101
|
Lyons‐Ruth K, Yarger HA. Developmental costs associated with early maternal withdrawal. CHILD DEVELOPMENT PERSPECTIVES 2022; 16:10-17. [PMID: 35873453 PMCID: PMC9303254 DOI: 10.1111/cdep.12442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neglect is the most prevalent form of maltreatment, but it has been understudied relative to abuse. Additionally, developmental outcomes associated with early maternal withdrawal have been understudied relative to outcomes associated with harsh treatment. However, a large body of studies on rodents has documented the causal effect of low maternal care on altered stress responses in offspring. Other evidence from human studies links early maternal withdrawal to clinical levels of neglect. Studies of both rodents and humans suggest that, rather than the aversive responses (e.g., fight, flight, freeze) modeled in relation to threat of attack or harsh treatment, early maternal withdrawal is associated with increased calling and contact seeking to mothers. Moreover, two longitudinal studies indicate that early maternal withdrawal, but not negative-intrusive interaction, contributes to adolescent borderline psychopathology. The field needs prospective studies with well-operationalized constructs of maternal withdrawal to delineate the distinct developmental pathways that may be associated with neglect.
Collapse
|
102
|
Gardner ST, Appel AG, Mendonça MT. Chasing Cane Toads: Assessing Locomotory Differences in Toads from Core and Edge Populations in Florida. HERPETOLOGICA 2022. [DOI: 10.1655/herpetologica-d-21-00005.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Steven T. Gardner
- Department of Biological Sciences, Auburn University, 331 Funchess Hall, 350 South College Street, Auburn, AL 36849, USA
| | - Arthur G. Appel
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, 350 South College Street, Auburn, AL 36849, USA
| | - Mary T. Mendonça
- Department of Biological Sciences, Auburn University, 331 Funchess Hall, 350 South College Street, Auburn, AL 36849, USA
| |
Collapse
|
103
|
Watowich MM, Chiou KL, Montague MJ, Simons ND, Horvath JE, Ruiz-Lambides AV, Martínez MI, Higham JP, Brent LJN, Platt ML, Snyder-Mackler N. Natural disaster and immunological aging in a nonhuman primate. Proc Natl Acad Sci U S A 2022; 119:e2121663119. [PMID: 35131902 PMCID: PMC8872742 DOI: 10.1073/pnas.2121663119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022] Open
Abstract
Weather-related disasters are increasing in frequency and severity, leaving survivors to cope with ensuing mental, financial, and physical hardships. This adversity can exacerbate existing morbidities, trigger new ones, and increase the risk of mortality-features that are also characteristic of advanced age-inviting the hypothesis that extreme weather events may accelerate aging. To test this idea, we examined the impact of Hurricane Maria and its aftermath on immune cell gene expression in large, age-matched, cross-sectional samples from free-ranging rhesus macaques (Macaca mulatta) living on an isolated island. A cross section of macaques was sampled 1 to 4 y before (n = 435) and 1 y after (n = 108) the hurricane. Hurricane Maria was significantly associated with differential expression of 4% of immune-cell-expressed genes, and these effects were correlated with age-associated alterations in gene expression. We further found that individuals exposed to the hurricane had a gene expression profile that was, on average, 1.96 y older than individuals that were not-roughly equivalent to an increase in 7 to 8 y of a human life. Living through an intense hurricane and its aftermath was associated with expression of key immune genes, dysregulated proteostasis networks, and greater expression of inflammatory immune cell-specific marker genes. Together, our findings illuminate potential mechanisms through which the adversity unleashed by extreme weather and potentially other natural disasters might become biologically embedded, accelerate age-related molecular immune phenotypes, and ultimately contribute to earlier onset of disease and death.
Collapse
Affiliation(s)
- Marina M Watowich
- Department of Biology, University of Washington, Seattle, WA 98195
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281
- School of Life Sciences, Arizona State University, Tempe, AZ 85281
| | - Kenneth L Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281
- School of Life Sciences, Arizona State University, Tempe, AZ 85281
| | - Michael J Montague
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Noah D Simons
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708
| | - Julie E Horvath
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC 27707
- Research and Collections Section, North Carolina Museum of Natural Sciences, Raleigh, NC 27601
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695
| | - Angelina V Ruiz-Lambides
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, San Juan, PR 00936
| | - Melween I Martínez
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, San Juan, PR 00936
| | - James P Higham
- Department of Anthropology, New York University, New York, NY 10003
- New York Consortium in Evolutionary Primatology, New York, NY 10016
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter EX4 4QG, United Kingdom
| | - Michael L Platt
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104
- Marketing Department, Wharton School of Business, University of Pennsylvania, Philadelphia, PA 19104
| | - Noah Snyder-Mackler
- Department of Biology, University of Washington, Seattle, WA 98195;
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281
- School of Life Sciences, Arizona State University, Tempe, AZ 85281
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85281
- Department of Psychology, University of Washington, Seattle, WA 98195
| |
Collapse
|
104
|
Kostrzewa-Nowak D, Nowak R, Kubaszewska J, Gos W. Interdisciplinary Approach to Biological and Health Implications in Selected Professional Competences. Brain Sci 2022; 12:brainsci12020236. [PMID: 35203999 PMCID: PMC8870650 DOI: 10.3390/brainsci12020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 01/09/2023] Open
Abstract
Everyday life’s hygiene and professional realities, especially in economically developed countries, indicate the need to modify the standards of pro-health programs as well as modern hygiene and work ergonomics programs. These observations are based on the problem of premature death caused by civilization diseases. The biological mechanisms associated with financial risk susceptibility are well described, but there is little data explaining the biological basis of neuroaccounting. Therefore, the aim of the study was to present relationships between personality traits, cognitive competences and biological factors shaping behavioral conditions in a multidisciplinary aspect. This critical review paper is an attempt to compile biological and psychological factors influencing the development of professional competences, especially decent in the area of accounting and finance. We analyzed existing literature from wide range of scientific disciplines (including economics, psychology, behavioral genetics) to create background to pursuit multidisciplinary research models in the field of neuroaccounting. This would help in pointing the best genetically based behavioral profile of future successful financial and accounting specialists.
Collapse
Affiliation(s)
- Dorota Kostrzewa-Nowak
- Institute of Physical Culture Sciences, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland; (R.N.); (J.K.)
- Correspondence:
| | - Robert Nowak
- Institute of Physical Culture Sciences, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland; (R.N.); (J.K.)
| | - Joanna Kubaszewska
- Institute of Physical Culture Sciences, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland; (R.N.); (J.K.)
| | - Waldemar Gos
- Institute of Economy and Finance, University of Szczecin, 64 Mickiewicza St., 71-101 Szczecin, Poland;
| |
Collapse
|
105
|
Ginsberg JP, Raghunathan K, Bassi G, Ulloa L. Review of Perioperative Music Medicine: Mechanisms of Pain and Stress Reduction Around Surgery. Front Med (Lausanne) 2022; 9:821022. [PMID: 35187004 PMCID: PMC8854756 DOI: 10.3389/fmed.2022.821022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/12/2022] [Indexed: 12/19/2022] Open
Abstract
Clinical-experimental considerations and an approach to understanding the autonomic basis of improved surgical outcomes using Perioperative Music Medicine (PMM) are reviewed. Combined surgical, psycho-physiological, and experimental perspectives on Music Medicine (MM) and its relationship to autonomic nervous system (ANS) function are discussed. Considerations are given to the inter-related perioperative effects of MM on ANS, pain, and underlying vagal and other neural circuits involved in emotional regulation and dysregulation. Many surgical procedures are associated with significant pain, which is routinely treated with post-operative opioid medications, which cause detrimental side effects and delay recovery. Surgical trauma shifts the sympathetic ANS to a sustained activation impairing physiological homeostasis and causing psychological stress, as well as metabolic and immune dysfunction that contribute to postoperative mortality and morbidity. In this article, we propose a plan to operationalize the study of mechanisms mediating the effects of MM in perioperative settings of orthopedic surgery. These studies will be critical for the implementation of PMM as a routine clinical practice and to determine the potential limitations of MM in specific cohorts of patients and how to improve the treatment.
Collapse
Affiliation(s)
- J. P. Ginsberg
- Departments of Applied Psychophysiology, Psychology and Statistics, Saybrook University, Pasadena, CA, United States
| | - Karthik Raghunathan
- Critical Care and Perioperative Population Health Research Unit, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Gabriel Bassi
- Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC, United States
| | - Luis Ulloa
- Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
106
|
Que nous apprenent les enfants des survivants de la shoah sur la transmission transgenerationnelle du traumatisme? EUROPEAN JOURNAL OF TRAUMA & DISSOCIATION 2022. [DOI: 10.1016/j.ejtd.2021.100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
107
|
Sanacora G, Yan Z, Popoli M. The stressed synapse 2.0: pathophysiological mechanisms in stress-related neuropsychiatric disorders. Nat Rev Neurosci 2022; 23:86-103. [PMID: 34893785 DOI: 10.1038/s41583-021-00540-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/25/2022]
Abstract
Stress is a primary risk factor for several neuropsychiatric disorders. Evidence from preclinical models and clinical studies of depression have revealed an array of structural and functional maladaptive changes, whereby adverse environmental factors shape the brain. These changes, observed from the molecular and transcriptional levels through to large-scale brain networks, to the behaviours reveal a complex matrix of interrelated pathophysiological processes that differ between sexes, providing insight into the potential underpinnings of the sex bias of neuropsychiatric disorders. Although many preclinical studies use chronic stress protocols, long-term changes are also induced by acute exposure to traumatic stress, opening a path to identify determinants of resilient versus susceptible responses to both acute and chronic stress. Epigenetic regulation of gene expression has emerged as a key player underlying the persistent impact of stress on the brain. Indeed, histone modification, DNA methylation and microRNAs are closely involved in many aspects of the stress response and reveal the glutamate system as a key player. The success of ketamine has stimulated a whole line of research and development on drugs directly or indirectly targeting glutamate function. However, the challenge of translating the emerging understanding of stress pathophysiology into effective clinical treatments remains a major challenge.
Collapse
Affiliation(s)
- Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Department of Pharmaceutical Sciences, University of Milano, Milan, Italy.
| |
Collapse
|
108
|
Hylin MJ, Watanasriyakul WT, Hite N, McNeal N, Grippo AJ. Morphological changes in the basolateral amygdala and behavioral disruptions associated with social isolation. Behav Brain Res 2022; 416:113572. [PMID: 34499940 PMCID: PMC8492539 DOI: 10.1016/j.bbr.2021.113572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Social isolation and the disruption of established social bonds contribute to several physical and psychological health issues. Animal models are a useful tool for investigating consequences of social stress, including social isolation. The current study examined morphological changes in the basolateral amygdala (BLA) and affect-related behavioral and endocrine changes due to prolonged social isolation, using the translational prairie vole model (Microtus ochrogaster). Adult male prairie voles were either socially paired (control) or isolated from a same-sex sibling for 4 weeks. Following this 4-week period, a subset of animals (n = 6 per condition) underwent a series of behavioral tasks to assess affective, social, and stress-coping behaviors. Plasma was collected following the last behavioral task for stressor-induced endocrine assays. Brains were collected from a separate subset of animals (n = 10 per condition) following the 4-week social housing period for dendritic structure analyses in the BLA. Social isolation was associated with depressive- and anxiety-like behaviors, as well as elevated oxytocin reactivity following a social stressor. Social isolation was also associated with altered amount of dendritic material in the BLA, with an increase in spine density. These results provide further evidence that social isolation may lead to the development of affective disorders. Dysfunction in the oxytocin system and BLA remodeling may mediate these behavioral changes. Further research will promote an understanding of the connections between oxytocin function and structural changes in the BLA in the context of social stress. This research can facilitate novel treatments for alleviating or preventing behavioral and physiological consequences of social stressors in humans.
