyesoo Shin
- School of Public Health, Seoul National University, Seoul, 08826, South Korea
| | - Younglim Kho
- School of Human and Environmental Sciences, Eulji University, Seongnam, 13135, South Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
108
|
Ren X, Wang W, Zhao X, Ren B, Chang L. Parental exposure to tris(1,3-dichloro-2-propyl) phosphate results in thyroid endocrine disruption and inhibition of growth in zebrafish offspring. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 209:132-141. [PMID: 30771614 DOI: 10.1016/j.aquatox.2019.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is a re-emerging environmental contaminant used as a suitable substitute for brominated flame retardants. The objective of this study was to evaluate the effects of TDCIPP on thyroid disruption and growth inhibition in zebrafish (Danio rerio) offspring after chronic parental exposure, and to examine the possible molecular mechanisms involved. When adult zebrafish (4 months old) were exposed to 5.66, 25.55, or 92.8 μg TDCIPP/L for 90 days, bioconcentration of TDCIPP and its metabolic product [bis(1,3-dichloro-2-propyl) phosphate, BDCIPP] was observed in 7-day postfertilization (dpf) F1 larvae, which suggests the transfer of this compound from adult fish to their offspring. Our results demonstrated that parental exposure to TDCIPP induced thyroid disruption in the offspring, demonstrated by significantly decreased thyroxine (T4) and increased 3,5,3'-triiodothyronine (T3) levels, and disruption of the transcription of several genes and expression of proteins involved in the hypothalamic-pituitary-thyroid (HPT) axis in F1 larvae. Parental exposure to TDCIPP resulted in developmental abnormalities in offspring; the smaller body length that was recorded might be partly the result of the perturbation of the HPT axis. In addition, the results revealed that growth inhibition also resulted from the downregulation of the transcription of genes and expression of proteins involved in the growth hormone/insulin-like growth factor (GH/IGF) axis. Our study provides a new set of evidence showing that parental exposure to TDCIPP can induce thyroid disruption and inhibition of growth in offspring, and that perturbation of the HPT axis and GH/IGF axis contribute to these adverse effects.
Collapse
Affiliation(s)
- Xin Ren
- Key Laboratory of Environmental Materials and Pollution Control, the Education Department of Jilin Province, Siping, 136000, China; College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping, 136000, China
| | - Weitong Wang
- College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping, 136000, China
| | - Xuesong Zhao
- Key Laboratory of Environmental Materials and Pollution Control, the Education Department of Jilin Province, Siping, 136000, China; College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping, 136000, China.
| | - Baixiang Ren
- Key Laboratory of Environmental Materials and Pollution Control, the Education Department of Jilin Province, Siping, 136000, China; Key Laboratory of Preparation and Application of Environmental Friendly Materials, the Ministry of Education, Jilin Normal University, Siping, 136000, China.
| | - Limin Chang
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, the Ministry of Education, Jilin Normal University, Siping, 136000, China
| |
Collapse
|
109
|
Ortiz-Delgado JB, Funes V, Sarasquete C. The organophosphate pesticide -OP- malathion inducing thyroidal disruptions and failures in the metamorphosis of the Senegalese sole, Solea senegalensis. BMC Vet Res 2019; 15:57. [PMID: 30744622 PMCID: PMC6371575 DOI: 10.1186/s12917-019-1786-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/16/2019] [Indexed: 12/14/2022] Open
Abstract
Background Organophosphate pesticides-OP-, like malathion, can alter the normal functioning of neuro-endocrine systems (e.g., hypothalamus-pituitary-thyroid-HPT- axis), and to interfere on the thyroidal homeostasis. Through direct interactions with thyroid receptors, an/or indirectly via up-stream signalling pathways, from the HPT axis (i.e., negative feedback regulation), malathion possess the ability to affect integrity of thyroidal follicular tissue, and it can also block or delay its hormonal functioning. This insecticide can alter the majority of the ontogenetic processes, inducing several deformities, and also provoking decreases in the growth and survival patterns. The present study has been performed to determine the sublethal effects of malathion during the first month of life of the Senegalese sole, Solea senegalensis, and it is mainly focused on the metamorphosis phase. Different transcript expression levels (i.e. thyroid receptors, matrix and bone -Gla-proteins) and immunohistochemical patterns (i.e. thyroid hormones, osteocalcin, cell proliferation) have been analysed during the most critical phases of the flatfish metamorphosis, that is, through differentiation of thyroid system and skeletal development, migration of the eye, and further adaptation to benthic behaviours. Results In early life stages of the Senegalese sole, the exposure to the highest concentration of malathion (6.25 μg/L) affected to the growth patterns, showing the exposed individuals, a reduction around 60 and 92% of the total length and the dry weigth, respectively. In paralell, a significant reduction of the thyroid follicles (i.e., size and number) it was also been recorded, in a dose-dependent way. Abnormal phenotypes induced in the exposed larvae, did not complete the process of metamorphosis, and displayed several morphological abnormalities and developmental disorders, which were mainly associated with the eye migration process, and with thyroidal and skeletal disorders (i.e., transcriptional and protein changes of thyroid hormones and receptors, and of matrix and bone Gla proteins distribution), that conduced to an inadequate adaptation to the benthic life. Conclusions In the Senegalese sole, the majority of the ontogenetic alterations induced by the exposure to malathion were mainly associated to the metamorphosis period, which is a thyroid-driven proccess. In fact, most crucial and transitional ontogenic events, appeared notably disturbed, for e.g., thyroid gland differentiation and functioning, migration of eye, skeletal development and benthonic behaviors.
Collapse
Affiliation(s)
- Juan B Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía-ICMAN, CSIC Campus Universitario Río San Pedro, 11510, Puerto Real, Cádiz, Spain.
| | - Victoria Funes
- IFAPA, Centro el Toruño, Junta de Andalucía, Camino Tiro de Pichón s/n, 11500, El Puerto de Santa María, Cádiz, Spain
| | - Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía-ICMAN, CSIC Campus Universitario Río San Pedro, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
110
|
Wang L, Huang X, Lim DJ, Laserna AKC, Li SFY. Uptake and toxic effects of triphenyl phosphate on freshwater microalgae Chlorella vulgaris and Scenedesmus obliquus: Insights from untargeted metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1239-1249. [PMID: 30308812 DOI: 10.1016/j.scitotenv.2018.09.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 05/25/2023]
Abstract
The flame retardant triphenyl phosphate (TPhP) has been widely detected in surface waters. Yet, little information is known regarding its impact on microalgae. We investigated the uptake and toxicity of TPhP on two freshwater microalgae Chlorella vulgaris (CV) and Scenedesmus obliquus (SO) after exposure to 10 μg/l-10 mg/l for 5 days. The presence of microalgae significantly enhanced TPhP degradation, with the final concentrations dropped to 5.5-35.1% of the original concentrations. Most of the medium TPhP were sorbed and transformed by microalgae in just one day. Growth of CV was inhibited in a concentration-dependent manner, whereas growth of SO were only inhibited significantly at 10 mg/l TPhP exposure. Mass spectrometry-based untargeted metabolomics revealed concentration- and species-dependent metabolic responses. Exposure to TPhP in CV resulted in enhanced respiration (increase of fumarate and malate) and osmoregulation (increase of sucrose and myo-inositol), synthesis of membrane lipids (accumulation of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), decrease of lysoglycerolipids, fatty acids, and glyceryl-glucoside). Exposure to TPhP in SO resulted in enhanced osmoregulation (increase of valine, proline, and raffinose) and lipolysis (decrease of MGDG, accumulation of fatty acids, lysophospholipids, and glycerol phosphate). Although chlorophyll a and b contents did not change significantly, decrease of chlorophyll derivatives was observed in both CV and SO at high exposure concentrations. Further bioassays confirmed that CV exhibited enhanced membrane integrity and decreased cellular reactive oxygen species (ROS) possibly as a defense strategy, whereas SO showed disruption of membrane integrity and induction of ROS at 10 mg/l exposure. This study demonstrated the potential of microalgae to remove TPhP in water, and offered new insights for the risk assessment of TPhP on freshwater microalgae using metabolomics.
Collapse
Affiliation(s)
- Lei Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore
| | - Xulei Huang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore
| | - Dorothy Jingwen Lim
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore
| | | | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore; NUS Environmental Research Institute (NERI), #02-01, T-Lab Building (TL), 5A Engineering Drive 1, Singapore 117411, Singapore.
| |
Collapse
|
111
|
Wei K, Yin H, Peng H, Lu G, Dang Z. Bioremediation of triphenyl phosphate in river water microcosms: Proteome alteration of Brevibacillus brevis and cytotoxicity assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:563-570. [PMID: 30176467 DOI: 10.1016/j.scitotenv.2018.08.342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Triphenyl phosphate (TPHP), an organophosphate flame retardant, was detected in river water samples collected from an electronic waste recycling area in Guiyu, Southern China. The concentrations of TPHP ranged from not detected to 347.2 ng/L, with an average of 138.8 ng/L. The bioaugmentation potential of Brevibacillus brevis on TPHP biodegradation by aerobic microcosms contained in river water from Guiyu was assessed. The results showed that TPHP degradation efficiency was significantly improved to 97.9% by bioaugmentation with B. brevis after 96 h incubation. A total of 182 significantly changed proteins in B. brevis were identified and quantified by isobaric tags for relative and absolute quantification (iTRAQ) in response to TPHP stress. The differentially expressed proteins were mainly associated with energy metabolism, lipid metabolism, cell wall biosynthesis, amino acid transport, and metabolism. The identification that proteins of B. brevis respond to TPHP existence provides novel insights into biodegradation mechanisms of bacteria under environmental stress. Additionally, cytotoxicity assays indicated that the degrading intermediates of TPHP, namely diphenyl phosphate and phenyl phosphate, were less cytotoxic to human HepG2 cells compared with TPHP. Collectively, these findings suggest that aerobic bioaugmentation with degrading microorganisms is a potential strategy for in situ treatment of TPHP-contaminated sites.
Collapse
Affiliation(s)
- Kun Wei
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem, Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology, Research Center for Environxmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem, Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology, Research Center for Environxmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, PR China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem, Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology, Research Center for Environxmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem, Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology, Research Center for Environxmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, PR China
| |
Collapse
|
112
|
Hong X, Chen R, Yuan L, Zha J. Global microRNA and isomiR expression associated with liver metabolism is induced by organophosphorus flame retardant exposure in male Chinese rare minnow (Gobiocypris rarus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:829-838. [PMID: 30176492 DOI: 10.1016/j.scitotenv.2018.08.305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/31/2018] [Accepted: 08/22/2018] [Indexed: 06/08/2023]
Abstract
To reveal the adverse effects of organophosphorus flame retardants (OPFRs) on aquatic organisms at the epigenetic level, male Chinese rare minnows were exposed to 0.24 mg/L tris(2‑butoxyethyl) phosphate (TBOEP), 0.04 mg/L tris(1,3‑dichloro‑2‑propyl) phosphate (TDCIPP), or 0.012 mg/L triphenyl phosphate (TPHP) for 14 days. The effects of sub-acute OPFR exposure on liver miRNA and the 3' isomiR expression profiles of Chinese rare minnows were investigated. Through small RNA sequencing and bioinformatics analysis, a total of 32, 84, and 19 differentially expressed miRNAs were detected for TBOEP, TDCIPP, and TPHP exposure, respectively (p < 0.05). Target prediction of the differentially expressed miRNAs and pathway enrichment analysis indicated that predicted altered mRNAs for all three OPFRs were associated with metabolic pathways, whereas base excision repair was only predicted to be perturbed by the TPHP treatment. In addition, 3' isomiR-Us were unexpectedly abundant in all groups (e.g., miR-143), and TDCIPP strongly increased the ratio of 3' isomiR-U expression. Finally, histological examination and metabolic enzyme activity analyses werein agreement with the predicted metabolic pathways. As such, our study indicates that the investigation of epigenetics changes in miRNA gene transcription is a considerable method for the assessment of aquatic toxicity.
