101
|
Akhter F, Chen D, Yan SF, Yan SS. Mitochondrial Perturbation in Alzheimer's Disease and Diabetes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 146:341-361. [PMID: 28253990 DOI: 10.1016/bs.pmbts.2016.12.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria are well-known cellular organelles that play a vital role in cellular bioenergetics, heme biosynthesis, thermogenesis, calcium homeostasis, lipid catabolism, and other metabolic activities. Given the extensive role of mitochondria in cell function, mitochondrial dysfunction plays a part in many diseases, including diabetes and Alzheimer's disease (AD). In most cases, there is overwhelming evidence that impaired mitochondrial function is a causative factor in these diseases. Studying mitochondrial function in diseased cells vs healthy cells may reveal the modified mechanisms and molecular components involved in specific disease states. In this chapter, we provide a concise overview of the major recent findings on mitochondrial abnormalities and their link to synaptic dysfunction relevant to neurodegeneration and cognitive decline in AD and diabetes. Our increased understanding of the role of mitochondrial perturbation indicates that the development of specific small molecules targeting aberrant mitochondrial function could provide therapeutic benefits for the brain in combating aging-related dementia and neurodegenerative diseases by powering up brain energy and improving synaptic function and transmission.
Collapse
Affiliation(s)
- F Akhter
- School of Pharmacy, Higuchi Bioscience Center, University of Kansas, Lawrence, KS, United States
| | - D Chen
- School of Pharmacy, Higuchi Bioscience Center, University of Kansas, Lawrence, KS, United States
| | - S F Yan
- School of Pharmacy, Higuchi Bioscience Center, University of Kansas, Lawrence, KS, United States
| | - S S Yan
- School of Pharmacy, Higuchi Bioscience Center, University of Kansas, Lawrence, KS, United States.
| |
Collapse
|
102
|
Ribas V, Drew BG, Zhou Z, Phun J, Kalajian NY, Soleymani T, Daraei P, Widjaja K, Wanagat J, de Aguiar Vallim TQ, Fluitt AH, Bensinger S, Le T, Radu C, Whitelegge JP, Beaven SW, Tontonoz P, Lusis AJ, Parks BW, Vergnes L, Reue K, Singh H, Bopassa JC, Toro L, Stefani E, Watt MJ, Schenk S, Akerstrom T, Kelly M, Pedersen BK, Hewitt SC, Korach KS, Hevener AL. Skeletal muscle action of estrogen receptor α is critical for the maintenance of mitochondrial function and metabolic homeostasis in females. Sci Transl Med 2016; 8:334ra54. [PMID: 27075628 DOI: 10.1126/scitranslmed.aad3815] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/28/2016] [Indexed: 12/12/2022]
Abstract
Impaired estrogen receptor α (ERα) action promotes obesity and metabolic dysfunction in humans and mice; however, the mechanisms underlying these phenotypes remain unknown. Considering that skeletal muscle is a primary tissue responsible for glucose disposal and oxidative metabolism, we established that reduced ERα expression in muscle is associated with glucose intolerance and adiposity in women and female mice. To test this relationship, we generated muscle-specific ERα knockout (MERKO) mice. Impaired glucose homeostasis and increased adiposity were paralleled by diminished muscle oxidative metabolism and bioactive lipid accumulation in MERKO mice. Aberrant mitochondrial morphology, overproduction of reactive oxygen species, and impairment in basal and stress-induced mitochondrial fission dynamics, driven by imbalanced protein kinase A-regulator of calcineurin 1-calcineurin signaling through dynamin-related protein 1, tracked with reduced oxidative metabolism in MERKO muscle. Although muscle mitochondrial DNA (mtDNA) abundance was similar between the genotypes, ERα deficiency diminished mtDNA turnover by a balanced reduction in mtDNA replication and degradation. Our findings indicate the retention of dysfunctional mitochondria in MERKO muscle and implicate ERα in the preservation of mitochondrial health and insulin sensitivity as a defense against metabolic disease in women.
Collapse
Affiliation(s)
- Vicent Ribas
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Brian G Drew
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Zhenqi Zhou
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Jennifer Phun
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Nareg Y Kalajian
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Teo Soleymani
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Pedram Daraei
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Kevin Widjaja
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Jonathan Wanagat
- Division of Geriatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | - Amy H Fluitt
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Steven Bensinger
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Thuc Le
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA. Ahmanson Translational Imaging Division, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Caius Radu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA. Ahmanson Translational Imaging Division, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory and Neuropsychiatric Institute-Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Simon W Beaven
- Howard Hughes Medical Institute and Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Howard Hughes Medical Institute and Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Aldons J Lusis
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA. Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Brian W Parks
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Harpreet Singh
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jean C Bopassa
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Ligia Toro
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Enrico Stefani
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Matthew J Watt
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Thorbjorn Akerstrom
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2200, Denmark
| | - Meghan Kelly
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2200, Denmark
| | - Bente K Pedersen
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sylvia C Hewitt
- Receptor Biology Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709, USA
| | - Kenneth S Korach
- Receptor Biology Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709, USA
| | - Andrea L Hevener
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. UCLA Iris Cantor Women's Health Research Center, Los Angeles, CA 90095, USA.
| |
Collapse
|
103
|
Ischemic brain injury decreases dynamin-like protein 1 expression in a middle cerebral artery occlusion animal model and glutamate-exposed HT22 cells. Lab Anim Res 2016; 32:194-199. [PMID: 28053612 PMCID: PMC5206225 DOI: 10.5625/lar.2016.32.4.194] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 01/05/2023] Open
Abstract
Dynamin-like protein I (DLP-1) is an important mitochondrial fission and fusion protein that is associated with apoptotic cell death in neurodegenerative diseases. In this study, we investigated DLP-1 expression in a focal cerebral ischemia animal model and glutamate-exposed hippocampal-derived cell line. Middle cerebral artery occlusion (MCAO) was surgically induced in adult male rats to induce focal cerebral ischemic injury. Brain tissues were collected 24 hours after the onset of MCAO. MCAO induces an increase in infarct volume and histopathological changes in the cerebral cortex. We identified a decrease in DLP-1 in the cerebral cortices of MCAO-injured animals using a proteomic approach and Western blot analysis. Moreover, glutamate treatment significantly decreased DLP-1 expression in a hippocampal-derived cell line. The decrease in DLP-1 indicates mitochondrial dysfunction. Thus, these results suggest that neuronal cell injury induces a decrease in DLP-1 levels and consequently leads to neuronal cell death.
Collapse
|
104
|
CEDIKOVA M, PITULE P, KRIPNEROVA M, MARKOVA M, KUNCOVA J. Multiple Roles of Mitochondria in Aging Processes. Physiol Res 2016; 65:S519-S531. [DOI: 10.33549/physiolres.933538] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aging is a multifactorial process influenced by genetic factors, nutrition, and lifestyle. According to mitochondrial theory of aging, mitochondrial dysfunction is widely considered a major contributor to age-related processes. Mitochondria are both the main source and targets of detrimental reactions initiated in association with age-dependent deterioration of the cellular functions. Reactions leading to increased reactive oxygen species generation, mtDNA mutations, and oxidation of mitochondrial proteins result in subsequent induction of apoptotic events, impaired oxidative phosphorylation capacity, mitochondrial dynamics, biogenesis and autophagy. This review summarizes the major changes of mitochondria related to aging, with emphasis on mitochondrial DNA mutations, the role of the reactive oxygen species, and structural and functional changes of mitochondria.
Collapse
Affiliation(s)
| | | | | | | | - J. KUNCOVA
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
105
|
Yu T, Deuster P, Chen Y. Role of dynamin-related protein 1-mediated mitochondrial fission in resistance of mouse C2C12 myoblasts to heat injury. J Physiol 2016; 594:7419-7433. [PMID: 27730652 PMCID: PMC5157065 DOI: 10.1113/jp272885] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/04/2016] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Understanding how skeletal muscles respond to high temperatures may help develop strategies for improving exercise tolerance and preventing heat injury. Mitochondria regulate cell survival by constantly changing their morphology through fusion and fission in response to environmental stimuli. Little is known about the involvement of mitochondrial dynamics in tolerance of skeletal muscle against heat stress. Mild heat acclimation and moderate heat shock appear to have different effects on the mitochondrial morphology and fission protein Drp1 in skeletal muscle cells. Mitochondrial integrity plays a key role in cell survival under heat stress. ABSTRACT The regulation of mitochondrial morphology is closely coupled to cell survival during stress. We examined changes in the mitochondrial morphology of mouse C2C12 skeletal muscle cells in response to heat acclimation and heat shock exposure. Acclimated cells showed a greater survival rate during heat shock exposure than non-acclimated cells, and were characterized by long interconnected mitochondria and reduced expression of dynamin-related protein 1 (Drp1) for their mitochondrial fractions. Exposure of C2C12 muscle cells to heat shock led to apoptotic death featuring activation of caspase 3/7, release of cytochrome c and loss of cell membrane integrity. Heat shock also caused excessive mitochondrial fragmentation, loss of mitochondrial membrane potential and production of reactive oxygen species in C2C12 cells. Western blot and immunofluorescence image analysis revealed translocation of Drp1 to mitochondria from the cytosol in C2C12 cells exposed to heat shock. Mitochondrial division inhibitor 1 or Drp1 gene silencer reduced mitochondrial fragmentation and increased cell viability during exposure to heat shock. These results suggest that Drp1-dependent mitochondrial fission may regulate susceptibility to heat-induced apoptosis in muscle cells and that Drp1 may serve as a target for the prevention of heat-related injury.
Collapse
Affiliation(s)
- Tianzheng Yu
- Department of Military and Emergency MedicineUniformed Services University of the Health SciencesBethesdaMD20814USA
| | - Patricia Deuster
- Department of Military and Emergency MedicineUniformed Services University of the Health SciencesBethesdaMD20814USA
| | - Yifan Chen
- Department of Military and Emergency MedicineUniformed Services University of the Health SciencesBethesdaMD20814USA
| |
Collapse
|
106
|
N-Myc overexpression increases cisplatin resistance in neuroblastoma via deregulation of mitochondrial dynamics. Cell Death Discov 2016; 2:16082. [PMID: 28028439 PMCID: PMC5149579 DOI: 10.1038/cddiscovery.2016.82] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/04/2016] [Indexed: 12/23/2022] Open
Abstract
N-Myc is a global transcription factor that regulates the expression of genes involved in a number of essential cellular processes including: ribosome biogenesis, cell cycle and apoptosis. Upon deregulation, N-Myc can drive pathologic expression of many of these genes, which ultimately defines its oncogenic potential. Overexpression of N-Myc has been demonstrated to contribute to tumorigenesis, most notably for the pediatric tumor, neuroblastoma. Herein, we provide evidence that deregulated N-Myc alters the expression of proteins involved in mitochondrial dynamics. We found that N-Myc overexpression leads to increased fusion of the mitochondrial reticulum secondary to changes in protein expression due to aberrant transcriptional and post-translational regulation. We believe the structural changes in the mitochondrial network in response to N-Myc amplification in neuroblastoma contributes to two important aspects of tumor development and maintenance—bioenergetic alterations and apoptotic resistance. Specifically, we found that N-Myc overexpressing cells are resistant to programmed cell death in response to exposure to low doses of cisplatin, and demonstrated that this was dependent on increased mitochondrial fusion. We speculate that these changes in mitochondrial structure and function may contribute significantly to the aggressive clinical ph9enotype of N-Myc amplified neuroblastoma.