Collapse
Affiliation(s)
- Michael J. Hylin
- Department of Psychology, Southern Illinois University, Carbondale, IL, 62901
| | | | - Natalee Hite
- Department of Physiology, Southern Illinois University, Carbondale, IL, 62901
| | - Neal McNeal
- Department of Psychology, Northern Illinois University, DeKalb, IL, 60115
| | - Angela J. Grippo
- Department of Psychology, Northern Illinois University, DeKalb, IL, 60115,Author for Correspondence: Angela J. Grippo, Ph.D.Department of PsychologyNorthern Illinois University1425 W. Lincoln HighwayDeKalb, IL, 60115 815-753-0372
| |
Collapse
|
109
|
Li G, Zhang G, Li Y. DNA Methylation Imputation Across Platforms. Methods Mol Biol 2022; 2432:137-151. [PMID: 35505213 DOI: 10.1007/978-1-0716-1994-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this chapter, we will provide a review on imputation in the context of DNA methylation, specifically focusing on a penalized functional regression (PFR) method we have previously developed. We will start with a brief review of DNA methylation, genomic and epigenomic contexts where imputation has proven beneficial in practice, and statistical or computational methods proposed for DNA methylation in the recent literature (Subheading 1). The rest of the chapter (Subheadings 2-4) will provide a detailed review of our PFR method proposed for across-platform imputation, which incorporates nonlocal information using a penalized functional regression framework. Subheading 2 introduces commonly employed technologies for DNA methylation measurement and describes the real dataset we have used in the development of our method: the acute myeloid leukemia (AML) dataset from The Cancer Genome Atlas (TCGA) project. Subheading 3 comprehensively reviews our method, encompassing data harmonization prior to model building, the actual building of penalized functional regression model, post-imputation quality filter, and imputation quality assessment. Subheading 4 shows the performance of our method in both simulation and the TCGA AML dataset, demonstrating that our penalized functional regression model is a valuable across-platform imputation tool for DNA methylation data, particularly because of its ability to boost statistical power for subsequent epigenome-wide association study. Finally, Subheading 5 provides future perspectives on imputation for DNA methylation data.
Collapse
Affiliation(s)
- Gang Li
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Guosheng Zhang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yun Li
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
110
|
Nie Y, Wen L, Song J, Wang N, Huang L, Gao L, Qu M. Emerging trends in epigenetic and childhood trauma: Bibliometrics and visual analysis. Front Psychiatry 2022; 13:925273. [PMID: 36458128 PMCID: PMC9705591 DOI: 10.3389/fpsyt.2022.925273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The epigenetic study of childhood trauma has become a valuable field. However, the evolution and emerging trends in epigenetics and childhood trauma have not been studied by bibliometric methods. OBJECTIVE This study aims to evaluate status of epigenetic studies in childhood trauma and reveal the research trends based on bibliometrics. METHODS A total of 1,151 publications related to childhood trauma and epigenetics published between 2000 and 2021 were retrieved from the Web of Science Core Collection (WoSCC). CiteSpace (5.8. R 3) was used to implement bibliometric analysis and visualization. RESULTS Since 2010, the number of related publications has expanded quickly. The United States and McGill University are the most influential countries and research institutes, respectively. Elisabeth Binder is a leading researcher in childhood trauma and epigenetic-related research. Biological Psychiatry is probably the most popular journal. In addition, comprehensive keyword analysis revealed that "glucocorticoid receptor," "brain development," "epigenetic regulation," "depression," "posttraumatic stress disorder," "maternal care," "histone acetylation," "telomere length," "microRNA," and "anxiety" reflect the latest research trends in the field. A comprehensive reference analysis demonstrated NR3C1 gene methylation, FKBP5 DNA methylation, BDNF DNA methylation, and KITLG methylation have been hot spots in epigenetic studies in the field of childhood trauma in recent years. Notably, the relationship between childhood adversity and NR3C1 gene methylation levels remains unresolved and requires well-designed studies with control for more confounding factors. CONCLUSION As the best of our knowledge, this is the first bibliometric analysis of the association between childhood trauma and epigenetics. Our analysis of the literature suggests that childhood trauma may induce depression, anxiety, and post-traumatic stress disorder through epigenetic regulation of glucocorticoid receptor expression and brain development. The hypothalamic-pituitary-adrenal axis is the key points of epigenetic research. The current researches focus on NR3C1 gene methylation, FKBP5 DNA methylation, BDNF DNA methylation, and KITLG methylation. These results provide a guiding perspective for the study of epigenetic effects of childhood trauma, and help researchers choose future research directions based on current keywords.
Collapse
Affiliation(s)
- Yuting Nie
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lulu Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Juexian Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ningqun Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liyuan Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Gao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Miao Qu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
111
|
Xue F, Tang X, Kim G, Koenen KC, Martin CL, Galea S, Wildman D, Uddin M, Qu A. Heterogeneous Mediation Analysis on Epigenomic PTSD and Traumatic Stress in a Predominantly African American Cohort. J Am Stat Assoc 2022; 117:1669-1683. [PMID: 36875798 PMCID: PMC9980467 DOI: 10.1080/01621459.2022.2089572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
DNA methylation (DNAm) has been suggested to play a critical role in post-traumatic stress disorder (PTSD), through mediating the relationship between trauma and PTSD. However, this underlying mechanism of PTSD for African Americans still remains unknown. To fill this gap, in this article, we investigate how DNAm mediates the effects of traumatic experiences on PTSD symptoms in the Detroit Neighborhood Health Study (DNHS) (2008-2013) which involves primarily African Americans adults. To achieve this, we develop a new mediation analysis approach for high-dimensional potential DNAm mediators. A key novelty of our method is that we consider heterogeneity in mediation effects across subpopulations. Specifically, mediators in different subpopulations could have opposite effects on the outcome, and thus could be difficult to identify under a traditional homogeneous model framework. In contrast, the proposed method can estimate heterogeneous mediation effects and identifies subpopulations in which individuals share similar effects. Simulation studies demonstrate that the proposed method outperforms existing methods for both homogeneous and heterogeneous data. We also present our mediation analysis results of a dataset with 125 participants and more than 450,000 CpG sites from the DNHS study. The proposed method finds three subgroups of subjects and identifies DNAm mediators corresponding to genes such as HSP90AA1 and NFATC1 which have been linked to PTSD symptoms in literature. Our finding could be useful in future finer-grained investigation of PTSD mechanism and in the development of new treatments for PTSD.
Collapse
Affiliation(s)
- Fei Xue
- Purdue University, West Lafayette, IN
| | - Xiwei Tang
- University of Virginia, Charlottesville, VA
| | - Grace Kim
- University of Illinois College of Medicine, Chicago, IL
| | | | - Chantel L Martin
- The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | | | | | - Annie Qu
- University of California Irvine, Irvine, CA
| |
Collapse
|
112
|
Epigenetic correlates of the psychological interventions outcomes: A systematic review and meta-analysis. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2022.100310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
113
|
Lai W, Li W, Du X, Guo Y, Wang W, Guo L, Lu C. Association Between Childhood Maltreatment, FKBP5 Gene Methylation, and Anxiety Symptoms Among Chinese Adolescents: A Nested Case-Control Study. Front Psychiatry 2022; 13:761898. [PMID: 35185646 PMCID: PMC8850925 DOI: 10.3389/fpsyt.2022.761898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/14/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Anxiety symptoms are common mental health problems among adolescents worldwide. This study aimed to explore (1) the longitudinal association between childhood maltreatment and anxiety symptoms, (2) the association between childhood maltreatment and DNA methylation of the FKBP5 gene, and (3) the association of DNA methylation of the FKBP5 gene with anxiety symptoms at follow-up. METHODS A nested case-control design was conducted to identify a case group and control group from a longitudinal study of adolescents aged 13-18 years in Guangzhou from 2019 to 2020. Adolescents with anxiety symptoms at baseline and follow-up were considered the case group, while those without anxiety symptoms at baseline and follow-up were considered the control group. The case and control groups were matched according to age and sex. Our study finally included 97 cases and 141 controls. RESULTS After adjusting for significant covariates, childhood emotional abuse was associated with subsequent anxiety symptoms (β = 0.146, 95% CI = 0.010~0.283); students with physical and emotional neglect were more likely to get a lower level of DNA methylation at most CpG units of FKBP5 gene (P < 0.05); FKBP5-12 CpG 15 methylation was associated with anxiety symptoms at follow-up (β = -0.263, 95% CI = -0.458~-0.069). However, after multiple hypothesis testing, childhood maltreatment was not associated with FKBP5 DNA methylation (q > 0.10); FKBP5 DNA methylation did not show an association with subsequent anxiety symptoms (q > 0.10). CONCLUSIONS Childhood emotional abuse was associated with an increased risk of anxiety symptoms among Chinese adolescents. After multiple hypothesis testing, childhood maltreatment was not significantly associated with FKBP5 DNA methylation. DNA methylation of the promoter region of the FKBP5 gene was not a significant predictor of anxiety symptoms. More attention should be paid to the mental health of adolescents with childhood maltreatment.
Collapse
Affiliation(s)
- Wenjian Lai
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wenyan Li
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xueying Du
- Health Promotion Center for Primary and Secondary Schools of Guangzhou Municipality, Guangzhou, China
| | - Yangfeng Guo
- Health Promotion Center for Primary and Secondary Schools of Guangzhou Municipality, Guangzhou, China
| | - Wanxin Wang
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lan Guo
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ciyong Lu
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
114
|
Knox D, Stout-Oswald SA, Tan M, George SA, Liberzon I. Maternal Separation Induces Sex-Specific Differences in Sensitivity to Traumatic Stress. Front Behav Neurosci 2021; 15:766505. [PMID: 34955778 PMCID: PMC8708561 DOI: 10.3389/fnbeh.2021.766505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating psychiatric disorder with a high economic burden. Two risk factors for increasing the chances of developing PTSD are sex (being female) and early life stress. These risk factors suggest that early life stress-induced changes and sex differences in emotional circuits and neuroendocrinological systems lead to susceptibility to traumatic stress. Exploring mechanisms via which stress leads to specific effects can be accomplished in animal models, but reliable animal models that allow for an examination of how early life stress interacts with sex to increase susceptibility to traumatic stress is lacking. To address this, we examined the effects of early life stress [using the maternal separation (MS) model] and late adolescence/early adult traumatic stress [using the single prolonged stress (SPS) model] on startle reactivity, anxiety-like behavior in the open field (OF), and basal corticosterone levels in male and female rats. Female rats exposed to MS and SPS (MS/SPS) showed enhanced startle reactivity relative to MS/control female rats. Enhanced startle reactivity was not observed in MS/SPS male rats. Instead, non-maternally separated male rats that were exposed to SPS showed enhanced startle reactivity relative to controls. Female rats had enhanced locomotor activity in the OF and higher basal corticosterone levels in comparison to males, but measures in the OF and basal corticosterone were not affected by MS or SPS. Overall the results suggest that the combined MS and SPS models can be used to explore how changes in maternal care during infancy lead to sex differences in sensitivity to the effects of traumatic stress as adolescents and adults.
Collapse
Affiliation(s)
- Dayan Knox
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Stephanie A Stout-Oswald
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States.,Veterans Affairs Hospital, Ann Arbor, MI, United States
| | - Melissa Tan
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States.,Veterans Affairs Hospital, Ann Arbor, MI, United States
| | - Sophie A George
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, United States
| | - Israel Liberzon
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryant, TX, United States
| |
Collapse
|
115
|
Wiegand A, Munk MHJ, Drohm S, Fallgatter AJ, MacIsaac JL, Kobor MS, Nieratschker V, Kreifelts B. Neural correlates of attentional control in social anxiety disorder: the impact of early-life adversity and DNA methylation. J Psychiatry Neurosci 2021; 46:E663-E674. [PMID: 34916236 PMCID: PMC8687622 DOI: 10.1503/jpn.210064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/10/2021] [Accepted: 10/10/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Social anxiety disorder is characterized by intense fear and avoidance of social interactions and scrutiny by others. Although alterations in attentional control seem to play a central role in the psychopathology of social anxiety disorder, the neural underpinnings in prefrontal brain regions have not yet been fully clarified. METHODS The present study used functional MRI in participants (age 18-50 yr) with social anxiety disorder (n = 42, 31 female) and without (n = 58, 33 female). It investigated the interrelation of the effects of social anxiety disorder and early-life adversity (a main environmental risk factor of social anxiety disorder) on brain activity during an attentional control task. We applied DNA methylation analysis to determine whether epigenetic modulation in the gene encoding the glucocorticoid receptor, NR3C1, might play a mediating role in this process. RESULTS We identified 2 brain regions in the left and medial prefrontal cortex that exhibited an interaction effect of social anxiety disorder and early-life adversity. In participants with low levels of early-life adversity, neural activity in response to disorder-related stimuli was increased in association with social anxiety disorder. In participants with high levels of early-life adversity, neural activity was increased only in participants without social anxiety disorder. NR3C1 DNA methylation partly mediated the effect of social anxiety disorder on brain activity as a function of early-life adversity. LIMITATIONS The absence of behavioural correlates associated with social anxiety disorder limited functional interpretation of the results. CONCLUSION These findings demonstrate that the neurobiological processes that underlie social anxiety disorder might be fundamentally different depending on experiences of early-life adversity. Long-lasting effects of early-life adversity might be encoded in NR3C1 DNA methylation and entail alterations in social anxiety disorder-related activity patterns in the neural network of attentional control.