Collapse
Affiliation(s)
- Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lilai Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
113
|
Bai XY, Lu SY, Xie L, Zhang B, Song SM, He Y, Ouyang JP, Zhang T. A pilot study of metabolites of organophosphorus flame retardants in paired maternal urine and amniotic fluid samples: potential exposure risks of tributyl phosphate to pregnant women. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:124-132. [PMID: 30427354 DOI: 10.1039/c8em00389k] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Organophosphorus flame retardants (OPs) are of wide concern due to their presence in human urine and their considerable endocrine disruption and neuro-development toxicity. It has been confirmed that electronic waste (e-waste) dismantling activities have contributed to human exposure to OPs. However, assessments of OP exposure and the health risks for pregnant women and fetuses living in areas associated with e-waste dismantling have been impeded by a lack of data. In this study, six OP metabolites (mOPs) were measured in paired maternal urine and amniotic fluid samples collected from an e-waste dismantling area in Guangdong Province, China. All mOPs were detectable in maternal urine, whereas two were found in amniotic fluid. Dibutyl phosphate (DBP) was the predominant mOP in both maternal urine (geometric mean (GM): 2.9 ng ml-1) and amniotic fluid (1.3 ng ml-1); and diphenyl phosphate (DPHP) was the secondary one found (0.94 ng ml-1 in maternal urine, 0.12 ng ml-1 in amniotic fluid). The GM urinary concentrations of DBP and DPHP were two and seven times higher than those in amniotic fluid, respectively. The estimated daily intakes (EDIs) of triphenyl phosphate (TPHP) and tributyl phosphate (TnBP) by pregnant women were calculated from their daily urine excretion rate as fractions of OP metabolized to the corresponding metabolite (FUE). Our results showed high exposure levels to TPHP (median: 273 or 613 ng per kg bw per day) and TnBP (404 ng per kg bw per day) for pregnant women living in the e-waste associated area. Most importantly, 13% of mothers had EDITnBP levels that exceeded the reference dose (RfD: 2400 ng per kg bw per day), suggesting potential health risks from TnBP exposure for pregnant women living in areas associated with e-waste dismantling. This study, as a pilot study, presents the first measurements of mOPs in human amniotic fluid.
Collapse
Affiliation(s)
- Xue-Yuan Bai
- School of Environmental Science and Engineering, Sun Yat-Sen University, 135 Xingang West Street, Guangzhou 510275, China.
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Kong D, Liu Y, Zuo R, Li J. DnBP-induced thyroid disrupting activities in GH3 cells via integrin α vβ 3 and ERK1/2 activation. CHEMOSPHERE 2018; 212:1058-1066. [PMID: 30286535 DOI: 10.1016/j.chemosphere.2018.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/26/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
Di-n-butylphthalate (DnBP) exhibits alarming thyroid disrupting activities. However, the toxic mechanism of DnBP is not completely understood. In this study, we investigated the mechanism of DnBP in thyroid disruption. Rat pituitary tumor cell lines (GH3) were treated with DnBP in different scenarios, and cell viabilities, target gene transcriptions and protein levels were measured accordingly. The results showed that after treatment with DnBP (20 μmol/L), cell proliferation increased to 114.69% (p < 0.01) and c-fos gene was up-regulated by 1.57-fold (p < 0.01). Both nuclear thyroid hormone receptor β (TRβ) and membrane TR (integrin αv and integrin β3) genes were up-regulated by 1.31-, 1.08- and 2.39-fold (p < 0.01), respectively, the latter was inhibited by Arg-Gly-Asp (RGD) peptides; the macromolecular DnBP-BSA was unable to bind nuclear TRs, but still promoted cell proliferation to 104.18% and up-regulated c-fos by 2.99-fold (p < 0.01); after silencing TRβ gene, cell proliferation (106.64%, p < 0.05) and up-regulation of c-fos (1.23-fold, p < 0.01) were also observed. All of these findings indicated the existence of non-genomic pathway for DnBP-induced thyroid disruption. Finally, DnBP activated the downstream extracellular regulated protein kinases (ERK1/2) pathway, up-regulating Mapk1 (1.15-, p < 0.05), Mapk3 (1.26-fold, p < 0.01) and increasing protein levels of p-ERK (p < 0.01); notably, DnBP-induced ERK1/2 activation along with c-fos up-regulation were attenuated by PD98059 (ERK1/2 inhibitor). Taken together, it could be suggested that integrin αvβ3 and ERK1/2 pathway play significant roles in DnBP-induced thyroid disruption, and this novel mechanism warrants further investigation in living organisms.
Collapse
Affiliation(s)
- Dongdong Kong
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yun Liu
- South China Institute of Environmental Science, Ministry of Environmental Protection, No.7 West Street, Yuancun, Guangzhou 510655, China
| | - Rui Zuo
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
115
|
Lee J, Kim S, Choi K, Ji K. Effects of bisphenol analogs on thyroid endocrine system and possible interaction with 17β-estradiol using GH3 cells. Toxicol In Vitro 2018; 53:107-113. [PMID: 30099086 DOI: 10.1016/j.tiv.2018.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 11/28/2022]
Abstract
This study was conducted using a rat pituitary (GH3) cell line to understand the effects of bisphenol analogs (BPs) on the thyroid endocrine system, in the presence of 17β-estradiol (E2). In the first series of experiments, changes in cell proliferation were examined after exposure to each of ten BPs, in the absence or presence of a median effective concentration (6.4 × 10-10 M) of triiodothyronine (T3). All tested BPs significantly increased cell proliferation, suggesting thyroid hormone (TH) agonistic effects of BPs. BPs did not potentiate the T3-induced cell proliferation at 48 h exposure, while several tested BPs including BPA, BPAF, BPB, BPF, BPS, and BPZ elicited a potentiating effect on the T3-induced cell proliferation at 96 h exposure. These results indicate that TH-antagonistic effects of BPs depend on the tested dose and exposure time. In the second set of experiments, one of the most potent BPs, i.e., BPAF, was selected, and its possible interaction with E2 on the thyroid endocrine system was evaluated. Co-exposure of GH3 cells to 10-12 M E2 showed an additive-like effect. The extent of increase in cell proliferation was more pronounced with a combination of BPAF and E2 than with that of BPA and E2. Significant down-regulation of Trα, Trβ, and Dio2 genes and up-regulation of the Tshβ gene were observed in GH3 cells following co-exposure to BPAF and E2. Our results showed that some BP analogs might influence the thyroid endocrine system, and such perturbation appeared to be enhanced in the presence of E2.
Collapse
Affiliation(s)
- Jiyun Lee
- Department of Environmental Health, Graduate School at Yongin University, Yongin 17092, Republic of Korea; Institute of Natural Science, Yongin University, Yongin 17092, Republic of Korea
| | - Sujin Kim
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyunghee Ji
- Department of Environmental Health, Graduate School at Yongin University, Yongin 17092, Republic of Korea.
| |
Collapse
|
116
|
Wang L, Huang X, Laserna AKC, Li SFY. Untargeted metabolomics reveals transformation pathways and metabolic response of the earthworm Perionyx excavatus after exposure to triphenyl phosphate. Sci Rep 2018; 8:16440. [PMID: 30401822 PMCID: PMC6219545 DOI: 10.1038/s41598-018-34814-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/04/2018] [Indexed: 01/22/2023] Open
Abstract
Triphenyl phosphate (TPHP) is one of the most highly utilized organophosphorus flame retardants, and has been frequently detected in various environmental matrices, including soil. So far, limited information is known regarding the potential toxicity of TPHP to the earthworm-soil ecosystem. We investigated the metabolism of TPHP and the perturbation of the endogenous metabolome in the earthworm, Perionyx excavatus, using gas chromatography mass spectrometry (GC-MS) and liquid chromatography quadrupole time-of-flight (LC-QTOF)-based untargeted metabolomics approach after acute exposure to TPHP for one and two days through a filter paper contact test, as well as after chronic exposure for 28 days in a soil microcosm experiment. TPHP showed low bioaccumulation potential in the earthworm-soil ecosystem at concentrations of 10 mg/kg and 50 mg/kg. Identified phase I metabolites include diphenyl phosphate, mono-hydroxylated and di-hydroxylated TPHP. Two groups of phase II metabolites, thiol conjugates (including mercaptolactic acid, cysteine, cysteinylglycine, and mercaptoethanol conjugates) and glucoside conjugates (including glucoside, glucoside-phosphate, and C14H19O10P conjugates), were putatively identified. Only acute TPHP exposure caused significant perturbations of the endogenous metabolome in earthworms, featuring fluctuations in amino acids, glucose, inosine and phospholipids. These results reveal novel phase II metabolism and toxicity of TPHP in P. excavatus.
Collapse
Affiliation(s)
- Lei Wang
- Department of Chemistry, National University of Singapore, Singapore, 3 Science Drive 3, Singapore
| | - Xulei Huang
- Department of Chemistry, National University of Singapore, Singapore, 3 Science Drive 3, Singapore
| | | | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, Singapore, 3 Science Drive 3, Singapore. .,NUS Environmental Research Institute (NERI), #02-01, T-Lab Building (TL), 5A Engineering Drive 1, Singapore, 117411, Singapore.
| |
Collapse
|
117
|
Glazer L, Hawkey AB, Wells CN, Drastal M, Odamah KA, Behl M, Levin ED. Developmental Exposure to Low Concentrations of Organophosphate Flame Retardants Causes Life-Long Behavioral Alterations in Zebrafish. Toxicol Sci 2018; 165:487-498. [PMID: 29982741 PMCID: PMC6154272 DOI: 10.1093/toxsci/kfy173] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
As the older class of brominated flame retardants (BFRs) are phased out of commercial use because of findings of neurotoxicity with developmental exposure, a newer class of flame retardants have been introduced, the organophosphate flame retardants (OPFRs). Presently, little is known about the potential for developmental neurotoxicity or the behavioral consequences of OPFR exposure. Our aim was to characterize the life-long neurobehavioral effects of 4 widely used OPFRs using the zebrafish model. Zebrafish embryos were exposed to 0.1% DMSO (vehicle control); or one of the following treatments; isopropylated phenyl phosphate (IPP) (0.01, 0.03, 0.1, 0.3 µM); butylphenyl diphenyl phosphate (BPDP) (0.003, 0.03, 0.3, 3 µM); 2-ethylhexyl diphenyl phosphate (EHDP) (0.03, 0.3, 1 µM); isodecyl diphenyl phosphate (IDDP) (0.1, 0.3, 1, 10 µM) from 0- to 5-days postfertilization. On Day 6, the larvae were tested for motility under alternating dark and light conditions. Finally, at 5-7 months of age the exposed fish and controls were tested on a battery of behavioral tests to assess emotional function, sensorimotor response, social interaction and predator evasion. These tests showed chemical-specific short-term effects of altered motility in larvae in all of the tested compounds, and long-term impairment of anxiety-related behavior in adults following IPP, BPDP, or EHDP exposures. Our results show that OPFRs may not be a safe alternative to the phased-out BFRs and may cause behavioral impacts throughout the lifespan. Further research should evaluate the risk to mammalian experimental models and humans.
