101
|
Zaccagna F, McLean MA, Grist JT, Kaggie J, Mair R, Riemer F, Woitek R, Gill AB, Deen S, Daniels CJ, Ursprung S, Schulte RF, Allinson K, Chhabra A, Laurent MC, Locke M, Frary A, Hilborne S, Patterson I, Carmo BD, Slough R, Wilkinson I, Basu B, Wason J, Gillard JH, Matys T, Watts C, Price SJ, Santarius T, Graves MJ, Jefferies S, Brindle KM, Gallagher FA. Imaging Glioblastoma Metabolism by Using Hyperpolarized [1- 13C]Pyruvate Demonstrates Heterogeneity in Lactate Labeling: A Proof of Principle Study. Radiol Imaging Cancer 2022; 4:e210076. [PMID: 35838532 PMCID: PMC9360994 DOI: 10.1148/rycan.210076] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 01/20/2023]
Abstract
Purpose To evaluate glioblastoma (GBM) metabolism by using hyperpolarized carbon 13 (13C) MRI to monitor the exchange of the hyperpolarized 13C label between injected [1-13C]pyruvate and tumor lactate and bicarbonate. Materials and Methods In this prospective study, seven treatment-naive patients (age [mean ± SD], 60 years ± 11; five men) with GBM were imaged at 3 T by using a dual-tuned 13C-hydrogen 1 head coil. Hyperpolarized [1-13C]pyruvate was injected, and signal was acquired by using a dynamic MRI spiral sequence. Metabolism was assessed within the tumor, in the normal-appearing brain parenchyma (NABP), and in healthy volunteers by using paired or unpaired t tests and a Wilcoxon signed rank test. The Spearman ρ correlation coefficient was used to correlate metabolite labeling with lactate dehydrogenase A (LDH-A) expression and some immunohistochemical markers. The Benjamini-Hochberg procedure was used to correct for multiple comparisons. Results The bicarbonate-to-pyruvate (BP) ratio was lower in the tumor than in the contralateral NABP (P < .01). The tumor lactate-to-pyruvate (LP) ratio was not different from that in the NABP (P = .38). The LP and BP ratios in the NABP were higher than those observed previously in healthy volunteers (P < .05). Tumor lactate and bicarbonate signal intensities were strongly correlated with the pyruvate signal intensity (ρ = 0.92, P < .001, and ρ = 0.66, P < .001, respectively), and the LP ratio was weakly correlated with LDH-A expression in biopsy samples (ρ = 0.43, P = .04). Conclusion Hyperpolarized 13C MRI demonstrated variation in lactate labeling in GBM, both within and between tumors. In contrast, bicarbonate labeling was consistently lower in tumors than in the surrounding NABP. Keywords: Hyperpolarized 13C MRI, Glioblastoma, Metabolism, Cancer, MRI, Neuro-oncology Supplemental material is available for this article. Published under a CC BY 4.0 license.
Collapse
Affiliation(s)
- Fulvio Zaccagna
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Mary A. McLean
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - James T. Grist
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Joshua Kaggie
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Richard Mair
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Frank Riemer
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Ramona Woitek
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Andrew B. Gill
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Surrin Deen
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Charlie J. Daniels
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Stephan Ursprung
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Rolf F. Schulte
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Kieren Allinson
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Anita Chhabra
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Marie-Christine Laurent
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Matthew Locke
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Amy Frary
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Sarah Hilborne
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Ilse Patterson
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Bruno D. Carmo
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Rhys Slough
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Ian Wilkinson
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Bristi Basu
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - James Wason
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Jonathan H. Gillard
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Tomasz Matys
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Colin Watts
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Stephen J. Price
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Thomas Santarius
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Martin J. Graves
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Sarah Jefferies
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Kevin M. Brindle
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| | - Ferdia A. Gallagher
- From the Departments of Radiology (F.Z., J.T.G., J.K., F.R., R.W.,
A.B.G., S.D., C.J.D., S.U., M.C.L., M.L., A.F., S.H., J.H.G., T.M., M.J.G.,
F.A.G.), Clinical Neurosciences (R.M., C.W., S.J.P., T.S.), and Medicine (I.W.),
University of Cambridge School of Clinical Medicine, Cambridge, England; Cancer
Research UK Cambridge Institute (M.A.M., S.U., K.M.B.), Medical Research Council
Biostatistics Unit (J.W.), and Department of Biochemistry (K.M.B.), University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, England;
Department of Biomedical Imaging and Image-guided Therapy, Medical University of
Vienna, Vienna, Austria (R.W.); GE Healthcare, Munich, Germany (R.F.S.);
Department of Pathology (K.A.), Cambridge Cancer Trials Centre (A.C.),
Department of Radiology (I.P., B.D.C., R.S.), and Department of Oncology (B.B.,
S.J.), Cambridge University Hospitals National Health Service Foundation Trust,
Cambridge, England; and Population Health Sciences Institute, Newcastle
University, Newcastle upon Tyne, England (J.W.)
| |
Collapse
|
102
|
Pellerin L, Connes P, Bisbal C, Lambert K. Editorial: Lactate as a Major Signaling Molecule for Homeostasis. Front Physiol 2022; 13:910567. [PMID: 35755437 PMCID: PMC9214235 DOI: 10.3389/fphys.2022.910567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Luc Pellerin
- IRMETIST Inserm U1313, Université et CHU de Poitiers, Poitiers, France
| | - Philippe Connes
- LIBM. EA7424, Vascular Biology and Red Blood Cell Team, Université Claude Bernard Lyon 1, Lyon, France
| | - Catherine Bisbal
- PhyMedExp Inserm U1046-CNRS 9214, Université de Montpellier, Montpellier, France
| | - Karen Lambert
- PhyMedExp Inserm U1046-CNRS 9214, Université de Montpellier, Montpellier, France
| |
Collapse
|
103
|
Garcia-Bermudez J, Badgley MA, Prasad S, Baudrier L, Liu Y, La K, Soula M, Williams RT, Yamaguchi N, Hwang RF, Taylor LJ, de Stanchina E, Rostandy B, Alwaseem H, Molina H, Bar-Sagi D, Birsoy K. Adaptive stimulation of macropinocytosis overcomes aspartate limitation in cancer cells under hypoxia. Nat Metab 2022; 4:724-738. [PMID: 35726024 PMCID: PMC9678334 DOI: 10.1038/s42255-022-00583-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/10/2022] [Indexed: 12/24/2022]
Abstract
Stress-adaptive mechanisms enable tumour cells to overcome metabolic constraints under nutrient and oxygen shortage. Aspartate is an endogenous metabolic limitation under hypoxic conditions, but the nature of the adaptive mechanisms that contribute to aspartate availability and hypoxic tumour growth are poorly understood. Here we identify GOT2-catalysed mitochondrial aspartate synthesis as an essential metabolic dependency for the proliferation of pancreatic tumour cells under hypoxic culture conditions. In contrast, GOT2-catalysed aspartate synthesis is dispensable for pancreatic tumour formation in vivo. The dependence of pancreatic tumour cells on aspartate synthesis is bypassed in part by a hypoxia-induced potentiation of extracellular protein scavenging via macropinocytosis. This effect is mutant KRAS dependent, and is mediated by hypoxia-inducible factor 1 (HIF1A) and its canonical target carbonic anhydrase-9 (CA9). Our findings reveal high plasticity of aspartate metabolism and define an adaptive regulatory role for macropinocytosis by which mutant KRAS tumours can overcome nutrient deprivation under hypoxic conditions.
Collapse
Affiliation(s)
- Javier Garcia-Bermudez
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael A Badgley
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Sheela Prasad
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lou Baudrier
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Yuyang Liu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Konnor La
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Mariluz Soula
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Robert T Williams
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Norihiro Yamaguchi
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Rosa F Hwang
- Department of Breast Surgical Oncology, Division of Surgery, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Laura J Taylor
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bety Rostandy
- The Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Hanan Alwaseem
- The Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Henrik Molina
- The Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
104
|
Starovoytova IA, Dominova IN. An in vitro Study of the Effect of Bacterial Lipopolysaccharide on Transcription Levels of SLC Family Transporter Genes in Microglia. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
105
|
Zhang M, Wang Y, Bai Y, Dai L, Guo H. Monocarboxylate Transporter 1 May Benefit Cerebral Ischemia via Facilitating Lactate Transport From Glial Cells to Neurons. Front Neurol 2022; 13:781063. [PMID: 35547368 PMCID: PMC9081727 DOI: 10.3389/fneur.2022.781063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Monocarboxylate transporter 1 (MCT1) is expressed in glial cells and some populations of neurons. MCT1 facilitates astrocytes or oligodendrocytes (OLs) in the energy supplement of neurons, which is crucial for maintaining the neuronal activity and axonal function. It is suggested that MCT1 upregulation in cerebral ischemia is protective to ischemia/reperfusion (I/R) injury. Otherwise, its underlying mechanism has not been clearly discussed. In this review, it provides a novel insight that MCT1 may protect brain from I/R injury via facilitating lactate transport from glial cells (such as, astrocytes and OLs) to neurons. It extensively discusses (1) the structure and localization of MCT1; (2) the regulation of MCT1 in lactate transport among astrocytes, OLs, and neurons; and (3) the regulation of MCT1 in the cellular response of lactate accumulation under ischemic attack. At last, this review concludes that MCT1, in cerebral ischemia, may improve lactate transport from glial cells to neurons, which subsequently alleviates cellular damage induced by lactate accumulation (mostly in glial cells), and meets the energy metabolism of neurons.
Collapse
Affiliation(s)
- Mao Zhang
- Department of Medical Genetics, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yanyan Wang
- Department of Medical Genetics, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yun Bai
- Department of Medical Genetics, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Limeng Dai
- Department of Medical Genetics, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Hong Guo
- Department of Medical Genetics, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| |
Collapse
|
106
|
Singha SP, Memon S, Bano U, Isaac AD, Shahani MY. Evaluation of p21 expression and related autism-like behavior in Bisphenol-A exposed offspring of Wistar albino rats. Birth Defects Res 2022; 114:536-550. [PMID: 35560535 DOI: 10.1002/bdr2.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Bisphenol A (BPA), an endocrine disruptor, may be involved in the etiology of autism spectrum disorders (ASD); however, the mechanism of neuronal and astrocytic damage remains ambiguous. A possible role of altered expression of p21 in autistic-like behavior in rat offspring was examined with prenatal and postnatal BPA exposure. METHODS Wistar albino dams were exposed to BPA (5 mg/kg) intraperitoneally throughout pregnancy and until the third postnatal day (PND). Pups were examined on 21st PND for behavioral test. Blood samples were collected for serum lactate levels and pups were sacrificed. Right frontal cortices were dissected out and processed for H&E, immunohistochemical analysis, and gene expression. RESULTS Anxiety like behavior and thigmotaxis along with reduction in serum lactate concentrations were observed in pups exposed to BPA. Decline in neuronal number and decreased astrocytic population with reduced dendritic spines were revealed by H&E and immunohistochemical analysis, respectively, in right frontal cortices. Over expression of p21 was also detected in BPA-exposed offspring. CONCLUSIONS Over expression of p21 may be associated with autistic behavior. Further studies are recommended to explore the structural alterations in other white matter pathways in frontal cortices.
Collapse
Affiliation(s)
| | - Samreen Memon
- Department of Anatomy, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Umbreen Bano
- Department of Anatomy, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Amir Derick Isaac
- Department of Oral Biology, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Muhammad Yaqoob Shahani
- Department of Anatomy, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| |
Collapse
|
107
|
Afonso M, Brito MA. Therapeutic Options in Neuro-Oncology. Int J Mol Sci 2022; 23:5351. [PMID: 35628161 PMCID: PMC9140894 DOI: 10.3390/ijms23105351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
One of the biggest challenges in neuro-oncology is understanding the complexity of central nervous system tumors, such as gliomas, in order to develop suitable therapeutics. Conventional therapies in malignant gliomas reconcile surgery and radiotherapy with the use of chemotherapeutic options such as temozolomide, chloroethyl nitrosoureas and the combination therapy of procarbazine, lomustine and vincristine. With the unraveling of deregulated cancer cell signaling pathways, targeted therapies have been developed. The most affected signaling pathways in glioma cells involve tyrosine kinase receptors and their downstream pathways, such as the phosphatidylinositol 3-kinases (PI3K/AKT/mTOR) and mitogen-activated protein kinase pathways (MAPK). MAPK pathway inhibitors include farnesyl transferase inhibitors, Ras kinase inhibitors and mitogen-activated protein extracellular regulated kinase (MEK) inhibitors, while PI3K/AKT/mTOR pathway inhibitors are divided into pan-inhibitors, PI3K/mTOR dual inhibitors and AKT inhibitors. The relevance of the immune system in carcinogenesis has led to the development of immunotherapy, through vaccination, blocking of immune checkpoints, oncolytic viruses, and adoptive immunotherapy using chimeric antigen receptor T cells. In this article we provide a comprehensive review of the signaling pathways underlying malignant transformation, the therapies currently used in the treatment of malignant gliomas and further explore therapies under development, including several ongoing clinical trials.
