101
|
Shimmi O, Matsuda S, Hatakeyama M. Insights into the molecular mechanisms underlying diversified wing venation among insects. Proc Biol Sci 2014; 281:20140264. [PMID: 25009057 PMCID: PMC4100500 DOI: 10.1098/rspb.2014.0264] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 06/09/2014] [Indexed: 11/12/2022] Open
Abstract
Insect wings are great resources for studying morphological diversities in nature as well as in fossil records. Among them, variation in wing venation is one of the most characteristic features of insect species. Venation is therefore, undeniably a key factor of species-specific functional traits of the wings; however, the mechanism underlying wing vein formation among insects largely remains unexplored. Our knowledge of the genetic basis of wing development is solely restricted to Drosophila melanogaster. A critical step in wing vein development in Drosophila is the activation of the decapentaplegic (Dpp)/bone morphogenetic protein (BMP) signalling pathway during pupal stages. A key mechanism is the directional transport of Dpp from the longitudinal veins into the posterior crossvein by BMP-binding proteins, resulting in redistribution of Dpp that reflects wing vein patterns. Recent works on the sawfly Athalia rosae, of the order Hymenoptera, also suggested that the Dpp transport system is required to specify fore- and hindwing vein patterns. Given that Dpp redistribution via transport is likely to be a key mechanism for establishing wing vein patterns, this raises the interesting possibility that distinct wing vein patterns are generated, based on where Dpp is transported. Experimental evidence in Drosophila suggests that the direction of Dpp transport is regulated by prepatterned positional information. These observations lead to the postulation that Dpp generates diversified insect wing vein patterns through species-specific positional information of its directional transport. Extension of these observations in some winged insects will provide further insights into the mechanisms underlying diversified wing venation among insects.
Collapse
Affiliation(s)
- Osamu Shimmi
- Institute of Biotechnology, University of Helsinki, PO Box 65 (Viikinkaari 1), Helsinki 00014, Finland
| | - Shinya Matsuda
- Institute of Biotechnology, University of Helsinki, PO Box 65 (Viikinkaari 1), Helsinki 00014, Finland
| | - Masatsugu Hatakeyama
- Division of Insect Sciences, National Institute of Agrobiological Sciences, Owashi, Tsukuba 305-8634, Japan
| |
Collapse
|
102
|
Dahdul WM, Cui H, Mabee PM, Mungall CJ, Osumi-Sutherland D, Walls RL, Haendel MA. Nose to tail, roots to shoots: spatial descriptors for phenotypic diversity in the Biological Spatial Ontology. J Biomed Semantics 2014; 5:34. [PMID: 25140222 PMCID: PMC4137724 DOI: 10.1186/2041-1480-5-34] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 06/16/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Spatial terminology is used in anatomy to indicate precise, relative positions of structures in an organism. While these terms are often standardized within specific fields of biology, they can differ dramatically across taxa. Such differences in usage can impair our ability to unambiguously refer to anatomical position when comparing anatomy or phenotypes across species. We developed the Biological Spatial Ontology (BSPO) to standardize the description of spatial and topological relationships across taxa to enable the discovery of comparable phenotypes. RESULTS BSPO currently contains 146 classes and 58 relations representing anatomical axes, gradients, regions, planes, sides, and surfaces. These concepts can be used at multiple biological scales and in a diversity of taxa, including plants, animals and fungi. The BSPO is used to provide a source of anatomical location descriptors for logically defining anatomical entity classes in anatomy ontologies. Spatial reasoning is further enhanced in anatomy ontologies by integrating spatial relations such as dorsal_to into class descriptions (e.g., 'dorsolateral placode' dorsal_to some 'epibranchial placode'). CONCLUSIONS The BSPO is currently used by projects that require standardized anatomical descriptors for phenotype annotation and ontology integration across a diversity of taxa. Anatomical location classes are also useful for describing phenotypic differences, such as morphological variation in position of structures resulting from evolution within and across species.
Collapse
Affiliation(s)
- Wasila M Dahdul
- Department of Biology, University of South Dakota, Vermillion, SD, USA
- National Evolutionary Synthesis Center, Durham, NC, USA
| | - Hong Cui
- School of Information Resource and Library Science, University of Arizona, Tucson, AZ, USA
| | - Paula M Mabee
- Department of Biology, University of South Dakota, Vermillion, SD, USA
| | | | | | - Ramona L Walls
- The iPlant Collaborative, Bio5 Institute, University of Arizona, Tucson, AZ, USA
| | - Melissa A Haendel
- Library and Department of Medical Informatics & Epidemiology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
103
|
Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution. PLoS Genet 2014; 10:e1004487. [PMID: 25032823 PMCID: PMC4102449 DOI: 10.1371/journal.pgen.1004487] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 05/20/2014] [Indexed: 02/06/2023] Open
Abstract
Mutualistic symbioses between eukaryotes and beneficial microorganisms of their microbiome play an essential role in nutrition, protection against disease, and development of the host. However, the impact of beneficial symbionts on the evolution of host genomes remains poorly characterized. Here we used the independent loss of the most widespread plant–microbe symbiosis, arbuscular mycorrhization (AM), as a model to address this question. Using a large phenotypic approach and phylogenetic analyses, we present evidence that loss of AM symbiosis correlates with the loss of many symbiotic genes in the Arabidopsis lineage (Brassicales). Then, by analyzing the genome and/or transcriptomes of nine other phylogenetically divergent non-host plants, we show that this correlation occurred in a convergent manner in four additional plant lineages, demonstrating the existence of an evolutionary pattern specific to symbiotic genes. Finally, we use a global comparative phylogenomic approach to track this evolutionary pattern among land plants. Based on this approach, we identify a set of 174 highly conserved genes and demonstrate enrichment in symbiosis-related genes. Our findings are consistent with the hypothesis that beneficial symbionts maintain purifying selection on host gene networks during the evolution of entire lineages. Symbiotic associations between eukaryotes and microbes play essential roles in the nutrition, health and behavior of both partners. It is well accepted that hosts control and shape their associated microbiome. In this study, we provide evidence that symbiotic microbes also participate in the evolution of host genomes. In particular, we show that the independent loss of a symbiosis in several plant lineages results in a convergent modification of non-host genomes. Interestingly, a significant fraction of genes lost in non-hosts play an important role in this symbiosis, supporting the use of comparative genomics as a powerful approach to identify undiscovered gene networks.
Collapse
|
104
|
Evolutionary conservation of early mesoderm specification by mechanotransduction in Bilateria. Nat Commun 2014; 4:2821. [PMID: 24281726 PMCID: PMC3868206 DOI: 10.1038/ncomms3821] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/24/2013] [Indexed: 02/08/2023] Open
Abstract
The modulation of developmental biochemical pathways by mechanical cues is an emerging feature of animal development, but its evolutionary origins have not been explored. Here we show that a common mechanosensitive pathway involving β-catenin specifies early mesodermal identity at gastrulation in zebrafish and Drosophila. Mechanical strains developed by zebrafish epiboly and Drosophila mesoderm invagination trigger the phosphorylation of β-catenin–tyrosine-667. This leads to the release of β-catenin into the cytoplasm and nucleus, where it triggers and maintains, respectively, the expression of zebrafish brachyury orthologue notail and of Drosophila Twist, both crucial transcription factors for early mesoderm identity. The role of the β-catenin mechanosensitive pathway in mesoderm identity has been conserved over the large evolutionary distance separating zebrafish and Drosophila. This suggests mesoderm mechanical induction dating back to at least the last bilaterian common ancestor more than 570 million years ago, the period during which mesoderm is thought to have emerged. Mechanical cues can induce morphogenetic processes during development. Here the authors show that mechanical changes during embryonic development in both zebrafish and Drosophila lead to nuclear localization of β-catenin, which regulates genes required for early mesoderm development in both species.
Collapse
|
105
|
Delaux PM, Varala K, Edger PP, Coruzzi GM, Pires JC, Ané JM. Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution. PLoS Genet 2014. [PMID: 25032823 DOI: 10.1371/journal.pgen.100448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Mutualistic symbioses between eukaryotes and beneficial microorganisms of their microbiome play an essential role in nutrition, protection against disease, and development of the host. However, the impact of beneficial symbionts on the evolution of host genomes remains poorly characterized. Here we used the independent loss of the most widespread plant-microbe symbiosis, arbuscular mycorrhization (AM), as a model to address this question. Using a large phenotypic approach and phylogenetic analyses, we present evidence that loss of AM symbiosis correlates with the loss of many symbiotic genes in the Arabidopsis lineage (Brassicales). Then, by analyzing the genome and/or transcriptomes of nine other phylogenetically divergent non-host plants, we show that this correlation occurred in a convergent manner in four additional plant lineages, demonstrating the existence of an evolutionary pattern specific to symbiotic genes. Finally, we use a global comparative phylogenomic approach to track this evolutionary pattern among land plants. Based on this approach, we identify a set of 174 highly conserved genes and demonstrate enrichment in symbiosis-related genes. Our findings are consistent with the hypothesis that beneficial symbionts maintain purifying selection on host gene networks during the evolution of entire lineages.
