101
|
Chen R, Zhou H, Li A, Cheng X, Liu X, Huang F, Wang Y, Liu Y, Gong H, Liu X, Zeng S. Chemical Sectioning for Immunofluorescence Imaging. Anal Chem 2021; 93:8698-8703. [PMID: 34138541 DOI: 10.1021/acs.analchem.1c01702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immunofluorescence (IF) is a powerful investigative tool in biological research and medical diagnosis, whereas conventional imaging methods are always conflict between speed, contrast/resolution, and specimen volume. Chemical sectioning (CS) is an effective method to overcome the conflict, which works by chemically manipulating the off/on state of fluorescent materials and turning on only the extremely superficial surface fluorescence of tissues to realize the sectioning capacity of wide-field imaging. However, the current mechanism of CS is only applicable to samples labeled with pH-sensitive fluorescent proteins and still cannot fulfill samples immunolabeled with frequently used commercial fluorescent dyes. Here, immunofluorescence chemical sectioning (IF-CS) is described to present an off/on mechanism for Alexa dyes by complexation reactions, allowing CS imaging of IF labeled tissues. IF-CS enables IF freeing from out-of-focus interference in wide-field imaging and satisfying with multicolor imaging. IF-CS demonstrates the utility of the 3D submicron-resolution imaging of large immunolabeled tissues on the wide-field block-face system. IF-CS may remarkably facilitate systematic studies of refined subcellular architectures of endogenous proteins in intact biological systems.
Collapse
Affiliation(s)
- Ruixi Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hongfu Zhou
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaofeng Cheng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaoxiang Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Fei Huang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yu Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yurong Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiuli Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shaoqun Zeng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
102
|
Jeucken KCM, Koning JJ, van Hamburg JP, Mebius RE, Tas SW. A Straightforward Method for 3D Visualization of B Cell Clusters and High Endothelial Venules in Lymph Nodes Highlights Differential Roles of TNFRI and -II. Front Immunol 2021; 12:699336. [PMID: 34234786 PMCID: PMC8255985 DOI: 10.3389/fimmu.2021.699336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Whole mount tissue immunolabeling and imaging of complete organs has tremendous benefits in characterizing organ morphology. Here, we present a straightforward method for immunostaining, clearing and imaging of whole murine peripheral lymph nodes (PLNs) for detailed analysis of their architecture and discuss all procedures in detail in a step-by-step approach. Given the importance of tumor necrosis factor receptor (TNFR) signaling in development of PLNs we used TNFRI-/- and TNFRII-/- mice models as proof-of-concept for this technique by visualizing and analyzing structural changes in PLN B cell clusters and high endothelial venules (HEVs). Samples were subjected to de- and rehydration with methanol, labeled with antibodies for B cells, T cells and high endothelial venules (HEVs) and optically cleared using benzyl alcohol-benzyl benzoate. Imaging was done using LaVision light sheet microscope and analysis with Imaris software. Using these techniques, we confirmed previous findings that TNFRI signaling is essential for formation of individual B cell clusters. In addition, Our data suggest that TNFRII signaling is also to some extent involved in this process as TNFRII-/- PLNs had a B cell cluster morphology reminiscent of TNFRI-/- PLNs. Moreover, visualization and objective quantification of the complete PLN high endothelial vasculature unveiled reduced volume, length and branching points of HEVs in TNFRI-/- PLNs, revealing an earlier unrecognized contribution of TNFRI signaling in HEV morphology. Together, these results underline the potential of whole mount tissue staining and advanced imaging techniques to unravel even subtle changes in lymphoid tissue architecture.
Collapse
Affiliation(s)
- Kim C M Jeucken
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jasper J Koning
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jan Piet van Hamburg
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sander W Tas
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
103
|
Mano T, Murata K, Kon K, Shimizu C, Ono H, Shi S, Yamada RG, Miyamichi K, Susaki EA, Touhara K, Ueda HR. CUBIC-Cloud provides an integrative computational framework toward community-driven whole-mouse-brain mapping. CELL REPORTS METHODS 2021; 1:100038. [PMID: 35475238 PMCID: PMC9017177 DOI: 10.1016/j.crmeth.2021.100038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/17/2021] [Accepted: 05/20/2021] [Indexed: 01/18/2023]
Abstract
Recent advancements in tissue clearing technologies have offered unparalleled opportunities for researchers to explore the whole mouse brain at cellular resolution. With the expansion of this experimental technique, however, a scalable and easy-to-use computational tool is in demand to effectively analyze and integrate whole-brain mapping datasets. To that end, here we present CUBIC-Cloud, a cloud-based framework to quantify, visualize, and integrate mouse brain data. CUBIC-Cloud is a fully automated system where users can upload their whole-brain data, run analyses, and publish the results. We demonstrate the generality of CUBIC-Cloud by a variety of applications. First, we investigated the brain-wide distribution of five cell types. Second, we quantified Aβ plaque deposition in Alzheimer's disease model mouse brains. Third, we reconstructed a neuronal activity profile under LPS-induced inflammation by c-Fos immunostaining. Last, we show brain-wide connectivity mapping by pseudotyped rabies virus. Together, CUBIC-Cloud provides an integrative platform to advance scalable and collaborative whole-brain mapping.
Collapse
Affiliation(s)
- Tomoyuki Mano
- Department of Information Physics and Computing, Graduate School of Information Science and Technology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka 565-5241, Japan
| | - Ken Murata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuhiro Kon
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Chika Shimizu
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka 565-5241, Japan
| | - Hiroaki Ono
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shoi Shi
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka 565-5241, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Rikuhiro G. Yamada
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka 565-5241, Japan
| | - Kazunari Miyamichi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Etsuo A. Susaki
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka 565-5241, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki R. Ueda
- Department of Information Physics and Computing, Graduate School of Information Science and Technology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka 565-5241, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
104
|
Company V, Andreu-Cervera A, Madrigal MP, Andrés B, Almagro-García F, Chédotal A, López-Bendito G, Martinez S, Echevarría D, Moreno-Bravo JA, Puelles E. Netrin 1-Mediated Role of the Substantia Nigra Pars Compacta and Ventral Tegmental Area in the Guidance of the Medial Habenular Axons. Front Cell Dev Biol 2021; 9:682067. [PMID: 34169076 PMCID: PMC8217627 DOI: 10.3389/fcell.2021.682067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/16/2021] [Indexed: 01/21/2023] Open
Abstract
The fasciculus retroflexus is an important fascicle that mediates reward-related behaviors and is associated with different psychiatric diseases. It is the main habenular efference and constitutes a link between forebrain regions, the midbrain, and the rostral hindbrain. The proper functional organization of habenular circuitry requires complex molecular programs to control the wiring of the habenula during development. However, the mechanisms guiding the habenular axons toward their targets remain mostly unknown. Here, we demonstrate the role of the mesodiencephalic dopaminergic neurons (substantia nigra pars compacta and ventral tegmental area) as an intermediate target for the correct medial habenular axons navigation along the anteroposterior axis. These neuronal populations are distributed along the anteroposterior trajectory of these axons in the mesodiencephalic basal plate. Using in vitro and in vivo experiments, we determined that this navigation is the result of netrin 1 attraction generated by the mesodiencephalic dopaminergic neurons. This attraction is mediated by the receptor deleted in colorectal cancer (DCC), which is strongly expressed in the medial habenular axons. The increment in our knowledge on the fasciculus retroflexus trajectory guidance mechanisms opens the possibility of analyzing if its alteration in mental health patients could account for some of their symptoms.
Collapse
Affiliation(s)
- Verónica Company
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | - Abraham Andreu-Cervera
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | - M Pilar Madrigal
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | - Belén Andrés
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | | | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Salvador Martinez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | - Diego Echevarría
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | - Juan A Moreno-Bravo
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | - Eduardo Puelles
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| |
Collapse
|
105
|
Yu T, Li D, Zhu D. Tissue Optical Clearing for Biomedical Imaging: From In Vitro to In Vivo. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 3233:217-255. [PMID: 34053030 DOI: 10.1007/978-981-15-7627-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tissue optical clearing technique provides a prospective solution for the application of advanced optical methods in life sciences. This chapter firstly gives a brief introduction to mechanisms of tissue optical clearing techniques, from the physical mechanism to chemical mechanism, which is the most important foundation to develop tissue optical clearing methods. During the past years, in vitro and in vivo tissue optical clearing methods were developed. In vitro tissue optical clearing techniques, including the solvent-based clearing methods and the hydrophilic reagents-based clearing methods, combined with labeling technique and advanced microscopy, can be applied to image 3D microstructure of tissue blocks or whole organs such as brain and spinal cord with high resolution. In vivo skin or skull optical clearing, promise various optical imaging techniques to detect cutaneous or cortical cell and vascular structure and function without surgical window.
Collapse
Affiliation(s)
- Tingting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China. .,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
106
|
Weiss KR, Voigt FF, Shepherd DP, Huisken J. Tutorial: practical considerations for tissue clearing and imaging. Nat Protoc 2021; 16:2732-2748. [PMID: 34021294 PMCID: PMC10542857 DOI: 10.1038/s41596-021-00502-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
Tissue clearing has become a powerful technique for studying anatomy and morphology at scales ranging from entire organisms to subcellular features. With the recent proliferation of tissue-clearing methods and imaging options, it can be challenging to determine the best clearing protocol for a particular tissue and experimental question. The fact that so many clearing protocols exist suggests there is no one-size-fits-all approach to tissue clearing and imaging. Even in cases where a basic level of clearing has been achieved, there are many factors to consider, including signal retention, staining (labeling), uniformity of transparency, image acquisition and analysis. Despite reviews citing features of clearing protocols, it is often unknown a priori whether a protocol will work for a given experiment, and thus some optimization is required by the end user. In addition, the capabilities of available imaging setups often dictate how the sample needs to be prepared. After imaging, careful evaluation of volumetric image data is required for each combination of clearing protocol, tissue type, biological marker, imaging modality and biological question. Rather than providing a direct comparison of the many clearing methods and applications available, in this tutorial we address common pitfalls and provide guidelines for designing, optimizing and imaging in a successful tissue-clearing experiment with a focus on light-sheet fluorescence microscopy (LSFM).
Collapse
Affiliation(s)
- Kurt R Weiss
- Morgridge Institute for Research, Madison, WI, USA
| | - Fabian F Voigt
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Douglas P Shepherd
- Department of Physics, Arizona State University, Tempe, AZ, USA
- Center for Biological Physics, Arizona State University, Tempe, AZ, USA
| | - Jan Huisken
- Morgridge Institute for Research, Madison, WI, USA.
- Department of Integrative Biology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
107
|
Baudouin C, Pelosi B, Courtoy GE, Achouri Y, Clotman F. Generation and characterization of a tamoxifen-inducible Vsx1-CreER T2 line to target V2 interneurons in the mouse developing spinal cord. Genesis 2021; 59:e23435. [PMID: 34080769 DOI: 10.1002/dvg.23435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 11/11/2022]
Abstract
In the spinal cord, ventral interneurons regulate the activity of motor neurons, thereby controlling motor activities including locomotion. Interneurons arise during embryonic development from distinct progenitor domains orderly distributed along the dorso-ventral axis of the neural tube. The p2 progenitor domain generates at least five V2 interneuron populations. However, identification and characterization of all V2 populations remain currently incomplete and the mechanisms that control their development remain only partly understood. In this study, we report the generation of a Vsx1-CreERT2 BAC transgenic mouse line that drives CreERT2 recombinase expression mimicking endogenous Vsx1 expression pattern in the developing spinal cord. We showed that the Vsx1-CreERT2 transgene can mediate recombination in V2 precursors with a high efficacy and specificity. Lineage tracing demonstrated that all the V2 interneurons in the mouse developing spinal cord derive from cells expressing Vsx1. Finally, we confirmed that V2 precursors generate additional V2 populations that are not characterized yet. Thus, the Vsx1-CreERT2 line described here is a useful genetic tool for lineage tracing and for functional studies of the mouse spinal V2 interneurons.