Collapse
Affiliation(s)
- Mariana Afonso
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
| | - Maria Alexandra Brito
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
- Research Institute for Medicines (iMed), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
108
|
Gouirand V, Gicquel T, Lien EC, Jaune‐Pons E, Da Costa Q, Finetti P, Metay E, Duluc C, Mayers JR, Audebert S, Camoin L, Borge L, Rubis M, Leca J, Nigri J, Bertucci F, Dusetti N, Lucio Iovanna J, Tomasini R, Bidaut G, Guillaumond F, Vander Heiden MG, Vasseur S. Ketogenic HMG-CoA lyase and its product β-hydroxybutyrate promote pancreatic cancer progression. EMBO J 2022; 41:e110466. [PMID: 35307861 PMCID: PMC9058543 DOI: 10.15252/embj.2021110466] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) tumor cells are deprived of oxygen and nutrients and therefore must adapt their metabolism to ensure proliferation. In some physiological states, cells rely on ketone bodies to satisfy their metabolic needs, especially during nutrient stress. Here, we show that PDA cells can activate ketone body metabolism and that β-hydroxybutyrate (βOHB) is an alternative cell-intrinsic or systemic fuel that can promote PDA growth and progression. PDA cells activate enzymes required for ketogenesis, utilizing various nutrients as carbon sources for ketone body formation. By assessing metabolic gene expression from spontaneously arising PDA tumors in mice, we find HMG-CoA lyase (HMGCL), involved in ketogenesis, to be among the most deregulated metabolic enzymes in PDA compared to normal pancreas. In vitro depletion of HMGCL impedes migration, tumor cell invasiveness, and anchorage-independent tumor sphere compaction. Moreover, disrupting HMGCL drastically decreases PDA tumor growth in vivo, while βOHB stimulates metastatic dissemination to the liver. These findings suggest that βOHB increases PDA aggressiveness and identify HMGCL and ketogenesis as metabolic targets for limiting PDA progression.
Collapse
|
109
|
Conversion of Hyperpolarized [1- 13C]Pyruvate in Breast Cancer Cells Depends on Their Malignancy, Metabolic Program and Nutrient Microenvironment. Cancers (Basel) 2022; 14:cancers14071845. [PMID: 35406616 PMCID: PMC8997828 DOI: 10.3390/cancers14071845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022] Open
Abstract
Hyperpolarized magnetic resonance spectroscopy (MRS) is a technology for characterizing tumors in vivo based on their metabolic activities. The conversion rates (kpl) of hyperpolarized [1-13C]pyruvate to [1-13C]lactate depend on monocarboxylate transporters (MCT) and lactate dehydrogenase (LDH); these are also indicators of tumor malignancy. An unresolved issue is how glucose and glutamine availability in the tumor microenvironment affects metabolic characteristics of the cancer and how this relates to kpl-values. Two breast cancer cells of different malignancy (MCF-7, MDA-MB-231) were cultured in media containing defined combinations of low glucose (1 mM; 2.5 mM) and glutamine (0.1 mM; 1 mM) and analyzed for pyruvate uptake, intracellular metabolite levels, LDH and pyruvate kinase activities, and 13C6-glucose-derived metabolomics. The results show variability of kpl with the different glucose/glutamine conditions, congruent with glycolytic activity, but not with LDH activity or the Warburg effect; this suggests metabolic compartmentation. Remarkably, kpl-values were almost two-fold higher in MCF-7 than in the more malignant MDA-MB-231 cells, the latter showing a higher flux of 13C-glucose-derived pyruvate to the TCA-cycle metabolites 13C2-citrate and 13C3-malate, i.e., pyruvate decarboxylation and carboxylation, respectively. Thus, MRS with hyperpolarized [1-13C-pyruvate] is sensitive to both the metabolic program and the nutritional state of cancer cells.
Collapse
|
110
|
Combining PEGylated mito-atovaquone with MCT and Krebs cycle redox inhibitors as a potential strategy to abrogate tumor cell proliferation. Sci Rep 2022; 12:5143. [PMID: 35332210 PMCID: PMC8948292 DOI: 10.1038/s41598-022-08984-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
Glycolytic and mitochondrial oxidative metabolism, which are two major energy sources in tumors, are potential targets in cancer treatment. Metabolic reprogramming from glycolysis to mitochondrial oxidative metabolism and vice versa is an adaptive strategy with which tumor cells obtain energy to survive and thrive under the compromised conditions of glycolysis and mitochondrial respiration. Developing highly potent, nontoxic, and tumor-selective oxidative phosphorylation (OXPHOS) inhibitors may help advance therapeutic targeting of mitochondrial drugs in cancer. The FDA-approved antimalarial drug atovaquone (ATO), a mitochondrial complex III inhibitor, was repurposed in cancer treatment. Here, we developed a new class of PEGylated mitochondria-targeted ATO (Mito-(PEG)n-ATO). Depending on the PEGylation chain length (n), Mito-PEG-ATO analogs inhibit both mitochondrial complex I- and complex III-induced oxygen consumption in human pancreatic (MiaPaCa-2) and brain (U87MG) cancer cells. Mito-PEG5-ATO is one of the most potent antiproliferative mitochondria-targeted compounds (IC50 = 38 nM) in MiaPaCa-2 cells, and is more effective than other inhibitors of OXPHOS in MiaPaCa-2 and U87MG cells. Furthermore, we show that the combined use of the most potent OXPHOS-targeted inhibitors (Mito-PEG5-ATO) and inhibitors of monocarboxylate transporters (MCT-1 and MCT-4), Krebs cycle redox metabolism, or glutaminolysis will synergistically abrogate tumor cell proliferation. Potential clinical benefits of these combinatorial therapies are discussed.
Collapse
|
111
|
Nalbandian M, Radak Z, Takeda M. Corrigendum: Lactate Metabolism and Satellite Cell Fate. Front Physiol 2022; 12:817264. [PMID: 35242046 PMCID: PMC8886907 DOI: 10.3389/fphys.2021.817264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
- Minas Nalbandian
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Zsolt Radak
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Masaki Takeda
- Graduate School of Sports and Health Science, Doshisha University, Kyoto, Japan
| |
Collapse
|
112
|
Monocarboxylate Transporters Are Involved in Extracellular Matrix Remodelling in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14051298. [PMID: 35267606 PMCID: PMC8909080 DOI: 10.3390/cancers14051298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a five-year survival rate of <8%. PDAC is characterised by desmoplasia with an abundant extracellular matrix (ECM) rendering current therapies ineffective. Monocarboxylate transporters (MCTs) are key regulators of cellular metabolism and are upregulated in different cancers; however, their role in PDAC desmoplasia is little understood. Here, we investigated MCT and ECM gene expression in primary PDAC patient biopsies using RNA-sequencing data obtained from Gene Expression Omnibus. We generated a hypernetwork model from these data to investigate whether a causal relationship exists between MCTs and ECMs. Our analysis of stromal and epithelial tissues (n = 189) revealed nine differentially expressed MCTs, including the upregulation of SLC16A2/6/10 and the non-coding SLC16A1-AS1, and 502 ECMs, including collagens, laminins, and ECM remodelling enzymes (false discovery rate < 0.05). A causal hypernetwork analysis demonstrated a bidirectional relationship between MCTs and ECMs; four MCT and 255 ECM-related transcripts correlated with 90% of the differentially expressed ECMs (n = 376) and MCTs (n = 7), respectively. The hypernetwork model was robust, established by iterated sampling, direct path analysis, validation by an independent dataset, and random forests. This transcriptomic analysis highlights the role of MCTs in PDAC desmoplasia via associations with ECMs, opening novel treatment pathways to improve patient survival.
Collapse
|
113
|
Ma J, Pinho MC, Harrison CE, Chen J, Sun C, Hackett EP, Liticker J, Ratnakar J, Reed GD, Chen AP, Sherry AD, Malloy CR, Wright SM, Madden CJ, Park JM. Dynamic 13 C MR spectroscopy as an alternative to imaging for assessing cerebral metabolism using hyperpolarized pyruvate in humans. Magn Reson Med 2022; 87:1136-1149. [PMID: 34687086 PMCID: PMC8776582 DOI: 10.1002/mrm.29049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 11/10/2022]
Abstract
PURPOSE This study is to investigate time-resolved 13 C MR spectroscopy (MRS) as an alternative to imaging for assessing pyruvate metabolism using hyperpolarized (HP) [1-13 C]pyruvate in the human brain. METHODS Time-resolved 13 C spectra were acquired from four axial brain slices of healthy human participants (n = 4) after a bolus injection of HP [1-13 C]pyruvate. 13 C MRS with low flip-angle excitations and a multichannel 13 C/1 H dual-frequency radiofrequency (RF) coil were exploited for reliable and unperturbed assessment of HP pyruvate metabolism. Slice-wise areas under the curve (AUCs) of 13 C-metabolites were measured and kinetic analysis was performed to estimate the production rates of lactate and HCO3- . Linear regression analysis between brain volumes and HP signals was performed. Region-focused pyruvate metabolism was estimated using coil-wise 13 C reconstruction. Reproducibility of HP pyruvate exams was presented by performing two consecutive injections with a 45-minutes interval. RESULTS [1-13 C]Lactate relative to the total 13 C signal (tC) was 0.21-0.24 in all slices. [13 C] HCO3- /tC was 0.065-0.091. Apparent conversion rate constants from pyruvate to lactate and HCO3- were calculated as 0.014-0.018 s-1 and 0.0043-0.0056 s-1 , respectively. Pyruvate/tC and lactate/tC were in moderate linear relationships with fractional gray matter volume within each slice. White matter presented poor linear regression fit with HP signals, and moderate correlations of the fractional cerebrospinal fluid volume with pyruvate/tC and lactate/tC were measured. Measured HP signals were comparable between two consecutive exams with HP [1-13 C]pyruvate. CONCLUSIONS Dynamic MRS in combination with multichannel RF coils is an affordable and reliable alternative to imaging methods in investigating cerebral metabolism using HP [1-13 C]pyruvate.
Collapse
Affiliation(s)
- Junjie Ma
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marco C. Pinho
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Crystal E. Harrison
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun Chen
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chenhao Sun
- Department of Electrical and Computer Engineering, Texas A & M, College Station, TX, USA
| | - Edward P. Hackett
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeff Liticker
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James Ratnakar
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - A. Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Biochemistry and Chemical Biology, University of Texas Dallas, Richardson, TX, USA
| | - Craig R. Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Steven M. Wright
- Department of Electrical and Computer Engineering, Texas A & M, College Station, TX, USA
| | - Christopher J. Madden
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jae Mo Park
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Electrical and Computer Engineering, University of Texas Dallas, Richardson, TX, USA,Correspondence to: Jae Mo Park, Ph.D., 5323 Harry Hines Blvd. Dallas, Texas 75390-8568, , Tel: +1-214-645-7206, Fax: +1-214-645-2744
| |
Collapse
|
114
|
Amemiya T, Yamaguchi T. Oscillations and Dynamic Symbiosis in Cellular Metabolism in Cancer. Front Oncol 2022; 12:783908. [PMID: 35251968 PMCID: PMC8888517 DOI: 10.3389/fonc.2022.783908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/27/2022] [Indexed: 11/23/2022] Open
Abstract
The grade of malignancy differs among cancer cell types, yet it remains the burden of genetic studies to understand the reasons behind this observation. Metabolic studies of cancer, based on the Warburg effect or aerobic glycolysis, have also not provided any clarity. Instead, the significance of oxidative phosphorylation (OXPHOS) has been found to play critical roles in aggressive cancer cells. In this perspective, metabolic symbiosis is addressed as one of the ultimate causes of the grade of cancer malignancy. Metabolic symbiosis gives rise to metabolic heterogeneities which enable cancer cells to acquire greater opportunities for proliferation and metastasis in tumor microenvironments. This study introduces a real-time new imaging technique to visualize metabolic symbiosis between cancer-associated fibroblasts (CAFs) and cancer cells based on the metabolic oscillations in these cells. The causality of cellular oscillations in cancer cells and CAFs, connected through lactate transport, is a key point for the development of this novel technique.
