101
|
Athavale A, Gaur A, Ahmed N, Subramaniam A, Dandotiya J, Raj S, Upadhyay SK, Samal S, Pandey AK, Rai RC, Awasthi A. Receptor Binding Domain-Specific B Cell Memory Responses Among Individuals Vaccinated Against SARS-CoV-2. Vaccines (Basel) 2024; 12:1396. [PMID: 39772064 PMCID: PMC11680197 DOI: 10.3390/vaccines12121396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The COVID-19 pandemic prompted unprecedented vaccine development efforts against SARS-CoV-2. India, which was one of the countries most impacted by COVID-19, developed its indigenous vaccine in addition to utilizing the ones developed by other countries. While antibody levels and neutralizing antibody titres are considered initial correlates of immune protection, long-term protection from the pathogen relies on memory B and T cells and their recall responses. In this regard, global research has primarily focused on mRNA-based vaccines. The studies on immune memory response, particularly B cell memory response induced by the vaccines given to Indians, remain relatively obscure. Methods: We assessed Receptor Binding Domain-specific memory B cells in the peripheral circulation and their ability to secrete antigen-specific antibodies among Indians vaccinated with Covaxin (BBV152), Covishield (AZD1222), Corbevax (BECOV2D), and Sputnik Light, as well as unvaccinated individuals. Results: Corbevax and Sputnik Light conferred better antibody-secreting cell (ASC) responses over time compared to other groups. Conclusions: These findings contribute to our understanding of vaccine-induced immune memory in the Indian population; providing insights that could inform future vaccine strategies.
Collapse
Affiliation(s)
- Atharv Athavale
- BRIC-Translational Health Science and Technology Institute, Faridabad 21001, India; (A.A.); (A.G.); (N.A.); (A.S.); (J.D.); (S.R.); (S.S.)
| | - Anmol Gaur
- BRIC-Translational Health Science and Technology Institute, Faridabad 21001, India; (A.A.); (A.G.); (N.A.); (A.S.); (J.D.); (S.R.); (S.S.)
| | - Nafees Ahmed
- BRIC-Translational Health Science and Technology Institute, Faridabad 21001, India; (A.A.); (A.G.); (N.A.); (A.S.); (J.D.); (S.R.); (S.S.)
| | - Adarsh Subramaniam
- BRIC-Translational Health Science and Technology Institute, Faridabad 21001, India; (A.A.); (A.G.); (N.A.); (A.S.); (J.D.); (S.R.); (S.S.)
| | - Jyotsna Dandotiya
- BRIC-Translational Health Science and Technology Institute, Faridabad 21001, India; (A.A.); (A.G.); (N.A.); (A.S.); (J.D.); (S.R.); (S.S.)
| | - Sneha Raj
- BRIC-Translational Health Science and Technology Institute, Faridabad 21001, India; (A.A.); (A.G.); (N.A.); (A.S.); (J.D.); (S.R.); (S.S.)
| | | | - Sweety Samal
- BRIC-Translational Health Science and Technology Institute, Faridabad 21001, India; (A.A.); (A.G.); (N.A.); (A.S.); (J.D.); (S.R.); (S.S.)
| | | | - Ramesh Chandra Rai
- BRIC-Translational Health Science and Technology Institute, Faridabad 21001, India; (A.A.); (A.G.); (N.A.); (A.S.); (J.D.); (S.R.); (S.S.)
| | - Amit Awasthi
- BRIC-Translational Health Science and Technology Institute, Faridabad 21001, India; (A.A.); (A.G.); (N.A.); (A.S.); (J.D.); (S.R.); (S.S.)
| |
Collapse
|
102
|
Wang X, Xiong L, Zhu Y, Liu S, Zhao W, Wu X, Seydimemet M, Li L, Ding P, Lin X, Liu J, Wang X, Duan Z, Lu W, Suo Y, Cui M, Yue J, Jin R, Zheng M, Xu Y, Mei L, Hu H, Lu X. Covalent DNA-Encoded Library Workflow Drives Discovery of SARS-CoV-2 Nonstructural Protein Inhibitors. J Am Chem Soc 2024; 146:33983-33996. [PMID: 39574309 DOI: 10.1021/jacs.4c12992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The COVID-19 pandemic, exacerbated by persistent viral mutations, underscored the urgent need for diverse inhibitors targeting multiple viral proteins. In this study, we utilized covalent DNA-encoded libraries to discover innovative triazine-based covalent inhibitors for the 3-chymotrypsin-like protease (3CLpro, Nsp5) and the papain-like protease (PLpro) domains of Nsp3, as well as novel non-nucleoside covalent inhibitors for the nonstructural protein 12 (Nsp12, RdRp). Optimization through molecular docking and medicinal chemistry led to the development of LU9, a nonpeptide 3CLpro inhibitor with an IC50 of 0.34 μM, and LU10, whose crystal structure showed a distinct binding mode within the 3CLpro active site. The X-ray cocrystal structure of SARS-CoV-2 PLpro in complex with XD5 uncovered a previously unexplored binding site adjacent to the catalytic pocket. Additionally, a non-nucleoside covalent Nsp12 inhibitor XJ5 achieved a potency of 0.12 μM following comprehensive structure-activity relationship analysis and optimization. Molecular dynamics revealed a potential binding mode. These compounds offer valuable chemical probes for target validation and represent promising candidates for the development of SARS-CoV-2 antiviral therapies.
Collapse
Affiliation(s)
- Xudong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liwei Xiong
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Ying Zhu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Sixiu Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenfeng Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mengnisa Seydimemet
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Linjie Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Peiqi Ding
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Xian Lin
- Suzhou Institute of Materia Medica, No. 108 Yuxin Road, Suzhou, Jiangsu 215123, P. R. China
| | - Jiaxiang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Zhiqiang Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Yanrui Suo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mengqing Cui
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Jinfeng Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Rui Jin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Mingyue Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Lianghe Mei
- Suzhou Institute of Materia Medica, No. 108 Yuxin Road, Suzhou, Jiangsu 215123, P. R. China
| | - Hangchen Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
103
|
Case JB, Sanapala S, Dillen C, Rhodes V, Zmasek C, Chicz TM, Switzer CE, Scheaffer SM, Georgiev G, Jacob-Dolan C, Hauser BM, Dos Anjos DCC, Adams LJ, Soudani N, Liang CY, Ying B, McNamara RP, Scheuermann RH, Boon ACM, Fremont DH, Whelan SPJ, Schmidt AG, Sette A, Grifoni A, Frieman MB, Diamond MS. A trivalent mucosal vaccine encoding phylogenetically inferred ancestral RBD sequences confers pan-Sarbecovirus protection in mice. Cell Host Microbe 2024; 32:2131-2147.e8. [PMID: 39561781 PMCID: PMC11637904 DOI: 10.1016/j.chom.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/13/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024]
Abstract
The continued emergence of SARS-CoV-2 variants and the threat of future Sarbecovirus zoonoses have spurred the design of vaccines that can induce broad immunity against multiple coronaviruses. Here, we use computational methods to infer ancestral phylogenetic reconstructions of receptor binding domain (RBD) sequences across multiple Sarbecovirus clades and incorporate them into a multivalent adenoviral-vectored vaccine. Mice immunized with this pan-Sarbecovirus vaccine are protected in the upper and lower respiratory tracts against infection by historical and contemporary SARS-CoV-2 variants, SARS-CoV, and pre-emergent SHC014 and Pangolin/GD coronavirus strains. Using genetic and immunological approaches, we demonstrate that vaccine-induced protection unexpectedly is conferred principally by CD4+ and CD8+ T cell-mediated anamnestic responses. Importantly, prior mRNA vaccination or SARS-CoV-2 respiratory infection does not alter the efficacy of the mucosally delivered pan-Sarbecovirus vaccine. These data highlight the promise of a phylogenetic approach for antigen and vaccine design against existing and pre-emergent Sarbecoviruses with pandemic potential.
Collapse
Affiliation(s)
- James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shilpa Sanapala
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carly Dillen
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Victoria Rhodes
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Christian Zmasek
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Taras M Chicz
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Charlotte E Switzer
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston 02115, MA, USA; Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Suzanne M Scheaffer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - George Georgiev
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Catherine Jacob-Dolan
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Blake M Hauser
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Lucas J Adams
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nadia Soudani
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chieh-Yu Liang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ryan P McNamara
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | | | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aaron G Schmidt
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Matthew B Frieman
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity against Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
104
|
Arppo A, Barker H, Parkkila S. Bioinformatic characterization of ENPEP, the gene encoding a potential cofactor for SARS-CoV-2 infection. PLoS One 2024; 19:e0307731. [PMID: 39661628 PMCID: PMC11633960 DOI: 10.1371/journal.pone.0307731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024] Open
Abstract
Research on SARS-CoV-2, the viral pathogen that causes COVID-19, has identified angiotensin converting enzyme 2 (ACE2) as the primary viral receptor. Several genes that encode viral cofactors, such as TMPRSS2, NRP1, CTSL, and possibly KIM1, have since been discovered. Glutamyl aminopeptidase (APA), encoded by the gene ENPEP, is another cofactor candidate due to similarities in its biological role and high correlation with ACE2 and other human coronavirus receptors, such as aminopeptidase N (APN) and dipeptidyl peptidase 4 (DPP4). Recent studies have proposed a role for ENPEP as a viral receptor in humans, and ENPEP and ACE2 are both closely involved in the renin-angiotensin-aldosterone system proposed to play an important role in SARS-CoV-2 pathophysiology. We performed bioinformatic analyses using publicly available bulk (>17,000 samples from 49 distinct tissues) and single-cell (>2.5 million cells) RNA-Seq gene expression datasets to evaluate the expression and function of the ENPEP gene. We also investigated age- and sex-related changes in ENPEP expression. Overall, expression of ENPEP was highest in the small intestine enterocyte brush border and the kidney cortex. ENPEP is widely expressed in a subset of vascular smooth muscle cells (likely pericytes) in systemic vasculature, the heart, and the brain. ENPEP is expressed at low levels in the lower respiratory epithelium. In the lung, ENPEP is most highly expressed in para-alveolar fibroblasts. Single-cell data revealed ENPEP expression in a substantial fraction of ependymal cells, a finding not reported before in humans. Age increases ENPEP expression in skeletal muscle and the prostate, while decreasing it in the heart and aorta. Angiogenesis was found to be a central biological function associated with the ENPEP gene. Tissue-specific roles, such as protein digestion and fat metabolism, were also identified in the intestine. In the liver, the gene is linked to the complement system, a connection that has not yet been thoroughly investigated. Expression of ENPEP and ACE2 is strongly correlated in the small intestine and renal cortex. Both overall and in blood vessels, ENPEP and ACE2 have a stronger correlation than many other genes associated with SARS-CoV-2, such as TMPRSS2, CTSL, and NRP1. Possible interaction between glutamyl aminopeptidase and SARS-CoV-2 should be investigated experimentally.
Collapse
Affiliation(s)
- Antti Arppo
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Harlan Barker
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories PLC, Tampere University Hospital, Tampere, Finland
- Disease Networks Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories PLC, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
105
|
Rexhepaj M, Asarnow D, Perruzza L, Park YJ, Guarino B, Mccallum M, Culap K, Saliba C, Leoni G, Balmelli A, Yoshiyama CN, Dickinson MS, Quispe J, Brown JT, Tortorici MA, Sprouse KR, Taylor AL, Corti D, Starr TN, Benigni F, Veesler D. Isolation and escape mapping of broadly neutralizing antibodies against emerging delta-coronaviruses. Immunity 2024; 57:2914-2927.e7. [PMID: 39488210 DOI: 10.1016/j.immuni.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/06/2024] [Accepted: 10/02/2024] [Indexed: 11/04/2024]
Abstract
Porcine delta-coronavirus (PDCoV) spillovers were recently detected in febrile children, underscoring the recurrent zoonoses of divergent CoVs. To date, no vaccines or specific therapeutics are approved for use in humans against PDCoV. To prepare for possible future PDCoV epidemics, we isolated PDCoV spike (S)-directed monoclonal antibodies (mAbs) from humanized mice and found that two, designated PD33 and PD41, broadly neutralized a panel of PDCoV variants. Cryoelectron microscopy (cryo-EM) structures of PD33 and PD41 in complex with the S receptor-binding domain (RBD) and ectodomain trimer revealed the epitopes recognized by these mAbs, rationalizing their broad inhibitory activity. We show that both mAbs competitively interfere with host aminopeptidase N binding to neutralize PDCoV and used deep-mutational scanning epitope mapping to associate RBD antigenic sites with mAb-mediated neutralization potency. Our results indicate a PD33-PD41 mAb cocktail may heighten the barrier to escape. PD33 and PD41 are candidates for clinical advancement against future PDCoV outbreaks.
Collapse
Affiliation(s)
- Megi Rexhepaj
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Daniel Asarnow
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Lisa Perruzza
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Barbara Guarino
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Mathew Mccallum
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Katja Culap
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Christian Saliba
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Giada Leoni
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Alessio Balmelli
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | | | - Miles S Dickinson
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jack T Brown
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - M Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Ashley L Taylor
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Davide Corti
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Tyler N Starr
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Fabio Benigni
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland.