Collapse
Affiliation(s)
- Lilah Glazer
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina 27710
| | - Andrew B Hawkey
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina 27710
| | - Corinne N Wells
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina 27710
| | - Meghan Drastal
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina 27710
| | - Kathryn-Ann Odamah
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina 27710
| | - Mamta Behl
- Toxicology Branch, National Toxicology Program Division, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, 27709
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
118
|
Shi Q, Wang M, Shi F, Yang L, Guo Y, Feng C, Liu J, Zhou B. Developmental neurotoxicity of triphenyl phosphate in zebrafish larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 203:80-87. [PMID: 30096480 DOI: 10.1016/j.aquatox.2018.08.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 05/03/2023]
Abstract
Triphenyl phosphate (TPhP), a typical organophosphate ester, is frequently detected in the environment and biota samples. It has been implicated as a neurotoxin as its structure is similar to neurotoxic organophosphate pesticides. The purpose of the present study was to investigate its potential developmental neurotoxicity in fish by using zebrafish larvae as a model. Zebrafish (Danio rerio) embryos were exposed to 0.8, 4, 20 and 100 μg/L of TPhP from 2 until 144 h post-fertilization. TPhP was found to have high bioconcentrations in zebrafish larvae after exposure. Further, it significantly reduced locomotor activity as well as the heart rate at the 100 μg/L concentration. TPhP exposure significantly altered the content of the neurotransmitters γ-aminobutyric and histamine. Downregulation of the genes related to central nervous system development (e.g., α1-tubulin, mbp, syn2a, shha, and elavl3) as well as the corresponding proteins (e.g., α1-tubulin, mbp, and syn2a) was observed, but the gap-43 protein was found to upregulated. Finally, marked inhibition of total acetylcholinesterase activity, which is considered as a biomarker of neurotoxicant exposure, was also observed in the larvae. Our results indicate that exposure to environmentally relevant concentrations of TPhP can affect different parameters related to center nervous system development, and thus contribute to developmental neurotoxicity in early developing zebrafish larvae.
Collapse
Affiliation(s)
- Qipeng Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fengqiong Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
119
|
Lee J, Kim S, Park YJ, Moon HB, Choi K. Thyroid Hormone-Disrupting Potentials of Major Benzophenones in Two Cell Lines (GH3 and FRTL-5) and Embryo-Larval Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8858-8865. [PMID: 29995391 DOI: 10.1021/acs.est.8b01796] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Benzophenones (BPs) have been widely used in personal care products (PCPs) such as UV protectants. Sex endocrine-disrupting effects have been documented for some BPs, but, significant knowledge gaps are present for their thyroid-disrupting effects. To investigate the thyroid-disrupting potential of BPs, a rat pituitary (GH3) and thyroid follicle (FRTL-5) cell line were employed on six BPs, i.e., benzophenone (BP), benzophenone-1 (BP-1), benzophenone-2 (BP-2), benzophenone-3 (BP-3), benzophenone-4 (BP-4), and benzophenone-8 (BP-8). Subsequently, zebrafish ( Danio rerio) embryo exposure was conducted for three potent BPs that were identified based on the transcriptional changes observed in the cells. In GH3 cells, all BPs except BP-4 down-regulated the Tshβ, Trhr, and Trβ genes. In addition, some BPs significantly up-regulated the Nis and Tg genes while down-regulating the Tpo gene in FRTL-5 cells. In zebrafish embryo assay conducted for BP-1, BP-3, and BP-8, significant decreases in whole-body T4 and T3 level were observed at 6 day postfertilization (dpf). The up-regulation of the dio1 and ugt1ab genes in the fish suggests that decreased thyroid hormones are caused by changing metabolism of the hormones. Our results show that these frequently used BPs can alter thyroid hormone balances by influencing the central regulation and metabolism of the hormones.
Collapse
Affiliation(s)
- Jungeun Lee
- Department of Environmental Health Sciences, School of Public Health , Seoul National University , Seoul 08826 , Republic of Korea
| | - Sujin Kim
- Department of Environmental Health Sciences, School of Public Health , Seoul National University , Seoul 08826 , Republic of Korea
| | - Young Joo Park
- Department of Internal Medicine , Seoul National University Hospital and Seoul National University College of Medicine , Seoul 03080 , Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergent Technology , Hanyang University , Ansan 15588 , Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, School of Public Health , Seoul National University , Seoul 08826 , Republic of Korea
- Institute of Health and Environment , Seoul National University , Seoul 08826 , Republic of Korea
| |
Collapse
|
120
|
Stinckens E, Vergauwen L, Ankley GT, Blust R, Darras VM, Villeneuve DL, Witters H, Volz DC, Knapen D. An AOP-based alternative testing strategy to predict the impact of thyroid hormone disruption on swim bladder inflation in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:1-12. [PMID: 29702435 PMCID: PMC6002951 DOI: 10.1016/j.aquatox.2018.04.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 05/20/2023]
Abstract
The adverse outcome pathway (AOP) framework can be used to help support the development of alternative testing strategies aimed at predicting adverse outcomes caused by triggering specific toxicity pathways. In this paper, we present a case-study demonstrating the selection of alternative in chemico assays targeting the molecular initiating events of established AOPs, and evaluate use of the resulting data to predict higher level biological endpoints. Based on two AOPs linking inhibition of the deiodinase (DIO) enzymes to impaired posterior swim bladder inflation in fish, we used in chemico enzyme inhibition assays to measure the molecular initiating events for an array of 51 chemicals. Zebrafish embryos were then exposed to 14 compounds with different measured inhibition potentials. Effects on posterior swim bladder inflation, predicted based on the information captured by the AOPs, were evaluated. By linking the two datasets and setting thresholds, we were able to demonstrate that the in chemico dataset can be used to predict biological effects on posterior chamber inflation, with only two outliers out of the 14 tested compounds. Our results show how information organized using the AOP framework can be employed to develop or select alternative assays, and successfully forecast downstream key events along the AOP. In general, such in chemico assays could serve as a first-tier high-throughput system to screen and prioritize chemicals for subsequent acute and chronic fish testing, potentially reducing the need for long-term and costly toxicity tests requiring large numbers of animals.
Collapse
Affiliation(s)
- Evelyn Stinckens
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Gerald T Ankley
- United States Environmental Protection Agency, Mid-Continent Ecology Division,6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, Naamsestraat 61, 3000 Leuven, Belgium
| | - Daniel L Villeneuve
- United States Environmental Protection Agency, Mid-Continent Ecology Division,6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Hilda Witters
- Applied Bio & Molecular Systems (ABS), Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - David C Volz
- Department of Environmental Sciences, University of California, 900 University Ave, Riverside, CA 92521, USA
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
121
|
A case-control study of exposure to organophosphate flame retardants and risk of thyroid cancer in women. BMC Cancer 2018; 18:637. [PMID: 29871608 PMCID: PMC5989427 DOI: 10.1186/s12885-018-4553-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 05/25/2018] [Indexed: 11/29/2022] Open
Abstract
Background Growing evidence demonstrates that exposure to organophosphate flame retardants (PFRs) is widespread and that these chemicals can alter thyroid hormone regulation and function. We investigated the relationship between PFR exposure and thyroid cancer and whether individual or temporal factors predict PFR exposure. Methods We analyzed interview data and spot urine samples collected in 2010–2013 from 100 incident female, papillary thyroid cancer cases and 100 female controls of a Connecticut-based thyroid cancer case-control study. We measured urinary concentrations of six PFR metabolites with mass spectrometry. We estimated odds ratios (OR) and 95% confidence intervals (95% CI) for continuous and categories (low, medium, high) of concentrations of individual and summed metabolites, adjusting for potential confounders. We examined relationships between concentrations of PFR metabolites and individual characteristics (age, smoking status, alcohol consumption, body mass index [BMI], income, education) and temporal factors (season, year) using multiple linear regression analysis. Results No PFRs were significantly associated with papillary thyroid cancer risk. Results remained null when stratified by microcarcinomas (tumor diameter ≤ 1 cm) and larger tumor sizes (> 1 cm). We observed higher urinary PFR concentrations with increasing BMI and in the summer season. Conclusions Urinary PFR concentrations, measured at time of diagnosis, are not linked to increased risk of thyroid cancer. Investigations in a larger population or with repeated pre-diagnosis urinary biomarker measurements would provide additional insights into the relationship between PFR exposure and thyroid cancer risk. Electronic supplementary material The online version of this article (10.1186/s12885-018-4553-9) contains supplementary material, which is available to authorized users.
Collapse
|
122
|
Wang D, Zhu W, Chen L, Yan J, Teng M, Zhou Z. Neonatal triphenyl phosphate and its metabolite diphenyl phosphate exposure induce sex- and dose-dependent metabolic disruptions in adult mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:10-17. [PMID: 29466770 DOI: 10.1016/j.envpol.2018.01.047] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/03/2018] [Accepted: 01/16/2018] [Indexed: 06/08/2023]
Abstract
The widespread application of organophosphorous flame retardants (OPFRs) has led to considerable human exposure, with major concerns regarding their health risks. Herein, we investigate the effects of triphenyl phosphate (TPP), one of the most widely used OPFRs, and one of its main metabolite diphenyl phosphate (DPP) on the endocrine systems and metabolic profiles after neonatal exposure from postnatal days 1-10 at two dosages (2 and 200 μg per day). Both TPP and DPP had no negative effect on uterine weight, glucose tolerance, and estradiol. 1H-NMR-based metabolomics revealed a sex-specific metabolic disturbance of TPP. Specifically, low dose of TPP altered the metabolic profiles of male mice while exerting no significant effects on female ones. Furthermore, a dose-dependent effect of TPP in male mice was observed, where a low toxicity dose up-regulated lipid-related metabolites, while a high toxicity dose down-regulated the pyruvate metabolism and TCA cycles. These results highlight the importance of carefully assessing the health impact of TPP on infants.
Collapse
Affiliation(s)
- Dezhen Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Li Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Jin Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Miaomiao Teng
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
123
|
Deng M, Wu Y, Xu C, Jin Y, He X, Wan J, Yu X, Rao H, Tu W. Multiple approaches to assess the effects of F-53B, a Chinese PFOS alternative, on thyroid endocrine disruption at environmentally relevant concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:215-224. [PMID: 29253770 DOI: 10.1016/j.scitotenv.2017.12.101] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 05/15/2023]
Abstract
A Chinese perfluorooctane sulfonate (PFOS) substitute frequently detected in the environment, 6:2 chlorinated polyfluorinated ether sulfonate (F-53B), has a similar structure to PFOS and it is proposed to cause thyroid dysfunction. To further confirm this hypothesis, the effects of F-53B on the thyroid endocrine system and underlying mechanisms were investigated in vitro and in vivo using rat pituitary GH3 cells and developing zebrafish, respectively. In GH3 cells, F-53B enhanced cell proliferation in a dose-dependent manner, indicative of thyroid receptor agonistic activity. In zebrafish larvae, F-53B exposure induced significant developmental inhibition and increased thyroxine (T4) but not 3,5,3'-triiodothyronine (T3) levels accompanied by a decrease in thyroglobulin (TG) protein and transcript levels of most genes involved in the hypothalamic-pituitary-thyroid (HPT) axis. Interestingly, T4 levels remained significantly increased while TG protein and gene transcription levels were markedly upregulated after depuration. Molecular docking studies revealed that F-53B binds to transthyretin (TTR) by forming hydrogen bonds with Lys123 and Lys115, thereby interfering with thyroid hormone homeostasis. Our collective in vitro, in vivo and in silico studies provide novel evidence that F-53B disrupts the thyroid endocrine system at environmentally relevant concentrations, which cannot be recovered after depuration. Given the persistence of F-53B in the environment, the long-term consequences of thyroid hormone disruption by this chemical warrant further investigation.