Collapse
Affiliation(s)
- Charlotte Baudouin
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Barbara Pelosi
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Guillaume E Courtoy
- Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Younes Achouri
- de Duve Institute, Transgenic Core Facility, Université catholique de Louvain, Brussels, Belgium
| | - Frédéric Clotman
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
108
|
Abstract
PURPOSE OF REVIEW There have been tremendous advances in the tools available for surveying blood vessels within whole organs and tissues. Here, we summarize some of the recent developments in methods for immunolabeling and imaging whole organs and provide a protocol optimized for the heart. RECENT FINDINGS Multiple protocols have been established for chemically clearing large organs and variations are compatible with cell type-specific labeling. Heart tissue can be successfully cleared to reveal the three-dimensional structure of the entire coronary vasculature in neonatal and adult mice. Obtaining vascular reconstructions requires exceptionally large imaging files and new computational methods to process the data for accurate vascular quantifications. This is a continually advancing field that has revolutionized our ability to acquire data on larger samples as a faster rate. SUMMARY Historically, cardiovascular research has relied heavily on histological analyses that use tissue sections, which usually sample cellular phenotypes in small regions and lack information on whole tissue-level organization. This approach can be modified to survey whole organs but image acquisition and analysis time can become unreasonable. In recent years, whole-organ immunolabeling and clearing methods have emerged as a workable solution, and new microscopy modalities, such as light-sheet microscopy, significantly improve image acquisition times. These innovations make studying the vasculature in the context of the whole organ widely available and promise to reveal fascinating new cellular behaviors in adult tissues and during repair.
Collapse
Affiliation(s)
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA, 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
109
|
Kolesová H, Olejníčková V, Kvasilová A, Gregorovičová M, Sedmera D. Tissue clearing and imaging methods for cardiovascular development. iScience 2021; 24:102387. [PMID: 33981974 PMCID: PMC8086021 DOI: 10.1016/j.isci.2021.102387] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tissue imaging in 3D using visible light is limited and various clearing techniques were developed to increase imaging depth, but none provides universal solution for all tissues at all developmental stages. In this review, we focus on different tissue clearing methods for 3D imaging of heart and vasculature, based on chemical composition (solvent-based, simple immersion, hyperhydration, and hydrogel embedding techniques). We discuss in detail compatibility of various tissue clearing techniques with visualization methods: fluorescence preservation, immunohistochemistry, nuclear staining, and fluorescent dyes vascular perfusion. We also discuss myocardium visualization using autofluorescence, tissue shrinking, and expansion. Then we overview imaging methods used to study cardiovascular system and live imaging. We discuss heart and vessels segmentation methods and image analysis. The review covers the whole process of cardiovascular system 3D imaging, starting from tissue clearing and its compatibility with various visualization methods to the types of imaging methods and resulting image analysis.
Collapse
Affiliation(s)
- Hana Kolesová
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Science, Prague, Czech Republic
| | - Veronika Olejníčková
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Science, Prague, Czech Republic
| | - Alena Kvasilová
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martina Gregorovičová
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Science, Prague, Czech Republic
| | - David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Science, Prague, Czech Republic
| |
Collapse
|
110
|
Zhan Y, Wu H, Liu L, Lin J, Zhang S. Organic solvent-based tissue clearing techniques and their applications. JOURNAL OF BIOPHOTONICS 2021; 14:e202000413. [PMID: 33715302 DOI: 10.1002/jbio.202000413] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 02/05/2023]
Abstract
Revealing the true structure of tissues and organs with tissue slicing technology is difficult since images reconstructed in three dimensions are easily distorted. To address the limitations in tissue slicing technology, tissue clearing has been invented and has recently achieved significant progress in three-dimensional imaging. Currently, this technology can mainly be divided into two types: aqueous clearing methods and solvent-based clearing methods. As one of the important parts of this technology, organic solvent-based tissue clearing techniques have been widely applied because of their efficient clearing speed and high clearing intensity. This review introduces the primary organic solvent-based tissue clearing techniques and their applications.
Collapse
Affiliation(s)
- Yanjing Zhan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haoyan Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linfeng Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Lin
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
111
|
Roostalu U, Thisted L, Skytte JL, Salinas CG, Pedersen PJ, Hecksher-Sørensen J, Rolin B, Hansen HH, MacKrell JG, Christie RM, Vrang N, Jelsing J, Zois NE. Effect of captopril on post-infarction remodelling visualized by light sheet microscopy and echocardiography. Sci Rep 2021; 11:5241. [PMID: 33664407 PMCID: PMC7933438 DOI: 10.1038/s41598-021-84812-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/22/2021] [Indexed: 02/08/2023] Open
Abstract
Angiotensin converting enzyme inhibitors, among them captopril, improve survival following myocardial infarction (MI). The mechanisms of captopril action remain inadequately understood due to its diverse effects on multiple signalling pathways at different time periods following MI. Here we aimed to establish the role of captopril in late-stage post-MI remodelling. Left anterior descending artery (LAD) ligation or sham surgery was carried out in male C57BL/6J mice. Seven days post-surgery LAD ligated mice were allocated to daily vehicle or captopril treatment continued over four weeks. To provide comprehensive characterization of the changes in mouse heart following MI a 3D light sheet imaging method was established together with automated image analysis workflow. The combination of echocardiography and light sheet imaging enabled to assess cardiac function and the underlying morphological changes. We show that delayed captopril treatment does not affect infarct size but prevents left ventricle dilation and hypertrophy, resulting in improved ejection fraction. Quantification of lectin perfused blood vessels showed improved vascular density in the infarct border zone in captopril treated mice in comparison to vehicle dosed control mice. These results validate the applicability of combined echocardiographic and light sheet assessment of drug mode of action in preclinical cardiovascular research.
Collapse
Affiliation(s)
- Urmas Roostalu
- Gubra, Hørsholm Kongevej 11, B, 2970, Hørsholm, Denmark.
| | | | | | | | | | | | - Bidda Rolin
- Gubra, Hørsholm Kongevej 11, B, 2970, Hørsholm, Denmark
- Novo Nordisk, 2760, Maaloev, Denmark
| | | | - James G MacKrell
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Robert M Christie
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Niels Vrang
- Gubra, Hørsholm Kongevej 11, B, 2970, Hørsholm, Denmark
| | - Jacob Jelsing
- Gubra, Hørsholm Kongevej 11, B, 2970, Hørsholm, Denmark
| | | |
Collapse
|
112
|
Molbay M, Kolabas ZI, Todorov MI, Ohn T, Ertürk A. A guidebook for DISCO tissue clearing. Mol Syst Biol 2021; 17:e9807. [PMID: 33769689 PMCID: PMC7995442 DOI: 10.15252/msb.20209807] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/29/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Histological analysis of biological tissues by mechanical sectioning is significantly time-consuming and error-prone due to loss of important information during sample slicing. In the recent years, the development of tissue clearing methods overcame several of these limitations and allowed exploring intact biological specimens by rendering tissues transparent and subsequently imaging them by laser scanning fluorescence microscopy. In this review, we provide a guide for scientists who would like to perform a clearing protocol from scratch without any prior knowledge, with an emphasis on DISCO clearing protocols, which have been widely used not only due to their robustness, but also owing to their relatively straightforward application. We discuss diverse tissue-clearing options and propose solutions for several possible pitfalls. Moreover, after surveying more than 30 researchers that employ tissue clearing techniques in their laboratories, we compiled the most frequently encountered issues and propose solutions. Overall, this review offers an informative and detailed guide through the growing literature of tissue clearing and can help with finding the easiest way for hands-on implementation.
Collapse
Affiliation(s)
- Muge Molbay
- Institute for Tissue Engineering and Regenerative Medicine (iTERM)Helmholtz CenterNeuherberg, MunichGermany
- Institute for Stroke and Dementia ResearchKlinikum der Universität MünchenLudwig‐Maximilians‐University MunichMunichGermany
- Munich Medical Research School (MMRS)MunichGermany
| | - Zeynep Ilgin Kolabas
- Institute for Tissue Engineering and Regenerative Medicine (iTERM)Helmholtz CenterNeuherberg, MunichGermany
- Institute for Stroke and Dementia ResearchKlinikum der Universität MünchenLudwig‐Maximilians‐University MunichMunichGermany
- Graduate School for Systemic Neurosciences (GSN)MunichGermany
| | - Mihail Ivilinov Todorov
- Institute for Tissue Engineering and Regenerative Medicine (iTERM)Helmholtz CenterNeuherberg, MunichGermany
- Institute for Stroke and Dementia ResearchKlinikum der Universität MünchenLudwig‐Maximilians‐University MunichMunichGermany
- Graduate School for Systemic Neurosciences (GSN)MunichGermany
| | - Tzu‐Lun Ohn
- Institute for Tissue Engineering and Regenerative Medicine (iTERM)Helmholtz CenterNeuherberg, MunichGermany
- Institute for Stroke and Dementia ResearchKlinikum der Universität MünchenLudwig‐Maximilians‐University MunichMunichGermany
| | - Ali Ertürk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM)Helmholtz CenterNeuherberg, MunichGermany
- Institute for Stroke and Dementia ResearchKlinikum der Universität MünchenLudwig‐Maximilians‐University MunichMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| |
Collapse
|
113
|
Szabo-Pardi TA, Syed UM, Castillo ZW, Burton MD. Use of Integrated Optical Clearing and 2-Photon Imaging to Investigate Sex Differences in Neuroimmune Interactions After Peripheral Nerve Injury. Front Cell Dev Biol 2021; 9:624201. [PMID: 34178976 PMCID: PMC8221108 DOI: 10.3389/fcell.2021.624201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/12/2021] [Indexed: 12/02/2022] Open
Abstract
Peripheral nerve injury induces a myriad of immune-derived symptoms that negatively impacts pain, depression, and overall quality of life. Neuroimmune differences underlie sexual dimorphisms in various pain states. The innate immune system is a source of these sex differences, which promotes inflammation and pro-nociception through bidirectional signaling with the nervous system. Spatiotemporal interactions between leukocytes and sensory neurons could hold the key to explain ascribed differences between sexes. To date, studies have found it difficult to display these interactions. We are poised to answer important questions regarding the recruitment of peripheral leukocytes to key tissues of the pain system, the dorsal root ganglia (DRG) and sciatic nerve after nerve injury. We optically clear whole DRGs and sciatic nerves and concomitantly use multi-photon microscopy and transgenic reporter lines, to visualize leukocyte dynamics involved in neuropathic pain development following nerve injury. We observed robust sexual dimorphisms in leukocyte recruitment to the lumbar DRGs after nerve injury. We also assessed immune cell size and morphology to understand activation states in the context of nervous tissue inflammation. The altered mechanisms by which the male and female immune systems respond to nerve injury are still topics of further research, however; the continued use of next-generation imaging with advanced whole tissue image analysis remains an important tool in understanding the reciprocal interactions between neuronal and non-neuronal cells.
Collapse
Affiliation(s)
| | | | | | - Michael D. Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
114
|
Wilde S, Feneck EM, Mohun TJ, Logan MPO. 4D formation of human embryonic forelimb musculature. Development 2021; 148:dev194746. [PMID: 33234713 PMCID: PMC7904005 DOI: 10.1242/dev.194746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022]
Abstract
The size, shape and insertion sites of muscles enable them to carry out their precise functions in moving and supporting the skeleton. Although forelimb anatomy is well described, much less is known about the embryonic events that ensure individual muscles reach their mature form. A description of human forelimb muscle development is needed to understand the events that control normal muscle formation and to identify what events are disrupted in congenital abnormalities in which muscles fail to form normally. We provide a new, 4D anatomical characterisation of the developing human upper limb muscles between Carnegie stages 18 and 22 using optical projection tomography. We show that muscles develop in a progressive wave, from proximal to distal and from superficial to deep. We show that some muscle bundles undergo splitting events to form individual muscles, whereas others translocate to reach their correct position within the forelimb. Finally, we show that palmaris longus fails to form from early in development. Our study reveals the timings of, and suggests mechanisms for, crucial events that enable nascent muscle bundles to reach their mature form and position within the human forelimb.