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA.
| |
Collapse
|
106
|
Bayarri-Olmos R, Sutta A, Rosbjerg A, Mortensen MM, Helgstrand C, Nielsen PF, Pérez-Alós L, González-García B, Johnsen LB, Matthiesen F, Egebjerg T, Hansen CB, Sette A, Grifoni A, da Silva Antunes R, Garred P. Unraveling the impact of SARS-CoV-2 mutations on immunity: insights from innate immune recognition to antibody and T cell responses. Front Immunol 2024; 15:1412873. [PMID: 39720734 PMCID: PMC11666439 DOI: 10.3389/fimmu.2024.1412873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024] Open
Abstract
Throughout the COVID-19 pandemic, the emergence of new viral variants has challenged public health efforts, often evading antibody responses generated by infections and vaccinations. This immune escape has led to waves of breakthrough infections, raising questions about the efficacy and durability of immune protection. Here we focus on the impact of SARS-CoV-2 Delta and Omicron spike mutations on ACE-2 receptor binding, protein stability, and immune response evasion. Delta and Omicron variants had 3-5 times higher binding affinities to ACE-2 than the ancestral strain (KDwt = 23.4 nM, KDDelta = 8.08 nM, KDBA.1 = 4.77 nM, KDBA.2 = 4.47 nM). The pattern recognition molecule mannose-binding lectin (MBL) has been shown to recognize the spike protein. Here we found that MBL binding remained largely unchanged across the variants, even after introducing mutations at single glycan sites. Although MBL binding decreased post-vaccination, it increased by 2.6-fold upon IgG depletion, suggesting a compensatory or redundant role in immune recognition. Notably, we identified two glycan sites (N717 and N801) as potentially essential for the structural integrity of the spike protein. We also evaluated the antibody and T cell responses. Neutralization by serum immunoglobulins was predominantly mediated by IgG rather than IgA and was markedly impaired against the Delta (5.8-fold decrease) and Omicron variants BA.1 (17.4-fold) and BA.2 (14.2-fold). T cell responses, initially conserved, waned rapidly within 3 months post-Omicron infection. Our data suggests that immune imprinting may have hindered antibody and T cell responses toward the variants. Overall, despite decreased antibody neutralization, MBL recognition and T cell responses were generally unaffected by the variants. These findings extend our understanding of the complex interplay between viral adaptation and immune response, underscoring the importance of considering MBL interactions, immune imprinting, and viral evolution dynamics in developing new vaccine and treatment strategies.
Collapse
Affiliation(s)
- Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Recombinant Protein and Antibody Unit, Copenhagen University Hospital,
Rigshospitalet, Copenhagen, Denmark
| | - Adrian Sutta
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Recombinant Protein and Antibody Unit, Copenhagen University Hospital,
Rigshospitalet, Copenhagen, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Recombinant Protein and Antibody Unit, Copenhagen University Hospital,
Rigshospitalet, Copenhagen, Denmark
| | | | | | | | - Laura Pérez-Alós
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Beatriz González-García
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | - Cecilie Bo Hansen
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, United States
| | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | | | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
107
|
Nielsen IH, Rovsing AB, Janns JH, Thomsen EA, Ruzo A, Bøggild A, Nedergaard F, Møller CT, Boesen T, Degn SE, Shah JV, Mikkelsen JG. Cell-targeted gene modification by delivery of CRISPR-Cas9 ribonucleoprotein complexes in pseudotyped lentivirus-derived nanoparticles. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102318. [PMID: 39329149 PMCID: PMC11426049 DOI: 10.1016/j.omtn.2024.102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
To fully utilize the potential of CRISPR-Cas9-mediated genome editing, time-restricted and targeted delivery is crucial. By modulating the pseudotype of engineered lentivirus-derived nanoparticles (LVNPs), we demonstrate efficient cell-targeted delivery of Cas9/single guide RNA (sgRNA) ribonucleoprotein (RNP) complexes, supporting gene modification in a defined subset of cells in mixed cell populations. LVNPs pseudotyped with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein resulted in angiotensin-converting enzyme 2 (ACE2)-dependent insertion or deletion (indel) formation in an ACE2+/ACE2- population of cells, whereas Nipah virus glycoprotein pseudotyping resulted in Ephrin-B2/B3-specific gene knockout. Additionally, LVNPs pseudotyped with Edmonston strain measles virus glycoproteins (MV-H/F) delivered Cas9/sgRNA RNPs to CD46+ cells with and without additional expression of SLAM (signaling lymphocytic activation molecule; CD150). However, an engineered SLAM-specific measles virus pseudotype (measles virus-hemagglutinin/fusion [MV-H/F]-SLAM) efficiently targeted LVNPs to SLAM+ cells. Lentiviral vectors (LVs) pseudotyped with MV-H/F-SLAM efficiently transduced >80% of interleukin (IL)-4/IL-21-stimulated primary B cells cultured on CD40 ligand (CD40L)-expressing feeder cells. Notably, LVNPs pseudotyped with MV-H/F and MV-H/F-SLAM reached indel rates of >80% and >60% in stimulated primary B cells, respectively. Collectively, our findings demonstrate the modularity of LVNP-directed delivery of ready-to-function Cas9/sgRNA complexes. Using a panel of different pseudotypes, we provide evidence that LVNPs can be engineered to induce effective indel formation in a subpopulation of cells defined by the expression of surface receptors.
Collapse
Affiliation(s)
- Ian Helstrup Nielsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Anne Bruun Rovsing
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Jacob Hørlück Janns
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Emil Aagaard Thomsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Albert Ruzo
- Sana Biotechnology, Inc, Cambridge, MA 02139, USA
| | - Andreas Bøggild
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Frederikke Nedergaard
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | | | - Thomas Boesen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Søren Egedal Degn
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | | | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| |
Collapse
|
108
|
Minigulov N, Boranbayev K, Bekbossynova A, Gadilgereyeva B, Filchakova O. Structural proteins of human coronaviruses: what makes them different? Front Cell Infect Microbiol 2024; 14:1458383. [PMID: 39711780 PMCID: PMC11659265 DOI: 10.3389/fcimb.2024.1458383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/17/2024] [Indexed: 12/24/2024] Open
Abstract
Following COVID-19 outbreak with its unprecedented effect on the entire world, the interest to the coronaviruses increased. The causative agent of the COVID-19, severe acute respiratory syndrome coronavirus - 2 (SARS-CoV-2) is one of seven coronaviruses that is pathogenic to humans. Others include SARS-CoV, MERS-CoV, HCoV-HKU1, HCoV-OC43, HCoV-NL63 and HCoV-229E. The viruses differ in their pathogenicity. SARS-CoV, MERS-CoV, and SARS-CoV-2 are capable to spread rapidly and cause epidemic, while HCoV-HKU1, HCoV-OC43, HCoV-NL63 and HCoV-229E cause mild respiratory disease. The difference in the viral behavior is due to structural and functional differences. All seven human coronaviruses possess four structural proteins: spike, envelope, membrane, and nucleocapsid. Spike protein with its receptor binding domain is crucial for the entry to the host cell, where different receptors on the host cell are recruited by different viruses. Envelope protein plays important role in viral assembly, and following cellular entry, contributes to immune response. Membrane protein is an abundant viral protein, contributing to the assembly and pathogenicity of the virus. Nucleocapsid protein encompasses the viral RNA into ribonucleocapsid, playing important role in viral replication. The present review provides detailed summary of structural and functional characteristics of structural proteins from seven human coronaviruses, and could serve as a practical reference when pathogenic human coronaviruses are compared, and novel treatments are proposed.
Collapse
Affiliation(s)
| | | | | | | | - Olena Filchakova
- Biology Department, School of Sciences and Humanities, Nazarbayev
University, Astana, Kazakhstan
| |
Collapse
|
109
|
Tang X, Chen J, Zhang L, Liu T, Ding M, Zheng YW, Zhang Y. Interfacial subregions of SARS-CoV-2 spike RBD to hACE2 affect intermolecular affinity by their distinct roles played in association and dissociation kinetics. Commun Biol 2024; 7:1621. [PMID: 39638851 PMCID: PMC11621773 DOI: 10.1038/s42003-024-07081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/15/2024] [Indexed: 12/07/2024] Open
Abstract
SARS-CoV-2's rapid global transmission depends on spike RBD's strong affinity to hACE2. In the context of binding hot spots well defined, the work investigated how interfacial subregions of SARS-CoV-2 spike RBD to hACE2 affect intermolecular affinity and their potential distinct roles involved in association and dissociation kinetics due to their local structural characteristics. Three spatially consecutive subregions of SARS-CoV-2 RBD were structurally partitioned across RBD's receptor binding motif (RBM). Their impacts on binding affinity and kinetics were differentiated through a comprehensive SPR measurement of hACE2 binding by chimeric swap mutants of respective subdomains from SARS-CoV-2 VOCs & phylogenetically close sarbecoviruses, and further compared with those of included single mutations across RBM and around the RBD core. The data supports that the intermediate interfacial subregion of RBD involving key residue at 417 is the rate-limiting effector of association kinetics and the subregion encompassing residues at 501/498/449 is the key binding energy contributor dictating dissociation kinetics, both of which relate to SARS-CoV-2's adaptive mutational evolution and host tropism closely. The kinetic data and structural analysis of local mutations' impact on spike RBD's binding and thermal stability provide a new perspective in evaluating SARS-CoV-2 evolution and other sarbecoviruses' evolvable binding to hACE2. The inherent binding mode offers direct clues of valid epitope in designing new antibodies that the coronavirus can't elude.
Collapse
Affiliation(s)
- Xiangwu Tang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, Guangdong, China
| | - Jingxian Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, Guangdong, China
| | - Lu Zhang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, Guangdong, China
| | - Tao Liu
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Min Ding
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, Guangdong, China
- Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, Guangdong, China
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yun-Wen Zheng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, Guangdong, China
- Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, Guangdong, China
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Medical and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yinghui Zhang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, Guangdong, China.
| |
Collapse
|
110
|
Hurst JR, Naghibosadat M, Budowski P, Liu J, Samaan P, Budiman F, Kurtesi A, Qi F, Menon H, Krishnan R, Abioye J, Gingras AC, Ostrowski M, Orozco NM, Kozak RA. Comparison of a SARS-CoV-2 mRNA booster immunization containing additional antigens to a spike-based mRNA vaccine against Omicron BA.5 infection in hACE2 mice. PLoS One 2024; 19:e0314061. [PMID: 39625929 PMCID: PMC11614295 DOI: 10.1371/journal.pone.0314061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024] Open
Abstract
The emergence of SARS-CoV-2 variants presents challenges to vaccine effectiveness, underlining the necessity for next-generation vaccines with multiple antigens beyond the spike protein. Here, we investigated a multiantigenic booster containing spike and a chimeric construct composed of nucleoprotein (N) and membrane (M) proteins, comparing its efficacy to a spike-only booster against Omicron BA.5 in K18-hACE2 mice. Initially, mice were primed and boosted with Beta (B.1.351) spike-only mRNA, showing strong spike-specific T cell responses and neutralizing antibodies, albeit with limited cross-neutralization to Omicron variants. Subsequently, a spike-NM multiantigenic vaccine was then examined as a second booster dose for protection in hACE2-transgenic mice. Mice receiving either homologous spike-only or heterologous spike-NM booster had nearly complete inhibition of infectious virus shedding in oral swabs and reduced viral burdens in both lung and nasal tissues following BA.5 challenge. Examination of lung pathology further revealed that both spike-only and spike-NM boosters provided comparable protection against inflammatory infiltrates and fibrosis. Moreover, the spike-NM booster demonstrated neutralization efficacy in a pseudovirus assay against Wuhan-Hu-1, Beta, and Omicron variants akin to the spike-only booster. These findings indicate that supplementing spike with additional SARS-CoV-2 targets in a booster immunization confers equivalent immunity and protection against Omicron BA.5. This work highlights a promising strategy for individuals previously vaccinated with spike-only vaccines, potentially offering enhanced protection against emerging coronaviruses.