Collapse
Affiliation(s)
- Mi Deng
- College of Environmental Resources and Chemical Engineering, Nanchang University, Nanchang 330029, China; Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Yongming Wu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaoli He
- College of Food Science and Technology, Nanchang University, Nanchang 330029, China
| | - Jinbao Wan
- College of Environmental Resources and Chemical Engineering, Nanchang University, Nanchang 330029, China.
| | - Xiaoling Yu
- College of Environmental Resources and Chemical Engineering, Nanchang University, Nanchang 330029, China; Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Hongmin Rao
- Research Institute of Science and Technology Strategy, Jiangxi Academy of Sciences, Nanchang 330029, China
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China.
| |
Collapse
|
124
|
Krivoshiev BV, Beemster GTS, Sprangers K, Cuypers B, Laukens K, Blust R, Husson SJ. Transcriptome profiling of HepG2 cells exposed to the flame retardant 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO). Toxicol Res (Camb) 2018; 7:492-502. [PMID: 30090599 PMCID: PMC6060682 DOI: 10.1039/c8tx00006a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/09/2018] [Indexed: 12/31/2022] Open
Abstract
The flame retardant, 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO), has been receiving great interest given its superior fire protection properties, and its predicted low level of persistence, bioaccumulation, and toxicity. However, empirical toxicological data that are essential for a complete hazard assessment are severely lacking. In this study, we attempted to identify the potential toxicological modes of action by transcriptome (RNA-seq) profiling of the human liver hepatocellular carcinoma cell line, HepG2. Such insight may help in identifying compounds of concern and potential toxicological phenotypes. DOPO was found to have little cytotoxic potential, with lower effective concentrations compared to other flame retardants studied in the same cell line. Differentially expressed genes revealed a wide range of molecular effects including changes in protein, energy, DNA, and lipid metabolism, along with changes in cellular stress response pathways. In response to 250 μM DOPO, the most perturbed biological processes were fatty acid metabolism, androgen metabolism, glucose transport, and renal function and development, which is in agreement with other studies that observed similar effects of other flame retardants in other species. However, treatment with 2.5 μM DOPO resulted in very few differentially expressed genes and failed to indicate any potential effects on biology, despite such concentrations likely being orders of magnitude greater than would be encountered in the environment. This, together with the low levels of cytotoxicity, supports the potential replacement of the current flame retardants by DOPO, although further studies are needed to establish the nephrotoxicity and endocrine disruption of DOPO.
Collapse
Affiliation(s)
- Boris V Krivoshiev
- Department of Biology , Systemic Physiological & Ecotoxicological Research , University of Antwerp , Antwerp , Belgium .
| | - Gerrit T S Beemster
- Department of Biology , Integrated Molecular Plant Physiology Research , University of Antwerp , Antwerp , Belgium
| | - Katrien Sprangers
- Department of Biology , Integrated Molecular Plant Physiology Research , University of Antwerp , Antwerp , Belgium
| | - Bart Cuypers
- Department of Mathematics and Computer Science , Advanced Database Research and Modelling (ADReM) , University of Antwerp , Antwerp , Belgium
- Department of Biomedical Sciences , Unit of Molecular Parasitology , Institute of Tropical Medicine , Antwerp , Belgium
| | - Kris Laukens
- Department of Mathematics and Computer Science , Advanced Database Research and Modelling (ADReM) , University of Antwerp , Antwerp , Belgium
| | - Ronny Blust
- Department of Biology , Systemic Physiological & Ecotoxicological Research , University of Antwerp , Antwerp , Belgium .
| | - Steven J Husson
- Department of Biology , Systemic Physiological & Ecotoxicological Research , University of Antwerp , Antwerp , Belgium .
| |
Collapse
|
125
|
Xu C, Li X, Jin M, Sun X, Niu L, Lin C, Liu W. Early life exposure of zebrafish (Danio rerio) to synthetic pyrethroids and their metabolites: a comparison of phenotypic and behavioral indicators and gene expression involved in the HPT axis and innate immune system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12992-13003. [PMID: 29480392 DOI: 10.1007/s11356-018-1542-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 02/13/2018] [Indexed: 05/06/2023]
Abstract
Ecotoxicological studies have revealed the association between synthetic pyrethroid (SP) exposure and aquatic toxicity in fish; however, research on the toxic effects of SP metabolites is still limited. In this study, the toxicity of two SPs (permethrin (PM) and β-cypermethrin (β-CP)) and their three metabolites (3-phenoxybenzoic alcohol (PBCOH), 3-phenoxybenzaldehyde (PBCHO), and 3-phenoxybenzoic acid (PBCOOH)) towards zebrafish embryos and larvae was evaluated. Both SPs and their metabolites exhibited significant developmental toxicities, caused abnormal vascular development, and changed locomotor activities in larvae. The alteration of gene expression involved in the thyroid system and the innate immune system indicated that SPs and their three metabolites have the potency to induce thyroid disruption and trigger an immune response. The results from the present study suggest that SP metabolites could induce multiple toxic responses similar to parent compounds, and their toxicity should be considered for improving the understanding of environmental risks of SPs.
Collapse
Affiliation(s)
- Chao Xu
- Research Center of Environmental Science, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Xinfang Li
- Research Center of Environmental Science, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Meiqing Jin
- Research Center of Environmental Science, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xiaohui Sun
- Zhejiang Environmental Monitoring Centre, Hangzhou, 310012, China
| | - Lili Niu
- Research Center of Environmental Science, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Chunmian Lin
- Research Center of Environmental Science, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Weiping Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
126
|
Wu S, Li X, Liu X, Yang G, An X, Wang Q, Wang Y. Joint toxic effects of triazophos and imidacloprid on zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:470-481. [PMID: 29316522 DOI: 10.1016/j.envpol.2017.12.120] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/30/2017] [Accepted: 12/30/2017] [Indexed: 06/07/2023]
Abstract
Pesticide contamination is more often found as a mixture of different pesticides in water bodies rather than individual compounds. However, regulatory risk evaluation is mostly based on the effects of individual pesticides. In the present study, we aimed to investigate the individual and joint toxicities of triazophos (TRI) and imidacloprid (IMI) to the zebrafish (Danio rerio) using acute indices and various sublethal endpoints. Results from 96-h semi-static test indicated that the LC50 values of TRI to D. rerio at multiple life stages (embryonic, larval, juvenile and adult stages) ranged from 0.49 (0.36-0.71) to 4.99 (2.06-6.81) mg a.i. L-1, which were higher than those of IMI ranging from 26.39 (19.04-38.01) to 128.9 (68.47-173.6) mg a.i. L-1. Pesticide mixtures of TRI and IMI displayed synergistic response to zebrafish embryos. Activities of carboxylesterase (CarE) and catalase (CAT) were significantly changed in most of the individual and joint exposures of pesticides compared with the control group. The expressions of 26 genes related to oxidative stress, cellular apoptosis, immune system, hypothalamic-pituitary-thyroid and hypothalamic-pituitary-gonadal axis at the mRNA level revealed that zebrafish embryos were affected by the individual or joint pesticides, and greater changes in the expressions of six genes (Mn-sod, CXCL-CIC, Dio1, Dio2, tsh and vtg1) were observed when exposed to joint pesticides compared with their individual pesticides. Taken together, the synergistic effects indicated that it was highly important to incorporate joint toxicity studies, especially at low concentrations, when assessing the risk of pesticides.
Collapse
Affiliation(s)
- Shenggan Wu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xinfang Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xinju Liu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Guiling Yang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xuehua An
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Yanhua Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| |
Collapse
|
127
|
Li C, Wei G, Chen J, Zhao Y, Zhang YN, Su L, Qin W. Aqueous OH Radical Reaction Rate Constants for Organophosphorus Flame Retardants and Plasticizers: Experimental and Modeling Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2790-2799. [PMID: 29412663 DOI: 10.1021/acs.est.7b05429] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aqueous ·OH reaction rate constants ( kOH) for organophosphate esters (OPEs) are essential for assessing their environmental fate and removal potential in advanced oxidation processes (AOPs). Herein experimental and in silico approaches were adopted to obtain kOH values for a variety of OPEs. The determined kOH for 18 OPEs varies from 4.0 × 108 M-1 s-1 to 1.6 × 1010 M-1 s-1. Based on the experimental kOH values, a quantitative structure-activity relationship model that involves molecular structural information on the number of heavy atoms, content index, and the most negative charge of C atoms was developed for predicting kOH of other OPEs. Furthermore, appropriate density functional theory (DFT) and solvation models were selected, which together with transition state theory were employed to predict kOH of three representative OPEs. The deviation between the DFT calculated and the experimental kOH values ( kcal/ kexp) is within 2. Half-lives of the OPEs were estimated to be 0.5-22791.3 days in natural waters and 0.044-19.7 s in AOPs, indicating the OPEs are potentially persistent in natural waters and can be quickly eliminated by AOPs. The determined kOH values and the in silico methods offer a scientific base for assessing OPEs fate in aquatic environments.
Collapse
Affiliation(s)
- Chao Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment , Northeast Normal University , Changchun 130117 , China
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Gaoliang Wei
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Yuanhui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment , Northeast Normal University , Changchun 130117 , China
| | - Ya-Nan Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment , Northeast Normal University , Changchun 130117 , China
| | - Limin Su
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment , Northeast Normal University , Changchun 130117 , China
| | - Weichao Qin
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment , Northeast Normal University , Changchun 130117 , China
| |
Collapse
|
128
|
Arukwe A, Carteny CC, Eggen T, Möder M. Novel aspects of uptake patterns, metabolite formation and toxicological responses in Salmon exposed to the organophosphate esters-Tris(2-butoxyethyl)- and tris(2-chloroethyl) phosphate. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 196:146-153. [PMID: 29407800 DOI: 10.1016/j.aquatox.2018.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 06/07/2023]
Abstract
Given the compound differences between tris(2-butoxyethyl)- and tris(2-cloroethyl) phosphate (TBOEP and TCEP, respectively), we hypothesized that exposure of juvenile salmon to TBOEP and TCEP will produce compound-specific differences in uptake and bioaccumulation patterns, resulting in potential formation of OH-metabolites. Juvenile salmon were exposed to waterborne TCEP or TBOEP (0.04, 0.2 and 1 mg/L) for 7 days. The muscle accumulation was measured and bioconcentration factor (BCF) was calculated, showing that TCEP was less accumulative and resistant to metabolism in salmon than TBOEP. Metabolite formations were only detected in TBOEP-exposed fish, showing seven phase I biotransformation metabolites with hydroxylation, ether cleavage or combination of both reactions as important metabolic pathways. In vitro incubation of trout S9 liver fraction with TBOEP was performed showing that the generated metabolite patterns were similar to those found in muscle tissue exposed in vivo. However, another OH-TBOEP isomer and an unidentified metabolite not present in in vivo exposure were observed with the trout S9 incubation. Overall, some of the observed metabolic products were similar to those in a previous in vitro report using human liver microsomes and some metabolites were identified for the first time in the present study. Toxicological analysis indicated that TBOEP produced less effect, although it was taken up faster and accumulated more in fish muscle than TCEP. TCEP produced more severe toxicological responses in multiple fish organs. However, liver biotransformation responses did not parallel the metabolite formation observed in TBOEP-exposed fish.