Collapse
Affiliation(s)
- Pierre-Marc Delaux
- Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kranthi Varala
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Patrick P Edger
- Bond Life Sciences Center, Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - J Chris Pires
- Bond Life Sciences Center, Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
106
|
Onai T, Irie N, Kuratani S. The evolutionary origin of the vertebrate body plan: the problem of head segmentation. Annu Rev Genomics Hum Genet 2014; 15:443-59. [PMID: 24898038 DOI: 10.1146/annurev-genom-091212-153404] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The basic body plan of vertebrates, as typified by the complex head structure, evolved from the last common ancestor approximately 530 Mya. In this review, we present a brief overview of historical discussions to disentangle the various concepts and arguments regarding the evolutionary development of the vertebrate body plan. We then explain the historical transition of the arguments about the vertebrate body plan from merely epistemological comparative morphology to comparative embryology as a scientific treatment on this topic. Finally, we review the current progress of molecular evidence regarding the basic vertebrate body plan, focusing on the link between the basic vertebrate body plan and the evolutionarily conserved developmental stages (phylotypic stages).
Collapse
Affiliation(s)
- Takayuki Onai
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; , ,
| | | | | |
Collapse
|
107
|
Della Pina S, Souer E, Koes R. Arguments in the evo-devo debate: say it with flowers! JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2231-42. [PMID: 24648567 DOI: 10.1093/jxb/eru111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A key question in evolutionary developmental biology is how DNA sequence changes have directed the evolution of morphological diversity. The widely accepted view was that morphological changes resulted from differences in number and/or type of transcription factors, or even from small changes in the amino acid sequence of similar proteins. Research over the last two decades indicated that most of the developmental and genetic mechanisms that produce new structures involve proteins that are deeply conserved. These proteins are encoded by a type of genes known as 'toolkit' genes that control a plethora of processes essential for the correct development of the organism. Mutations in these toolkit genes produce deleterious pleiotropic effects. In contrast, alterations in regulatory regions affect their expression only at specific sites in the organism, facilitating morphological change at the tissue and organ levels. However, some examples from the animal and plant fields indicate that coding mutations also contributed to phenotypic evolution. Therefore, the main question at this point is to what extent these mechanisms have contributed to the evolution of morphological diversity. Today, an increasing amount of data, especially from the plant field, implies that changes in cis-regulatory sequences in fact played a major role in evolution.
Collapse
Affiliation(s)
- Serena Della Pina
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Erik Souer
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Ronald Koes
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
108
|
Wisotzkey RG, Quijano JC, Stinchfield MJ, Newfeld SJ. New gene evolution in the bonus-TIF1-γ/TRIM33 family impacted the architecture of the vertebrate dorsal-ventral patterning network. Mol Biol Evol 2014; 31:2309-21. [PMID: 24881051 DOI: 10.1093/molbev/msu175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Uncovering how a new gene acquires its function and understanding how the function of a new gene influences existing genetic networks are important topics in evolutionary biology. Here, we demonstrate nonconservation for the embryonic functions of Drosophila Bonus and its newest vertebrate relative TIF1-γ/TRIM33. We showed previously that TIF1-γ/TRIM33 functions as an ubiquitin ligase for the Smad4 signal transducer and antagonizes the Bone Morphogenetic Protein (BMP) signaling network underlying vertebrate dorsal-ventral axis formation. Here, we show that Bonus functions as an agonist of the Decapentaplegic (Dpp) signaling network underlying dorsal-ventral axis formation in flies. The absence of conservation for the roles of Bonus and TIF1-γ/TRIM33 reveals a shift in the dorsal-ventral patterning networks of flies and mice, systems that were previously considered wholly conserved. The shift occurred when the new gene TIF1-γ/TRIM33 replaced the function of the ubiquitin ligase Nedd4L in the lineage leading to vertebrates. Evidence of this replacement is our demonstration that Nedd4 performs the function of TIF1-γ/TRIM33 in flies during dorsal-ventral axis formation. The replacement allowed vertebrate Nedd4L to acquire novel functions as a ubiquitin ligase of vertebrate-specific Smad proteins. Overall our data reveal that the architecture of the Dpp/BMP dorsal-ventral patterning network continued to evolve in the vertebrate lineage, after separation from flies, via the incorporation of new genes.
Collapse
Affiliation(s)
- Robert G Wisotzkey
- Department of Biological Sciences, California State University, East Bay
| | - Janine C Quijano
- Department of Biological Sciences, California State University, East BaySchool of Life Sciences, Arizona State University
| | | | | |
Collapse
|
109
|
Blum M, Feistel K, Thumberger T, Schweickert A. The evolution and conservation of left-right patterning mechanisms. Development 2014; 141:1603-13. [PMID: 24715452 DOI: 10.1242/dev.100560] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Morphological asymmetry is a common feature of animal body plans, from shell coiling in snails to organ placement in humans. The signaling protein Nodal is key for determining this laterality. Many vertebrates, including humans, use cilia for breaking symmetry during embryonic development: rotating cilia produce a leftward flow of extracellular fluids that induces the asymmetric expression of Nodal. By contrast, Nodal asymmetry can be induced flow-independently in invertebrates. Here, we ask when and why flow evolved. We propose that flow was present at the base of the deuterostomes and that it is required to maintain organ asymmetry in otherwise perfectly bilaterally symmetrical vertebrates.
Collapse
Affiliation(s)
- Martin Blum
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany
| | | | | | | |
Collapse
|
110
|
Chen SH, Li KL, Lu IH, Wang YB, Tung CH, Ting HC, Lin CY, Lin CY, Su YH, Yu JK. Sequencing and analysis of the transcriptome of the acorn worm Ptychodera flava, an indirect developing hemichordate. Mar Genomics 2014; 15:35-43. [PMID: 24823299 DOI: 10.1016/j.margen.2014.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/28/2014] [Accepted: 04/28/2014] [Indexed: 12/13/2022]
Abstract
Hemichordates are the sister group of echinoderms, and together they are closely related to chordates within the deuterostome lineage. Therefore, hemichordates represent an important animal group for the understanding of both the evolution of developmental mechanisms in deuterostome animals and the origin of chordates. Recently, the majority of studies investigating hemichordates have focused on the direct-developing enteropneust hemichordate Saccoglossus kowalevskii; few have focused on the indirect-developing hemichordates, partly because of the lack of extensive genomic resources in these animals. In this study, we report the sequencing and analysis of a transcriptome from an indirect-developing enteropneust hemichordate Ptychodera flava. We sequenced a mixed cDNA library from six developmental stages using the Roche GS FLX Titanium System to generate more than 879,000 reads. These reads were assembled into 17,990 contigs with an average length of 1316bp. We found that 60% of the assembled contigs, along with 28% of the unassembled singleton reads, had significant hits to sequences in the NCBI database by a BLASTx search, and we also annotated these sequences and obtained Gene Ontology (GO) terms for 6744 contigs and 5802 singletons. We further identified candidate P. flava transcripts corresponding to genes involved in major developmental signaling pathways, including the Wnt, Notch and TGF-β signaling pathways. Using available genome/transcriptome datasets from the direct-developing hemichordate S. kowalevskii, the echinoderm Strongylocentrotus purpuratus and the chordate Branchiostoma floridae, we found that 90%, 80% and 73% of the annotated protein sequences in these respective species matched our P. flava transcriptome in a homology search. We also constructed a database for the P. flava transcriptome, and researchers can easily access this dataset online. Our dataset significantly increases the amount of available P. flava sequence data and can serve as a reference transcriptome for future studies using this species.
Collapse
Affiliation(s)
- Shu-Hwa Chen
- Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Kun-Lin Li
- Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan; Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - I-Hsuan Lu
- Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Yu-Bin Wang
- Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Che-Huang Tung
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Hsiu-Chi Ting
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Ching-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan; Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan; Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan; Institute of Population Health Sciences, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan.
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan.
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan; Institute of Oceanography, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
111
|
Bozorgmehr JEH. The role of self-organization in developmental evolution. Theory Biosci 2014; 133:145-63. [PMID: 24737046 DOI: 10.1007/s12064-014-0200-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 03/06/2014] [Indexed: 01/09/2023]
Abstract
In developmental and evolutionary biology, particular emphasis has been given to the relationship between transcription factors and the cognate cis-regulatory elements of their target genes. These constitute the gene regulatory networks that control expression and are assumed to causally determine the formation of structures and body plans. Comparative analysis has, however, established a broad sequence homology among species that nonetheless display quite different anatomies. Transgenic experiments have also confirmed that many developmentally important elements are, in fact, functionally interchangeable. Although dependent upon the appropriate degree of gene expression, the actual construction of specific structures appears not directly linked to the functions of gene products alone. Instead, the self-formation of complex patterns, due in large part to epigenetic and non-genetic determinants, remains a persisting theme in the study of ontogeny and regenerative medicine. Recent evidence indeed points to the existence of a self-organizing process, operating through a set of intrinsic rules and forces, which imposes coordination and a holistic order upon cells and tissue. This has been repeatedly demonstrated in experiments on regeneration as well as in the autonomous formation of structures in vitro. The process cannot be wholly attributed to the functional outcome of protein-protein interactions or to concentration gradients of diffusible chemicals. This phenomenon is examined here along with some of the methodological and theoretical approaches that are now used in understanding the causal basis for self-organization in development and its evolution.