Collapse
Affiliation(s)
- Jacklyn R. Hurst
- Biological Sciences Platform, Sunnybrook Research Institute at Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Maedeh Naghibosadat
- Biological Sciences Platform, Sunnybrook Research Institute at Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Patrick Budowski
- Institute of Medical Sciences, University of Toronto, Ontario, Canada
| | - Jun Liu
- Providence Therapeutics Holdings, Inc., Calgary, AB, Canada
| | - Philip Samaan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Frans Budiman
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Alexandra Kurtesi
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Fredo Qi
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Haritha Menon
- Providence Therapeutics Holdings, Inc., Calgary, AB, Canada
| | | | - Jumai Abioye
- Providence Therapeutics Holdings, Inc., Calgary, AB, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mario Ostrowski
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Robert A. Kozak
- Biological Sciences Platform, Sunnybrook Research Institute at Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
- Division of Microbiology, Sunnybrook Health Sciences Centre, Department of Laboratory Medicine and Molecular Diagnostics, Toronto, ON, Canada
| |
Collapse
|
111
|
Jia Z, Wang K, Xie M, Wu J, Hu Y, Zhou Y, Yisimayi A, Fu W, Wang L, Liu P, Fan K, Chen R, Wang L, Li J, Wang Y, Ge X, Zhang Q, Wu J, Wang N, Wu W, Gao Y, Miao J, Jiang Y, Qin L, Zhu L, Huang W, Zhang Y, Zhang H, Li B, Gao Q, Xie XS, Wang Y, Cao Y, Wang Q, Wang X. A third dose of inactivated vaccine augments the potency, breadth, and duration of anamnestic responses against SARS-CoV-2. Protein Cell 2024; 15:930-937. [PMID: 38801319 PMCID: PMC11637481 DOI: 10.1093/procel/pwae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/29/2024] [Indexed: 05/29/2024] Open
Affiliation(s)
- Zijing Jia
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kang Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Minxiang Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiajing Wu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Yaling Hu
- Sinovac Biotech Ltd., Beijing 100085, China
| | - Yunjiao Zhou
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China
| | - Ayijiang Yisimayi
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), School of Life Science, Peking University, Beijing 100091, China
| | - Wangjun Fu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Pan Liu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kaiyue Fan
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruihong Chen
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Guangzhou Laboratory, Guangzhou 510320, China
| | - Lin Wang
- Sinovac Biotech Ltd., Beijing 100085, China
| | - Jing Li
- Sinovac Biotech Ltd., Beijing 100085, China
| | - Yao Wang
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), School of Life Science, Peking University, Beijing 100091, China
| | - Xiaoqin Ge
- Sinovac Biotech Ltd., Beijing 100085, China
| | - Qianqian Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jianbo Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Nan Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yidan Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | - Lili Qin
- Acrobiosystems Inc., Beijing 102600, China
| | - Ling Zhu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Yanjun Zhang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Huan Zhang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Baisheng Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Qiang Gao
- Sinovac Biotech Ltd., Beijing 100085, China
| | - Xiaoliang Sunney Xie
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), School of Life Science, Peking University, Beijing 100091, China
- Changping Laboratory, Beijing 102206, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
- Changping Laboratory, Beijing 102206, China
| | - Yunlong Cao
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), School of Life Science, Peking University, Beijing 100091, China
- Changping Laboratory, Beijing 102206, China
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Guangzhou Laboratory, Guangzhou 510320, China
- Changping Laboratory, Beijing 102206, China
| |
Collapse
|
112
|
Qing E, Salgado J, Wilcox A, Gallagher T. SARS-CoV-2 Omicron variations reveal mechanisms controlling cell entry dynamics and antibody neutralization. PLoS Pathog 2024; 20:e1012757. [PMID: 39621785 PMCID: PMC11637440 DOI: 10.1371/journal.ppat.1012757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/12/2024] [Accepted: 11/17/2024] [Indexed: 12/14/2024] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is adapting to continuous presence in humans. Transitions to endemic infection patterns are associated with changes in the spike (S) proteins that direct virus-cell entry. These changes generate antigenic drift and thereby allow virus maintenance in the face of prevalent human antiviral antibodies. These changes also fine tune virus-cell entry dynamics in ways that optimize transmission and infection into human cells. Focusing on the latter aspect, we evaluated the effects of several S protein substitutions on virus-cell membrane fusion, an essential final step in enveloped virus-cell entry. Membrane fusion is executed by integral-membrane "S2" domains, yet we found that substitutions in peripheral "S1" domains altered late-stage fusion dynamics, consistent with S1-S2 heterodimers cooperating throughout cell entry. A specific H655Y change in S1 stabilized a fusion-intermediate S protein conformation and thereby delayed membrane fusion. The H655Y change also sensitized viruses to neutralization by S2-targeting fusion-inhibitory peptides and stem-helix antibodies. The antibodies did not interfere with early fusion-activating steps; rather they targeted the latest stages of S2-directed membrane fusion in a novel neutralization mechanism. These findings demonstrate that single amino acid substitutions in the S proteins both reset viral entry-fusion kinetics and increase sensitivity to antibody neutralization. The results exemplify how selective forces driving SARS-CoV-2 fitness and antibody evasion operate together to shape SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Julisa Salgado
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Alexandria Wilcox
- McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| |
Collapse
|
113
|
Helin T, Palviainen M, Lemponen M, Maaninka K, Siljander P, Joutsi-Korhonen L. Increased circulating platelet-derived extracellular vesicles in severe COVID-19 disease. Platelets 2024; 35:2313362. [PMID: 38380806 DOI: 10.1080/09537104.2024.2313362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2024] [Indexed: 02/22/2024]
Abstract
Coagulation disturbances are major contributors to COVID-19 pathogenicity, but limited data exist on the involvement of extracellular vesicles (EVs) and residual cells (RCs). Fifty hospitalized COVID-19 patients stratified by their D-dimer levels into high (>1.5 mg/L, n = 15) or low (≤1.5 mg/l, n = 35) and 10 healthy controls were assessed for medium-sized EVs (mEVs; 200-1000 nm) and large EVs/RCs (1000-4000 nm) by high sensitivity flow cytometry. EVs were analyzed for CD61, CD235a, CD45, and CD31, commonly used to detect platelets, red blood cells, leukocytes or endothelial cells, respectively, whilst phosphatidyl serine EVs/RCs were detected by lactadherin-binding implicating procoagulant catalytic surface. Small EV detection (sEVs; 50-200 nm) and CD41a (platelet integrin) colocalization with general EV markers CD9, CD63, and CD81 were performed by single particle interferometric reflectance imaging sensor. Patients with increased D-dimer exhibited the highest number of RCs and sEVs irrespective of cell origin (p < .05). Platelet activation, reflected by increased CD61+ and lactadherin+ mEV and RC levels, associated with coagulation disturbances. Patients with low D-dimer could be discriminated from controls by tetraspanin signatures of the CD41a+ sEVs, suggesting the changes in the circulating platelet sEV subpopulations may offer added prognostic value during COVID progression.
Collapse
Affiliation(s)
- Tuukka Helin
- HUS Diagnostics Centre, HUSLAB Clinical Chemistry, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mari Palviainen
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
- EV core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marja Lemponen
- HUS Diagnostics Centre, HUSLAB Clinical Chemistry, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Katariina Maaninka
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
- EV core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pia Siljander
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
- EV core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Lotta Joutsi-Korhonen
- HUS Diagnostics Centre, HUSLAB Clinical Chemistry, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
114
|
Ke Z, Peacock TP, Brown JC, Sheppard CM, Croll TI, Kotecha A, Goldhill DH, Barclay WS, Briggs JAG. Virion morphology and on-virus spike protein structures of diverse SARS-CoV-2 variants. EMBO J 2024; 43:6469-6495. [PMID: 39543395 PMCID: PMC11649927 DOI: 10.1038/s44318-024-00303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
The evolution of SARS-CoV-2 variants with increased fitness has been accompanied by structural changes in the spike (S) proteins, which are the major target for the adaptive immune response. Single-particle cryo-EM analysis of soluble S protein from SARS-CoV-2 variants has revealed this structural adaptation at high resolution. The analysis of S trimers in situ on intact virions has the potential to provide more functionally relevant insights into S structure and virion morphology. Here, we characterized B.1, Alpha, Beta, Gamma, Delta, Kappa, and Mu variants by cryo-electron microscopy and tomography, assessing S cleavage, virion morphology, S incorporation, "in-situ" high-resolution S structures, and the range of S conformational states. We found no evidence for adaptive changes in virion morphology, but describe multiple different positions in the S protein where amino acid changes alter local protein structure. Taken together, our data are consistent with a model where amino acid changes at multiple positions from the top to the base of the spike cause structural changes that can modulate the conformational dynamics of the S protein.
Collapse
Affiliation(s)
- Zunlong Ke
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Thomas P Peacock
- Department of Infectious Disease, Imperial College London, London, UK
- The Pirbright Institute, Woking, UK
| | - Jonathan C Brown
- Department of Infectious Disease, Imperial College London, London, UK
| | - Carol M Sheppard
- Department of Infectious Disease, Imperial College London, London, UK
| | - Tristan I Croll
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Altos Labs, Cambridge, UK
| | - Abhay Kotecha
- Materials and Structural Analysis, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Daniel H Goldhill
- Department of Infectious Disease, Imperial College London, London, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK
| | - Wendy S Barclay
- Department of Infectious Disease, Imperial College London, London, UK
| | - John A G Briggs
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
115
|
Dos Santos L, Favaroni Mendes Salgado Ribeiro LA, Febba Gomes AC, Azinheira Nobrega Cruz N, Gonçalves de Oliveira LC, Cenedeze MA, Tedesco Silva Junior H, Medina Pestana JO, Casarini DE. ACE and ACE2 activities and polymorphisms assessment: A populational study from Ipaussu (SP, Brazil) during the COVID-19 pandemic. Life Sci 2024; 358:123157. [PMID: 39437850 DOI: 10.1016/j.lfs.2024.123157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
AIM The angiotensin-converting enzyme 2 (ACE2) and its homolog, the angiotensin converting enzyme 1 (ACE), are involved in COVID-19 physiopathology. Alterations in the enzymatic structure, expression, and/or activity may influence the risk of infection and severity of disease. For this reason, we aimed to identify different allelic forms of ACE2 G8790A and ACE I/D polymorphisms in a Brazilian cohort and evaluate their impact on ACE and ACE2 activities and their association with COVID-19 susceptibility and severity. MAIN METHODS A total of 549 COVID-19-negative and 270 COVID-19-positive participants from Ipaussu, Sao Paulo, Brazil, were recruited. ACE2 and ACE activities were measured by fluorogenic assays using MCA-Ala-Pro-Lys(Dnp) as the substrate for ACE2 and Z-Phe-His-Leu-OH (Z-FHL) and Hippuryl-His-Leu-OH (h-HL) as substrates for ACE. Genomic DNA was extracted from EDTA-peripheral blood, and the regions of the genes containing ACE2 G8790A and ACE I/D polymorphisms were amplified by PCR-restriction fragment length polymorphism and real-time PCR, respectively. KEY FINDINGS The G allele of ACE2 G8790A polymorphism and D allele of ACE I/D polymorphism are associated with increased ACE and ACE2 activities. ACE activity ratio (Z-FHL/h-HL), an inflammatory marker, is increased in women with GG genotype and COVID-19-positive diagnosis. SIGNIFICANCE For the first time, it was demonstrated that in females, the GG genotype is associated with increased ACE activity ratio (Z-FHL/h-HL) in the COVID-19-positive group. Elevated ACE activity ratio (Z-FHL/h-HL) is highly linked to inflammation and may justify the associations between the G genotype and COVID-19 severity of symptoms and outcomes.
Collapse
Affiliation(s)
- Lilian Dos Santos
- Department of Medicine, Discipline of Nephrology, University Federal of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | - Marcos Antonio Cenedeze
- Department of Medicine, Discipline of Nephrology, University Federal of Sao Paulo, Sao Paulo, Brazil
| | | | - José Osmar Medina Pestana
- Department of Medicine, Discipline of Nephrology, University Federal of Sao Paulo, Sao Paulo, Brazil
| | - Dulce Elena Casarini
- Department of Medicine, Discipline of Nephrology, University Federal of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
116
|
Chrysovergis A, Papanikolaou V, Roukas D, Spyropoulou D, Mastronikoli S, Papouliakos S, Tsiambas E, Pantos P, Fotiades P, Peschos D, Ragos V, Mastronikolis N, Kyrodimos E, Niotis A. Micro-Epigenetic Markers in Viral Genome: SARS-CoV-2 Infection Impact on Host Cell MicroRNA Landscape. MAEDICA 2024; 19:842-847. [PMID: 39974441 PMCID: PMC11834827 DOI: 10.26574/maedica.2024.19.4.842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
INTRODUCTION MicroRNAs (miRs) are crucial micro-genetic markers that significantly manipulate gene expression in neoplastic/malignant and non-neoplastic diseases, as viral infections. Different expression patterns of miRs seem to partially influence the response rates to specific chemo-targeted therapeutic regimens and prognosis in cancer patients. Concerning their nature, miRs are short non-coding RNAs including 20-25 nucleotides hosted in intra- or intergenic regions. Their most important function is the positive regulation of post-transcriptional gene silencing levels. Based on this activity, they enhance normal cell functions, including proliferation, apoptosis and tissue differentiation. Their deregulation in cancerous cells due to epigenetic and transcriptional imbalances is correlated with an excessive production of target mRNA. OBJECTIVE In the current paper, our aim was to generally describe the role of MiRs in cancer genome and we mainly focused on specific host target-cell miRs that are affected by SARS-CoV-2 in the COVID-19 pandemic. MATERIAL AND METHOD A systematic review of the literature was carried out based on the international database PubMed focused on miR nature, origin, structure and function in cancer genome and more recently on the influence of SARS-CoV-2 on affected cells. The following keywords were used: microRNA, SARS-CoV-2, COVID-19, infection, cancer, virus. A pool of 52 important articles were selected for the present review at the basis of exploring the SARS-CoV-2 efficacy in miRs. RESULTS A broad set of miRs, including miR-122, miR-16-2-3p, miR-3605-3p, miR-15b-5p, miR-486-3p, miR-486-5p, miR-447b, miR-3672, miR-325, miR-447b and miR-222, has been identified to be deregulated by SARS-CoV-2 infection. CONCLUSIONS miRs represent significant micro-epigenetic markers frequently deregulated in SARS-CoV-2 mediated infection (COVID-19). Interactions between miRs and SARS-CoV-2 RNA genome are under investigation. miR overexpression/expression loss in SARS-CoV-2 affected epithelia is correlated with specific genetic and by epigenetic signatures in the corresponding patients.
Collapse
Affiliation(s)
| | | | - Dimitrios Roukas
- Department of Psychiatry, 417 Veterans Army Hospital (NIMTS), Athens, Greece
| | - Despoina Spyropoulou
- Department of Radiation Oncology, Medical School, University of Patras, Patras, Greece
| | | | | | - Evangelos Tsiambas
- Department of Cytology, Molecular Unit, 417 Veterans Army Hospital (NIMTS), Athens,Greece
| | - Pavlos Pantos
- Department of Otorhinolaryngology, "HIPPOKRATEION" Hospital, Medical School,National and Kapodistrian University, Athens, Greece
| | | | - Dimitrios Peschos
- Department of Physiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Vasileios Ragos
- Dept of Maxillofacial, Medical School, University of Ioannina, Ioannina, Greece
| | | | - Efthymios Kyrodimos
- Department of Otorhinolaryngology, "HIPPOKRATEION" Hospital, Medical School,National and Kapodistrian University, Athens, Greece
| | - Athanasios Niotis
- Department of Surgery, 417 Veterans Army Hospital (NIMTS), Athens, Greece
| |
Collapse
|
117
|
Indra S, Chalak K, Das P, Mukhopadhyay A. Placenta a potential gateway of prenatal SARS-CoV-2 infection: A review. Eur J Obstet Gynecol Reprod Biol 2024; 303:123-131. [PMID: 39461078 DOI: 10.1016/j.ejogrb.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
SARS-CoV-2, the causative agent of COVID-19, can infect various tissues in the body apart from the lungs. Although placental infection remains controversial, COVID-19-associated placental abnormalities have been reported worldwide. Therefore, COVID-19 poses a significant risk for fetal distress as well. Scientists are currently debating whether such distress results from direct viral induced assault or placental damage caused by the mother's immune response. The placenta develops different histopathological lesions in response to maternal SARS-CoV-2 infection. While some studies support both theories, the transmission rate through the placenta remains low. Therefore, a more in-depth study is necessary to determine the primary cause of maternal SARS-CoV-2-induced fetal distress. This comprehensive review is aimed to shed light on the possible reasons towards fetal distress among mothers with COVID-19. This review describes the various mechanisms of viral entry along with the mechanisms by which the virus could affect the placenta. Reported cases of placental abnormalities and fetal distress symptoms have been collated to provide an overview of the current state of knowledge on vertical transmission of COVID-19.