Collapse
Affiliation(s)
- Takashi Amemiya
- Graduate School of Environment and Information Sciences, Yokohama National University (YNU), Yokohama, Japan
- *Correspondence: Takashi Amemiya,
| | - Tomohiko Yamaguchi
- Meiji Institute for Advanced Study of Mathematical Sciences (MIMS), Nakano, Japan
| |
Collapse
|
115
|
Yang L, TeSlaa T, Ng S, Nofal M, Wang L, Lan T, Zeng X, Cowan A, McBride M, Lu W, Davidson S, Liang G, Oh TG, Downes M, Evans R, Von Hoff D, Guo JY, Han H, Rabinowitz JD. Ketogenic diet and chemotherapy combine to disrupt pancreatic cancer metabolism and growth. MED 2022; 3:119-136. [PMID: 35425930 PMCID: PMC9004683 DOI: 10.1016/j.medj.2021.12.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Ketogenic diet is a potential means of augmenting cancer therapy. Here, we explore ketone body metabolism and its interplay with chemotherapy in pancreatic cancer. Methods Metabolism and therapeutic responses of murine pancreatic cancer were studied using KPC primary tumors and tumor chunk allografts. Mice on standard high-carbohydrate diet or ketogenic diet were treated with cytotoxic chemotherapy (nab-paclitaxel, gemcitabine, cisplatin). Metabolic activity was monitored with metabolomics and isotope tracing, including 2H- and 13C-tracers, liquid chromatography-mass spectrometry, and imaging mass spectrometry. Findings Ketone bodies are unidirectionally oxidized to make NADH. This stands in contrast to the carbohydrate-derived carboxylic acids lactate and pyruvate, which rapidly interconvert, buffering NADH/NAD. In murine pancreatic tumors, ketogenic diet decreases glucose's concentration and tricarboxylic acid cycle contribution, enhances 3-hydroxybutyrate's concentration and tricarboxylic acid contribution, and modestly elevates NADH, but does not impact tumor growth. In contrast, the combination of ketogenic diet and cytotoxic chemotherapy substantially raises tumor NADH and synergistically suppresses tumor growth, tripling the survival benefits of chemotherapy alone. Chemotherapy and ketogenic diet also synergize in immune-deficient mice, although long-term growth suppression was only observed in mice with an intact immune system. Conclusions Ketogenic diet sensitizes murine pancreatic cancer tumors to cytotoxic chemotherapy. Based on these data, we have initiated a randomized clinical trial of chemotherapy with standard versus ketogenic diet for patients with metastatic pancreatic cancer (NCT04631445).
Collapse
Affiliation(s)
- Lifeng Yang
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tara TeSlaa
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Serina Ng
- Molecular Medicine Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Michel Nofal
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Lin Wang
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 5 Dong Dan San Tiao, Dongcheng District, Beijing 100005, China
| | - Taijin Lan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Xianfeng Zeng
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Alexis Cowan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Matthew McBride
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Wenyun Lu
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Shawn Davidson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Gaoyang Liang
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tae Gyu Oh
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ronald Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Daniel Von Hoff
- Molecular Medicine Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Jessie Yanxiang Guo
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| | - Haiyong Han
- Molecular Medicine Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Joshua D. Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ, USA
- Lead contact
| |
Collapse
|
116
|
Williams LM, Fujimoto T, Weaver RR, Logsdon AF, Evitts KM, Young JE, Banks WA, Erickson MA. Prolonged culturing of iPSC-derived brain endothelial-like cells is associated with quiescence, downregulation of glycolysis, and resistance to disruption by an Alzheimer’s brain milieu. Fluids Barriers CNS 2022; 19:10. [PMID: 35123529 PMCID: PMC8817611 DOI: 10.1186/s12987-022-00307-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Human induced pluripotent stem cell (hiPSC)-derived brain endothelial-like cells (iBECs) are a robust, scalable, and translatable model of the human blood–brain barrier (BBB). Prior works have shown that high transendothelial electrical resistance (TEER) persists in iBECs for at least 2 weeks, emphasizing the utility of the model for longer term studies. However, most studies evaluate iBECs within the first few days of subculture, and little is known about their proliferative state, which could influence their functions. In this study, we characterized iBEC proliferative state in relation to key BBB properties at early (2 days) and late (9 days) post-subculture time points.
Methods
hiPSCs were differentiated into iBECs using fully defined, serum-free medium. The proportion of proliferating cells was determined by BrdU assays. We evaluated TEER, expression of glycolysis enzymes and tight and adherens junction proteins (TJP and AJP), and glucose transporter-1 (GLUT1) function by immunoblotting, immunofluorescence, and quantifying radiolabeled tracer permeabilities. We also compared barrier disruption in response to TNF-α and conditioned medium (CM) from hiPSC-derived neurons harboring the Alzheimer’s disease (AD)-causing Swedish mutation (APPSwe/+).
Results
A significant decline in iBEC proliferation over time in culture was accompanied by adoption of a more quiescent endothelial metabolic state, indicated by downregulation of glycolysis-related proteins and upregulation GLUT1. Interestingly, upregulation of GLUT1 was associated with reduced glucose transport rates in more quiescent iBECs. We also found significant decreases in claudin-5 (CLDN5) and vascular endothelial-cadherin (VE-Cad) and a trend toward a decrease in platelet endothelial cell adhesion molecule-1 (PECAM-1), whereas zona occludens-1 (ZO-1) increased and occludin (OCLN) remained unchanged. Despite differences in TJP and AJP expression, there was no difference in mean TEER on day 2 vs. day 9. TNF-α induced disruption irrespective of iBEC proliferative state. Conversely, APPSwe/+ CM disrupted only proliferating iBEC monolayers.
Conclusion
iBECs can be used to study responses to disease-relevant stimuli in proliferating vs. more quiescent endothelial cell states, which may provide insight into BBB vulnerabilities in contexts of development, brain injury, and neurodegenerative disease.
Collapse
|
117
|
Metabolic Features of Brain Function with Relevance to Clinical Features of Alzheimer and Parkinson Diseases. Molecules 2022; 27:molecules27030951. [PMID: 35164216 PMCID: PMC8839962 DOI: 10.3390/molecules27030951] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Brain metabolism is comprised in Alzheimer’s disease (AD) and Parkinson’s disease (PD). Since the brain primarily relies on metabolism of glucose, ketone bodies, and amino acids, aspects of these metabolic processes in these disorders—and particularly how these altered metabolic processes are related to oxidative and/or nitrosative stress and the resulting damaged targets—are reviewed in this paper. Greater understanding of the decreased functions in brain metabolism in AD and PD is posited to lead to potentially important therapeutic strategies to address both of these disorders, which cause relatively long-lasting decreased quality of life in patients.
Collapse
|
118
|
Gyawali A, Latif S, Choi SH, Hyeon SJ, Ryu H, Kang YS. Monocarboxylate transporter functions and neuroprotective effects of valproic acid in experimental models of amyotrophic lateral sclerosis. J Biomed Sci 2022; 29:2. [PMID: 35012534 PMCID: PMC8744235 DOI: 10.1186/s12929-022-00785-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a devasting neurodegenerative disorder for which no successful therapeutics are available. Valproic acid (VPA), a monocarboxylate derivative, is a known antiepileptic drug and a histone deacetylase inhibitor.
Methods To investigate whether monocarboxylate transporter 1 (MCT1) and sodium-coupled MCT1 (SMCT1) are altered in ALS cell and mouse models, a cellular uptake study, quantitative real time polymerase chain reaction and western blot parameters were used. Similarly, whether VPA provides a neuroprotective effect in the wild-type (WT; hSOD1WT) and ALS mutant-type (MT; hSOD1G93A) NSC-34 motor neuron-like cell lines was determined through the cell viability assay.
Results [3H]VPA uptake was dependent on time, pH, sodium and concentration, and the uptake rate was significantly lower in the MT cell line than the WT cell line. Interestingly, two VPA transport systems were expressed, and the VPA uptake was modulated by SMCT substrates/inhibitors in both cell lines. Furthermore, MCT1 and SMCT1 expression was significantly lower in motor neurons of ALS (G93A) model mice than in those of WT mice. Notably, VPA ameliorated glutamate- and hydrogen peroxide-induced neurotoxicity in both the WT and MT ALS cell lines. Conclusions Together, the current findings demonstrate that VPA exhibits a neuroprotective effect regardless of the dysfunction of an MCT in ALS, which could help develop useful therapeutic strategies for ALS.
Collapse
Affiliation(s)
- Asmita Gyawali
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Cheongpa-ro 47-gil 100 (Cheongpa-dong 2ga), Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Sana Latif
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Cheongpa-ro 47-gil 100 (Cheongpa-dong 2ga), Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Seung-Hye Choi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Seung Jae Hyeon
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Young-Sook Kang
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Cheongpa-ro 47-gil 100 (Cheongpa-dong 2ga), Yongsan-gu, Seoul, 04310, Republic of Korea.
| |
Collapse
|
119
|
McDonald CJ, Blankenheim ZJ, Drewes LR. Brain Endothelial Cells: Metabolic Flux and Energy Metabolism. Handb Exp Pharmacol 2022; 273:59-79. [PMID: 34251530 DOI: 10.1007/164_2021_494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The neurovascular unit (NVU) consists of multiple cell types including brain endothelial cells, pericytes, astrocytes, and neurons that function collectively to maintain homeostasis within the CNS microenvironment. As the principal barrier-forming component of the NVU, the endothelial cells perform an array of complex functions that require substantial energy resources. The principal metabolic pathways for producing ATP are glycolysis and mitochondrial oxidative phosphorylation. While previous studies have demonstrated that glycolysis is a primary pathway for most endothelial cells, details about the energy producing pathways of brain endothelial cells are not fully characterized. The contributions of glycolysis and mitochondrial respiration to energy metabolism are quantifiable using metabolic flux analysis that measures cellular oxygen consumption and acidification (proton production) in a closed microtiter plate format. ATP production rates are then calculated. The bioenergetics of the human brain microvascular endothelial cell line, hCMEC/D3, indicate that these cells exhibit relatively elevated rates of glycolytic flux and glycolytic ATP production, thus confirming their glycolytic nature even in the presence of abundant oxygen. Furthermore, energy producing pathways involving mitochondrial respiration are relatively low, although contributing significantly to total ATP production. Interestingly, the bioenergetics of the hCMEC/D3 cells are relatively similar to those of human primary brain microvascular endothelial cells (hBVECs). These findings allow a quantitative understanding of the bioenergetics of brain endothelial cells in a cultured and proliferative state and also provide a platform for comparative studies of disease states and conditions involving exposures to drugs or metabolic disruptors.