Collapse
|
107
|
Morozov YM, Datta D, Paspalas CD, Arnsten AFT. Ultrastructural evidence for impaired mitochondrial fission in the aged rhesus monkey dorsolateral prefrontal cortex. Neurobiol Aging 2016; 51:9-18. [PMID: 28027494 DOI: 10.1016/j.neurobiolaging.2016.12.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 11/19/2022]
Abstract
Dorsolateral prefrontal cortex mediates high-order cognitive functions that are impaired early in the aging process in monkeys and humans. Here, we report pronounced changes in mitochondrial morphology in dendrites of dorsolateral prefrontal cortex neurons from aged rhesus macaques. Electron microscopy paired with 3D reconstruction from serial sections revealed an age-related increase in mitochondria with thin segments that intermingled with enlarged ones, the 'mitochondria-on-a-string' phenotype, similar to those recently reported in patients with Alzheimer's disease. The thin mitochondrial segments were associated with endoplasmic reticulum cisterns, and the mitochondrial proteins Fis1 and Drp1, all of which initiate mitochondrial fission. These data suggest that the 'mitochondria-on-a-string' phenotype may reflect malfunction in mitochondrial dynamics, whereby fission is initiated, but the process is incomplete due to malfunction of subsequent step(s). Thus, aged rhesus monkeys may be particularly helpful in exploring the age-related changes that render higher cortical circuits so vulnerable to degeneration.
Collapse
Affiliation(s)
- Yury M Morozov
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| | - Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | | | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
108
|
Przybylska-Gornowicz B, Lewczuk B, Ziółkowska N, Prusik M. Adrenergic control of pinealocyte chondriome – an in vitro study. Pol J Vet Sci 2016; 19:819-829. [DOI: 10.1515/pjvs-2016-0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Norepinephrine released from sympathetic innervation plays the main role in the regulation of melatonin secretion in mammalian pinealocytes. The present study was conducted for the following reasons: 1) to establish whether the pinealocyte chondriome is controlled by norepinephrine, 2) to determine the effect of adrenergic stimulation on mitochondria, and 3) to characterize adrenoceptors involved in the regulation of the chondriome.
The static organ culture of the pineal gland was used. The explants were incubated for 5 consecutive days in control medium and between 20:00 and 08:00 in medium with the presence of 10 μM norepinephrine – adrenergic agonist; isoproterenol – beta-adrenoceptor agonist; cirazoline, methoxamine, M-6364 – alfa1 – adrenoceptors agonists or PMA – activator of PKC. The explants were then subjected to ultrastructural examination and morphometric analysis.
The incubation of explants in the presence of norepinephrine or isoproterenol caused a decrease in the relative volume and the numerical density of mitochondria and induced an increase in the percentage of free mitochondria in pinealocytes. Significant changes in these parameters were not observed after treatment with methoxamine, cirazoline, M-6463 and PMA.
The results obtained show that the chondriome of pig pinealocytes is controlled by norepinephrine acting via beta-adrenoceptors. Adrenergic stimulation, repeated for five consecutive days of organ culture, causes a decrease in the number of mitochondria and a shift in the distribution of mitochondria from the form of networks and filaments into the form of single particles. This indicates the intensive remodeling of the mitochondria network, which is closely linked to the metabolic status of the cell.
Collapse
|
109
|
Malena A, Pantic B, Borgia D, Sgarbi G, Solaini G, Holt IJ, Spinazzola A, Perissinotto E, Sandri M, Baracca A, Vergani L. Mitochondrial quality control: Cell-type-dependent responses to pathological mutant mitochondrial DNA. Autophagy 2016; 12:2098-2112. [PMID: 27627835 DOI: 10.1080/15548627.2016.1226734] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pathological mutations in the mitochondrial DNA (mtDNA) produce a diverse range of tissue-specific diseases and the proportion of mutant mitochondrial DNA can increase or decrease with time via segregation, dependent on the cell or tissue type. Previously we found that adenocarcinoma (A549.B2) cells favored wild-type (WT) mtDNA, whereas rhabdomyosarcoma (RD.Myo) cells favored mutant (m3243G) mtDNA. Mitochondrial quality control (mtQC) can purge the cells of dysfunctional mitochondria via mitochondrial dynamics and mitophagy and appears to offer the perfect solution to the human diseases caused by mutant mtDNA. In A549.B2 and RD.Myo cybrids, with various mutant mtDNA levels, mtQC was explored together with macroautophagy/autophagy and bioenergetic profile. The 2 types of tumor-derived cell lines differed in bioenergetic profile and mitophagy, but not in autophagy. A549.B2 cybrids displayed upregulation of mitophagy, increased mtDNA removal, mitochondrial fragmentation and mitochondrial depolarization on incubation with oligomycin, parameters that correlated with mutant load. Conversely, heteroplasmic RD.Myo lines had lower mitophagic markers that negatively correlated with mutant load, combined with a fully polarized and highly fused mitochondrial network. These findings indicate that pathological mutant mitochondrial DNA can modulate mitochondrial dynamics and mitophagy in a cell-type dependent manner and thereby offer an explanation for the persistence and accumulation of deleterious variants.
Collapse
Affiliation(s)
- Adriana Malena
- a Department of Neurosciences , University of Padova , Italy
| | - Boris Pantic
- a Department of Neurosciences , University of Padova , Italy
| | - Doriana Borgia
- a Department of Neurosciences , University of Padova , Italy
| | - Gianluca Sgarbi
- b Department of Biomedical and Neuromotor Sciences , University of Bologna , Italy
| | - Giancarlo Solaini
- b Department of Biomedical and Neuromotor Sciences , University of Bologna , Italy
| | - Ian J Holt
- c Medical Research Council, Mill Hill Laboratory , London , United Kingdom
| | | | - Egle Perissinotto
- d Department of Cardiac, Thoracic and Vascular Sciences, Biostatistics, Epidemiology and Public Health Unit , University of Padova , Padova , Italy
| | - Marco Sandri
- e Department of Biomedical Sciences , University of Padova , Italy.,f Venetian Institute of Molecular Medicine , Padova , Italy
| | - Alessandra Baracca
- b Department of Biomedical and Neuromotor Sciences , University of Bologna , Italy
| | | |
Collapse
|
110
|
Giedt RJ, Fumene Feruglio P, Pathania D, Yang KS, Kilcoyne A, Vinegoni C, Mitchison TJ, Weissleder R. Computational imaging reveals mitochondrial morphology as a biomarker of cancer phenotype and drug response. Sci Rep 2016; 6:32985. [PMID: 27609668 PMCID: PMC5017129 DOI: 10.1038/srep32985] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/16/2016] [Indexed: 12/27/2022] Open
Abstract
Mitochondria, which are essential organelles in resting and replicating cells, can vary in number, mass and shape. Past research has primarily focused on short-term molecular mechanisms underlying fission/fusion. Less is known about longer-term mitochondrial behavior such as the overall makeup of cell populations’ morphological patterns and whether these patterns can be used as biomarkers of drug response in human cells. We developed an image-based analytical technique to phenotype mitochondrial morphology in different cancers, including cancer cell lines and patient-derived cancer cells. We demonstrate that (i) cancer cells of different origins, including patient-derived xenografts, express highly diverse mitochondrial phenotypes; (ii) a given phenotype is characteristic of a cell population and fairly constant over time; (iii) mitochondrial patterns correlate with cell metabolic measurements and (iv) therapeutic interventions can alter mitochondrial phenotypes in drug-sensitive cancers as measured in pre- versus post-treatment fine needle aspirates in mice. These observations shed light on the role of mitochondrial dynamics in the biology and drug response of cancer cells. On the basis of these findings, we propose that image-based mitochondrial phenotyping can provide biomarkers for assessing cancer phenotype and drug response.
Collapse
Affiliation(s)
- Randy J Giedt
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge St., CPZN 5206, Boston, MA 02114, USA
| | - Paolo Fumene Feruglio
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge St., CPZN 5206, Boston, MA 02114, USA.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Divya Pathania
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge St., CPZN 5206, Boston, MA 02114, USA
| | - Katherine S Yang
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge St., CPZN 5206, Boston, MA 02114, USA
| | - Aoife Kilcoyne
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge St., CPZN 5206, Boston, MA 02114, USA
| | - Claudio Vinegoni
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge St., CPZN 5206, Boston, MA 02114, USA
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge St., CPZN 5206, Boston, MA 02114, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
| |
Collapse
|
111
|
Tak H, Eun JW, Kim J, Park SJ, Kim C, Ji E, Lee H, Kang H, Cho DH, Lee K, Kim W, Nam SW, Lee EK. T-cell-restricted intracellular antigen 1 facilitates mitochondrial fragmentation by enhancing the expression of mitochondrial fission factor. Cell Death Differ 2016; 24:49-58. [PMID: 27612012 DOI: 10.1038/cdd.2016.90] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/06/2016] [Accepted: 07/25/2016] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial morphology is dynamically regulated by the formation of small fragmented units or interconnected mitochondrial networks, and this dynamic morphological change is a pivotal process in normal mitochondrial function. In the present study, we identified a novel regulator responsible for the regulation of mitochondrial dynamics. An assay using CHANG liver cells stably expressing mitochondrial-targeted yellow fluorescent protein (mtYFP) and a group of siRNAs revealed that T-cell intracellular antigen protein-1 (TIA-1) affects mitochondrial morphology by enhancing mitochondrial fission. The function of TIA-1 in mitochondrial dynamics was investigated through various biological approaches and expression analysis in human specimen. Downregulation of TIA-1-enhanced mitochondrial elongation, whereas ectopic expression of TIA-1 resulted in mitochondria fragmentation. In addition, TIA-1 increased mitochondrial activity, including the rate of ATP synthesis and oxygen consumption. Further, we identified mitochondrial fission factor (MFF) as a direct target of TIA-1, and showed that TIA-1 promotes mitochondrial fragmentation by enhancing MFF translation. TIA-1 null cells had a decreased level of MFF and less mitochondrial Drp1, a critical factor for mitochondrial fragmentation, thereby enhancing mitochondrial elongation. Taken together, our results indicate that TIA-1 is a novel factor that facilitates mitochondrial dynamics by enhancing MFF expression and contributes to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Hyosun Tak
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Jung Woo Eun
- Department of Pathology, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Jihye Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - So Jung Park
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, South Korea
| | - Chongtae Kim
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Eunbyul Ji
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Heejin Lee
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Hoin Kang
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Dong-Hyung Cho
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, South Korea
| | - Kyungbun Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Suk Woo Nam
- Department of Pathology, The Catholic University of Korea College of Medicine, Seoul, South Korea.,Cancer Evolution Research Center, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Eun Kyung Lee
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul, South Korea.,Cancer Evolution Research Center, The Catholic University of Korea College of Medicine, Seoul, South Korea.,Institute for Aging and Metabolic Disease, The Catholic University of Korea College of Medicine, Seoul, South Korea
| |
Collapse
|
112
|
Kim DI, Lee KH, Gabr AA, Choi GE, Kim JS, Ko SH, Han HJ. Aβ-Induced Drp1 phosphorylation through Akt activation promotes excessive mitochondrial fission leading to neuronal apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2820-2834. [PMID: 27599716 DOI: 10.1016/j.bbamcr.2016.09.003] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 12/26/2022]
Abstract
Mitochondrial dysfunction is known as one of causative factors in Alzheimer's disease (AD), inducing neuronal cell death. Mitochondria regulate their functions through changing their morphology. The present work was undertaken to investigate whether Amyloid β (Aβ) affects mitochondrial morphology in neuronal cells to induce apoptosis. Aβ treatment induced not only the fragmentation of mitochondria but also neuronal apoptosis in association with an increase in caspase-9 and -3 activity. Calcium influx induced by Aβ up-regulated the activation of Akt through CaMKII resulting in changes to the phosphorylation level of Drp1 in a time-dependent manner. Translocation of Drp1 from the cytosol to mitochondria was blocked by CB-124005 (an Akt inhibitor). Recruitment of Drp1 to mitochondria led to ROS generation and mitochondrial fission, accompanied by dysfunction of mitochondria such as loss of membrane potential and ATP production. ROS generation and mitochondrial dysfunction by Aβ were attenuated when treated with Mdivi-1, a selective Drp1 inhibitor. Furthermore, the sustained Akt activation induced not only the fragmentation of mitochondria but also the activation of mTOR, eventually suppressing autophagy. Inhibition of autophagic clearance of Aβ led to increased ROS levels and aggravating mitochondrial defects, which were blocked by Rapamycin (an mTOR inhibitor). In conclusion, sustained phosphorylation of Akt by Aβ directly activates Drp1 and inhibits autophagy through the mTOR pathway. Together, these changes elicit abundant mitochondrial fragmentation resulting in ROS-mediated neuronal apoptosis.
