101
|
Jones JM, Foster W, Twomey CR, Burdge J, Ahmed OM, Pereira TD, Wojick JA, Corder G, Plotkin JB, Abdus-Saboor I. A machine-vision approach for automated pain measurement at millisecond timescales. eLife 2020; 9:e57258. [PMID: 32758355 PMCID: PMC7434442 DOI: 10.7554/elife.57258] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/05/2020] [Indexed: 12/28/2022] Open
Abstract
Objective and automatic measurement of pain in mice remains a barrier for discovery in neuroscience. Here, we capture paw kinematics during pain behavior in mice with high-speed videography and automated paw tracking with machine and deep learning approaches. Our statistical software platform, PAWS (Pain Assessment at Withdrawal Speeds), uses a univariate projection of paw position over time to automatically quantify seven behavioral features that are combined into a single, univariate pain score. Automated paw tracking combined with PAWS reveals a behaviorally divergent mouse strain that displays hypersensitivity to mechanical stimuli. To demonstrate the efficacy of PAWS for detecting spinally versus centrally mediated behavioral responses, we chemogenetically activated nociceptive neurons in the amygdala, which further separated the pain-related behavioral features and the resulting pain score. Taken together, this automated pain quantification approach will increase objectivity in collecting rigorous behavioral data, and it is compatible with other neural circuit dissection tools for determining the mouse pain state.
Collapse
Affiliation(s)
- Jessica M Jones
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - William Foster
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Colin R Twomey
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Justin Burdge
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Osama M Ahmed
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Talmo D Pereira
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Jessica A Wojick
- Departments of Psychiatry and Neuroscience, University of PennsylvaniaPhiladelphiaUnited States
| | - Gregory Corder
- Departments of Psychiatry and Neuroscience, University of PennsylvaniaPhiladelphiaUnited States
| | - Joshua B Plotkin
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | | |
Collapse
|
102
|
Deng J, Zhou H, Lin JK, Shen ZX, Chen WZ, Wang LH, Li Q, Mu D, Wei YC, Xu XH, Sun YG. The Parabrachial Nucleus Directly Channels Spinal Nociceptive Signals to the Intralaminar Thalamic Nuclei, but Not the Amygdala. Neuron 2020; 107:909-923.e6. [PMID: 32649865 DOI: 10.1016/j.neuron.2020.06.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/26/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
Abstract
The parabrachial nucleus (PBN) is one of the major targets of spinal projection neurons and plays important roles in pain. However, the architecture of the spinoparabrachial pathway underlying its functional role in nociceptive information processing remains elusive. Here, we report that the PBN directly relays nociceptive signals from the spinal cord to the intralaminar thalamic nuclei (ILN). We demonstrate that the spinal cord connects with the PBN in a bilateral manner and that the ipsilateral spinoparabrachial pathway is critical for nocifensive behavior. We identify Tacr1-expressing neurons as the major neuronal subtype in the PBN that receives direct spinal input and show that these neurons are critical for processing nociceptive information. Furthermore, PBN neurons receiving spinal input form functional monosynaptic excitatory connections with neurons in the ILN, but not the amygdala. Together, our results delineate the neural circuit underlying nocifensive behavior, providing crucial insight into the circuit mechanism underlying nociceptive information processing.
Collapse
Affiliation(s)
- Juan Deng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China.
| | - Hua Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Jun-Kai Lin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, 19A Yu-quan Road, Beijing 100049, China
| | - Zi-Xuan Shen
- Department of Biotechnology, East China University of Science and Technology, 130 Mei-long Road, Shanghai 200237, China
| | - Wen-Zhen Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, 19A Yu-quan Road, Beijing 100049, China
| | - Lin-Han Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, 19A Yu-quan Road, Beijing 100049, China
| | - Qing Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Di Mu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Yi-Chao Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Yan-Gang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| |
Collapse
|
103
|
Sutton AK, Krashes MJ. Integrating Hunger with Rival Motivations. Trends Endocrinol Metab 2020; 31:495-507. [PMID: 32387196 DOI: 10.1016/j.tem.2020.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Abstract
Motivated behaviors have fascinated neuroscientists and ethologists for decades due to their necessity for organism survival. Motivations guide behavioral choice through an intricate synthesis of internal state detection, external stimulus exposure, and learned associations. One critical motivation, hunger, provides an accessible example for understanding purposeful behavior. Neuroscientists commonly focus research efforts on neural circuits underlying individual motivations, sacrificing ethological relevance for tight experimental control. This restrictive focus deprives the field of a more nuanced understanding of the unified nervous system in weighing multiple motivations simultaneously and choosing, moment-to-moment, optimal behaviors for survival. Here, we explore the reciprocal interplay between hunger, encoded via hypothalamic neurons marked by the expression of Agouti-related peptide, and alternative need-based motivational systems.
Collapse
Affiliation(s)
- Amy K Sutton
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael J Krashes
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20892, USA; National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
104
|
Effects of metabolic state on the regulation of melanocortin circuits. Physiol Behav 2020; 224:113039. [PMID: 32610101 PMCID: PMC7387173 DOI: 10.1016/j.physbeh.2020.113039] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/01/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022]
Abstract
Dysfunction in neurophysiological systems that regulate food intake and metabolism are at least partly responsible for obesity and related comorbidities. An important component of this process is the hypothalamic melanocortin system, where an imbalance can result in severe obesity and deficits in glucose metabolism. Exercise offers many health benefits related to cardiovascular improvements, hunger control, and blood glucose homeostasis. However, the molecular mechanism underlying the exercise-induced improvements to the melanocortin system remain undefined. Here, we review the role of the melanocortin system to sense hormonal, nutrient, and neuronal signals of energy status. This information is then relayed onto secondary neurons in order to regulate physiological parameters, which promote proper energy and glucose balance. We also provide an overview on the effects of physical exercise to induce biophysical changes in the melanocortin circuit which may regulate food intake, glucose metabolism and improve overall metabolic health.
Collapse
|
105
|
Divergent Neural Pathways Emanating from the Lateral Parabrachial Nucleus Mediate Distinct Components of the Pain Response. Neuron 2020; 106:927-939.e5. [DOI: 10.1016/j.neuron.2020.03.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 11/20/2019] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
|
106
|
Platelet-derived growth factor activates nociceptive neurons by inhibiting M-current and contributes to inflammatory pain. Pain 2020; 160:1281-1296. [PMID: 30933959 PMCID: PMC6553959 DOI: 10.1097/j.pain.0000000000001523] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Supplemental Digital Content is Available in the Text. Our work reveals that the platelet-derived growth factor-BB, by inhibiting nociceptive M-type potassium channels, acts as a pain-inducing proinflammatory factor that significantly contributes to inflammatory pain. Endogenous inflammatory mediators contribute to the pathogenesis of pain by acting on nociceptors, specialized sensory neurons that detect noxious stimuli. Here, we describe a new factor mediating inflammatory pain. We show that platelet-derived growth factor (PDGF)-BB applied in vitro causes repetitive firing of dissociated nociceptor-like rat dorsal root ganglion neurons and decreased their threshold for action potential generation. Injection of PDGF-BB into the paw produced nocifensive behavior in rats and led to thermal and mechanical pain hypersensitivity. We further detailed the biophysical mechanisms of these PDGF-BB effects and show that PDGF receptor–induced inhibition of nociceptive M-current underlies PDGF-BB–mediated nociceptive hyperexcitability. Moreover, in vivo sequestration of PDGF or inhibition of the PDGF receptor attenuates acute formalin-induced inflammatory pain. Our discovery of a new pain-facilitating proinflammatory mediator, which by inhibiting M-current activates nociceptive neurons and thus contributes to inflammatory pain, improves our understanding of inflammatory pain pathophysiology and may have important clinical implications for pain treatment.