Collapse
Affiliation(s)
- Subhashis Indra
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Kuheli Chalak
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Purbasha Das
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | | |
Collapse
|
118
|
Wang N, Wang C, Wei C, Chen M, Gao Y, Zhang Y, Wang T. Constructing the cGAMP-Aluminum Nanoparticles as a Vaccine Adjuvant-Delivery System (VADS) for Developing the Efficient Pulmonary COVID-19 Subunit Vaccines. Adv Healthc Mater 2024; 13:e2401650. [PMID: 39319481 DOI: 10.1002/adhm.202401650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/05/2024] [Indexed: 09/26/2024]
Abstract
The cGAMP-aluminum nanoparticles (CAN) are engineered as a vaccine adjuvant-delivery system to carry mixed RBD (receptor-binding domain) of the original severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its new variant for developing bivalent pulmonary coronavirus disease 2019 (COVID-19) vaccines (biRBD-CAN). High phosphophilicity/adsorptivity made intrapulmonary CAN instantly form the pulmonary ingredient-coated CAN (piCAN) to possess biomimetic features enhancing biocompatibility. In vitro biRBD-CAN sparked APCs (antigen-presenting cells) to mature and make extra reactive oxygen species, engendered lysosome escape effects and enhanced proteasome activities. Through activating the intracellular stimulator of interferon genes (STING) and nucleotide-binding domain and leucine-rich repeat and pyrin domain containing proteins 3 (NALP3) inflammasome pathways to exert synergy between cGAMP and AN, biRBD-CAN stimulated APCs to secret cytokines favoring mixed Th1/Th2 immunoresponses. Mice bearing twice intrapulmonary biRBD-CAN produced high levels of mucosal antibodies, the long-lasting systemic antibodies, and potent cytotoxic T lymphocytes which efficiently erased cells displaying cognate epitopes. Notably, biRBD-CAN existed in mouse lungs and different lymph nodes for at least 48 h, unveiling their sustained immunostimulatory activity as the main mechanism underlying the long-lasting immunity and memory. Hamsters bearing twice intrapulmonary biRBD-CAN developed high resistance to pseudoviral challenges performed using different recombinant strains including the ones with distinct SARS-CoV-2-spike mutations. Thus, biRBD-CAN as a broad-spectrum pulmonary COVID-19 vaccine candidate may provide a tool for controlling the emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ning Wang
- School of Food and Bioengineering, Hefei University of Technology, 420 Jade Road, Hefei, Anhui Province, 230601, China
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Can Wang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
- Department of Pharmacy, The Second People's Hospital of Lianyungang, 41 Hailian East Road, Lianyungang, Jiangsu Province, 222006, China
| | - Chunliu Wei
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Minnan Chen
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Yuhao Gao
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Yuxi Zhang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Ting Wang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| |
Collapse
|
119
|
Hasan M, He Z, Jia M, Leung ACF, Natarajan K, Xu W, Yap S, Zhou F, Chen S, Su H, Zhu K, Su H. Dynamic expedition of leading mutations in SARS-CoV-2 spike glycoproteins. Comput Struct Biotechnol J 2024; 23:2407-2417. [PMID: 38882678 PMCID: PMC11176665 DOI: 10.1016/j.csbj.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
The continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the recent pandemic, has generated countless new variants with varying fitness. Mutations of the spike glycoprotein play a particularly vital role in shaping its evolutionary trajectory, as they have the capability to alter its infectivity and antigenicity. We present a time-resolved statistical method, Dynamic Expedition of Leading Mutations (deLemus), to analyze the evolutionary dynamics of the SARS-CoV-2 spike glycoprotein. The proposed L -index of the deLemus method is effective in quantifying the mutation strength of each amino acid site and outlining evolutionarily significant sites, allowing the comprehensive characterization of the evolutionary mutation pattern of the spike glycoprotein.
Collapse
Affiliation(s)
- Muhammad Hasan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Zhouyi He
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Mengqi Jia
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Alvin C F Leung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | - Wentao Xu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Shanqi Yap
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Feng Zhou
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Shihong Chen
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Hailei Su
- Bengbu Hospital of Traditional Chinese Medicine, 4339 Huai-shang Road, Anhui 233080, China
| | - Kaicheng Zhu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Haibin Su
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
120
|
Sun H, Xia L, Li J, Zhang Y, Zhang G, Huang P, Wang X, Cui Y, Fang T, Fan P, Zhou Q, Chi X, Yu C. A novel bispecific antibody targeting two overlapping epitopes in RBD improves neutralizing potency and breadth against SARS-CoV-2. Emerg Microbes Infect 2024; 13:2373307. [PMID: 38953857 PMCID: PMC11249148 DOI: 10.1080/22221751.2024.2373307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
SARS-CoV-2 has been evolving into a large number of variants, including the highly pathogenic Delta variant, and the currently prevalent Omicron subvariants with extensive evasion capability, which raises an urgent need to develop new broad-spectrum neutralizing antibodies. Herein, we engineer two IgG-(scFv)2 form bispecific antibodies with overlapping epitopes (bsAb1) or non-overlapping epitopes (bsAb2). Both bsAbs are significantly superior to the parental monoclonal antibodies in terms of their antigen-binding and virus-neutralizing activities against all tested circulating SARS-CoV-2 variants including currently dominant JN.1. The bsAb1 can efficiently neutralize all variants insensitive to parental monoclonal antibodies or the cocktail with IC50 lower than 20 ng/mL, even slightly better than bsAb2. Furthermore, the cryo-EM structures of bsAb1 in complex with the Omicron spike protein revealed that bsAb1 with overlapping epitopes effectively locked the S protein, which accounts for its conserved neutralization against Omicron variants. The bispecific antibody strategy engineered from overlapping epitopes provides a novel solution for dealing with viral immune evasion.
Collapse
Affiliation(s)
- Hancong Sun
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Lingyun Xia
- Center for Infectious Disease Research, Research Center for Industries of the Future, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jianhua Li
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Yuanyuan Zhang
- Center for Infectious Disease Research, Research Center for Industries of the Future, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Guanying Zhang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Ping Huang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Xingxing Wang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Yue Cui
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Ting Fang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Pengfei Fan
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Qiang Zhou
- Center for Infectious Disease Research, Research Center for Industries of the Future, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xiangyang Chi
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Changming Yu
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
121
|
Saba AA, Nur J, Alam MS, Howlader ZH, Islam LN, Nabi AN. Missense variant rs75603675 within TMPRSS2 gene is associated with the increased risk of severe form of COVID-19. GENE REPORTS 2024; 37:102039. [DOI: 10.1016/j.genrep.2024.102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
122
|
Fagiani F, Frigerio R, Salzano AM, Scaloni A, Marusic C, Donini M. Plant production of recombinant antigens containing the receptor binding domain (RBD) of two SARS-CoV-2 variants. Biotechnol Lett 2024; 46:1303-1318. [PMID: 39066957 DOI: 10.1007/s10529-024-03517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVES The aim of this work was to rapidly produce in plats two recombinant antigens (RBDw-Fc and RBDo-Fc) containing the receptor binding domain (RBD) of the spike (S) protein from SARS-CoV-2 variants Wuhan and Omicron as fusion proteins to the Fc portion of a murine IgG2a antibody constant region (Fc). RESULTS The two recombinant antigens were expressed in Nicotiana benthamiana plants, engineered to avoid the addition of N-linked plant-typical sugars, through vacuum agroinfiltration and showed comparable purification yields (about 35 mg/kg leaf fresh weight). CONCLUSIONS Their Western blotting and Coomassie staining evidenced the occurrence of major in planta proteolysis in the region between the RBD and Fc, which was particularly evident in RBDw-Fc, the only antigen bearing the HRV 3C cysteine protease recognition site. The two RBD N-linked glycosylation sites showed very homogeneous profiles free from plant-typical sugars, with the most abundant glycoform represented by the complex sugar GlcNAc4Man3. Both antigens were specifically recognised in Western Blot analysis by the anti-SARS-CoV-2 human neutralizing monoclonal antibody J08-MUT and RBDw-Fc was successfully used in competitive ELISA experiments for binding to the angiotensin-converting enzyme 2 receptor to verify the neutralizing capacity of the serum from vaccinated patients. Both SARS-Cov-2 antigens fused to a murine Fc region were rapidly and functionally produced in plants with potential applications in diagnostics.
Collapse
MESH Headings
- Nicotiana/genetics
- Nicotiana/metabolism
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Spike Glycoprotein, Coronavirus/chemistry
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- SARS-CoV-2/metabolism
- Humans
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/immunology
- Animals
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- COVID-19
- Mice
- Antibodies, Viral/immunology
- Protein Domains
- Antibodies, Neutralizing/immunology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/immunology
Collapse
Affiliation(s)
- Flavia Fagiani
- Laboratory of Biotechnology, ENEA Research Center Casaccia, 00123, Rome, Italy
| | - Rachele Frigerio
- Laboratory of Biotechnology, ENEA Research Center Casaccia, 00123, Rome, Italy
| | - Anna Maria Salzano
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80055, Portici, Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80055, Portici, Italy
| | - Carla Marusic
- Laboratory of Biotechnology, ENEA Research Center Casaccia, 00123, Rome, Italy.
| | - Marcello Donini
- Laboratory of Biotechnology, ENEA Research Center Casaccia, 00123, Rome, Italy.
| |
Collapse
|
123
|
Baig MMFA, Wong LY, Wu H. Development of mRNA nano-vaccines for COVID-19 prevention and its biochemical interactions with various disease conditions and age groups. J Drug Target 2024; 32:21-32. [PMID: 38010097 DOI: 10.1080/1061186x.2023.2288996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
This review has focused on the development of mRNA nano-vaccine and the biochemical interactions of anti-COVID-19 mRNA vaccines with various disease conditions and age groups. It studied five major groups of individuals with different disease conditions and ages, including allergic background, infarction background, adolescent, and adult (youngsters), pregnant women, and elderly. All five groups had been reported to have background-related adverse effects. Allergic background individuals were observed to have higher chances of experiencing allergic reactions and even anaphylaxis. Individuals with an infarction background had a higher risk of vaccine-induced diseases, e.g. pneumonitis and interstitial lung diseases. Pregnant women were seen to suffer from obstetric and gynecological adverse effects after receiving vaccinations. However, interestingly, the elderly individuals (> 65 years old) had experienced milder and less frequent adverse effects compared to the adolescent (<19 and >9 years old) and young adulthood (19-39 years old), or middle adulthood (40-59 years old) age groups, while middle to late adolescent (14-17 years old) was the riskiest age group to vaccine-induced cardiovascular manifestations.
Collapse
Affiliation(s)
- Mirza Muhammad Faran Ashraf Baig
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Lok Yin Wong
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hongkai Wu
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
124
|
Ma J, Huang Y, Jia G, Dong X, Shi Q, Sun Y. Discovery of broad-spectrum high-affinity peptide ligands of spike protein for the vaccine purification of SARS-CoV-2 and Omicron variants. Int J Biol Macromol 2024; 283:137059. [PMID: 39500432 DOI: 10.1016/j.ijbiomac.2024.137059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/14/2024]
Abstract
To combat with emerging SARS-CoV-2 variants of concern (VOCs), we report the identification of a set of unique HWK-motif peptide ligands for the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein from a phage-displayed peptide library. These HWK-motif peptides exhibited nanomolar affinity for RBD. Among them, the peptide, HWKAVNWLKPWT (SP-HWK), had not only the highest affinities for RBD and trimer S protein, but also broad-spectrum affinities for RBDs from VOCs. Molecular dynamics simulations and competitive ELISA revealed a conserved pocket between the cryptic and the outer faces of RBD for SP-HWK binding, distinct from the human angiotensin-converting enzyme 2 receptor binding site. By coupling SP-HWK to agarose gel, the as-prepared affinity gel could efficiently capture RBD and trimer S from the ancestral strain and the Omicron variant, and the bound targets could be recovered by mild elution at pH 6.0. More importantly, the affinity gel presented excellent and stable chromatographic performance in the purification of inactivated SARS-CoV-2 and Omicron vaccines, affording high yields and purities, and strong HCP reduction. The results demonstrated the potential of SP-HWK as a broad-spectrum peptide ligand for developing a universal platform for the vaccine purification of SARS-CoV-2 and VOCs.
Collapse
Affiliation(s)
- Jing Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yongdong Huang
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | | | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Qinghong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
125
|
Xin K, Ma X, Meng X, Zhang X, Yang W, Ma T, Zhou C, Wang J, Li G. Assessment of myocardial injury by SPECT myocardial perfusion imaging in patients with COVID-19 infection in a single center after lifting the restrictions in China. Ann Nucl Med 2024; 38:971-979. [PMID: 39186242 DOI: 10.1007/s12149-024-01970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
PURPOSE To assess myocardial injury using rest single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) in patients with COVID-19 and to evaluate whether myocardial injury detected by rest MPI predict the prognosis of symptoms after 6 months follow-up. METHODS Patients suspected of myocarditis between December 2022 and March 2023, after the lifting of COVID-19 pandemic restrictions, and between December 2018 and March 2019, prior to the pandemic, were referred to our study. All patients underwent rest MPI. One hundred and sixty four patients with COVID-19 infection after the lifting of pandemic restrictions and 101 patients before the pandemic were included as the study and control groups, respectively. One hundred and fifty three patients of the study group and 83 of the control group presented symptoms when they initially visit to our department. Compare the parameters of myocardial injury detected by rest SPECT MPI between the two groups and then investigate the association between myocardial injury and symptom prognosis in symptomatic patients of both groups. RESULTS Total perfusion defect (TPD) (4.2% ± 3.3% vs. 2.3% ± 2.2%, P < 0.001), summed rest score (SRS) (5.3 ± 5.4 vs. 2.7 ± 2.0, P < 0.001), the proportion of patients with TPD > 4% (43.3% vs. 17.8%, P < 0.001), TPD > 10% (6.71% vs 0, P < 0.001), SRS > 4 (40.2% vs 15.8%, P < 0.001), SRS > 10 (12.8% vs 0, P < 0.001), the number of abnormal perfusion segments (3.9 ± 3.1 vs. 2.4 ± 1.7, P < 0.001) were all significantly higher in the study group. All the parameters of rest MPI were not associated with the prognosis of symptoms in symptomatic patients of both groups after 6 months follow-up. CONCLUSION Myocardial injury in COVID-19 patients could be assessed by rest SPECT MPI. The COVID-19 patients could exhibited a higher frequency and greater severity of myocardial injury than uninfected control patients. Myocardial injury assessed by rest MPI did not predict for the prognosis of symptoms in symptomatic patients of both COVID-19 patients and uninfected patients.