Collapse
Affiliation(s)
- Dah Ihm Kim
- BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea; Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Ki Hoon Lee
- BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea; Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Amr Ahmed Gabr
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Gee Euhn Choi
- BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea; Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Jun Sung Kim
- BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea; Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - So Hee Ko
- BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea; Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Ho Jae Han
- BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea; Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| |
Collapse
|
113
|
Janer A, Prudent J, Paupe V, Fahiminiya S, Majewski J, Sgarioto N, Des Rosiers C, Forest A, Lin ZY, Gingras AC, Mitchell G, McBride HM, Shoubridge EA. SLC25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome. EMBO Mol Med 2016; 8:1019-38. [PMID: 27390132 PMCID: PMC5009808 DOI: 10.15252/emmm.201506159] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mitochondria form a dynamic network that responds to physiological signals and metabolic stresses by altering the balance between fusion and fission. Mitochondrial fusion is orchestrated by conserved GTPases MFN1/2 and OPA1, a process coordinated in yeast by Ugo1, a mitochondrial metabolite carrier family protein. We uncovered a homozygous missense mutation in SLC25A46, the mammalian orthologue of Ugo1, in a subject with Leigh syndrome. SLC25A46 is an integral outer membrane protein that interacts with MFN2, OPA1, and the mitochondrial contact site and cristae organizing system (MICOS) complex. The subject mutation destabilizes the protein, leading to mitochondrial hyperfusion, alterations in endoplasmic reticulum (ER) morphology, impaired cellular respiration, and premature cellular senescence. The MICOS complex is disrupted in subject fibroblasts, resulting in strikingly abnormal mitochondrial architecture, with markedly shortened cristae. SLC25A46 also interacts with the ER membrane protein complex EMC, and phospholipid composition is altered in subject mitochondria. These results show that SLC25A46 plays a role in a mitochondrial/ER pathway that facilitates lipid transfer, and link altered mitochondrial dynamics to early‐onset neurodegenerative disease and cell fate decisions.
Collapse
Affiliation(s)
- Alexandre Janer
- Department of Human Genetics, McGill University, Montreal, QC, Canada Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Julien Prudent
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Vincent Paupe
- Department of Human Genetics, McGill University, Montreal, QC, Canada Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Nicolas Sgarioto
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Christine Des Rosiers
- Department of Nutrition, Université de Montréal, Montreal, QC, Canada Research Centre, Montreal Heart Institute, Montreal, QC, Canada
| | - Anik Forest
- Department of Nutrition, Université de Montréal, Montreal, QC, Canada Research Centre, Montreal Heart Institute, Montreal, QC, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Grant Mitchell
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Montreal, QC, Canada
| | - Heidi M McBride
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Eric A Shoubridge
- Department of Human Genetics, McGill University, Montreal, QC, Canada Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
114
|
Schultz J, Waterstradt R, Kantowski T, Rickmann A, Reinhardt F, Sharoyko V, Mulder H, Tiedge M, Baltrusch S. Precise expression of Fis1 is important for glucose responsiveness of beta cells. J Endocrinol 2016; 230:81-91. [PMID: 27179109 DOI: 10.1530/joe-16-0111] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/13/2016] [Indexed: 01/27/2023]
Abstract
Mitochondrial network functionality is vital for glucose-stimulated insulin secretion in pancreatic beta cells. Altered mitochondrial dynamics in pancreatic beta cells are thought to trigger the development of type 2 diabetes mellitus. Fission protein 1 (Fis1) might be a key player in this process. Thus, the aim of this study was to investigate mitochondrial morphology in dependence of beta cell function, after knockdown and overexpression of Fis1. We demonstrate that glucose-unresponsive cells with impaired glucose-stimulated insulin secretion (INS1-832/2) showed decreased mitochondrial dynamics compared with glucose-responsive cells (INS1-832/13). Accordingly, mitochondrial morphology visualised using MitoTracker staining differed between the two cell lines. INS1-832/2 cells formed elongated and clustered mitochondria, whereas INS1-832/13 cells showed a homogenous mitochondrial network. Fis1 overexpression using lentiviral transduction significantly improved glucose-stimulated insulin secretion and mitochondrial network homogeneity in glucose-unresponsive cells. Conversely, Fis1 downregulation by shRNA, both in primary mouse beta cells and glucose-responsive INS1-832/13 cells, caused unresponsiveness and significantly greater numbers of elongated mitochondria. Overexpression of FIS1 in primary mouse beta cells indicated an upper limit at which higher FIS1 expression reduced glucose-stimulated insulin secretion. Thus, FIS1 was overexpressed stepwise up to a high concentration in RINm5F cells using the RheoSwitch system. Moderate FIS1 expression improved glucose-stimulated insulin secretion, whereas high expression resulted in loss of glucose responsiveness and in mitochondrial artificial loop structures and clustering. Our data confirm that FIS1 is a key regulator in pancreatic beta cells, because both glucose-stimulated insulin secretion and mitochondrial dynamics were clearly adapted to precise expression levels of this fission protein.
Collapse
Affiliation(s)
- Julia Schultz
- Institute of Medical Biochemistry and Molecular BiologyUniversity of Rostock, Rostock, Germany
| | - Rica Waterstradt
- Institute of Medical Biochemistry and Molecular BiologyUniversity of Rostock, Rostock, Germany
| | - Tobias Kantowski
- Institute of Medical Biochemistry and Molecular BiologyUniversity of Rostock, Rostock, Germany
| | - Annekatrin Rickmann
- Institute of Medical Biochemistry and Molecular BiologyUniversity of Rostock, Rostock, Germany
| | - Florian Reinhardt
- Institute of Medical Biochemistry and Molecular BiologyUniversity of Rostock, Rostock, Germany
| | - Vladimir Sharoyko
- Department of Clinical SciencesUnit of Molecular Metabolism, Lund University Diabetes Centre, Malmö, Sweden
| | - Hindrik Mulder
- Department of Clinical SciencesUnit of Molecular Metabolism, Lund University Diabetes Centre, Malmö, Sweden
| | - Markus Tiedge
- Institute of Medical Biochemistry and Molecular BiologyUniversity of Rostock, Rostock, Germany
| | - Simone Baltrusch
- Institute of Medical Biochemistry and Molecular BiologyUniversity of Rostock, Rostock, Germany
| |
Collapse
|
115
|
Kozjak-Pavlovic V. The MICOS complex of human mitochondria. Cell Tissue Res 2016; 367:83-93. [PMID: 27245231 DOI: 10.1007/s00441-016-2433-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 11/25/2022]
Abstract
Mitochondria are organelles of endosymbiotic origin, surrounded by two membranes. The inner membrane forms invaginations called cristae that enhance its surface and are important for mitochondrial function. A recently described mitochondrial contact site and cristae organizing system (MICOS) in the inner mitochondrial membrane is crucial for the formation and maintenance of cristae structure. The MICOS complex in human mitochondria exhibits specificities and greater complexity in comparison to the yeast system. Many subunits of this complex have been previously described, but several others and their function remain to be explored. This review will summarize our present knowledge about the human MICOS complex and its constituents, while discussing the future research perspectives in this exciting and important field.
Collapse
Affiliation(s)
- Vera Kozjak-Pavlovic
- Biocenter, Chair of Microbiology, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
116
|
Autophagy, Innate Immunity and Tissue Repair in Acute Kidney Injury. Int J Mol Sci 2016; 17:ijms17050662. [PMID: 27153058 PMCID: PMC4881488 DOI: 10.3390/ijms17050662] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/14/2016] [Accepted: 04/20/2016] [Indexed: 01/09/2023] Open
Abstract
Kidney is a vital organ with high energy demands to actively maintain plasma hemodynamics, electrolytes and water homeostasis. Among the nephron segments, the renal tubular epithelium is endowed with high mitochondria density for their function in active transport. Acute kidney injury (AKI) is an important clinical syndrome and a global public health issue with high mortality rate and socioeconomic burden due to lack of effective therapy. AKI results in acute cell death and necrosis of renal tubule epithelial cells accompanied with leakage of tubular fluid and inflammation. The inflammatory immune response triggered by the tubular cell death, mitochondrial damage, associative oxidative stress, and the release of many tissue damage factors have been identified as key elements driving the pathophysiology of AKI. Autophagy, the cellular mechanism that removes damaged organelles via lysosome-mediated degradation, had been proposed to be renoprotective. An in-depth understanding of the intricate interplay between autophagy and innate immune response, and their roles in AKI pathology could lead to novel therapies in AKI. This review addresses the current pathophysiology of AKI in aspects of mitochondrial dysfunction, innate immunity, and molecular mechanisms of autophagy. Recent advances in renal tissue regeneration and potential therapeutic interventions are also discussed.
Collapse
|
117
|
Rosdah AA, K Holien J, Delbridge LMD, Dusting GJ, Lim SY. Mitochondrial fission - a drug target for cytoprotection or cytodestruction? Pharmacol Res Perspect 2016; 4:e00235. [PMID: 27433345 PMCID: PMC4876145 DOI: 10.1002/prp2.235] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 03/24/2016] [Indexed: 01/18/2023] Open
Abstract
Mitochondria are morphologically dynamic organelles constantly undergoing processes of fission and fusion that maintain integrity and bioenergetics of the organelle: these processes are vital for cell survival. Disruption in the balance of mitochondrial fusion and fission is thought to play a role in several pathological conditions including ischemic heart disease. Proteins involved in regulating the processes of mitochondrial fusion and fission are therefore potential targets for pharmacological therapies. Mdivi‐1 is a small molecule inhibitor of the mitochondrial fission protein Drp1. Inhibiting mitochondrial fission with Mdivi‐1 has proven cytoprotective benefits in several cell types involved in a wide array of cardiovascular injury models. On the other hand, Mdivi‐1 can also exert antiproliferative and cytotoxic effects, particularly in hyperproliferative cells. In this review, we discuss these divergent effects of Mdivi‐1 on cell survival, as well as the potential and limitations of Mdivi‐1 as a therapeutic agent.
Collapse
Affiliation(s)
- Ayeshah A Rosdah
- O'Brien Institute Department St Vincent's Institute of Medical Research Victoria Australia; Department of Physiology University of Melbourne Victoria Australia; Faculty of Medicine Sriwijaya University Palembang Indonesia
| | - Jessica K Holien
- ACRF Rational Drug Discovery Centre St Vincent's Institute of Medical Research Victoria Australia
| | | | - Gregory J Dusting
- O'Brien Institute Department St Vincent's Institute of Medical Research Victoria Australia; Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital Victoria Australia; Department of Surgery University of Melbourne Victoria Australia
| | - Shiang Y Lim
- O'Brien Institute Department St Vincent's Institute of Medical Research Victoria Australia; Department of Surgery University of Melbourne Victoria Australia
| |
Collapse
|
118
|
Vinegoni C, Leon Swisher C, Fumene Feruglio P, Giedt RJ, Rousso DL, Stapleton S, Weissleder R. Real-time high dynamic range laser scanning microscopy. Nat Commun 2016; 7:11077. [PMID: 27032979 PMCID: PMC4821995 DOI: 10.1038/ncomms11077] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/19/2016] [Indexed: 01/21/2023] Open
Abstract
In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging. Confocal and multiphoton fluorescence microscopy often suffers from low dynamic range. Here the authors develop a high dynamic range, laser scanning fluorescence technique by simultaneously recording different light intensity ranges. The method can be adapted to commercial systems.