Collapse
|
107
|
Qu N, He Y, Wang C, Xu P, Yang Y, Cai X, Liu H, Yu K, Pei Z, Hyseni I, Sun Z, Fukuda M, Li Y, Tian Q, Xu Y. A POMC-originated circuit regulates stress-induced hypophagia, depression, and anhedonia. Mol Psychiatry 2020; 25:1006-1021. [PMID: 31485012 PMCID: PMC7056580 DOI: 10.1038/s41380-019-0506-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 06/01/2019] [Accepted: 07/17/2019] [Indexed: 01/27/2023]
Abstract
Chronic stress causes dysregulations of mood and energy homeostasis, but the neurocircuitry underlying these alterations remain to be fully elucidated. Here we demonstrate that chronic restraint stress in mice results in hyperactivity of pro-opiomelanocortin neurons in the arcuate nucleus of the hypothalamus (POMCARH neurons) associated with decreased neural activities of dopamine neurons in the ventral tegmental area (DAVTA neurons). We further revealed that POMCARH neurons project to the VTA and provide an inhibitory tone to DAVTA neurons via both direct and indirect neurotransmissions. Finally, we show that photoinhibition of the POMCARH→VTA circuit in mice increases body weight and food intake, and reduces depression-like behaviors and anhedonia in mice exposed to chronic restraint stress. Thus, our results identified a novel neurocircuitry regulating feeding and mood in response to stress.
Collapse
Affiliation(s)
- Na Qu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, 430012, Wuhan, China
| | - Yanlin He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Pingwen Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Xing Cai
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Hesong Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kaifan Yu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Zhou Pei
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Ilirjana Hyseni
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Zheng Sun
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Makoto Fukuda
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yi Li
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, 430012, Wuhan, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, 430074, Wuhan, China
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Institute for Brain Research, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
108
|
Niermann CN, Tate TG, Suto AL, Barajas R, White HA, Guswiler OD, Secor SM, Rowe AH, Rowe MP. Defensive Venoms: Is Pain Sufficient for Predator Deterrence? Toxins (Basel) 2020; 12:toxins12040260. [PMID: 32316477 PMCID: PMC7232307 DOI: 10.3390/toxins12040260] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/26/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022] Open
Abstract
Pain, though unpleasant, is adaptive in calling an animal’s attention to potential tissue damage. A long list of animals representing diverse taxa possess venom-mediated, pain-inducing bites or stings that work by co-opting the pain-sensing pathways of potential enemies. Typically, such venoms include toxins that cause tissue damage or disrupt neuronal activity, rendering painful stings honest indicators of harm. But could pain alone be sufficient for deterring a hungry predator? Some venomologists have argued “no”; predators, in the absence of injury, would “see through” the bluff of a painful but otherwise benign sting or bite. Because most algogenic venoms are also toxic (although not vice versa), it has been difficult to disentangle the relative contributions of each component to predator deterrence. Southern grasshopper mice (Onychomys torridus) are voracious predators of arthropods, feeding on a diversity of scorpion species whose stings vary in painfulness, including painful Arizona bark scorpions (Centruroides sculpturatus) and essentially painless stripe-tailed scorpions (Paravaejovis spinigerus). Moreover, southern grasshopper mice have evolved resistance to the lethal toxins in bark scorpion venom, rendering a sting from these scorpions painful but harmless. Results from a series of laboratory experiments demonstrate that painful stings matter. Grasshopper mice preferred to prey on stripe-tailed scorpions rather than bark scorpions when both species could sting; the preference disappeared when each species had their stingers blocked. A painful sting therefore appears necessary for a scorpion to deter a hungry grasshopper mouse, but it may not always be sufficient: after first attacking and consuming a painless stripe-tailed scorpion, many grasshopper mice went on to attack, kill, and eat a bark scorpion even when the scorpion was capable of stinging. Defensive venoms that result in tissue damage or neurological dysfunction may, thus, be required to condition greater aversion than venoms causing pain alone.
Collapse
Affiliation(s)
- Crystal N. Niermann
- Department of Biology, Sam Houston State University, Huntsville, TX 77340, USA; (C.N.N.); (T.G.T.)
| | - Travis G. Tate
- Department of Biology, Sam Houston State University, Huntsville, TX 77340, USA; (C.N.N.); (T.G.T.)
| | - Amber L. Suto
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA; (A.L.S.); (O.D.G.)
| | - Rolando Barajas
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA; (R.B.); (H.A.W.)
| | - Hope A. White
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA; (R.B.); (H.A.W.)
| | - Olivia D. Guswiler
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA; (A.L.S.); (O.D.G.)
| | - Stephen M. Secor
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Ashlee H. Rowe
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA;
| | - Matthew P. Rowe
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA;
- Correspondence: ; Tel.: +1-405-325-6539
| |
Collapse
|
109
|
Engström Ruud L, Pereira MMA, de Solis AJ, Fenselau H, Brüning JC. NPY mediates the rapid feeding and glucose metabolism regulatory functions of AgRP neurons. Nat Commun 2020; 11:442. [PMID: 31974377 PMCID: PMC6978463 DOI: 10.1038/s41467-020-14291-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 12/16/2019] [Indexed: 02/08/2023] Open
Abstract
Activation of Agouti-Related Peptide (AgRP)-expressing neurons promotes feeding and insulin resistance. Here, we examine the contribution of neuropeptide Y (NPY)-dependent signaling to the diverse physiological consequences of activating AgRP neurons. NPY-deficient mice fail to rapidly increase food intake during the first hour of either chemo- or optogenetic activation of AgRP neurons, while the delayed increase in feeding is comparable between control and NPY-deficient mice. Acutely stimulating AgRP neurons fails to induce systemic insulin resistance in NPY-deficient mice, while increased locomotor activity upon AgRP neuron stimulation in the absence of food remains unaffected in these animals. Selective re-expression of NPY in AgRP neurons attenuates the reduced feeding response and reverses the protection from insulin resistance upon optogenetic activation of AgRP neurons in NPY-deficient mice. Collectively, these experiments reveal a pivotal role of NPY-dependent signaling in mediating the rapid feeding inducing effect and the acute glucose regulatory function governed by AgRP neurons. AgRP-expressing neurons regulate feeding, glucose homeostasis and locomotor activity, but the neurotransmitters that mediate these effects are unclear. Here the authors show that neuropeptide Y in these neurons regulates rapid feeding responses and insulin sensitivity, but not locomotor activity.
Collapse
Affiliation(s)
- Linda Engström Ruud
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
| | - Mafalda M A Pereira
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
| | - Alain J de Solis
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
| | - Henning Fenselau
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany.,Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany. .,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931, Cologne, Germany. .,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany.
| |
Collapse
|
110
|
Katagiri A, Kato T. Multi-dimensional role of the parabrachial nucleus in regulating pain-related affective disturbances in trigeminal neuropathic pain. J Oral Sci 2020; 62:160-164. [DOI: 10.2334/josnusd.19-0432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Ayano Katagiri
- Department of Oral Physiology, Osaka University Graduate School of Dentistry
| | - Takafumi Kato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry
| |
Collapse
|
111
|
Anapindi KDB, Yang N, Romanova EV, Rubakhin SS, Tipton A, Dripps I, Sheets Z, Sweedler JV, Pradhan AA. PACAP and Other Neuropeptide Targets Link Chronic Migraine and Opioid-induced Hyperalgesia in Mouse Models. Mol Cell Proteomics 2019; 18:2447-2458. [PMID: 31649062 PMCID: PMC6885698 DOI: 10.1074/mcp.ra119.001767] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic use of opioids can produce opioid-induced hyperalgesia (OIH), and when used to treat migraine, these drugs can result in increased pain and headache chronicity. We hypothesized that overlapping mechanisms between OIH and chronic migraine occur through neuropeptide dysregulation. Using label-free, non-biased liquid chromatography-mass spectrometry to identify and measure changes in more than 1500 neuropeptides under these two conditions, we observed only 16 neuropeptides that were altered between the two conditions. The known pro-migraine molecule, calcitonin-gene related peptide, was among seven peptides associated with chronic migraine, with several pain-processing neuropeptides among the nine other peptides affected in OIH. Further, composite peptide complements Pituitary adenylate cyclase-activating polypeptide (PACAP), Vasoactive intestinal peptide (VIP) and Secretogranin (SCG) showed significant changes in both chronic migraine and OIH. In a follow-up pharmacological study, we confirmed the role of PACAP in models of these two disorders, validating the effectiveness of our peptidomic approach, and identifying PACAP as a mechanistic link between chronic migraine and OIH. Data are available via ProteomeXchange with identifier PXD013362.