Collapse
Affiliation(s)
- Ariane Wiegand
- From the Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, Eberhard Karls University of Tübingen, Tübingen, Germany (Wiegand, Munk, Drohm, Fallgatter, Nieratschker, Kreifelts); the International Max Planck Research School for Cognitive and Systems Neuroscience, University of Tübingen, Tübingen, Germany (Wiegand); the Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany (Munk); the Department of Medical Genetics, University of British Columbia-BC Children's Hospital Research Institute, Vancouver, BC (MacIsaac, Kobor); and the Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany (Nieratschker)
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Bastianini S, Lo Martire V, Alvente S, Berteotti C, Matteoli G, Rullo L, Stamatakos S, Silvani A, Candeletti S, Romualdi P, Cohen G, Zoccoli G. Early-life nicotine or cotinine exposure produces long-lasting sleep alterations and downregulation of hippocampal corticosteroid receptors in adult mice. Sci Rep 2021; 11:23897. [PMID: 34903845 PMCID: PMC8668915 DOI: 10.1038/s41598-021-03468-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
Early-life exposure to environmental toxins like tobacco can permanently re-program body structure and function. Here, we investigated the long-term effects on mouse adult sleep phenotype exerted by early-life exposure to nicotine or to its principal metabolite, cotinine. Moreover, we investigated whether these effects occurred together with a reprogramming of the activity of the hippocampus, a key structure to coordinate the hormonal stress response. Adult male mice born from dams subjected to nicotine (NIC), cotinine (COT) or vehicle (CTRL) treatment in drinking water were implanted with electrodes for sleep recordings. NIC and COT mice spent significantly more time awake than CTRL mice at the transition between the rest (light) and the activity (dark) period. NIC and COT mice showed hippocampal glucocorticoid receptor (GR) downregulation compared to CTRL mice, and NIC mice also showed hippocampal mineralocorticoid receptor downregulation. Hippocampal GR expression significantly and inversely correlated with the amount of wakefulness at the light-to-dark transition, while no changes in DNA methylation were found. We demonstrated that early-life exposure to nicotine (and cotinine) concomitantly entails long-lasting reprogramming of hippocampal activity and sleep phenotype suggesting that the adult sleep phenotype may be modulated by events that occurred during that critical period of life.
Collapse
Affiliation(s)
- Stefano Bastianini
- grid.6292.f0000 0004 1757 1758PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy
| | - Viviana Lo Martire
- grid.6292.f0000 0004 1757 1758PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy
| | - Sara Alvente
- grid.6292.f0000 0004 1757 1758PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy
| | - Chiara Berteotti
- grid.6292.f0000 0004 1757 1758PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy
| | - Gabriele Matteoli
- grid.6292.f0000 0004 1757 1758PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy
| | - Laura Rullo
- grid.6292.f0000 0004 1757 1758Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Serena Stamatakos
- grid.6292.f0000 0004 1757 1758Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Alessandro Silvani
- grid.6292.f0000 0004 1757 1758PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy
| | - Sanzio Candeletti
- grid.6292.f0000 0004 1757 1758Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Patrizia Romualdi
- grid.6292.f0000 0004 1757 1758Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Gary Cohen
- grid.4714.60000 0004 1937 0626Department of Women and Child Health, Karolinska Institutet, Stockholm, Sweden ,grid.412703.30000 0004 0587 9093Centre for Sleep Health and Research, Sleep Investigation Laboratory, Royal North Shore Hospital, Sydney, Australia
| | - Giovanna Zoccoli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy.
| |
Collapse
|
117
|
Espina JEC, Bagamasbad PD. Synergistic gene regulation by thyroid hormone and glucocorticoid in the hippocampus. VITAMINS AND HORMONES 2021; 118:35-81. [PMID: 35180933 DOI: 10.1016/bs.vh.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The hippocampus is considered the center for learning and memory in the brain, and its development and function is greatly affected by the thyroid and stress axes. Thyroid hormone (TH) and glucocorticoids (GC) are known to have a synergistic effect on developmental programs across several vertebrate species, and their effects on hippocampal structure and function are well-documented. However, there are few studies that focus on the processes and genes that are cooperatively regulated by the two hormone axes. Cross-regulation of the thyroid and stress axes in the hippocampus occurs on multiple levels such that TH can regulate the expression of the GC receptor (GR) while GC can modulate tissue sensitivity to TH by controlling the expression of TH receptor (TR) and enzymes involved in TH biosynthesis. Thyroid hormone and GC are also known to synergistically regulate the transcription of genes associated with neuronal function and development. Synergistic gene regulation by TH and GC may occur through the direct, cooperative action of TR and GR on common target genes, or by indirect mechanisms involving gene regulatory cascades activated by TR and GR. In this chapter, we describe the known physiological effects and underlying molecular mechanisms of TH and GC synergistic gene regulation in the hippocampus.
Collapse
Affiliation(s)
- Jose Ezekiel C Espina
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Pia D Bagamasbad
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines.
| |
Collapse
|
118
|
Wadji DL, Tandon T, Ketcha Wanda GJM, Wicky C, Dentz A, Hasler G, Morina N, Martin-Soelch C. Child maltreatment and NR3C1 exon 1 F methylation, link with deregulated hypothalamus-pituitary-adrenal axis and psychopathology: A systematic review. CHILD ABUSE & NEGLECT 2021; 122:105304. [PMID: 34488052 DOI: 10.1016/j.chiabu.2021.105304] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 06/10/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Epigenetics offers one promising method for assessing the psychobiological response to stressful experiences during childhood. In particular, deoxyribonucleic acid (DNA) methylation has been associated with an altered hypothalamus-pituitary-adrenal (HPA) axis and the onset of mental disorders. Equally, there are promising leads regarding the association between the methylation of the glucocorticoid receptor gene (NR3C1-1F) and child maltreatment and its link with HPA axis and psychopathology. OBJECTIVE The current study aimed to assess the evidence of a link among child maltreatment, NR3C1-1F methylation, HPA axis deregulation, and symptoms of psychopathology. METHODS We followed the Prisma guidelines and identified 11 articles that met our inclusion criteria. RESULTS We found that eight studies (72.72%) reported increased NR3C1-1F methylation associated with child maltreatment, specifically physical abuse, emotional abuse, sexual abuse, neglect, and exposure to intimate partner violence, while three studies (27.27%) found no significant association. Furthermore, a minority of studies (36.36%) provided additional measures of symptoms of psychopathology or cortisol in order to examine the link among NR3C1-1F methylation, HPA axis deregulation, and psychopathology in a situation of child maltreatment. These results suggest that NR3C1-1F hypermethylation is positively associated with higher HPA axis activity, i.e. increased production of cortisol, as well as symptoms of psychopathology, including emotional lability-negativity, externalizing behavior symptoms, and depressive symptoms. CONCLUSION NR3C1-1F methylation could be one mechanism that links altered HPA axis activity with the development of psychopathology.
Collapse
Affiliation(s)
- D L Wadji
- I-Reach Lab, Unit of Clinical and Health Psychology, University of Fribourg, Switzerland.
| | - T Tandon
- I-Reach Lab, Unit of Clinical and Health Psychology, University of Fribourg, Switzerland
| | - G J M Ketcha Wanda
- Clinical psychology Lab, Department of Psychology, University of Yaoundé I, Cameroon
| | - C Wicky
- Department of Biology, University of Fribourg, Switzerland
| | - A Dentz
- I-Reach Lab, Unit of Clinical and Health Psychology, University of Fribourg, Switzerland
| | - G Hasler
- Department of Psychiatric, University of Fribourg, Fribourg, Switzerland
| | - N Morina
- Department of Consultant-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Switzerland
| | - C Martin-Soelch
- I-Reach Lab, Unit of Clinical and Health Psychology, University of Fribourg, Switzerland
| |
Collapse
|
119
|
Morris AS, Ratliff EL, Cosgrove KT, Steinberg L. We Know Even More Things: A Decade Review of Parenting Research. JOURNAL OF RESEARCH ON ADOLESCENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR RESEARCH ON ADOLESCENCE 2021; 31:870-888. [PMID: 34820951 PMCID: PMC8630733 DOI: 10.1111/jora.12641] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this article, we highlight the important ideas that have emerged from research on parenting and adolescent development over the past decade. Beginning with research on authoritative parenting, we examine key elements of this parenting style and its influence across diverse contexts and populations. We turn our attention to four topics that have generated much research in the past decade: (1) how parenting contributes to adolescent peer and romantic relationships; (2) the impact of parenting on adolescent brain development; (3) gene-environment interactions in parenting research; and (4) parents' involvement in adolescents' social media use. We discuss contemporary challenges and ways parents can promote healthy development. We consider the integration of research, practice, and policy that best supports parents and adolescents.
Collapse
Affiliation(s)
- Amanda Sheffield Morris
- Department of Human Development and Family Sciences, Oklahoma State University - Tulsa, 700 N. Greenwood Ave., Tulsa, OK 74106, USA
| | - Erin L. Ratliff
- Department of Human Development and Family Sciences, Oklahoma State University - Tulsa, 700 N. Greenwood Ave., Tulsa, OK 74106, USA
| | - Kelly T. Cosgrove
- Department of Psychology, University of Tulsa, 800 S. Tucker Dr. Tulsa, OK 74104, USA
| | - Laurence Steinberg
- Department of Psychology, Temple University, 1701 N 13th St, Philadelphia, PA 19122, USA
| |
Collapse
|
120
|
Xu H, Zhong Y, Yuan S, Wu Y, Ma Z, Hao Z, Ding H, Wu H, Liu G, Pang M, Liu N, Wang C, Zhang N. Nitric Oxide Synthase Type 1 Methylation Is Associated With White Matter Microstructure in the Corpus Callosum and Greater Panic Disorder Severity Among Panic Disorder Patients. Front Neurol 2021; 12:755270. [PMID: 34733233 PMCID: PMC8559336 DOI: 10.3389/fneur.2021.755270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022] Open
Abstract
Objectives: Methylation of the neuronal nitric oxide synthase (NOS1/nNOS) gene has recently been identified as a promising biomarker of psychiatric disorders. NOS1 plays an essential role in neurite outgrowth and may thus affect the microstructure development of white matter (WM) in the corpus callosum (CC), which is known to be altered in panic disorder (PD). We examined the relationship between NOS1 methylation, WM tracts in the CC, and symptoms based on this finding. Methods: Thirty-two patients with PD and 22 healthy controls (HCs) were recruited after age, gender, and the education level were matched. The cell type used was whole-blood DNA, and DNA methylation of NOS1 was measured at 20 CpG sites in the promoter region. Although 25 patients with PD were assessed with the Panic Disorder Severity Scale (PDSS), diffusion tensor imaging (DTI) scans were only collected from 16 participants with PD. Results: We observed that the PD group showed lower methylation than did the HCs group and positive correlations between the symptom severity of PD and methylation at CpG4 and CpG9. In addition, CpG9 methylation was significantly correlated with the fractional anisotropy (FA) and mean diffusivity (MD) values of the CC and its major components (the genu and the splenium) in the PD group. Furthermore, path analyses showed that CpG9 methylation offers a mediating effect for the association between the MD values of the genu of the CC and PD symptom severity (95% CI = −1.731 to −0.034). Conclusions: The results suggest that CpG9 methylation leads to atypical development of the genu of the CC, resulting in higher PD symptom severity, adding support for the methylation of NOS1 as a future prognostic indicator of PD.