Collapse
Affiliation(s)
- Susan Wilde
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Eleanor M Feneck
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| | | | - Malcolm P O Logan
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
115
|
Fiorentino G, Parrilli A, Garagna S, Zuccotti M. Three-dimensional imaging and reconstruction of the whole ovary and testis: a new frontier for the reproductive scientist. Mol Hum Reprod 2021; 27:6129265. [PMID: 33544861 DOI: 10.1093/molehr/gaab007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/14/2021] [Indexed: 12/24/2022] Open
Abstract
The 3D functional reconstruction of a whole organ or organism down to the single cell level and to the subcellular components and molecules is a major future scientific challenge. The recent convergence of advanced imaging techniques with an impressively increased computing power allowed early attempts to translate and combine 2D images and functional data to obtain in-silico organ 3D models. This review first describes the experimental pipeline required for organ 3D reconstruction: from the collection of 2D serial images obtained with light, confocal, light-sheet microscopy or tomography, followed by their registration, segmentation and subsequent 3D rendering. Then, we summarise the results of investigations performed so far by applying these 3D image analyses to the study of the female and male mammalian gonads. These studies highlight the importance of working towards a 3D in-silico model of the ovary and testis as a tool to gain insights into their biology during the phases of differentiation or adulthood, in normal or pathological conditions. Furthermore, the use of 3D imaging approaches opens to key technical improvements, ranging from image acquisition to optimisation and development of new processing tools, and unfolds novel possibilities for multidisciplinary research.
Collapse
Affiliation(s)
- Giulia Fiorentino
- Laboratory of Developmental Biology, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, 27100 Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia 27100, Italy
| | - Annapaola Parrilli
- Center for X-ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Silvia Garagna
- Laboratory of Developmental Biology, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, 27100 Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia 27100, Italy
| | - Maurizio Zuccotti
- Laboratory of Developmental Biology, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, 27100 Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia 27100, Italy
| |
Collapse
|
116
|
Walsh C, Tafforeau P, Wagner WL, Jafree DJ, Bellier A, Werlein C, Kühnel MP, Boller E, Walker-Samuel S, Robertus JL, Long DA, Jacob J, Marussi S, Brown E, Holroyd N, Jonigk DD, Ackermann M, Lee PD. Multiscale three-dimensional imaging of intact human organs down to the cellular scale using hierarchical phase-contrast tomography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.03.429481. [PMID: 33564772 PMCID: PMC7872374 DOI: 10.1101/2021.02.03.429481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Human organs are complex, three-dimensional and multiscale systems. Spatially mapping the human body down through its hierarchy, from entire organs to their individual functional units and specialised cells, is a major obstacle to fully understanding health and disease. To meet this challenge, we developed hierarchical phase-contrast tomography (HiP-CT), an X-ray phase propagation technique utilising the European Synchrotron Radiation Facility's Extremely Brilliant Source: the world's first high-energy 4 th generation X-ray source. HiP-CT enabled three-dimensional and non-destructive imaging at near-micron resolution in soft tissues at one hundred thousand times the voxel size whilst maintaining the organ's structure. We applied HiP-CT to image five intact human parenchymal organs: brain, lung, heart, kidney and spleen. These were hierarchically assessed with HiP-CT, providing a structural overview of the whole organ alongside detail of the organ's individual functional units and cells. The potential applications of HiP-CT were demonstrated through quantification and morphometry of glomeruli in an intact human kidney, and identification of regional changes to the architecture of the air-tissue interface and alveolar morphology in the lung of a deceased COVID-19 patient. Overall, we show that HiP-CT is a powerful tool which can provide a comprehensive picture of structural information for whole intact human organs, encompassing precise details on functional units and their constituent cells to better understand human health and disease.
Collapse
Affiliation(s)
- C Walsh
- Centre for Advanced Biomedical Imaging, University College London, U.K
| | - P Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France
| | - Willi L Wagner
- Dept of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany Translational Lung Research Centre Heidelberg (TLRC), German Lung Research Centre (DZL), Heidelberg, Germany
| | - D J Jafree
- Developmental Biology and Cancer Programme, Great Ormond Street Institute of Child Health, University College London, UK
- UCL MB/PhD Programme, Faculty of Medical Sciences, University College London, UK
| | - A Bellier
- French Alps Laboratory of Anatomy (LADAF), Grenoble Alpes University, Grenoble, France
| | - C Werlein
- Institute of Pathology, Hannover Medical School, Hannover, Germany (Carl-Neuberg-Straße 1, 30625 Hannover)
| | - M P Kühnel
- Institute of Pathology, Hannover Medical School, Hannover, Germany (Carl-Neuberg-Straße 1, 30625 Hannover)
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH)
| | - E Boller
- European Synchrotron Radiation Facility, Grenoble, France
| | - S Walker-Samuel
- Centre for Advanced Biomedical Imaging, University College London, U.K
| | - J L Robertus
- Department of Histopathology, Royal Brompton and Harefield NHS Foundation Trust, London, UK
- National Heart & Lung Institute, Imperial College London, London, UK
| | - D A Long
- Developmental Biology and Cancer Programme, Great Ormond Street Institute of Child Health, University College London, UK
| | - J Jacob
- Centre for Medical Image Computing, University College London, London, UK
- Department of Radiology, University College London Hospitals NHS Foundation Trust, London, UK
| | - S Marussi
- Department of Mechanical Engineering University College London, U.K
| | - E Brown
- Centre for Advanced Biomedical Imaging, University College London, U.K
| | - N Holroyd
- Centre for Advanced Biomedical Imaging, University College London, U.K
| | - D D Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany (Carl-Neuberg-Straße 1, 30625 Hannover)
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH)
| | - M Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz
| | - P D Lee
- Department of Mechanical Engineering University College London, U.K
| |
Collapse
|
117
|
Nedelec S, Martinez-Arias A. In vitro models of spinal motor circuit's development in mammals: achievements and challenges. Curr Opin Neurobiol 2021; 66:240-249. [PMID: 33677159 DOI: 10.1016/j.conb.2020.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/12/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
The connectivity patterns of neurons sustaining the functionality of spinal locomotor circuits rely on the specification of hundreds of motor neuron and interneuron subtypes precisely arrayed within the embryonic spinal cord. Knowledge acquired by developmental biologists on the molecular mechanisms underpinning this process in vivo has supported the development of 2D and 3D differentiation strategies to generate spinal neuronal diversity from mouse and human pluripotent stem cells (PSCs). Here, we review recent breakthroughs in this field and the perspectives opened up by models of in vitro embryogenesis to approach the mechanisms underlying neuronal diversification and the formation of functional mouse and human locomotor circuits. Beyond serving fundamental investigations, these new approaches should help engineering neuronal circuits differentially impacted in neuromuscular disorders, such as amyotrophic lateral sclerosis or spinal muscular atrophies, and thus open new avenues for disease modeling and drug screenings.
Collapse
Affiliation(s)
- Stéphane Nedelec
- Institut du Fer à Moulin, 75005, Paris, France; Inserm, UMR-S 1270, 75005 Paris, France; Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France.
| | | |
Collapse
|
118
|
Tian T, Yang Z, Li X. Tissue clearing technique: Recent progress and biomedical applications. J Anat 2021; 238:489-507. [PMID: 32939792 PMCID: PMC7812135 DOI: 10.1111/joa.13309] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/19/2020] [Accepted: 08/24/2020] [Indexed: 02/03/2023] Open
Abstract
Organisms are inherently three dimensional, thus comprehensive understanding of the complicated biological system requires analysis of organs or even whole bodies in the context of three dimensions. However, this is a tremendous task since the biological specimens are naturally opaque, a major obstacle in whole-body and whole-organ imaging. Tissue clearing technique provides a prospective solution and has become a powerful tool for three-dimensional imaging and quantification of organisms. Tissue clearing technique aims to make tissue transparent by minimizing light scattering and light absorption, thus allowing deep imaging of large volume samples. When combined with diverse molecular labeling methods and high-throughput optical sectioning microscopes, tissue clearing technique enables whole-body and whole-organ imaging at cellular or subcellular resolution, providing detailed and comprehensive information about the intact biological systems. Here, we give an overview of recent progress and biomedical applications of tissue clearing technique. We introduce the mechanisms and basic principles of tissue clearing, and summarize the current tissue clearing methods. Moreover, the available imaging techniques and software packages for data processing are also presented. Finally, we introduce the recent advances in applications of tissue clearing in biomedical fields. Tissue clearing contributes to the investigation of structure-function relationships in intact mammalian organs, and opens new avenues for cellular and molecular mapping of intact human organs. We hope this review contributes to a better understanding of tissue clearing technique and can help researchers to select the best-suited clearing protocol for their experiments.
Collapse
Affiliation(s)
- Ting Tian
- Beijing Key Laboratory for Biomaterials and Neural RegenerationSchool of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
| | - Zhaoyang Yang
- Department of NeurobiologySchool of Basic Medical SciencesCapital Medical UniversityBeijingChina,Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural RegenerationBeijing Advanced Innovation Center for Biomedical EngineeringBeihang UniversityBeijingChina
| | - Xiaoguang Li
- Beijing Key Laboratory for Biomaterials and Neural RegenerationSchool of Biological Science and Medical EngineeringBeihang UniversityBeijingChina,Department of NeurobiologySchool of Basic Medical SciencesCapital Medical UniversityBeijingChina,Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural RegenerationBeijing Advanced Innovation Center for Biomedical EngineeringBeihang UniversityBeijingChina
| |
Collapse
|
119
|
Messal HA, Almagro J, Zaw Thin M, Tedeschi A, Ciccarelli A, Blackie L, Anderson KI, Miguel-Aliaga I, van Rheenen J, Behrens A. Antigen retrieval and clearing for whole-organ immunofluorescence by FLASH. Nat Protoc 2020; 16:239-262. [PMID: 33247285 DOI: 10.1038/s41596-020-00414-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/18/2020] [Indexed: 12/19/2022]
Abstract
Advances in light-sheet and confocal microscopy now allow imaging of cleared large biological tissue samples and enable the 3D appreciation of cell and protein localization in their native organ environment. However, the sample preparations for such imaging are often onerous, and their capability for antigen detection is limited. Here, we describe FLASH (fast light-microscopic analysis of antibody-stained whole organs), a simple, rapid, fully customizable technique for molecular phenotyping of intact tissue volumes. FLASH utilizes non-degradative epitope recovery and membrane solubilization to enable the detection of a multitude of membranous, cytoplasmic and nuclear antigens in whole mouse organs and embryos, human biopsies, organoids and Drosophila. Retrieval and immunolabeling of epithelial markers, an obstacle for previous clearing techniques, can be achieved with FLASH. Upon volumetric imaging, FLASH-processed samples preserve their architecture and integrity and can be paraffin-embedded for subsequent histopathological analysis. The technique can be performed by scientists trained in light microscopy and yields results in <1 week.
Collapse
Affiliation(s)
- Hendrik A Messal
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK.,Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jorge Almagro
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - May Zaw Thin
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - Antonio Tedeschi
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | | | - Laura Blackie
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Kurt I Anderson
- Advanced Light Microscopy Facility, The Francis Crick Institute, London, UK
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Jacco van Rheenen
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK. .,Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK. .,Convergence Science Centre, Imperial College London, London, UK. .,The Institute of Cancer Research, London, UK.
| |
Collapse
|
120
|
Abstract
The extraordinary diversity, variability, and complexity of cell types in the vertebrate brain is overwhelming and far exceeds that of any other organ. This complexity is the result of multiple cell divisions and intricate gene regulation and cell movements that take place during embryonic development. Understanding the cellular and molecular mechanisms underlying these complicated developmental processes requires the ability to obtain a complete registry of interconnected events often taking place far apart from each other. To assist with this challenging task, developmental neuroscientists take advantage of a broad set of methods and technologies, often adopted from other fields of research. Here, we review some of the methods developed in recent years whose use has rapidly spread for application in the field of developmental neuroscience. We also provide several considerations regarding the promise that these techniques hold for the near future and share some ideas on how existing methods from other research fields could help with the analysis of how neural circuits emerge.