Collapse
Affiliation(s)
| | - Ning Yang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 61801
| | - Elena V Romanova
- Department of Chemistry, University of Illinois at Urbana-Champaign, 61801; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 61801
| | - Stanislav S Rubakhin
- Department of Chemistry, University of Illinois at Urbana-Champaign, 61801; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 61801
| | - Alycia Tipton
- Department of Psychiatry, University of Illinois at Chicago, 60612
| | - Isaac Dripps
- Department of Psychiatry, University of Illinois at Chicago, 60612
| | - Zoie Sheets
- Department of Psychiatry, University of Illinois at Chicago, 60612
| | - Jonathan V Sweedler
- Department of Chemistry, University of Illinois at Urbana-Champaign, 61801; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 61801
| | - Amynah A Pradhan
- Department of Psychiatry, University of Illinois at Chicago, 60612.
| |
Collapse
|
112
|
Lee JY, Lee GJ, Lee PR, Won CH, Kim D, Kang Y, Oh SB. The analgesic effect of refeeding on acute and chronic inflammatory pain. Sci Rep 2019; 9:16873. [PMID: 31727949 PMCID: PMC6856519 DOI: 10.1038/s41598-019-53149-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022] Open
Abstract
Pain is susceptible to various cognitive factors. Suppression of pain by hunger is well known, but the effect of food intake after fasting (i.e. refeeding) on pain remains unknown. In the present study, we examined whether inflammatory pain behavior is affected by 24 h fasting and 2 h refeeding. In formalin-induced acute inflammatory pain model, fasting suppressed pain behavior only in the second phase and the analgesic effect was also observed after refeeding. Furthermore, in Complete Freund’s adjuvant-induced chronic inflammatory pain model, both fasting and refeeding reduced spontaneous pain response. Refeeding with non-calorie agar produced an analgesic effect. Besides, intraperitoneal (i.p.) administration of glucose after fasting, which mimics calorie recovery following refeeding, induced analgesic effect. Administration of opioid receptor antagonist (naloxone, i.p.) and cannabinoid receptor antagonist (SR 141716, i.p.) reversed fasting-induced analgesia, but did not affect refeeding-induced analgesia in acute inflammatory pain model. Taken together, our results show that refeeding produce analgesia in inflammatory pain condition, which is associated with eating behavior and calorie recovery effect.
Collapse
Affiliation(s)
- Jeong-Yun Lee
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Grace J Lee
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Pa Reum Lee
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chan Hee Won
- Dental Research Institute and Department of Neurobiology & Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Doyun Kim
- Dental Research Institute and Department of Neurobiology & Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Youngnam Kang
- Dental Research Institute and Department of Neurobiology & Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea.,Department of Behavioral Physiology, Graduate School of Human Sciences, Osaka University, Osaka, Japan
| | - Seog Bae Oh
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea. .,Dental Research Institute and Department of Neurobiology & Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
113
|
Chiang MC, Bowen A, Schier LA, Tupone D, Uddin O, Heinricher MM. Parabrachial Complex: A Hub for Pain and Aversion. J Neurosci 2019; 39:8225-8230. [PMID: 31619491 PMCID: PMC6794922 DOI: 10.1523/jneurosci.1162-19.2019] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/29/2019] [Accepted: 08/03/2019] [Indexed: 02/06/2023] Open
Abstract
The parabrachial nucleus (PBN) has long been recognized as a sensory relay receiving an array of interoceptive and exteroceptive inputs relevant to taste and ingestive behavior, pain, and multiple aspects of autonomic control, including respiration, blood pressure, water balance, and thermoregulation. Outputs are known to be similarly widespread and complex. How sensory information is handled in PBN and used to inform different outputs to maintain homeostasis and promote survival is only now being elucidated. With a focus on taste and ingestive behaviors, pain, and thermoregulation, this review is intended to provide a context for analysis of PBN circuits involved in aversion and avoidance, and consider how information of various modalities, interoceptive and exteroceptive, is processed within PBN and transmitted to distinct targets to signal challenge, and to engage appropriate behavioral and physiological responses to maintain homeostasis.
Collapse
Affiliation(s)
- Michael C Chiang
- Department Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Anna Bowen
- Graduate Program in Neuroscience, University of Washington, Seattle, Washington, 98195
| | - Lindsey A Schier
- Department Biological Sciences, University of Southern California, Los Angeles, California, 90089
| | - Domenico Tupone
- Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
- Department Neurological Surgery, Oregon Health and Science University, Portland, Oregon, 97239, and
| | - Olivia Uddin
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, Maryland, 21201
| | - Mary M Heinricher
- Department Neurological Surgery, Oregon Health and Science University, Portland, Oregon, 97239, and
- Department Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon, 97239
| |
Collapse
|
114
|
State-specific gating of salient cues by midbrain dopaminergic input to basal amygdala. Nat Neurosci 2019; 22:1820-1833. [PMID: 31611706 PMCID: PMC6858554 DOI: 10.1038/s41593-019-0506-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 08/21/2019] [Indexed: 11/08/2022]
Abstract
Basal amygdala (BA) neurons guide associative learning via acquisition of responses to stimuli that predict salient appetitive or aversive outcomes. We examined the learning- and state-dependent dynamics of BA neurons and ventral tegmental area dopamine axons that innervate BA (VTADA➜BA) using two-photon imaging and photometry in behaving mice. BA neurons did not respond to arbitrary visual stimuli, but acquired responses to stimuli that predicted either rewards or punishments. Most VTADA➜BA axons were activated by both rewards and punishments, and acquired responses to cues predicting these outcomes during learning. Responses to cues predicting food rewards in VTADA➜BA axons and BA neurons in hungry mice were strongly attenuated following satiation, while responses to cues predicting unavoidable punishments persisted or increased. Therefore, VTADA➜BA axons may provide a reinforcement signal of motivational salience that invigorates adaptive behaviors by promoting learned responses to appetitive or aversive cues in distinct, intermingled sets of BA excitatory neurons.
Collapse
|
115
|
Hypothalamic neuronal circuits regulating hunger-induced taste modification. Nat Commun 2019; 10:4560. [PMID: 31594935 PMCID: PMC6783447 DOI: 10.1038/s41467-019-12478-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/09/2019] [Indexed: 01/20/2023] Open
Abstract
The gustatory system plays a critical role in sensing appetitive and aversive taste stimuli for evaluating food quality. Although taste preference is known to change depending on internal states such as hunger, a mechanistic insight remains unclear. Here, we examine the neuronal mechanisms regulating hunger-induced taste modification. Starved mice exhibit an increased preference for sweetness and tolerance for aversive taste. This hunger-induced taste modification is recapitulated by selective activation of orexigenic Agouti-related peptide (AgRP)-expressing neurons in the hypothalamus projecting to the lateral hypothalamus, but not to other regions. Glutamatergic, but not GABAergic, neurons in the lateral hypothalamus function as downstream neurons of AgRP neurons. Importantly, these neurons play a key role in modulating preferences for both appetitive and aversive tastes by using distinct pathways projecting to the lateral septum or the lateral habenula, respectively. Our results suggest that these hypothalamic circuits would be important for optimizing feeding behavior under fasting. Hunger modulates perception of good and bad tastes. Here, the authors report that orexigenic AgRP neurons in the hypothalamus mediate these effects through glutamatergic lateral hypothalamic neurons that send distinct projections to the lateral septum and lateral habenula.
Collapse
|
116
|
Abstract
The gustatory system plays a critical role in sensing appetitive and aversive taste stimuli for evaluating food quality. Although taste preference is known to change depending on internal states such as hunger, a mechanistic insight remains unclear. Here, we examine the neuronal mechanisms regulating hunger-induced taste modification. Starved mice exhibit an increased preference for sweetness and tolerance for aversive taste. This hunger-induced taste modification is recapitulated by selective activation of orexigenic Agouti-related peptide (AgRP)-expressing neurons in the hypothalamus projecting to the lateral hypothalamus, but not to other regions. Glutamatergic, but not GABAergic, neurons in the lateral hypothalamus function as downstream neurons of AgRP neurons. Importantly, these neurons play a key role in modulating preferences for both appetitive and aversive tastes by using distinct pathways projecting to the lateral septum or the lateral habenula, respectively. Our results suggest that these hypothalamic circuits would be important for optimizing feeding behavior under fasting.