Collapse
Affiliation(s)
- Keke Xin
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xincheng District, Xi'an, Shaanxi, 710032, China
| | - Xinghong Ma
- Department of Nuclear Medicine, Air Force Medical Center, No. 30 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xiaoli Meng
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xincheng District, Xi'an, Shaanxi, 710032, China
| | - Xiao Zhang
- Department of Nuclear Medicine, Sanmenxia Central Hospital, Middle of Xiaoshan Road, Hubin District, Sanmenxia, Henan, 472000, China
| | - Weidong Yang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xincheng District, Xi'an, Shaanxi, 710032, China
| | - Taoqi Ma
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xincheng District, Xi'an, Shaanxi, 710032, China
| | - Cheng Zhou
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xincheng District, Xi'an, Shaanxi, 710032, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xincheng District, Xi'an, Shaanxi, 710032, China.
| | - Guoquan Li
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xincheng District, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
126
|
Mao B, Le-Trilling VTK, Tang H, Hu J, Schmitz MS, Barbet K, Xu D, Wei Z, Guo B, Mennerich D, Yao C, Liu J, Li Z, Wan Y, Zhang X, Wang K, Tang N, Yu Z, Trilling M, Lin Y. Diphyllin elicits a doubled-pronged attack on the entry of SARS-CoV-2 by inhibiting cathepsin L and furin. Virus Res 2024; 350:199485. [PMID: 39424146 PMCID: PMC11532987 DOI: 10.1016/j.virusres.2024.199485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the coronavirus disease 2019 (COVID-19) pandemic, posing serious threats to global health. Effective broad-spectrum antiviral drugs for the treatment of COVID-19 are not sufficiently available. In the present study, we investigated the antiviral activity of the natural lignan diphyllin (PubChem CID 100492) against different SARS-CoV-2 variants and explored the underlying molecular mechanisms. We found that diphyllin dose-dependently inhibits the SARS-CoV-2 spike (S)-mediated entry into different types of cells. The potent inhibition was evident against spike proteins derived from the original SARS-CoV-2 and from variants of concern such as Alpha, Beta, Delta or Omicron. Accordingly, diphyllin also significantly inhibited the in vitro infection of a clinical SARS-CoV-2 virus isolate. Mechanistically, diphyllin simultaneously inhibited the endosomal entry of SARS-CoV-2 by neutralizing the endosomal acidification and reducing the activity of the cysteine protease cathepsin L (CTSL) as well as S-meditated cell surface entry by impairing furin activity. Collectively, our findings establish diphyllin as novel inhibitor of CTSL and furin proteases, resulting in a double-pronged attack on SARS-CoV-2 entry along endosomal as well as cell surface routes. Therefore, diphyllin has the potential to be advanced as an inhibitor of SARS-CoV-2 entry.
Collapse
Affiliation(s)
- Binli Mao
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China; Department of Blood Transfusion, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Vu Thuy Khanh Le-Trilling
- Institute for the Research on HIV and AIDS-associated Diseases, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany; Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Haihuan Tang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Jie Hu
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China; Department of Laboratory Medicine, Bishan Hospital of Chongqing Medical University, Chongqing 402760, China
| | - Mona S Schmitz
- Department of Pulmonary Medicine, University Medical Center Essen, Ruhrlandklinik, Essen 45239, Germany
| | - Kimberly Barbet
- Department of Pulmonary Medicine, University Medical Center Essen, Ruhrlandklinik, Essen 45239, Germany
| | - Dan Xu
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Zhen Wei
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Beinu Guo
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Denise Mennerich
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Chun Yao
- Chongqing Yucai Secondary School, Chongqing 400050, China
| | - Jinxin Liu
- Chongqing Yucai Secondary School, Chongqing 400050, China
| | - Zhenghan Li
- Chongqing Yucai Secondary School, Chongqing 400050, China
| | - Yushun Wan
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoyong Zhang
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kai Wang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Ni Tang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Zebo Yu
- Department of Blood Transfusion, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Mirko Trilling
- Institute for the Research on HIV and AIDS-associated Diseases, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany; Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany.
| | - Yong Lin
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
127
|
Karcioglu O, Akman C, Ozturk GA. Prothrombotic state and thrombotic events in COVID-19 pandemic period, including portal vein and splenic artery thromboses. World J Clin Cases 2024; 12:6595-6603. [PMID: 39600474 PMCID: PMC11514335 DOI: 10.12998/wjcc.v12.i33.6595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
This editorial article is intended to perform a discussion on the manuscript entitled "Simultaneous portal vein thrombosis and splenic vein thrombosis in a COVID-19 patient: A case report and review of literature" written by Abramowitz et al. The article focuses on the diagnostic processes in a 77-year-old-male patient with a simultaneous portal vein and splenic artery thrombosis accompanying coronavirus disease 2019 (COVID-19). The authors postulated that splanchnic thrombosis should be on the list of differential diagnoses in a patient presenting with abdominal pain in presence of a COVID-19 infection. The tendency for venous and arterial thrombosis in COVID-19 patients is encountered, largely attributed to hypercoagulopathy. In general, venous thromboembolism mostly manifest as deep vein thrombosis (DVT), pulmonary embolism (PE) or catheter-related thromboembolic events. Acute PE, DVT, cerebrovascular events and myocardial infarction are seen as the most common thromboembolic complications in COVID-19 patients. COVID-19-associated hemostatic abnormalities include mild thrombocytopenia and increased D-dimer level. Similar to other coagulopathies, the treatment of the underlying condition is the mainstay. Addition of antiplatelet agents can be considered in critically ill patients at low bleeding risk, not on therapeutic anticoagulation, and receiving gastric acid suppression Early administration of antithrombotic drugs will have a beneficial effect in both the prevention and treatment of thrombotic events, especially in non-ambulatory patients. Low molecular weight heparin (LMWH) should be started if there is no contraindication, including in non-critical patients who are at risk of hospitalization LMWH (enoxaparin) is preferred to standard heparin.
Collapse
Affiliation(s)
- Ozgur Karcioglu
- Department of Emergency Medicine, University of Health Sciences, Istanbul Education and Research Hospital, Istanbul 34140, Bakırkoy, Türkiye
| | - Canan Akman
- Department of Emergency Medicine, Canakkale Onsekiz Mart University, Canakkale 17000, Çanakkale, Türkiye
| | - Göksu Afacan Ozturk
- Department of Emergency Medicine, Istanbul Aydin University, Istanbul 34295, Kucukcekmece, Istanbul, Türkiye
| |
Collapse
|
128
|
Clark JJ, Hoxie I, Adelsberg DC, Sapse IA, Andreata-Santos R, Yong JS, Amanat F, Tcheou J, Raskin A, Singh G, González-Domínguez I, Edgar JE, Bournazos S, Sun W, Carreño JM, Simon V, Ellebedy AH, Bajic G, Krammer F. Protective effect and molecular mechanisms of human non-neutralizing cross-reactive spike antibodies elicited by SARS-CoV-2 mRNA vaccination. Cell Rep 2024; 43:114922. [PMID: 39504245 PMCID: PMC11804229 DOI: 10.1016/j.celrep.2024.114922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/22/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Neutralizing antibodies correlate with protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recent studies, however, show that binding antibody titers, in the absence of robust neutralizing activity, also correlate with protection against disease progression. Non-neutralizing antibodies cannot directly protect against infection but may recruit effector cells and thus contribute to the clearance of infected cells. Additionally, they often bind conserved epitopes across multiple variants. Here, we characterize 42 human monoclonal antibodies (mAbs) from coronavirus disease 2019 (COVID-19)-vaccinated individuals. Most of these antibodies exhibit no neutralizing activity in vitro, but several non-neutralizing antibodies provide protection against lethal challenge with SARS-CoV-2 in different animal models. A subset of those mAbs shows a clear dependence on Fc-mediated effector functions. We have determined the structures of three non-neutralizing antibodies, with two targeting the receptor-binding domain and one that binds the subdomain 1 region. Our data confirm the real-world observation in humans that non-neutralizing antibodies to SARS-CoV-2 can be protective.
Collapse
Affiliation(s)
- Jordan J Clark
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Irene Hoxie
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel C Adelsberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Iden A Sapse
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Andreata-Santos
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Retrovirology Laboratory, Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP 04023-062, Brazil
| | - Jeremy S Yong
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Johnstone Tcheou
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ariel Raskin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Julia E Edgar
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Goran Bajic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
129
|
Hamed A, Abdel-Razek AS, Abdelwahab AB, El Taweel A, GabAllah M, Sewald N, Shaaban M. Diverse bioactive secondary metabolites from Aspergillus terreus: antimicrobial, anticancer, and anti-SARS-CoV-2 activity studies. Z NATURFORSCH C 2024; 79:361-369. [PMID: 38916050 DOI: 10.1515/znc-2024-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/09/2024] [Indexed: 06/26/2024]
Abstract
Owing to its high interest as prolific source of diverse bioactive compounds referred in our previous research work, we have scaled-up the fermentation of the marine Aspergillus terreus LGO13 on a liquid culture medium to isolate and identify the very minor/further promising bioactive secondary metabolites and to study their antibacterial, cytotoxic, and antiviral properties. Twenty-three known bioactive metabolites, including the recently discovered microbial natural product N-benzoyl-tryptophan (1), were obtained herein. Their structures were determined using HR-ESI-MS 1D/2D NMR spectroscopy and data from the literature. The biological properties of the microbial extract and the resulting compounds were examined using a set of microorganisms, cervix carcinoma KB-3-1, nonsmall cell lung cancer (NSCLC) A549, and coronavirus (SARS-CoV-2), respectively. Molecular docking (MD) simulations were used to investigate the potential targets of the separated metabolites as anti-SARS-CoV-2 drugs. According to the current study, a viral protein that may be the target of anticovid drugs is a papain-like protease (PLpro), and chaetominine (2) appears to be a viable choice against this protein. We evaluated the antiviral efficacy of chaetominine (2), fumitremorgin C (6), and azaspirofuran A (9) against SARS-CoV-2 based on MD data. Chaetominine (2) and azaspirofuran A (9) displayed intermediate selectivity indices (SI = 6.6 and 3.2, respectively), while fumitremorgin C (6) displayed a high selectivity index (SI = 19.77). These findings show that fumitremorgin C has promising antiviral action against SARS-CoV-2.
Collapse
Affiliation(s)
- Abdelaaty Hamed
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City-Cairo 11884, Egypt
| | - Ahmed S Abdel-Razek
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, D-33501 Bielefeld, Germany
- Microbial Chemistry Department, Institute of Genetic Engineering and Biotechnology Research, National Research Centre, El-Buhouth St. 33, Dokki-Cairo 12622, Egypt
| | - Ahmed B Abdelwahab
- Temisis Therapeutics, 19 avenue de la Forêt de Haye, 54500 Vandœuvre-lès-Nancy, France
| | - Ahmed El Taweel
- Center of Scientific Excellence for Influenza Virus, Environmental Research Division, National Research Centre, Giza 12622, Egypt
| | - Mohamed GabAllah
- Center of Scientific Excellence for Influenza Virus, Environmental Research Division, National Research Centre, Giza 12622, Egypt
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, D-33501 Bielefeld, Germany
- Microbial Chemistry Department, Institute of Genetic Engineering and Biotechnology Research, National Research Centre, El-Buhouth St. 33, Dokki-Cairo 12622, Egypt
| | - Mohamed Shaaban
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, D-33501 Bielefeld, Germany
- Microbial Chemistry Department, Institute of Genetic Engineering and Biotechnology Research, National Research Centre, El-Buhouth St. 33, Dokki-Cairo 12622, Egypt
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El-Buhouth St. 33, Dokki-Cairo 12622, Egypt
| |
Collapse
|
130
|
Gkekas I, Katsamakas S, Mylonas S, Fotopoulou T, Magoulas GΕ, Tenchiu AC, Dimitriou M, Axenopoulos A, Rossopoulou N, Kostova S, Wanker EE, Katsila T, Papahatjis D, Gorgoulis VG, Koufaki M, Karakasiliotis I, Calogeropoulou T, Daras P, Petrakis S. AI Promoted Virtual Screening, Structure-Based Hit Optimization, and Synthesis of Novel COVID-19 S-RBD Domain Inhibitors. J Chem Inf Model 2024; 64:8562-8585. [PMID: 39535926 PMCID: PMC11600510 DOI: 10.1021/acs.jcim.4c01110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by a new, highly pathogenic severe-acute-respiratory syndrome coronavirus 2 (SARS-CoV-2) that infects human cells through its transmembrane spike (S) glycoprotein. The receptor-binding domain (RBD) of the S protein interacts with the angiotensin-converting enzyme II (ACE2) receptor of the host cells. Therefore, pharmacological targeting of this interaction might prevent infection or spread of the virus. Here, we performed a virtual screening to identify small molecules that block S-ACE2 interaction. Large compound libraries were filtered for drug-like properties, promiscuity and protein-protein interaction-targeting ability based on their ADME-Tox descriptors and also to exclude pan-assay interfering compounds. A properly designed AI-based virtual screening pipeline was applied to the remaining compounds, comprising approximately 10% of the starting data sets, searching for molecules that could bind to the RBD of the S protein. All molecules were sorted according to their screening score, grouped based on their structure and postfiltered for possible interaction patterns with the ACE2 receptor, yielding 31 hits. These hit molecules were further tested for their inhibitory effect on Spike RBD/ACE2 (19-615) interaction. Six compounds inhibited the S-ACE2 interaction in a dose-dependent manner while two of them also prevented infection of human cells from a pseudotyped virus whose entry is mediated by the S protein of SARS-CoV-2. Of the two compounds, the benzimidazole derivative CKP-22 protected Vero E6 cells from infection with SARS-CoV-2, as well. Subsequent, hit-to-lead optimization of CKP-22 was effected through the synthesis of 29 new derivatives of which compound CKP-25 suppressed the Spike RBD/ACE2 (19-615) interaction, reduced the cytopathic effect of SARS-CoV-2 in Vero E6 cells (IC50 = 3.5 μM) and reduced the viral load in cell culture supernatants. Early in vitro ADME-Tox studies showed that CKP-25 does not possess biodegradation or liver metabolism issues, while isozyme-specific CYP450 experiments revealed that CKP-25 was a weak inhibitor of the CYP450 system. Moreover, CKP-25 does not elicit mutagenic effect on Escherichia coli WP2 uvrA strain. Thus, CKP-25 is considered a lead compound against COVID-19 infection.