Collapse
Affiliation(s)
- Augusto Escalante
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - Rocío González-Martínez
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - Eloísa Herrera
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| |
Collapse
|
121
|
An In Vitro Differentiation Protocol for Human Embryonic Bipotential Gonad and Testis Cell Development. Stem Cell Reports 2020; 15:1377-1391. [PMID: 33217324 PMCID: PMC7724470 DOI: 10.1016/j.stemcr.2020.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 01/12/2023] Open
Abstract
Currently an in vitro model that fully recapitulates the human embryonic gonad is lacking. Here we describe a fully defined feeder-free protocol to generate early testis-like cells with the ability to be cultured as an organoid, from human induced pluripotent stem cells. This stepwise approach uses small molecules to mimic embryonic development, with upregulation of bipotential gonad markers (LHX9, EMX2, GATA4, and WT1) at day 10 of culture, followed by induction of testis Sertoli cell markers (SOX9, WT1, and AMH) by day 15. Aggregation into 3D structures and extended culture on Transwell filters yielded organoids with defined tissue structures and distinct Sertoli cell marker expression. These studies provide insight into human gonadal development, suggesting that a population of precursor cells may originate from a more lateral region of the mesoderm. Our protocol represents a significant advance toward generating a much-needed human gonad organoid for studying disorders/differences of sex development.
Collapse
|
122
|
Vue Z, Behringer RR. Epithelial morphogenesis in the perinatal mouse uterus. Dev Dyn 2020; 249:1377-1386. [PMID: 32767478 PMCID: PMC8142688 DOI: 10.1002/dvdy.234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The uterus is the location where multiple events occur that are required for the start of new life in mammals. The adult uterus contains endometrial or uterine glands that are essential for female fertility. In the mouse, uterine glands are located in the lateral and antimesometrial regions of the uterine horn. Previous three-dimensional (3D)-imaging of the adult uterus, its glands, and implanting embryos has been performed by multiple groups, using fluorescent microscopy. Adenogenesis, the formation of uterine glands, initiates after birth. Recently, we created a 3D-staging system of mouse uterine gland development at postnatal time points, using light sheet fluorescent microscopy. Here, using a similar approach, we examine the morphological changes in the epithelium of the perinatal mouse uterus. RESULTS The uterine epithelium exhibits dorsoventral (mesometrial-antimesometrial) patterning as early as 3 days after birth (P3), marked by the presence of the dorsally positioned developing uterine rail. Uterine gland buds are present beginning at P4. Novel morphological epithelial structures, including a ventral ridge and uterine segments were identified. CONCLUSIONS The perinatal mouse uterine luminal epithelium develops dorsal-ventral morphologies at 3 to 4 days postpartum. Between 5 and 6 days postpartum uterine epithelial folds form, defining alternating left-right segments.
Collapse
Affiliation(s)
- Zer Vue
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Richard R. Behringer
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
123
|
Vermeiren S, Bellefroid EJ, Desiderio S. Vertebrate Sensory Ganglia: Common and Divergent Features of the Transcriptional Programs Generating Their Functional Specialization. Front Cell Dev Biol 2020; 8:587699. [PMID: 33195244 PMCID: PMC7649826 DOI: 10.3389/fcell.2020.587699] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Sensory fibers of the peripheral nervous system carry sensation from specific sense structures or use different tissues and organs as receptive fields, and convey this information to the central nervous system. In the head of vertebrates, each cranial sensory ganglia and associated nerves perform specific functions. Sensory ganglia are composed of different types of specialized neurons in which two broad categories can be distinguished, somatosensory neurons relaying all sensations that are felt and visceral sensory neurons sensing the internal milieu and controlling body homeostasis. While in the trunk somatosensory neurons composing the dorsal root ganglia are derived exclusively from neural crest cells, somato- and visceral sensory neurons of cranial sensory ganglia have a dual origin, with contributions from both neural crest and placodes. As most studies on sensory neurogenesis have focused on dorsal root ganglia, our understanding of the molecular mechanisms underlying the embryonic development of the different cranial sensory ganglia remains today rudimentary. However, using single-cell RNA sequencing, recent studies have made significant advances in the characterization of the neuronal diversity of most sensory ganglia. Here we summarize the general anatomy, function and neuronal diversity of cranial sensory ganglia. We then provide an overview of our current knowledge of the transcriptional networks controlling neurogenesis and neuronal diversification in the developing sensory system, focusing on cranial sensory ganglia, highlighting specific aspects of their development and comparing it to that of trunk sensory ganglia.
Collapse
Affiliation(s)
- Simon Vermeiren
- ULB Neuroscience Institute, Université Libre de Bruxelles, Gosselies, Belgium
| | - Eric J Bellefroid
- ULB Neuroscience Institute, Université Libre de Bruxelles, Gosselies, Belgium
| | - Simon Desiderio
- Institute for Neurosciences of Montpellier, INSERM U1051, University of Montpellier, Montpellier, France
| |
Collapse
|
124
|
Vanacker C, Trova S, Shruti S, Casoni F, Messina A, Croizier S, Malone S, Ternier G, Hanchate NK, Rasika S, Bouret SG, Ciofi P, Giacobini P, Prevot V. Neuropilin-1 expression in GnRH neurons regulates prepubertal weight gain and sexual attraction. EMBO J 2020; 39:e104633. [PMID: 32761635 PMCID: PMC7527814 DOI: 10.15252/embj.2020104633] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022] Open
Abstract
Hypothalamic neurons expressing gonadotropin-releasing hormone (GnRH), the "master molecule" regulating reproduction and fertility, migrate from their birthplace in the nose to their destination using a system of guidance cues, which include the semaphorins and their receptors, the neuropilins and plexins, among others. Here, we show that selectively deleting neuropilin-1 in new GnRH neurons enhances their survival and migration, resulting in excess neurons in the hypothalamus and in their unusual accumulation in the accessory olfactory bulb, as well as an acceleration of mature patterns of activity. In female mice, these alterations result in early prepubertal weight gain, premature attraction to male odors, and precocious puberty. Our findings suggest that rather than being influenced by peripheral energy state, GnRH neurons themselves, through neuropilin-semaphorin signaling, might engineer the timing of puberty by regulating peripheral adiposity and behavioral switches, thus acting as a bridge between the reproductive and metabolic axes.
Collapse
Affiliation(s)
- Charlotte Vanacker
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Sara Trova
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Sonal Shruti
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Filippo Casoni
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Andrea Messina
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Sophie Croizier
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Samuel Malone
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Gaetan Ternier
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Naresh Kumar Hanchate
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - S Rasika
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Sebastien G Bouret
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Philippe Ciofi
- Inserm U1215Neurocentre MagendieBordeauxFrance
- Université de BordeauxBordeauxFrance
| | - Paolo Giacobini
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Vincent Prevot
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| |
Collapse
|
125
|
Tian T, Li X. Applications of tissue clearing in the spinal cord. Eur J Neurosci 2020; 52:4019-4036. [DOI: 10.1111/ejn.14938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/22/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Ting Tian
- Beijing Key Laboratory for Biomaterials and Neural Regeneration School of Biological Science and Medical Engineering Beihang University Beijing China
| | - Xiaoguang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration School of Biological Science and Medical Engineering Beihang University Beijing China
- Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing China
- Department of Neurobiology School of Basic Medical Sciences Capital Medical University Beijing China
| |
Collapse
|
126
|
Smith Paredes D, Lord A, Meyer D, Bhullar BS. A developmental staging system and musculoskeletal development sequence of the common musk turtle (
Sternotherus odoratus
). Dev Dyn 2020; 250:111-127. [DOI: 10.1002/dvdy.210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 01/02/2023] Open
Affiliation(s)
- Daniel Smith Paredes
- Department of Earth and Planetary Science, Peabody Museum of Natural History Yale University New Haven Connecticut USA
| | - Arianna Lord
- Department of Earth and Planetary Science, Peabody Museum of Natural History Yale University New Haven Connecticut USA
| | - Dalton Meyer
- Department of Earth and Planetary Science, Peabody Museum of Natural History Yale University New Haven Connecticut USA
| | - Bhart‐Anjan S. Bhullar
- Department of Earth and Planetary Science, Peabody Museum of Natural History Yale University New Haven Connecticut USA
| |
Collapse
|
127
|
Al Tanoury Z, Rao J, Tassy O, Gobert B, Gapon S, Garnier JM, Wagner E, Hick A, Hall A, Gussoni E, Pourquié O. Differentiation of the human PAX7-positive myogenic precursors/satellite cell lineage in vitro. Development 2020; 147:dev187344. [PMID: 32541004 PMCID: PMC7328153 DOI: 10.1242/dev.187344] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
Satellite cells (SC) are muscle stem cells that can regenerate adult muscles upon injury. Most SC originate from PAX7+ myogenic precursors set aside during development. Although myogenesis has been studied in mouse and chicken embryos, little is known about human muscle development. Here, we report the generation of human induced pluripotent stem cell (iPSC) reporter lines in which fluorescent proteins have been introduced into the PAX7 and MYOG loci. We use single cell RNA sequencing to analyze the developmental trajectory of the iPSC-derived PAX7+ myogenic precursors. We show that the PAX7+ cells generated in culture can produce myofibers and self-renew in vitro and in vivo Together, we demonstrate that cells exhibiting characteristics of human fetal satellite cells can be produced in vitro from iPSC, opening interesting avenues for muscular dystrophy cell therapy. This work provides significant insights into the development of the human myogenic lineage.
Collapse
Affiliation(s)
- Ziad Al Tanoury
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Development and Stem Cells, CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67404, Illkirch Graffenstaden, France
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
| | - Jyoti Rao
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
| | - Olivier Tassy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Development and Stem Cells, CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67404, Illkirch Graffenstaden, France
| | - Bénédicte Gobert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Development and Stem Cells, CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67404, Illkirch Graffenstaden, France
- Anagenesis Biotechnologies, Parc d'innovation - BioParc 3, 850 Boulevard Sébastien Brandt, 67400 Illkirch Graffenstaden, France
| | - Svetlana Gapon
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Jean-Marie Garnier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Development and Stem Cells, CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67404, Illkirch Graffenstaden, France
| | - Erica Wagner
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Aurore Hick
- Anagenesis Biotechnologies, Parc d'innovation - BioParc 3, 850 Boulevard Sébastien Brandt, 67400 Illkirch Graffenstaden, France
| | - Arielle Hall
- Division of Genetics and Genomics, Boston Children's Hospital, 3 Blackfan Circle, CLS, Boston, MA 15021, USA
| | - Emanuela Gussoni
- Division of Genetics and Genomics, Boston Children's Hospital, 3 Blackfan Circle, CLS, Boston, MA 15021, USA
| | - Olivier Pourquié
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Development and Stem Cells, CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67404, Illkirch Graffenstaden, France
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
128
|
Tan Y, Chiam CPL, Zhang Y, Tey HL, Ng LG. Research Techniques Made Simple: Optical Clearing and Three-Dimensional Volumetric Imaging of Skin Biopsies. J Invest Dermatol 2020; 140:1305-1314.e1. [PMID: 32571496 DOI: 10.1016/j.jid.2020.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/31/2020] [Accepted: 04/27/2020] [Indexed: 11/25/2022]
Abstract
Skin histology is traditionally carried out using two-dimensional tissue sections, which allows for rapid staining, but these sections cannot accurately represent three-dimensional structures in skin such as nerves, vasculature, hair follicles, and sebaceous glands. Although it may be ideal to image skin in a three-dimensional manner, it is technically challenging to image deep into tissue because of light scattering from collagen fibrils in the dermis and refractive index mismatch owing to the presence of differing biological materials such as cytoplasm, and lipids in the skin. Different optical clearing methods have been developed recently, making it possible to render tissues transparent using different approaches. Here, we discuss the steps involved in tissue preparation for three-dimensional volumetric imaging and provide a brief overview of the different optical clearing methods as well as different imaging modalities for three-dimensional imaging.