Collapse
Affiliation(s)
- C Vinegoni
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston, Massachusetts 02114, USA
| | - C Leon Swisher
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston, Massachusetts 02114, USA
| | - P Fumene Feruglio
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston, Massachusetts 02114, USA.,Department of Neurological, Biomedical and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - R J Giedt
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston, Massachusetts 02114, USA
| | - D L Rousso
- Center for Brain Science, Department of Molecular and Cell Biology, Harvard University, 52 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - S Stapleton
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston, Massachusetts 02114, USA
| | - R Weissleder
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston, Massachusetts 02114, USA
| |
Collapse
|
119
|
Karniely S, Weekes MP, Antrobus R, Rorbach J, van Haute L, Umrania Y, Smith DL, Stanton RJ, Minczuk M, Lehner PJ, Sinclair JH. Human Cytomegalovirus Infection Upregulates the Mitochondrial Transcription and Translation Machineries. mBio 2016; 7:e00029. [PMID: 27025248 PMCID: PMC4807356 DOI: 10.1128/mbio.00029-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/25/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Infection with human cytomegalovirus (HCMV) profoundly affects cellular metabolism. Like in tumor cells, HCMV infection increases glycolysis, and glucose carbon is shifted from the mitochondrial tricarboxylic acid cycle to the biosynthesis of fatty acids. However, unlike in many tumor cells, where aerobic glycolysis is accompanied by suppression of mitochondrial oxidative phosphorylation, HCMV induces mitochondrial biogenesis and respiration. Here, we affinity purified mitochondria and used quantitative mass spectrometry to determine how the mitochondrial proteome changes upon HCMV infection. We found that the mitochondrial transcription and translation systems are induced early during the viral replication cycle. Specifically, proteins involved in biogenesis of the mitochondrial ribosome were highly upregulated by HCMV infection. Inhibition of mitochondrial translation with chloramphenicol or knockdown of HCMV-induced ribosome biogenesis factor MRM3 abolished the HCMV-mediated increase in mitochondrially encoded proteins and significantly impaired viral growth under bioenergetically restricting conditions. Our findings demonstrate how HCMV manipulates mitochondrial biogenesis to support its replication. IMPORTANCE Human cytomegalovirus (HCMV), a betaherpesvirus, is a leading cause of morbidity and mortality during congenital infection and among immunosuppressed individuals. HCMV infection significantly changes cellular metabolism. Akin to tumor cells, in HCMV-infected cells, glycolysis is increased and glucose carbon is shifted from the tricarboxylic acid cycle to fatty acid biosynthesis. However, unlike in tumor cells, HCMV induces mitochondrial biogenesis even under aerobic glycolysis. Here, we have affinity purified mitochondria and used quantitative mass spectrometry to determine how the mitochondrial proteome changes upon HCMV infection. We find that the mitochondrial transcription and translation systems are induced early during the viral replication cycle. Specifically, proteins involved in biogenesis of the mitochondrial ribosome were highly upregulated by HCMV infection. Inhibition of mitochondrial translation with chloramphenicol or knockdown of HCMV-induced ribosome biogenesis factor MRM3 abolished the HCMV-mediated increase in mitochondrially encoded proteins and significantly impaired viral growth. Our findings demonstrate how HCMV manipulates mitochondrial biogenesis to support its replication.
Collapse
Affiliation(s)
- S Karniely
- Department of Medicine, University of Cambridge Clinical School, Addenbrookes Hospital, Cambridge, United Kingdom
| | - M P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - R Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - J Rorbach
- MRC, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - L van Haute
- MRC, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - Y Umrania
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - D L Smith
- Paterson Institute for Cancer Research, University of Manchester, Withington, Manchester, United Kingdom
| | - R J Stanton
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - M Minczuk
- MRC, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - P J Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - J H Sinclair
- Department of Medicine, University of Cambridge Clinical School, Addenbrookes Hospital, Cambridge, United Kingdom
| |
Collapse
|
120
|
Peng J, Ren KD, Yang J, Luo XJ. Mitochondrial E3 ubiquitin ligase 1: A key enzyme in regulation of mitochondrial dynamics and functions. Mitochondrion 2016; 28:49-53. [PMID: 27034206 DOI: 10.1016/j.mito.2016.03.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 11/17/2022]
Abstract
Mitochondrial E3 ubiquitin ligase 1 (Mul1) is a multifunctional mitochondrial membrane protein with its RING domain exposed to the cytoplasm. On the one hand, Mul1 functions as a ubiquitin-ligase to ubiquitinate a bunch of signal molecules, such as mitofusin2 (Mfn2), Akt, p53 and ULK1, through its RING finger domain, leading to proteins degradation. On the other hand, Mul1 acts as a small ubiquitin-like modifiers (SUMO) E3 ligase to sumoylate certain proteins, such as dynamin-related protein 1 (Drp1), enhancing protein stabilization. Through the dual functions of ubiquitination and SUMOylation, Mul1 involves in regulation of many physiological and pathological processes, such as mitochondrial dynamics, cell growth, apoptosis and mitophagy. In addition, Mul1 can also directly activate or interact with some proteins, such as NF-κB and JNK, to take part in the regulation of cellular apoptosis. This review summarizes recent progress in relevant studies on the physiological and pathological functions of Mul1 and pays special attention to its role in regulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Jun Peng
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, China; Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Kai-Di Ren
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Jie Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, China.
| |
Collapse
|
121
|
Yagi T, Ito D, Suzuki N. TFG-Related Neurologic Disorders: New Insights Into Relationships Between Endoplasmic Reticulum and Neurodegeneration. J Neuropathol Exp Neurol 2016; 75:299-305. [PMID: 26945032 DOI: 10.1093/jnen/nlw009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The tropomyosin-receptor kinase fused gene(TFG), which is located on chromosome 3q12.2, was originally identified as a fusion partner that results in the formation of oncogenic products associated with multiple cancers. TFG protein interacts directly with Sec16, the scaffolding protein for coat protein II-coated vesicles that regulate endoplasmic reticulum (ER)-to-Golgi transport at ER exit sites. In 2012, a heterozygous mutation of TFG was identified as the causative gene for autosomal-dominant hereditary motor and sensory neuropathy with proximal dominant involvement. In 2013, a homozygous mutation of TFG was reported in a family with early onset spastic paraplegia, optic atrophy, and neuropathy. Another novel mutation in TFG was discovered in 2014 as a cause of dominant axonal Charcot-Marie-Tooth disease type 2. These findings suggest that mutations of TFG cause ER dysfunction and neurodegeneration in this disease spectrum, which is tightly associated with ER function. Here, we review the clinical phenotypes of these diseases and present recent insights that suggest causal roles of ER dysfunction in TFG-related neurologic disorders. Although the precise pathogenetic mechanisms underlying these TFG mutations remain to be elucidated, experimental manipulations suggest that the dysregulations of ER homeostasis that occur due to mutations in TFG lead to neurodegeneration.
Collapse
Affiliation(s)
- Takuya Yagi
- From the Department of Neurology, School of Medicine, Keio University, Shinjuku-Ku, Tokyo, Japan (TY, DI, NS) and Department of Medicine, Washington University School of Medicine, St Louis, Missouri (TY).
| | - Daisuke Ito
- From the Department of Neurology, School of Medicine, Keio University, Shinjuku-Ku, Tokyo, Japan (TY, DI, NS) and Department of Medicine, Washington University School of Medicine, St Louis, Missouri (TY)
| | - Norihiro Suzuki
- From the Department of Neurology, School of Medicine, Keio University, Shinjuku-Ku, Tokyo, Japan (TY, DI, NS) and Department of Medicine, Washington University School of Medicine, St Louis, Missouri (TY)
| |
Collapse
|
122
|
Lost region in amyloid precursor protein (APP) through TALEN-mediated genome editing alters mitochondrial morphology. Sci Rep 2016; 6:22244. [PMID: 26924205 PMCID: PMC4770288 DOI: 10.1038/srep22244] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 02/10/2016] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by amyloid-β (Aβ) deposition in the brain. Aβ plaques are produced through sequential β/γ cleavage of amyloid precursor protein (APP), of which there are three main APP isoforms: APP695, APP751 and APP770. KPI-APPs (APP751 and APP770) are known to be elevated in AD, but the reason remains unclear. Transcription activator-like (TAL) effector nucleases (TALENs) induce mutations with high efficiency at specific genomic loci, and it is thus possible to knock out specific regions using TALENs. In this study, we designed and expressed TALENs specific for the C-terminus of APP in HeLa cells, in which KPI-APPs are predominantly expressed. The KPI-APP mutants lack a 12-aa region that encompasses a 5-aa trans-membrane (TM) region and 7-aa juxta-membrane (JM) region. The mutated KPI-APPs exhibited decreased mitochondrial localization. In addition, mitochondrial morphology was altered, resulting in an increase in spherical mitochondria in the mutant cells through the disruption of the balance between fission and fusion. Mitochondrial dysfunction, including decreased ATP levels, disrupted mitochondrial membrane potential, increased ROS generation and impaired mitochondrial dehydrogenase activity, was also found. These results suggest that specific regions of KPI-APPs are important for mitochondrial localization and function.
Collapse
|
123
|
Putti R, Migliaccio V, Sica R, Lionetti L. Skeletal Muscle Mitochondrial Bioenergetics and Morphology in High Fat Diet Induced Obesity and Insulin Resistance: Focus on Dietary Fat Source. Front Physiol 2016; 6:426. [PMID: 26834644 PMCID: PMC4719079 DOI: 10.3389/fphys.2015.00426] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/27/2015] [Indexed: 12/21/2022] Open
Abstract
It has been suggested that skeletal muscle mitochondria play a key role in high fat (HF) diet induced insulin resistance (IR). Two opposite views are debated on mechanisms by which mitochondrial function could be involved in skeletal muscle IR. In one theory, mitochondrial dysfunction is suggested to cause intramyocellular lipid accumulation leading to IR. In the second theory, excess fuel within mitochondria in the absence of increased energy demand stimulates mitochondrial oxidant production and emission, ultimately leading to the development of IR. Noteworthy, mitochondrial bioenergetics is strictly associated with the maintenance of normal mitochondrial morphology by maintaining the balance between the fusion and fission processes. A shift toward mitochondrial fission with reduction of fusion protein, mainly mitofusin 2, has been associated with reduced insulin sensitivity and inflammation in obesity and IR development. However, dietary fat source during chronic overfeeding differently affects mitochondrial morphology. Saturated fatty acids induce skeletal muscle IR and inflammation associated with fission phenotype, whereas ω-3 polyunsaturated fatty acids improve skeletal muscle insulin sensitivity and inflammation, associated with a shift toward mitochondrial fusion phenotype. The present minireview focuses on mitochondrial bioenergetics and morphology in skeletal muscle IR, with particular attention to the effect of different dietary fat sources on skeletal muscle mitochondria morphology and fusion/fission balance.