Collapse
Affiliation(s)
- Huazhen Xu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China.,The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, Nanjing, China.,Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing Normal University, Nanjing, China
| | - Shiting Yuan
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yun Wu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zijuan Ma
- School of Psychology, South China Normal University, Guangzhou, China
| | - Ziyu Hao
- School of Psychology, Nanjing Normal University, Nanjing, China
| | - Huachen Ding
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Huiqing Wu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Gang Liu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Manlong Pang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Na Liu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, China
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China.,School of Psychology, Nanjing Normal University, Nanjing, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Ning Zhang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| |
Collapse
|
121
|
Martins J, Czamara D, Sauer S, Rex-Haffner M, Dittrich K, Dörr P, de Punder K, Overfeld J, Knop A, Dammering F, Entringer S, Winter SM, Buss C, Heim C, Binder EB. Childhood adversity correlates with stable changes in DNA methylation trajectories in children and converges with epigenetic signatures of prenatal stress. Neurobiol Stress 2021; 15:100336. [PMID: 34095363 PMCID: PMC8163992 DOI: 10.1016/j.ynstr.2021.100336] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/01/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022] Open
Abstract
Childhood maltreatment (CM) is an established major risk factor for a number of negative health outcomes later in life. While epigenetic mechanisms, such as DNA methylation (DNAm), have been proposed as a means of embedding this environmental risk factor, little is known about its timing and trajectory, especially in very young children. It is also not clear whether additional environmental adversities, often experienced by these children, converge on similar DNAm changes. Here, we calculated a cumulative adversity score, which additionally to CM includes socioeconomic status (SES), other life events, parental psychopathology and epigenetic biomarkers of prenatal smoking and alcohol consumption. We investigated the effects of CM alone as well as the adversity score on longitudinal DNAm trajectories in the Berlin Longitudinal Child Study. This is a cohort of 173 children aged 3-5 years at baseline of whom 86 were exposed to CM. These children were followed-up for 2 years with extensive psychometric and biological assessments as well as saliva collection at 5 time points providing genome-wide DNAm levels. Overall, only a few DNAm patterns were stable over this timeframe, but less than 10 DNAm regions showed significant changes. At baseline, neither CM nor the adversity score associated with DNAm changes. However, in 6 differentially methylated regions (DMRs), CM and the adversity score significantly moderated DNAm trajectories over time. A number of these DMRs have previously been associated with adverse prenatal exposures. In our study, children exposed to CM also presented with epigenetic signatures indicative of increased prenatal exposure to tobacco and alcohol, as compared to non-CM exposed children. These epigenetic signatures of prenatal exposure strongly correlate with DNAm regions associated with CM and the adversity score. Finally, weighted correlation network analysis revealed a module of CpGs exclusively associated with CM. While our study identifies DNAm loci specifically associated with CM, especially within long non-coding RNAs, the majority of associations were found with the adversity score with convergent association with indicators of adverse prenatal exposures. This study highlights the importance of mapping not only of the epigenome but also the exposome and extending the observational timeframe to well before birth.
Collapse
Affiliation(s)
- Jade Martins
- Dept. of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Darina Czamara
- Dept. of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Susann Sauer
- Dept. of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Monika Rex-Haffner
- Dept. of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Katja Dittrich
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Virchow, Department of Child and Adolescent Psychiatry, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Peggy Dörr
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Virchow, Department of Child and Adolescent Psychiatry, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Karin de Punder
- Natura Foundation, Research and Development, Numansdrop, 3281, NC, Netherlands
| | - Judith Overfeld
- Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
| | - Andrea Knop
- Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
| | - Felix Dammering
- Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
| | - Sonja Entringer
- Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
- University of California, Irvine, Development, Health, and Disease Research Program, Orange, CA, USA
| | - Sibylle M. Winter
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Virchow, Department of Child and Adolescent Psychiatry, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Claudia Buss
- Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
- University of California, Irvine, Development, Health, and Disease Research Program, Orange, CA, USA
| | - Christine Heim
- Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
- Dept. of Biobehavioral Health, College of Health & Human Development, The Pennsylvania State University, University Park, PA, USA
| | - Elisabeth B. Binder
- Dept. of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30329, USA
| |
Collapse
|
122
|
Shields AE, Zhang Y, Argentieri MA, Warner ET, Cozier YC, Liu C, Dye CK, Kent BV, Baccarelli AA, Palmer JR. Stress and spirituality in relation to HPA axis gene methylation among US Black women: results from the Black Women's Health Study and the Study on Stress, Spirituality and Health. Epigenomics 2021; 13:1711-1734. [PMID: 34726080 PMCID: PMC8579940 DOI: 10.2217/epi-2021-0275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Few epigenetics studies have been conducted within the Black community to examine the impact of diverse psychosocial stressors and resources for resiliency on the stress pathway (hypothalamus-pituitary-adrenal axis). Methods: Among 1000 participants from the Black Women's Health Study, associations between ten psychosocial stressors and DNA methylation (DNAm) of four stress-related genes (NR3C1, HSDB1, HSD11B2 and FKBP5) were tested. Whether religiosity or spirituality (R/S) significantly modified these stress-DNAm associations was also assessed. Results: Associations were found for several stressors with DNAm of individual CpG loci and average DNAm levels across each gene, but no associations remained significant after false discovery rate (FDR) correction. Several R/S variables appeared to modify the relationship between two stressors and DNAm, but no identified interaction remained significant after FDR correction. Conclusion: There is limited evidence for a strong signal between stress and DNAm of hypothalamus-pituitary-adrenal axis genes in this general population cohort of US Black women.
Collapse
Affiliation(s)
- Alexandra E Shields
- Harvard/MGH Center on Genomics, Vulnerable Populations & Health Disparities, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02114, USA
| | - Yuankai Zhang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - M Austin Argentieri
- Harvard/MGH Center on Genomics, Vulnerable Populations & Health Disparities, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
- School of Anthropology & Museum Ethnography, University of Oxford, Oxford, OX2 6PE, UK
| | - Erica T Warner
- Harvard/MGH Center on Genomics, Vulnerable Populations & Health Disparities, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
- Clinical Translational Epidemiology Unit, Mongan Institute, Department of Medicine, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Yvette C Cozier
- Boston University School of Public Health, Boston, MA 02118, USA
- Slone Epidemiology Center, Boston University, Boston, MA 02118, USA
| | - Chunyu Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Christian K Dye
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Blake Victor Kent
- Department of Sociology, Westmont College, Santa Barbara, CA 93108, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Julie R Palmer
- Boston University School of Public Health, Boston, MA 02118, USA
- Slone Epidemiology Center, Boston University, Boston, MA 02118, USA
| |
Collapse
|
123
|
Ibrahim P, Almeida D, Nagy C, Turecki G. Molecular impacts of childhood abuse on the human brain. Neurobiol Stress 2021; 15:100343. [PMID: 34141833 PMCID: PMC8187840 DOI: 10.1016/j.ynstr.2021.100343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/24/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022] Open
Abstract
Childhood abuse (CA) is a prevalent global health concern, increasing the risk of negative mental health outcomes later in life. In the literature, CA is commonly defined as physical, sexual, and emotional abuse, as well as neglect. Several mental disorders have been associated with CA, including depression, bipolar disorder, schizophrenia, and post-traumatic stress disorder, along with an increased risk of suicide. It is thought that traumatic life events occurring during childhood and adolescence may have a significant impact on essential brain functions, which may persist throughout adulthood. The interaction between the brain and the external environment can be mediated by epigenetic alterations in gene expression, and there is a growing body of evidence to show that such changes occur as a function of CA. Disruptions in the HPA axis, myelination, plasticity, and signaling have been identified in individuals with a history of CA. Understanding the molecular impact of CA on the brain is essential for the development of treatment and prevention measures. In this review, we will summarize studies that highlight the molecular changes associated with CA in the human brain, along with supporting evidence from peripheral studies and animal models. We will also discuss some of the limitations surrounding the study of CA and propose extracellular vesicles as a promising future approach in the field.
Collapse
Affiliation(s)
- Pascal Ibrahim
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
| | - Daniel Almeida
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
124
|
Layfield SD, Duffy LA, Phillips KA, Lardenoije R, Klengel T, Ressler KJ. Multiomic biological approaches to the study of child abuse and neglect. Pharmacol Biochem Behav 2021; 210:173271. [PMID: 34508786 PMCID: PMC8501413 DOI: 10.1016/j.pbb.2021.173271] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Childhood maltreatment, occurring in up to 20-30% of the population, remains far too common, and incorporates a range of active and passive factors, from abuse, to neglect, to the impacts of broader structural and systemic adversity. Despite the effects of childhood maltreatment and adversity on a wide range of adult physical and psychological negative outcomes, not all individuals respond similarly. Understanding the differential biological mechanisms contributing to risk vs. resilience in the face of developmental adversity is critical to improving preventions, treatments, and policy recommendations. This review begins by providing an overview of childhood abuse, neglect, maltreatment, threat, and toxic stress, and the effects of these forms of adversity on the developing body, brain, and behavior. It then examines examples from the current literature of genomic, epigenomic, transcriptomic, and proteomic discoveries and biomarkers that may help to understand risk and resilience in the aftermath of trauma, predictors of traumatic exposure risk, and potential targets for intervention and prevention. While the majority of genetic, epigenetic, and gene expression analyses to date have focused on targeted genes and hypotheses, large-scale consortia are now well-positioned to better understand interactions of environment and biology with much more statistical power. Ongoing and future work aimed at understanding the biology of childhood adversity and its effects will help to provide targets for intervention and prevention, as well as identify paths for how science, health care, and policy can combine efforts to protect and promote the psychological and physiological wellbeing of future generations.
Collapse
Affiliation(s)
- Savannah Dee Layfield
- Depression & Anxiety Division, McLean Hospital, Mass General Brigham, Belmont, MA, United States of America
| | - Lucie Anne Duffy
- Depression & Anxiety Division, McLean Hospital, Mass General Brigham, Belmont, MA, United States of America
| | - Karlye Allison Phillips
- Depression & Anxiety Division, McLean Hospital, Mass General Brigham, Belmont, MA, United States of America
| | - Roy Lardenoije
- Depression & Anxiety Division, McLean Hospital, Mass General Brigham, Belmont, MA, United States of America; Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Torsten Klengel
- Depression & Anxiety Division, McLean Hospital, Mass General Brigham, Belmont, MA, United States of America; Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany; Department of Psychiatry, Harvard Medical School, United States of America
| | - Kerry J Ressler
- Depression & Anxiety Division, McLean Hospital, Mass General Brigham, Belmont, MA, United States of America; Department of Psychiatry, Harvard Medical School, United States of America.
| |
Collapse
|
125
|
Meuthen D, Ferrari MCO, Chivers DP. Paternal care effects outweigh gamete-mediated and personal environment effects during the transgenerational estimation of risk in fathead minnows. BMC Ecol Evol 2021; 21:187. [PMID: 34635051 PMCID: PMC8507329 DOI: 10.1186/s12862-021-01919-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/24/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Individuals can estimate risk by integrating prenatal with postnatal and personal information, but the relative importance of different information sources during the transgenerational response is unclear. The estimated level of risk can be tested using the cognitive rule of risk allocation, which postulates that under consistent high-risk, antipredator efforts should decrease so that individual metabolic requirements can be satisfied. Here we conduct a comprehensive study on transgenerational risk transmission by testing whether risk allocation occurs across 12 treatments that consist of different maternal, paternal, parental care (including cross-fostering) and offspring risk environment combinations in the fathead minnow Pimephales promelas, a small cyprinid fish with alloparental care. In each risk environment, we manipulated perceived risk by continuously exposing individuals from birth onwards to conspecific alarm cues or a control water treatment. Using 2810 1-month old individuals, we then estimated shoaling behaviour prior to and subsequent to a novel mechanical predator disturbance. RESULTS Overall, shoals estimating risk to be high were denser during the prestimulus period, and, following the risk allocation hypothesis, resumed normal shoaling densities faster following the disturbance. Treatments involving parental care consistently induced densest shoals and greatest levels of risk allocation. Although prenatal risk environments did not relate to paternal care intensity, greater care intensity induced more risk allocation when parents provided care for their own offspring as opposed to those that cross-fostered fry. In the absence of care, parental effects on shoaling density were relatively weak and personal environments modulated risk allocation only when parental risk was low. CONCLUSIONS Our study highlights the high relative importance of parental care as opposed to other information sources, and its function as a mechanism underlying transgenerational risk transmission.