Collapse
Affiliation(s)
- Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Camilla Catarci Carteny
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Trine Eggen
- Norwegian Institute of Bioeconomy Research (NIBIO), P.O. Box 115, 1431, Ås, Norway
| | - Monika Möder
- Helmholtz-Center for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstr. 15, 04318, Leipzig, Germany
| |
Collapse
|
129
|
Yuan S, Li H, Dang Y, Liu C. Effects of triphenyl phosphate on growth, reproduction and transcription of genes of Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 195:58-66. [PMID: 29287174 DOI: 10.1016/j.aquatox.2017.12.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
The additive flame retardant triphenyl phosphate (TPHP) has been frequently detected in environments and biota. Evidences indicate that TPHP has potential risks to aquatic organisms. Seldom has been reported about its chronic effects to aquatic organism at low trophic levels, such as Cladocera. In the present study, <12 h old Daphnia magna (D. magna) were exposed to 0, 5, 50 or 500 μg/L TPHP for 21 days to investigate the chronic effects of TPHP on body length, fecundity and survival. Meanwhile, D. magna PCR arrays were used to evaluate the transcriptional responses of 155 genes involved in 40 pathways. Exposure to 500 μg/L TPHP for 21 days significantly decreased the body lengths of both F0 and F1 generation and inhibited the fecundity of F0 generation. Results of RT-qPCR showed that the expressions of 76 genes involved in 15 pathways were significantly altered after exposure to 500 μg/L TPHP for 21 days. The significantly altered pathways related to genetic information processing, cellular process and metabolism might be responsible for the observed effects of TPHP. Overall, our results showed that chronic exposure to TPHP caused developmental and reproductive toxicities to D. magna.
Collapse
Affiliation(s)
- Siliang Yuan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Han Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yao Dang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Centre for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China.
| |
Collapse
|
130
|
Carignan CC, Mínguez-Alarcón L, Williams PL, Meeker JD, Stapleton HM, Butt CM, Toth TL, Ford JB, Hauser R. Paternal urinary concentrations of organophosphate flame retardant metabolites, fertility measures, and pregnancy outcomes among couples undergoing in vitro fertilization. ENVIRONMENT INTERNATIONAL 2018; 111:232-238. [PMID: 29241080 PMCID: PMC5800983 DOI: 10.1016/j.envint.2017.12.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/20/2017] [Accepted: 12/04/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Use of organophosphate flame retardants (PFRs) has increased over the past decade following the phase out of some brominated flame retardants, leading to increased human exposure. We recently reported that increasing maternal PFR exposure is associated with poorer pregnancy outcomes among women from a fertility clinic. Because a small epidemiologic study previously reported an inverse association between male PFR exposures and sperm motility, we sought to examine associations of paternal urinary concentrations of PFR metabolites and their partner's pregnancy outcomes. METHODS This analysis included 201 couples enrolled in the Environment and Reproductive Health (EARTH) prospective cohort study (2005-2015) who provided one or two urine samples per IVF cycle. In both the male and female partner, we measured five urinary PFR metabolites [bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), diphenyl phosphate (DPHP), isopropylphenyl phenyl phosphate (ip-PPP), tert-butylphenyl phenyl phosphate (tb-PPP) and bis(1-chloro-2-propyl) phosphate (BCIPP)] using negative electrospray ionization liquid chromatography tandem mass spectrometry (LC-MS/MS). The sum of the molar concentrations of the urinary PFR metabolites was calculated. We used multivariable generalized linear mixed models to evaluate the association of urinary concentrations of paternal PFR metabolites with IVF outcomes, accounting for multiple in vitro fertilization (IVF) cycles per couple. Models were adjusted for year of IVF treatment cycle, primary infertility diagnosis, and maternal urinary PFR metabolites as well as paternal and maternal age, body mass index, and race/ethnicity. RESULTS Detection rates were high for paternal urinary concentrations of BDCIPP (84%), DPHP (87%) and ip-PPP (76%) but low for tb-PPP (12%) and zero for BCIPP (0%). We observed a significant 12% decline in the proportion of fertilized oocytes from the first to second quartile of male urinary ΣPFR and a 47% decline in the number of best quality embryos from the first to third quartile of male urinary BDCIPP in our adjusted models. An 8% decline in fertilization was observed for the highest compared to lowest quartile of urinary BDCIPP concentrations (95% CI: 0.01, 0.12, p-trend=0.06). CONCLUSIONS Using IVF as a model to investigate human reproduction and pregnancy outcomes, we found that paternal urinary concentrations of BDCIPP were associated with reduced fertilization. In contrast to previously reported findings for the female partners, the paternal urinary PFR metabolites were not associated with the proportion of cycles resulting in successful implantation, clinical pregnancy, and live birth. These results indicate that paternal preconception exposure to TDCIPP may adversely impact successful oocyte fertilization, whereas female preconception exposure to ΣPFRs may be more relevant to adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Courtney C Carignan
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Food Science and Human Nutrition, Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA.
| | - Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Paige L Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | | | - Craig M Butt
- Nicholas School of the Environment, Duke University, Durham, NC, USA; SCIEX, Framingham, MA, USA.
| | - Thomas L Toth
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
131
|
Philbrook NA, Restivo VE, Belanger CL, Winn LM. Gestational triphenyl phosphate exposure in C57Bl/6 mice perturbs expression of insulin-like growth factor signaling genes in maternal and fetal liver. Birth Defects Res 2018; 110:483-494. [PMID: 29316351 DOI: 10.1002/bdr2.1185] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 01/25/2023]
Abstract
Triphenyl phosphate (TPhP) is an organophosphorus flame retardant and plasticizer that has been added to numerous consumer products in recent years. TPhP is not overtly toxic, however recent studies have suggested that it may have metabolic disrupting effects following developmental exposure. The present study aimed to investigate the developmental and potential metabolic effects of TPhP in a murine model. C57Bl/6 dams were exposed on gestational days (GD) 8, 10, 12, and 14 to 0, 5, 25, or 50 mg/kg TPhP via intraperitoneal injection. Dams were euthanized on GD19, maternal organs excised and weighed, fetal measurements taken, and maternal and fetal livers retained for analysis. A significant increase in placenta size of TPhP exposed mice was found. Maternal and fetal liver gene expression of insulin-like growth factor (Igf) 1 and 2, as well as downstream genes involved in Igf signaling were measured. Additionally, Igf1 protein levels were measured in both maternal and fetal liver. A significant decrease in transcript levels of Igf1 and Irs2 was detected in maternal livers, whereas a significant increase in transcript levels of all genes measured was detected in fetal liver. A significant decrease in Igf1 protein levels was detected in maternal liver, however the increase in Igf1 protein levels in fetal livers was not found to be statistically significant. These results support previous findings that TPhP does not cause overt structural developmental toxicity. These data also support the hypothesis that TPhP could disrupt maternal and fetal metabolism, justifying the need for follow-up studies to investigate further.
Collapse
Affiliation(s)
- Nicola A Philbrook
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L3N6, Canada
| | - Victoria E Restivo
- School of Environmental Studies, Queen's University, Kingston, ON, K7L3N6, Canada
| | - Christine L Belanger
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L3N6, Canada
| | - Louise M Winn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L3N6, Canada.,School of Environmental Studies, Queen's University, Kingston, ON, K7L3N6, Canada
| |
Collapse
|
132
|
Hill KL, Hamers T, Kamstra JH, Willmore WG, Letcher RJ. Organophosphate triesters and selected metabolites enhance binding of thyroxine to human transthyretin in vitro. Toxicol Lett 2018; 285:87-93. [PMID: 29306024 DOI: 10.1016/j.toxlet.2017.12.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/10/2017] [Accepted: 12/31/2017] [Indexed: 01/01/2023]
Abstract
The toxicological properties of organophosphate (OP) triesters that are used as flame retardants and plasticizers are currently not well understood, though increasing evidence suggests they can affect the thyroid system. Perturbation of thyroid hormone (TH) transport is one mechanism of action that may affect thyroid function. The present study applied an in vitro competitive protein binding assay with thyroxine (T4) and human transthyretin (hTTR) transport protein to determine the potential for the OP triesters, TDCIPP (tris(1,3-dichloro-2-propyl) phosphate), TBOEP (tris(butoxyethyl) phosphate), TEP (triethyl phosphate), TPHP (triphenyl phosphate), p-OH-TPHP (para-hydroxy triphenyl phosphate), and the OP diester DPHP (diphenyl phosphate), to competitively displace T4 from hTTR. Enhancement of T4 binding to hTTR, rather than the hypothesized competition, was observed for the six OP esters and in a concentration-dependent manner. For example, T4-hTTR binding was significantly increased at concentrations of TBOEP as low as 64 nM, and up to 184% of controls at 5000 nM. A plausible explanation of these results, which to our knowledge has not been previously reported, may be allosteric interactions of the OP esters with hTTR allowing T4 to access the second site of the TH binding pocket. These in vitro results suggest a novel mechanism of OP ester toxicity via T4 binding enhancement, and possible dysregulation of T4-hTTR interactions.
Collapse
Affiliation(s)
- Katie L Hill
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Canada; Department of Biology, Carleton University, Ottawa, Canada; Intrinsik Corp., Ottawa, Canada
| | - Timo Hamers
- Department of Environment and Health, Vrije Universiteit Amsterdam, The Netherlands
| | - Jorke H Kamstra
- Faculty of Veterinary Medicine and Biosciences, Department of Basic Science and Aquatic Medicine, CoE CERAD, Norwegian University of Life Sciences, Oslo, 0033, Norway
| | | | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Canada; Department of Biology, Carleton University, Ottawa, Canada.
| |
Collapse
|
133
|
Chen H, Wang P, Du Z, Wang G, Gao S. Oxidative stress, cell cycle arrest, DNA damage and apoptosis in adult zebrafish (Danio rerio) induced by tris(1,3-dichloro-2-propyl) phosphate. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 194:37-45. [PMID: 29149642 DOI: 10.1016/j.aquatox.2017.11.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
Tris(1,3-dichloro-2-propyl)phosphate (TDCPP) is an additive flame retardant of high production volume, and frequently detected in biota and environment. However, knowledge on its potential risk and toxicological mechanism still remains limited. In this study, DNA damage, transcriptomic responses and biochemical changes in the liver of zebrafish (Danio rerio) induced by TDCPP were investigated. Zebrafish was exposed to 45.81μg/L (1/100 (96h-LC50)) and 229.05μg/L (1/20 (96h-LC50)) TDCPP for 7 d. The reactive oxygen species (ROS) and GSH contents, in addition to antioxidant enzyme activities in the liver changed significantly, and the mRNA levels of genes related to oxidative stress were alerted in a dose-dependent and/or sex-dependent manner after exposure to TDCPP. Significant DNA damage in zebrafish liver was found, and olive tail moment increased in a concentration-dependent manner. Moreover, exposure of TDCPP at 45.81μg/L level activated the cell cycle arrest, DNA repair system and apoptosis pathway in male zebrafish, and 229.05μg/L TDCPP exposure inhibited those pathways in both male and female zebrafish. The cell apoptosis was confirmed in TUNEL assay as higher incidence of TUNEL-positive cells were observed in zebrafish exposed to 229.05μg/L TDCPP. Our results also indicated that males were more sensitive to TDCPP exposure compared with females. Taken together, our results showed that TDCPP could induce oxidative stress, cell cycle arrest, DNA damage and apoptosis in adult zebrafish liver in sex- and concentration-dependent manners.