Collapse
|
112
|
Abstract
The dorsal half of bisected Xenopus laevis embryos can regenerate a well-proportioned organism on a smaller scale. A new study indicates that the removal of ventral tissue generates a steeper Chordin gradient by reducing Sizzled, a secreted inhibitor of Tolloid chordinases.
Collapse
Affiliation(s)
- Edward M De Robertis
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California Los Angeles, CA 90095-1662, USA.
| | | |
Collapse
|
113
|
Künne T, Swarts DC, Brouns SJJ. Planting the seed: target recognition of short guide RNAs. Trends Microbiol 2014; 22:74-83. [PMID: 24440013 DOI: 10.1016/j.tim.2013.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/06/2013] [Accepted: 12/11/2013] [Indexed: 12/23/2022]
Abstract
Small guide RNAs play important roles in cellular processes such as regulation of gene expression and host defense against invading nucleic acids. The mode of action of small RNAs relies on protein-assisted base pairing of the guide RNA with target mRNA or DNA to interfere with their transcription, translation, or replication. Several unrelated classes of small noncoding RNAs have been identified including eukaryotic RNA silencing-associated small RNAs, prokaryotic small regulatory RNAs (sRNAs), and prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats) RNAs (crRNAs). All three groups identify their target sequence by base pairing after finding it in a pool of millions of other nucleotide sequences in the cell. In this complicated target search process, a region of 6-12 nucleotides (nt) of the small RNA termed the 'seed' plays a critical role. We review the concept of seed sequences and discuss its importance for initial target recognition and interference.
Collapse
Affiliation(s)
- Tim Künne
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Daan C Swarts
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Stan J J Brouns
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands.
| |
Collapse
|
114
|
Alfano C, Magrinelli E, Harb K, Studer M. The nuclear receptors COUP-TF: a long-lasting experience in forebrain assembly. Cell Mol Life Sci 2014; 71:43-62. [PMID: 23525662 PMCID: PMC11114017 DOI: 10.1007/s00018-013-1320-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 02/14/2013] [Accepted: 03/04/2013] [Indexed: 12/16/2022]
Abstract
Chicken ovalbumin upstream promoter transcription factors (COUP-TFs) are nuclear receptors belonging to the superfamily of the steroid/thyroid hormone receptors. Members of this family are internalized to the nucleus both in a ligand-dependent or -independent manner and act as strong transcriptional regulators by binding to the DNA of their target genes. COUP-TFs are defined as orphan receptors, since ligands regulating their activity have not so far been identified. From the very beginning of metazoan evolution, these molecules have been involved in various key events during embryonic development and organogenesis. In this review, we will mainly focus on their function during development and maturation of the central nervous system, which has been well characterized in various animal classes ranging from ctenophores to mammals. We will start by introducing the current knowledge on COUP-TF mechanisms of action and then focus our discussion on the crucial processes underlying forebrain ontogenesis, with special emphasis on mammalian development. Finally, the conserved roles of COUP-TFs along phylogenesis will be highlighted, and some hypotheses, worth exploring in future years to gain more insight into the mechanisms controlled by these factors, will be proposed.
Collapse
Affiliation(s)
- Christian Alfano
- Institute of Biology Valrose, iBV, UMR INSERM1091/CNRS7277/UNS, 06108 Nice, France
- University of Nice-Sophia Antipolis, UFR Sciences, 06108 Nice, France
| | - Elia Magrinelli
- Institute of Biology Valrose, iBV, UMR INSERM1091/CNRS7277/UNS, 06108 Nice, France
- University of Nice-Sophia Antipolis, UFR Sciences, 06108 Nice, France
| | - Kawssar Harb
- Institute of Biology Valrose, iBV, UMR INSERM1091/CNRS7277/UNS, 06108 Nice, France
- University of Nice-Sophia Antipolis, UFR Sciences, 06108 Nice, France
| | - Michèle Studer
- Institute of Biology Valrose, iBV, UMR INSERM1091/CNRS7277/UNS, 06108 Nice, France
- University of Nice-Sophia Antipolis, UFR Sciences, 06108 Nice, France
| |
Collapse
|
115
|
Plouhinec JL, Zakin L, Moriyama Y, De Robertis EM. Chordin forms a self-organizing morphogen gradient in the extracellular space between ectoderm and mesoderm in the Xenopus embryo. Proc Natl Acad Sci U S A 2013; 110:20372-9. [PMID: 24284174 PMCID: PMC3870759 DOI: 10.1073/pnas.1319745110] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The vertebrate body plan follows stereotypical dorsal-ventral (D-V) tissue differentiation controlled by bone morphogenetic proteins (BMPs) and secreted BMP antagonists, such as Chordin. The three germ layers--ectoderm, mesoderm, and endoderm--are affected coordinately by the Chordin-BMP morphogen system. However, extracellular morphogen gradients of endogenous proteins have not been directly visualized in vertebrate embryos to date. In this study, we improved immunolocalization methods in Xenopus embryos and analyzed the distribution of endogenous Chordin using a specific antibody. Chordin protein secreted by the dorsal Spemann organizer was found to diffuse along a narrow region that separates the ectoderm from the anterior endoderm and mesoderm. This Fibronectin-rich extracellular matrix is called "Brachet's cleft" in the Xenopus gastrula and is present in all vertebrate embryos. Chordin protein formed a smooth gradient that encircled the embryo, reaching the ventral-most Brachet cleft. Depletion with morpholino oligos showed that this extracellular gradient was regulated by the Chordin protease Tolloid and its inhibitor Sizzled. The Chordin gradient, as well as the BMP signaling gradient, was self-regulating and, importantly, was able to rescale in dorsal half-embryos. Transplantation of Spemann organizer tissue showed that Chordin diffused over long distances along this signaling highway between the ectoderm and mesoderm. Chordin protein must reach very high concentrations in this narrow region. We suggest that as ectoderm and mesoderm undergo morphogenetic movements during gastrulation, cells in both germ layers read their positional information coordinately from a single morphogen gradient located in Brachet's cleft.
Collapse
Affiliation(s)
- Jean-Louis Plouhinec
- Howard Hughes Medical Institute and
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
| | - Lise Zakin
- Howard Hughes Medical Institute and
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
| | - Yuki Moriyama
- Howard Hughes Medical Institute and
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
| | - Edward M. De Robertis
- Howard Hughes Medical Institute and
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
| |
Collapse
|
116
|
|
117
|
Rossi A, Ross EJ, Jack A, Sánchez Alvarado A. Molecular cloning and characterization of SL3: a stem cell-specific SL RNA from the planarian Schmidtea mediterranea. Gene 2013; 533:156-67. [PMID: 24120894 DOI: 10.1016/j.gene.2013.09.101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/26/2013] [Accepted: 09/26/2013] [Indexed: 01/03/2023]
Abstract
Spliced leader (SL) trans-splicing is a biological phenomenon, common among many metazoan taxa, consisting in the transfer of a short leader sequence from a small SL RNA to the 5' end of a subset of pre-mRNAs. While knowledge of the biochemical mechanisms driving this process has accumulated over the years, the functional consequences of such post-transcriptional event at the organismal level remain unclear. In addition, the fact that functional analyses have been undertaken mainly in trypanosomes and nematodes leaves a somehow fragmented picture of the possible biological significance and evolution of SL trans-splicing in eukaryotes. Here, we analyzed the spatial expression of SL RNAs in the planarian flatworm Schmidtea mediterranea, with the goal of identifying novel developmental paradigms for the study of trans-splicing in metazoans. Besides the previously identified SL1 and SL2, S. mediterranea expresses a third SL RNA described here as SL3. While, SL1 and SL2 are collectively expressed in a broad range of planarian cell types, SL3 is highly enriched in a subset of the planarian stem cells engaged in regenerative responses. Our findings provide new opportunities to study how trans-splicing may regulate the phenotype of a cell.
Collapse
Affiliation(s)
- Alessandro Rossi
- Stowers Institute for Medical Research, 1000 E 50th St., Kansas City, MO 64110, USA.
| | | | | | | |
Collapse
|
118
|
Holland LZ, Carvalho JE, Escriva H, Laudet V, Schubert M, Shimeld SM, Yu JK. Evolution of bilaterian central nervous systems: a single origin? EvoDevo 2013; 4:27. [PMID: 24098981 PMCID: PMC3856589 DOI: 10.1186/2041-9139-4-27] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/14/2013] [Indexed: 12/21/2022] Open
Abstract
The question of whether the ancestral bilaterian had a central nervous system (CNS) or a diffuse ectodermal nervous system has been hotly debated. Considerable evidence supports the theory that a CNS evolved just once. However, an alternative view proposes that the chordate CNS evolved from the ectodermal nerve net of a hemichordate-like ancestral deuterostome, implying independent evolution of the CNS in chordates and protostomes. To specify morphological divisions along the anterior/posterior axis, this ancestor used gene networks homologous to those patterning three organizing centers in the vertebrate brain: the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer, and subsequent evolution of the vertebrate brain involved elaboration of these ancestral signaling centers; however, all or part of these signaling centers were lost from the CNS of invertebrate chordates. The present review analyzes the evidence for and against these theories. The bulk of the evidence indicates that a CNS evolved just once - in the ancestral bilaterian. Importantly, in both protostomes and deuterostomes, the CNS represents a portion of a generally neurogenic ectoderm that is internalized and receives and integrates inputs from sensory cells in the remainder of the ectoderm. The expression patterns of genes involved in medio/lateral (dorso/ventral) patterning of the CNS are similar in protostomes and chordates; however, these genes are not similarly expressed in the ectoderm outside the CNS. Thus, their expression is a better criterion for CNS homologs than the expression of anterior/posterior patterning genes, many of which (for example, Hox genes) are similarly expressed both in the CNS and in the remainder of the ectoderm in many bilaterians. The evidence leaves hemichordates in an ambiguous position - either CNS centralization was lost to some extent at the base of the hemichordates, or even earlier, at the base of the hemichordates + echinoderms, or one of the two hemichordate nerve cords is homologous to the CNS of protostomes and chordates. In any event, the presence of part of the genetic machinery for the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer in invertebrate chordates together with similar morphology indicates that these organizers were present, at least in part, at the base of the chordates and were probably elaborated upon in the vertebrate lineage.