Collapse
Affiliation(s)
- Yingrou Tan
- Department of Research, National Skin Centre, Singapore; Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Carolyn Pei Lyn Chiam
- School of Medicine, Dentistry & Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Yuning Zhang
- Faculty of Science, National University of Singapore, Singapore
| | - Hong Liang Tey
- Department of Research, National Skin Centre, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore.
| |
Collapse
|
129
|
Graham KD, López SH, Sengupta R, Shenoy A, Schneider S, Wright CM, Feldman M, Furth E, Valdivieso F, Lemke A, Wilkins BJ, Naji A, Doolin E, Howard MJ, Heuckeroth RO. Robust, 3-Dimensional Visualization of Human Colon Enteric Nervous System Without Tissue Sectioning. Gastroenterology 2020; 158:2221-2235.e5. [PMID: 32113825 PMCID: PMC7392351 DOI: 10.1053/j.gastro.2020.02.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Small, 2-dimensional sections routinely used for human pathology analysis provide limited information about bowel innervation. We developed a technique to image human enteric nervous system (ENS) and other intramural cells in 3 dimensions. METHODS Using mouse and human colon tissues, we developed a method that combines tissue clearing, immunohistochemistry, confocal microscopy, and quantitative analysis of full-thickness bowel without sectioning to quantify ENS and other intramural cells in 3 dimensions. RESULTS We provided 280 adult human colon confocal Z-stacks from persons without known bowel motility disorders. Most of our images were of myenteric ganglia, captured using a 20× objective lens. Full-thickness colon images, viewed with a 10× objective lens, were as large as 4 × 5 mm2. Colon from 2 pediatric patients with Hirschsprung disease was used to show distal colon without enteric ganglia, as well as a transition zone and proximal pull-through resection margin where ENS was present. After testing a panel of antibodies with our method, we identified 16 antibodies that bind to molecules in neurons, glia, interstitial cells of Cajal, and muscularis macrophages. Quantitative analyses demonstrated myenteric plexus in 24.5% ± 2.4% of flattened colon Z-stack area. Myenteric ganglia occupied 34% ± 4% of myenteric plexus. Single myenteric ganglion volume averaged 3,527,678 ± 573,832 mm3 with 38,706 ± 5763 neuron/mm3 and 129,321 ± 25,356 glia/mm3. Images of large areas provided insight into why published values of ENS density vary up to 150-fold-ENS density varies greatly, across millimeters, so analyses of small numbers of thin sections from the same bowel region can produce varying results. Neuron subtype analysis revealed that approximately 56% of myenteric neurons stained with neuronal nitric oxide synthase antibody and approximately 33% of neurons produce and store acetylcholine. Transition zone regions from colon tissues of patients with Hirschsprung disease had ganglia in multiple layers and thick nerve fiber bundles without neurons. Submucosal neuron distribution varied among imaged colon regions. CONCLUSIONS We developed a 3-dimensional imaging method for colon that provides more information about ENS structure than tissue sectioning. This approach could improve diagnosis for human bowel motility disorders and may be useful for other bowel diseases as well.
Collapse
Affiliation(s)
- Kahleb D. Graham
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Abramson Research Center – Suite # 1116I, Philadelphia, PA, U.S.A., 19104-4318,Cincinnati Children’s Hospital Medical Center and the Department of Pediatrics at University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Silvia Huerta López
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Abramson Research Center – Suite # 1116I, Philadelphia, PA, U.S.A., 19104-4318
| | - Rajarshi Sengupta
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Abramson Research Center – Suite # 1116I, Philadelphia, PA, U.S.A., 19104-4318,American Association for Cancer Research, 615 Chestnut Street, 17th Floor, Philadelphia, PA 19106-4404
| | - Archana Shenoy
- Department of Pathology, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, U.S.A., 19104-4318
| | - Sabine Schneider
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Abramson Research Center – Suite # 1116I, Philadelphia, PA, U.S.A., 19104-4318,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA, 19104-4318
| | - Christina M. Wright
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Abramson Research Center – Suite # 1116I, Philadelphia, PA, U.S.A., 19104-4318,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA, 19104-4318
| | - Michael Feldman
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, PA, U.S.A., 19104-4238
| | - Emma Furth
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, PA, U.S.A., 19104-4238
| | - Federico Valdivieso
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, PA, U.S.A., 19104-4238
| | - Amanda Lemke
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Abramson Research Center – Suite # 1116I, Philadelphia, PA, U.S.A., 19104-4318
| | - Benjamin J. Wilkins
- Department of Pathology, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, U.S.A., 19104-4318
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104-4318
| | - Edward Doolin
- Pediatric General, Thoracic and Fetal Surgery, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, U.S.A. 19104-4318
| | - Marthe J. Howard
- Department of Neurosciences, University of Toledo, Mail Stop # 1007, 3000 Arlington Avenue, Toledo, OH, U.S.A, 43614-2598
| | - Robert O. Heuckeroth
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Abramson Research Center – Suite # 1116I, Philadelphia, PA, U.S.A., 19104-4318,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA, 19104-4318
| |
Collapse
|
130
|
Courties A, Belle M, Senay S, Cambon-Binder A, Sautet A, Chédotal A, Berenbaum F, Sellam J. Clearing method for 3-dimensional immunofluorescence of osteoarthritic subchondral human bone reveals peripheral cholinergic nerves. Sci Rep 2020; 10:8852. [PMID: 32483280 PMCID: PMC7264130 DOI: 10.1038/s41598-020-65873-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 05/05/2020] [Indexed: 11/09/2022] Open
Abstract
The cholinergic system plays a major anti-inflammatory role in many diseases through acetylcholine (Ach) release after vagus nerve stimulation. Osteoarthritis (OA) is associated with local low-grade inflammation, but the regulatory mechanisms are unclear. Local Ach release could have anti-inflammatory activity since articular cells express Ach receptors involved in inflammatory responses. Using the 3DISCO clearing protocol that allows whole-sample 3-dimensional (3D) analysis, we cleared human OA cartilage-subchondral bone samples to search for cholinergic nerve fibres able to produce Ach locally. We analysed 3 plugs of knee cartilage and subchondral bone from 3 OA patients undergoing arthroplasty. We found no nerves in the superficial and intermediate articular cartilage layers, as evidenced by the lack of Peripherin staining (a peripheral nerves marker). Conversely, peripheral nerves were found in the deepest layer of cartilage and in subchondral bone. Some nerves in the subchondral bone samples were cholinergic because they coexpressed peripherin and choline acetyltransferase (ChAT), a specific marker of cholinergic nerves. However, no cholinergic nerves were found in the cartilage layers. It is therefore feasible to clear human bone to perform 3D immunofluorescence. Human OA subchondral bone is innervated by cholinergic fibres, which may regulate local inflammation through local Ach release.
Collapse
Affiliation(s)
- Alice Courties
- Sorbonne Université, Paris, France.,INSERM UMRS_938, CRSA, Paris, France.,Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
| | - Morgane Belle
- Sorbonne Université, Paris, France.,INSERM, CNRS, Institut de la Vision, Paris, France
| | - Simge Senay
- Sorbonne Université, Paris, France.,INSERM UMRS_938, CRSA, Paris, France
| | - Adeline Cambon-Binder
- Sorbonne Université, Paris, France.,Department of Orthopedic Surgery, AP-HP, Saint-Antoine Hospital, Paris, France
| | - Alain Sautet
- Sorbonne Université, Paris, France.,Department of Orthopedic Surgery, AP-HP, Saint-Antoine Hospital, Paris, France
| | - Alain Chédotal
- Sorbonne Université, Paris, France.,INSERM, CNRS, Institut de la Vision, Paris, France
| | - Francis Berenbaum
- Sorbonne Université, Paris, France. .,INSERM UMRS_938, CRSA, Paris, France. .,Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France.
| | - Jérémie Sellam
- Sorbonne Université, Paris, France.,INSERM UMRS_938, CRSA, Paris, France.,Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
| |
Collapse
|
131
|
Serralbo O, Salgado D, Véron N, Cooper C, Dejardin MJ, Doran T, Gros J, Marcelle C. Transgenesis and web resources in quail. eLife 2020; 9:56312. [PMID: 32459172 PMCID: PMC7286689 DOI: 10.7554/elife.56312] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/26/2020] [Indexed: 12/26/2022] Open
Abstract
Due to its amenability to manipulations, to live observation and its striking similarities to mammals, the chicken embryo has been one of the major animal models in biomedical research. Although it is technically possible to genome-edit the chicken, its long generation time (6 months to sexual maturity) makes it an impractical lab model and has prevented it widespread use in research. The Japanese quail (Coturnix coturnix japonica) is an attractive alternative, very similar to the chicken, but with the decisive asset of a much shorter generation time (1.5 months). In recent years, transgenic quail lines have been described. Most of them were generated using replication-deficient lentiviruses, a technique that presents diverse limitations. Here, we introduce a novel technology to perform transgenesis in quail, based on the in vivo transfection of plasmids in circulating Primordial Germ Cells (PGCs). This technique is simple, efficient and allows using the infinite variety of genome engineering approaches developed in other models. Furthermore, we present a website centralizing quail genomic and technological information to facilitate the design of genome-editing strategies, showcase the past and future transgenic quail lines and foster collaborative work within the avian community.
Collapse
Affiliation(s)
- Olivier Serralbo
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, Australia
| | - David Salgado
- Marseille Medical Genetics (GMGF), Aix Marseille University, Marseille, France
| | - Nadège Véron
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, Australia
| | - Caitlin Cooper
- CSIRO Health & Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | | | - Timothy Doran
- CSIRO Health & Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | - Jérome Gros
- Department of Developmental and Stem Cell Biology, Pasteur Institute, Paris, France
| | - Christophe Marcelle
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, Australia.,Institut NeuroMyoGène (INMG), University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
132
|
Houssari M, Dumesnil A, Tardif V, Kivelä R, Pizzinat N, Boukhalfa I, Godefroy D, Schapman D, Hemanthakumar KA, Bizou M, Henry JP, Renet S, Riou G, Rondeaux J, Anouar Y, Adriouch S, Fraineau S, Alitalo K, Richard V, Mulder P, Brakenhielm E. Lymphatic and Immune Cell Cross-Talk Regulates Cardiac Recovery After Experimental Myocardial Infarction. Arterioscler Thromb Vasc Biol 2020; 40:1722-1737. [PMID: 32404007 PMCID: PMC7310303 DOI: 10.1161/atvbaha.120.314370] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: Lymphatics play an essential pathophysiological role in promoting fluid and immune cell tissue clearance. Conversely, immune cells may influence lymphatic function and remodeling. Recently, cardiac lymphangiogenesis has been proposed as a therapeutic target to prevent heart failure after myocardial infarction (MI). We investigated the effects of gene therapy to modulate cardiac lymphangiogenesis post-MI in rodents. Second, we determined the impact of cardiac-infiltrating T cells on lymphatic remodeling in the heart. Approach and Results: Comparing adenoviral versus adeno-associated viral gene delivery in mice, we found that only sustained VEGF (vascular endothelial growth factor)-CC156S therapy, achieved by adeno-associated viral vectors, increased cardiac lymphangiogenesis, and led to reduced cardiac inflammation and dysfunction by 3 weeks post-MI. Conversely, inhibition of VEGF-C/-D signaling, through adeno-associated viral delivery of soluble VEGFR3 (vascular endothelial growth factor receptor 3), limited infarct lymphangiogenesis. Unexpectedly, this treatment improved cardiac function post-MI in both mice and rats, linked to reduced infarct thinning due to acute suppression of T-cell infiltration. Finally, using pharmacological, genetic, and antibody-mediated prevention of cardiac T-cell recruitment in mice, we discovered that both CD4+ and CD8+ T cells potently suppress, in part through interferon-γ, cardiac lymphangiogenesis post-MI. Conclusions: We show that resolution of cardiac inflammation after MI may be accelerated by therapeutic lymphangiogenesis based on adeno-associated viral gene delivery of VEGF-CC156S. Conversely, our work uncovers a major negative role of cardiac-recruited T cells on lymphatic remodeling. Our results give new insight into the interconnection between immune cells and lymphatics in orchestration of cardiac repair after injury.