Collapse
Affiliation(s)
- Ioannis Gkekas
- Institute
of Applied Biosciences, Centre for Research
and Technology Hellas, Thessaloniki 57001, Greece
| | - Sotirios Katsamakas
- Information
Technologies Institute, Centre for Research
and Technology Hellas, Thessaloniki 57001, Greece
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Stelios Mylonas
- Information
Technologies Institute, Centre for Research
and Technology Hellas, Thessaloniki 57001, Greece
| | - Theano Fotopoulou
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - George Ε. Magoulas
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Alia Cristina Tenchiu
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Marios Dimitriou
- Laboratory
of Biology, Department of Medicine, Democritus
University of Thrace, Alexandroupolis 68100, Greece
| | - Apostolos Axenopoulos
- Information
Technologies Institute, Centre for Research
and Technology Hellas, Thessaloniki 57001, Greece
| | - Nafsika Rossopoulou
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Simona Kostova
- Max-Delbrueck-Center
for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Erich E. Wanker
- Max-Delbrueck-Center
for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Theodora Katsila
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Demetris Papahatjis
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Vassilis G. Gorgoulis
- Molecular
Carcinogenesis Group, Department of Histology and Embryology, Medical
School, National and Kapodistrian University
of Athens, Athens 11635, Greece
- Ninewells
Hospital and Medical School, University
of Dundee, DD19SY Dundee, U.K.
| | - Maria Koufaki
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Ioannis Karakasiliotis
- Laboratory
of Biology, Department of Medicine, Democritus
University of Thrace, Alexandroupolis 68100, Greece
| | - Theodora Calogeropoulou
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Petros Daras
- Information
Technologies Institute, Centre for Research
and Technology Hellas, Thessaloniki 57001, Greece
| | - Spyros Petrakis
- Institute
of Applied Biosciences, Centre for Research
and Technology Hellas, Thessaloniki 57001, Greece
| |
Collapse
|
131
|
Wilen RE, Nguyen AW, Qerqez AN, Maynard JA. Display of Native SARS-CoV-2 Spike on Mammalian Cells to Measure Antibody Affinity and ADCC. Bio Protoc 2024; 14:e5119. [PMID: 39600972 PMCID: PMC11588583 DOI: 10.21769/bioprotoc.5119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 11/29/2024] Open
Abstract
The COVID-19 pandemic led to the rapid development of antibody-based therapeutics and vaccines targeting the SARS-CoV-2 spike protein. Several antibodies have been instrumental in protecting vulnerable populations, but their utility was limited by the emergence of spike variants with diminished susceptibility to antibody binding and neutralization. Moreover, these spike variants exhibited reduced neutralization by polyclonal antibodies in vaccinated individuals. Accordingly, the characterization of antibody binding to spike variants is critical to define antibody potency and understand the impact of amino acid changes. A key challenge in this effort is poor spike stability, with most current methods assessing antibody binding using individual domains instead of the intact spike or variants with stabilizing amino acid changes in the ectodomain (e.g., 2P or HexaPro). The use of non-native spike may not accurately predict antibody binding if changes lie within the epitope or alter epitope accessibility by altering spike dynamics. Here, we present methods to characterize antibody affinity for and activity against unmodified SARS-CoV-2 spike protein variants displayed on a mammalian cell membrane that recapitulates the native spike environment on infected cells. These include a flow cytometry-based method to determine the effective antibody binding affinity (KD) and an antibody-dependent cellular cytotoxicity (ADCC) assay to assess Fc-mediated activities. These methods can readily evaluate antibody activity across a panel of spike variants and contribute to our understanding of spike/antibody co-evolution. Key features • Allows rapid characterization of antibody binding to native SARS-CoV-2 spike on the mammalian cell surface. • Describes analysis of antibody binding to multiple native spike variants without stabilizing mutations • Describes analysis of Fc-mediated antibody-dependent cellular cytotoxicity • Requires transient transfection of Expi293F and 293T cells to assess antibody binding and ADCC, a flow cytometer for antibody binding, and a plate reader for ADCC • Protocol is readily adaptable to other viral fusogens and membrane proteins.
Collapse
Affiliation(s)
- Rebecca E. Wilen
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Annalee W. Nguyen
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Ahlam N. Qerqez
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Jennifer A. Maynard
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
132
|
Vissapragada M, Addala S, Aggunna M, Sodasani M, Grandhi AVKS, Yedidi RS. Leveraging the potential of bacterial lateral gene transfer in boosting the efficacy of an edible probiotic prototype yogurt vaccine for COVID-19. Biochem Biophys Res Commun 2024; 734:150622. [PMID: 39216410 DOI: 10.1016/j.bbrc.2024.150622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Administration of coronavirus disease-2019 (COVID-19) vaccines with appropriate booster doses through painful injections under clinical supervision was challenging during the recent COVID-19 pandemic. As an alternative solution, we designed a safer, edible probiotic yogurt vaccine prototype (YoVac) that can be orally consumed by circumventing painful injections and clinical supervision. We hypothesized that YoVac prepared using Lactobacillus carrying an antigen coding gene (donor) can transfer the same to other bacteria (recipients) in the human gut microbiome (hgMb) through lateral gene transfer (LGT) for boosted antigen levels potentially triggering a robust immune response. In this study we confirmed the in vitro LGT efficiency of a plasmid (pRBD-Ampr) containing severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) spike protein-receptor binding domain (RBD) coding gene along with an ampicillin-resistance gene (selection marker) from the probiotic Lactobacillus (donor) cultured from homemade yogurt to E. coli and Helicobacter pylori (recipients). Both the donor and recipient bacteria not only exhibited ampicillin-resistance from pRBD-Ampr but also expressed RBD protein. Furthermore, Lactobacillus isolated from YoVac consistently showed the expression of RBD protein over a period of one month confirming the shelf life of our prototype stored at 4 °C. Taken together, our in vitro results provide a preliminary basis for the potential in vivo transfer of RBD coding gene from YoVac to other bacterial species in the hgMb through LGT and may potentially boost the vaccine dosage by delegating them.
Collapse
Affiliation(s)
- Madhuri Vissapragada
- Department of Intramural Research Core, The Center for Advanced-Applied Biological Sciences & Entrepreneurship (TCABS-E), Visakhapatnam, 530003, A.P, India
| | - Santhinissi Addala
- Department of Intramural Research Core, The Center for Advanced-Applied Biological Sciences & Entrepreneurship (TCABS-E), Visakhapatnam, 530003, A.P, India
| | - Madhumita Aggunna
- Department of Intramural Research Core, The Center for Advanced-Applied Biological Sciences & Entrepreneurship (TCABS-E), Visakhapatnam, 530003, A.P, India
| | - Manikanta Sodasani
- Department of Intramural Research Core, The Center for Advanced-Applied Biological Sciences & Entrepreneurship (TCABS-E), Visakhapatnam, 530003, A.P, India
| | - Abhinav V K S Grandhi
- Department of Intramural Research Core, The Center for Advanced-Applied Biological Sciences & Entrepreneurship (TCABS-E), Visakhapatnam, 530003, A.P, India
| | - Ravikiran S Yedidi
- Department of Intramural Research Core, The Center for Advanced-Applied Biological Sciences & Entrepreneurship (TCABS-E), Visakhapatnam, 530003, A.P, India.
| |
Collapse
|
133
|
Huan X, Zhan J, Gao H. Research progress of spike protein mutation of SARS-CoV-2 mutant strain and antibody development. Front Immunol 2024; 15:1407149. [PMID: 39624100 PMCID: PMC11609190 DOI: 10.3389/fimmu.2024.1407149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/28/2024] [Indexed: 01/03/2025] Open
Abstract
The coronavirus disease 2019 (COVID-19) is a respiratory disease with a very high infectious rate caused by the Severe Acute Respiratory Syndrome Coronavirus-2(SARS-CoV-2). Because SARS-CoV-2 is easy to mutate, the continuous emergence of SARS-CoV-2 variant strains not only enhances the infectivity of the SARS-CoV-2 but also brings great obstacles to the treatment of COVID-19. Neutralizing antibodies have achieved good results in the clinical application of the novel coronavirus pneumonia, which can be used for pre-infection protection and treatment of novel coronavirus patients. This review makes a detailed introduction to the mutation characteristics of SARS-CoV-2, focusing on the molecular mechanism of mutation affecting the infectivity of SARS-CoV-2, and the impact of mutation on monoclonal antibody therapy, providing scientific reference for the prevention of SARS-CoV-2 variant strains and the research and development of antibody drugs.
Collapse
Affiliation(s)
| | | | - Hongwei Gao
- School of Life Science, Ludong University, Yantai, Shandong, China
| |
Collapse
|
134
|
Navacchia ML, Cinti C, Marchesi E, Perrone D. Insights into SARS-CoV-2: Small-Molecule Hybrids for COVID-19 Treatment. Molecules 2024; 29:5403. [PMID: 39598790 PMCID: PMC11596935 DOI: 10.3390/molecules29225403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
The advantages of a treatment modality that combines two or more therapeutic agents with different mechanisms of action encourage the study of hybrid functional compounds for pharmacological applications. Molecular hybridization, resulting from a covalent combination of two or more pharmacophore units, has emerged as a promising approach to overcome several issues and has also been explored for the design of new drugs for COVID-19 treatment. In this review, we presented an overview of small-molecule hybrids from both natural products and synthetic sources reported in the literature to date with potential antiviral anti-SARS-CoV-2 activity.
Collapse
Affiliation(s)
- Maria Luisa Navacchia
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), 40129 Bologna, Italy;
| | - Caterina Cinti
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), 40129 Bologna, Italy;
| | - Elena Marchesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Daniela Perrone
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
135
|
Deguchi S, Yokoi F, Takayama K. Organoids and microphysiological systems for pharmaceutical research of viral respiratory infections. Drug Metab Pharmacokinet 2024; 60:101041. [PMID: 39847975 DOI: 10.1016/j.dmpk.2024.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 01/25/2025]
Abstract
In the pharmaceutical research of viral respiratory infections, cell culture models have traditionally been used to evaluate the therapeutic effects of candidate compounds. Although cell lines are easy to handle and cost-effective, they do not fully replicate the characteristics of human respiratory organs. Recently, organoids and microphysiological systems (MPS) have been employed to overcome this limitation for in vitro testing of drugs against viral respiratory infections. Advanced disease modeling using organoids, self-organized three-dimensional (3D) cell culture models derived from stem cells, or MPS, models for culturing multiple cell types in a microfluidic device and capable of recapitulating a physiological 3D dynamic environment, can accurately replicate the complex functions of respiratory organs, thus making them valuable tools for elucidating the organ damages caused by viral respiratory infections and evaluating the efficacy of candidate drugs against them. Recently, a wide range of organoids and MPS have been developed to model the complex pathophysiology caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and assess therapeutic drugs. In this review, we evaluate the latest pharmaceutical research on coronavirus disease 2019 (COVID-19) that utilizes organoids and MPS and discuss future perspectives of their applications.
Collapse
Affiliation(s)
- Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Fuki Yokoi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan; Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
136
|
Berber E, Ross TM. Factors Predicting COVID-19 Vaccine Effectiveness and Longevity of Humoral Immune Responses. Vaccines (Basel) 2024; 12:1284. [PMID: 39591186 PMCID: PMC11598945 DOI: 10.3390/vaccines12111284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, prompted global efforts to develop vaccines to control the disease. Various vaccines, including mRNA (BNT162b2, mRNA-1273), adenoviral vector (ChAdOx1, Ad26.COV2.S), and inactivated virus platforms (BBIBP-CorV, CoronaVac), elicit high-titer, protective antibodies against the virus, but long-term antibody durability and effectiveness vary. The objective of this study is to elucidate the factors that influence vaccine effectiveness (VE) and the longevity of humoral immune responses to COVID-19 vaccines through a review of the relevant literature, including clinical and real-world studies. Here, we discuss the humoral immune response to different COVID-19 vaccines and identify factors influencing VE and antibody longevity. Despite initial robust immune responses, vaccine-induced immunity wanes over time, particularly with the emergence of variants, such as Delta and Omicron, that exhibit immune escape mechanisms. Additionally, the durability of the humoral immune responses elicited by different vaccine platforms, along with the identification of essential determinants of long-term protection-like pre-existing immunity, booster doses, hybrid immunity, and demographic factors-are critical for protecting against severe COVID-19. Booster vaccinations substantially restore neutralizing antibody levels, especially against immune-evasive variants, while individuals with hybrid immunity have a more durable and potent immune response. Importantly, comorbidities such as diabetes, cardiovascular disease, chronic kidney disease, and cancer significantly reduce the magnitude and longevity of vaccine-induced protection. Immunocompromised individuals, particularly those undergoing chemotherapy and those with hematologic malignancies, have diminished humoral responses and benefit disproportionately from booster vaccinations. Age and sex also influence immune responses, with older adults experiencing accelerated antibody decline and females generally exhibiting stronger humoral responses compared to males. Understanding the variables affecting immune protection is crucial to improving vaccine strategies and predicting VE and protection against COVID-19.
Collapse
Affiliation(s)
- Engin Berber
- Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Ted M. Ross
- Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
- Florida Research and Innovation Center, Cleveland Clinic, Florida, FL 34986, USA
| |
Collapse
|
137
|
Yin W, Hu K, Yang Y, Zhuang J, Zou Z, Suo Y, Xia L, Li J, Gui Y, Mei H, Yin J, Zhang T, Mu Y. A Propidium Monoazide-Assisted Digital CRISPR/Cas12a Assay for Selective Detection of Live Bacteria in Sample. Anal Chem 2024; 96:17941-17949. [PMID: 39482821 DOI: 10.1021/acs.analchem.4c02204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Escherichia coli O157:H7 (E. coli O157:H7) is a prominent pathogenic bacterium that poses serious risks to food safety and public health. Rapid and accurate detection of live E. coli O157:H7 is of great importance in food quality monitoring and clinical diagnosis. Here, we report a propidium monoazide-assisted nonamplification digital CRISPR/Cas12a assay for sensitive and rapid detection of live E. coli O157:H7. The incorporation of propidium monoazide into the method enables the selective detection of live bacteria by eliminating 98% of interference from the dead bacterial nucleic acid. Implemented on microfluidic digital chips, this method can achieve absolute quantification of nonamplified nucleic acid. The entire detection process of live bacteria can be completed within 120 min without the need for establishing a standard curve, and the sensitivity of the method reaches 1.2 × 103 CFU/mL. The method was validated using various samples, yielding results consistent with the plate counting method (Pearson's r = 0.9490). Consequently, this method holds significant potential for applications in fields requiring live bacterial detection.