Collapse
Affiliation(s)
- Denis Meuthen
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada.
- Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany.
| | - Maud C O Ferrari
- Department of Veterinary Biomedical Sciences, WCVM, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| |
Collapse
|
126
|
Abstract
Epigenetic mechanisms such as DNA methylation (DNAm) have been associated with stress responses and increased vulnerability to depression. Abnormal DNAm is observed in stressed animals and depressed individuals. Antidepressant treatment modulates DNAm levels and regulates gene expression in diverse tissues, including the brain and the blood. Therefore, DNAm could be a potential therapeutic target in depression. Here, we reviewed the current knowledge about the involvement of DNAm in the behavioural and molecular changes associated with stress exposure and depression. We also evaluated the possible use of DNAm changes as biomarkers of depression. Finally, we discussed current knowledge limitations and future perspectives.
Collapse
|
127
|
Motavalli R, Majidi T, Pourlak T, Abediazar S, Shoja MM, Zununi Vahed S, Etemadi J. The clinical significance of the glucocorticoid receptors: Genetics and epigenetics. J Steroid Biochem Mol Biol 2021; 213:105952. [PMID: 34274458 DOI: 10.1016/j.jsbmb.2021.105952] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 12/14/2022]
Abstract
The impacts of glucocorticoids (GCs) are mainly mediated by a nuclear receptor (GR) existing in almost every tissue. The GR regulates a wide range of physiological functions, including inflammation, cell metabolism, and differentiation playing a major role in cellular responses to GCs and stress. Therefore, the dysregulation or disruption of GR can cause deficiencies in the adaptation to stress and the preservation of homeostasis. The number of GR polymorphisms associated with different diseases has been mounting per year. Tackling these clinical complications obliges a comprehensive understanding of the molecular network action of GCs at the level of the GR structure and its signaling pathways. Beyond genetic variation in the GR gene, epigenetic changes can enhance our understanding of causal factors involved in the development of diseases and identifying biomarkers. In this review, we highlight the relationships of GC receptor gene polymorphisms and epigenetics with different diseases.
Collapse
Affiliation(s)
- Roza Motavalli
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taraneh Majidi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tala Pourlak
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Abediazar
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali M Shoja
- Clinical Academy of Teaching and Learning, Ross University School of Medicine, Miramar, FL, USA
| | | | - Jalal Etemadi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
128
|
Duclot F, Kabbaj M. Epigenetics of Aggression. Curr Top Behav Neurosci 2021; 54:283-310. [PMID: 34595741 DOI: 10.1007/7854_2021_252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Aggression is a complex behavioral trait modulated by both genetic and environmental influences on gene expression. By controlling gene expression in a reversible yet potentially lasting manner in response to environmental stimulation, epigenetic mechanisms represent prime candidates in explaining both individual differences in aggression and the development of elevated aggressive behaviors following life adversity. In this manuscript, we review the evidence for an epigenetic basis in the development and expression of aggression in both humans and related preclinical animal models. In particular, we discuss reports linking DNA methylation, histone post-translational modifications, as well as non-coding RNA, to the regulation of a variety of genes implicated in the neurobiology of aggression including neuropeptides, the serotoninergic and dopaminergic systems, and stress response related systems. While clinical reports do reveal interesting patterns of DNA methylation underlying individual differences and experience-induced aggressive behaviors, they do, in general, face the challenge of linking peripheral observations to central nervous system regulations. Preclinical studies, on the other hand, provide detailed mechanistic insights into the epigenetic reprogramming of gene expression following life adversities. Although the functional link to aggression remains unclear in most, these studies together do highlight the involvement of epigenetic events driven by DNA methylation, histone modifications, and non-coding RNA in the neuroadaptations underlying the development and expression of aggression.
Collapse
Affiliation(s)
- Florian Duclot
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| | - Mohamed Kabbaj
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
129
|
Lindsay EK. Mindfulness interventions for offsetting health risk following early life stress: Promising directions. Brain Behav Immun Health 2021; 17:100338. [PMID: 34589821 PMCID: PMC8474678 DOI: 10.1016/j.bbih.2021.100338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022] Open
Abstract
Early life stress (ELS), common to childhood maltreatment, socioeconomic disadvantage, and racial discrimination, is thought to create a proinflammatory phenotype that increases risk for poor health in adulthood. Systemic change is needed to address the root causes of ELS, but a substantial number of adults are already at increased health risk by virtue of ELS exposure. Interventions that target stress pathways have the potential to interrupt the trajectory from ELS to inflammatory disease risk in adulthood. Mindfulness-based interventions (MBIs), which train acceptance toward present-moment experience, have shown promise for reducing stress and improving a variety of stress-sensitive health outcomes. Although MBIs have primarily been conducted in more advantaged populations, evidence suggests that they may be uniquely effective for improving mental health and health-related quality of life among those with a history of ELS. Whether these effects extend to physical health remains unknown. To shed light on this question, I review evidence that MBIs influence inflammatory markers in at-risk samples, explore the promise of MBIs for improving stress-related health outcomes in diverse at-risk populations, and describe adaptations to MBIs that may increase their acceptability and efficacy in populations exposed to ELS. This prior work sets the stage for well-controlled RCTs to evaluate whether MBIs influence stress and inflammatory pathways among those exposed to ELS and for pragmatic and implementation trials focused on disseminating MBIs to reach these at-risk populations. Overall, the evidence assembled here shows the potential of MBIs for offsetting physical health risk related to ELS.
Collapse
Affiliation(s)
- Emily K Lindsay
- University of Pittsburgh, Department of Psychology 600 Old Engineering Hall, 3943 O'Hara Street, Pittsburgh, PA, 15213, USA
| |
Collapse
|
130
|
Chalfun G, Reis MM, de Oliveira MBG, de Araújo Brasil A, Dos Santos Salú M, da Cunha AJLA, Prata-Barbosa A, de Magalhães-Barbosa MC. Perinatal stress and methylation of the NR3C1 gene in newborns: systematic review. Epigenetics 2021; 17:1003-1019. [PMID: 34519616 DOI: 10.1080/15592294.2021.1980691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Adverse experiences in the perinatal period have been associated with the methylation of the human glucocorticoid receptor gene (NR3C1) and long-term diseases. We conducted a systematic review on the association between adversities in the perinatal period and DNA methylation in the 1 F region of the NR3C1 gene in newborns. We explored the MEDLINE, Web of Science, Scopus, Scielo, and Lilacs databases without time or language limitations. Two independent reviewers performed the selection of articles and data extraction. A third participated in the methodological quality assessment and consensus meetings at all stages. Finally, ten studies were selected. Methodological quality was considered moderate in six and low in four. Methylation changes were reported in 41 of the 47 CpG sites of exon 1 F. Six studies addressed maternal conditions during pregnancy: two reported methylation changes at the same sites (CpG 10, 13, 20, 21 and 47), and four at one or more sites from CpG 35 to 39. Four studies addressed neonatal parameters and morbidities: methylation changes at the same sites 4, 8, 10, 16, 25, and 35 were reported in two. Hypermethylation associated with stressful conditions prevailed. Hypomethylation was more often associated with protective conditions (maternal-foetal attachment during pregnancy, breast milk intake, higher birth weight or Apgar). In conclusion, methylation changes in several sites of the 1 F region of the NR3C1 gene in newborns and very young infants were associated with perinatal stress, but more robust and comparable results are needed to corroborate site-specific associations.
Collapse
Affiliation(s)
- Georgia Chalfun
- Department of Pediatrics, D'Or Institute for Research and Education (Idor), Rio de Janeiro, RJ, Brazil.,Federal University of Rio de Janeiro (Ufrj), Rio De Janeiro, RJ, Brazil
| | - Marcelo Martins Reis
- Department of Pediatrics, D'Or Institute for Research and Education (Idor), Rio de Janeiro, RJ, Brazil
| | | | - Aline de Araújo Brasil
- Department of Pediatrics, D'Or Institute for Research and Education (Idor), Rio de Janeiro, RJ, Brazil
| | - Margarida Dos Santos Salú
- Department of Pediatrics, D'Or Institute for Research and Education (Idor), Rio de Janeiro, RJ, Brazil
| | - Antônio José Ledo Alves da Cunha
- Department of Pediatrics, D'Or Institute for Research and Education (Idor), Rio de Janeiro, RJ, Brazil.,Federal University of Rio de Janeiro (Ufrj), Rio De Janeiro, RJ, Brazil
| | - Arnaldo Prata-Barbosa
- Department of Pediatrics, D'Or Institute for Research and Education (Idor), Rio de Janeiro, RJ, Brazil.,Federal University of Rio de Janeiro (Ufrj), Rio De Janeiro, RJ, Brazil
| | | |
Collapse
|
131
|
Lubben N, Ensink E, Coetzee GA, Labrie V. The enigma and implications of brain hemispheric asymmetry in neurodegenerative diseases. Brain Commun 2021; 3:fcab211. [PMID: 34557668 PMCID: PMC8454206 DOI: 10.1093/braincomms/fcab211] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/16/2021] [Accepted: 08/10/2021] [Indexed: 01/15/2023] Open
Abstract
The lateralization of the human brain may provide clues into the pathogenesis and progression of neurodegenerative diseases. Though differing in their presentation and underlying pathologies, neurodegenerative diseases are all devastating and share an intriguing theme of asymmetrical pathology and clinical symptoms. Parkinson’s disease, with its distinctive onset of motor symptoms on one side of the body, stands out in this regard, but a review of the literature reveals asymmetries in several other neurodegenerative diseases. Here, we review the lateralization of the structure and function of the healthy human brain and the common genetic and epigenetic patterns contributing to the development of asymmetry in health and disease. We specifically examine the role of asymmetry in Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, and interrogate whether these imbalances may reveal meaningful clues about the origins of these diseases. We also propose several hypotheses for how lateralization may contribute to the distinctive and enigmatic features of asymmetry in neurodegenerative diseases, suggesting a role for asymmetry in the choroid plexus, neurochemistry, protein distribution, brain connectivity and the vagus nerve. Finally, we suggest how future studies may reveal novel insights into these diseases through the lens of asymmetry.
Collapse
Affiliation(s)
- Noah Lubben
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Elizabeth Ensink
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Gerhard A Coetzee
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Viviane Labrie
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
132
|
Spies LML, Verhoog NJD, Louw A. Acquired Glucocorticoid Resistance Due to Homologous Glucocorticoid Receptor Downregulation: A Modern Look at an Age-Old Problem. Cells 2021; 10:2529. [PMID: 34685511 PMCID: PMC8533966 DOI: 10.3390/cells10102529] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
For over 70 years, the unique anti-inflammatory properties of glucocorticoids (GCs), which mediate their effects via the ligand-activated transcription factor, the glucocorticoid receptor alpha (GRα), have allowed for the use of these steroid hormones in the treatment of various autoimmune and inflammatory-linked diseases. However, aside from the onset of severe side-effects, chronic GC therapy often leads to the ligand-mediated downregulation of the GRα which, in turn, leads to a decrease in GC sensitivity, and effectively, the development of acquired GC resistance. Although the ligand-mediated downregulation of GRα is well documented, the precise factors which influence this process are not well understood and, thus, the development of an acquired GC resistance presents an ever-increasing challenge to the pharmaceutical industry. Recently, however, studies have correlated the dimerization status of the GRα with its ligand-mediated downregulation. Therefore, the current review will be discussing the major role-players in the homologous downregulation of the GRα pool, with a specific focus on previously reported GC-mediated reductions in GRα mRNA and protein levels, the molecular mechanisms through which the GRα functional pool is maintained and the possible impact of receptor conformation on GC-mediated GRα downregulation.