Collapse
|
117
|
Lee YH, Kim M, Lee M, Shin D, Ha DS, Park JS, Kim YB, Choi HJ. Food Craving, Seeking, and Consumption Behaviors: Conceptual Phases and Assessment Methods Used in Animal and Human Studies. J Obes Metab Syndr 2019; 28:148-157. [PMID: 31583379 PMCID: PMC6774451 DOI: 10.7570/jomes.2019.28.3.148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/11/2019] [Accepted: 08/10/2019] [Indexed: 12/16/2022] Open
Abstract
What drives us to eat? It is one of the most fundamental questions in the obesity research field which have been investigated for centuries. Numerous novel in vivo technologies in the neuroscience field allows us to reevaluate the multiple components and phases of food-related behaviors. Focused on the cognitive, executive, behavioral and temporal aspects, food-related behaviors can be distinguished into appetitive phase (food craving→food seeking) and consummatory phase (food consumption). Food craving phase is an internal state or stage in which the animal has the motivation to eat the food but there is no actual food specific behaviors or actions. Food seeking phase entails repeated behaviors with a food searching purpose until the animal discovers the food (or food-related cue) and the approach behavior stage after the discovery of food. Food consumption phase is the step that the animal grabs, chews and intake the food. This review will specifically focus on characteristics and evaluation methods for each phase of food-related behavior in rodent, non-human primates and human.
Collapse
Affiliation(s)
- Young Hee Lee
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul,
Korea
- BK21Plus Biomedical Science Project Team, Seoul National University College of Medicine, Seoul,
Korea
| | - Meelim Kim
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul,
Korea
- BK21Plus Biomedical Science Project Team, Seoul National University College of Medicine, Seoul,
Korea
| | - Miwoo Lee
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul,
Korea
- BK21Plus Biomedical Science Project Team, Seoul National University College of Medicine, Seoul,
Korea
| | - Dongju Shin
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
| | - Dong-Soo Ha
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
| | - Joon Seok Park
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
| | - You Bin Kim
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul,
Korea
- BK21Plus Biomedical Science Project Team, Seoul National University College of Medicine, Seoul,
Korea
| | - Hyung Jin Choi
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul,
Korea
- BK21Plus Biomedical Science Project Team, Seoul National University College of Medicine, Seoul,
Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon,
Korea
| |
Collapse
|
118
|
Smith NK, Hackett TA, Galli A, Flynn CR. GLP-1: Molecular mechanisms and outcomes of a complex signaling system. Neurochem Int 2019; 128:94-105. [PMID: 31002893 PMCID: PMC7081944 DOI: 10.1016/j.neuint.2019.04.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/26/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022]
Abstract
Meal ingestion provokes the release of hormones and transmitters, which in turn regulate energy homeostasis and feeding behavior. One such hormone, glucagon-like peptide-1 (GLP-1), has received significant attention in the treatment of obesity and diabetes due to its potent incretin effect. In addition to the peripheral actions of GLP-1, this hormone is able to alter behavior through the modulation of multiple neural circuits. Recent work that focused on elucidating the mechanisms and outcomes of GLP-1 neuromodulation led to the discovery of an impressive array of GLP-1 actions. Here, we summarize the many levels at which the GLP-1 signal adapts to different systems, with the goal being to provide a background against which to guide future research.
Collapse
Affiliation(s)
- Nicholas K Smith
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Aurelio Galli
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Charles R Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
119
|
Alhadeff AL, Betley JN. Escaping the Heat: A Hindbrain Circuit Essential for Nocifensive Behavior. Neuron 2019; 100:1277-1279. [PMID: 30571939 DOI: 10.1016/j.neuron.2018.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The brain orchestrates a variety of responses to noxious environmental stimuli, from reflexive movements to coordinated defensive behaviors. In this issue of Neuron, Barik et al. identify a hindbrain circuit essential for escape behaviors (Barik et al., 2018).
Collapse
Affiliation(s)
- Amber L Alhadeff
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J Nicholas Betley
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
120
|
Rossi HL, Raj NR, Marquez de Prado B, Kuburas A, Luu AKS, Barr GA, Recober A. Trigeminal Pain Responses in Obese ob/ob Mice Are Modality-Specific. Neuroscience 2019; 415:121-134. [PMID: 31295530 DOI: 10.1016/j.neuroscience.2019.06.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/22/2019] [Accepted: 06/28/2019] [Indexed: 12/19/2022]
Abstract
How obesity exacerbates migraine and other pain disorders remains unknown. Trigeminal nociceptive processing, crucial in migraine pathophysiology, is abnormal in mice with diet induced obesity. However, it is not known if this is also true in genetic models of obesity. We hypothesized that obese mice, regardless of the model, have trigeminal hyperalgesia. To test this, we first evaluated trigeminal thermal nociception in leptin deficient (ob/ob) and control mice using an operant thermal assay. Unexpectedly, we found significant hypoalgesia in ob/ob mice. Because thermal hypoalgesia also occurs in mice lacking the transient receptor potential vanilloid 1 channel (TRPV1), we tested capsaicin-evoked trigeminal nociception. Ob/ob and control mice had similar capsaicin-evoked nocifensive behaviors, but ob/ob mice were significantly less active after a facial injection of capsaicin than were diet-induced obese mice or lean controls. Conditioned place aversion in response to trigeminal stimulation with capsaicin was similar in both genotypes, indicating normal negative affect and pain avoidance. Supporting this, we found no difference in TRPV1 expression in the trigeminal ganglia of ob/ob and control mice. Finally, we assessed the possible contribution of hyperphagia, a hallmark of leptin deficiency, to the behavior observed in the operant assay. Ob/ob and lean control mice had similar reduction of intake when quinine or capsaicin was added to the sweetened milk, excluding a significant contribution of hyperphagia. In summary, ob/ob mice, unlike mice with diet-induced obesity, have trigeminal thermal hypoalgesia but normal responses to capsaicin, suggesting specificity in the mechanisms by which leptin acts in pain processing.
Collapse
Affiliation(s)
- Heather L Rossi
- Department of Neurology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Nichelle R Raj
- Department of Neurology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Blanca Marquez de Prado
- Department of Neurology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Adisa Kuburas
- Department of Neurology, University of Iowa, Iowa City, IA, USA; Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Anthony K S Luu
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Gordon A Barr
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Ana Recober
- Department of Neurology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
121
|
Alhadeff AL, Goldstein N, Park O, Klima ML, Vargas A, Betley JN. Natural and Drug Rewards Engage Distinct Pathways that Converge on Coordinated Hypothalamic and Reward Circuits. Neuron 2019; 103:891-908.e6. [PMID: 31277924 DOI: 10.1016/j.neuron.2019.05.050] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/06/2019] [Accepted: 05/30/2019] [Indexed: 12/29/2022]
Abstract
Motivated behavior is influenced by neural networks that integrate physiological needs. Here, we describe coordinated regulation of hypothalamic feeding and midbrain reward circuits in awake behaving mice. We find that alcohol and other non-nutritive drugs inhibit activity in hypothalamic feeding neurons. Interestingly, nutrients and drugs utilize different pathways for the inhibition of hypothalamic neuron activity, as alcohol signals hypothalamic neurons in a vagal-independent manner, while fat and satiation signals require the vagus nerve. Concomitantly, nutrients, alcohol, and drugs also increase midbrain dopamine signaling. We provide evidence that these changes are interdependent, as modulation of either hypothalamic neurons or midbrain dopamine signaling influences reward-evoked activity changes in the other population. Taken together, our results demonstrate that (1) food and drugs can engage at least two peripheral→central pathways to influence hypothalamic neuron activity, and (2) hypothalamic and dopamine circuits interact in response to rewards.