Collapse
Affiliation(s)
- Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093-0202, USA
| | - João E Carvalho
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (UMR 7009 – CNRS/UPMC), Observatoire Océanologique de Villefranche-sur-Mer, 181 Chemin du Lazaret, B.P. 28, 06230 Villefranche-sur-Mer, France
| | - Hector Escriva
- CNRS, UMR 7232, BIOM, Université Pierre et Marie Curie Paris 06, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Vincent Laudet
- Institut de Génomique Fonctionnelle de Lyon (CNRS UMR5242, UCBL, ENS, INRA 1288), Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (UMR 7009 – CNRS/UPMC), Observatoire Océanologique de Villefranche-sur-Mer, 181 Chemin du Lazaret, B.P. 28, 06230 Villefranche-sur-Mer, France
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
119
|
Nodal: master and commander of the dorsal–ventral and left–right axes in the sea urchin embryo. Curr Opin Genet Dev 2013; 23:445-53. [DOI: 10.1016/j.gde.2013.04.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 01/14/2023]
|
120
|
Abstract
Transforming Growth Factor-β (TGF-β) superfamily ligands regulate many aspects of cell identity, function, and survival in multicellular animals. Genes encoding five TGF-β family members are present in the genome of C. elegans. Two of the ligands, DBL-1 and DAF-7, signal through a canonical receptor-Smad signaling pathway; while a third ligand, UNC-129, interacts with a noncanonical signaling pathway. No function has yet been associated with the remaining two ligands. Here we summarize these signaling pathways and their biological functions.
Collapse
Affiliation(s)
- Tina L Gumienny
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX 77843, USA
| | | |
Collapse
|
121
|
Recruitment and remodeling of an ancient gene regulatory network during land plant evolution. Proc Natl Acad Sci U S A 2013; 110:9571-6. [PMID: 23690618 DOI: 10.1073/pnas.1305457110] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolution of multicellular organisms was made possible by the evolution of underlying gene regulatory networks. In animals, the core of gene regulatory networks consists of kernels, stable subnetworks of transcription factors that are highly conserved in distantly related species. However, in plants it is not clear when and how kernels evolved. We show here that RSL (ROOT HAIR DEFECTIVE SIX-LIKE) transcription factors form an ancient land plant kernel controlling caulonema differentiation in the moss Physcomitrella patens and root hair development in the flowering plant Arabidopsis thaliana. Phylogenetic analyses suggest that RSL proteins evolved in aquatic charophyte algae or in early land plants, and have been conserved throughout land plant radiation. Genetic and transcriptional analyses in loss of function A. thaliana and P. patens mutants suggest that the transcriptional interactions in the RSL kernel were remodeled and became more hierarchical during the evolution of vascular plants. We predict that other gene regulatory networks that control development in derived groups of plants may have originated in the earliest land plants or in their ancestors, the Charophycean algae.
Collapse
|
122
|
Liang J, Xiong S, Savage-Dunn C. Using RNA-mediated interference feeding strategy to screen for genes involved in body size regulation in the nematode C. elegans. J Vis Exp 2013:4373. [PMID: 23425995 DOI: 10.3791/4373] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Double-strand RNA-mediated interference (RNAi) is an effective strategy to knock down target gene expression. It has been applied to many model systems including plants, invertebrates and vertebrates. There are various methods to achieve RNAi in vivo. For example, the target gene may be transformed into an RNAi vector, and then either permanently or transiently transformed into cell lines or primary cells to achieve gene knockdown effects; alternatively synthesized double-strand oligonucleotides from specific target genes (RNAi oligos) may be transiently transformed into cell lines or primary cells to silence target genes; or synthesized double-strand RNA molecules may be microinjected into an organism. Since the nematode C. elegans uses bacteria as a food source, feeding the animals with bacteria expressing double-strand RNA against target genes provides a viable strategy. Here we present an RNAi feeding method to score body size phenotype. Body size in C. elegans is regulated primarily by the TGF- β-llike ligand DBL-1, so this assay is appropriate for identification of TGF-β signaling components. We used different strains including two RNAi hypersensitive strains to repeat the RNAi feeding experiments. Our results showed that rrf-3 strain gave us the best expected RNAi phenotype. The method is easy to perform, reproducible, and easily quantified. Furthermore, our protocol minimizes the use of specialized equipment, so it is suitable for smaller laboratories or those at predominantly undergraduate institutions.
Collapse
Affiliation(s)
- Jun Liang
- Department of Science, Borough of Manhattan Community College, City University of New York, NY, USA.
| | | | | |
Collapse
|
123
|
Shilo BZ, Haskel-Ittah M, Ben-Zvi D, Schejter ED, Barkai N. Creating gradients by morphogen shuttling. Trends Genet 2013; 29:339-47. [PMID: 23369355 DOI: 10.1016/j.tig.2013.01.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/22/2012] [Accepted: 01/03/2013] [Indexed: 11/28/2022]
Abstract
Morphogen gradients are used to pattern a field of cells according to variations in the concentration of a signaling molecule. Typically, the morphogen emanates from a confined group of cells. During early embryogenesis, however, the ability to define a restricted source for morphogen production is limited. Thus, various early patterning systems rely on a broadly expressed morphogen that generates an activation gradient within its expression domain. Computational and experimental work has shed light on how a sharp and robust gradient can be established under those situations, leading to a mechanism termed 'morphogen shuttling'. This mechanism relies on an extracellular shuttling molecule that forms an inert, highly diffusible complex with the morphogen. Morphogen release from the complex following cleavage of the shuttling molecule by an extracellular protease leads to the accumulation of free ligand at the center of its expression domain and a graded activation of the developmental pathway that decreases significantly even within the morphogen-expression domain.
Collapse
Affiliation(s)
- Ben-Zion Shilo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | | | |
Collapse
|
124
|
Abstract
Arabidopsis does not flower in winter because FLC represses flowering genes, but prolonged cold exposure silences FLC, allowing flowering in spring. How do plants recalibrate this switch to adapt to different climates? Reporting in Science, Coustham et al. (2012) found that tweaking a Polycomb target sequence may do the trick.
Collapse
Affiliation(s)
- Nuno D Pires
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, CH-8008 Zürich, Switzerland.
| | | |
Collapse
|
125
|
Fitch WT. Evolutionary Developmental Biology and Human Language Evolution: Constraints on Adaptation. Evol Biol 2012; 39:613-637. [PMID: 23226905 PMCID: PMC3514691 DOI: 10.1007/s11692-012-9162-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 01/24/2012] [Indexed: 11/30/2022]
Abstract
A tension has long existed between those biologists who emphasize the importance of adaptation by natural selection and those who highlight the role of phylogenetic and developmental constraints on organismal form and function. This contrast has been particularly noticeable in recent debates concerning the evolution of human language. Darwin himself acknowledged the existence and importance of both of these, and a long line of biologists have followed him in seeing, in the concept of "descent with modification", a framework naturally able to incorporate both adaptation and constraint. Today, the integrated perspective of modern evolutionary developmental biology ("evo-devo") allows a more subtle and pluralistic approach to these traditional questions, and has provided several examples where the traditional notion of "constraint" can be cashed out in specific, mechanistic terms. This integrated viewpoint is particularly relevant to the evolution of the multiple mechanisms underlying human language, because of the short time available for novel aspects of these mechanisms to evolve and be optimized. Comparative data indicate that many cognitive aspects of human language predate humans, suggesting that pre-adaptation and exaptation have played important roles in language evolution. Thus, substantial components of what many linguists call "Universal Grammar" predate language itself. However, at least some of these older mechanisms have been combined in ways that generate true novelty. I suggest that we can insightfully exploit major steps forward in our understanding of evolution and development, to gain a richer understanding of the principles that underlie human language evolution.