Collapse
Affiliation(s)
- Mahmoud Houssari
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Anais Dumesnil
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Virginie Tardif
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Riikka Kivelä
- Wihuri Research Institute and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland (R.K., K.A.H., K.A.)
| | - Nathalie Pizzinat
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Inserm UMR1048, Université de Toulouse III, France (N.P., M.B.)
| | - Ines Boukhalfa
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - David Godefroy
- Normandy University, UniRouen, Inserm UMR1239 (DC2N Laboratory), Mont Saint Aignan, France (D.G., Y.A.)
| | - Damien Schapman
- Normandy University, UniRouen, PRIMACEN, Mont Saint Aignan, France (D.S.)
| | - Karthik A Hemanthakumar
- Wihuri Research Institute and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland (R.K., K.A.H., K.A.)
| | - Mathilde Bizou
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Inserm UMR1048, Université de Toulouse III, France (N.P., M.B.)
| | - Jean-Paul Henry
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Sylvanie Renet
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Gaetan Riou
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1234 (PANTHER Laboratory), Rouen, France (G.R., S.A.)
| | - Julie Rondeaux
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Youssef Anouar
- Normandy University, UniRouen, Inserm UMR1239 (DC2N Laboratory), Mont Saint Aignan, France (D.G., Y.A.)
| | - Sahil Adriouch
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1234 (PANTHER Laboratory), Rouen, France (G.R., S.A.)
| | - Sylvain Fraineau
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland (R.K., K.A.H., K.A.)
| | - Vincent Richard
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Paul Mulder
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | | |
Collapse
|
133
|
Ueda HR, Dodt HU, Osten P, Economo MN, Chandrashekar J, Keller PJ. Whole-Brain Profiling of Cells and Circuits in Mammals by Tissue Clearing and Light-Sheet Microscopy. Neuron 2020; 106:369-387. [PMID: 32380050 PMCID: PMC7213014 DOI: 10.1016/j.neuron.2020.03.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/11/2020] [Accepted: 03/04/2020] [Indexed: 01/12/2023]
Abstract
Tissue clearing and light-sheet microscopy have a 100-year-plus history, yet these fields have been combined only recently to facilitate novel experiments and measurements in neuroscience. Since tissue-clearing methods were first combined with modernized light-sheet microscopy a decade ago, the performance of both technologies has rapidly improved, broadening their applications. Here, we review the state of the art of tissue-clearing methods and light-sheet microscopy and discuss applications of these techniques in profiling cells and circuits in mice. We examine outstanding challenges and future opportunities for expanding these techniques to achieve brain-wide profiling of cells and circuits in primates and humans. Such integration will help provide a systems-level understanding of the physiology and pathology of our central nervous system.
Collapse
Affiliation(s)
- Hiroki R Ueda
- Department of Systems Pharmacology, The University of Tokyo, Tokyo 113-0033, Japan; Laboratory for Synthetic Biology, RIKEN BDR, Suita, Osaka 565-0871, Japan.
| | - Hans-Ulrich Dodt
- Department of Bioelectronics, FKE, Vienna University of Technology-TU Wien, Vienna, Austria; Section of Bioelectronics, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Pavel Osten
- Cold Spring Harbor Laboratories, Cold Spring Harbor, NY 11724, USA
| | - Michael N Economo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | | | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
134
|
Susaki EA, Shimizu C, Kuno A, Tainaka K, Li X, Nishi K, Morishima K, Ono H, Ode KL, Saeki Y, Miyamichi K, Isa K, Yokoyama C, Kitaura H, Ikemura M, Ushiku T, Shimizu Y, Saito T, Saido TC, Fukayama M, Onoe H, Touhara K, Isa T, Kakita A, Shibayama M, Ueda HR. Versatile whole-organ/body staining and imaging based on electrolyte-gel properties of biological tissues. Nat Commun 2020; 11:1982. [PMID: 32341345 PMCID: PMC7184626 DOI: 10.1038/s41467-020-15906-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/31/2020] [Indexed: 12/26/2022] Open
Abstract
Whole-organ/body three-dimensional (3D) staining and imaging have been enduring challenges in histology. By dissecting the complex physicochemical environment of the staining system, we developed a highly optimized 3D staining imaging pipeline based on CUBIC. Based on our precise characterization of biological tissues as an electrolyte gel, we experimentally evaluated broad 3D staining conditions by using an artificial tissue-mimicking material. The combination of optimized conditions allows a bottom-up design of a superior 3D staining protocol that can uniformly label whole adult mouse brains, an adult marmoset brain hemisphere, an ~1 cm3 tissue block of a postmortem adult human cerebellum, and an entire infant marmoset body with dozens of antibodies and cell-impermeant nuclear stains. The whole-organ 3D images collected by light-sheet microscopy are used for computational analyses and whole-organ comparison analysis between species. This pipeline, named CUBIC-HistoVIsion, thus offers advanced opportunities for organ- and organism-scale histological analysis of multicellular systems.
Collapse
Affiliation(s)
- Etsuo A Susaki
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka, 565-5241, Japan.
| | - Chika Shimizu
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka, 565-5241, Japan
| | - Akihiro Kuno
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata, 951-8585, Japan
| | - Xiang Li
- Neutron Science Laboratory, The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| | - Kengo Nishi
- Neutron Science Laboratory, The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| | - Ken Morishima
- Neutron Science Laboratory, The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| | - Hiroaki Ono
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Koji L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka, 565-5241, Japan
| | - Yuki Saeki
- Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazunari Miyamichi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- ERATO Touhara Chemosensory Signal Project, Japan Science and Technology Agency, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kaoru Isa
- Department of Neuroscience, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | - Chihiro Yokoyama
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Hiroki Kitaura
- Department of Pathology, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata, 951-8585, Japan
| | - Masako Ikemura
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hirotaka Onoe
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- ERATO Touhara Chemosensory Signal Project, Japan Science and Technology Agency, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata, 951-8585, Japan
| | - Mitsuhiro Shibayama
- Neutron Science Laboratory, The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka, 565-5241, Japan.
| |
Collapse
|
135
|
Fujii S, Muranaka T, Matsubayashi J, Yamada S, Yoneyama A, Takakuwa T. The bronchial tree of the human embryo: an analysis of variations in the bronchial segments. J Anat 2020; 237:311-322. [PMID: 32285469 DOI: 10.1111/joa.13199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/17/2020] [Accepted: 03/17/2020] [Indexed: 11/30/2022] Open
Abstract
A classical study has revealed the general growth of the bronchial tree and its variations up to Carnegie stage (CS) 19. In the present study, we extended the morphological analysis CS by CS until the end of the embryonic period (CS23). A total of 48 samples between CS15 and CS23 belonging to the Kyoto Collection were used to acquire imaging data by performing phase-contrast X-ray computed tomography. Three-dimensionally reconstructed bronchial trees revealed the timeline of morphogenesis during the embryonic period. Structures of the trachea and lobar bronchus showed no individual difference during the analyzed stages. The right superior lobar bronchus was formed after the generation of both the right middle lobar bronchus and the left superior lobar bronchus. The speed of formation of the segmental bronchi, sub-segmental bronchi, and further generation seemed to vary among individual samples. The distribution of the end-branch generation among five lobes was significantly different. The median branching generation value in the right middle lobe was significantly low compared with that of the other four lobes, whereas that of the right inferior lobe was significantly larger than that of both the right and left superior lobes. Variations found between CS20 and CS23 were all described in the human adult lung, indicating that variation in the bronchial tree may well arise during the embryonic period and continue throughout life. The data provided may contribute to a better understanding of bronchial tree formation during the human embryonic period.
Collapse
Affiliation(s)
- Sena Fujii
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Taiga Muranaka
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jun Matsubayashi
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigehito Yamada
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Tetsuya Takakuwa
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
136
|
Godefroy D, Boukhzar L, Dubessy C, Montero-Hadjadje M, Yon L, Eiden LE, Anouar Y. Three-dimensional mapping of tyrosine hydroxylase in the transparent brain and adrenal of prenatal and pre-weaning mice: Comprehensive methodological flowchart and quantitative aspects of 3D mapping. J Neurosci Methods 2020; 335:108596. [DOI: 10.1016/j.jneumeth.2020.108596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 10/25/2022]
|
137
|
Camp JG, Platt R, Treutlein B. Mapping human cell phenotypes to genotypes with single-cell genomics. Science 2020; 365:1401-1405. [PMID: 31604266 DOI: 10.1126/science.aax6648] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cumulative activity of all of the body's cells, with their myriad interactions, life histories, and environmental experiences, gives rise to a condition that is distinctly human and specific to each individual. It is an enduring goal to catalog our human cell types, to understand how they develop, how they vary between individuals, and how they fail in disease. Single-cell genomics has revolutionized this endeavor because sequencing-based methods provide a means to quantitatively annotate cell states on the basis of high-information content and high-throughput measurements. Together with advances in stem cell biology and gene editing, we are in the midst of a fascinating journey to understand the cellular phenotypes that compose human bodies and how the human genome is used to build and maintain each cell. Here, we will review recent advances into how single-cell genomics is being used to develop personalized phenotyping strategies that cross subcellular, cellular, and tissue scales to link our genome to our cumulative cellular phenotypes.
Collapse
Affiliation(s)
- J Gray Camp
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Randall Platt
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| |
Collapse
|
138
|
Darrigrand JF, Valente M, Comai G, Martinez P, Petit M, Nishinakamura R, Osorio DS, Renault G, Marchiol C, Ribes V, Cadot B. Dullard-mediated Smad1/5/8 inhibition controls mouse cardiac neural crest cells condensation and outflow tract septation. eLife 2020; 9:e50325. [PMID: 32105214 PMCID: PMC7069721 DOI: 10.7554/elife.50325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
The establishment of separated pulmonary and systemic circulation in vertebrates, via cardiac outflow tract (OFT) septation, is a sensitive developmental process accounting for 10% of all congenital anomalies. Neural Crest Cells (NCC) colonising the heart condensate along the primitive endocardial tube and force its scission into two tubes. Here, we show that NCC aggregation progressively decreases along the OFT distal-proximal axis following a BMP signalling gradient. Dullard, a nuclear phosphatase, tunes the BMP gradient amplitude and prevents NCC premature condensation. Dullard maintains transcriptional programs providing NCC with mesenchymal traits. It attenuates the expression of the aggregation factor Sema3c and conversely promotes that of the epithelial-mesenchymal transition driver Twist1. Altogether, Dullard-mediated fine-tuning of BMP signalling ensures the timed and progressive zipper-like closure of the OFT by the NCC and prevents the formation of a heart carrying the congenital abnormalities defining the tetralogy of Fallot.