Collapse
Affiliation(s)
- Amber L Alhadeff
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nitsan Goldstein
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Onyoo Park
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michelle L Klima
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra Vargas
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J Nicholas Betley
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
122
|
Abstract
The taste of sucrose is commonly used to provide pain relief in newborn humans and is innately analgesic to neonatal rodents. In adulthood, sucrose remains a strong motivator to feed, even in potentially hazardous circumstances (ie, threat of tissue damage). However, the neurobiological mechanisms of this endogenous reward-pain interaction are unclear. We have developed a simple model of sucrose drinking-induced analgesia in Sprague-Dawley rats (6-10 weeks old) and have undertaken a behavioral and pharmacological characterization using the Hargreaves' test of hind-paw thermal sensitivity. Our results reveal an acute, potent, and robust inhibitory effect of sucrose drinking on thermal nociceptive behaviour that unlike the phenomenon in neonates is independent of endogenous opioid signalling and does not seem to operate through classical descending inhibition of the spinal cord circuitry. Experience of sucrose drinking had a conditioning effect whereby the apparent expectancy of sucrose enabled water alone (in euvolemic animals) to elicit a short-lasting placebo-like analgesia. Sweet taste alone, however, was insufficient to elicit analgesia in adult rats intraorally perfused with sucrose. Instead, the sucrose analgesia phenomenon only appeared after conditioning by oral perfusion in chronically cannulated animals. This sucrose analgesia was completely prevented by systemic dosing of the endocannabinoid CB1 receptor antagonist rimonabant. These results indicate the presence of an endogenous supraspinal analgesic circuit that is recruited by the context of rewarding drinking and is dependent on endocannabinoid signalling. We propose that this hedonic sucrose-drinking model may be useful for further investigation of the supraspinal control of pain by appetite and reward.
Collapse
|
123
|
Budaev S, Jørgensen C, Mangel M, Eliassen S, Giske J. Decision-Making From the Animal Perspective: Bridging Ecology and Subjective Cognition. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00164] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
124
|
Qin F, Zhang H, Liu A, Wang Q, Sun Q, Lu S, Li Q, Guo H, Liu X, Lu Z. Analgesic Effect of Zanthoxylum nitidum Extract in Inflammatory Pain Models Through Targeting of ERK and NF-κB Signaling. Front Pharmacol 2019; 10:359. [PMID: 31068805 PMCID: PMC6491746 DOI: 10.3389/fphar.2019.00359] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/21/2019] [Indexed: 11/21/2022] Open
Abstract
Background Zanthoxylum nitidum (Roxb.) DC., also named Liang Mianzhen (LMZ), one kind of Chinese herb characterized with anti-inflammatory and relieving pain potency, which is widely used to treat injuries, rheumatism, arthralgia, stomach pain and so on in China. But its mechanism related to the anti-hyperalgesic has not been reported. The aim of this study was to investigate the analgesic activity of Liang Mianzhen on mice with Complete Freund adjuvant (CFA)-induced chronic inflammatory pain. Meanwhile, the peripheral and central mechanisms of analgesic effect of Liang Mianzhen were further examined via observing the effects of Liang Mianzhen on the signal pathway associated with inflammatory induced hyperalgesia. Methods The inflammatory pain model was established by intraplantar injection of CFA in C57BL/6J mice. After 1 day of CFA injection, the mice were treated with LMZ (100 mg/kg) for seven consecutive days, and the behavioral tests were measured after the daily intragastric administration of LMZ. The morphological changes on inflamed paw sections were determined by hematoxylin eosin (HE) staining. Changes in the mRNA expression levels of tumor necrosis factor (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and nuclear factor κB p65 (NF-κBp65) were measured on day seven after CFA injection by using real-time quantitative PCR analysis and enzyme linked immunosorbent assay (ELISA) method, respectively. Moreover, immunohistochemistry and western blotting were used to detect extracellular regulated protein kinases 1/2 (ERK1/2) and NF-κB signal pathway activation. Results The extract of LMZ (100 mg/kg) showed a significant anti-inflammatory and analgesic effect in the mice model. The paw edema volume was significantly reduced after the administration of LMZ compared to CFA group, as well as the paw tissues inflammatory damage was relived and the numbers of neutrophils in mice was reduced significantly. The CFA-induced mechanical threshold and thermal hyperalgesia value were significant improved with LMZ treatment at day three to day seven. We also found the mRNA levels of TNF-α, IL-1β, IL-6 and NF-κBp65 were down-regulate after 7 days from the LMZ treatment compared to CFA group. Meanwhile, LMZ significantly suppressed over-expression of the phosphorylation of ERK1/2 and NF-κBp65 in peripheral and central. Conclusion The present study suggests that the extract of LMZ attenuates CFA-induced inflammatory pain by suppressing the ERK1/2 and NF-κB signaling pathway at both peripheral and central level.
Collapse
Affiliation(s)
- Fenfen Qin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Han Zhang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Anlong Liu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qisheng Wang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinmei Sun
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shengfeng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Li
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongwei Guo
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Xing Liu
- College of Pharmacy, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Zhigang Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
125
|
Baldini G, Phelan KD. The melanocortin pathway and control of appetite-progress and therapeutic implications. J Endocrinol 2019; 241:R1-R33. [PMID: 30812013 PMCID: PMC6500576 DOI: 10.1530/joe-18-0596] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
The initial discovery that ob/ob mice become obese because of a recessive mutation of the leptin gene has been crucial to discover the melanocortin pathway to control appetite. In the melanocortin pathway, the fed state is signaled by abundance of circulating hormones such as leptin and insulin, which bind to receptors expressed at the surface of pro-opiomelanocortin (POMC) neurons to promote processing of POMC to the mature hormone α-melanocyte-stimulating hormone (α-MSH). The α-MSH released by POMC neurons then signals to decrease energy intake by binding to melanocortin-4 receptor (MC4R) expressed by MC4R neurons to the paraventricular nucleus (PVN). Conversely, in the 'starved state' activity of agouti-related neuropeptide (AgRP) and of neuropeptide Y (NPY)-expressing neurons is increased by decreased levels of circulating leptin and insulin and by the orexigenic hormone ghrelin to promote food intake. This initial understanding of the melanocortin pathway has recently been implemented by the description of the complex neuronal circuit that controls the activity of POMC, AgRP/NPY and MC4R neurons and downstream signaling by these neurons. This review summarizes the progress done on the melanocortin pathway and describes how obesity alters this pathway to disrupt energy homeostasis. We also describe progress on how leptin and insulin receptors signal in POMC neurons, how MC4R signals and how altered expression and traffic of MC4R change the acute signaling and desensitization properties of the receptor. We also describe how the discovery of the melanocortin pathway has led to the use of melanocortin agonists to treat obesity derived from genetic disorders.
Collapse
Affiliation(s)
- Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kevin D. Phelan
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
126
|
|
127
|
Burnett CJ, Funderburk SC, Navarrete J, Sabol A, Liang-Guallpa J, Desrochers TM, Krashes MJ. Need-based prioritization of behavior. eLife 2019; 8:44527. [PMID: 30907726 PMCID: PMC6433464 DOI: 10.7554/elife.44527] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/06/2019] [Indexed: 02/07/2023] Open
Abstract
When presented with a choice, organisms need to assimilate internal information with external stimuli and past experiences to rapidly and flexibly optimize decisions on a moment-to-moment basis. We hypothesized that increasing hunger intensity would curb expression of social behaviors such as mating or territorial aggression; we further hypothesized social interactions, reciprocally, would influence food consumption. We assessed competition between these motivations from both perspectives of mice within a resident-intruder paradigm. We found that as hunger state escalated, resident animal social interactions with either a female or male intruder decreased. Furthermore, intense hunger states, especially those evoked via AgRP photoactivation, fundamentally altered sequences of behavioral choice; effects dependent on food availibility. Additionally, female, but not male, intrusion attenuated resident mouse feeding. Lastly, we noted environmental context-dependent gating of food intake in intruding mice, suggesting a dynamic influence of context cues on the expression of feeding behaviors.