Collapse
Affiliation(s)
- W. Tecumseh Fitch
- Department of Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
126
|
Richmond DL, Oates AC. The segmentation clock: inherited trait or universal design principle? Curr Opin Genet Dev 2012; 22:600-6. [PMID: 23149154 DOI: 10.1016/j.gde.2012.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 10/16/2012] [Accepted: 10/24/2012] [Indexed: 10/27/2022]
Abstract
Metamerism is a widespread feature of multicellular body plans; however, our understanding of the underlying mechanisms that generate these patterns is currently based on only a few model organisms. In particular, vertebrate embryos use a segmentation clock to rhythmically and sequentially add segments in concert with posterior elongation of their body. Recent evidence of a segmentation clock acting in arthropods indicates that this mechanism may be a widely used strategy for generating serial anatomy in animals. Whether this is due to homology or convergence is not yet known, but the recent discovery of an oscillatory process associated with the production of sequential root primordia in plants suggests that a segmentation clock is a fundamental patterning principle in growing tissues, independent of ancestry. In this review, we consider the principles of the segmentation clock that may be conserved across the animal and plant kingdoms, and discuss opportunities for cross-fertilization between these active fields of research.
Collapse
Affiliation(s)
- David L Richmond
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | | |
Collapse
|
127
|
Beccari L, Marco-Ferreres R, Bovolenta P. The logic of gene regulatory networks in early vertebrate forebrain patterning. Mech Dev 2012; 130:95-111. [PMID: 23111324 DOI: 10.1016/j.mod.2012.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/09/2012] [Indexed: 01/19/2023]
Abstract
The vertebrate forebrain or prosencephalon is patterned at the beginning of neurulation into four major domains: the telencephalic, hypothalamic, retinal and diencephalic anlagen. These domains will then give rise to the majority of the brain structures involved in sensory integration and the control of higher intellectual and homeostatic functions. Understanding how forebrain pattering arises has thus attracted the interest of developmental neurobiologists for decades. As a result, most of its regulators have been identified and their hierarchical relationship is now the object of active investigation. Here, we summarize the main morphogenetic pathways and transcription factors involved in forebrain specification and propose the backbone of a possible gene regulatory network (GRN) governing its specification, taking advantage of the GRN principles elaborated by pioneer studies in simpler organisms. We will also discuss this GRN and its operational logic in the context of the remarkable morphological and functional diversification that the forebrain has undergone during evolution.
Collapse
Affiliation(s)
- Leonardo Beccari
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM, c/Nicolas Cabrera, 1, Madrid 28049, Spain
| | | | | |
Collapse
|
128
|
Sorrentino GM, Gillis WQ, Oomen-Hajagos J, Thomsen GH. Conservation and evolutionary divergence in the activity of receptor-regulated smads. EvoDevo 2012; 3:22. [PMID: 23020873 PMCID: PMC3500652 DOI: 10.1186/2041-9139-3-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 08/09/2012] [Indexed: 01/20/2023] Open
Abstract
Background Activity of the Transforming growth factor-β (TGFβ) pathway is essential to the establishment of body axes and tissue differentiation in bilaterians. Orthologs for core pathway members have been found in all metazoans, but uncertain homology of the body axes and tissues patterned by these signals raises questions about the activities of these molecules across the metazoan tree. We focus on the principal canonical transduction proteins (R-Smads) of the TGFβ pathway, which instruct both axial patterning and tissue differentiation in the developing embryo. We compare the activity of R-Smads from a cnidarian (Nematostella vectensis), an arthropod (Drosophila melanogaster), and a vertebrate (Xenopus laevis) in Xenopus embryonic assays. Results Overexpressing NvSmad1/5 ventralized Xenopus embryos when expressed in dorsal blastomeres, similar to the effects of Xenopus Smad1. However, NvSmad1/5 was less potent than XSmad1 in its ability to activate downstream target genes in Xenopus animal cap assays. NvSmad2/3 strongly induced general mesendodermal marker genes, but weakly induced ones involved in specifying the Spemann organizer. NvSmad2/3 was unable to induce a secondary trunk axis in Xenopus embryos, whereas the orthologs from Xenopus (XSmad2 and XSmad3) and Drosophila (dSmad2) were capable of doing so. Replacement of the NvSmad2/3 MH2 domain with the Xenopus XSmad2 MH2 slightly increased its inductive capability, but did not confer an ability to generate a secondary body axis. Conclusions Vertebrate and cnidarian Smad1/5 have similar axial patterning and induction activities, although NvSmad1/5 is less efficient than the vertebrate gene. We conclude that the activities of Smad1/5 orthologs have been largely conserved across Metazoa. NvSmad2/3 efficiently activates general mesendoderm markers, but is unable to induce vertebrate organizer-specific genes or to produce a secondary body axis in Xenopus. Orthologs dSmad2 and XSmad3 generate a secondary body axis, but activate only low expression of organizer-specific genes that are strongly induced by XSmad2. We suggest that in the vertebrate lineage, Smad2 has evolved a specialized role in the induction of the embryonic organizer. Given the high level of sequence identity between Smad orthologs, this work underscores the functional importance of the emergence and fixation of a few divergent amino acids among orthologs during evolution.
Collapse
Affiliation(s)
- Gina M Sorrentino
- Department of Biochemistry and Cell Biology, Stony Brook University, Life Sciences Building room 450, Stony Brook, NY, 11794-5215, USA.
| | | | | | | |
Collapse
|
129
|
Achatz JG, Chiodin M, Salvenmoser W, Tyler S, Martinez P. The Acoela: on their kind and kinships, especially with nemertodermatids and xenoturbellids (Bilateria incertae sedis). ORG DIVERS EVOL 2012; 13:267-286. [PMID: 24098090 PMCID: PMC3789126 DOI: 10.1007/s13127-012-0112-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acoels are among the simplest worms and therefore have often been pivotal in discussions of the origin of the Bilateria. Initially thought primitive because of their “planula-like” morphology, including their lumenless digestive system, they were subsequently dismissed by many morphologists as a specialized clade of the Platyhelminthes. However, since molecular phylogenies placed them outside the Platyhelminthes and outside all other phyla at the base of the Bilateria, they became the focus of renewed debate and research. We review what is currently known of acoels, including information regarding their morphology, development, systematics, and phylogenetic relationships, and put some of these topics in a historical perspective to show how the application of new methods contributed to the progress in understanding these animals. Taking all available data into consideration, clear-cut conclusions cannot be made; however, in our view it becomes successively clearer that acoelomorphs are a “basal” but “divergent” branch of the Bilateria.
Collapse
Affiliation(s)
- Johannes G. Achatz
- Department of Genetics, University of Barcelona, Av. Diagonal, edifici annex, planta 2a, 08028 Barcelona, Spain
- Department of Evolutionary Developmental Biology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Marta Chiodin
- Department of Genetics, University of Barcelona, Av. Diagonal, edifici annex, planta 2a, 08028 Barcelona, Spain
| | - Willi Salvenmoser
- Department of Evolutionary Developmental Biology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Seth Tyler
- School of Biology and Ecology, University of Maine, 5751 Murray Hall, Orono, ME 04469 USA
| | - Pedro Martinez
- Department of Genetics, University of Barcelona, Av. Diagonal, edifici annex, planta 2a, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
130
|
Moroz LL. Phylogenomics meets neuroscience: how many times might complex brains have evolved? ACTA BIOLOGICA HUNGARICA 2012; 63 Suppl 2:3-19. [PMID: 22776469 DOI: 10.1556/abiol.63.2012.suppl.2.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The origin of complex centralized brains is one of the major evolutionary transitions in the history of animals. Monophyly (i.e. presence of a centralized nervous system in urbilateria) vs polyphyly (i.e. multiple origins by parallel centralization of nervous systems within several lineages) are two historically conflicting scenarios to explain such transitions. However, recent phylogenomic and cladistic analysis suggests that complex brains may have independently evolved at least 9 times within different animal lineages. Indeed, even within the phylum Mollusca cephalization might have occurred at least 5 times. Emerging molecular data further suggest that at the genomic level such transitions might have been achieved by changes in expression of just a few transcriptional factors - not surprising since such events might happen multiple times over 700 million years of animal evolution. Both cladistic and genomic analyses also imply that neurons themselves evolved more than once. Ancestral polarized secretory cells were likely involved in coordination of ciliated locomotion in early animals, and these cells can be considered as evolutionary precursors of neurons within different lineages. Under this scenario, the origins of neurons can be linked to adaptations to stress/injury factors in the form of integrated regeneration-type cellular response with secretory signaling peptides as early neurotransmitters. To further reconstruct the parallel evolution of nervous systems genomic approaches are essential to probe enigmatic neurons of basal metazoans, selected lophotrochozoans (e.g. phoronids, brachiopods) and deuterostomes.
Collapse
Affiliation(s)
- L L Moroz
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd. St. Augustine Florida 32080, USA.
| |
Collapse
|
131
|
Araujo H, Fontenele MR, da Fonseca RN. Position matters: variability in the spatial pattern of BMP modulators generates functional diversity. Genesis 2012; 49:698-718. [PMID: 21671348 DOI: 10.1002/dvg.20778] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bone morphogenetic proteins (BMPs) perform a variety of functions during development. Considering a single BMP, what enables its multiple roles in tissues of varied sizes and shapes? What regulates the spatial distribution and activity patterns of the BMP in these different developmental contexts? Some BMP functions require controlling spread of the BMP morphogen, while others require formation of localized, high concentration peaks of BMP activity. Here we review work in Drosophila that describes spatial regulation of the BMP encoded by decapentaplegic (dpp) in different developmental contexts. We concentrate on extracellular modulation of BMP function and discuss the mechanisms that generate concentrated peaks of Dpp activity, subdivide territories of different activity levels or regulate spread of the Dpp morphogen from a point source. We compare these findings with data from vertebrates and non-model organisms to discuss how changes in the regulation of Dpp distribution by extracellular modulators may lead to variability in dpp function in different species.