Collapse
Affiliation(s)
- Hanyan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Pingping Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Zhongkun Du
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Guowei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
134
|
Liu J, Ye J, Chen Y, Li C, Ou H. UV-driven hydroxyl radical oxidation of tris(2-chloroethyl) phosphate: Intermediate products and residual toxicity. CHEMOSPHERE 2018; 190:225-233. [PMID: 28992474 DOI: 10.1016/j.chemosphere.2017.09.111] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 09/20/2017] [Accepted: 09/23/2017] [Indexed: 06/07/2023]
Abstract
Organophosphorus esters (OPEs) are emerging contaminants widely applied as annexing agents in a variety of industrial products, and they are robust against conventional wastewater treatments. Ultraviolet-driven (UV) radical-based advanced oxidation processes have a potential to become cost-effective treatment technologies for the removal of OPEs in water matrix, but residual and newly generated toxicities of degradation products are a concern. This study is a comprehensive attempt to evaluate UV/H2O2 for the degradation of a water dissolved OPE, tris(2-chloroethyl) phosphate (TCEP). In ultrapure water, a pseudo-first order reaction was observed, and the degradation rate constant reached 0.155 min-1 for 3.5 μM TCEP using 7.0 mW cm-2 UV irradiation with 44.0 μM H2O2. Hydroxyl radicals were involved in the oxidative degradation of TCEP, as demonstrated by the quenching of the degradation reaction in the presences of tertiary butanol or ethanol. High resolution mass spectroscopy data showed a partial transformation of TCEP to a series of hydroxylated and dechlorinated products e.g., C4H9Cl2O4P, C6H13Cl2O5P and C2H6ClO4P. Based on proteomics data at molecular and metabolic network levels, the toxicity of TCEP products was reduced obviously as the reaction proceeded, which was confirmed by the up-regulated tricarboxylic acid cycle, fatty acid metabolism and amino acid metabolism in Escherichia coli cells exposed to degradation products mixture. In conclusion, incomplete hydroxylation and dechlorination of TCEP likewise are effective for its detoxification, indicating that UV/H2O2 can be a promising treatment method for OPEs removal.
Collapse
Affiliation(s)
- Juan Liu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jinshao Ye
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek 94598, CA, USA
| | - Yifu Chen
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Chongshu Li
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Huase Ou
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
135
|
Ye J, Liu J, Li C, Zhou P, Wu S, Ou H. Heterogeneous photocatalysis of tris(2-chloroethyl) phosphate by UV/TiO 2: Degradation products and impacts on bacterial proteome. WATER RESEARCH 2017; 124:29-38. [PMID: 28738271 DOI: 10.1016/j.watres.2017.07.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/27/2017] [Accepted: 07/15/2017] [Indexed: 05/22/2023]
Abstract
The widespread, persistent and toxic organophosphorus esters (OPEs) have become one category of emerging environmental contaminants. Thus, it is in urgent need to develop a cost-effective and safe treatment technology for OPEs control. The current study is a comprehensive attempt to use UV/TiO2 heterogeneous photocatalysis for the degradation of a water dissolved OPEs, tris(2-chloroethyl) phosphate (TCEP). A pseudo-first order degradation reaction with a kobs of 0.3167 min-1 was observed, while hydroxyl radical may be the dominating reactive oxidative species. As the reaction proceeded, TCEP was transformed to a series of hydroxylated and dechlorinated products. The degradation efficiency was significantly affected by pH value, natural organic matters and anions, implying that the complete mineralization of TCEP would be difficult to achieve in actual water treatment process. Based on the proteomics analysis regarding the metabolism reactions, pathways and networks, the significant activation of transmembrane transport and energy generation in Escherichia coli exposed to preliminary degrading products suggested that they can be transported and utilized through cellular metabolism. Furthermore, the descending trend of stress resistance exhibited that the toxicity of products was obviously weakened as the treatment proceeded. In conclusion, hydroxylation and dechlorination of TCEP with incomplete mineralization were likewise effective for its detoxification, indicating that UV/TiO2 will be an alternative treatment method for OPEs control.
Collapse
Affiliation(s)
- Jinshao Ye
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek 94598, CA, USA
| | - Juan Liu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Chongshu Li
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Pulin Zhou
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Shuang Wu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Huase Ou
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
136
|
Hoffman K, Lorenzo A, Butt CM, Hammel SC, Henderson BB, Roman SA, Scheri RP, Stapleton HM, Sosa JA. Exposure to flame retardant chemicals and occurrence and severity of papillary thyroid cancer: A case-control study. ENVIRONMENT INTERNATIONAL 2017; 107:235-242. [PMID: 28772138 DOI: 10.1016/j.envint.2017.06.021] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/01/2017] [Accepted: 06/28/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Thyroid cancer is the fastest increasing cancer in the U.S., and papillary thyroid cancer (PTC) accounts for >80% of incident cases. Increasing exposure to flame retardant chemicals (FRs) has raised concerns about their possible role in this 'epidemic'. The current study was designed to test the hypothesis that higher exposure to FRs is associated with increased odds of PTC. METHODS PTC patients at the Duke Cancer Institute were approached and invited to participate. Age- and gender-matched controls were recruited from the Duke Health System and surrounding communities. Because suitable biomarkers of long-term exposure do not exist for many common FRs, and levels of FRs in dust are significantly correlated with exposure, relationships between FRs in household dust and PTC were evaluated in addition to available biomarkers. PTC status, measures of aggressiveness (e.g. tumor size) and BRAF V600E mutation were included as outcomes. RESULTS Higher levels of some FRs, particularly decabromodiphenyl ether (BDE-209) and tris(2-chloroethyl) phosphate in dust, were associated with increased odds of PTC. Participants with dust BDE-209 concentrations above the median level were 2.29 times as likely to have PTC [95% confidence interval: 1.03, 5.08] compared to those with low BDE-209 concentrations. Associations varied based on tumor aggressiveness and mutation status; TCEP was more strongly associated with larger, more aggressive tumors and BDE-209 was associated with smaller, less aggressive tumors. CONCLUSIONS Taken together, these results suggest exposure to FRs in the home, particularly BDE-209 and TCEP, may be associated with PTC occurrence and severity, and warrant further study.
Collapse
Affiliation(s)
- Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - Amelia Lorenzo
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - Craig M Butt
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - Stephanie C Hammel
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - Brittany Bohinc Henderson
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, Wake Forest University Baptist Medical Center and Wake Forest Comprehensive Cancer Center, Winston-Salem, NC 27157, United States
| | - Sanziana A Roman
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States
| | - Randall P Scheri
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - Julie Ann Sosa
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States; Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States; Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, United States; Duke Clinical Research Institute, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
137
|
Wang G, Shi H, Du Z, Chen H, Peng J, Gao S. Bioaccumulation mechanism of organophosphate esters in adult zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:177-187. [PMID: 28599202 DOI: 10.1016/j.envpol.2017.05.075] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 05/05/2017] [Accepted: 05/27/2017] [Indexed: 06/07/2023]
Abstract
Although organophosphate esters (OPEs) have been detected with growing frequency in water ecosystems, the underlying accumulation mechanisms of these compounds in fish are still unknown. Here, we investigated the tissue-specific accumulation and depuration of seven OPEs in adult zebrafish at three levels (0, 1/150 LC50 (environmentally relevant level), and 1/30 LC50 per OPE congener) in laboratory after 19 days exposure and 3 days depuration. The bioaccumulation of OPEs varied among tissues. Muscle contained the lowest level of OPEs and liver had the highest level of two (TPP and TCEP) of the seven OPEs at steady state. The high levels and slow depuration rates of TDCIPP, TPHP, and TCP observed in roe indicated that the accumulated OPEs were potentially stored in roe and transferred to the next generation. After examination of the major metabolites (organophosphate diesters) in selected tissues, a physiologically based toxicokinetic (PBTK) model used in fish was adopted to explore the key factors affecting the bioaccumulation of OPEs in zebrafish. Biotransformation of OPEs with polychlorinated alkyl moieties (i.e. TDCIPP) and aryl moieties (i.e. TPHP and TCP) has more significant impacts on the accumulation than those of OPEs with alkyl or short chain chlorinated alkyl moieties. Furthermore, the partition process between tissues and blood was also investigated, and was demonstrated to be the dominant process for OPEs accumulation in zebrafish. This study provides critical information on the bioaccumulation, tissue distribution, and metabolization of OPEs in relation with OPE structures in fish, as well as the underlying bioaccumulation mechanisms/pathways of OPEs in aquatic life.
Collapse
Affiliation(s)
- Guowei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Huanhuan Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Zhongkun Du
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Hanyan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Jianbiao Peng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
138
|
Yue Z, Yu M, Zhang X, Dong Y, Tian H, Wang W, Ru S. Semicarbazide-induced thyroid disruption in Japanese flounder (Paralichthys olivaceus) and its potential mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 140:131-140. [PMID: 28254723 DOI: 10.1016/j.ecoenv.2017.02.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 06/06/2023]
Abstract
Semicarbazide (SMC) is a carcinogenic and genotoxic substance that has been found in aquatic systems. SMC may also cause thyroid follicular epithelial cell injury in rats, but the thyroid-disrupting properties of SMC and its potential mechanisms remain unclear. In this study, we exposed fertilized eggs of Japanese flounder (Paralichthys olivaceus) to 1, 10, 100, and 1000μg/L SMC for 55 d to assess the impact of SMC exposure on the thyroid system. The number of larvae in each metamorphic stage was counted, the concentrations of whole-body thyroid hormones (THs) 3,5,3'-triiodothyronine (T3) and thyroxine (T4) were measured, and the transcription levels of genes involved in the hypothalamic-pituitary-thyroid (HPT) axis and gamma-aminobutyric acid (GABA) synthesis were quantified. The results showed that 10μg/L SMC significantly increased whole-body T3 levels, and 100 and 1000μg/L SMC markedly enhanced whole-body T4 and T3 levels. Furthermore, 100μg/L SMC exposure shortened the time it took for flounder larvae to complete metamorphosis by 2 d as compared to the control group. Thus, this study demonstrated that SMC exerted thyroid-disrupting effects on Japanese flounder. SMC-mediated stimulation of TH levels was primarily related to transcriptional alterations of pituitary-derived thyroid stimulating hormone β-subunit (tshβ) and hepatic deiodinase (id). In the 10 and 100μg/L SMC exposure groups, the increased TH levels may have resulted from inhibition of TH metabolism caused by down-regulation of id3 mRNA expression, while at 1000μg/L SMC-exposed group, up-regulation of tshβ and id1 transcripts was expected to enhance the synthesis of T4 and the conversion of T4 to T3 and, consequently, result in higher T4 and T3 levels. In addition, 1000μg/L SMC-induced down-regulation in glutamic acid decarboxylase gad65 and gad67 transcription may have also contributed to the increased TH levels. The thyroid-disrupting effects of 10 and 100μg/L SMC indicated that environmentally relevant concentrations of SMC posed potential environmental risks to aquatic organisms. Overall, our results demonstrated for the first time that SMC exhibited thyroid-disrupting properties by affecting the HPT axis and GABA synthesis, providing theoretical support for environmental risk assessment.