Collapse
Affiliation(s)
| | | | - Ann Louw
- Department of Biochemistry, Stellenbosch University, Van de Byl Street, Stellenbosch 7200, South Africa; (L.-M.L.S.); (N.J.D.V.)
| |
Collapse
|
133
|
Karunakaran KB, Amemori S, Balakrishnan N, Ganapathiraju MK, Amemori KI. Generalized and social anxiety disorder interactomes show distinctive overlaps with striosome and matrix interactomes. Sci Rep 2021; 11:18392. [PMID: 34526518 PMCID: PMC8443595 DOI: 10.1038/s41598-021-97418-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Mechanisms underlying anxiety disorders remain elusive despite the discovery of several associated genes. We constructed the protein-protein interaction networks (interactomes) of six anxiety disorders and noted enrichment for striatal expression among common genes in the interactomes. Five of these interactomes shared distinctive overlaps with the interactomes of genes that were differentially expressed in two striatal compartments (striosomes and matrix). Generalized anxiety disorder and social anxiety disorder interactomes showed exclusive and statistically significant overlaps with the striosome and matrix interactomes, respectively. Systematic gene expression analysis with the anxiety disorder interactomes constrained to contain only those genes that were shared with striatal compartment interactomes revealed a bifurcation among the disorders, which was influenced by the anterior cingulate cortex, nucleus accumbens, amygdala and hippocampus, and the dopaminergic signaling pathway. Our results indicate that the functionally distinct striatal pathways constituted by the striosome and the matrix may influence the etiological differentiation of various anxiety disorders.
Collapse
Affiliation(s)
- Kalyani B Karunakaran
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
| | - Satoko Amemori
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - N Balakrishnan
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
| | - Madhavi K Ganapathiraju
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, USA.
- Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, USA.
| | - Ken-Ichi Amemori
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan.
| |
Collapse
|
134
|
Ramirez K, Fernández R, Collet S, Kiyar M, Delgado-Zayas E, Gómez-Gil E, Van Den Eynde T, T'Sjoen G, Guillamon A, Mueller SC, Pásaro E. Epigenetics Is Implicated in the Basis of Gender Incongruence: An Epigenome-Wide Association Analysis. Front Neurosci 2021; 15:701017. [PMID: 34489625 PMCID: PMC8418298 DOI: 10.3389/fnins.2021.701017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction The main objective was to carry out a global DNA methylation analysis in a population with gender incongruence before gender-affirming hormone treatment (GAHT), in comparison to a cisgender population. Methods A global CpG (cytosine-phosphate-guanine) methylation analysis was performed on blood from 16 transgender people before GAHT vs. 16 cisgender people using the Illumina© Infinium Human Methylation 850k BeadChip, after bisulfite conversion. Changes in the DNA methylome in cisgender vs. transgender populations were analyzed with the Partek® Genomics Suite program by a 2-way ANOVA test comparing populations by group and their sex assigned at birth. Results The principal components analysis (PCA) showed that both populations (cis and trans) differ in the degree of global CpG methylation prior to GAHT. The 2-way ANOVA test showed 71,515 CpGs that passed the criterion FDR p < 0.05. Subsequently, in male assigned at birth population we found 87 CpGs that passed both criteria (FDR p < 0.05; fold change ≥ ± 2) of which 22 were located in islands. The most significant CpGs were related to genes: WDR45B, SLC6A20, NHLH1, PLEKHA5, UBALD1, SLC37A1, ARL6IP1, GRASP, and NCOA6. Regarding the female assigned at birth populations, we found 2 CpGs that passed both criteria (FDR p < 0.05; fold change ≥ ± 2), but none were located in islands. One of these CpGs, related to the MPPED2 gene, is shared by both, trans men and trans women. The enrichment analysis showed that these genes are involved in functions such as negative regulation of gene expression (GO:0010629), central nervous system development (GO:0007417), brain development (GO:0007420), ribonucleotide binding (GO:0032553), and RNA binding (GO:0003723), among others. Strengths and Limitations It is the first time that a global CpG methylation analysis has been carried out in a population with gender incongruence before GAHT. A prospective study before/during GAHT would provide a better understanding of the influence of epigenetics in this process. Conclusion The main finding of this study is that the cis and trans populations have different global CpG methylation profiles prior to GAHT. Therefore, our results suggest that epigenetics may be involved in the etiology of gender incongruence.
Collapse
Affiliation(s)
- Karla Ramirez
- Laboratory of Psychobiology, Department of Psychology, Institute Advanced Scientific Research Center (CICA), University of A Coruña, A Coruña, Spain.,Laboratory of Neurophysiology, Center for Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Rosa Fernández
- Laboratory of Psychobiology, Department of Psychology, Institute Advanced Scientific Research Center (CICA), University of A Coruña, A Coruña, Spain
| | - Sarah Collet
- Department of Endocrinology, Ghent University, Ghent, Belgium
| | - Meltem Kiyar
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Enrique Delgado-Zayas
- Laboratory of Psychobiology, Department of Psychology, Institute Advanced Scientific Research Center (CICA), University of A Coruña, A Coruña, Spain
| | | | | | - Guy T'Sjoen
- Department of Endocrinology, Ghent University, Ghent, Belgium
| | - Antonio Guillamon
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
| | - Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Eduardo Pásaro
- Laboratory of Psychobiology, Department of Psychology, Institute Advanced Scientific Research Center (CICA), University of A Coruña, A Coruña, Spain
| |
Collapse
|
135
|
Cheng W, Luo N, Zhang Y, Zhang X, Tan H, Zhang D, Sui J, Yue W, Yan H. DNA Methylation and Resting Brain Function Mediate the Association between Childhood Urbanicity and Better Speed of Processing. Cereb Cortex 2021; 31:4709-4718. [PMID: 33987663 PMCID: PMC8408435 DOI: 10.1093/cercor/bhab117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 01/10/2023] Open
Abstract
Urbanicity has been suggested to affect cognition, but the underlying mechanism remains unknown. We examined whether epigenetic modification (DNA methylation, DNAm), and brain white matter fiber integrity (fractional anisotropy, FA) or local spontaneous brain function activity (regional homogeneity, ReHo) play roles in the association between childhood urbanicity and cognition based on 497 healthy Chinese adults. We found significant correlation between childhood urbanicity and better cognitive performance. Multiset canonical correlation analysis (mCCA) identified an intercorrelated DNAm-FA-ReHo triplet, which showed significant pairwise correlations (DNAm-FA: Bonferroni-adjusted P, Pbon = 4.99E-03, rho = 0.216; DNAm-ReHo: Pbon = 4.08E-03, rho = 0.239; ReHo-FA: Pbon = 1.68E-06, rho = 0.328). Causal mediation analysis revealed that 1) ReHo mediated 10.86% childhood urbanicity effects on the speed of processing and 2) childhood urbanicity alters ReHo through DNA methylation in the cadherin and Wnt signaling pathways (mediated effect: 48.55%). The mediation effect of increased ReHo in the superior temporal gyrus underlying urbanicity impact on a better speed of processing was further validated in an independent cohort. Our work suggests a mediation role for ReHo, particularly increased brain activity in the superior temporal gyrus, in the urbanicity-associated speed of processing.
Collapse
Affiliation(s)
- Weiqiu Cheng
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Na Luo
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuyanan Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Xiao Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Haoyang Tan
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dai Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Jing Sui
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Weihua Yue
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Hao Yan
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| |
Collapse
|
136
|
Expression of candidate genes for residual feed intake in tropically adapted Bos taurus and Bos indicus bulls under thermoneutral and heat stress environmental conditions. J Therm Biol 2021; 99:102998. [PMID: 34420630 DOI: 10.1016/j.jtherbio.2021.102998] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 01/17/2023]
Abstract
The objectives of this study were to measure the relative expression of the ATP1A1, NR3C1, POMC, NPY, and LEP genes in Caracu (Bos taurus) and Nelore (Bos indicus) bulls submitted to feed efficiency tests at high environmental temperatures, and to evaluate differences in adaptability to tropical conditions between breeds. Thirty-five Caracu and 30 Nelore bulls were submitted to a feed efficiency test using automated feeding stations. At the end of the test, the animals were subjected to thermoneutral (TN) and heat stress (HS) conditions. Blood samples were collected after the exposure to the TN and HS conditions and the relative expression of genes was measured by qPCR. The bulls exhibited lower expression of ATP1A1 in the HS condition than in the TN condition (1.98 ± 0.27 and 2.86 ± 0.26, P = 0.02), while the relative expression of NR3C1, POMC, and LEP did not differ (P > 0.05) between climatic conditions. The breed and feed intake influenced NPY and LEP expression levels (P < 0.05). Different climate conditions associated with residual feed intake can modify the gene expression patterns of ATP1A1 and NPY. The association observed among all genes studied shows that they are involved in appetite control. Bos taurus and Bos indicus bulls exhibited similar adaptability to tropical climate conditions.
Collapse
|
137
|
Crossman CA, Barrett-Lennard LG, Frasier TR. An example of DNA methylation as a means to quantify stress in wildlife using killer whales. Sci Rep 2021; 11:16822. [PMID: 34413356 PMCID: PMC8377091 DOI: 10.1038/s41598-021-96255-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022] Open
Abstract
The cumulative effects of non-lethal stressors on the health of biodiversity are a primary concern for conservation, yet difficulties remain regarding their quantification. In mammals, many stressors are processed through a common stress-response pathway, and therefore epigenetic changes in genes of this pathway may provide a powerful tool for quantifying cumulative effects. As a preliminary assessment of this approach, we investigated epigenetic manifestations of stress in two killer whale populations with different levels of exposure to anthropogenic stressors. We used bisulfite amplicon sequencing to compare patterns of DNA methylation at 25 CpG sites found in three genes involved in stress response and identified large differences in the level of methylation at two sites consistent with differential stress exposure between Northern and Southern Resident killer whale populations. DNA methylation patterns could therefore represent a useful method to assess the cumulative effects of non-lethal stressors in wildlife.
Collapse
Affiliation(s)
- Carla A Crossman
- Biology Department, Saint Mary's University, Halifax, NS, Canada.
| | - Lance G Barrett-Lennard
- Coastal Ocean Research Institute, Ocean Wise Conservation Association, Vancouver, BC, Canada
| | | |
Collapse
|
138
|
Li G, Raffield L, Logue M, Miller MW, Santos HP, O’Shea TM, Fry RC, Li Y. CUE: CpG impUtation ensemble for DNA methylation levels across the human methylation450 (HM450) and EPIC (HM850) BeadChip platforms. Epigenetics 2021; 16:851-861. [PMID: 33016200 PMCID: PMC8330997 DOI: 10.1080/15592294.2020.1827716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/08/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022] Open
Abstract
DNA methylation at CpG dinucleotides is one of the most extensively studied epigenetic marks. With technological advancements, geneticists can profile DNA methylation with multiple reliable approaches. However, profiling platforms can differ substantially in the CpGs they assess, consequently hindering integrated analysis across platforms. Here, we present CpG impUtation Ensemble (CUE), which leverages multiple classical statistical and modern machine learning methods, to impute from the Illumina HumanMethylation450 (HM450) BeadChip to the Illumina HumanMethylationEPIC (HM850) BeadChip. Data were analysed from two population cohorts with methylation measured both by HM450 and HM850: the Extremely Low Gestational Age Newborns (ELGAN) study (n = 127, placenta) and the VA Boston Posttraumatic Stress Disorder (PTSD) genetics repository (n = 144, whole blood). Cross-validation results show that CUE achieves the lowest predicted root-mean-square error (RMSE) (0.026 in PTSD) and the highest accuracy (99.97% in PTSD) compared with five individual methods tested, including k-nearest-neighbours, logistic regression, penalized functional regression, random forest, and XGBoost. Finally, among all 339,033 HM850-only CpG sites shared between ELGAN and PTSD, CUE successfully imputed 289,604 (85.4%) sites, where success was defined as RMSE < 0.05 and accuracy >95% in PTSD. In summary, CUE is a valuable tool for imputing CpG methylation from the HM450 to HM850 platform.