Collapse
Affiliation(s)
- Helena Araujo
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, RJ, Brazil.
| | | | | |
Collapse
|
132
|
Polyploidy and the evolution of complex traits. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:292068. [PMID: 22900230 PMCID: PMC3413983 DOI: 10.1155/2012/292068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/29/2012] [Accepted: 06/05/2012] [Indexed: 12/14/2022]
Abstract
We explore how whole-genome duplications (WGDs) may have given rise to complex innovations in cellular networks, innovations that could not have evolved through sequential single-gene duplications. We focus on two classical WGD events, one in bakers' yeast and the other at the base of vertebrates (i.e., two rounds of whole-genome duplication: 2R-WGD). Two complex adaptations are discussed in detail: aerobic ethanol fermentation in yeast and the rewiring of the vertebrate developmental regulatory network through the 2R-WGD. These two examples, derived from diverged branches on the eukaryotic tree, boldly underline the evolutionary potential of WGD in facilitating major evolutionary transitions. We close by arguing that the evolutionary importance of WGD may require updating certain aspects of modern evolutionary theory, perhaps helping to synthesize a new evolutionary systems biology.
Collapse
|
133
|
Brigandt I, Love AC. Conceptualizing Evolutionary Novelty: Moving Beyond Definitional Debates. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:417-27. [DOI: 10.1002/jez.b.22461] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 05/22/2012] [Accepted: 05/28/2012] [Indexed: 01/20/2023]
Affiliation(s)
- Ingo Brigandt
- Department of Philosophy; University of Alberta; Edmonton; Alberta; Canada
| | - Alan C. Love
- Department of Philosophy and Minnesota Center for Philosophy of Science; University of Minnesota; Minneapolis; Minnesota
| |
Collapse
|
134
|
Robertshaw E, Kiecker C. Phylogenetic origins of brain organisers. SCIENTIFICA 2012; 2012:475017. [PMID: 24278699 PMCID: PMC3820451 DOI: 10.6064/2012/475017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 06/21/2012] [Indexed: 06/02/2023]
Abstract
The regionalisation of the nervous system begins early in embryogenesis, concomitant with the establishment of the anteroposterior (AP) and dorsoventral (DV) body axes. The molecular mechanisms that drive axis induction appear to be conserved throughout the animal kingdom and may be phylogenetically older than the emergence of bilateral symmetry. As a result of this process, groups of patterning genes that are equally well conserved are expressed at specific AP and DV coordinates of the embryo. In the emerging nervous system of vertebrate embryos, this initial pattern is refined by local signalling centres, secondary organisers, that regulate patterning, proliferation, and axonal pathfinding in adjacent neuroepithelium. The main secondary organisers for the AP neuraxis are the midbrain-hindbrain boundary, zona limitans intrathalamica, and anterior neural ridge and for the DV neuraxis the notochord, floor plate, and roof plate. A search for homologous secondary organisers in nonvertebrate lineages has led to controversy over their phylogenetic origins. Based on a recent study in hemichordates, it has been suggested that the AP secondary organisers evolved at the base of the deuterostome superphylum, earlier than previously thought. According to this view, the lack of signalling centres in some deuterostome lineages is likely to reflect a secondary loss due to adaptive processes. We propose that the relative evolutionary flexibility of secondary organisers has contributed to a broader morphological complexity of nervous systems in different clades.
Collapse
Affiliation(s)
- Ellen Robertshaw
- MRC Centre for Developmental Neurobiology, King's College London, 4th Floor, New Hunt's House, Guy's Hospital Campus, London SE1 1UL, UK
| | - Clemens Kiecker
- MRC Centre for Developmental Neurobiology, King's College London, 4th Floor, New Hunt's House, Guy's Hospital Campus, London SE1 1UL, UK
| |
Collapse
|
135
|
Jones VA, Dolan L. The evolution of root hairs and rhizoids. ANNALS OF BOTANY 2012; 110:205-12. [PMID: 22730024 PMCID: PMC3394659 DOI: 10.1093/aob/mcs136] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/28/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND Almost all land plants develop tip-growing filamentous cells at the interface between the plant and substrate (the soil). Root hairs form on the surface of roots of sporophytes (the multicellular diploid phase of the life cycle) in vascular plants. Rhizoids develop on the free-living gametophytes of vascular and non-vascular plants and on both gametophytes and sporophytes of the extinct rhyniophytes. Extant lycophytes (clubmosses and quillworts) and monilophytes (ferns and horsetails) develop both free-living gametophytes and free-living sporophytes. These gametophytes and sporophytes grow in close contact with the soil and develop rhizoids and root hairs, respectively. SCOPE Here we review the development and function of rhizoids and root hairs in extant groups of land plants. Root hairs are important for the uptake of nutrients with limited mobility in the soil such as phosphate. Rhizoids have a variety of functions including water transport and adhesion to surfaces in some mosses and liverworts. CONCLUSIONS A similar gene regulatory network controls the development of rhizoids in moss gametophytes and root hairs on the roots of vascular plant sporophytes. It is likely that this gene regulatory network first operated in the gametophyte of the earliest land plants. We propose that later it functioned in sporophytes as the diploid phase evolved a free-living habit and developed an interface with the soil. This transference of gene function from gametophyte to sporophyte could provide a mechanism that, at least in part, explains the increase in morphological diversity of sporophytes that occurred during the radiation of land plants in the Devonian Period.
Collapse
Affiliation(s)
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| |
Collapse
|
136
|
Lu TM, Luo YJ, Yu JK. BMP and Delta/Notch signaling control the development of amphioxus epidermal sensory neurons: insights into the evolution of the peripheral sensory system. Development 2012; 139:2020-30. [PMID: 22535413 DOI: 10.1242/dev.073833] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The evolution of the nervous system has been a topic of great interest. To gain more insight into the evolution of the peripheral sensory system, we used the cephalochordate amphioxus. Amphioxus is a basal chordate that has a dorsal central nervous system (CNS) and a peripheral nervous system (PNS) comprising several types of epidermal sensory neurons (ESNs). Here, we show that a proneural basic helix-loop-helix gene (Ash) is co-expressed with the Delta ligand in ESN progenitor cells. Using pharmacological treatments, we demonstrate that Delta/Notch signaling is likely to be involved in the specification of amphioxus ESNs from their neighboring epidermal cells. We also show that BMP signaling functions upstream of Delta/Notch signaling to induce a ventral neurogenic domain. This patterning mechanism is highly similar to that of the peripheral sensory neurons in the protostome and vertebrate model animals, suggesting that they might share the same ancestry. Interestingly, when BMP signaling is globally elevated in amphioxus embryos, the distribution of ESNs expands to the entire epidermal ectoderm. These results suggest that by manipulating BMP signaling levels, a conserved neurogenesis circuit can be initiated at various locations in the epidermal ectoderm to generate peripheral sensory neurons in amphioxus embryos. We hypothesize that during chordate evolution, PNS progenitors might have been polarized to different positions in various chordate lineages owing to differential regulation of BMP signaling in the ectoderm.
Collapse
Affiliation(s)
- Tsai-Ming Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | | | | |
Collapse
|
137
|
Matsuda S, Shimmi O. Directional transport and active retention of Dpp/BMP create wing vein patterns in Drosophila. Dev Biol 2012; 366:153-62. [PMID: 22542596 DOI: 10.1016/j.ydbio.2012.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 11/19/2022]
Abstract
The bone morphogenetic protein (BMP) family ligand decapentaplegic (Dpp) plays critical roles in wing vein development during pupal stages in Drosophila. However, how the diffusible Dpp specifies elaborate wing vein patterns remains unknown. Here, we visualized Dpp distribution in the pupal wing and found that it tightly reflects the wing vein patterns. We show that Dpp is directionally transported from the longitudinal veins (LVs) into the posterior crossvein (PCV) primordial region by the extracellular BMP-binding proteins, short gastrulation (Sog) and crossveinless (Cv). Another BMP-type ligand, glass bottom boat (Gbb), also moves into the PCV region and is required for Dpp distribution, presumably as a Dpp-Gbb heterodimer. In contrast, we found that most of the Dpp is actively retained in the LVs by the BMP type I receptor thickveins (Tkv) and a positive feedback mechanism. We provide evidence that the directionality of Dpp transport is manifested by sog transcription that prepatterns the PCV position in a Dpp signal-independent manner. Taken together, our data suggest that spatial distribution of Dpp is tightly regulated at the extracellular level by combination of long-range facilitated transport toward the PCV and short-range signaling by active retention in the LVs, thereby allowing diffusible ligands to form elaborate wing vein patterns.