Collapse
Affiliation(s)
- Rosalba Putti
- Department of Biology, University of Naples "Federico II," Naples, Italy
| | | | - Raffaella Sica
- Department of Biology, University of Naples "Federico II," Naples, Italy
| | - Lillà Lionetti
- Department of Biology, University of Naples "Federico II," Naples, Italy
| |
Collapse
|
124
|
Yu CY, Liang JJ, Li JK, Lee YL, Chang BL, Su CI, Huang WJ, Lai MMC, Lin YL. Dengue Virus Impairs Mitochondrial Fusion by Cleaving Mitofusins. PLoS Pathog 2015; 11:e1005350. [PMID: 26717518 PMCID: PMC4696832 DOI: 10.1371/journal.ppat.1005350] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/30/2015] [Indexed: 12/22/2022] Open
Abstract
Mitochondria are highly dynamic subcellular organelles participating in many signaling pathways such as antiviral innate immunity and cell death cascades. Here we found that mitochondrial fusion was impaired in dengue virus (DENV) infected cells. Two mitofusins (MFN1 and MFN2), which mediate mitochondrial fusion and participate in the proper function of mitochondria, were cleaved by DENV protease NS2B3. By knockdown and overexpression approaches, these two MFNs showed diverse functions in DENV infection. MFN1 was required for efficient antiviral retinoic acid-inducible gene I–like receptor signaling to suppress DENV replication, while MFN2 participated in maintaining mitochondrial membrane potential (MMP) to attenuate DENV-induced cell death. Cleaving MFN1 and MFN2 by DENV protease suppressed mitochondrial fusion and deteriorated DENV-induced cytopathic effects through subverting interferon production and facilitating MMP disruption. Thus, MFNs participate in host defense against DENV infection by promoting the antiviral response and cell survival, and DENV regulates mitochondrial morphology by cleaving MFNs to manipulate the outcome of infection. Dengue virus (DENV) threatens billions of people worldwide but no licensed vaccine or therapeutics is currently available. Knowing more details of DENV pathogenesis, such as antagonism of host immunity and cell death induction, may provide important clues to fight against this thorny disease. Incoming studies showed that mitochondria are not only energy providers but also regulators of antiviral signaling pathways including interferon innate immunity and cell death induction. Furthermore, the normal functions of mitochondrion can be regulated by its dynamics through constant fusion and fission. In this study, we found that DENV infection caused an impairment of mitochondrial fusion and the two key players, mitofusin-1 and -2, mediating the fusion processes in mitochondrial dynamics, were cleaved by DENV protease. Cleaving mitofusins altered mitochondrial morphology, attenuated antiviral responses, and facilitated cell death upon DENV infection. Thus, DENV could manipulate mitochondrial functions by taking over mitochondrial dynamics to benefit viral replication, and the viral protease of DENV may serve as a virulence factor besides being an enzyme responsible for the processing of viral proteins.
Collapse
Affiliation(s)
- Chia-Yi Yu
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (CYY); (YLLi)
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jin-Kun Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Bi-Lan Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chan-I Su
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Jheng Huang
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan
| | - Michael M. C. Lai
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- China Medical University, Taichung, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- * E-mail: (CYY); (YLLi)
| |
Collapse
|
125
|
Zhang J, Wang Q, Wang M, Jiang M, Wang Y, Sun Y, Wang J, Xie T, Tang C, Tang N, Song H, Cui D, Chao R, Ding S, Ni B, Chen X, Wang Y. GASZ and mitofusin-mediated mitochondrial functions are crucial for spermatogenesis. EMBO Rep 2015; 17:220-34. [PMID: 26711429 DOI: 10.15252/embr.201540846] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022] Open
Abstract
Nuage is an electron-dense cytoplasmic structure in germ cells that contains ribonucleoproteins and participates in piRNA biosynthesis. Despite the observation that clustered mitochondria are associated with a specific type of nuage called intermitochondrial cement (pi-body), the importance of mitochondrial functions in nuage formation and spermatogenesis is yet to be determined. We show that a germ cell-specific protein GASZ contains a functional mitochondrial targeting signal and is largely localized at mitochondria both endogenously in germ cells and in somatic cells when ectopically expressed. In addition, GASZ interacts with itself at the outer membrane of mitochondria and promotes mitofusion in a mitofusin/MFN-dependent manner. In mice, deletion of the mitochondrial targeting signal reveals that mitochondrial localization of GASZ is essential for nuage formation, mitochondrial clustering, transposon repression, and spermatogenesis. MFN1 deficiency also leads to defects in mitochondrial activity and male infertility. Our data thus reveal a requirement for GASZ and MFN-mediated mitofusion during spermatogenesis.
Collapse
Affiliation(s)
- Jingjing Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Qian Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingsong Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Manxi Jiang
- Department of Laboratory Animal Science, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yongsheng Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yun Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Junpeng Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Taorong Xie
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chao Tang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Nannan Tang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Huili Song
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Di Cui
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai, China
| | - Ruihua Chao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai, China
| | - Bing Ni
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xuejin Chen
- Department of Laboratory Animal Science, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yuan Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
126
|
Gao XL, Lin H, Zhao W, Hou YQ, Bao YL, Song ZB, Sun LG, Tian SY, Liu B, Li YX. JA, a new type of polyunsaturated fatty acid isolated from Juglans mandshurica Maxim, limits the survival and induces apoptosis of heptocarcinoma cells. Apoptosis 2015; 21:340-50. [DOI: 10.1007/s10495-015-1202-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
127
|
Ruggieri V, Agriesti F, Scrima R, Laurenzana I, Perrone D, Tataranni T, Mazzoccoli C, Lo Muzio L, Capitanio N, Piccoli C. Dichloroacetate, a selective mitochondria-targeting drug for oral squamous cell carcinoma: a metabolic perspective of treatment. Oncotarget 2015; 6:1217-30. [PMID: 25544754 PMCID: PMC4359228 DOI: 10.18632/oncotarget.2721] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 11/11/2014] [Indexed: 12/28/2022] Open
Abstract
Reprogramming of metabolism is a well-established property of cancer cells that is receiving growing attention as potential therapeutic target. Oral squamous cell carcinomas (OSCC) are aggressive and drugs-resistant human tumours displaying wide metabolic heterogeneity depending on their malignant genotype and stage of development. Dichloroacetate (DCA) is a specific inhibitor of the PDH-regulator PDK proved to foster mitochondrial oxidation of pyruvate. In this study we tested comparatively the effects of DCA on three different OSCC-derived cell lines, HSC-2, HSC-3, PE15. Characterization of the three cell lines unveiled for HSC-2 and HSC-3 a glycolysis-reliant metabolism whereas PE15 accomplished an efficient mitochondrial oxidative phosphorylation. DCA treatment of the three OSCC cell lines, at pharmacological concentrations, resulted in stimulation of the respiratory activity and caused a remarkably distinctive pro-apoptotic/cytostatic effect on HSC-2 and HSC-3. This was accompanied with a large remodeling of the mitochondrial network, never documented before, leading to organelle fragmentation and with enhanced production of reactive oxygen species. The data here presented indicate that the therapeutic efficacy of DCA may depend on the specific metabolic profile adopted by the cancer cells with those exhibiting a deficient mitochondrial oxidative phosphorylation resulting more sensitive to the drug treatment.
Collapse
Affiliation(s)
- Vitalba Ruggieri
- Laboratory of Pre-Clinical and Translational Research, IRCCS, CROB, Rionero in Vulture, Potenza, Italy
| | - Francesca Agriesti
- Laboratory of Pre-Clinical and Translational Research, IRCCS, CROB, Rionero in Vulture, Potenza, Italy
| | - Rosella Scrima
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Ilaria Laurenzana
- Laboratory of Pre-Clinical and Translational Research, IRCCS, CROB, Rionero in Vulture, Potenza, Italy
| | - Donatella Perrone
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Tiziana Tataranni
- Laboratory of Pre-Clinical and Translational Research, IRCCS, CROB, Rionero in Vulture, Potenza, Italy
| | - Carmela Mazzoccoli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, CROB, Rionero in Vulture, Potenza, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Claudia Piccoli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, CROB, Rionero in Vulture, Potenza, Italy.Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.,Laboratory of Pre-Clinical and Translational Research, IRCCS, CROB, Rionero in Vulture, Potenza, Italy.Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
128
|
Macdonald PJ, Francy CA, Stepanyants N, Lehman L, Baglio A, Mears JA, Qi X, Ramachandran R. Distinct Splice Variants of Dynamin-related Protein 1 Differentially Utilize Mitochondrial Fission Factor as an Effector of Cooperative GTPase Activity. J Biol Chem 2015; 291:493-507. [PMID: 26578513 DOI: 10.1074/jbc.m115.680181] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 02/02/2023] Open
Abstract
Multiple isoforms of the mitochondrial fission GTPase dynamin-related protein 1 (Drp1) arise from the alternative splicing of its single gene-encoded pre-mRNA transcript. Among these, the longer Drp1 isoforms, expressed selectively in neurons, bear unique polypeptide sequences within their GTPase and variable domains, known as the A-insert and the B-insert, respectively. Their functions remain unresolved. A comparison of the various biochemical and biophysical properties of the neuronally expressed isoforms with that of the ubiquitously expressed, and shortest, Drp1 isoform (Drp1-short) has revealed the effect of these inserts on Drp1 function. Utilizing various biochemical, biophysical, and cellular approaches, we find that the A- and B-inserts distinctly alter the oligomerization propensity of Drp1 in solution as well as the preferred curvature of helical Drp1 self-assembly on membranes. Consequently, these sequences also suppress Drp1 cooperative GTPase activity. Mitochondrial fission factor (Mff), a tail-anchored membrane protein of the mitochondrial outer membrane that recruits Drp1 to sites of ensuing fission, differentially stimulates the disparate Drp1 isoforms and alleviates the autoinhibitory effect imposed by these sequences on Drp1 function. Moreover, the differential stimulatory effects of Mff on Drp1 isoforms are dependent on the mitochondrial lipid, cardiolipin (CL). Although Mff stimulation of the intrinsically cooperative Drp1-short isoform is relatively modest, CL-independent, and even counter-productive at high CL concentrations, Mff stimulation of the much less cooperative longest Drp1 isoform (Drp1-long) is robust and occurs synergistically with increasing CL content. Thus, membrane-anchored Mff differentially regulates various Drp1 isoforms by functioning as an allosteric effector of cooperative GTPase activity.
Collapse
Affiliation(s)
| | - Christopher A Francy
- Department of Pharmacology, Center for Mitochondrial Diseases, and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | | | - Lance Lehman
- From the Department of Physiology and Biophysics
| | | | - Jason A Mears
- Department of Pharmacology, Center for Mitochondrial Diseases, and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Xin Qi
- From the Department of Physiology and Biophysics, Center for Mitochondrial Diseases, and
| | - Rajesh Ramachandran
- From the Department of Physiology and Biophysics, Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| |
Collapse
|
129
|
Abstract
PURPOSE OF REVIEW Metabolic diseases, such as type 2 diabetes, cardiac dysfunction, hypertension, and hepatic steatosis, share one critical causative factor: abnormal lipid partitioning, that redistribution of triglycerides from adipocytes to nonadipose peripheral tissues. Lipid overload of these tissues causes a number of pathological effects collectively known as lipotoxicity. If we find the way to correct lipid partitioning, we will restrain metabolic diseases, improve life quality and life expectancy and radically reduce healthcare costs. RECENT FINDINGS Lipid partitioning in the body is maintained by tightly regulated and balanced rates of de novo lipogenesis, lipolysis, adipogenesis, and mitochondrial oxidation primarily in fat and liver. Recent studies highlighted in this review have established mTOR as a central regulator of lipid storage and metabolism. SUMMARY Increased activity of mTOR in obesity may compensate for the negative consequences of overnutrition, whereas dysregulation of mTOR may lead to abnormal lipid partitioning and metabolic disease.