Collapse
Affiliation(s)
- Cade J McDonald
- Department of Biomedical Sciences, University of Minnesota Duluth Medical School, Duluth, MN, USA
| | - Zachery J Blankenheim
- Department of Biomedical Sciences, University of Minnesota Duluth Medical School, Duluth, MN, USA
| | - Lester R Drewes
- Department of Biomedical Sciences, University of Minnesota Duluth Medical School, Duluth, MN, USA.
| |
Collapse
|
120
|
Smolič T, Zorec R, Vardjan N. Pathophysiology of Lipid Droplets in Neuroglia. Antioxidants (Basel) 2021; 11:22. [PMID: 35052526 PMCID: PMC8773017 DOI: 10.3390/antiox11010022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, increasing evidence regarding the functional importance of lipid droplets (LDs), cytoplasmic storage organelles in the central nervous system (CNS), has emerged. Although not abundantly present in the CNS under normal conditions in adulthood, LDs accumulate in the CNS during development and aging, as well as in some neurologic disorders. LDs are actively involved in cellular lipid turnover and stress response. By regulating the storage of excess fatty acids, cholesterol, and ceramides in addition to their subsequent release in response to cell needs and/or environmental stressors, LDs are involved in energy production, in the synthesis of membranes and signaling molecules, and in the protection of cells against lipotoxicity and free radicals. Accumulation of LDs in the CNS appears predominantly in neuroglia (astrocytes, microglia, oligodendrocytes, ependymal cells), which provide trophic, metabolic, and immune support to neuronal networks. Here we review the most recent findings on the characteristics and functions of LDs in neuroglia, focusing on astrocytes, the key homeostasis-providing cells in the CNS. We discuss the molecular mechanisms affecting LD turnover in neuroglia under stress and how this may protect neural cell function. We also highlight the role (and potential contribution) of neuroglial LDs in aging and in neurologic disorders.
Collapse
Affiliation(s)
- Tina Smolič
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.S.); (R.Z.)
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.S.); (R.Z.)
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.S.); (R.Z.)
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
| |
Collapse
|
121
|
Yuan M, Wang Y, Wang S, Huang Z, Jin F, Zou Q, Li J, Pu Y, Cai Z. Bioenergetic Impairment in the Neuro-Glia-Vascular Unit: An Emerging Physiopathology during Aging. Aging Dis 2021; 12:2080-2095. [PMID: 34881087 PMCID: PMC8612602 DOI: 10.14336/ad.2021.04017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/17/2021] [Indexed: 12/28/2022] Open
Abstract
An emerging concept termed the "neuro-glia-vascular unit" (NGVU) has been established in recent years to understand the complicated mechanism of multicellular interactions among vascular cells, glial cells, and neurons. It has been proverbially reported that the NGVU is significantly associated with neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Physiological aging is an inevitable progression associated with oxidative damage, bioenergetic alterations, mitochondrial dysfunction, and neuroinflammation, which is partially similar to the pathology of AD. Thus, senescence is regarded as the background for the development of neurodegenerative diseases. With the exacerbation of global aging, senescence is an increasingly serious problem in the medical field. In this review, the coupling of each component, including neurons, glial cells, and vascular cells, in the NGVU is described in detail. Then, various mechanisms of age-dependent impairment in each part of the NGVU are discussed. Moreover, the potential bioenergetic alterations between different cell types in the NGVU are highlighted, which seems to be an emerging physiopathology associated with the aged brain. Bioenergetic intervention in the NGVU may be a new direction for studies on delaying or diminishing aging in the future.
Collapse
Affiliation(s)
- Minghao Yuan
- 1Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, Chongqing, China.,2Chongqing School, University of Chinese Academy of Sciences, Chongqing, China.,3Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China.,4Chongqing Medical University, Chongqing, China
| | - Yangyang Wang
- 1Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, Chongqing, China.,3Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China
| | - Shengyuan Wang
- 1Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, Chongqing, China.,2Chongqing School, University of Chinese Academy of Sciences, Chongqing, China.,3Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China.,4Chongqing Medical University, Chongqing, China
| | - Zhenting Huang
- 1Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, Chongqing, China.,3Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China
| | - Feng Jin
- 1Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, Chongqing, China.,2Chongqing School, University of Chinese Academy of Sciences, Chongqing, China.,3Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China
| | - Qian Zou
- 1Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, Chongqing, China.,3Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China
| | - Jing Li
- 1Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, Chongqing, China.,3Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China
| | - Yinshuang Pu
- 1Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, Chongqing, China.,3Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China
| | - Zhiyou Cai
- 1Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, Chongqing, China.,2Chongqing School, University of Chinese Academy of Sciences, Chongqing, China.,3Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China.,4Chongqing Medical University, Chongqing, China
| |
Collapse
|
122
|
Fang C, Liu Y, Chen L, Luo Y, Cui Y, Zhang N, Liu P, Zhou M, Xie Y. α-Hederin inhibits the growth of lung cancer A549 cells in vitro and in vivo by decreasing SIRT6 dependent glycolysis. PHARMACEUTICAL BIOLOGY 2021; 59:11-20. [PMID: 33356727 PMCID: PMC7782159 DOI: 10.1080/13880209.2020.1862250] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
CONTEXT α-Hederin, a potent bioactive compound of Pulsatilla chinensis (Bunge) Regel (Ranunculaceae), has many pharmacological uses, but its effect on cancer cell metabolism is still unclear. OBJECTIVE To elucidate the role of α-hederin in the glucose metabolism of lung cancer cells. MATERIALS AND METHODS Cell Counting Kit 8 and colony formation assays were employed to assess the antiproliferative effects of α-hederin. Glucose uptake, ATP generation, and lactate production were measured. Glycolysis-related proteins were detected using western blotting, and a sirtuin 6 (SIRT6) inhibitor was used to verify A549 cell proliferation. Sixty male BALB/c nude mice were divided into normal control, 5-FU (25 mg/kg), and α-hederin (5 and 10 mg/kg) groups to assess the antitumor effect for 32 days. Glycolysis-related protein expression was evaluated using immunohistochemical analysis. RESULTS α-Hederin inhibited A549 (IC50 = 13.75 μM), NCI-H460 (IC50 = 17.57 μM), and NCI-H292 (IC50 = 18.04 μM) proliferation; inhibited glucose uptake and ATP generation; and reduced lactate production. Furthermore, α-hederin (10 and 15 μM) markedly inhibited hexokinase 2, glucose transporter 1, pyruvate kinase M2, lactate dehydrogenase A, monocarboxylate transporter, c-Myc, hypoxia-inducible factor-1α, and activated SIRT6 protein expression. Using a SIRT6 inhibitor, we demonstrated that α-hederin inhibits glycolysis by activating SIRT6. A tumour xenograft mouse model of lung cancer confirmed that α-hederin (5 and 10 mg/kg) inhibits lung cancer growth by inhibiting glycolysis in vivo. DISCUSSION AND CONCLUSIONS α-Hederin inhibits A549 cell growth by inhibiting SIRT6-dependent glycolysis. α-Hederin might serve as a potential agent to suppress cancer.
Collapse
Affiliation(s)
- Cong Fang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yahui Liu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lanying Chen
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- CONTACT Lanying Chen National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yingying Luo
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yaru Cui
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ni Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Peng Liu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Mengjing Zhou
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yongyan Xie
- College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
123
|
Lundquist AJ, Llewellyn GN, Kishi SH, Jakowec NA, Cannon PM, Petzinger GM, Jakowec MW. Knockdown of Astrocytic Monocarboxylate Transporter 4 in the Motor Cortex Leads to Loss of Dendritic Spines and a Deficit in Motor Learning. Mol Neurobiol 2021; 59:1002-1017. [PMID: 34822124 DOI: 10.1007/s12035-021-02651-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
Monocarboxylate transporters (MCTs) shuttle molecules, including L-lactate, involved in metabolism and cell signaling of the central nervous system. Astrocyte-specific MCT4 is a key component of the astrocyte-neuron lactate shuttle (ANLS) and is important for neuroplasticity and learning of the hippocampus. However, the importance of astrocyte-specific MCT4 in neuroplasticity of the M1 primary motor cortex remains unknown. In this study, we investigated astrocyte-specific MCT4 in motor learning and neuroplasticity of the M1 primary motor cortex using a cell-type specific shRNA knockdown of MCT4. Knockdown of astrocyte-specific MCT4 resulted in impaired motor performance and learning on the accelerating rotarod. In addition, MCT4 knockdown was associated with a reduction of neuronal dendritic spine density and spine width and decreased protein expression of PSD95, Arc, and cFos. Using near-infrared-conjugated 2-deoxyglucose uptake as a surrogate marker for neuronal activity, MCT4 knockdown was also associated with decreased neuronal activity in the M1 primary motor cortex and associated motor regions including the dorsal striatum and ventral thalamus. Our study supports a potential role for astrocyte-specific MCT4 and the ANLS in the neuroplasticity of the M1 primary motor cortex. Targeting MCT4 may serve to enhance neuroplasticity and motor repair in several neurological disorders, including Parkinson's disease and stroke.
Collapse
Affiliation(s)
- Adam J Lundquist
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90033, USA. .,Department of Neurology, University of Southern California, 1333 San Pablo St, MCA-241, Los Angeles, CA, 90033, USA.
| | - George N Llewellyn
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Susan H Kishi
- Department of Neurology, University of Southern California, 1333 San Pablo St, MCA-241, Los Angeles, CA, 90033, USA
| | - Nicolaus A Jakowec
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,Molecular and Cellular Biology Graduate Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90033, USA
| | - Paula M Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Giselle M Petzinger
- Department of Neurology, University of Southern California, 1333 San Pablo St, MCA-241, Los Angeles, CA, 90033, USA
| | - Michael W Jakowec
- Department of Neurology, University of Southern California, 1333 San Pablo St, MCA-241, Los Angeles, CA, 90033, USA
| |
Collapse
|
124
|
Passarella S, Schurr A, Portincasa P. Mitochondrial Transport in Glycolysis and Gluconeogenesis: Achievements and Perspectives. Int J Mol Sci 2021; 22:ijms222312620. [PMID: 34884425 PMCID: PMC8657705 DOI: 10.3390/ijms222312620] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 01/22/2023] Open
Abstract
Some metabolic pathways involve two different cell components, for instance, cytosol and mitochondria, with metabolites traffic occurring from cytosol to mitochondria and vice versa, as seen in both glycolysis and gluconeogenesis. However, the knowledge on the role of mitochondrial transport within these two glucose metabolic pathways remains poorly understood, due to controversial information available in published literature. In what follows, we discuss achievements, knowledge gaps, and perspectives on the role of mitochondrial transport in glycolysis and gluconeogenesis. We firstly describe the experimental approaches for quick and easy investigation of mitochondrial transport, with respect to cell metabolic diversity. In addition, we depict the mitochondrial shuttles by which NADH formed in glycolysis is oxidized, the mitochondrial transport of phosphoenolpyruvate in the light of the occurrence of the mitochondrial pyruvate kinase, and the mitochondrial transport and metabolism of L-lactate due to the L-lactate translocators and to the mitochondrial L-lactate dehydrogenase located in the inner mitochondrial compartment.
Collapse
Affiliation(s)
- Salvatore Passarella
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Correspondence: ; Tel.: +39-3293606374
| | - Avital Schurr
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
125
|
Dang G, Wu W, Zhang H, Everaert N. A new paradigm for a new simple chemical: butyrate & immune regulation. Food Funct 2021; 12:12181-12193. [PMID: 34752597 DOI: 10.1039/d1fo02116h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Short-chain fatty acids (SCFAs) play an important role in the host system. Among SCFAs, butyrate has received particular attention for its large effect on host immunity, particularly in supplying energy to enterocytes and producing immune cells. Butyrate enters the cells through the Solute Carrier Family 5 Member 8 (SLC5A8) transporters, then works as a histone deacetylase inhibitor (HDAC) that inhibits the activation of Nuclear factor-κB (NF-κB), which down-regulates the expression of IL-1β, IL-6, TNF-α. Meanwhile, butyrate acts as a ligand to activate G protein-coupled receptors GPR41, GPR43, and GPR109, promoting the expression of anti-inflammatory factors. Besides, it inhibits the proinflammatory factors. Further, it can also suppress the expression of chemokines and reduce inflammation to maintain host homeostasis. This paper reviews the research progress highlighting the potential function of butyrate as a factor impacting intestinal health, obesity and brain disorders.