Collapse
Affiliation(s)
- C Joseph Burnett
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, United States.,National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, United States.,Brown University Graduate Partnerships Program, Providence, United States
| | - Samuel C Funderburk
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, United States.,National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, United States
| | - Jovana Navarrete
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, United States.,National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, United States
| | - Alexander Sabol
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, United States.,National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, United States
| | - Jing Liang-Guallpa
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, United States.,National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, United States
| | | | - Michael J Krashes
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, United States.,National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, United States
| |
Collapse
|
128
|
Matthews GA, Tye KM. Neural mechanisms of social homeostasis. Ann N Y Acad Sci 2019; 1457:5-25. [PMID: 30875095 DOI: 10.1111/nyas.14016] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/15/2018] [Accepted: 01/09/2019] [Indexed: 12/21/2022]
Abstract
Social connections are vital to survival throughout the animal kingdom and are dynamic across the life span. There are debilitating consequences of social isolation and loneliness, and social support is increasingly a primary consideration in health care, disease prevention, and recovery. Considering social connection as an "innate need," it is hypothesized that evolutionarily conserved neural systems underlie the maintenance of social connections: alerting the individual to their absence and coordinating effector mechanisms to restore social contact. This is reminiscent of a homeostatic system designed to maintain social connection. Here, we explore the identity of neural systems regulating "social homeostasis." We review findings from rodent studies evaluating the rapid response to social deficit (in the form of acute social isolation) and propose that parallel, overlapping circuits are engaged to adapt to the vulnerabilities of isolation and restore social connection. By considering the neural systems regulating other homeostatic needs, such as energy and fluid balance, we discuss the potential attributes of social homeostatic circuitry. We reason that uncovering the identity of these circuits/mechanisms will facilitate our understanding of how loneliness perpetuates long-term disease states, which we speculate may result from sustained recruitment of social homeostatic circuits.
Collapse
Affiliation(s)
- Gillian A Matthews
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Kay M Tye
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts.,The Salk Institute for Biological Sciences, La Jolla, California
| |
Collapse
|
129
|
Abstract
PURPOSE OF REVIEW The goal of the review was to highlight recent advances in our understanding of descending pain-modulating systems and how these contribute to persistent pain states, with an emphasis on the current state of knowledge around "bottom-up" (sensory) and "top-down" (higher structures mediating cognitive and emotional processing) influences on pain-modulating circuits. RECENT FINDINGS The connectivity, physiology, and function of these systems have been characterized extensively over the last 30 years. The field is now beginning to ask how and when these systems are engaged to modulate pain. A recent focus is on the parabrachial complex, now recognized as the major relay of nociceptive information to pain-modulating circuits, and plasticity in this circuit and its connections to the RVM is marked in persistent inflammatory pain. Top-down influences from higher structures, including hypothalamus, amygdala, and medial prefrontal areas, are also considered. The challenge will be to tease out mechanisms through which a particular behavioral context engages distinct circuits to enhance or suppress pain, and to understand how these mechanisms contribute to chronic pain.
Collapse
|
130
|
Schier LA, Spector AC. The Functional and Neurobiological Properties of Bad Taste. Physiol Rev 2019; 99:605-663. [PMID: 30475657 PMCID: PMC6442928 DOI: 10.1152/physrev.00044.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/18/2018] [Accepted: 06/30/2018] [Indexed: 12/12/2022] Open
Abstract
The gustatory system serves as a critical line of defense against ingesting harmful substances. Technological advances have fostered the characterization of peripheral receptors and have created opportunities for more selective manipulations of the nervous system, yet the neurobiological mechanisms underlying taste-based avoidance and aversion remain poorly understood. One conceptual obstacle stems from a lack of recognition that taste signals subserve several behavioral and physiological functions which likely engage partially segregated neural circuits. Moreover, although the gustatory system evolved to respond expediently to broad classes of biologically relevant chemicals, innate repertoires are often not in register with the actual consequences of a food. The mammalian brain exhibits tremendous flexibility; responses to taste can be modified in a specific manner according to bodily needs and the learned consequences of ingestion. Therefore, experimental strategies that distinguish between the functional properties of various taste-guided behaviors and link them to specific neural circuits need to be applied. Given the close relationship between the gustatory and visceroceptive systems, a full reckoning of the neural architecture of bad taste requires an understanding of how these respective sensory signals are integrated in the brain.
Collapse
Affiliation(s)
- Lindsey A Schier
- Department of Biological Sciences, University of Southern California , Los Angeles, California ; and Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Alan C Spector
- Department of Biological Sciences, University of Southern California , Los Angeles, California ; and Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| |
Collapse
|
131
|
Hökfelt T, Barde S, Xu ZQD, Kuteeva E, Rüegg J, Le Maitre E, Risling M, Kehr J, Ihnatko R, Theodorsson E, Palkovits M, Deakin W, Bagdy G, Juhasz G, Prud’homme HJ, Mechawar N, Diaz-Heijtz R, Ögren SO. Neuropeptide and Small Transmitter Coexistence: Fundamental Studies and Relevance to Mental Illness. Front Neural Circuits 2018; 12:106. [PMID: 30627087 PMCID: PMC6309708 DOI: 10.3389/fncir.2018.00106] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
Neuropeptides are auxiliary messenger molecules that always co-exist in nerve cells with one or more small molecule (classic) neurotransmitters. Neuropeptides act both as transmitters and trophic factors, and play a role particularly when the nervous system is challenged, as by injury, pain or stress. Here neuropeptides and coexistence in mammals are reviewed, but with special focus on the 29/30 amino acid galanin and its three receptors GalR1, -R2 and -R3. In particular, galanin's role as a co-transmitter in both rodent and human noradrenergic locus coeruleus (LC) neurons is addressed. Extensive experimental animal data strongly suggest a role for the galanin system in depression-like behavior. The translational potential of these results was tested by studying the galanin system in postmortem human brains, first in normal brains, and then in a comparison of five regions of brains obtained from depressed people who committed suicide, and from matched controls. The distribution of galanin and the four galanin system transcripts in the normal human brain was determined, and selective and parallel changes in levels of transcripts and DNA methylation for galanin and its three receptors were assessed in depressed patients who committed suicide: upregulation of transcripts, e.g., for galanin and GalR3 in LC, paralleled by a decrease in DNA methylation, suggesting involvement of epigenetic mechanisms. It is hypothesized that, when exposed to severe stress, the noradrenergic LC neurons fire in bursts and release galanin from their soma/dendrites. Galanin then acts on somato-dendritic, inhibitory galanin autoreceptors, opening potassium channels and inhibiting firing. The purpose of these autoreceptors is to act as a 'brake' to prevent overexcitation, a brake that is also part of resilience to stress that protects against depression. Depression then arises when the inhibition is too strong and long lasting - a maladaption, allostatic load, leading to depletion of NA levels in the forebrain. It is suggested that disinhibition by a galanin antagonist may have antidepressant activity by restoring forebrain NA levels. A role of galanin in depression is also supported by a recent candidate gene study, showing that variants in genes for galanin and its three receptors confer increased risk of depression and anxiety in people who experienced childhood adversity or recent negative life events. In summary, galanin, a neuropeptide coexisting in LC neurons, may participate in the mechanism underlying resilience against a serious and common disorder, MDD. Existing and further results may lead to an increased understanding of how this illness develops, which in turn could provide a basis for its treatment.
Collapse
Affiliation(s)
- Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Zhi-Qing David Xu
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Eugenia Kuteeva
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Joelle Rüegg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- The Center for Molecular Medicine, Stockholm, Sweden
- Swedish Toxicology Sciences Research Center, Swetox, Södertälje, Sweden
| | - Erwan Le Maitre
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Kehr
- Pronexus Analytical AB, Solna, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Ihnatko
- Department of Clinical Chemistry, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Elvar Theodorsson
- Department of Clinical Chemistry, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Miklos Palkovits
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - William Deakin
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, United Kingdom
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- NAP 2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, United Kingdom
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | | | - Naguib Mechawar
- Douglas Hospital Research Centre, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Sven Ove Ögren
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
132
|
He Z, Gao Y, Alhadeff AL, Castorena CM, Huang Y, Lieu L, Afrin S, Sun J, Betley JN, Guo H, Williams KW. Cellular and synaptic reorganization of arcuate NPY/AgRP and POMC neurons after exercise. Mol Metab 2018; 18:107-119. [PMID: 30292523 PMCID: PMC6308029 DOI: 10.1016/j.molmet.2018.08.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE Hypothalamic Pro-opiomelanocortin (POMC) and Neuropeptide Y/Agouti-Related Peptide (NPY/AgRP) neurons are critical nodes of a circuit within the brain that sense key metabolic cues as well as regulate metabolism. Importantly, these neurons retain an innate ability to rapidly reorganize synaptic inputs and electrophysiological properties in response to metabolic state. While the cellular properties of these neurons have been investigated in the context of obesity, much less is known about the effects of exercise training. METHODS In order to further investigate this issue, we utilized neuron-specific transgenic mouse models to identify POMC and NPY/AgRP neurons for patch-clamp electrophysiology experiments. RESULTS Using whole-cell patch-clamp electrophysiology, we found exercise depolarized and increased firing rate of arcuate POMC neurons. The increased excitability of POMC neurons was concomitant with increased excitatory inputs to these neurons. In agreement with recent work suggesting leptin plays an important role in the synaptic (re)organization of POMC neurons, POMC neurons which express leptin receptors were more sensitive to exercise-induced changes in biophysical properties. Opposite to effects observed in POMC neurons, NPY neurons were shunted toward inhibition following exercise. CONCLUSIONS Together, these data support a rapid reorganization of synaptic inputs and biophysical properties in response to exercise, which may facilitate adaptations to altered energy balance and glucose metabolism.