Collapse
Affiliation(s)
- Partha Chakrabarti
- aDivision of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India bDepartment of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
130
|
Okamura DM, Pennathur S. The balance of powers: Redox regulation of fibrogenic pathways in kidney injury. Redox Biol 2015; 6:495-504. [PMID: 26448394 PMCID: PMC4600846 DOI: 10.1016/j.redox.2015.09.039] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/22/2015] [Accepted: 09/22/2015] [Indexed: 01/13/2023] Open
Abstract
Oxidative stress plays a central role in the pathogenesis of diverse chronic inflammatory disorders including diabetic complications, cardiovascular disease, aging, and chronic kidney disease (CKD). Patients with moderate to advanced CKD have markedly increased levels of oxidative stress and inflammation that likely contribute to the unacceptable high rates of morbidity and mortality in this patient population. Oxidative stress is defined as an imbalance of the generation of reactive oxygen species (ROS) in excess of the capacity of cells/tissues to detoxify or scavenge them. Such a state of oxidative stress may alter the structure/function of cellular macromolecules and tissues that eventually leads to organ dysfunction. The harmful effects of ROS have been largely attributed to its indiscriminate, stochastic effects on the oxidation of protein, lipids, or DNA but in many instances the oxidants target particular amino acid residues or lipid moieties. Oxidant mechanisms are intimately involved in cell signaling and are linked to several key redox-sensitive signaling pathways in fibrogenesis. Dysregulation of antioxidant mechanisms and overproduction of ROS not only promotes a fibrotic milieu but leads to mitochondrial dysfunction and further exacerbates kidney injury. Our studies support the hypothesis that unique reactive intermediates generated in localized microenvironments of vulnerable tissues such as the kidney activate fibrogenic pathways and promote end-organ damage. The ability to quantify these changes and assess response to therapies will be pivotal in understanding disease mechanisms and monitoring efficacy of therapy.
Collapse
Affiliation(s)
- Daryl M Okamura
- Seattle Children's Research Institute, Department of Pediatrics, University of Washington, Seattle, WA, USA.
| | - Subramaniam Pennathur
- University of Michigan, Department of Medicine, Division of Nephrology, Ann Arbor, MI, USA
| |
Collapse
|
131
|
Gonzalez-Rodriguez D, Sart S, Babataheri A, Tareste D, Barakat AI, Clanet C, Husson J. Elastocapillary Instability in Mitochondrial Fission. PHYSICAL REVIEW LETTERS 2015; 115:088102. [PMID: 26340213 DOI: 10.1103/physrevlett.115.088102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Indexed: 06/05/2023]
Abstract
Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.
Collapse
Affiliation(s)
| | - Sébastien Sart
- Laboratoire d'Hydrodynamique, Ecole Polytechnique, CNRS UMR 7646, 91128 Palaiseau, France
| | - Avin Babataheri
- Laboratoire d'Hydrodynamique, Ecole Polytechnique, CNRS UMR 7646, 91128 Palaiseau, France
| | - David Tareste
- Institut Jacques Monod, Université Paris Diderot, INSERM U950, CNRS UMR 7592, 75205 Paris, France
| | - Abdul I Barakat
- Laboratoire d'Hydrodynamique, Ecole Polytechnique, CNRS UMR 7646, 91128 Palaiseau, France
| | - Christophe Clanet
- Laboratoire d'Hydrodynamique, Ecole Polytechnique, CNRS UMR 7646, 91128 Palaiseau, France
| | - Julien Husson
- Laboratoire d'Hydrodynamique, Ecole Polytechnique, CNRS UMR 7646, 91128 Palaiseau, France
| |
Collapse
|
132
|
Mitochondrial Dysfunction Contributes to the Pathogenesis of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015. [PMID: 26221414 PMCID: PMC4499633 DOI: 10.1155/2015/509654] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that affects millions of people worldwide. Currently, there is no effective treatment for AD, which indicates the necessity to understand the pathogenic mechanism of this disorder. Extracellular aggregates of amyloid precursor protein (APP), called Aβ peptide and neurofibrillary tangles (NFTs), formed by tau protein in the hyperphosphorylated form are considered the hallmarks of AD. Accumulative evidence suggests that tau pathology and Aβ affect neuronal cells compromising energy supply, antioxidant response, and synaptic activity. In this context, it has been showed that mitochondrial function could be affected by the presence of tau pathology and Aβ in AD. Mitochondria are essential for brain cells function and the improvement of mitochondrial activity contributes to preventing neurodegeneration. Several reports have suggested that mitochondria could be affected in terms of morphology, bioenergetics, and transport in AD. These defects affect mitochondrial health, which later will contribute to the pathogenesis of AD. In this review, we will discuss evidence that supports the importance of mitochondrial injury in the pathogenesis of AD and how studying these mechanisms could lead us to suggest new targets for diagnostic and therapeutic intervention against neurodegeneration.
Collapse
|
133
|
Altered levels of mitochondrial DNA are associated with female age, aneuploidy, and provide an independent measure of embryonic implantation potential. PLoS Genet 2015; 11:e1005241. [PMID: 26039092 PMCID: PMC4454688 DOI: 10.1371/journal.pgen.1005241] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/26/2015] [Indexed: 12/12/2022] Open
Abstract
Mitochondria play a vital role in embryo development. They are the principal site of energy production and have various other critical cellular functions. Despite the importance of this organelle, little is known about the extent of variation in mitochondrial DNA (mtDNA) between individual human embryos prior to implantation. This study investigated the biological and clinical relevance of the quantity of mtDNA in 379 embryos. These were examined via a combination of microarray comparative genomic hybridisation (aCGH), quantitative PCR and next generation sequencing (NGS), providing information on chromosomal status, amount of mtDNA, and presence of mutations in the mitochondrial genome. The quantity of mtDNA was significantly higher in embryos from older women (P=0.003). Additionally, mtDNA levels were elevated in aneuploid embryos, independent of age (P=0.025). Assessment of clinical outcomes after transfer of euploid embryos to the uterus revealed that blastocysts that successfully implanted tended to contain lower mtDNA quantities than those failing to implant (P=0.007). Importantly, an mtDNA quantity threshold was established, above which implantation was never observed. Subsequently, the predictive value of this threshold was confirmed in an independent blinded prospective study, indicating that abnormal mtDNA levels are present in 30% of non-implanting euploid embryos, but are not seen in embryos forming a viable pregnancy. NGS did not reveal any increase in mutation in blastocysts with elevated mtDNA levels. The results of this study suggest that increased mtDNA may be related to elevated metabolism and are associated with reduced viability, a possibility consistent with the ‘quiet embryo’ hypothesis. Importantly, the findings suggest a potential role for mitochondria in female reproductive aging and the genesis of aneuploidy. Of clinical significance, we propose that mtDNA content represents a novel biomarker with potential value for in vitro fertilisation (IVF) treatment, revealing chromosomally normal blastocysts incapable of producing a viable pregnancy. Mitochondria are small membrane-enclosed structures and are found inside the cells of the body. Mitochondria actively participate in cellular life, and their main function is to generate energy which is used by the cell. For this reason mitochondria are considered as the powerhouses of cells. Unlike other cellular organelles, mitochondria contain their own DNA (mtDNA). MtDNA carries important genetic information concerning cellular metabolism and the generation of energy. It has been suggested that mitochondria and mtDNA could be of significance during early embryo development. Our work confirms this hypothesis. Specifically, our findings implicate mitochondria and their genome in female reproductive aging and the generation of embryonic chromosome abnormalities. Importantly, we describe a direct relationship between mtDNA quantity and the potential of an embryo to successfully become a baby. We propose that assessment of mtDNA quantity could be a novel way of identifying embryos with the highest ability to lead to healthy pregnancies and live births.
Collapse
|
134
|
Abstract
PURPOSE OF REVIEW Mitochondria are cellular organelles that are required for energy production. Emerging evidence demonstrates their role in oocyte development and reproduction. In this review, we examine recent animal and clinical studies on the role of mitochondria in fertility. We also analyse the impact of assisted reproductive techniques (ARTs) on mitochondrial function and discuss the future clinical implications of mitochondrial nutrients and mitochondrial replacement. RECENT FINDINGS Mitochondria affect all aspects of mammalian reproduction. They are essential for optimal oocyte maturation, fertilization and embryonic development. Mitochondrial dysfunction causes a decrease in oocyte quality and interferes with embryonic development. ART procedures affect mitochondrial function, while mitochondrial nutrients may increase mitochondrial performance in oocytes. New mitochondrial replacement procedures using mitochondria obtained from polar bodies or from the patient's own oogonial stem cells are promising and may address concerns related to the induction of high-levels of heteroplasmy, which could potentially result in negative long-term health effects. SUMMARY Optimal energy production is required for oocyte and embryo development, and mitochondrial abnormalities have devastating reproductive consequences. Improvement of oocyte mitochondrial function via intake of compounds that boost mitochondrial activity may have clinical benefits, and mitochondrial replacement could potentially be used for the prevention of mitochondrial diseases.
Collapse
Affiliation(s)
- Elnur Babayev
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
135
|
Salminen A, Haapasalo A, Kauppinen A, Kaarniranta K, Soininen H, Hiltunen M. Impaired mitochondrial energy metabolism in Alzheimer's disease: Impact on pathogenesis via disturbed epigenetic regulation of chromatin landscape. Prog Neurobiol 2015; 131:1-20. [PMID: 26001589 DOI: 10.1016/j.pneurobio.2015.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 05/05/2015] [Accepted: 05/11/2015] [Indexed: 12/14/2022]
Abstract
The amyloid cascade hypothesis for the pathogenesis of Alzheimer's disease (AD) was proposed over twenty years ago. However, the mechanisms of neurodegeneration and synaptic loss have remained elusive delaying the effective drug discovery. Recent studies have revealed that amyloid-β peptides as well as phosphorylated and fragmented tau proteins accumulate within mitochondria. This process triggers mitochondrial fission (fragmentation) and disturbs Krebs cycle function e.g. by inhibiting the activity of 2-oxoglutarate dehydrogenase. Oxidative stress, hypoxia and calcium imbalance also disrupt the function of Krebs cycle in AD brains. Recent studies on epigenetic regulation have revealed that Krebs cycle intermediates control DNA and histone methylation as well as histone acetylation and thus they have fundamental roles in gene expression. DNA demethylases (TET1-3) and histone lysine demethylases (KDM2-7) are included in the family of 2-oxoglutarate-dependent oxygenases (2-OGDO). Interestingly, 2-oxoglutarate is the obligatory substrate of 2-OGDO enzymes, whereas succinate and fumarate are the inhibitors of these enzymes. Moreover, citrate can stimulate histone acetylation via acetyl-CoA production. Epigenetic studies have revealed that AD is associated with changes in DNA methylation and histone acetylation patterns. However, the epigenetic results of different studies are inconsistent but one possibility is that they represent both coordinated adaptive responses and uncontrolled stochastic changes, which provoke pathogenesis in affected neurons. Here, we will review the changes observed in mitochondrial dynamics and Krebs cycle function associated with AD, and then clarify the mechanisms through which mitochondrial metabolites can control the epigenetic landscape of chromatin and induce pathological changes in AD.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | - Annakaisa Haapasalo
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Anu Kauppinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Hilkka Soininen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Mikko Hiltunen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland; Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| |
Collapse
|
136
|
Huang S, Wang Y, Gan X, Fang D, Zhong C, Wu L, Hu G, Sosunov AA, McKhann GM, Yu H, Yan SS. Drp1-mediated mitochondrial abnormalities link to synaptic injury in diabetes model. Diabetes 2015; 64:1728-42. [PMID: 25412623 PMCID: PMC4407851 DOI: 10.2337/db14-0758] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 11/15/2014] [Indexed: 02/05/2023]
Abstract
Diabetes has adverse effects on the brain, especially the hippocampus, which is particularly susceptible to synaptic injury and cognitive dysfunction. The underlying mechanisms and strategies to rescue such injury and dysfunction are not well understood. Using a mouse model of type 2 diabetes (db/db mice) and a human neuronal cell line treated with high concentration of glucose, we demonstrate aberrant mitochondrial morphology, reduced ATP production, and impaired activity of complex I. These mitochondrial abnormalities are induced by imbalanced mitochondrial fusion and fission via a glycogen synthase kinase 3β (GSK3β)/dynamin-related protein-1 (Drp1)-dependent mechanism. Modulation of the Drp1 pathway or inhibition of GSK3β activity restores hippocampal long-term potentiation that is impaired in db/db mice. Our results point to a novel role for mitochondria in diabetes-induced synaptic impairment. Exploration of the mechanisms behind diabetes-induced synaptic deficit may provide a novel treatment for mitochondrial and synaptic injury in patients with diabetes.