Collapse
Affiliation(s)
| | - Mariana Valente
- Cellular, Molecular, and Physiological Mechanisms of Heart Failure team, Paris-Cardiovascular Research Center (PARCC), European Georges Pompidou Hospital (HEGP), INSERM U970, F-75737ParisFrance
| | - Glenda Comai
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, CNRS UMR 3738, Institut PasteurParisFrance
| | - Pauline Martinez
- INSERM - Sorbonne Université UMR974 - Center for Research in MyologyParisFrance
| | - Maxime Petit
- Unité Lymphopoïèse – INSERM U1223, Institut PasteurParisFrance
| | | | - Daniel S Osorio
- Cytoskeletal Dynamics Lab, Institute for Molecular and Cellular Biology, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPortoPortugal
| | - Gilles Renault
- Université de Paris, Institut Cochin, INSERM, CNRSParisFrance
| | - Carmen Marchiol
- Université de Paris, Institut Cochin, INSERM, CNRSParisFrance
| | - Vanessa Ribes
- Universite de Paris, Institut Jacques MonodCNRSParisFrance
| | - Bruno Cadot
- INSERM - Sorbonne Université UMR974 - Center for Research in MyologyParisFrance
| |
Collapse
|
139
|
Vigouroux RJ, Cesar Q, Chédotal A, Nguyen-Ba-Charvet KT. Revisiting the role of Dcc in visual system development with a novel eye clearing method. eLife 2020; 9:51275. [PMID: 32096760 PMCID: PMC7062470 DOI: 10.7554/elife.51275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
The Deleted in Colorectal Carcinoma (Dcc) receptor plays a critical role in optic nerve development. Whilst Dcc is expressed postnatally in the eye, its function remains unknown as Dcc knockouts die at birth. To circumvent this drawback, we generated an eye-specific Dcc mutant. To study the organization of the retina and visual projections in these mice, we also established EyeDISCO, a novel tissue clearing protocol that removes melanin allowing 3D imaging of whole eyes and visual pathways. We show that in the absence of Dcc, some ganglion cell axons stalled at the optic disc, whereas others perforated the retina, separating photoreceptors from the retinal pigment epithelium. A subset of visual axons entered the CNS, but these projections are perturbed. Moreover, Dcc-deficient retinas displayed a massive postnatal loss of retinal ganglion cells and a large fraction of photoreceptors. Thus, Dcc is essential for the development and maintenance of the retina.
Collapse
Affiliation(s)
- Robin J Vigouroux
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Quénol Cesar
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Alain Chédotal
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | | |
Collapse
|
140
|
Zhao S, Todorov MI, Cai R, -Maskari RA, Steinke H, Kemter E, Mai H, Rong Z, Warmer M, Stanic K, Schoppe O, Paetzold JC, Gesierich B, Wong MN, Huber TB, Duering M, Bruns OT, Menze B, Lipfert J, Puelles VG, Wolf E, Bechmann I, Ertürk A. Cellular and Molecular Probing of Intact Human Organs. Cell 2020; 180:796-812.e19. [PMID: 32059778 PMCID: PMC7557154 DOI: 10.1016/j.cell.2020.01.030] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 12/04/2019] [Accepted: 01/22/2020] [Indexed: 12/16/2022]
Abstract
Optical tissue transparency permits scalable cellular and molecular investigation of complex tissues in 3D. Adult human organs are particularly challenging to render transparent because of the accumulation of dense and sturdy molecules in decades-aged tissues. To overcome these challenges, we developed SHANEL, a method based on a new tissue permeabilization approach to clear and label stiff human organs. We used SHANEL to render the intact adult human brain and kidney transparent and perform 3D histology with antibodies and dyes in centimeters-depth. Thereby, we revealed structural details of the intact human eye, human thyroid, human kidney, and transgenic pig pancreas at the cellular resolution. Furthermore, we developed a deep learning pipeline to analyze millions of cells in cleared human brain tissues within hours with standard lab computers. Overall, SHANEL is a robust and unbiased technology to chart the cellular and molecular architecture of large intact mammalian organs.
Collapse
Affiliation(s)
- Shan Zhao
- Insititute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany; Munich Medical Research School (MMRS), 80336 Munich, Germany
| | - Mihail Ivilinov Todorov
- Insititute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany; Graduate School of Neuroscience (GSN), 82152 Munich, Germany
| | - Ruiyao Cai
- Insititute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany
| | - Rami Ai -Maskari
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany; Department of Computer Science, Technical University of Munich (TUM), 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM) of the TUM, 80798 Munich, Germany; Graduate School of Bioengineering, Technical University of Munich (TUM), 85748 Munich, Germany
| | - Hanno Steinke
- Institute of Anatomy, University of Leipzig, 04109 Leipzig, Germany
| | - Elisabeth Kemter
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), 85764 Oberschleißheim, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Hongcheng Mai
- Insititute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany
| | - Zhouyi Rong
- Insititute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany
| | - Martin Warmer
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Karen Stanic
- Insititute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Oliver Schoppe
- Department of Computer Science, Technical University of Munich (TUM), 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM) of the TUM, 80798 Munich, Germany
| | - Johannes Christian Paetzold
- Department of Computer Science, Technical University of Munich (TUM), 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM) of the TUM, 80798 Munich, Germany; Graduate School of Bioengineering, Technical University of Munich (TUM), 85748 Munich, Germany
| | - Benno Gesierich
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany
| | - Milagros N Wong
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Oliver Thomas Bruns
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Bjoern Menze
- Department of Computer Science, Technical University of Munich (TUM), 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM) of the TUM, 80798 Munich, Germany; Graduate School of Bioengineering, Technical University of Munich (TUM), 85748 Munich, Germany
| | - Jan Lipfert
- Department of Physics and Center for Nanoscience, Ludwig Maximilian University of Munich (LMU), 80799 Munich, Germany
| | - Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Nephrology, Monash Health, and Center for Inflammatory Diseases, Monash University, Melbourne VIC 3168, Australia
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), 85764 Oberschleißheim, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, 04109 Leipzig, Germany
| | - Ali Ertürk
- Insititute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany.
| |
Collapse
|
141
|
Luxey M, Berki B, Heusermann W, Fischer S, Tschopp P. Development of the chick wing and leg neuromuscular systems and their plasticity in response to changes in digit numbers. Dev Biol 2020; 458:133-140. [PMID: 31697937 DOI: 10.1016/j.ydbio.2019.10.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 01/28/2023]
Abstract
The tetrapod limb has long served as a paradigm to study vertebrate pattern formation. During limb morphogenesis, a number of distinct tissue types are patterned and subsequently must be integrated to form coherent functional units. For example, the musculoskeletal apparatus of the limb requires the coordinated development of the skeletal elements, connective tissues, muscles and nerves. Here, using light-sheet microscopy and 3D-reconstructions, we concomitantly follow the developmental emergence of nerve and muscle patterns in chicken wings and legs, two appendages with highly specialized locomotor outputs. Despite a comparable flexor/extensor-arrangement of their embryonic muscles, wings and legs show a rotated innervation pattern for their three main motor nerve branches. To test the functional implications of these distinct neuromuscular topologies, we challenge their ability to adapt and connect to an experimentally altered skeletal pattern in the distal limb, the autopod. Our results show that, unlike autopod muscle groups, motor nerves are unable to fully adjust to a changed peripheral organisation, potentially constrained by their original projection routes. As the autopod has undergone substantial morphological diversifications over the course of tetrapod evolution, our results have implications for the coordinated modification of the distal limb musculoskeletal apparatus, as well as for our understanding of the varying degrees of motor functionality associated with human hand and foot malformations.
Collapse
Affiliation(s)
- Maëva Luxey
- DUW Zoology, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland
| | - Bianka Berki
- DUW Zoology, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland
| | | | - Sabrina Fischer
- DUW Zoology, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland
| | - Patrick Tschopp
- DUW Zoology, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland.
| |
Collapse
|
142
|
Ueda HR, Ertürk A, Chung K, Gradinaru V, Chédotal A, Tomancak P, Keller PJ. Tissue clearing and its applications in neuroscience. Nat Rev Neurosci 2020; 21:61-79. [PMID: 31896771 PMCID: PMC8121164 DOI: 10.1038/s41583-019-0250-1] [Citation(s) in RCA: 333] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2019] [Indexed: 02/06/2023]
Abstract
State-of-the-art tissue-clearing methods provide subcellular-level optical access to intact tissues from individual organs and even to some entire mammals. When combined with light-sheet microscopy and automated approaches to image analysis, existing tissue-clearing methods can speed up and may reduce the cost of conventional histology by several orders of magnitude. In addition, tissue-clearing chemistry allows whole-organ antibody labelling, which can be applied even to thick human tissues. By combining the most powerful labelling, clearing, imaging and data-analysis tools, scientists are extracting structural and functional cellular and subcellular information on complex mammalian bodies and large human specimens at an accelerated pace. The rapid generation of terabyte-scale imaging data furthermore creates a high demand for efficient computational approaches that tackle challenges in large-scale data analysis and management. In this Review, we discuss how tissue-clearing methods could provide an unbiased, system-level view of mammalian bodies and human specimens and discuss future opportunities for the use of these methods in human neuroscience.
Collapse
Affiliation(s)
- Hiroki R Ueda
- Department of Systems Pharmacology, University of Tokyo, Tokyo, Japan.
- Laboratory for Synthetic Biology, RIKEN BDR, Suita, Japan.
| | - Ali Ertürk
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilian University of Munich, Munich, Germany
- Institute of Tissue Engineering and Regenerative Medicine, Helmholtz Zentrum München, Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Kwanghun Chung
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Eli & Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for NanoMedicine, Institute for Basic Science, Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering, Yonsei-IBS Institute, Yonsei University, Seoul, Republic of Korea
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alain Chédotal
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Pavel Tomancak
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- IT4Innovations, Technical University of Ostrava, Ostrava, Czech Republic
| | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
143
|
El-Mehdi M, Takhlidjt S, Khiar F, Prévost G, do Rego JL, do Rego JC, Benani A, Nedelec E, Godefroy D, Arabo A, Lefranc B, Leprince J, Anouar Y, Chartrel N, Picot M. Glucose homeostasis is impaired in mice deficient in the neuropeptide 26RFa (QRFP). BMJ Open Diabetes Res Care 2020; 8:8/1/e000942. [PMID: 32114486 PMCID: PMC7050347 DOI: 10.1136/bmjdrc-2019-000942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/09/2020] [Accepted: 01/28/2020] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION 26RFa (pyroglutamyl RFamide peptide (QRFP)) is a biologically active peptide that has been found to control feeding behavior by stimulating food intake, and to regulate glucose homeostasis by acting as an incretin. The aim of the present study was thus to investigate the impact of 26RFa gene knockout on the regulation of energy and glucose metabolism. RESEARCH DESIGN AND METHODS 26RFa mutant mice were generated by homologous recombination, in which the entire coding region of prepro26RFa was replaced by the iCre sequence. Energy and glucose metabolism was evaluated through measurement of complementary parameters. Morphological and physiological alterations of the pancreatic islets were also investigated. RESULTS Our data do not reveal significant alteration of energy metabolism in the 26RFa-deficient mice except the occurrence of an increased basal metabolic rate. By contrast, 26RFa mutant mice exhibited an altered glycemic phenotype with an increased hyperglycemia after a glucose challenge associated with an impaired insulin production, and an elevated hepatic glucose production. Two-dimensional and three-dimensional immunohistochemical experiments indicate that the insulin content of pancreatic β cells is much lower in the 26RFa-/- mice as compared with the wild-type littermates. CONCLUSION Disruption of the 26RFa gene induces substantial alteration in the regulation of glucose homeostasis, with in particular a deficit in insulin production by the pancreatic islets. These findings further support the notion that 26RFa is an important regulator of glucose homeostasis.
Collapse
|
144
|
Porter DDL, Morton PD. Clearing techniques for visualizing the nervous system in development, injury, and disease. J Neurosci Methods 2020; 334:108594. [PMID: 31945400 PMCID: PMC10674098 DOI: 10.1016/j.jneumeth.2020.108594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/05/2023]
Abstract
Modern clearing techniques enable high resolution visualization and 3D reconstruction of cell populations and their structural details throughout large biological samples, including intact organs and even entire organisms. In the past decade, these methods have become more tractable and are now being utilized to provide unforeseen insights into the complexities of the nervous system. While several iterations of optical clearing techniques have been developed, some are more suitable for specific applications than others depending on the type of specimen under study. Here we review findings from select studies utilizing clearing methods to visualize the developing, injured, and diseased nervous system within numerous model systems and species. We note trends and imbalances in the types of research questions being addressed with clearing methods across these fields in neuroscience. In addition, we discuss restrictions in applying optical clearing methods for postmortem tissue from humans and large animals and emphasize the lack in continuity between studies of these species. We aim for this review to serve as a key outline of available tissue clearing methods used successfully to address issues across neuronal development, injury/repair, and aging/disease.