Collapse
Affiliation(s)
- Weihong Yin
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Kai Hu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Yunxing Yang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, P. R. China
| | - Jianjian Zhuang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, P. R. China
| | - Zheyu Zou
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, P. R. China
| | - Yuanjie Suo
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Liping Xia
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Jiale Li
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Yehong Gui
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Haohua Mei
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Juxin Yin
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
- School of information and Electrical Engineering, Hangzhou City University, Hangzhou, Zhejiang 310015, P. R. China
| | - Tao Zhang
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Ying Mu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| |
Collapse
|
138
|
Dey S, Pahari P, Mukherjee S, Munro JB, Das DK. Conformational dynamics of SARS-CoV-2 Omicron spike trimers during fusion activation at single molecule resolution. Structure 2024; 32:1910-1925.e6. [PMID: 39366371 PMCID: PMC11560620 DOI: 10.1016/j.str.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron entry involves spike (S) glycoprotein-mediated fusion of viral and late endosomal membranes. Here, using single-molecule Förster resonance energy transfer (sm-FRET) imaging and biochemical measurements, we directly visualized conformational changes of individual spike trimers on the surface of SARS-CoV-2 Omicron pseudovirions during fusion activation. We observed that the S2 domain of the Omicron spike is a dynamic fusion machine. S2 reversibly interchanges between the pre-fusion conformation and two previously undescribed intermediate conformations. Acidic pH shifts the conformational equilibrium of S2 toward an intermediate conformation and promotes the membrane hemi-fusion reaction. Moreover, we captured conformational reversibility in the S2 domain, which suggests that spike can protect itself from pre-triggering. Furthermore, we determined that Ca2+ directly promotes the S2 conformational change from an intermediate conformation to post-fusion conformation. In the presence of a target membrane, low pH and Ca2+ stimulate the irreversible transition to S2 post-fusion state and promote membrane fusion.
Collapse
Affiliation(s)
- Shuvankar Dey
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Purba Pahari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Srija Mukherjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - James B Munro
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dibyendu Kumar Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India; Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
139
|
Paradis NJ, Wu C. Enhanced detection and molecular modeling of adaptive mutations in SARS-CoV-2 coding and non-coding regions using the c/µ test. Virus Evol 2024; 10:veae089. [PMID: 39584063 PMCID: PMC11584280 DOI: 10.1093/ve/veae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Accurately identifying mutations under beneficial selection in viral genomes is crucial for understanding their molecular evolution and pathogenicity. Traditional methods like the Ka/Ks test, which assesses non-synonymous (Ka) versus synonymous (Ks) substitution rates, assume that synonymous substitutions at synonymous sites are neutral and thus is equal to the mutation rate (µ). Yet, evidence suggests that synonymous sites in translated regions (TRs) and untranslated regions (UTRs) can be under strong beneficial selection (Ks > µ) and strongly conserved (Ks ≈ 0), leading to false predictions of adaptive mutations from codon-by-codon Ka/Ks analysis. Our previous work used a relative substitution rate test (c/µ, c: substitution rate in UTR/TR, and µ: mutation rate) to identify adaptive mutations in SARS-CoV-2 genome without the neutrality assumption of the synonymous sites. This study refines the c/µ test by optimizing µ value, leading to a smaller set of nucleotide and amino acid sites under beneficial selection in both UTR (11 sites with c/µ > 3) and TR (69 nonsynonymous sites: c/µ > 3 and Ka/Ks > 2.5; 107 synonymous sites: Ks/µ > 3). Encouragingly, the top two mutations in UTR and 70% of the top nonsynonymous mutations in TR had reported or predicted effects in the literature. Molecular modeling of top adaptive mutations for some critical proteins (S, NSP11, and NSP5) was carried out to elucidate the possible molecular mechanism of their adaptivity.
Collapse
Affiliation(s)
- Nicholas J Paradis
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, United States
| | - Chun Wu
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, United States
- Department of Biological & Biomedical Sciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, United States
| |
Collapse
|
140
|
Han Y, Kim S, Park T, Hwang H, Park S, Kim J, Pyun JC, Lee M. Reduction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant infection by blocking the epidermal growth factor receptor (EGFR) pathway. Microbiol Spectr 2024; 12:e0158324. [PMID: 39291996 PMCID: PMC11537080 DOI: 10.1128/spectrum.01583-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants presents challenges in global efforts to transition from the pandemic to an endemic stage. The spike protein of the SARS-CoV-2 virus, which is pivotal for cell entry, exhibits significant mutations in its variants, potentially affecting infectivity and therapeutic efficacy. Recent findings indicate upregulation of the epidermal growth factor receptor (EGFR) pathway, a key target in cancer therapy, by the spike protein of SARS-CoV-2. This study aimed to investigate the activity of the EGFR pathway against SARS-CoV-2 variants and to assess the inhibitory effects of EGFR inhibitors using SARS-CoV variant pseudoviral particles to guide future therapeutic strategies. Omicron variant SARS-CoV pseudoviral particles exhibited heightened infectivity in human angiotensin-converting enzyme 2 (hACE2)-expressing HEK293 and A549 lung cancer cells accompanied by increased EGFR pathway activation in infected cells. Using the EGFR tyrosine kinase inhibitor, osimertinib, we observed a reduction in viral infection rates in hACE2-HEK293 and A549 cells infected with the SARS-CoV-2 variant pseudoviral particles. We conducted further experiments to confirm that the reduction in infection efficacy with osimertinib treatment was not associated to a decrease in cell viability. Furthermore, this inhibitory effect of osimertinib in cell lines was corroborated in a spheroid cell culture model derived from hACE2-A549 cells. These findings suggest the potential application of EGFR-targeted antiviral therapy against highly infectious SARS-CoV-2 variants.IMPORTANCEThe emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is concerning as vaccines designed for one variant need not essentially protect against other novel variants. Therefore, there is an urgent need to identify therapies that can act against multiple novel variants that have heightened virulence compared with the wild type. It has been reported that the spike protein of the SARS-CoV-2 virus elicits an increased expression of the epidermal growth factor receptor (EGFR) pathway. We used this information and examined whether treatment with an EGFR inhibitor, osimertinib, which is already approved for clinical use in cancer therapy, can reduce the infection caused by SARS-CoV-2, wild type, and Omicron and Delta variants, in two cell lines and one spheroid model. The results showed that osimertinib treatment successfully reduced infection efficacy, particularly in variants, and that this effect was not related to a reduction in cell viability, making this a promising strategy for treating SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Yeonju Han
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, South Korea
| | - Seunghwan Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, South Korea
| | - Taehyun Park
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, South Korea
| | - Hyemin Hwang
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, South Korea
| | - Sanghee Park
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, South Korea
| | - Jimin Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, South Korea
| | - Jae-chul Pyun
- Department of Materials Science and Engineering, Yonsei University, Seoul, South Korea
| | - Misu Lee
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, South Korea
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon, South Korea
| |
Collapse
|
141
|
Liu P, Huang ML, Guo H, McCallum M, Si JY, Chen YM, Wang CL, Yu X, Shi LL, Xiong Q, Ma CB, Bowen JE, Tong F, Liu C, Sun YH, Yang X, Chen J, Guo M, Li J, Corti D, Veesler D, Shi ZL, Yan H. Design of customized coronavirus receptors. Nature 2024; 635:978-986. [PMID: 39478224 DOI: 10.1038/s41586-024-08121-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/25/2024] [Indexed: 11/29/2024]
Abstract
Although coronaviruses use diverse receptors, the characterization of coronaviruses with unknown receptors has been impeded by a lack of infection models1,2. Here we introduce a strategy to engineer functional customized viral receptors (CVRs). The modular design relies on building artificial receptor scaffolds comprising various modules and generating specific virus-binding domains. We identify key factors for CVRs to functionally mimic native receptors by facilitating spike proteolytic cleavage, membrane fusion, pseudovirus entry and propagation for various coronaviruses. We delineate functional SARS-CoV-2 spike receptor-binding sites for CVR design and reveal the mechanism of cell entry promoted by the N-terminal domain-targeting S2L20-CVR. We generated CVR-expressing cells for 12 representative coronaviruses from 6 subgenera, most of which lack known receptors, and show that a pan-sarbecovirus CVR supports propagation of a propagation-competent HKU3 pseudovirus and of authentic RsHuB2019A3. Using an HKU5-specific CVR, we successfully rescued wild-type and ZsGreen-HiBiT-incorporated HKU5-1 (LMH03f) and isolated a HKU5 strain from bat samples. Our study demonstrates the potential of the CVR strategy for establishing native receptor-independent infection models, providing a tool for studying viruses that lack known susceptible target cells.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Mei-Ling Huang
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Hua Guo
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jun-Yu Si
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yuan-Mei Chen
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chun-Li Wang
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao Yu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lu-Lu Shi
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Qing Xiong
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Cheng-Bao Ma
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Fei Tong
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chen Liu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Ye-Hui Sun
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao Yang
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jing Chen
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ming Guo
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jing Li
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Davide Corti
- Humabs BioMed SA, subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| | - Zheng-Li Shi
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China.
| | - Huan Yan
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
142
|
Wang X, Jin Q, Zou L, Lin X, Lu Y. Orientation Determination of Cryo-EM Projection Images Using Reliable Common Lines and Spherical Embeddings. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:2496-2509. [PMID: 39383071 DOI: 10.1109/tcbb.2024.3476619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Three-dimensional (3D) reconstruction in single-particle cryo-electron microscopy (cryo-EM) is a critical technique for recovering and studying the fine 3D structure of proteins and other biological macromolecules, where the primary issue is to determine the orientations of projection images with high levels of noise. This paper proposes a method to determine the orientations of cryo-EM projection images using reliable common lines and spherical embeddings. First, the reliability of common lines between projection images is evaluated using a weighted voting algorithm based on an iterative improvement technique and binarized weighting. Then, the reliable common lines are used to calculate the normal vectors and local -axis vectors of projection images after two spherical embeddings. Finally, the orientations of projection images are determined by aligning the results of the two spherical embeddings using an orthogonal constraint. Experimental results on both synthetic and real cryo-EM projection image datasets demonstrate that the proposed method can achieve higher accuracy in estimating the orientations of projection images and higher resolution in reconstructing preliminary 3D structures than some common line-based methods, indicating that the proposed method is effective in single-particle cryo-EM 3D reconstruction.
Collapse
|
143
|
Hu Y, Yang H, Li M, Zhong Z, Zhou Y, Bai F, Wang Q. Exploring Protein Conformational Changes Using a Large-Scale Biophysical Sampling Augmented Deep Learning Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400884. [PMID: 39387316 PMCID: PMC11600214 DOI: 10.1002/advs.202400884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/22/2024] [Indexed: 10/15/2024]
Abstract
Inspired by the success of deep learning in predicting static protein structures, researchers are now actively exploring other deep learning algorithms aimed at predicting the conformational changes of proteins. Currently, a major challenge in the development of such models lies in the limited training data characterizing different conformational transitions. To address this issue, molecular dynamics simulations is combined with enhanced sampling methods to create a large-scale database. To this end, the study simulates the conformational changes of 2635 proteins featuring two known stable states, and collects the structural information along each transition pathway. Utilizing this database, a general deep learning model capable of predicting the transition pathway for a given protein is developed. The model exhibits general robustness across proteins with varying sequence lengths (ranging from 44 to 704 amino acids) and accommodates different types of conformational changes. Great agreement is shown between predictions and experimental data in several systems and successfully apply this model to identify a novel allosteric regulation in an important biological system, the human β-cardiac myosin. These results demonstrate the effectiveness of the model in revealing the nature of protein conformational changes.
Collapse
Affiliation(s)
- Yao Hu
- Department of PhysicsUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Hao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and TechnologyShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Mingwei Li
- Department of PhysicsUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Zhicheng Zhong
- Department of PhysicsUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Yongqi Zhou
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and TechnologyShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and TechnologyShanghaiTech University393 Middle Huaxia RoadShanghai201210China
- School of Information Science and TechnologyShanghaiTech University393 Middle Huaxia RoadShanghai201210China
- Shanghai Clinical Research and Trial CenterShanghai201210China
| | - Qian Wang
- Department of PhysicsUniversity of Science and Technology of ChinaHefeiAnhui230026China
| |
Collapse
|
144
|
Bashir A, Li S, Ye Y, Zheng Q, Knanghat R, Bashir F, Shah NN, Yang D, Xue M, Wang H, Zheng C. SARS-CoV-2 S protein harbors furin cleavage site located in a short loop between antiparallel β-strand. Int J Biol Macromol 2024; 281:136020. [PMID: 39368587 DOI: 10.1016/j.ijbiomac.2024.136020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/22/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Furin cleavage site (FCS) of the SARS-CoV-2 S protein, which connects the S1/S2 junction, is essential for facilitating fusion with the host cells. Wild-type (Wt) SARS-CoV-2 S protein, PDB ID: 6yvb, lacks a sequence of amino acid residues, including the FCS that links the S1/S2 junction. For the first time, we demonstrated that a stretch of 14 amino acid residues (677QTNSPRRARSVASQ689) forms an antiparallel β-sheet comprising of PRRAR sequence in the FCS within a short loop. Upon comparing the loop content of the S1/S2 junction with that of Wt SARS-CoV-2 containing PRRAR in the FCS, we observed a decrease in antiparallel β-sheet content and an increase in loop content in the B.1.1.7 variant with HRRAR in the FCS. This short loop within antiparallel β-sheet can serve as a docking site for various proteases, including TMPRSS2 and α1AT. We performed a 300-ns simulation of the SARS-CoV-2 receptor binding domain (RBD) using several antibacterial and antiviral ligands commonly used to treat various infections. Our findings indicate that the receptor binding domain (RBD) comprising the receptor binding motif (RBM) utilizes β6 and a significant portion of the loop to bind with ligands, suggesting its potential for treating SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Arif Bashir
- Department of Clinical Biochemistry & Biotechnology, Government College for Women, Nawa-Kadal, Srinagar 190002, India
| | - Shun Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yu Ye
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Qingcong Zheng
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| | - Rajani Knanghat
- Department of Biotechnology, Indian Institute of Technology, Chennai 600036, India
| | - Fahim Bashir
- Department of Environmental Science, University of Kashmir, 190006, India
| | - Naveed Nazir Shah
- Department of Chest Medicine, Government Medical College, Srinagar, Jammu and Kashmir 190001, India
| | - Debin Yang
- Department of Pediatrics, Children's Affiliated Hospital of Zhengzhou University, Zhengzhou 450018, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, China.