Collapse
Affiliation(s)
- Zhenyan He
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China; Division of Hypothalamic Research, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Yong Gao
- Division of Hypothalamic Research, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA; National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Amber L Alhadeff
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Carlos M Castorena
- Division of Hypothalamic Research, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Yiru Huang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China; Division of Hypothalamic Research, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Linh Lieu
- Division of Hypothalamic Research, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Sadia Afrin
- Division of Hypothalamic Research, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Jia Sun
- Division of Hypothalamic Research, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - J Nicholas Betley
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hongbo Guo
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Kevin W Williams
- Division of Hypothalamic Research, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
133
|
Crossley M, Staras K, Kemenes G. A central control circuit for encoding perceived food value. SCIENCE ADVANCES 2018; 4:eaau9180. [PMID: 30474061 PMCID: PMC6248929 DOI: 10.1126/sciadv.aau9180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/24/2018] [Indexed: 05/10/2023]
Abstract
Hunger state can substantially alter the perceived value of a stimulus, even to the extent that the same sensory cue can trigger antagonistic behaviors. How the nervous system uses these graded perceptual shifts to select between opposed motor patterns remains enigmatic. Here, we challenged food-deprived and satiated Lymnaea to choose between two mutually exclusive behaviors, ingestion or egestion, produced by the same feeding central pattern generator. Decoding the underlying neural circuit reveals that the activity of central dopaminergic interneurons defines hunger state and drives network reconfiguration, biasing satiated animals toward the rejection of stimuli deemed palatable by food-deprived ones. By blocking the action of these neurons, satiated animals can be reconfigured to exhibit a hungry animal phenotype. This centralized mechanism occurs in the complete absence of sensory retuning and generalizes across different sensory modalities, allowing food-deprived animals to increase their perception of food value in a stimulus-independent manner to maximize potential calorific intake.
Collapse
|
134
|
Hypothalamic Neurons that Regulate Feeding Can Influence Sleep/Wake States Based on Homeostatic Need. Curr Biol 2018; 28:3736-3747.e3. [PMID: 30471995 DOI: 10.1016/j.cub.2018.09.055] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/10/2018] [Accepted: 09/25/2018] [Indexed: 12/22/2022]
Abstract
Eating and sleeping represent two mutually exclusive behaviors that satisfy distinct homeostatic needs. Because an animal cannot eat and sleep at the same time, brain systems that regulate energy homeostasis are likely to influence sleep/wake behavior. Indeed, previous studies indicate that animals adjust sleep cycles around periods of food need and availability. Furthermore, hormones that affect energy homeostasis also affect sleep/wake states: the orexigenic hormone ghrelin promotes wakefulness, and the anorexigenic hormones leptin and insulin increase the duration of slow-wave sleep. However, whether neural populations that regulate feeding can influence sleep/wake states is unknown. The hypothalamic arcuate nucleus contains two neuronal populations that exert opposing effects on energy homeostasis: agouti-related protein (AgRP)-expressing neurons detect caloric need and orchestrate food-seeking behavior, whereas activity in pro-opiomelanocortin (POMC)-expressing neurons induces satiety. We tested the hypotheses that AgRP neurons affect sleep homeostasis by promoting states of wakefulness, whereas POMC neurons promote states of sleep. Indeed, optogenetic or chemogenetic stimulation of AgRP neurons in mice promoted wakefulness while decreasing the quantity and integrity of sleep. Inhibition of AgRP neurons rescued sleep integrity in food-deprived mice, highlighting the physiological importance of AgRP neuron activity for the suppression of sleep by hunger. Conversely, stimulation of POMC neurons promoted sleep states and decreased sleep fragmentation in food-deprived mice. Interestingly, we also found that sleep deprivation attenuated the effects of AgRP neuron activity on food intake and wakefulness. These results indicate that homeostatic feeding neurons can hierarchically affect behavioral outcomes, depending on homeostatic need.
Collapse
|
135
|
AGRP Neurons Project to the Medial Preoptic Area and Modulate Maternal Nest-Building. J Neurosci 2018; 39:456-471. [PMID: 30459220 DOI: 10.1523/jneurosci.0958-18.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 11/06/2018] [Accepted: 11/11/2018] [Indexed: 12/28/2022] Open
Abstract
AGRP (agouti-related neuropeptide) expressing inhibitory neurons sense caloric needs of an animal to coordinate homeostatic feeding. Recent evidence suggests that AGRP neurons also suppress competing actions and motivations to mediate adaptive behavioral selection during starvation. Here, in adult mice of both sexes we show that AGRP neurons form inhibitory synapses onto ∼30% neurons in the medial preoptic area (mPOA), a region critical for maternal care. Remarkably, optogenetically stimulating AGRP neurons decreases maternal nest-building while minimally affecting pup retrieval, partly recapitulating suppression of maternal behaviors during food restriction. In parallel, optogenetically stimulating AGRP projections to the mPOA or to the paraventricular nucleus of hypothalamus but not to the LHA (lateral hypothalamus area) similarly decreases maternal nest-building. Chemogenetic inhibition of mPOA neurons that express Vgat (vesicular GABA transporter), the population targeted by AGRP terminals, also decreases maternal nest-building. In comparison, chemogenetic inhibition of neurons in the LHA that express vesicular glutamate transporter 2, another hypothalamic neuronal population critical for feeding and innate drives, is ineffective. Importantly, nest-building during low temperature thermal challenge is not affected by optogenetic stimulation of AGRP→mPOA projections. Finally, via optogenetic activation and inhibition we show that distinctive subsets of mPOA Vgat+ neurons likely underlie pup retrieval and maternal nest-building. Together, these results show that AGRP neurons can modulate maternal nest-building, in part through direct projections to the mPOA. This study corroborates other recent discoveries and underscores the broad functions that AGRP neurons play in antagonizing rivalry motivations to modulate behavioral outputs during hunger.SIGNIFICANCE STATEMENT In order for animals to initiate ethologically appropriate behaviors, they must typically decide between behavioral repertoires driven by multiple and often conflicting internal states. How neural pathways underlying individual behaviors interact to coherently modulate behavioral outputs, in particular to achieve a proper balance between behaviors that serve immediate individual needs versus those that benefit the propagation of the species, remains poorly understood. Here, by investigating projections from a neuronal population known to drive hunger behaviors to a brain region critical for maternal care, we show that activation of AGRP→mPOA projections in females dramatically inhibits maternal nest-building while leaving mostly intact pup retrieval behavior. Our findings shed new light on neural organization of behaviors and neural mechanisms that coordinate behavioral selection.
Collapse
|
136
|
Barik A, Thompson JH, Seltzer M, Ghitani N, Chesler AT. A Brainstem-Spinal Circuit Controlling Nocifensive Behavior. Neuron 2018; 100:1491-1503.e3. [PMID: 30449655 DOI: 10.1016/j.neuron.2018.10.037] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/17/2018] [Accepted: 10/23/2018] [Indexed: 11/28/2022]
Abstract
Response to danger needs to be rapid and appropriate. In humans, nocifensive behaviors often precede conscious pain perception. Much is known about local spinal cord circuits for simple reflexive responses, but the mechanisms underlying more complex behaviors remain poorly understood. We now describe a brainstem circuit that controls escape responses to select noxious stimuli. Tracing experiments characterized a highly interconnected excitatory circuit involving the dorsal spinal cord, parabrachial nucleus (PBNl), and reticular formation (MdD). A combination of chemogenetic, optogenetic, and genetic ablation approaches revealed that PBNlTac1 neurons are activated by noxious stimuli and trigger robust escape responses to heat through connections to the MdD. Remarkably, MdDTac1 neurons receive excitatory input from the PBN and target both the spinal cord and PBN; activation of these neurons phenocopies the behavioral effects of PBNlTac1 neuron stimulation. These findings identify a substrate for controlling appropriate behavioral responses to painful stimuli.