Collapse
Affiliation(s)
- Gang Li
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Mark Logue
- National Center for PTSD: Behavioral Sciences Division at VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Mark W. Miller
- National Center for PTSD: Behavioral Sciences Division at VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Hudson P. Santos
- School of Nursing, University of North Carolina, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - T. Michael O’Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C. Fry
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
139
|
Girgenti MJ, Pothula S, Newton SS. Stress and Its Impact on the Transcriptome. Biol Psychiatry 2021; 90:102-108. [PMID: 33637305 PMCID: PMC8213869 DOI: 10.1016/j.biopsych.2020.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/01/2020] [Accepted: 12/14/2020] [Indexed: 01/30/2023]
Abstract
Exposure to stress during the course of a lifetime is inevitable in the animal kingdom. It is the response to stress, the valence of the exposure, and the developmental time point that largely determine the consequences to the initial and subsequent exposures. The versatility of transcriptomic methods to yield rich, high-resolution, information-laden datasets from entire brain regions to single cells makes it a powerful approach to investigate the effects of stress from several angles. Dysregulation of the transcriptome is now a phenotypic signature of many neuropsychiatric disorders. New insight has been gained from examining stress-induced changes in gene expression at a global scale. Human postmortem datasets from depression and posttraumatic stress disorder studies have identified major gene expression changes in the diseased brain, including sex-specific changes and marked differences in male and female molecular profiles for the same disorder. Extensions of this work into animal models have explored the impact of transcriptomic dysregulation on early-life stress, chronic stress, and transgenerational impact of stress. Here, we explore the findings of human postmortem genomic studies of neuropsychiatric disorders and comparable animal models through the lens of transcriptomic dysregulation and how these findings have contributed to our understanding of stress.
Collapse
Affiliation(s)
- Matthew J Girgenti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT,Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT,National Center for PTSD, U.S. Department of Veterans Affairs
| | - Santosh Pothula
- Department of Psychiatry, Yale School of Medicine, New Haven, CT
| | - Samuel S Newton
- Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota; Sioux Falls VA Healthcare System, Sioux Falls, South Dakota.
| |
Collapse
|
140
|
Clougherty JE, Humphrey JL, Kinnee EJ, Robinson LF, McClure LA, Kubzansky LD, Reid CE. Social Susceptibility to Multiple Air Pollutants in Cardiovascular Disease. Res Rep Health Eff Inst 2021; 2021:1-71. [PMID: 36004603 PMCID: PMC9403800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
INTRODUCTION Cardiovascular disease (CVD) is the leading cause of death in the United States, and substantial research has linked ambient air pollution to elevated rates of CVD etiology and events. Much of this research identified increased effects of air pollution in lower socioeconomic position (SEP) communities, where pollution exposures are also often higher. The complex spatial confounding between air pollution and SEP makes it very challenging, however, to disentangle the impacts of these very different exposure types and to accurately assess their interactions. The specific causal components (i.e., specific social stressors) underlying this SEP-related susceptibility remain unknown, because there are myriad pathways through which poverty and/or lower-SEP conditions may influence pollution susceptibility - including diet, smoking, coexposures in the home and occupational environments, health behaviors, and healthcare access. Growing evidence suggests that a substantial portion of SEP-related susceptibility may be due to chronic psychosocial stress - given the known wide-ranging impacts of chronic stress on immune, endocrine, and metabolic function - and to a higher prevalence of unpredictable chronic stressors in many lower-SEP communities, including violence, job insecurity, and housing instability. As such, elucidating susceptibility to pollution in the etiology of CVD, and in the risk of CVD events, has been identified as a research priority. This interplay among social and environmental conditions may be particularly relevant for CVD, because pollution and chronic stress both impact inflammation, metabolic function, oxidative stress, hypertension, atherosclerosis, and other processes relevant to CVD etiology. Because pollution exposures are often spatially patterned by SEP, disentangling their effects - and quantifying any interplay - is especially challenging. Doing so, however, would help to improve our ability to identify and characterize susceptible populations and to improve our understanding of how community stressors may alter responses to multiple air pollutants. More clearly characterizing susceptible populations will improve our ability to design and target interventions more effectively (and cost-effectively) and may reveal greater benefits of pollution reduction in susceptible communities, strengthening cost-benefit and accountability analyses, ultimately reducing the disproportionate burden of CVD and reducing health disparities. METHODS In the current study, we aimed to quantify combined effects of multiple pollutants and stressor exposures on CVD events, using a number of unique datasets we have compiled and verified, including the following. 1. Poverty metrics, violent crime rates, a composite socioeconomic deprivation index (SDI), an index of racial and economic segregation, noise disturbance metrics, and three composite spatial factors produced from a factor analysis of 27 community stressors. All indicators have citywide coverage and were verified against individual reports of stress and stressor exposure, in citywide focus groups and surveys. 2. Spatial surfaces for multiple pollutants from the New York City (NYC) Community Air Survey (NYCCAS), which monitored multiple pollutants year-round at 150 sites and used land use regression (LUR) modeling to estimate fine-scale (100-m) intra-urban spatial variance in fine particles (PM2.5), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3). 3. Daily data and time-trends derived from all U.S. Environmental Protection Agency (EPA) Air Quality System (AQS) monitors in NYC for 2005-2011, which we combined with NYCCAS surfaces to create residence- and day-specific spatiotemporal exposure estimates. 4. Complete data on in- and out-patient unscheduled CVD events presented in NYC hospitals for 2005-2011 (n = 1,113,185) from the New York State (NYS) Department of Health's Statewide Planning and Research Cooperative System (SPARCS). In the study, we quantified relationships between multiple pollutant exposures and both community CVD event rates and individual risk of CVD events in NYC and tested whether pollution-CVD associations varied by community SEP and social stressor exposures. We hypothesized (1) that greater chronic community-level SEP, stressor, and pollution exposures would be associated with higher community CVD rates; (2) that spatiotemporal variations in multiple pollutants would be associated with excess risk of CVD events; and (3) that pollution-CVD associations would be stronger in communities of lower SEP or higher stressor exposures. RESULTS To first understand the separate and combined associations with CVD for both stressors and pollutants measured at the same spatial and temporal scale of resolution, we used ecological cross-sectional models to examine spatial relationships between multiple chronic pollutant and stressor exposures and age-adjusted community CVD rates. Using census-tract-level annual averages (n = 2,167), we compared associations with CVD rates for multiple pollutant concentrations and social stressors. We found that associations with community CVD rates were consistently stronger for social stressors than for pollutants, in terms of both magnitude and significance. We note, however, that this result may be driven by the relatively greater variation (on a proportional basis) for stressors than for pollutants in NYC. We also tested effect modification of pollutant-CVD associations by each social stressor and found evidence of stronger associations for NO2, PM2.5, and wintertime SO2 with CVD rates, particularly across quintiles of increasing community violence or assault rates (P trend < 0.0001). To examine individual-level associations between spatiotemporal exposures to multiple pollutants and the risk of CVD events, across multiple lag days, we examined the combined effects of multiple pollutant exposures, using spatiotemporal (day- and residence-specific) pollution exposure estimates and hospital data on individual CVD events in case-crossover models, which inherently adjust for nontime-varying individual confounders (e.g., sex and race) and comorbidities. We found consistent significant relationships only for same-day pollutant exposures and the risk of CVD events, suggesting very acute impacts of pollution on CVD risk. Associations with CVD were positive for NO2, PM2.5, and SO2, as hypothesized, and we found inverse associations for O3 (a secondary pollutant chemically decreased ["scavenged"] by fresh emissions that, in NYC, displays spatial and temporal patterns opposite those of NO2). Finally, to test effect modification by chronic community social stressors on the relationships between spatiotemporal pollution measures and the risk of CVD events, we used individual-level case-crossover models, adding interaction terms with categorical versions of each social stressor. We found that associations between NO2 and the risk of CVD events were significantly elevated only in communities with the highest exposures to social stressors (i.e., in the highest quintiles of poverty, socioeconomic deprivation, violence, or assault). The largest positive associations for PM2.5 and winter SO2 were generally found in the highest-stressor communities but were not significant in any quintile. We again found inverse associations for O3, which were likewise stronger for individuals living in communities with greater stressor exposures. CONCLUSIONS In ecological models, we found stronger relationships with community CVD rates for social stressors than for pollutant exposures. In case-crossover analyses, higher exposures to NO2, PM2.5, and SO2 were associated with greater excess risk of CVD events but only on the case day (there were no consistent significant lagged-day effects). In effect-modification analyses at both the community and individual level, we found evidence of stronger pollution-CVD associations in communities with higher stressor exposures. Given substantial spatial confounding across multiple social stressors, further research is needed to disentangle these effects in order to identify the predominant social stressors driving this observed differential susceptibility.
Collapse
Affiliation(s)
- J E Clougherty
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, Pennsylvania
| | - J L Humphrey
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, Pennsylvania
| | - E J Kinnee
- University of Pittsburgh Center for Social & Urban Research, Pittsburgh, Pennsylvania
| | - L F Robinson
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, Pennsylvania
| | - L A McClure
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, Pennsylvania
| | - L D Kubzansky
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - C E Reid
- University of Colorado, Boulder, Colorado
| |
Collapse
|
141
|
Burenkova OV, Naumova OY, Grigorenko EL. Stress in the onset and aggravation of learning disabilities. DEVELOPMENTAL REVIEW 2021; 61. [PMID: 34219858 DOI: 10.1016/j.dr.2021.100968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite substantial grounds for such research, the role of chronic exposure to stressors in the onset and aggravation of learning disabilities (LDs) is largely unexplored. In this review, we first consider the hormonal, (epi)genetic, and neurobiological mechanisms that might underlie the impact of adverse childhood experiences, a form of chronic stressors, on the onset of LDs. We then found that stress factors combined with feelings of inferiority, low self-esteem, and peer victimization could potentially further aggravate academic failures in children with LDs. Since effective evidence-based interventions for reducing chronic stress in children with LDs could improve their academic performance, consideration of the role of exposure to stressors in children with LDs has both theoretical and practical importance, especially when delivered in combination with academic interventions.
Collapse
Affiliation(s)
- Olga V Burenkova
- Department of Psychology, University of Houston, Houston, Texas, United States of America.,Department of Psychology, Saint-Petersburg State University, Saint Petersburg, Russian Federation
| | - Oksana Yu Naumova
- Department of Psychology, University of Houston, Houston, Texas, United States of America.,Department of Psychology, Saint-Petersburg State University, Saint Petersburg, Russian Federation.,Human Genetics Laboratory, Vavilov Institute of General Genetics RAS, Moscow, Russian Federation
| | - Elena L Grigorenko
- Department of Psychology, University of Houston, Houston, Texas, United States of America.,Department of Psychology, Saint-Petersburg State University, Saint Petersburg, Russian Federation.,Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
142
|
Suarez-Lopez JR, Cairns MR, Sripada K, Quiros-Alcala L, Mielke HW, Eskenazi B, Etzel RA, Kordas K. COVID-19 and children's health in the United States: Consideration of physical and social environments during the pandemic. ENVIRONMENTAL RESEARCH 2021; 197:111160. [PMID: 33852915 PMCID: PMC8542993 DOI: 10.1016/j.envres.2021.111160] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/12/2021] [Accepted: 04/07/2021] [Indexed: 05/08/2023]
Abstract
Public health measures necessary to counteract the coronavirus disease 2019 (COVID-19) pandemic have resulted in dramatic changes in the physical and social environments within which children grow and develop. As our understanding of the pathways for viral exposure and associated health outcomes in children evolves, it is critical to consider how changes in the social, cultural, economic, and physical environments resulting from the pandemic could affect the development of children. This review article considers the environments and settings that create the backdrop for children's health in the United States during the COVID-19 pandemic, including current threats to child development that stem from: A) change in exposures to environmental contaminants such as heavy metals, pesticides, disinfectants, air pollution and the built environment; B) changes in food environments resulting from adverse economic repercussion of the pandemic and limited reach of existing safety nets; C) limited access to children's educational and developmental resources; D) changes in the social environments at the individual and household levels, and their interplay with family stressors and mental health; E) social injustice and racism. The environmental changes due to COVID-19 are overlaid onto existing environmental and social disparities. This results in disproportionate effects among children in low-income settings and among populations experiencing the effects of structural racism. This article draws attention to many environments that should be considered in current and future policy responses to protect children's health amid pandemics.