Collapse
Affiliation(s)
- Guoqi Dang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. .,Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Passage des Déportés 2, Gembloux, Belgium
| | - Weida Wu
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Passage des Déportés 2, Gembloux, Belgium
| |
Collapse
|
126
|
Li F, Wang S, Yao Y, Sun X, Wang X, Wang N, You Y, Zhang Y. Visual analysis on the research of monocarboxylate transporters based on CiteSpace. Medicine (Baltimore) 2021; 100:e27466. [PMID: 34871210 PMCID: PMC8568392 DOI: 10.1097/md.0000000000027466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 09/20/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Monocarboxylate transports (MCTs), a family of solute carrier protein, play an important role in maintenance of cellular stability in tumor cells by mediating lactate exchange across membranes. The objective of this paper is to evaluate the knowledge structure, development trend, and research hotspot of MCTs research field systematically and comprehensively. METHODS Based on the 1526 publications from 2010 to 2020 retrieved from "Web of Science Core Collection" (WoSCC), we visually analyzed the MCTs research in terms of subject category, scientific collaboration network, keywords, and high-frequency literature using CiteSpace. RESULTS The number of publications exhibits an upward trend from 2010 to 2020 and the top 5 countries in the MCTs research were the United States, China, Japan, Germany, and England. Visser TJ was the most prolific author, while Halestrap AP was the most influential author with the highest citations. Analysis of the 7 cluster units from the co-cited references and keywords revealed that high expression of MCTs induced by oxidative stress and glycolysis was the pivotal point in the MCTs research field, while regulation of metabolism in tumor microenvironment, prognostic markers of cancer, and targeted inhibitors are the top 3 research frontiers topics. CONCLUSION This study will help the new researcher to understand the MCTs related field, master the research frontier, and obtain valuable scientific information, thus providing directions for follow-up research.
Collapse
Affiliation(s)
- Feifei Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shuqi Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Youlong Yao
- Department of computer science, Jinan Vocational College, Shandong, China
| | - Xueming Sun
- Weifang Yidu Central Hospital, Weifang, Shandong, China
| | - Xiaoyan Wang
- Weifang Yidu Central Hospital, Weifang, Shandong, China
| | - Ning Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yulin You
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yanli Zhang
- Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
127
|
Endothelial Heme Dynamics Drive Cancer Cell Metabolism by Shaping the Tumor Microenvironment. Biomedicines 2021; 9:biomedicines9111557. [PMID: 34829786 PMCID: PMC8615489 DOI: 10.3390/biomedicines9111557] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 01/06/2023] Open
Abstract
The crosstalk among cancer cells (CCs) and stromal cells within the tumor microenvironment (TME) has a prominent role in cancer progression. The significance of endothelial cells (ECs) in this scenario relies on multiple vascular functions. By forming new blood vessels, ECs support tumor growth. In addition to their angiogenic properties, tumor-associated ECs (TECs) establish a unique vascular niche that actively modulates cancer development by shuttling a selected pattern of factors and metabolites to the CC. The profile of secreted metabolites is strictly dependent on the metabolic status of the cell, which is markedly perturbed in TECs. Recent evidence highlights the involvement of heme metabolism in the regulation of energy metabolism in TECs. The present study shows that interfering with endothelial heme metabolism by targeting the cell membrane heme exporter Feline Leukemia Virus subgroup C Receptor 1a (FLVCR1a) in TECs, resulted in enhanced fatty acid oxidation (FAO). Moreover, FAO-derived acetyl-CoA was partly consumed through ketogenesis, resulting in ketone bodies (KBs) accumulation in FLVCR1a-deficient TECs. Finally, the results from this study also demonstrate that TECs-derived KBs can be secreted in the extracellular environment, inducing a metabolic rewiring in the CC. Taken together, these data may contribute to finding new metabolic vulnerabilities for cancer therapy.
Collapse
|
128
|
Yao H, He S. Multi‑faceted role of cancer‑associated adipocytes in the tumor microenvironment (Review). Mol Med Rep 2021; 24:866. [PMID: 34676881 PMCID: PMC8554381 DOI: 10.3892/mmr.2021.12506] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/15/2021] [Indexed: 01/08/2023] Open
Abstract
Adipocytes are a type of stromal cell found in numerous different tissues that serve an active role in the tumor microenvironment. Cancer-associated adipocytes (CAAs) display a malignant phenotype and are found at the invasive tumor front, which mediates the crosstalk network between adipocytes (the precursor cells that will become cancer-associated adipocytes in the future) and cancer cells. The present review covers the mechanisms of adipocytes in the development of cancer, including metabolic reprogramming, chemotherapy resistance and adipokine regulation. Furthermore, the potential mechanisms involved in the adipocyte-cancer cell cycle in various types of cancer, including breast, ovarian, colon and rectal cancer, are discussed. Deciphering the complex network of CAA-cancer cell crosstalk will provide insights into tumor biology and optimize therapeutic strategies.
Collapse
Affiliation(s)
- Huihui Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Songbing He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
129
|
Horvat A, Zorec R, Vardjan N. Lactate as an Astroglial Signal Augmenting Aerobic Glycolysis and Lipid Metabolism. Front Physiol 2021; 12:735532. [PMID: 34658920 PMCID: PMC8514727 DOI: 10.3389/fphys.2021.735532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/06/2021] [Indexed: 01/16/2023] Open
Abstract
Astrocytes, heterogeneous neuroglial cells, contribute to metabolic homeostasis in the brain by providing energy substrates to neurons. In contrast to predominantly oxidative neurons, astrocytes are considered primarily as glycolytic cells. They take up glucose from the circulation and in the process of aerobic glycolysis (despite the normal oxygen levels) produce L-lactate, which is then released into the extracellular space via lactate transporters and possibly channels. Astroglial L-lactate can enter neurons, where it is used as a metabolic substrate, or exit the brain via the circulation. Recently, L-lactate has also been considered to be a signaling molecule in the brain, but the mechanisms of L-lactate signaling and how it contributes to the brain function remain to be fully elucidated. Here, we provide an overview of L-lactate signaling mechanisms in the brain and present novel insights into the mechanisms of L-lactate signaling via G-protein coupled receptors (GPCRs) with the focus on astrocytes. We discuss how increased extracellular L-lactate upregulates cAMP production in astrocytes, most likely viaL-lactate-sensitive Gs-protein coupled GPCRs. This activates aerobic glycolysis, enhancing L-lactate production and accumulation of lipid droplets, suggesting that L-lactate augments its own production in astrocytes (i.e., metabolic excitability) to provide more L-lactate for neurons and that astrocytes in conditions of increased extracellular L-lactate switch to lipid metabolism.
Collapse
Affiliation(s)
- Anemari Horvat
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Nina Vardjan
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
130
|
Wang ZH, Peng WB, Zhang P, Yang XP, Zhou Q. Lactate in the tumour microenvironment: From immune modulation to therapy. EBioMedicine 2021; 73:103627. [PMID: 34656878 PMCID: PMC8524104 DOI: 10.1016/j.ebiom.2021.103627] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
Disordered metabolic states, which are characterised by hypoxia and elevated levels of metabolites, particularly lactate, contribute to the immunosuppression in the tumour microenvironment (TME). Excessive lactate secreted by metabolism-reprogrammed cancer cells regulates immune responses via causing extracellular acidification, acting as an energy source by shuttling between different cell populations, and inhibiting the mechanistic (previously ‘mammalian’) target of rapamycin (mTOR) pathway in immune cells. This review focuses on recent advances in the regulation of immune responses by lactate, as well as therapeutic strategies targeting lactate anabolism and transport in the TME, such as those involving glycolytic enzymes and monocarboxylate transporter inhibitors. Considering the multifaceted roles of lactate in cancer metabolism, a comprehensive understanding of how lactate and lactate-targeting therapies regulate immune responses in the TME will provide insights into the complex relationships between metabolism and antitumour immunity.
Collapse
Affiliation(s)
- Zi-Hao Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-Bei Peng
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Zhang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Ping Yang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
131
|
Wang X, Liu H, Ni Y, Shen P, Han X. Lactate shuttle: from substance exchange to regulatory mechanism. Hum Cell 2021; 35:1-14. [PMID: 34606041 DOI: 10.1007/s13577-021-00622-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Lactate, as the product of glycolytic metabolism and the substrate of energy metabolism, is an intermediate link between cancer cell and tumor microenvironment metabolism. The exchange of lactate between the two cells via mono-carboxylate transporters (MCTs) is known as the lactate shuttle in cancer. Lactate shuttle is the core of cancer cell metabolic reprogramming between two cells such as aerobic cancer cells and hypoxic cancer cells, tumor cells and stromal cells, cancer cells and vascular endothelial cells. Cancer cells absorb lactate by mono-carboxylate transporter 1 (MCT1) and convert lactate to pyruvate via intracellular lactate dehydrogenase B (LDH-B) to maintain their growth and metabolism. Since lactate shuttle may play a critical role in energy metabolism of cancer cells, components related to lactate shuttle may be a crucial target for tumor antimetabolic therapy. In this review, we describe the lactate shuttle in terms of both substance exchange and regulatory mechanisms in cancer. Meanwhile, we summarize the difference of key proteins of lactate shuttle in common types of cancer.
Collapse
Affiliation(s)
- Xingchen Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - He Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Yingqian Ni
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Peibo Shen
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Xiuzhen Han
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China. .,Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China. .,Shandong Cancer Hospital and Institute, 440 Jiyan Road, Jinan, 250117, Shandong, China.
| |
Collapse
|
132
|
A Proton-Coupled Transport System for β-Hydroxy-β-Methylbutyrate (HMB) in Blood-Brain Barrier Endothelial Cell Line hCMEC/D3. Nutrients 2021; 13:nu13093220. [PMID: 34579098 DOI: 10.3390/nu13093220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/31/2022] Open
Abstract
β-Hydroxy-β-methylbutyrate (HMB), a leucine metabolite, is used as a nutritional ingredient to improve skeletal muscle health. Preclinical studies indicate that this supplement also elicits significant benefits in the brain; it promotes neurite outgrowth and prevents age-related reductions in neuronal dendrites and cognitive performance. As orally administered HMB elicits these effects in the brain, we infer that HMB crosses the blood-brain barrier (BBB). However, there have been no reports detailing the transport mechanism for HMB in BBB. Here we show that HMB is taken up in the human BBB endothelial cell line hCMEC/D3 via H+-coupled monocarboxylate transporters that also transport lactate and β-hydroxybutyrate. MCT1 (monocarboxylate transporter 1) and MCT4 (monocarboxylate transporter 4) belonging to the solute carrier gene family SLC16 (solute carrier, gene family 16) are involved, but additional transporters also contribute to the process. HMB uptake in BBB endothelial cells results in intracellular acidification, demonstrating cotransport with H+. Since HMB is known to activate mTOR with potential to elicit transcriptomic changes, we examined the influence of HMB on the expression of selective transporters. We found no change in MCT1 and MCT4 expression. Interestingly, the expression of LAT1 (system L amino acid transporter 1), a high-affinity transporter for branched-chain amino acids relevant to neurological disorders such as autism, is induced. This effect is dependent on mTOR (mechanistic target of rapamycine) activation by HMB with no involvement of histone deacetylases. These studies show that HMB in systemic circulation can cross the BBB via carrier-mediated processes, and that it also has a positive influence on the expression of LAT1, an important amino acid transporter in the BBB.
Collapse
|
133
|
Cao L, Huang T, Chen X, Li W, Yang X, Zhang W, Li M, Gao R. Uncovering the interplay between pH receptors and immune cells: Potential drug targets (Review). Oncol Rep 2021; 46:228. [PMID: 34476504 DOI: 10.3892/or.2021.8179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/10/2021] [Indexed: 11/06/2022] Open
Abstract
Extracellular acidosis is associated with various immunopathological states. The microenvironment of numerous solid tumours and inflammatory responses during acute or chronic infection are all related to a pH range of 5.5‑7.0. The relationship between inflammation and immune escape, cancer metabolism, and immunologic suppression drives researchers to focus on the effects of low pH on diverse components of disease immune monitoring. The potential effect of low extracellular pH on the immune function reveals the importance of pH in inflammatory and immunoreactive processes. In this review, the mechanism of how pH receptors, including monocarboxylate transporters (MCTs), Na+/H+ exchanger 1, carbonic anhydrases (CAs), vacuolar‑ATPase, and proton‑sensing G‑protein coupled receptors (GPCRs), modulate the immune system in disease, especially in cancer, were studied. Their role in immunocyte growth and signal transduction as part of the immune response, as well as cytokine production, have been documented in great detail. Currently, immunotherapy strategies have positive therapeutic effects for patients. However, the acidic microenvironment may block the effect of immunotherapy through compensatory feedback mechanisms, leading to drug resistance. Therefore, we highlight promising therapeutic developments regarding pH manipulation and provide a framework for future research.