Collapse
Affiliation(s)
- Demisha D L Porter
- Virginia Tech Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Paul D Morton
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
145
|
Li Y, Xu J, Zhu J, Yu T, Zhu D. Three-dimensional visualization of intramuscular innervation in intact adult skeletal muscle by a modified iDISCO method. NEUROPHOTONICS 2020; 7:015003. [PMID: 32016132 PMCID: PMC6977403 DOI: 10.1117/1.nph.7.1.015003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Three-dimensional visualization of the innervation in skeletal muscles is helpful for understanding the morphological structure and function. iDISCO, a whole-mount immunolabeling and clearing technique, provides a valuable tool for volume imaging of intramuscular nerve fibers but suffers from the nonspecific staining caused by the anti-mouse secondary antibody when using the murine primary antibody. We developed a modified iDISCO method by introducing pretreatment of ScaleCUBIC-1 reagent, termed m-iDISCO. The m-iDISCO method could eliminate the nonspecific staining and achieve uniform and complete labeling of nerve fibers in various muscles with mouse anti-neurofilament primary antibody. Combining the m-iDISCO method with light-sheet microscopy enabled us to visualize the innervation of adult mouse tibialis anterior and trace the nerve fibers from extramuscular branches to intramuscular terminal branches. This method represents an effective alternative for studying the innervation of intact skeletal muscles in health and disease.
Collapse
Affiliation(s)
- Yusha Li
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Jianyi Xu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Jingtan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Tingting Yu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Dan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| |
Collapse
|
146
|
Jafree DJ, Moulding D, Kolatsi-Joannou M, Perretta Tejedor N, Price KL, Milmoe NJ, Walsh CL, Correra RM, Winyard PJ, Harris PC, Ruhrberg C, Walker-Samuel S, Riley PR, Woolf AS, Scambler PJ, Long DA. Spatiotemporal dynamics and heterogeneity of renal lymphatics in mammalian development and cystic kidney disease. eLife 2019; 8:48183. [PMID: 31808745 PMCID: PMC6948954 DOI: 10.7554/elife.48183] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/30/2019] [Indexed: 12/11/2022] Open
Abstract
Heterogeneity of lymphatic vessels during embryogenesis is critical for organ-specific lymphatic function. Little is known about lymphatics in the developing kidney, despite their established roles in pathology of the mature organ. We performed three-dimensional imaging to characterize lymphatic vessel formation in the mammalian embryonic kidney at single-cell resolution. In mouse, we visually and quantitatively assessed the development of kidney lymphatic vessels, remodeling from a ring-like anastomosis under the nascent renal pelvis; a site of VEGF-C expression, to form a patent vascular plexus. We identified a heterogenous population of lymphatic endothelial cell clusters in mouse and human embryonic kidneys. Exogenous VEGF-C expanded the lymphatic population in explanted mouse embryonic kidneys. Finally, we characterized complex kidney lymphatic abnormalities in a genetic mouse model of polycystic kidney disease. Our study provides novel insights into the development of kidney lymphatic vasculature; a system which likely has fundamental roles in renal development, physiology and disease. In most organs in the body, fluid tends to build up in the spaces between cells, especially if the organs become inflamed. Each organ has a ‘waste disposal system’; a set of specialized tubes called lymphatic vessels, to clear away this excess fluid and keep a check on inflammation. Defects in these tubes have been linked to a wide range of diseases including heart attacks, obesity, dementia and cancer. The kidneys are responsible for filtering blood and balancing many of the body’s chemical processes. Polycystic kidney disease (PKD) is the most common genetic kidney disorder and it results in cysts filled with fluid building up in the kidney. The growth of cysts in PKD may be due to a problem with the lymphatic vessels. However, compared to other organs, how lymphatic vessels first form within the kidney and what they do is not well understood. Now, Jafree et al. have used three-dimensional imaging to study how lymphatic vessels form in the kidneys of mice and humans. The experiments showed that lymphatic vessels first appear when mouse kidneys are about half developed, and start to grow rapidly when the kidneys are thought to begin filtering blood. Clusters of cells that may help lymphatic vessels to grow were also found hidden deep within the kidneys of mouse embryos. Treating the kidneys with a factor that stimulates the growth of lymphatic vessels increased the numbers of these clusters. Jafree et al. found similar clusters of cells in human kidneys, suggesting that lymphatic vessels in the kidneys of different mammals may develop in the same way. Further experiments showed that the lymphatic vessels of kidneys in mice with PKD become distorted early on in the disease, when cysts are still small and before the mice develop symptoms. In the future, identifying drugs that target kidney lymphatic vessels may lead to more effective treatments for patients with PKD and other kidney diseases.
Collapse
Affiliation(s)
- Daniyal J Jafree
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,MB/PhD Programme, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Dale Moulding
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Maria Kolatsi-Joannou
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Nuria Perretta Tejedor
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Karen L Price
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Natalie J Milmoe
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Claire L Walsh
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Rosa Maria Correra
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Paul Jd Winyard
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, United States
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Simon Walker-Samuel
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Adrian S Woolf
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom.,Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Peter J Scambler
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - David A Long
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
147
|
Argentati C, Morena F, Tortorella I, Bazzucchi M, Porcellati S, Emiliani C, Martino S. Insight into Mechanobiology: How Stem Cells Feel Mechanical Forces and Orchestrate Biological Functions. Int J Mol Sci 2019; 20:E5337. [PMID: 31717803 PMCID: PMC6862138 DOI: 10.3390/ijms20215337] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
The cross-talk between stem cells and their microenvironment has been shown to have a direct impact on stem cells' decisions about proliferation, growth, migration, and differentiation. It is well known that stem cells, tissues, organs, and whole organisms change their internal architecture and composition in response to external physical stimuli, thanks to cells' ability to sense mechanical signals and elicit selected biological functions. Likewise, stem cells play an active role in governing the composition and the architecture of their microenvironment. Is now being documented that, thanks to this dynamic relationship, stemness identity and stem cell functions are maintained. In this work, we review the current knowledge in mechanobiology on stem cells. We start with the description of theoretical basis of mechanobiology, continue with the effects of mechanical cues on stem cells, development, pathology, and regenerative medicine, and emphasize the contribution in the field of the development of ex-vivo mechanobiology modelling and computational tools, which allow for evaluating the role of forces on stem cell biology.
Collapse
Affiliation(s)
- Chiara Argentati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Ilaria Tortorella
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Martina Bazzucchi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Serena Porcellati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy
| |
Collapse
|
148
|
Tesařová M, Heude E, Comai G, Zikmund T, Kaucká M, Adameyko I, Tajbakhsh S, Kaiser J. An interactive and intuitive visualisation method for X-ray computed tomography data of biological samples in 3D Portable Document Format. Sci Rep 2019; 9:14896. [PMID: 31624273 PMCID: PMC6797759 DOI: 10.1038/s41598-019-51180-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
3D imaging approaches based on X-ray microcomputed tomography (microCT) have become increasingly accessible with advancements in methods, instruments and expertise. The synergy of material and life sciences has impacted biomedical research by proposing new tools for investigation. However, data sharing remains challenging as microCT files are usually in the range of gigabytes and require specific and expensive software for rendering and interpretation. Here, we provide an advanced method for visualisation and interpretation of microCT data with small file formats, readable on all operating systems, using freely available Portable Document Format (PDF) software. Our method is based on the conversion of volumetric data into interactive 3D PDF, allowing rotation, movement, magnification and setting modifications of objects, thus providing an intuitive approach to analyse structures in a 3D context. We describe the complete pipeline from data acquisition, data processing and compression, to 3D PDF formatting on an example of craniofacial anatomical morphology in the mouse embryo. Our procedure is widely applicable in biological research and can be used as a framework to analyse volumetric data from any research field relying on 3D rendering and CT-biomedical imaging.
Collapse
Affiliation(s)
- Markéta Tesařová
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Eglantine Heude
- Department Adaptation du Vivant, Museum national d'Histoire naturelle, CNRS UMR 7221, Paris, France.,Department of Developmental and Stem Cell Biology, Stem Cells and Development Unit, Institut Pasteur, Paris, France.,CNRS UMR, 3738, Paris, France
| | - Glenda Comai
- Department of Developmental and Stem Cell Biology, Stem Cells and Development Unit, Institut Pasteur, Paris, France.,CNRS UMR, 3738, Paris, France
| | - Tomáš Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Markéta Kaucká
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden.,Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden.,Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria
| | - Shahragim Tajbakhsh
- Department of Developmental and Stem Cell Biology, Stem Cells and Development Unit, Institut Pasteur, Paris, France.,CNRS UMR, 3738, Paris, France
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
| |
Collapse
|
149
|
Isaacson D, McCreedy D, Calvert M, Shen J, Sinclair A, Cao M, Li Y, McDevitt T, Cunha G, Baskin L. Imaging the developing human external and internal urogenital organs with light sheet fluorescence microscopy. Differentiation 2019; 111:12-21. [PMID: 31634681 DOI: 10.1016/j.diff.2019.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 10/25/2022]
Abstract
Technological advances in three-dimensional (3D) reconstruction techniques have previously enabled paradigm shifts in our understanding of human embryonic and fetal development. Light sheet fluorescence microscopy (LSFM) is a recently-developed technique that uses thin planes of light to optically section whole-mount cleared and immunolabeled biologic specimens. The advent of commercially-available light sheet microscopes has facilitated a new generation of research into protein localization and tissue dynamics at extremely high resolution. Our group has applied LSFM to study developing human fetal external genitalia, internal genitalia and kidneys. This review describes LSFM and presents our group's technique for preparing, clearing, immunostaining and imaging human fetal urogenital specimens. We then present light sheet images and videos of each element of the developing human urogenital system. To the extent of our knowledge, the work conducted by our laboratory represents the first description of a method for performing LSFM on the full human urogenital system during the embryonic and fetal periods.
Collapse
Affiliation(s)
- Dylan Isaacson
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Dylan McCreedy
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Meredith Calvert
- Histology and Light Microscopy Core, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Joel Shen
- CytomX Therapeutics, Inc. South San Francisco, CA, USA
| | - Adriane Sinclair
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Mei Cao
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Yi Li
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Todd McDevitt
- Department of Bioengineering and Therapeutic Sciences, J. David Gladstone Institutes, San Francisco, CA, USA; Institute of Cardiovascular Disease, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Gerald Cunha
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Laurence Baskin
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| |
Collapse
|
150
|
Diogo R, Siomava N, Gitton Y. Development of human limb muscles based on whole-mount immunostaining and the links between ontogeny and evolution. Development 2019; 146:146/20/dev180349. [PMID: 31575609 DOI: 10.1242/dev.180349] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/04/2019] [Indexed: 12/28/2022]
Abstract
We provide the first detailed ontogenetic analysis of human limb muscles using whole-mount immunostaining. We compare our observations with the few earlier studies that have focused on the development of these muscles, and with data available on limb evolution, variations and pathologies. Our study confirms the transient presence of several atavistic muscles - present in our ancestors but normally absent from the adult human - during normal embryonic human development, and reveals the existence of others not previously described in human embryos. These atavistic muscles are found both as rare variations in the adult population and as anomalies in human congenital malformations, reinforcing the idea that such variations/anomalies can be related to delayed or arrested development. We further show that there is a striking difference in the developmental order of muscle appearance in the upper versus lower limbs, reinforcing the idea that the similarity between various distal upper versus lower limb muscles of tetrapod adults may be derived.
Collapse
Affiliation(s)
- Rui Diogo
- Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, USA
| | - Natalia Siomava
- Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, USA
| | - Yorick Gitton
- Sorbonne Universites, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France
| |
Collapse
|