Collapse
Affiliation(s)
- Arnab Barik
- National Center for Complementary and Integrative Health (NCCIH), NIH, Bethesda MD, USA
| | - James Hunter Thompson
- National Center for Complementary and Integrative Health (NCCIH), NIH, Bethesda MD, USA
| | - Mathew Seltzer
- National Center for Complementary and Integrative Health (NCCIH), NIH, Bethesda MD, USA
| | - Nima Ghitani
- National Center for Complementary and Integrative Health (NCCIH), NIH, Bethesda MD, USA
| | - Alexander T Chesler
- National Center for Complementary and Integrative Health (NCCIH), NIH, Bethesda MD, USA.
| |
Collapse
|
137
|
Augustine V, Gokce SK, Oka Y. Peripheral and Central Nutrient Sensing Underlying Appetite Regulation. Trends Neurosci 2018; 41:526-539. [PMID: 29914721 DOI: 10.1016/j.tins.2018.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/11/2022]
Abstract
The precise regulation of fluid and energy homeostasis is essential for survival. It is well appreciated that ingestive behaviors are tightly regulated by both peripheral sensory inputs and central appetite signals. With recent neurogenetic technologies, considerable progress has been made in our understanding of basic taste qualities, the molecular and/or cellular basis of taste sensing, and the central circuits for thirst and hunger. In this review, we first highlight the functional similarities and differences between mammalian and invertebrate taste processing. We then discuss how central thirst and hunger signals interact with peripheral sensory signals to regulate ingestive behaviors. We finally indicate some of the directions for future research.
Collapse
Affiliation(s)
- Vineet Augustine
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sertan Kutal Gokce
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yuki Oka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
138
|
Akamine T, Kusunose N, Matsunaga N, Koyanagi S, Ohdo S. Accumulation of sorbitol in the sciatic nerve modulates circadian properties of diabetes-induced neuropathic pain hypersensitivity in a diabetic mouse model. Biochem Biophys Res Commun 2018; 503:181-187. [PMID: 29864425 DOI: 10.1016/j.bbrc.2018.05.209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 05/31/2018] [Indexed: 10/14/2022]
Abstract
The intensity of pain in diabetic neuropathy varies in a circadian time-dependent manner. It is well known that diabetes has two distinct types, which are differentiated based on the cause of the disease. Previous studies have yet to compare the circadian properties of the pain intensity of diabetic neuropathy between type I and type II diabetes. In this study, we demonstrated that the pain intensity of diabetic peripheral neuropathy in a db/db mouse model of type II diabetes showed a significant diurnal oscillation, but such time-dependent oscillation was not detected in a streptozotocin (STZ)-induced type I diabetic mouse model. The polyol pathway-induced accumulation of sorbitol in peripheral nerve cells suppresses Na+/K+-ATPase activity, which is associated with the intensity of pain in diabetic neuropathy. In db/db mice, this accumulation of sorbitol in peripheral nerve cells showed significant diurnal oscillation. In addition, pain intensity and Na+/K+-ATPase activity were decreased at the peak time of sorbitol accumulation in these mice. Although STZ-induced diabetic mice also showed sorbitol accumulation and Na+/K+-ATPase dysfunction, these measures did not oscillate in a time-dependent manner. These findings reveal differences in the circadian properties of pain hypersensitivity in mouse models of type I and type II diabetes, and also provide ideas for developing novel approaches to the management of diabetic neuropathy.
Collapse
Affiliation(s)
- Takahiro Akamine
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naoki Kusunose
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naoya Matsunaga
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Glocal Healthcare, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Satoru Koyanagi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Glocal Healthcare, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shigehiro Ohdo
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
139
|
Xu F, Yang J, Lu F, Liu R, Zheng J, Zhang J, Cui W, Wang C, Zhou W, Wang Q, Chen X, Chen J. Fast Green FCF Alleviates Pain Hypersensitivity and Down-Regulates the Levels of Spinal P2X4 Expression and Pro-inflammatory Cytokines in a Rodent Inflammatory Pain Model. Front Pharmacol 2018; 9:534. [PMID: 29875666 PMCID: PMC5974208 DOI: 10.3389/fphar.2018.00534] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/03/2018] [Indexed: 12/13/2022] Open
Abstract
Fast Green FCF (FGF), a biocompatible dye, recently drew attention as a potential drug to treat amyloid-deposit diseases due to its effects against amyloid fibrillogenesis in vitro and a high degree of safety. However, its role in inflammatory pain is unknown. Our study aimed to investigate the effect of FGF in the inflammatory pain model induced by complete Freund’s adjuvant (CFA) and to identify the associated mechanisms. We found that systemic administration of FGF reversed mechanical and thermal pain hypersensitivity evoked by CFA in a dose-dependent manner. FGF treatment decreased purinergic spinal P2X4 expression in the spinal cord of CFA-inflamed mice. FGF also down-regulated spinal and peripheral pro-inflammatory cytokines [tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6)], but did not alter the spinal level of nerve growth factor (NGF) or brain-derived neurotrophic factor (BDNF). In conclusion, our results suggest the potential of FGF for controlling the progress of inflammatory pain.
Collapse
Affiliation(s)
- Fang Xu
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, The Medical School of Ningbo University, Ningbo University, Ningbo, China
| | - Jing Yang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, The Medical School of Ningbo University, Ningbo University, Ningbo, China
| | - Fan Lu
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, The Medical School of Ningbo University, Ningbo University, Ningbo, China
| | - Rongjun Liu
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, The Medical School of Ningbo University, Ningbo University, Ningbo, China
| | - Jinwei Zheng
- Department of Anesthesiology, Ningbo No. 2 Hospital, Ningbo, China
| | - Junfang Zhang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, The Medical School of Ningbo University, Ningbo University, Ningbo, China
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, The Medical School of Ningbo University, Ningbo University, Ningbo, China
| | - Chuang Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, The Medical School of Ningbo University, Ningbo University, Ningbo, China
| | - Wenhua Zhou
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, The Medical School of Ningbo University, Ningbo University, Ningbo, China
| | - Qinwen Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, The Medical School of Ningbo University, Ningbo University, Ningbo, China
| | - Xiaowei Chen
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, The Medical School of Ningbo University, Ningbo University, Ningbo, China
| | - Junping Chen
- Department of Anesthesiology, Ningbo No. 2 Hospital, Ningbo, China
| |
Collapse
|
140
|
Palmiter RD. The Parabrachial Nucleus: CGRP Neurons Function as a General Alarm. Trends Neurosci 2018; 41:280-293. [PMID: 29703377 PMCID: PMC5929477 DOI: 10.1016/j.tins.2018.03.007] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/17/2018] [Accepted: 03/07/2018] [Indexed: 12/24/2022]
Abstract
The parabrachial nucleus (PBN), which is located in the pons and is dissected by one of the major cerebellar output tracks, is known to relay sensory information (visceral malaise, taste, temperature, pain, itch) to forebrain structures including the thalamus, hypothalamus, and extended amygdala. The availability of mouse lines expressing Cre recombinase selectively in subsets of PBN neurons and viruses for Cre-dependent gene expression is beginning to reveal the connectivity and functions of PBN component neurons. This review focuses on PBN neurons expressing calcitonin gene-related peptide (CGRPPBN) that play a major role in regulating appetite and transmitting real or potential threat signals to the extended amygdala. The functions of other specific PBN neuronal populations are also discussed. This review aims to encourage investigation of the numerous unanswered questions that are becoming accessible.
Collapse
Affiliation(s)
- Richard D Palmiter
- Howard Hughes Medical Institute, and Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
141
|
|
142
|
Neural circuits: Balancing threats. Nat Rev Neurosci 2018; 19:254. [PMID: 29618806 DOI: 10.1038/nrn.2018.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|