Collapse
Affiliation(s)
- Lin Cao
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| | - Tianqiao Huang
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiaohong Chen
- Department of Otolaryngology‑Head and Neck Surgery, Beijing Tongren Hospital, Beijing 100010, P.R. China
| | - Weisha Li
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| | - Xingjiu Yang
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| | - Wenlong Zhang
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| | - Mengyuan Li
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| | - Ran Gao
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| |
Collapse
|
134
|
Mannaa FAE, Abdel-Wahhab KGED, Daoud EM, El Gendy AAR, Saber MM, Fadl NN. Effectiveness of low-power laser therapy in improvement of the peripheral neuropathy induced by xenobiotics in rats. Biochem Biophys Rep 2021; 27:101085. [PMID: 34381880 PMCID: PMC8334374 DOI: 10.1016/j.bbrep.2021.101085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Peripheral neuropathy (PN) is the damage and dysfunction of neurons of the peripheral nervous system. The present study was conducted to estimate the effectiveness of low-power laser therapy (LPLT) in the management of PN in a rats' model. METHODS PN was induced by giving dichloroacetate (DCA) (250 mg/kg/day) for up to 12 weeks. Four groups of rats were used: control group, PN group, PN group treated with gabapentin and PN group treated with LPLT. The study was conducted for 8 weeks. The management of PN was estimated by behavioral tests which included hot plate and Morris water maze tests. Blood biochemical analysis were carried out. RESULTS Using of hot plate test indicated thermal hypoalgesia and using Morris water maze test showed cognitive decline in PN rats. Treatment with LPLT or gabapentin improved both the pain sensations and deteriorated memory that occurred in the PN rats. Biochemical analysis showed that LPLT significantly decreased the elevated beta-endorphin level in PN rats, while gabapentin could not reduce it. Treatment PN rats with LPLT or gabapentin shifted the high levels of TNF-α, IL-1β and IL-10 cytokines back to their normal values. Serum nitric oxide and MDA significantly increased in the PN group together with significant reduction in the rGSH level, these values were significantly improved by LPLT application while this was not the case with gabapentin treatment. Furthermore, treatment with gabapentin or LPLT significantly reduced serum ALAT and ASAT activities which are otherwise increased in the PN group. S100B, PGE2, total cholesterol, triglycerides, LDL-cholesterol, HDL-cholesterol, urea and creatinine showed insignificant changes among all groups. CONCLUSIONS Our results showed that treatment with LPLT is more efficient than gabapentin in ameliorating the peripheral neuropathy induced by xenobiotics.
Collapse
Key Words
- ADP, adenosine diphosphate
- ATP, Adenosine triphosphate
- ATP, adenosine triphosphate
- DCA, Dichloroacetate
- Dichloroacetate
- Gabapentin
- IL-10, interleukin −10
- IL-1β, interleukin - 1β
- LPLT, Low power laser therapy
- Low-power laser therapy
- MCTs, monocarboxylate transporters
- MDA, malondialdehyde
- NAD+, Nicotinamide adenine dinucleotide
- NO, nitric oxide
- Neuropathy
- PDH, pyruvate dehydrogenase
- PGE2, prostaglandin E2
- PN, Peripheral neuropathy
- S100B, calcium binding protein B
- TCA, cycle tricarboxylic acid cycle or the Krebs cycle
- TNF-α, tumor necrosis factor- α
- rGSH, reduced glutathione
Collapse
Affiliation(s)
| | | | - Eitedal Mahmoud Daoud
- Complementary Medicine Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | | | - Maha Mohamed Saber
- Complementary Medicine Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Nevein Naim Fadl
- Medical Physiology Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
135
|
Li J, Xie J, Wu D, Chen L, Gong Z, Wu R, Hu Y, Zhao J, Xu Y. A pan-cancer analysis revealed the role of the SLC16 family in cancer. Channels (Austin) 2021; 15:528-540. [PMID: 34424811 PMCID: PMC8386723 DOI: 10.1080/19336950.2021.1965422] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cancer is one of the serious diseases that endanger human health and bring a heavy burden to world economic development. Although the current targeted therapy and immunotherapy have achieved initial results, the emergence of drug resistance shows that the existing research is far from enough. In recent years, the tumor microenvironment has been found to be an important condition for tumor development and has profound research value. The SLC16 family is a group of monocarboxylic acid transporters involved in cancer metabolism and the formation of the tumor microenvironment. However, there have been no generalized cancer studies in the SLC16 family. In this study, we conducted a pan-cancer analysis of the SLC16 family. The results showed that multiple members of the SLC16 family could be used as prognostic indicators for many tumors, and were associated with immune invasion and tumor stem cells. Therefore, the SLC16 family has extensive exploration value in the future.
Collapse
Affiliation(s)
- Jun Li
- Department of Thoracic Surgery, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaheng Xie
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dan Wu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Liang Chen
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, Anhui, China
| | - Zetian Gong
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Wu
- Department of Digestive Endoscopy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiming Hu
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Jiangning Zhao
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yetao Xu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
136
|
Pérez-Herrero E, Fernández-Medarde A. The reversed intra- and extracellular pH in tumors as a unified strategy to chemotherapeutic delivery using targeted nanocarriers. Acta Pharm Sin B 2021; 11:2243-2264. [PMID: 34522586 PMCID: PMC8424227 DOI: 10.1016/j.apsb.2021.01.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/11/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Solid tumors are complex entities, comprising a wide variety of malignancies with very different molecular alterations. Despite this, they share a set of characteristics known as "hallmarks of cancer" that can be used as common therapeutic targets. Thus, every tumor needs to change its metabolism in order to obtain the energy levels required for its high proliferative rates, and these adaptations lead to alterations in extra- and intracellular pH. These changes in pH are common to all solid tumors, and can be used either as therapeutic targets, blocking the cell proton transporters and reversing the pH changes, or as means to specifically deliver anticancer drugs. In this review we will describe how proton transport inhibitors in association with nanocarriers have been designed to block the pH changes that are needed for cancer cells to survive after their metabolic adaptations. We will also describe studies aiming to decrease intracellular pH in cancer using nanoparticles as molecular cages for protons which will be released upon UV or IR light exposure. Finally, we will comment on several studies that have used the extracellular pH in cancer for an enhanced cell internalization and tumor penetration of nanocarriers and a controlled drug delivery, describing how nanocarriers are being used to increase drug stability and specificity.
Collapse
Affiliation(s)
- Edgar Pérez-Herrero
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Universidad de La Laguna, La Laguna 38206, Tenerife, Spain
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, La Laguna 38206, Tenerife, Spain
- Instituto Universitario de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna 38200, Tenerife, Spain
| | - Alberto Fernández-Medarde
- Instituto de Biología Molecular y Celular Del Cáncer, Centro de Investigación Del Cáncer (USAL-CSIC), Salamanca 37007, Spain
| |
Collapse
|
137
|
Ion Channels, Transporters, and Sensors Interact with the Acidic Tumor Microenvironment to Modify Cancer Progression. Rev Physiol Biochem Pharmacol 2021; 182:39-84. [PMID: 34291319 DOI: 10.1007/112_2021_63] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Solid tumors, including breast carcinomas, are heterogeneous but typically characterized by elevated cellular turnover and metabolism, diffusion limitations based on the complex tumor architecture, and abnormal intra- and extracellular ion compositions particularly as regards acid-base equivalents. Carcinogenesis-related alterations in expression and function of ion channels and transporters, cellular energy levels, and organellar H+ sequestration further modify the acid-base composition within tumors and influence cancer cell functions, including cell proliferation, migration, and survival. Cancer cells defend their cytosolic pH and HCO3- concentrations better than normal cells when challenged with the marked deviations in extracellular H+, HCO3-, and lactate concentrations typical of the tumor microenvironment. Ionic gradients determine the driving forces for ion transporters and channels and influence the membrane potential. Cancer and stromal cells also sense abnormal ion concentrations via intra- and extracellular receptors that modify cancer progression and prognosis. With emphasis on breast cancer, the current review first addresses the altered ion composition and the changes in expression and functional activity of ion channels and transporters in solid cancer tissue. It then discusses how ion channels, transporters, and cellular sensors under influence of the acidic tumor microenvironment shape cancer development and progression and affect the potential of cancer therapies.
Collapse
|
138
|
Liu KX, Everdell E, Pal S, Haas-Kogan DA, Milligan MG. Harnessing Lactate Metabolism for Radiosensitization. Front Oncol 2021; 11:672339. [PMID: 34367959 PMCID: PMC8343095 DOI: 10.3389/fonc.2021.672339] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer cells rewire their metabolism to promote cell proliferation, invasion, and metastasis. Alterations in the lactate pathway have been characterized in diverse cancers, correlate with outcomes, and lead to many downstream effects, including decreasing oxidative stress, promoting an immunosuppressive tumor microenvironment, lipid synthesis, and building chemo- or radio-resistance. Radiotherapy is a key modality of treatment for many cancers and approximately 50% of patients with cancer will receive radiation for cure or palliation; thus, overcoming radio-resistance is important for improving outcomes. Growing research suggests that important molecular controls of the lactate pathway may serve as novel therapeutic targets and in particular, radiosensitizers. In this mini-review, we will provide an overview of lactate metabolism in cancer, discuss three important contributors to lactate metabolism (lactate dehydrogenase, monocarboxylate transporters, and mitochondrial pyruvate carrier), and present data that inhibition of these three pathways can lead to radiosensitization. Future research is needed to further understand critical regulators of lactate metabolism and explore clinical safety and efficacy of inhibitors of lactate dehydrogenase, monocarboxylate transporters, and mitochondrial pyruvate carrier alone and in combination with radiation.
Collapse
Affiliation(s)
- Kevin X Liu
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Sharmistha Pal
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Daphne A Haas-Kogan
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Michael G Milligan
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
139
|
Fernandes-Silva H, Alves MG, Araújo-Silva H, Silva AM, Correia-Pinto J, Oliveira PF, Moura RS. Lung branching morphogenesis is accompanied by temporal metabolic changes towards a glycolytic preference. Cell Biosci 2021; 11:134. [PMID: 34274010 PMCID: PMC8285861 DOI: 10.1186/s13578-021-00654-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022] Open
Abstract
Background Lung branching morphogenesis is characterized by epithelial-mesenchymal interactions that ultimately define the airway conducting system. Throughout this process, energy and structural macromolecules are necessary to sustain the high proliferative rates. The extensive knowledge of the molecular mechanisms underlying pulmonary development contrasts with the lack of data regarding the embryonic lung metabolic requirements. Here, we studied the metabolic profile associated with the early stages of chicken pulmonary branching. Methods In this study, we used an ex vivo lung explant culture system and analyzed the consumption/production of extracellular metabolic intermediates associated with glucose catabolism (alanine, lactate, and acetate) by 1H-NMR spectroscopy in the culture medium. Then, we characterized the transcript levels of metabolite membrane transporters (glut1, glut3, glut8, mct1, mct3, mct4, and mct8) and glycolytic enzymes (hk1, hk2, pfk1, ldha, ldhb, pdha, and pdhb) by qPCR. ldha and ldhb mRNA spatial localization was determined by in situ hybridization. Proliferation was analyzed by directly assessing DNA synthesis using an EdU-based assay. Additionally, we performed western blot to analyze LDHA and LDHT protein levels. Finally, we used a Clark-Type Electrode to assess the lung explant's respiratory capacity. Results Glucose consumption decreases, whereas alanine, lactate, and acetate production progressively increase as branching morphogenesis proceeds. mRNA analysis revealed variations in the expression levels of key enzymes and transporters from the glycolytic pathway. ldha and ldhb displayed a compartment-specific expression pattern that resembles proximal–distal markers. In addition, high proliferation levels were detected at active branching sites. LDH protein expression levels suggest that LDHB may account for the progressive rise in lactate. Concurrently, there is a stable oxygen consumption rate throughout branching morphogenesis. Conclusions This report describes the temporal metabolic changes that accompany the early stages of chicken lung branching morphogenesis. Overall, the embryonic chicken lung seems to shift to a glycolytic lactate-based metabolism as pulmonary branching occurs. Moreover, this metabolic rewiring might play a crucial role during lung development. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00654-w.