Collapse
Affiliation(s)
- Shinya Matsuda
- Institute of Biotechnology, University of Helsinki, PO Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
| | | |
Collapse
|
138
|
Wei Z, Range R, Angerer R, Angerer L. Axial patterning interactions in the sea urchin embryo: suppression of nodal by Wnt1 signaling. Development 2012; 139:1662-9. [PMID: 22438568 DOI: 10.1242/dev.075051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wnt and Nodal signaling pathways are required for initial patterning of cell fates along anterior-posterior (AP) and dorsal-ventral (DV) axes, respectively, of sea urchin embryos during cleavage and early blastula stages. These mechanisms are connected because expression of nodal depends on early Wnt/β-catenin signaling. Here, we show that an important subsequent function of Wnt signaling is to control the shape of the nodal expression domain and maintain correct specification of different cell types along the axes of the embryo. In the absence of Wnt1, the posterior-ventral region of the embryo is severely altered during early gastrulation. Strikingly, at this time, nodal and its downstream target genes gsc and bra are expressed ectopically, extending posteriorly to the blastopore. They override the initial specification of posterior-ventral ectoderm and endoderm fates, eliminating the ventral contribution to the gut and displacing the ciliary band dorsally towards, and occasionally beyond, the blastopore. Consequently, in Wnt1 morphants, the blastopore is located at the border of the re-specified posterior-ventral oral ectoderm and by larval stages it is in the same plane near the stomodeum on the ventral side. In normal embryos, a Nodal-dependent process downregulates wnt1 expression in dorsal posterior cells during early gastrulation, focusing Wnt1 signaling to the posterior-ventral region where it suppresses nodal expression. These subsequent interactions between Wnt and Nodal signaling are thus mutually antagonistic, each limiting the range of the other's activity, in order to maintain and stabilize the body plan initially established by those same signaling pathways in the early embryo.
Collapse
Affiliation(s)
- Zheng Wei
- National Institute for Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20891, USA
| | | | | | | |
Collapse
|
139
|
Pires ND, Dolan L. Morphological evolution in land plants: new designs with old genes. Philos Trans R Soc Lond B Biol Sci 2012; 367:508-18. [PMID: 22232763 PMCID: PMC3248709 DOI: 10.1098/rstb.2011.0252] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The colonization and radiation of multicellular plants on land that started over 470 Ma was one of the defining events in the history of this planet. For the first time, large amounts of primary productivity occurred on the continental surface, paving the way for the evolution of complex terrestrial ecosystems and altering global biogeochemical cycles; increased weathering of continental silicates and organic carbon burial resulted in a 90 per cent reduction in atmospheric carbon dioxide levels. The evolution of plants on land was itself characterized by a series of radical transformations of their body plans that included the formation of three-dimensional tissues, de novo evolution of a multicellular diploid sporophyte generation, evolution of multicellular meristems, and the development of specialized tissues and organ systems such as vasculature, roots, leaves, seeds and flowers. In this review, we discuss the evolution of the genes and developmental mechanisms that drove the explosion of plant morphologies on land. Recent studies indicate that many of the gene families which control development in extant plants were already present in the earliest land plants. This suggests that the evolution of novel morphologies was to a large degree driven by the reassembly and reuse of pre-existing genetic mechanisms.
Collapse
Affiliation(s)
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
140
|
Abstract
Cnidarians belong to the first phylum differentiating a nervous system, thus providing suitable model systems to trace the origins of neurogenesis. Indeed corals, sea anemones, jellyfish and hydra contract, swim and catch their food thanks to sophisticated nervous systems that share with bilaterians common neurophysiological mechanisms. However, cnidarian neuroanatomies are quite diverse, and reconstructing the urcnidarian nervous system is ambiguous. At least a series of characters recognized in all classes appear plesiomorphic: (1) the three cell types that build cnidarian nervous systems (sensory-motor cells, ganglionic neurons and mechanosensory cells called nematocytes or cnidocytes); (2) an organization of nerve nets and nerve rings [those working as annular central nervous system (CNS)]; (3) a neuronal conduction via neurotransmitters; (4) a larval anterior sensory organ required for metamorphosis; (5) a persisting neurogenesis in adulthood. By contrast, the origin of the larval and adult neural stem cells differs between hydrozoans and other cnidarians; the sensory organs (ocelli, lens-eyes, statocysts) are present in medusae but absent in anthozoans; the electrical neuroid conduction is restricted to hydrozoans. Evo-devo approaches might help reconstruct the neurogenic status of the last common cnidarian ancestor. In fact, recent genomic analyses show that if most components of the postsynaptic density predate metazoan origin, the bilaterian neurogenic gene families originated later, in basal metazoans or as eumetazoan novelties. Striking examples are the ParaHox Gsx, Pax, Six, COUP-TF and Twist-type regulators, which seemingly exert neurogenic functions in cnidarians, including eye differentiation, and support the view of a two-step process in the emergence of neurogenesis.
Collapse
Affiliation(s)
- Brigitte Galliot
- Department of Genetics and Evolution, Faculty of Science, University of Geneva, Sciences III, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland.
| | | |
Collapse
|
141
|
Abstract
Noggin, along with other secreted bone morphogenetic protein (BMP) inhibitors, plays a crucial role in neural induction and neural tube patterning as well as in somitogenesis, cardiac morphogenesis and formation of the skeleton in vertebrates. The BMP signalling pathway is one of the seven fundamental pathways that drive embryonic development and pattern formation in animals. Understanding its evolutionary origin and role in pattern formation is, therefore, important to evolutionary developmental biology (evo-devo). We have studied the evolutionary origin of BMP-Noggin antagonism in hydra, which is a powerful diploblastic model to study evolution of pattern-forming mechanisms because of the unusual cellular dynamics during its pattern formation and its remarkable ability to regenerate. We cloned and characterized the noggin gene from hydra and found it to exhibit considerable similarity with its orthologues at the amino acid level. Microinjection of hydra Noggin mRNA led to duplication of the dorsoventral axis in Xenopus embryos, demonstrating its functional conservation across the taxa. Our data, along with those of others, indicate that the evolutionarily conserved antagonism between BMP and its inhibitors predates bilateral divergence. This article reviews the various roles of Noggin in different organisms and some of our recent work on hydra Noggin in the context of evolution of developmental signalling pathways.
Collapse
Affiliation(s)
- Kalpana Chandramore
- Division of Animal Sciences, Agharkar Research Institute, Pune 411 004, India
| | | |
Collapse
|
142
|
Developmental toxicity testing in the 21st century: the sword of Damocles shattered by embryonic stem cell assays? Arch Toxicol 2011; 85:1361-72. [DOI: 10.1007/s00204-011-0767-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 10/06/2011] [Indexed: 01/31/2023]
|
143
|
Kanodia JS, Kim Y, Tomer R, Khan Z, Chung K, Storey JD, Lu H, Keller PJ, Shvartsman SY. A computational statistics approach for estimating the spatial range of morphogen gradients. Development 2011; 138:4867-74. [PMID: 22007136 DOI: 10.1242/dev.071571] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A crucial issue in studies of morphogen gradients relates to their range: the distance over which they can act as direct regulators of cell signaling, gene expression and cell differentiation. To address this, we present a straightforward statistical framework that can be used in multiple developmental systems. We illustrate the developed approach by providing a point estimate and confidence interval for the spatial range of the graded distribution of nuclear Dorsal, a transcription factor that controls the dorsoventral pattern of the Drosophila embryo.
Collapse
Affiliation(s)
- Jitendra S Kanodia
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Takebayashi-Suzuki K, Kitayama A, Terasaka-Iioka C, Ueno N, Suzuki A. The forkhead transcription factor FoxB1 regulates the dorsal-ventral and anterior-posterior patterning of the ectoderm during early Xenopus embryogenesis. Dev Biol 2011; 360:11-29. [PMID: 21958745 DOI: 10.1016/j.ydbio.2011.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 08/04/2011] [Accepted: 09/05/2011] [Indexed: 12/18/2022]
Abstract
The formation of the dorsal-ventral (DV) and anterior-posterior (AP) axes, fundamental to the body plan of animals, is regulated by several groups of polypeptide growth factors including the TGF-β, FGF, and Wnt families. In order to ensure the establishment of the body plan, the processes of DV and AP axis formation must be linked and coordinately regulated. However, the molecular mechanisms responsible for these interactions remain unclear. Here, we demonstrate that the forkhead box transcription factor FoxB1, which is upregulated by the neuralizing factor Oct-25, plays an important role in the formation of the DV and AP axes. Overexpression of FoxB1 promoted neural induction and inhibited BMP-dependent epidermal differentiation in ectodermal explants, thereby regulating the DV patterning of the ectoderm. In addition, FoxB1 was also found to promote the formation of posterior neural tissue in both ectodermal explants and whole embryos, suggesting its involvement in embryonic AP patterning. Using knockdown analysis, we found that FoxB1 is required for the formation of posterior neural tissues, acting in concert with the Wnt and FGF pathways. Consistent with this, FoxB1 suppressed the formation of anterior structures via a process requiring the function of XWnt-8 and eFGF. Interestingly, while downregulation of FoxB1 had little effect on neural induction, we found that it functionally interacted with its upstream factor Oct-25 and plays a supportive role in the induction and/or maintenance of neural tissue. Our results suggest that FoxB1 is part of a mechanism that fine-tunes, and leads to the coordinated formation of, the DV and AP axes during early development.