Collapse
Affiliation(s)
- Zonghao Yue
- Marine Life Science College, Ocean University of China, Qingdao 266003, China
| | - Miao Yu
- Marine Life Science College, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- Marine Life Science College, Ocean University of China, Qingdao 266003, China
| | - Yifei Dong
- Marine Life Science College, Ocean University of China, Qingdao 266003, China
| | - Hua Tian
- Marine Life Science College, Ocean University of China, Qingdao 266003, China
| | - Wei Wang
- Marine Life Science College, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- Marine Life Science College, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
139
|
Thyroid hormone disrupting potentials of bisphenol A and its analogues - in vitro comparison study employing rat pituitary (GH3) and thyroid follicular (FRTL-5) cells. Toxicol In Vitro 2017; 40:297-304. [DOI: 10.1016/j.tiv.2017.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/20/2016] [Accepted: 02/02/2017] [Indexed: 10/20/2022]
|
140
|
Preston EV, McClean MD, Claus Henn B, Stapleton HM, Braverman LE, Pearce EN, Makey CM, Webster TF. Associations between urinary diphenyl phosphate and thyroid function. ENVIRONMENT INTERNATIONAL 2017; 101:158-164. [PMID: 28162782 PMCID: PMC5348264 DOI: 10.1016/j.envint.2017.01.020] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 05/18/2023]
Abstract
Triphenyl phosphate (TPHP) is a commonly used organophosphate flame retardant and plasticizer with widespread human exposure. Data on health effects of TPHP are limited. Recent toxicological studies suggest TPHP may alter thyroid function. We used repeated measures to assess the temporal variability in urinary concentrations of the TPHP metabolite, diphenyl phosphate (DPHP), and to examine relationships between DPHP concentrations and thyroid hormones. We sampled 51 adults at months 1, 6, and 12 from 2010 to 2011. Urine samples were analyzed for DPHP. Serum samples were analyzed for free and total thyroxine (fT4, TT4), total triiodothyronine (TT3), and thyroid stimulating hormone (TSH). We assessed variability in DPHP using intraclass correlation coefficients (ICCs) and kappa statistics. We used linear mixed-effects models to examine associations between DPHP and thyroid hormones. DPHP was detected in 95% of urine samples. Mean DPHP concentrations were 43% higher in women than men. DPHP showed high within-subject variability (ICC range, 0.13-0.39; kappa range, 0.16-0.39). High versus low (≥2.65 vs. <2.65ng/mL) DPHP in all participants was associated with a 0.43μg/dL (95% confidence interval: 0.15, 0.72) increase in mean TT4 levels. In sex-stratified analyses, high versus low DPHP was associated with a 0.91μg/dL (95% CI: 0.47, 1.36) increase in mean TT4 in women. The association was attenuated in men (βeta=0.19; 95% CI: -0.15, 0.52). We found no significant associations between DPHP and fT4, TT3, or TSH. We found evidence that TPHP exposure may be associated with increased TT4 levels, especially in women.
Collapse
Affiliation(s)
- Emma V Preston
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA.
| | - Michael D McClean
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | | | - Lewis E Braverman
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston, MA, USA
| | - Elizabeth N Pearce
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston, MA, USA
| | - Colleen M Makey
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
141
|
Hoffman K, Sosa JA, Stapleton HM. Do flame retardant chemicals increase the risk for thyroid dysregulation and cancer? Curr Opin Oncol 2017; 29:7-13. [PMID: 27755165 PMCID: PMC10037316 DOI: 10.1097/cco.0000000000000335] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Flame retardant chemicals are added to consumer products to reduce fire incidence and severity; approximately 1.5 million tons of these chemicals are used annually. However, their widespread use has led to their ubiquitous presence in the environment and chronic accumulation in human tissues. We summarize current trends in human flame retardant chemical exposure, and review recent data highlighting concerns for thyroid dysregulation and cancer risk in human populations. RECENT FINDINGS Polybrominated diphenyl ethers were once commonly used as flame retardant chemicals, but recently were phased out. Exposure is associated with thyroid dysregulation (mainly T4 reductions) in animals, with new work focusing on specific mechanisms of action. Polybrominated diphenyl ethers also impact human thyroid regulation and are related to clinical thyroid disease, but associations appear both dose and life-stage dependent. Emerging data suggest that common alternate flame retardant chemicals may be more potent thyroid disruptors than their predecessors, which is particularly concerning given increasing levels of exposure. SUMMARY Potential health impacts of flame retardant chemicals are only beginning to be understood for 'legacy flame retardant chemicals' (i.e., polybrominated diphenyl ethers), and are largely unevaluated for newer-use chemicals. Cumulatively, current data suggest impact on thyroid regulation is likely, potentially implicating flame retardant chemicals in thyroid disease and cancers for which thyroid dysregulation impacts risk or prognosis.
Collapse
Affiliation(s)
- Kate Hoffman
- aNicholas School of the Environment, Duke University bDepartments of Surgery and Medicine cDuke Cancer Institute and Duke Clinical Research Institute, Duke University Medical Center, Durham, North Carolina, USA
| | | | | |
Collapse
|
142
|
Levels of Urinary Metabolites of Organophosphate Flame Retardants, TDCIPP, and TPHP, in Pregnant Women in Shanghai. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2016; 2016:9416054. [PMID: 28115951 PMCID: PMC5220514 DOI: 10.1155/2016/9416054] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/26/2016] [Accepted: 12/01/2016] [Indexed: 11/17/2022]
Abstract
Flame retardants are widely used in consumer products to reduce their flammability. Previously used flame retardants have been sequentially banned due to their environmental and human toxicity. Currently, tris(1,3-dichloropropyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP) are among the most commonly used flame retardants. TDCIPP and TPHP are reproductive toxins and have carcinogenic, neurotoxic, and endocrine-disrupting properties. Although high levels of TDCIPP and TPHP have been found in drinking water, seawater, and office air in China, data regarding human exposure are lacking. In this study, we assessed the level of urinary TPHP and TDCIPP metabolites (DPHP and BDCIPP, resp.) in a cohort of pregnant women (N = 23) from Shanghai, China, using liquid chromatography-tandem mass spectrometry. DPHP were detected in 100% urine samples, while only four urine samples had detectable level of BDCIPP in this cohort (17% detected). Geometric means of DPHP and BDCIPP concentrations were 1.1 ng/mL (interquartile range [IQR]: 0.6, 1.5 ng/mL) and 1.2 ng/mL (IQR: 0.6, 2.2 ng/mL), respectively. In this small cohort, urinary DPHP and BDCIPP levels were not significantly correlated with miscarriages, neonatal birthweight, gestational diabetes, or maternal age. These data suggest that exposure to TPHP is widespread, and they demonstrate the feasibility of using urinary biomarkers to measure exposures to modern flame-retardant chemicals.
Collapse
|
143
|
Wang G, Du Z, Chen H, Su Y, Gao S, Mao L. Tissue-Specific Accumulation, Depuration, and Transformation of Triphenyl Phosphate (TPHP) in Adult Zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:13555-13564. [PMID: 27993046 DOI: 10.1021/acs.est.6b04697] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Understanding bioaccumulation and metabolism is critical for evaluating the fate and potential toxicity of compounds in vivo. We recently investigated, for the first time, the bioconcentration and tissue distribution of triphenyl phosphate (TPHP) and its main metabolites in selected tissues of adult zebrafish. To further confirm the metabolites, deuterated TPHP (d15-TPHP) was used in the exposure experiments at an environmentally relevant level (20 μg/L) and at 1/10 LC50 (100 μg/L). After 11-14 days of exposure to 100 μg/L of d15-TPHP, the accumulation and excretion of d15-TPHP reached equilibrium, at which point the intestine contained the highest d15-TPHP (μg/g wet weight, ww) concentration (3.12 ± 0.43), followed by the gills (2.76 ± 0.12) > brain (2.58 ± 0.19) > liver (2.30 ± 0.34) ≫ muscle (0.53 ± 0.04). The major metabolite of d15-TPHP, d10-diphenyl phosphate (d10-DPHP), was detected at significantly higher contents in the liver and intestine, at levels up to 3.0-3.5 times those of d15-TPHP. The metabolic pathways of TPHP were elucidated, including hydrolysis, hydroxylation, and glucuronic acid conjugation after hydroxylation. Finally, a physiologically based toxicokinetic (PBTK) model was used to explore the key factors influencing the bioaccumulation of d15-TPHP in zebrafish. These results provide important information for the understanding of the metabolism, disposition, and toxicology of TPHP in aquatic organisms.
Collapse
Affiliation(s)
- Guowei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210093, China
| | - Zhongkun Du
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210093, China
| | - Hanyan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210093, China
| | - Yu Su
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210093, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210093, China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210093, China
| |
Collapse
|
144
|
Liu X, Jung D, Jo A, Ji K, Moon HB, Choi K. Long-term exposure to triphenylphosphate alters hormone balance and HPG, HPI, and HPT gene expression in zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2288-96. [PMID: 26865342 DOI: 10.1002/etc.3395] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/11/2015] [Accepted: 02/08/2016] [Indexed: 05/28/2023]
Abstract
With the global decline in the use of polybrominated diphenyl ethers, the demand for alternative flame retardants, such as triphenylphosphate (TPP), has increased substantially. Triphenylphosphate is now detected in various environments including aquatic ecosystems worldwide. However, studies on the toxicological consequences of chronic TPP exposure on aquatic organisms are scarce. The zebrafish model was used to investigate the effects of long-term TPP exposure on the endocrine system. Zebrafish embryos were exposed to 5 µg/L, 50 µg/L, or 500 µg/L TPP for 120 d, and hormonal and transcriptional responses were measured along the hypothalamic-pituitary-gonad (HPG) axis, the hypothalamic-pituitary-interrenal (HPI) axis, and the hypothalamic-pituitary-thyroid (HPT) axis. Exposure to TPP significantly increased plasma 17β-estradiol, but decreased 11-ketotestosterone in both sexes. Gene expression data support these changes. In the HPI axis, plasma cortisol and proopiomelanocortin (pomc) and mineralocorticoid receptor transcripts increased in females, but in males cortisol decreased whereas pomc increased (p < 0.05). Thyroxine and triiodothyronine increased, and thyrotrophin-releasing hormone receptor 2 (trhr2) and trh expression were affected only in females (p < 0.05). In summary, long-term exposure to TPP enhanced estrogenicity in both males and females, potentially through influencing the HPG axis, but modulated the HPI, and HPT axes differently by sex, suggesting that both genomic and nongenomic responses might be involved. Environ Toxicol Chem 2016;35:2288-2296. © 2016 SETAC.