Collapse
Affiliation(s)
- Hugo Fernandes-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.,PhDOC PhD Program, ICVS/3B's, School of Medicine, University of Minho, 4710-057, Braga, Portugal
| | - Marco G Alves
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313, Porto, Portugal.,Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313, Porto, Portugal
| | - Henrique Araújo-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
| | - Ana M Silva
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313, Porto, Portugal
| | - Jorge Correia-Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.,Department of Pediatric Surgery, Hospital of Braga, 4710-243, Braga, Portugal
| | - Pedro F Oliveira
- QOPNA &, LAQV, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rute S Moura
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.
| |
Collapse
|
140
|
Toft NJ, Axelsen TV, Pedersen HL, Mele M, Burton M, Balling E, Johansen T, Thomassen M, Christiansen PM, Boedtkjer E. Acid-base transporters and pH dynamics in human breast carcinomas predict proliferative activity, metastasis, and survival. eLife 2021; 10:68447. [PMID: 34219652 PMCID: PMC8282339 DOI: 10.7554/elife.68447] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer heterogeneity in histology and molecular subtype influences metabolic and proliferative activity and hence the acid load on cancer cells. We hypothesized that acid-base transporters and intracellular pH (pHi) dynamics contribute inter-individual variability in breast cancer aggressiveness and prognosis. We show that Na+,HCO3- cotransport and Na+/H+ exchange dominate cellular net acid extrusion in human breast carcinomas. Na+/H+ exchange elevates pHi preferentially in estrogen receptor-negative breast carcinomas, whereas Na+,HCO3- cotransport raises pHi more in invasive lobular than ductal breast carcinomas and in higher malignancy grade breast cancer. HER2-positive breast carcinomas have elevated protein expression of Na+/H+ exchanger NHE1/SLC9A1 and Na+,HCO3- cotransporter NBCn1/SLC4A7. Increased dependency on Na+,HCO3- cotransport associates with severe breast cancer: enlarged CO2/HCO3--dependent rises in pHi predict accelerated cell proliferation, whereas enhanced CO2/HCO3--dependent net acid extrusion, elevated NBCn1 protein expression, and reduced NHE1 protein expression predict lymph node metastasis. Accordingly, we observe reduced survival for patients suffering from luminal A or basal-like/triple-negative breast cancer with high SLC4A7 and/or low SLC9A1 mRNA expression. We conclude that the molecular mechanisms of acid-base regulation depend on clinicopathological characteristics of breast cancer patients. NBCn1 expression and dependency on Na+,HCO3- cotransport for pHi regulation, measured in biopsies of human primary breast carcinomas, independently predict proliferative activity, lymph node metastasis, and patient survival.
Collapse
Affiliation(s)
- Nicolai J Toft
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Trine V Axelsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Helene L Pedersen
- Department of Pathology, Regionshospitalet Randers, Randers, Denmark
| | - Marco Mele
- Department of Surgery, Regionshospitalet Randers, Randers, Denmark
| | - Mark Burton
- Department of Clinical Genetics, University of Southern Denmark, Odense, Denmark.,Clinical Genome Center, University and Region of Southern Denmark, Odense, Denmark
| | - Eva Balling
- Department of Surgery, Regionshospitalet Randers, Randers, Denmark
| | - Tonje Johansen
- Department of Pathology, Regionshospitalet Randers, Randers, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, University of Southern Denmark, Odense, Denmark.,Clinical Genome Center, University and Region of Southern Denmark, Odense, Denmark
| | - Peer M Christiansen
- Department of Surgery, Regionshospitalet Randers, Randers, Denmark.,Department of Plastic and Breast Surgery, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
141
|
Rao Y, Gammon ST, Sutton MN, Zacharias NM, Bhattacharya P, Piwnica-Worms D. Excess exogenous pyruvate inhibits lactate dehydrogenase activity in live cells in an MCT1-dependent manner. J Biol Chem 2021; 297:100775. [PMID: 34022218 PMCID: PMC8233206 DOI: 10.1016/j.jbc.2021.100775] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/27/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
Cellular pyruvate is an essential metabolite at the crossroads of glycolysis and oxidative phosphorylation, capable of supporting fermentative glycolysis by reduction to lactate mediated by lactate dehydrogenase (LDH) among other functions. Several inherited diseases of mitochondrial metabolism impact extracellular (plasma) pyruvate concentrations, and [1-13C]pyruvate infusion is used in isotope-labeled metabolic tracing studies, including hyperpolarized magnetic resonance spectroscopic imaging. However, how these extracellular pyruvate sources impact intracellular metabolism is not clear. Herein, we examined the effects of excess exogenous pyruvate on intracellular LDH activity, extracellular acidification rates (ECARs) as a measure of lactate production, and hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion rates across a panel of tumor and normal cells. Combined LDH activity and LDHB/LDHA expression analysis intimated various heterotetrameric isoforms comprising LDHA and LDHB in tumor cells, not only canonical LDHA. Millimolar concentrations of exogenous pyruvate induced substrate inhibition of LDH activity in both enzymatic assays ex vivo and in live cells, abrogated glycolytic ECAR, and inhibited hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion rates in cellulo. Of importance, the extent of exogenous pyruvate-induced inhibition of LDH and glycolytic ECAR in live cells was highly dependent on pyruvate influx, functionally mediated by monocarboxylate transporter-1 localized to the plasma membrane. These data provided evidence that highly concentrated bolus injections of pyruvate in vivo may transiently inhibit LDH activity in a tissue type- and monocarboxylate transporter-1-dependent manner. Maintaining plasma pyruvate at submillimolar concentrations could potentially minimize transient metabolic perturbations, improve pyruvate therapy, and enhance quantification of metabolic studies, including hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopic imaging and stable isotope tracer experiments.
Collapse
Affiliation(s)
- Yi Rao
- Department of Cancer System Imaging, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Seth T Gammon
- Department of Cancer System Imaging, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Margie N Sutton
- Department of Cancer System Imaging, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Niki M Zacharias
- Department of Urology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Pratip Bhattacharya
- Department of Cancer System Imaging, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - David Piwnica-Worms
- Department of Cancer System Imaging, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
142
|
Schumann T, König J, von Loeffelholz C, Vatner DF, Zhang D, Perry RJ, Bernier M, Chami J, Henke C, Kurzbach A, El-Agroudy NN, Willmes DM, Pesta D, de Cabo R, O Sullivan JF, Simon E, Shulman GI, Hamilton BS, Birkenfeld AL. Deletion of the diabetes candidate gene Slc16a13 in mice attenuates diet-induced ectopic lipid accumulation and insulin resistance. Commun Biol 2021; 4:826. [PMID: 34211098 PMCID: PMC8249653 DOI: 10.1038/s42003-021-02279-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Genome-wide association studies have identified SLC16A13 as a novel susceptibility gene for type 2 diabetes. The SLC16A13 gene encodes SLC16A13/MCT13, a member of the solute carrier 16 family of monocarboxylate transporters. Despite its potential importance to diabetes development, the physiological function of SLC16A13 is unknown. Here, we validate Slc16a13 as a lactate transporter expressed at the plasma membrane and report on the effect of Slc16a13 deletion in a mouse model. We show that Slc16a13 increases mitochondrial respiration in the liver, leading to reduced hepatic lipid accumulation and increased hepatic insulin sensitivity in high-fat diet fed Slc16a13 knockout mice. We propose a mechanism for improved hepatic insulin sensitivity in the context of Slc16a13 deficiency in which reduced intrahepatocellular lactate availability drives increased AMPK activation and increased mitochondrial respiration, while reducing hepatic lipid content. Slc16a13 deficiency thereby attenuates hepatic diacylglycerol-PKCε mediated insulin resistance in obese mice. Together, these data suggest that SLC16A13 is a potential target for the treatment of type 2 diabetes and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Tina Schumann
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jörg König
- Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Daniel F Vatner
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Rachel J Perry
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Michel Bernier
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jason Chami
- Heart Research Institute, Newtown, NSW, Australia
| | - Christine Henke
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Anica Kurzbach
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Nermeen N El-Agroudy
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Diana M Willmes
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Dominik Pesta
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - John F O Sullivan
- Heart Research Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Eric Simon
- Computational Biology, Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Bradford S Hamilton
- CardioMetabolic Diseases Research, Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Andreas L Birkenfeld
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- King's College London, Department of Diabetes, School of Life Course Science, London, UK.
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany.
- Department of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany.
| |
Collapse
|
143
|
Lagarde D, Jeanson Y, Portais JC, Galinier A, Ader I, Casteilla L, Carrière A. Lactate Fluxes and Plasticity of Adipose Tissues: A Redox Perspective. Front Physiol 2021; 12:689747. [PMID: 34276410 PMCID: PMC8278056 DOI: 10.3389/fphys.2021.689747] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022] Open
Abstract
Lactate, a metabolite produced when the glycolytic flux exceeds mitochondrial oxidative capacities, is now viewed as a critical regulator of metabolism by acting as both a carbon and electron carrier and a signaling molecule between cells and tissues. In recent years, increasing evidence report its key role in white, beige, and brown adipose tissue biology, and highlights new mechanisms by which lactate participates in the maintenance of whole-body energy homeostasis. Lactate displays a wide range of biological effects in adipose cells not only through its binding to the membrane receptor but also through its transport and the subsequent effect on intracellular metabolism notably on redox balance. This study explores how lactate regulates adipocyte metabolism and plasticity by balancing intracellular redox state and by regulating specific signaling pathways. We also emphasized the contribution of adipose tissues to the regulation of systemic lactate metabolism, their roles in redox homeostasis, and related putative physiopathological repercussions associated with their decline in metabolic diseases and aging.
Collapse
Affiliation(s)
- Damien Lagarde
- Goodman Cancer Research Center, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada.,Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Yannick Jeanson
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Jean-Charles Portais
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Anne Galinier
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France.,Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | - Isabelle Ader
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Louis Casteilla
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Audrey Carrière
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
144
|
Chandel V, Kumar D. Targeting Signalling Cross-Talk between Cancer Cells and Cancer-Associated Fibroblast through Monocarboxylate Transporters in Head and Neck Cancer. Anticancer Agents Med Chem 2021; 21:1369-1378. [PMID: 32698754 DOI: 10.2174/1871520620666200721135230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022]
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is an aggressive malignancy affecting more than 600,000 cases worldwide annually, associated with poor prognosis and significant morbidity. HNSCC tumors are dysplastic, with up to 80% fibroblasts. It has been reported that Cancer-Associated Fibroblasts (CAFs) facilitate HNSCC progression. Unlike normal cells, malignant cells often display increased glycolysis, even in the presence of oxygen; a phenomenon known as the Warburg effect. As a consequence, there is an increase in Lactic Acid (LA) production. Earlier, it has been reported that HNSCC tumors exhibit high LA levels that correlate with reduced survival. It has been reported that the activation of the receptor tyrosine kinase, c- MET, by CAF-secreted Hepatocyte Growth Factor (HGF) is a major contributing event in the progression of HNSCC. In nasopharyngeal carcinoma, c-MET inhibition downregulates the TP53-Induced Glycolysis and Apoptosis Regulator (TIGAR) and NADPH production resulting in apoptosis. Previously, it was demonstrated that HNSCC tumor cells are highly glycolytic. Further, CAFs show a higher capacity to utilize LA as a carbon source to fuel mitochondrial respiration than HNSCC. Earlier, we have reported that in admixed cultures, both cell types increase the expression of Monocarboxylate Transporters (MCTs) for a bidirectional LA transporter. Consequently, MCTs play an important role in signalling cross-talk between cancer cells and cancer associate fibroblast in head and neck cancer, and targeting MCTs would lead to the development of a potential therapeutic approach for head and neck cancer. In this review, we focus on the regulation of MCTs in head and neck cancer through signalling cross-talk between cancer cells and cancer-associated fibroblasts, and targeting this signalling cross talk would lead to the development of a potential therapeutic approach for head and neck cancer.