Collapse
Affiliation(s)
- Jose R Suarez-Lopez
- Department of Family Medicine and Public Health, and Herbert Wertheim School of Public Health and Human Longevity, University of California San Diego, La Jolla, CA, USA.
| | - Maryann R Cairns
- Department of Anthropology, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, USA
| | - Kam Sripada
- Centre for Global Health Inequalities Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lesliam Quiros-Alcala
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Howard W Mielke
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health, School of Public Health, University of California, Berkeley, CA, USA
| | - Ruth A Etzel
- Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, 14214, USA
| |
Collapse
|
143
|
Owais S, Faltyn M, Zou H, Hill T, Kates N, Burack JA, Van Lieshout RJ. Psychopathology in the Offspring of Indigenous Parents with Mental Health Challenges: A Systematic Review: Psychopathologie des descendants de parents autochtones ayant des problèmes de santé mentale: Une revue systématique. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2021; 66:517-536. [PMID: 33064564 PMCID: PMC8138737 DOI: 10.1177/0706743720966447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Parental psychopathology is a significant risk factor for mental health challenges in offspring, but the nature and magnitude of this link in Indigenous Peoples is not well understood. This systematic review examined the emotional and behavioral functioning of the offspring of Indigenous parents with mental health challenges. METHOD We searched MEDLINE, EMBASE, PsycINFO, CINAHL, and Web of Science from their inceptions until April 2020. Studies were included if they included assessments of emotional, behavioral, or other psychological outcomes in the offspring of Indigenous parents with a mental health challenge. RESULTS The 14 studies eligible for review were focused on parental substance misuse (n = 8), maternal internalizing (i.e., depression, anxiety) issues (n = 5), and poor overall parental mental health (n = 4). In 11 studies, parental substance misuse, depression, and/or overall mental health challenges were associated with 2 to 4 times the odds of offspring externalizing and internalizing behaviors as compared to offspring of Indigenous parents without mental health challenges. CONCLUSION The findings suggest higher risks of mental health challenges among offspring of Indigenous parents with psychiatric difficulties than among Indigenous children of parents without similar difficulties. Knowledge of these phenomena would be improved by the use of larger, more representative samples, culturally appropriate measures, and the engagement of Indigenous communities. Future studies should be focused on both risk and resilience mechanisms so that cycles of transmission can be interrupted and resources aimed at detection, prevention, and treatment optimally allocated.
Collapse
Affiliation(s)
- Sawayra Owais
- MD/PhD Program, 3710McMaster University, Hamilton, Ontario, Canada
| | - Mateusz Faltyn
- Arts & Science Undergraduate Program, 3710McMaster University, Hamilton, Ontario, Canada
| | - Hanyan Zou
- Department of Medical Sciences, 3710McMaster University, Hamilton, Ontario, Canada
| | - Troy Hill
- Department of Education, 3710Brock University, Hamilton, Ontario, Canada
| | - Nick Kates
- Department of Psychiatry and Behavioural Neurosciences, 3710McMaster University, Hamilton, Ontario, Canada
| | - Jacob A Burack
- Department of Educational and Counselling Psychology, 5620McGill University, Montreal, Québec, Canada
| | - Ryan J Van Lieshout
- MD/PhD Program, 3710McMaster University, Hamilton, Ontario, Canada.,Department of Psychiatry and Behavioural Neurosciences, 3710McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
144
|
|
145
|
Borba LA, Broseghini LDR, Manosso LM, de Moura AB, Botelho MEM, Arent CO, Behenck JP, Hilsendeger A, Kammer LH, Valvassori SS, Quevedo J, Réus GZ. Environmental enrichment improves lifelong persistent behavioral and epigenetic changes induced by early-life stress. J Psychiatr Res 2021; 138:107-116. [PMID: 33848966 PMCID: PMC10494235 DOI: 10.1016/j.jpsychires.2021.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 02/08/2023]
Abstract
This study aimed to evaluate the effects of environmental enrichment (EE) in Wistar rats subjected to maternal deprivation (MD). MD was performed in the first post-natal days (PND) ten for 3 h/day. The groups were: control; deprived without EE; and deprived with EE. The EE was applied for 3 h/day. Forced swimming test (FST) and open field test were performed, and histone deacetylase (HDAC) and DNA methyltransferase (DNMT) activities in the prefrontal cortex (PFC) and hippocampus were evaluated on 31, 41, and 61 PND. MD altered spontaneous locomotor activity and immobility time in FST, but the effects were sex- and developmental period dependent. In deprived females at PND 31, 41, and 61, HDAC and DNMT increased in the PFC and hippocampus. In females exposed to EE for 20 days, there was a decrease of HDAC in the hippocampus and DNMT in the PFC and hippocampus. Exposure of females to EE for 40 days can reverse HDAC and DNMT increase in all brain areas. In deprived males at PND 31, 41, and 61, HDAC and DNMT increased in the hippocampus, and in the group exposed to EE for 40 days, there was a decrease in hippocampal activity. In PFC of male deprived rats at PND 61 and EE for 40 days, there was a reduction of HDAC and DNMT. MD induced lifelong persistent behavioral and epigenetic changes, and such effects were more evident in female than male rats. EE can be considered an essential non-pharmacological strategy to treat long-term trauma-induced early life changes.
Collapse
Affiliation(s)
- Laura A Borba
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Lia D R Broseghini
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Luana M Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Airam B de Moura
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Maria Eduarda M Botelho
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Camila O Arent
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - João Paulo Behenck
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Amanda Hilsendeger
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Letícia H Kammer
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil; Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil.
| |
Collapse
|
146
|
The Role of Epigenomic Regulatory Pathways in the Gut-Brain Axis and Visceral Hyperalgesia. Cell Mol Neurobiol 2021; 42:361-376. [PMID: 34057682 DOI: 10.1007/s10571-021-01108-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/24/2021] [Indexed: 01/07/2023]
Abstract
The gut-brain axis (GBA) is broadly accepted to describe the bidirectional circuit that links the gastrointestinal tract with the central nervous system (CNS). Interest in the GBA has grown dramatically over past two decades along with advances in our understanding of the importance of the axis in the pathophysiology of numerous common clinical disorders including mood disorders, neurodegenerative disease, diabetes mellitus, non-alcohol fatty liver disease (NAFLD) and enhanced abdominal pain (visceral hyperalgesia). Paralleling the growing interest in the GBA, there have been seminal developments in our understanding of how environmental factors such as psychological stress and other extrinsic factors alter gene expression, primarily via epigenomic regulatory mechanisms. This process has been driven by advances in next-generation multi-omics methods and bioinformatics. Recent reviews address various components of GBA, but the role of epigenomic regulatory pathways in chronic stress-associated visceral hyperalgesia in relevant regions of the GBA including the amygdala, spinal cord, primary afferent (nociceptive) neurons, and the intestinal barrier has not been addressed. Rapidly developing evidence suggests that intestinal epithelial barrier dysfunction and microbial dysbiosis play a potentially significant role in chronic stress-associated visceral hyperalgesia in nociceptive neurons innervating the lower intestine via downregulation in intestinal epithelial cell tight junction protein expression and increase in paracellular permeability. These observations support an important role for the regulatory epigenome in the development of future diagnostics and therapeutic interventions in clinical disorders affecting the GBA.
Collapse
|
147
|
Whiting SB, Wass SV, Green S, Thomas MSC. Stress and Learning in Pupils: Neuroscience Evidence and its Relevance for Teachers. MIND, BRAIN AND EDUCATION : THE OFFICIAL JOURNAL OF THE INTERNATIONAL MIND, BRAIN, AND EDUCATION SOCIETY 2021; 15:177-188. [PMID: 34239601 PMCID: PMC8248342 DOI: 10.1111/mbe.12282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/17/2020] [Accepted: 01/18/2021] [Indexed: 06/13/2023]
Abstract
Our understanding of how stress affects primary school children's attention and learning has developed rapidly. We know that children experience differing levels of stressors (factors that cause stress) in their environments, and that this can influence how they respond to new stressors when they occur in educational contexts. Here, we review evidence showing that stress can increase children's attention and learning capacities in some circumstances but hinder them in others. We show how children differ in their attention and learning styles, dependent on stress levels: for example, more highly stressed children may be more distracted by superficial features and may find it harder to engage in planning and voluntary control. We review intervention research on stress management techniques in children, concentrating on psychological techniques (such as mindfulness and stress reappraisal), physiological techniques (such as breathing exercises) and environmental factors (such as reducing noise). At the current time, raising teachers' awareness of pupils' differing stress responses will be an important step in accommodating the differing needs of children in their classrooms.
Collapse
Affiliation(s)
- Sue B Whiting
- Department of Psychological Sciences Birkbeck, University of London, London, UK
| | - Sam V Wass
- School of Psychology University of East London, London, UK
| | - Simon Green
- Department of Psychological Sciences Birkbeck, University of London, London, UK
| | - Michael S C Thomas
- Department of Psychological Sciences Birkbeck, University of London, London, UK
- Centre for Educational Neuroscience Birkbeck, University of London, London, UK
| |
Collapse
|
148
|
Mulligan CJ. Systemic racism can get under our skin and into our genes. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 175:399-405. [PMID: 33905118 DOI: 10.1002/ajpa.24290] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/24/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022]
Abstract
Special Issue - Race reconciled II: Interpreting and communicating biological variation and race in 2021 Many sociocultural factors, like poverty and trauma, or homelessness versus a safe neighborhood, can get "under our skin" and affect our lives. These factors may also get "into our genes" through epigenetic changes that influence how genes are expressed. Changes in gene expression can further influence how we respond to sociocultural factors and how those factors impact our physical and mental health, creating a feedback loop between our sociocultural environment and our genome.
Collapse
Affiliation(s)
- Connie J Mulligan
- Department of Anthropology, Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
149
|
Early life stress and neural development: Implications for understanding the developmental effects of COVID-19. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 22:643-654. [PMID: 33891280 PMCID: PMC8063781 DOI: 10.3758/s13415-021-00901-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/05/2021] [Indexed: 01/14/2023]
Abstract
Chronic and/or extreme stress in childhood, often referred to as early life stress, is associated with a wide range of long-term effects on development. Given this, the COVID-19 pandemic has led to concern about how stress due to the pandemic will affect children's development and mental health. Although early life stress has been linked to altered functioning of a number of neural and biological systems, there is a wide range of variability in children's outcomes. The mechanisms that influence these individual differences are still not well understood. In the past, studies of stress in childhood focused on the type of events that children encountered in their lives. We conducted a review of the literature to formulate a new perspective on the effects of early life stress on development. This new, topological model, may increase understanding of the potential effects of the COVID-19 pandemic on children's development. This model is oriented on children's perceptions of their environment and their social relationships, rather than specific events. These factors influence central and peripheral nervous system development, changing how children interpret, adapt, and respond to potentially stressful events, with implications for children's mental and physical health outcomes.
Collapse
|
150
|
Abstract
Aim: Social scientists have placed particularly high expectations on the study of epigenomics to explain how exposure to adverse social factors like poverty, child maltreatment and racism - particularly early in childhood - might contribute to complex diseases. However, progress has stalled, reflecting many of the same challenges faced in genomics, including overhype, lack of diversity in samples, limited replication and difficulty interpreting significance of findings. Materials & methods: This review focuses on the future of social epigenomics by discussing progress made, ongoing methodological and analytical challenges and suggestions for improvement. Results & conclusion: Recommendations include more diverse sample types, cross-cultural, longitudinal and multi-generational studies. True integration of social and epigenomic data will require increased access to both data types in publicly available databases, enhanced data integration frameworks, and more collaborative efforts between social scientists and geneticists.
Collapse
Affiliation(s)
- Amy L Non
- Department of Anthropology at the University of California, San Diego, 92093 CA, USA
| |
Collapse
|