Collapse
Affiliation(s)
- Xiaoshan Liu
- School of Public Health, Seoul National University, Seoul, Republic of Korea
- School of Public Health, Guangdong Medical University, Dongguan City, Guangdong Province, People's Republic of China
| | - Dawoon Jung
- School of Public Health, Seoul National University, Seoul, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Areum Jo
- School of Public Health, Seoul National University, Seoul, Republic of Korea
- National Institute of Environmental Research, Incheon, Republic of Korea
| | - Kyunghee Ji
- Department of Occupational and Environmental Health, Yongin University, Yongin, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan, Republic of Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
145
|
Phillips AL, Chen A, Rock KD, Horman B, Patisaul HB, Stapleton HM. Editor's Highlight: Transplacental and Lactational Transfer of Firemaster® 550 Components in Dosed Wistar Rats. Toxicol Sci 2016; 153:246-57. [PMID: 27370412 DOI: 10.1093/toxsci/kfw122] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Firemaster® 550 (FM 550) is a commercial mixture of organophosphate and brominated flame retardants currently in use as a replacement for pentaBDE. Its organophosphate components include triphenyl phosphate (TPHP) and a suite of isopropylated triarylphosphate isomers (ITPs); its brominated components include 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and bis (2-ethylhexyl)-2,3,4,5-tetrabromophthalate (BEH-TEBP). Taken together, these chemicals have been shown to be endocrine disrupting and potentially toxic, and human exposure to them is widespread. In this study, maternal transfer of FM 550 components, and in some cases their metabolites, was investigated in dosed Wistar rats. Gestational and lactational transfer were examined separately, with dams orally exposed to 300 or 1000 µg of FM 550 for 10 consecutive days during gestation (gestational day [GD] 9-18) or lactation (postnatal day [PND] 3-12). Levels of parent compounds were measured in fetus and whole pup tissue homogenates, and in dam and pup serum, and several metabolites were measured in dam and pup urine. EH-TBB body burdens resulting from lactational transfer were approximately 200- to 300-fold higher than those resulting from placental transfer, whereas low levels of BEH-TEBP were transferred during both lactation and gestation. TPHP and ITPs were rapidly metabolized by the dams and were not detected in whole tissue homogenates. However, diphenyl phosphate (DPHP) and mono-isopropylphenyl phenyl phosphate (ip-PPP) were detected in urine from the dosed animals. This study is the first to confirm ip-PPP as a urinary metabolite of ITPs and establish a pharmacokinetic profile of FM 550 in a mammalian model. KEY WORDS Firemaster 550 ;: lactational transfer ;: gestational transfer; metabolites; rodent.
Collapse
Affiliation(s)
- Allison L Phillips
- *Nicholas School of the Environment, Levine Science Research Center, Duke University, Durham, North Carolina 27710
| | - Albert Chen
- *Nicholas School of the Environment, Levine Science Research Center, Duke University, Durham, North Carolina 27710
| | - Kylie D Rock
- Department of Biology, North Carolina State University, Raleigh, North Carolina, 27695
| | - Brian Horman
- Department of Biology, North Carolina State University, Raleigh, North Carolina, 27695
| | - Heather B Patisaul
- Department of Biology, North Carolina State University, Raleigh, North Carolina, 27695
| | - Heather M Stapleton
- *Nicholas School of the Environment, Levine Science Research Center, Duke University, Durham, North Carolina 27710;
| |
Collapse
|
146
|
Kim S, Sohn JH, Ha SY, Kang H, Yim UH, Shim WJ, Khim JS, Jung D, Choi K. Thyroid Hormone Disruption by Water-Accommodated Fractions of Crude Oil and Sediments Affected by the Hebei Spirit Oil Spill in Zebrafish and GH3 Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5972-5980. [PMID: 27144452 DOI: 10.1021/acs.est.6b00751] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A crude oil and the coastal sediments that were affected by the Hebei Spirit Oil Spill (HSOS) of Taean, Korea were investigated for thyroid hormone disruption potentials. Water-accommodated fractions (WAFs) of Iranian Heavy crude oil, the major oil type of HSOS, and the porewater or leachate of sediment samples collected along the coast line of Taean were tested for thyroid disruption using developing zebrafish and/or rat pituitary GH3 cells. Major polycyclic aromatic hydrocarbons (PAHs) and their alkylated forms were also measured from the test samples. In zebrafish larvae, significant decreases in whole-body thyroxine (T4) and triiodothyronine (T3) levels, along with transcriptional changes of thyroid regulating genes, were observed following 5 day exposure to WAFs. In GH3 cells, transcriptions of thyroid regulating genes were influenced following the exposure to the sediment samples, but the pattern of the regulatory change was different from those observed from the WAFs. Composition of PAHs and their alkylated homologues in the WAFs could partly explain this difference. Our results clearly demonstrate that WAFs of crude oil can disrupt thyroid function of larval zebrafish. Sediment samples also showed thyroid disrupting potentials in the GH3 cell, even several years after the oil spill. Long-term ecosystem consequences of thyroid hormone disruption due to oil spill deserve further investigation.
Collapse
Affiliation(s)
| | | | - Sung Yong Ha
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology (KIOST) , Geoje 53201, Republic of Korea
| | | | - Un Hyuk Yim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology (KIOST) , Geoje 53201, Republic of Korea
| | - Won Joon Shim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology (KIOST) , Geoje 53201, Republic of Korea
| | | | | | | |
Collapse
|
147
|
Tu W, Xu C, Jin Y, Lu B, Lin C, Wu Y, Liu W. Permethrin is a potential thyroid-disrupting chemical: In vivo and in silico envidence. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:39-46. [PMID: 26994367 DOI: 10.1016/j.aquatox.2016.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/04/2016] [Accepted: 03/05/2016] [Indexed: 06/05/2023]
Abstract
Permethrin (PM), one of the most heavily used synthetic pyrethroids, has the potential to interfere with thyroid hormones in mammals, however, the effect is poorly recognized in aquatic organisms. Herein, embryonic zebrafish were exposed to PM (0, 1, 3 and 10μg/L) until 72h post-fertilization. We demonstrated that PM readily accumulated in larvae with a preference for cis-PM, inhibited development and increased thyroxine and 3,5,3'-triiodothyronine levels accompanying increase in the transcription of most target genes, i.e., thyroid-stimulating hormone β, deiodinases, thyroid receptors, involved in the hypothalamic-pituitary-thyroid axis. Further Western blot analysis indicated that transthyretin (TTR) protein was significantly increased. Molecular docking analysis and molecular dynamics simulations revealed that PM fits into three hydrophobic binding pocket of TTR, one of the molecular targets of thyroid hormone disrupting chemicals (THDCs), and forms strong van der Waals interactions with six resides of TTR, including Leu8, Leu 101, Leu125, Thr214, Leu218 and Val229, thus altering TTR activity. Both in vivo and in silico studies clearly disclosed that PM potentially disrupts the thyroid endocrine system in fish. This study provides a rapid and cost-effective approach for identifying THDCs and the underlying mechanisms.
Collapse
Affiliation(s)
- Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330029, China; College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Yuanxiang Jin
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Bin Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chunmian Lin
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yongming Wu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330029, China
| | - Weiping Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
148
|
Zhang Y, Zhang Y, Chen A, Zhang W, Chen H, Zhang Q. Enantioselectivity in Developmental Toxicity ofrac-metalaxyl andR-metalaxyl in Zebrafish (Danio rerio) Embryo. Chirality 2016; 28:489-94. [DOI: 10.1002/chir.22605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Yinjun Zhang
- College of Biological and Environmental Engineering; Zhejiang University of Technology; Hangzhou China
| | - Yi Zhang
- College of Biological and Environmental Engineering; Zhejiang University of Technology; Hangzhou China
| | - An Chen
- Affiliated High School to Hangzhou Normal University; Hangzhou China
| | - Wei Zhang
- College of Biological and Environmental Engineering; Zhejiang University of Technology; Hangzhou China
| | - Hao Chen
- College of Biological and Environmental Engineering; Zhejiang University of Technology; Hangzhou China
| | - Quan Zhang
- College of Biological and Environmental Engineering; Zhejiang University of Technology; Hangzhou China
| |
Collapse
|
149
|
Liu LY, He K, Hites RA, Salamova A. Hair and Nails as Noninvasive Biomarkers of Human Exposure to Brominated and Organophosphate Flame Retardants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3065-73. [PMID: 26926265 DOI: 10.1021/acs.est.5b05073] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
After the phase-out of polybrominated diphenyl ethers (PBDEs), the use of alternative flame retardants (AFRs), such as FireMaster 550, and of organophosphate esters (OPEs) has increased. However, little is known about human exposure to these chemicals. This lack of biomonitoring studies is partially due to the absence of reliable noninvasive biomarkers of exposure. Human hair and nails can provide integrated exposure measurements, and as such, these matrices can potentially be used as noninvasive biomarkers of exposure to these flame retardants. Paired human hair, fingernail, toenail, and serum samples obtained from 50 adult participants recruited at Indiana University Bloomington campus were analyzed by gas chromatographic mass spectrometry for 36 PBDEs, 9 AFRs, and 12 OPEs. BDE-47, BDE-99, 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB), di(2-ethylhexyl) tetrabromophthalate (TBPH), tris(1,3-dichloro-2-propyl)phosphate (TDCIPP), and triphenyl phosphate (TPHP) were the most abundant compounds detected in almost all hair, fingernail, and toenail samples. The concentrations followed the order OPEs > TBB+TBPH > Σpenta-BDE. PBDE levels in the hair and nail samples were significantly correlated with their levels in serum (P < 0.05), suggesting that human hair and nails can be used as biomarkers to assess human exposure to PBDEs.
Collapse
Affiliation(s)
- Liang-Ying Liu
- School of Public and Environmental Affairs and ‡School of Public Health, Indiana University Bloomington , Bloomington, Indiana 47405, United States
| | - Ka He
- School of Public and Environmental Affairs and ‡School of Public Health, Indiana University Bloomington , Bloomington, Indiana 47405, United States
| | - Ronald A Hites
- School of Public and Environmental Affairs and ‡School of Public Health, Indiana University Bloomington , Bloomington, Indiana 47405, United States
| | - Amina Salamova
- School of Public and Environmental Affairs and ‡School of Public Health, Indiana University Bloomington , Bloomington, Indiana 47405, United States
| |
Collapse
|
150
|
Zhang Q, Ji C, Yin X, Yan L, Lu M, Zhao M. Thyroid hormone-disrupting activity and ecological risk assessment of phosphorus-containing flame retardants by in vitro, in vivo and in silico approaches. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 210:27-33. [PMID: 26701863 DOI: 10.1016/j.envpol.2015.11.051] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 11/27/2015] [Accepted: 11/27/2015] [Indexed: 05/03/2023]
Abstract
In recent years, phosphorus-containing flame retardants (PFRs) have been frequently detected in various environmental media and biota - and in humans - as the result of steady increase in global usage of PFRs. However, studies on the potential health and ecological risks of PFRs are still scarce. In this study, we investigated the thyroid hormone-disrupting activity and ecological risk of nine frequently detected PFRs by in vitro, in vivo and in silico approaches. Results from the dual-luciferase reporter gene assay showed that tributyl phosphate (TNBP), tricresyl phosphate (TMPP), tris(2-chloroisopropyl)phosphate (TCIPP) and tris(2-chloro-1-(chloromethyl)ethyl)phosphate (TDCIPP) exerted thyroid receptor β (TRβ) antagonistic activity, with the values of RIC20 of 5.2 × 10(-7), 2.7 × 10(-7), 1.2 × 10(-6) and 6.8 × 10(-6) M, respectively. Molecular docking platform simulations suggested that the observed effects may be attributed to direct binding of PFRs to TR. Results from the T-screen assay indicated that TNBP and TMPP showed T3 antagonistic activity and thus significantly decreased the viability of GH3 cell lines in the presence of T3. The exposure assay using Xenopus tropicalis embryos revealed the potential teratogenic effect of TNBP, TMPP, TCIPP and TDCIPP. In conclusion, our studies revealed that some PFRs were potential thyroid hormone disruptors and may cause health and ecological risks. However, the mode of action of PFRs on TR remains uncertain. The correlation between the predicted affinity and the amplitude of the effect observed in cell based assay is encouraging, but not decisive. Further in vitro binding experiments of TR and PFRs are required. At the same time, the results provided here also demonstrated that multi-model approaches are of great importance to comprehensively evaluate the potential risks of emerging contaminants.
Collapse
Affiliation(s)
- Quan Zhang
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chenyang Ji
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaohui Yin
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China; School of Agricultural and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Lu Yan
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Meiya Lu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Meirong Zhao
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|