Collapse
Affiliation(s)
- Vaishali Chandel
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sec-125, Noida-201313, (UP), India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sec-125, Noida-201313, (UP), India
| |
Collapse
|
145
|
Zhang S, Lachance BB, Mattson MP, Jia X. Glucose metabolic crosstalk and regulation in brain function and diseases. Prog Neurobiol 2021; 204:102089. [PMID: 34118354 DOI: 10.1016/j.pneurobio.2021.102089] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 01/11/2023]
Abstract
Brain glucose metabolism, including glycolysis, the pentose phosphate pathway, and glycogen turnover, produces ATP for energetic support and provides the precursors for the synthesis of biological macromolecules. Although glucose metabolism in neurons and astrocytes has been extensively studied, the glucose metabolism of microglia and oligodendrocytes, and their interactions with neurons and astrocytes, remain critical to understand brain function. Brain regions with heterogeneous cell composition and cell-type-specific profiles of glucose metabolism suggest that metabolic networks within the brain are complex. Signal transduction proteins including those in the Wnt, GSK-3β, PI3K-AKT, and AMPK pathways are involved in regulating these networks. Additionally, glycolytic enzymes and metabolites, such as hexokinase 2, acetyl-CoA, and enolase 2, are implicated in the modulation of cellular function, microglial activation, glycation, and acetylation of biomolecules. Given these extensive networks, glucose metabolism dysfunction in the whole brain or specific cell types is strongly associated with neurologic pathology including ischemic brain injury and neurodegenerative disorders. This review characterizes the glucose metabolism networks of the brain based on molecular signaling and cellular and regional interactions, and elucidates glucose metabolism-based mechanisms of neurological diseases and therapeutic approaches that may ameliorate metabolic abnormalities in those diseases.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Brittany Bolduc Lachance
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States.
| |
Collapse
|
146
|
The tissue expression of MCT3, MCT8, and MCT9 genes in women with breast cancer. Genes Genomics 2021; 43:1065-1077. [PMID: 34097251 DOI: 10.1007/s13258-021-01116-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/27/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Breast cancer (BC) is a common malignancy with a high mortality rate. Malignant cell transformation is associated with metabolic changes. One group of proteins that are affected is the monocarboxylate transporters (MCTs-SLC16A). The MCTs comprise 14 members, and they play an important role in the growth, proliferation, and metabolism of cancer cells by transporting monocarboxylates such as lactate, pyruvate and thyroid hormones. OBJECTIVE We aimed to evaluate the expression of MCT3 (SLC16A8), MCT8 (SLC16A2) and MCT9 (SLC16A9) genes in breast cancer samples, comparing to normal adjacent tissues. METHODS Forty paired breast cancer tumor samples, the adjacent non-tumor and five healthy tissues were collected. Three cancer cell lines (MCF-7, MDA-MB-231, and SKBR3) were also analyzed. The expression of SLC16A8, SLC16A2 and SLC16A9 were assessed using quantitative real-time PCR. The relationship between gene expression with the pathological features of the tumors, and the hormone receptors status of the patient's tumors were also analyzed. RESULTS There was a significantly lower expression of the MCT3 gene in tumor samples compared to adjacent normal tissue and healthy samples (p value < 0.05). There was a significant difference in the expression of all three candidate genes between the BC tissues and normal tissues, and for the, tissues with different hormone receptor status and the molecular subtypes. Altered MCT8 and MCT9 gene expression was associated with a reduced survival CONCLUSION: MCT3 expression is significantly downregulated in breast cancer tissue. MCT3 may represent a novel therapeutic target in breast cancer patients, or in some hormone receptor subgroups.
Collapse
|
147
|
Chandel V, Maru S, Kumar A, Kumar A, Sharma A, Rathi B, Kumar D. Role of monocarboxylate transporters in head and neck squamous cell carcinoma. Life Sci 2021; 279:119709. [PMID: 34102188 DOI: 10.1016/j.lfs.2021.119709] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 11/24/2022]
Abstract
Head and Neck tumors are metabolically highly altered solid tumors. Head and Neck cancer cells may utilise different metabolic pathways for energy production. Whereas, glycolysis is the major source coupled with oxidative phosphorylation in a metabolic symbiosis manner that results in the proliferation and metastasis in Head and Neck Cancer. The monocarboxylate transporters (MCTs) constitute a family of 14 members among which MCT1-4 are responsible for transporting monocarboxylates such as l-lactate and pyruvate, and ketone bodies across the plasma membrane. Additionally, MCTs mediate absorption and distribution of monocarboxylates across the cell membrane. Head and Neck cancer cells are highly glycolytic in nature and generate significant amount of lactic acid in the extracellular environment. In such condition, MCTs play a critical role in the regulation of pH, and lactate shuttle maintenance. The intracellular lactate accumulation is harmful for the cells since it drastically lowers the intracellular pH. MCTs facilitate the export of lactate out of the cell. The lactate export mediated by MCTs is crucial for the cancer cells survival. Therefore, targeting MCTs is important and could be a potential therapeutic approach to control growth of the tumor.
Collapse
Affiliation(s)
- Vaishali Chandel
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sec-125, Noida 201313, UP, India
| | - Saurabh Maru
- School of Pharmacy and Technology Management, SVKM'S NMIMS Deemed to be University, Shirpur, Maharashtra, India
| | - Arun Kumar
- Mahavir Cancer Institute & Research Centre, Phulwarisharif, Patna 801505, Bihar, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhopal, Saket Nagar, Bhopal 462 020, Madhya Pradesh, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, Bharat, India
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, India; Laboratory of Computational Modelling of Drugs, South Ural State University, Chelyabinsk, Russia
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sec-125, Noida 201313, UP, India.
| |
Collapse
|
148
|
Mitochondria in Myelinating Oligodendrocytes: Slow and Out of Breath? Metabolites 2021; 11:metabo11060359. [PMID: 34198810 PMCID: PMC8226700 DOI: 10.3390/metabo11060359] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/23/2022] Open
Abstract
Myelin is a lipid-rich membrane that wraps around axons and facilitates rapid action potential propagation. In the brain, myelin is synthesized and maintained by oligodendrocytes. These cells have a high metabolic demand that requires mitochondrial ATP production during the process of myelination, but they rely less on mitochondrial respiration after myelination is complete. Mitochondria change in morphology and distribution during oligodendrocyte development. Furthermore, the morphology and dynamic properties of mitochondria in mature oligodendrocytes seem different from any other brain cell. Here, we first give a brief introduction to oligodendrocyte biology and function. We then review the current knowledge on oligodendrocyte metabolism and discuss how the available data on mitochondrial morphology and mobility as well as transcriptome and proteome studies can shed light on the metabolic properties of oligodendrocytes.
Collapse
|
149
|
Wang D, Hartman R, Han C, Zhou CM, Couch B, Malkamaki M, Roginskaya V, Van Houten B, Mullett SJ, Wendell SG, Jurczak MJ, Kang J, Lee J, Sowa G, Vo N. Lactate oxidative phosphorylation by annulus fibrosus cells: evidence for lactate-dependent metabolic symbiosis in intervertebral discs. Arthritis Res Ther 2021; 23:145. [PMID: 34020698 PMCID: PMC8139157 DOI: 10.1186/s13075-021-02501-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 04/03/2021] [Indexed: 01/03/2023] Open
Abstract
Background Intervertebral disc degeneration contributes to low back pain. The avascular intervertebral disc consists of a central hypoxic nucleus pulpous (NP) surrounded by the more oxygenated annulus fibrosus (AF). Lactic acid, an abundant end-product of NP glycolysis, has long been viewed as a harmful waste that acidifies disc tissue and decreases cell viability and function. As lactic acid is readily converted into lactate in disc tissue, the objective of this study was to determine whether lactate could be used by AF cells as a carbon source rather than being removed from disc tissue as a waste byproduct. Methods Import and conversion of lactate to tricarboxylic acid (TCA) cycle intermediates and amino acids in rabbit AF cells were measured by heavy-isotope (13C-lactate) tracing experiments using mass spectrometry. Levels of protein expression of lactate converting enzymes, lactate importer and exporter in NP and AF tissues were quantified by Western blots. Effects of lactate on proteoglycan (35S-sulfate) and collagen (3H-proline) matrix protein synthesis and oxidative phosphorylation (Seahorse XFe96 Extracellular Flux Analyzer) in AF cells were assessed. Results Heavy-isotope tracing experiments revealed that AF cells imported and converted lactate into TCA cycle intermediates and amino acids using in vitro cell culture and in vivo models. Addition of exogenous lactate (4mM) in culture media induced expression of the lactate importer MCT1 and increased oxygen consumption rate by 50%, mitochondrial ATP-linked respiration by 30%, and collagen synthesis by 50% in AF cell cultures grown under physiologic oxygen (2-5% O2) and glucose concentration (1-5mM). AF tissue highly expresses MCT1, LDH-H, an enzyme that preferentially converts lactate to pyruvate, and PDH, an enzyme that converts pyruvate to acetyl-coA. In contrast, NP tissue highly expresses MCT4, a lactate exporter, and LDH-M, an enzyme that preferentially converts pyruvate to lactate. Conclusions These findings support disc lactate-dependent metabolic symbiosis in which lactate produced by the hypoxic, glycolytic NP cells is utilized by the more oxygenated AF cells via oxidative phosphorylation for energy and matrix production, thus shifting the current research paradigm of viewing disc lactate as a waste product to considering it as an important biofuel. These scientifically impactful results suggest novel therapeutic targets in disc metabolism and degeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02501-2.
Collapse
Affiliation(s)
- Dong Wang
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopedic and Spine Research, University of Pittsburgh, 200 Lothrop Street, E1644 Biomedical Science Tower, Pittsburgh, PA, 15261, USA
| | - Robert Hartman
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopedic and Spine Research, University of Pittsburgh, 200 Lothrop Street, E1644 Biomedical Science Tower, Pittsburgh, PA, 15261, USA.,University of Pittsburgh Medical Center Enterprises, Pittsburgh, PA, 15213, USA
| | - Chao Han
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopedic and Spine Research, University of Pittsburgh, 200 Lothrop Street, E1644 Biomedical Science Tower, Pittsburgh, PA, 15261, USA.,Tianjin Hospital, 406 Jiefang South Road Hexi District, Tianjin, PR China
| | - Chao-Ming Zhou
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopedic and Spine Research, University of Pittsburgh, 200 Lothrop Street, E1644 Biomedical Science Tower, Pittsburgh, PA, 15261, USA
| | - Brandon Couch
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopedic and Spine Research, University of Pittsburgh, 200 Lothrop Street, E1644 Biomedical Science Tower, Pittsburgh, PA, 15261, USA
| | - Matias Malkamaki
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopedic and Spine Research, University of Pittsburgh, 200 Lothrop Street, E1644 Biomedical Science Tower, Pittsburgh, PA, 15261, USA
| | - Vera Roginskaya
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA.,Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stacy G Wendell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA.,Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael J Jurczak
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - James Kang
- Department of Orthopedics, Brigham and Women's Hospital, School of Medicine, Harvard University, 75 Francis Street, Boston, MA, 02115, USA
| | - Joon Lee
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopedic and Spine Research, University of Pittsburgh, 200 Lothrop Street, E1644 Biomedical Science Tower, Pittsburgh, PA, 15261, USA
| | - Gwendolyn Sowa
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopedic and Spine Research, University of Pittsburgh, 200 Lothrop Street, E1644 Biomedical Science Tower, Pittsburgh, PA, 15261, USA. .,Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| | - Nam Vo
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopedic and Spine Research, University of Pittsburgh, 200 Lothrop Street, E1644 Biomedical Science Tower, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
150
|
Fan L, Liu B, Han Z, Ren W. Insights into host-microbe interaction: What can we do for the swine industry? ACTA ACUST UNITED AC 2021; 7:17-23. [PMID: 33997327 PMCID: PMC8110873 DOI: 10.1016/j.aninu.2020.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022]
Abstract
Recent discoveries have underscored the cross-talk between intestinal microbes and their hosts. Notably, intestinal microbiota impacts the development, physiological function and social behavior of hosts. This influence usually revolves around the microbiota-gut-brain axis (MGBA). In this review, we firstly outline the impacts of the host on colonization of intestinal microorganisms, and then highlight the influence of intestinal microbiota on hosts focusing on short-chain fatty acid (SCFA) and tryptophan metabolite-mediated MGBA. We also discuss the intervention of intestinal microbial metabolism by dietary supplements, which may provide new strategies for improving the welfare and production of pigs. Overall, we summarize a state-of-the-art theory that gut microbiome affects brain functions via metabolites from dietary macronutrients.
Collapse
Affiliation(s)
- Lijuan Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bingnan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ziyi Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wenkai Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|