Collapse
Affiliation(s)
- Shengbin Huang
- Department of Pharmacology & Toxicology and Higuchi Biosciences Center, School of Pharmacy, University of Kansas, Lawrence, KS State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yongfu Wang
- Department of Pharmacology & Toxicology and Higuchi Biosciences Center, School of Pharmacy, University of Kansas, Lawrence, KS
| | - Xueqi Gan
- Department of Pharmacology & Toxicology and Higuchi Biosciences Center, School of Pharmacy, University of Kansas, Lawrence, KS State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Du Fang
- Department of Pharmacology & Toxicology and Higuchi Biosciences Center, School of Pharmacy, University of Kansas, Lawrence, KS
| | - Changjia Zhong
- Department of Pharmacology & Toxicology and Higuchi Biosciences Center, School of Pharmacy, University of Kansas, Lawrence, KS
| | - Long Wu
- Department of Pharmacology & Toxicology and Higuchi Biosciences Center, School of Pharmacy, University of Kansas, Lawrence, KS
| | - Gang Hu
- Department of Pharmacology & Toxicology and Higuchi Biosciences Center, School of Pharmacy, University of Kansas, Lawrence, KS
| | - Alexander A Sosunov
- Department of Neurosurgery, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Guy M McKhann
- Department of Neurosurgery, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Haiyang Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shirley ShiDu Yan
- Department of Pharmacology & Toxicology and Higuchi Biosciences Center, School of Pharmacy, University of Kansas, Lawrence, KS
| |
Collapse
|
137
|
Liu JM, Yi Z, Liu SZ, Chang JH, Dang XB, Li QY, Zhang YL. The mitochondrial division inhibitor mdivi-1 attenuates spinal cord ischemia-reperfusion injury both in vitro and in vivo: Involvement of BK channels. Brain Res 2015; 1619:155-65. [PMID: 25818100 DOI: 10.1016/j.brainres.2015.03.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 11/29/2022]
Abstract
Mitochondrial division inhibitor (mdivi-1), a selective inhibitor of a mitochondrial fission protein dynamin-related protein 1 (Drp1), has been shown to exert protective effects in heart and cerebral ischemia-reperfusion models. The present study was designed to investigate the beneficial effects of mdivi-1 against spinal cord ischemia-reperfusion (SCIR) injury and its associated mechanisms. SCIR injury was induced by glutamate treatment in cultured spinal cord neurons and by descending thoracic aorta occlusion for 20 min in rats. We found that mdivi-1 (10 μM) significantly attenuated glutamate induced neuronal injury and apoptosis in spinal cord neurons. This neuroprotective effect was accompanied by decreased expression of oxidative stress markers, inhibited mitochondrial dysfunction and preserved activities of antioxidant enzymes. In addition, mdivi-1 significantly increased the expression of the large-conductance Ca(2+)- and voltage-activated K(+) (BK) channels, and blocking BK channels by paxilline partly ablated mdivi-1 induced protection. The in vivo experiments showed that mdivi-1 treatment (1 mg/kg) overtly mitigated SCIR injury induced spinal cord edema and neurological dysfunction with no organ-related toxicity in rats. Moreover, mdivi-1 increased the expression of BK channels in spinal cord tissues, and paxilline pretreatment nullified mdivi-1 induced protection after SCIR injury in rats. Thus, mdivi-1 may be an effective therapeutic agent for SCIR injury via activation of BK channels as well as reduction of oxidative stress, mitochondrial dysfunction and neuronal apoptosis. This article is part of a Special Issue entitled SI: Spinal cord injury.
Collapse
Affiliation(s)
- Jian-Min Liu
- Department of Emergency, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710068, Shaanxi, China
| | - Zhi Yi
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, The Third affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710068, Shaanxi, China
| | - Shi-Zhang Liu
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, The Third affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710068, Shaanxi, China
| | - Jian-Hua Chang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710068, Shaanxi, China
| | - Xing-Bo Dang
- Department of Emergency, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710068, Shaanxi, China
| | - Quan-Yi Li
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, The Third affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710068, Shaanxi, China
| | - Yue-Lin Zhang
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, The Third affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710068, Shaanxi, China.
| |
Collapse
|
138
|
Wang K, Yan R, Cooper KF, Strich R. Cyclin C mediates stress-induced mitochondrial fission and apoptosis. Mol Biol Cell 2015; 26:1030-43. [PMID: 25609094 PMCID: PMC4357504 DOI: 10.1091/mbc.e14-08-1315] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are dynamic organelles that undergo constant fission and fusion cycles. In response to cellular damage, this balance is shifted dramatically toward fission. Cyclin C-Cdk8 kinase regulates transcription of diverse gene sets. Using knockout mouse embryonic fibroblasts (MEFs), we demonstrate that cyclin C directs the extensive mitochondrial scission induced by the anticancer drug cisplatin or oxidative stress. This activity is independent of transcriptional regulation, as Cdk8 is not required for this activity. Furthermore, adding purified cyclin C to unstressed permeabilized MEF cultures induced complete mitochondrial fragmentation that was dependent on the fission factors Drp1 and Mff. To regulate fission, a portion of cyclin C translocates from the nucleus to the cytoplasm, where it associates with Drp1 and is required for its enhanced mitochondrial activity in oxidatively stressed cells. In addition, although HeLa cells regulate cyclin C in a manner similar to MEF cells, U2OS osteosarcoma cultures display constitutively cytoplasmic cyclin C and semifragmented mitochondria. Finally, cyclin C, but not Cdk8, is required for loss of mitochondrial outer membrane permeability and apoptosis in cells treated with cisplatin. In conclusion, this study suggests that cyclin C connects stress-induced mitochondrial hyperfission and programmed cell death in mammalian cells.
Collapse
Affiliation(s)
- Kun Wang
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08055
| | - Ruilan Yan
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08055
| | - Katrina F Cooper
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08055
| | - Randy Strich
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08055
| |
Collapse
|
139
|
Morigi M, Perico L, Rota C, Longaretti L, Conti S, Rottoli D, Novelli R, Remuzzi G, Benigni A. Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury. J Clin Invest 2015; 125:715-26. [PMID: 25607838 DOI: 10.1172/jci77632] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 12/10/2014] [Indexed: 12/31/2022] Open
Abstract
Acute kidney injury (AKI) is a public health concern with an annual mortality rate that exceeds those of breast and prostate cancer, heart failure, and diabetes combined. Oxidative stress and mitochondrial damage are drivers of AKI-associated pathology; however, the pathways that mediate these events are poorly defined. Here, using a murine cisplatin-induced AKI model, we determined that both oxidative stress and mitochondrial damage are associated with reduced levels of renal sirtuin 3 (SIRT3). Treatment with the AMPK agonist AICAR or the antioxidant agent acetyl-l-carnitine (ALCAR) restored SIRT3 expression and activity, improved renal function, and decreased tubular injury in WT animals, but had no effect in Sirt3-/- mice. Moreover, Sirt3-deficient mice given cisplatin experienced more severe AKI than WT animals and died, and neither AICAR nor ALCAR treatment prevented death in Sirt3-/- AKI mice. In cultured human tubular cells, cisplatin reduced SIRT3, resulting in mitochondrial fragmentation, while restoration of SIRT3 with AICAR and ALCAR improved cisplatin-induced mitochondrial dysfunction. Together, our results indicate that SIRT3 is protective against AKI and suggest that enhancing SIRT3 to improve mitochondrial dynamics has potential as a strategy for improving outcomes of renal injury.
Collapse
|
140
|
Ugarte-Uribe B, García-Sáez AJ. Membranes in motion: mitochondrial dynamics and their role in apoptosis. Biol Chem 2015; 395:297-311. [PMID: 24184992 DOI: 10.1515/hsz-2013-0234] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/31/2013] [Indexed: 11/15/2022]
Abstract
Mitochondrial dynamics is crucial for cell survival, development and homeostasis and impairment of these functions leads to neurologic disorders and metabolic diseases. The key components of mitochondrial dynamics have been identified. Mitofusins and OPA1 mediate mitochondrial fusion, whereas Drp1 is responsible for mitochondrial fission. In addition, an interplay between the proteins of the mitochondrial fission/fusion machinery and the Bcl-2 proteins, essential mediators in apoptosis, has been also described. Here, we review the molecular mechanisms regarding mitochondrial dynamics together with their role in apoptosis.
Collapse
|
141
|
Fülöp L, Rajki A, Maka E, Molnár MJ, Spät A. Mitochondrial Ca2+ uptake correlates with the severity of the symptoms in autosomal dominant optic atrophy. Cell Calcium 2015; 57:49-55. [DOI: 10.1016/j.ceca.2014.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/28/2014] [Accepted: 11/29/2014] [Indexed: 12/22/2022]
|
142
|
Abstract
Mitochondria are highly dynamic organelles that are continuously shaped by the antagonistic fission and fusion processes. The major machineries of mitochondrial fission and fusion, as well as mechanisms that regulate the function of key players in these processes have been analyzed in different experimental systems. In plants however, the mitochondrial fusion machinery is still largely unknown, and the regulatory mechanisms of the fission machinery are just beginning to be elucidated. This review focuses on the molecular mechanisms underlying plant mitochondrial dynamics and regulation of some of the key factors, especially the roles of membrane lipids such as cardiolipin.
Collapse
Affiliation(s)
- Ronghui Pan
- Department of Energy Plant Research Laboratory; Michigan State University; East Lansing, MI USA
- Department of Biochemistry and Molecular Biology; Michigan State University; East Lansing, MI USA
| | - Jianping Hu
- Department of Energy Plant Research Laboratory; Michigan State University; East Lansing, MI USA
- Department of Plant Biology; Michigan State University; East Lansing, MI USA
- Correspondence to: Jianping Hu;
| |
Collapse
|
143
|
Aminoglycoside stress together with the 12S rRNA 1494C>T mutation leads to mitophagy. PLoS One 2014; 9:e114650. [PMID: 25474306 PMCID: PMC4256443 DOI: 10.1371/journal.pone.0114650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/12/2014] [Indexed: 12/16/2022] Open
Abstract
Aminoglycosides as modifying factors modulated the phenotypic manifestation of mitochondrial rRNA mutations and the incomplete penetrance of hearing loss. In this report, using cybrids harboring the m.1494C>T mutation, we showed that gentamycin aggravated mitochondrial dysfunction in a combination of the m.1494C>T mutation. The m.1494C>T mutation was responsible for the dramatic reduction in three mtDNA-encoded proteins of H-strand, with the average of 39% reduction, except of the MT-ND6 protein, accompanied with 21% reduction of ATP production and increase in mitochondrial reactive oxygen species, compared with those of control cybrids. After exposure to gentamycin, 35% reduction of mitochondrial ATP production was observed in mutant cybrids with a marked decrease of the mitochondrial membrane potential. More excessive cellular reactive oxygen species was detected with stimulus of gentamycin than those in mutant cells. Under gentamycin and m.1494C>T stress together, more dysfunctional mitochondria were forced to fuse and exhibited mitophagy via up-regulated LC3-B, as a compensatory protective response to try to optimize mitochondrial function, rather than undergo apoptosis. These findings may provide valuable information to further understand of mechanistic link between mitochondrial rRNA mutation, toxicity of AGs and hearing loss.