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
145
|
El-Maradny YA, Badawy MA, Mohamed KI, Ragab RF, Moharm HM, Abdallah NA, Elgammal EM, Rubio-Casillas A, Uversky VN, Redwan EM. Unraveling the role of the nucleocapsid protein in SARS-CoV-2 pathogenesis: From viral life cycle to vaccine development. Int J Biol Macromol 2024; 279:135201. [PMID: 39216563 DOI: 10.1016/j.ijbiomac.2024.135201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The nucleocapsid protein (N protein) is the most abundant protein in SARS-CoV-2. Viral RNA and this protein are bound by electrostatic forces, forming cytoplasmic helical structures known as nucleocapsids. Subsequently, these nucleocapsids interact with the membrane (M) protein, facilitating virus budding into early secretory compartments. SCOPE OF REVIEW Exploring the role of the N protein in the SARS-CoV-2 life cycle, pathogenesis, post-sequelae consequences, and interaction with host immunity has enhanced our understanding of its function and potential strategies for preventing SARS-CoV-2 infection. MAJOR CONCLUSION This review provides an overview of the N protein's involvement in SARS-CoV-2 infectivity, highlighting its crucial role in the virus-host protein interaction and immune system modulation, which in turn influences viral spread. GENERAL SIGNIFICANCE Understanding these aspects identifies the N protein as a promising target for developing effective antiviral treatments and vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Yousra A El-Maradny
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt; Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Moustafa A Badawy
- Industrial Microbiology and Applied Chemistry program, Faculty of Science, Alexandria University, Egypt.
| | - Kareem I Mohamed
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Renad F Ragab
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Hamssa M Moharm
- Genetics, Biotechnology Department, Faculty of Agriculture, Alexandria University, Egypt.
| | - Nada A Abdallah
- Medicinal Plants Department, Faculty of Agriculture, Alexandria University, Egypt.
| | - Esraa M Elgammal
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, JAL 48900, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, JAL 48900, Mexico.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, 21934 Alexandria, Egypt.
| |
Collapse
|
146
|
García‐Arribas AB, Ibáñez‐Freire P, Carlero D, Palacios‐Alonso P, Cantero‐Reviejo M, Ares P, López‐Polín G, Yan H, Wang Y, Sarkar S, Chhowalla M, Oksanen HM, Martín‐Benito J, de Pablo PJ, Delgado‐Buscalioni R. Broad Adaptability of Coronavirus Adhesion Revealed from the Complementary Surface Affinity of Membrane and Spikes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404186. [PMID: 39231361 PMCID: PMC11538687 DOI: 10.1002/advs.202404186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/21/2024] [Indexed: 09/06/2024]
Abstract
Coronavirus stands for a large family of viruses characterized by protruding spikes surrounding a lipidic membrane adorned with proteins. The present study explores the adhesion of transmissible gastroenteritis coronavirus (TGEV) particles on a variety of reference solid surfaces that emulate typical virus-surface interactions. Atomic force microscopy informs about trapping effectivity and the shape of the virus envelope on each surface, revealing that the deformation of TGEV particles spans from 20% to 50% in diameter. Given this large deformation range, experimental Langmuir isotherms convey an unexpectedly moderate variation in the adsorption-free energy, indicating a viral adhesion adaptability which goes beyond the membrane. The combination of an extended Helfrich theory and coarse-grained simulations reveals that, in fact, the envelope and the spikes present complementary adsorption affinities. While strong membrane-surface interaction lead to highly deformed TGEV particles, surfaces with strong spike attraction yield smaller deformations with similar or even larger adsorption-free energies.
Collapse
Affiliation(s)
- Aritz B. García‐Arribas
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Pablo Ibáñez‐Freire
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Diego Carlero
- Departamento de Estructura de MacromoléculasCentro Nacional de Biotecnología CSICMadrid28049Spain
| | - Pablo Palacios‐Alonso
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Miguel Cantero‐Reviejo
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Pablo Ares
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Guillermo López‐Polín
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Han Yan
- Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Yan Wang
- Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Soumya Sarkar
- Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Manish Chhowalla
- Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Hanna M. Oksanen
- Faculty of Biological and Environmental SciencesVijkki BiocenterUniversity of HelsinkiHelsinki00014Finland
| | - Jaime Martín‐Benito
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Pedro J. de Pablo
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
- Instituto de Física de la Materia Condensada IFIMACUniversidad Autónoma de MadridMadrid28049Spain
| | - Rafael Delgado‐Buscalioni
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
- Instituto de Física de la Materia Condensada IFIMACUniversidad Autónoma de MadridMadrid28049Spain
| |
Collapse
|
147
|
Lv H, Shi F, Yin H, Jiao Y, Wei P. Development of a double-antibody sandwich ELISA for detection of SARS-CoV-2 variants based on nucleocapsid protein-specific antibodies. Microbiol Immunol 2024; 68:393-398. [PMID: 39287179 DOI: 10.1111/1348-0421.13173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
The COVID-19 pandemic, driven by the SARS-CoV-2 virus, has posed a severe threat to global public health. Rapid, reliable, and easy-to-use detection methods for SARS-CoV-2 variants are critical for effective epidemic prevention and control. The N protein of SARS-CoV-2 serves as an ideal target for antigen detection. In this study, we achieved soluble expression of the recombinant SARS-CoV-2 N protein using an Escherichia coli expression system and generated specific monoclonal antibodies by immunizing BALB/c mice. We successfully developed 10 monoclonal antibodies against the N protein, designated 5B7, 5F2-C11, 5E2-E8, 6C3-D8, 7C8, 9F2-E9, 12H5-D11, 13G2-C10, 14E9-F6, and 15H3-E10. Using these antibodies, we established a sandwich ELISA with 6C3-D8 as the capture antibody and 5F2-C11 as the detection antibody. The assay demonstrated a sensitivity of 0.78 ng/mL and showed no cross-reactivity with MERS-CoV, HCoV-OC43, HCoV-NL63, and HCoV-229E. Furthermore, this method successfully detected both wild-type SARS-CoV-2 and its variants, including Alpha, Beta, Delta, and Omicron. These findings indicate that our sandwich ELISA exhibits excellent sensitivity, specificity, and broad-spectrum applicability, providing a robust tool for detecting SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Hai Lv
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Fengjuan Shi
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Province Center for Disease Control and Prevention, Nanjing, China
| | - Huimin Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yongjun Jiao
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Province Center for Disease Control and Prevention, Nanjing, China
| | - Pingmin Wei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
148
|
Wu H, Fujioka Y, Sakaguchi S, Suzuki Y, Nakano T. Electron Tomography as a Tool to Study SARS-CoV-2 Morphology. Int J Mol Sci 2024; 25:11762. [PMID: 39519314 PMCID: PMC11547116 DOI: 10.3390/ijms252111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel betacoronavirus, is the causative agent of COVID-19, which has caused economic and social disruption worldwide. To date, many drugs and vaccines have been developed for the treatment and prevention of COVID-19 and have effectively controlled the global epidemic of SARS-CoV-2. However, SARS-CoV-2 is highly mutable, leading to the emergence of new variants that may counteract current therapeutic measures. Electron microscopy (EM) is a valuable technique for obtaining ultrastructural information about the intracellular process of virus replication. In particular, EM allows us to visualize the morphological and subcellular changes during virion formation, which would provide a promising avenue for the development of antiviral agents effective against new SARS-CoV-2 variants. In this review, we present our recent findings using transmission electron microscopy (TEM) combined with electron tomography (ET) to reveal the morphologically distinct types of SARS-CoV-2 particles, demonstrating that TEM and ET are valuable tools for visually understanding the maturation status of SARS-CoV-2 in infected cells. This review also discusses the application of EM analysis to the evaluation of genetically engineered RNA viruses.
Collapse
Affiliation(s)
- Hong Wu
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka 565-0871, Japan; (Y.F.); (S.S.); (T.N.)
| | | | | | - Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka 565-0871, Japan; (Y.F.); (S.S.); (T.N.)
| | | |
Collapse
|
149
|
Klegerman ME, Peng T, Seferovich I, Rahbar MH, Hessabi M, Tahanan A, Wanger A, Grimes CZ, Ostrosky-Zeichner LZ, Koster K, Cirillo JD, Abeydeera D, De Lira S, McPherson DD. Absolute concentration estimation of COVID-19 convalescent and post-vaccination IgG antibodies. PLoS One 2024; 19:e0311777. [PMID: 39485748 PMCID: PMC11530011 DOI: 10.1371/journal.pone.0311777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/24/2024] [Indexed: 11/03/2024] Open
Abstract
Soon after commencement of the SARS-CoV-2 disease outbreak of 2019 (COVID-19), it became evident that the receptor-binding domain of the viral spike protein is the target of neutralizing antibodies that comprise a critical element of protective immunity to the virus. This study addresses the relative lack of information regarding actual antibody concentrations and binding affinities in convalescent plasma (CP) samples from COVID-19 patients and extends these analyses to post-vaccination (PV) samples to estimate protective IgG antibody (Ab) levels. A direct enzyme-linked immunosorbent assay (ELISA) was used to measure IgG anti-spike protein (SP) antibodies (Abs) relative to human chimeric spike S1 Ab standards. Microplate wells were coated with recombinant SP. Affinities of Ab binding to SP were determined by previously described methods. Binding affinities were also determined in an RBD-specific sandwich ELISA. Two indices of protective immunity were determined as permutations of Ab molar concentration divided by affinity as dissociation constant (KD). The range and geometric means of Ab concentrations in 21 CP and 21 PV samples were similar and a protective Ab level of 7.5 μg/ml was determined for the latter population, based on 95% of the normal distribution of the PV population. A population (n = 21) of plasma samples from individuals receiving only one vaccination with the BNT162b2 or mRNA-1273 vaccines (PtV) exhibited a geometric mean Ab concentration significantly (p < 0.03) lower than the PV population. The results of this study have implications for future vaccine development, projection of protective efficacy duration, and understanding of the immune response to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Melvin E. Klegerman
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Tao Peng
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Ira Seferovich
- Carterra, Inc., Salt Lake City, UT, United States of America
| | - Mohammad H. Rahbar
- Department of Epidemiology, Human Genetics, and Environmental Sciences (EHGES), School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
- Biostatistics/Epidemiology/Research Design (BERD) Component, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Division of Clinical and Translational Sciences, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Manouchehr Hessabi
- Biostatistics/Epidemiology/Research Design (BERD) Component, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Amirali Tahanan
- Biostatistics/Epidemiology/Research Design (BERD) Component, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Audrey Wanger
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Carolyn Z. Grimes
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Luis Z. Ostrosky-Zeichner
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Kent Koster
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States of America
| | - Jeffrey D. Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States of America
| | | | - Steve De Lira
- Carterra, Inc., Salt Lake City, UT, United States of America
| | - David D. McPherson
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| |
Collapse
|
150
|
Tse AL, Acreman CM, Ricardo-Lax I, Berrigan J, Lasso G, Balogun T, Kearns FL, Casalino L, McClain GL, Chandran AM, Lemeunier C, Amaro RE, Rice CM, Jangra RK, McLellan JS, Chandran K, Miller EH. Distinct pathways for evolution of enhanced receptor binding and cell entry in SARS-like bat coronaviruses. PLoS Pathog 2024; 20:e1012704. [PMID: 39546542 PMCID: PMC11602109 DOI: 10.1371/journal.ppat.1012704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/27/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Understanding the zoonotic risks posed by bat coronaviruses (CoVs) is critical for pandemic preparedness. Herein, we generated recombinant vesicular stomatitis viruses (rVSVs) bearing spikes from divergent bat CoVs to investigate their cell entry mechanisms. Unexpectedly, the successful recovery of rVSVs bearing the spike from SHC014-CoV, a SARS-like bat CoV, was associated with the acquisition of a novel substitution in the S2 fusion peptide-proximal region (FPPR). This substitution enhanced viral entry in both VSV and coronavirus contexts by increasing the availability of the spike receptor-binding domain to recognize its cellular receptor, ACE2. A second substitution in the S1 N-terminal domain, uncovered through the rescue and serial passage of a virus bearing the FPPR substitution, further enhanced spike:ACE2 interaction and viral entry. Our findings identify genetic pathways for adaptation by bat CoVs during spillover and host-to-host transmission, fitness trade-offs inherent to these pathways, and potential Achilles' heels that could be targeted with countermeasures.
Collapse
Affiliation(s)
- Alexandra L. Tse
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Cory M. Acreman
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Jacob Berrigan
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Gorka Lasso
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Toheeb Balogun
- Department of Molecular Biology, University of California San Diego, La Jolla, California, United States of America
| | - Fiona L. Kearns
- Department of Molecular Biology, University of California San Diego, La Jolla, California, United States of America
| | - Lorenzo Casalino
- Department of Molecular Biology, University of California San Diego, La Jolla, California, United States of America
| | - Georgia L. McClain
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Amartya Mudry Chandran
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Charlotte Lemeunier
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Rommie E. Amaro
- Department of Molecular Biology, University of California San Diego, La Jolla, California, United States of America
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Rohit K. Jangra
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- Present address: Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Kartik Chandran
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Emily Happy Miller
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| |
Collapse
|