Collapse
Affiliation(s)
- Kimiko Takebayashi-Suzuki
- Institute for Amphibian Biology, Hiroshima University Graduate School of Science, Kagamiyama 1-3-1, Higashi-Hiroshima, Japan
| | | | | | | | | |
Collapse
|
145
|
Vorwald-Denholtz PP, De Robertis EM. Temporal pattern of the posterior expression of Wingless in Drosophila blastoderm. Gene Expr Patterns 2011; 11:456-63. [PMID: 21821151 DOI: 10.1016/j.gep.2011.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 10/17/2022]
Abstract
In most animals, the antero-posterior (A-P) axis requires a gradient of Wnt signaling. Wnts are expressed posteriorly in many vertebrate and invertebrate embryos, forming a gradient of canonical Wnt/β-Catenin activity that is highest in the posterior and lowest in the anterior. One notable exception to this evolutionary conservation is in the Drosophila embryo, in which the A-P axis is established by early transcription factors of maternal origin. Despite this initial axial establishment, Drosophila still expresses Wingless (Wg), the main Drosophila Wnt homologue, in a strong posterior band early in embryogenesis. Since its discovery 30 years ago this posterior band of Wg has been largely ignored. In this study, we re-examined the onset of expression of the Wg posterior band in relation to the expression of Wg in other segments, and compared the timing of its expression to that of axial regulators such as gap and pair-rule genes. It was found that the posterior band of Wg is first detected in blastoderm at mid nuclear cycle 14, before the segment-polarity stripes of Wg are formed in other segments. The onset of the posterior band of Wg expression was preceded by that of the gap gene products Hunchback (hb) and Krüppel (Kr), and the pair-rule protein Even-skipped (Eve). Although the function of the posterior band of Wg was not analyzed in this study, we note that in temperature-sensitive Wg mutants, in which Wg is not properly secreted, the posterior band of Wg expression is diminished in strength, indicating a positive feedback loop required for Wg robust expression at the cellular blastoderm stage. We propose that this early posterior expression could play a role in the refinement of A-P patterning.
Collapse
Affiliation(s)
- Peggy P Vorwald-Denholtz
- Howard Hughes Medical Institute, Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, United States
| | | |
Collapse
|
146
|
Shah MV, Namigai EKO, Suzuki Y. The role of canonical Wnt signaling in leg regeneration and metamorphosis in the red flour beetle Tribolium castaneum. Mech Dev 2011; 128:342-58. [PMID: 21801833 DOI: 10.1016/j.mod.2011.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 07/13/2011] [Accepted: 07/13/2011] [Indexed: 12/14/2022]
Abstract
Many organisms across the Metazoa have regenerative abilities with potentially conserved genetic mechanisms that can enlighten both medicine and evolutionary studies. Here, the role of canonical Wnt signaling was examined in the red flour beetle Tribolium castaneum in order to explore its role during metamorphosis and larval leg regeneration. Double-stranded RNA mediated silencing of Wnt-1 signaling resulted in a loss of wings and appendages with a dramatic reduction in width, indicating that the Wnt-1 signaling pathway is necessary for proper post-embryonic appendage development in T. castaneum. Furthermore, disruption of canonical Wnt signaling led to the complete impairment of limb regeneration in T. castaneum. Our findings suggest that Wnt-1 signaling is a conserved mechanism for appendage development across all holometabolous insects and indicate that the role of Wnt-1 signaling in limb regeneration has been retained across all insects as various modes of limb development evolved. Importantly, this study shows that the availability of the genome sequence and the ease of performing leg ablations make Tribolium an excellent holometabolous insect model for studying regeneration.
Collapse
Affiliation(s)
- Mita V Shah
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA 02481, United States
| | | | | |
Collapse
|
147
|
Reshuffling genomic landscapes to study the regulatory evolution of Hox gene clusters. Proc Natl Acad Sci U S A 2011; 108:10632-7. [PMID: 21670281 DOI: 10.1073/pnas.1102985108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The emergence of Vertebrata was accompanied by two rounds of whole-genome duplications. This enabled paralogous genes to acquire novel functions with high evolutionary potential, a process suggested to occur mostly by changes in gene regulation, rather than in protein sequences. In the case of Hox gene clusters, such duplications favored the appearance of distinct global regulations. To assess the impact of such "regulatory evolution" upon neo-functionalization, we developed PANTHERE (PAN-genomic Translocation for Heterologous Enhancer RE-shuffling) to bring the entire megabase-scale HoxD regulatory landscape in front of the HoxC gene cluster via a targeted translocation in vivo. At this chimeric locus, Hoxc genes could both interpret this foreign regulation and functionally substitute for their Hoxd counterparts. Our results emphasize the importance of evolving regulatory modules rather than their target genes in the process of neo-functionalization and offer a genetic tool to study the complexity of the vertebrate regulatory genome.
Collapse
|
148
|
Dayel MJ, Alegado RA, Fairclough SR, Levin TC, Nichols SA, McDonald K, King N. Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. Dev Biol 2011; 357:73-82. [PMID: 21699890 DOI: 10.1016/j.ydbio.2011.06.003] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/03/2011] [Accepted: 06/03/2011] [Indexed: 12/24/2022]
Abstract
It has been posited that animal development evolved from pre-existing mechanisms for regulating cell differentiation in the single celled and colonial ancestors of animals. Although the progenitors of animals cannot be studied directly, insights into their cell biology may be gleaned from comparisons between animals and their closest living relatives, the choanoflagellates. We report here on the life history, cell differentiation and intercellular interactions in the colony-forming choanoflagellate Salpingoeca rosetta. In response to diverse environmental cues, S. rosetta differentiates into at least five distinct cell types, including three solitary cell types (slow swimmers, fast swimmers, and thecate cells) and two colonial forms (rosettes and chains). Electron microscopy reveals that cells within colonies are held together by a combination of fine intercellular bridges, a shared extracellular matrix, and filopodia. In addition, we have discovered that the carbohydrate-binding protein wheat germ agglutinin specifically stains colonies and the slow swimmers from which they form, showing that molecular differentiation precedes multicellular development. Together, these results help establish S. rosetta as a model system for studying simple multicellularity in choanoflagellates and provide an experimental framework for investigating the origin of animal multicellularity and development.
Collapse
Affiliation(s)
- Mark J Dayel
- Department of Molecular and Cell Biology, Division of Genetics, Genomics, and Development, Center for Integrative Genomics, University of California, Berkeley, 94720, USA
| | | | | | | | | | | | | |
Collapse
|
149
|
Piraino S, Zega G, Di Benedetto C, Leone A, Dell'Anna A, Pennati R, Candia Carnevali D, Schmid V, Reichert H. Complex neural architecture in the diploblastic larva of Clava multicornis (Hydrozoa, Cnidaria). J Comp Neurol 2011; 519:1931-51. [DOI: 10.1002/cne.22614] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
150
|
Varga M, Maegawa S, Weinberg ES. Correct anteroposterior patterning of the zebrafish neurectoderm in the absence of the early dorsal organizer. BMC DEVELOPMENTAL BIOLOGY 2011; 11:26. [PMID: 21575247 PMCID: PMC3120780 DOI: 10.1186/1471-213x-11-26] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 05/16/2011] [Indexed: 11/10/2022]
Abstract
Background The embryonic organizer (i.e., Spemann organizer) has a pivotal role in the establishment of the dorsoventral (DV) axis through the coordination of BMP signaling. However, as impaired organizer function also results in anterior and posterior truncations, it is of interest to determine if proper anteroposterior (AP) pattern can be obtained even in the absence of early organizer signaling. Results Using the ventralized, maternal effect ichabod (ich) mutant, and by inhibiting BMP signaling in ich embryos, we provide conclusive evidence that AP patterning is independent of the organizer in zebrafish, and is governed by TGFβ, FGF, and Wnt signals emanating from the germ-ring. The expression patterns of neurectodermal markers in embryos with impaired BMP signaling show that the directionality of such signals is oriented along the animal-vegetal axis, which is essentially concordant with the AP axis. In addition, we find that in embryos inhibited in both Wnt and BMP signaling, the AP pattern of such markers is unchanged from that of the normal untreated embryo. These embryos develop radially organized trunk and head tissues, with an outer neurectodermal layer containing diffusely positioned neuronal precursors. Such organization is reflective of the presumed eumetazoan ancestor and might provide clues for the evolution of centralization in the nervous system. Conclusions Using a zebrafish mutant deficient in the induction of the embryonic organizer, we demonstrate that the AP patterning of the neuroectoderm during gastrulation is independent of DV patterning. Our results provide further support for Nieuwkoop's "two step model" of embryonic induction. We also show that the zebrafish embryo can form a radial diffuse neural sheath in the absence of both BMP signaling and the early organizer.
Collapse
Affiliation(s)
- Máté Varga
- Department of Biology, University of Pennsylvania, Philadelphia, 19104, USA.
| | | | | |
Collapse
|