Collapse
|
144
|
Delmotte P, Sieck GC. Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca(2+) regulation in airway smooth muscle (ASM). Can J Physiol Pharmacol 2014; 93:97-110. [PMID: 25506723 DOI: 10.1139/cjpp-2014-0361] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca(2+) ([Ca(2+)]cyt) responses to agonist stimulation and Ca(2+) sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca(2+)]cyt induced by agonists leads to a transient increase in mitochondrial Ca(2+) ([Ca(2+)]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca(2+)]mito is blunted despite enhanced [Ca(2+)]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion-ER/SR coupling, decreased mitochondrial Ca(2+) buffering, mitochondrial fragmentation, and increased cell proliferation.
Collapse
Affiliation(s)
- Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, 4-184 West Joseph SMH, 200 First Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
145
|
Evidence to support mitochondrial neuroprotection, in severe traumatic brain injury. J Bioenerg Biomembr 2014; 47:133-48. [PMID: 25358440 DOI: 10.1007/s10863-014-9589-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/13/2014] [Indexed: 12/22/2022]
Abstract
Traumatic brain injury (TBI) is still the leading cause of disability in young adults worldwide. The major mechanisms - diffuse axonal injury, cerebral contusion, ischemic neurological damage, and intracranial hematomas have all been shown to be associated with mitochondrial dysfunction in some form. Mitochondrial dysfunction in TBI patients is an active area of research, and attempts to manipulate neuronal/astrocytic metabolism to improve outcomes have been met with limited translational success. Previously, several preclinical and clinical studies on TBI induced mitochondrial dysfunction have focused on opening of the mitochondrial permeability transition pore (PTP), consequent neurodegeneration and attempts to mitigate this degeneration with cyclosporine A (CsA) or analogous drugs, and have been unsuccessful. Recent insights into normal mitochondrial dynamics and into diseases such as inherited mitochondrial neuropathies, sepsis and organ failure could provide novel opportunities to develop mitochondria-based neuroprotective treatments that could improve severe TBI outcomes. This review summarizes those aspects of mitochondrial dysfunction underlying TBI pathology with special attention to models of penetrating traumatic brain injury, an epidemic in modern American society.
Collapse
|
146
|
Rimessi A, Bonora M, Marchi S, Patergnani S, Marobbio CMT, Lasorsa FM, Pinton P. Perturbed mitochondrial Ca2+signals as causes or consequences of mitophagy induction. Autophagy 2014; 9:1677-86. [DOI: 10.4161/auto.24795] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
147
|
Dirks-Naylor AJ, Kouzi SA, Yang S, Tran NTK, Bero JD, Mabolo R, Phan DT, Whitt SD, Taylor HN. Can short-term fasting protect against doxorubicin-induced cardiotoxicity? World J Biol Chem 2014; 5:269-274. [PMID: 25225594 PMCID: PMC4160520 DOI: 10.4331/wjbc.v5.i3.269] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/26/2014] [Accepted: 06/11/2014] [Indexed: 02/05/2023] Open
Abstract
Doxorubicin (Dox) is one of the most effective chemotherapeutic agents used in the treatment of several types of cancer. However the use is limited by cardiotoxicity. Despite extensive investigation into the mechanisms of toxicity and preventative strategies, Dox-induced cardiotoxicity still remains a major cause of morbidity and mortality in cancer survivors. Thus, continued research into preventative strategies is vital. Short-term fasting has proven to be cardioprotective against a variety of insults. Despite the potential, only a few studies have been conducted investigating its ability to prevent Dox-induced cardiotoxicity. However, all show proof-of-principle that short-term fasting is cardioprotective against Dox. Fasting affects a plethora of cellular processes making it difficult to discern the mechanism(s) translating fasting to cardioprotection, but may involve suppression of insulin and insulin-like growth factor-1 signaling with stimulated autophagy. It is likely that additional mechanisms also contribute. Importantly, the literature suggests that fasting may enhance the antitumor activity of Dox. Thus, fasting is a regimen that warrants further investigation as a potential strategy to prevent Dox-induced cardiotoxicity. Future research should aim to determine the optimal regimen of fasting, confirmation that this regimen does not interfere with the antitumor properties of Dox, as well as the underlying mechanisms exerting the cardioprotective effects.
Collapse
|
148
|
Felser A, Lindinger PW, Schnell D, Kratschmar DV, Odermatt A, Mies S, Jenö P, Krähenbühl S. Hepatocellular toxicity of benzbromarone: effects on mitochondrial function and structure. Toxicology 2014; 324:136-46. [PMID: 25108121 DOI: 10.1016/j.tox.2014.08.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/22/2014] [Accepted: 08/04/2014] [Indexed: 12/22/2022]
Abstract
Benzbromarone is an uricosuric structurally related to amiodarone and a known mitochondrial toxicant. The aim of the current study was to improve our understanding in the molecular mechanisms of benzbromarone-associated hepatic mitochondrial toxicity. In HepG2 cells and primary human hepatocytes, ATP levels started to decrease in the presence of 25-50μM benzbromarone for 24-48h, whereas cytotoxicity was observed only at 100μM. In HepG2 cells, benzbromarone decreased the mitochondrial membrane potential starting at 50μM following incubation for 24h. Additionally, in HepG2 cells, 50μM benzbromarone for 24h induced mitochondrial uncoupling,and decreased mitochondrial ATP turnover and maximal respiration. This was accompanied by an increased lactate concentration in the cell culture supernatant, reflecting increased glycolysis as a compensatory mechanism to maintain cellular ATP. Investigation of the electron transport chain revealed a decreased activity of all relevant enzyme complexes. Furthermore, treatment with benzbromarone was associated with increased cellular ROS production, which could be located specifically to mitochondria. In HepG2 cells and in isolated mouse liver mitochondria, benzbromarone also reduced palmitic acid metabolism due to an inhibition of the long-chain acyl CoA synthetase. In HepG2 cells, benzbromarone disrupted the mitochondrial network, leading to mitochondrial fragmentation and a decreased mitochondrial volume per cell. Cell death occurred by both apoptosis and necrosis. The study demonstrates that benzbromarone not only affects the function of mitochondria in HepG2 cells and human hepatocytes, but is also associated with profound changes in mitochondrial structure which may be associated with apoptosis.
Collapse
Affiliation(s)
- Andrea Felser
- Clinical Pharmacology & Toxicology, University Hospital Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland
| | - Peter W Lindinger
- Clinical Pharmacology & Toxicology, University Hospital Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland; Swiss Center of Applied Human Toxicology (SCAHT), Switzerland
| | - Dominik Schnell
- Clinical Pharmacology & Toxicology, University Hospital Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland
| | - Denise V Kratschmar
- Swiss Center of Applied Human Toxicology (SCAHT), Switzerland; Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Switzerland
| | - Alex Odermatt
- Swiss Center of Applied Human Toxicology (SCAHT), Switzerland; Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Switzerland
| | | | - Paul Jenö
- Biozentrum, University of Basel, Switzerland
| | - Stephan Krähenbühl
- Clinical Pharmacology & Toxicology, University Hospital Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland; Swiss Center of Applied Human Toxicology (SCAHT), Switzerland.
| |
Collapse
|
149
|
de Sousa RT, Machado-Vieira R, Zarate CA, Manji HK. Targeting mitochondrially mediated plasticity to develop improved therapeutics for bipolar disorder. Expert Opin Ther Targets 2014; 18:1131-47. [PMID: 25056514 DOI: 10.1517/14728222.2014.940893] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Bipolar disorder (BPD) is a severe illness with few treatments available. Understanding BPD pathophysiology and identifying potential relevant targets could prove useful for developing new treatments. Remarkably, subtle impairments of mitochondrial function may play an important role in BPD pathophysiology. AREAS COVERED This article focuses on human studies and reviews evidence of mitochondrial dysfunction in BPD as a promising target for the development of new, improved treatments. Mitochondria are crucial for energy production, generated mainly through the electron transport chain (ETC) and play an important role in regulating apoptosis and calcium (Ca²⁺) signaling as well as synaptic plasticity. Mitochondria move throughout the neurons to provide energy for intracellular signaling. Studies showed polymorphisms of mitochondria-related genes as risk factors for BPD. Postmortem studies in BPD also show decreased ETC activity/expression and increased nitrosative and oxidative stress (OxS) in patient brains. BPD has been also associated with increased OxS, Ca²⁺ dysregulation and increased proapoptotic signaling in peripheral blood. Neuroimaging studies consistently show decreased energy levels and pH in brains of BPD patients. EXPERT OPINION Targeting mitochondrial function, and their role in energy metabolism, synaptic plasticity and cell survival, may be an important avenue for development of new mood-stabilizing agents.
Collapse
Affiliation(s)
- Rafael T de Sousa
- University of Sao Paulo, Institute and Department of Psychiatry, Laboratory of Neuroscience, LIM-27, Faculty of Medicine , Paulo Rua Ovidio Pires de Campos 785, São Paulo, SP , Brazil
| | | | | | | |
Collapse
|
150
|
Pan R, Kaur N, Hu J. The Arabidopsis mitochondrial membrane-bound ubiquitin protease UBP27 contributes to mitochondrial morphogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:1047-59. [PMID: 24707813 DOI: 10.1111/tpj.12532] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 05/13/2023]
Abstract
Mitochondria are essential organelles with dynamic morphology and function. Post-translational modifications (PTMs), which include protein ubiquitination, are critically involved in animal and yeast mitochondrial dynamics. How PTMs contribute to plant mitochondrial dynamics is just beginning to be elucidated, and mitochondrial enzymes involved in ubiquitination have not been reported from plants. In this study, we identified an Arabidopsis mitochondrial localized ubiquitin protease, UBP27, through a screen that combined bioinformatics and fluorescent fusion protein targeting analysis. We characterized UBP27 with respect to its membrane topology and enzymatic activities, and analysed the mitochondrial morphological changes in UBP27T-DNA insertion mutants and overexpression lines. We have shown that UBP27 is embedded in the mitochondrial outer membrane with an Nin -Cout orientation and possesses ubiquitin protease activities in vitro. UBP27 demonstrates similar sub-cellular localization, domain structure, membrane topology and enzymatic activities with two mitochondrial deubiquitinases, yeast ScUBP16 and human HsUSP30, which indicated that these proteins are functional orthologues in eukaryotes. Although loss-of-function mutants of UBP27 do not show obvious phenotypes in plant growth and mitochondrial morphology, UBP27 overexpression can change mitochondrial morphology from rod to spherical shape and reduce the mitochondrial association of dynamin-related protein 3 (DRP3) proteins, large GTPases that serve as the main mitochondrial fission factors. Thus, our study has uncovered a plant ubiquitin protease that plays a role in mitochondrial morphogenesis possibly through modulation of the function of organelle division proteins.
Collapse
Affiliation(s)
- Ronghui Pan
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | | | | |
Collapse
|