101
|
Ding J, Tasker C, Valere K, Sihvonen T, Descalzi-Montoya DB, Lu W, Chang TL. Anti-HIV activity of human defensin 5 in primary CD4+ T cells under serum-deprived conditions is a consequence of defensin-mediated cytotoxicity. PLoS One 2013; 8:e76038. [PMID: 24086683 PMCID: PMC3783372 DOI: 10.1371/journal.pone.0076038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/22/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND We have previously shown that human defensin 5 (HD5) promotes HIV infectivity in both primary CD4+ T cells and HeLa cells expressing CD4 and CCR5. HD5 is induced in response to sexually transmitted infections (STIs) such as Chlamydia trachomatis and Neisseria gonorrhoeae, suggesting it plays a role in STI-mediated enhancement of HIV transmission. In contrast to our findings, a recent study reports that HD5 has an anti-HIV effect in primary CD4+ T cells under serum-deprived conditions. To resolve these apparently contradictory observations, we investigated experimental parameters that might contribute to contrasting effects of HD5. RESULTS Serum-deprived culture conditions were associated with anti-HIV activity. In contrast to the dependence of the HIV enhancing effect on HD5 structure, the anti-HIV activity in serum-deprived primary CD4+ T cells was independent of HD5 structure as the linear peptide [Abu] HD5 exhibited similar anti-HIV activity. Under serum deprived conditions, HD5 blocked CD4-receptor-independent HIV-1vsv infection before or after viral entry. We found that HD5 and its linear form induced significant cell death in primary CD4+ T cells under serum-deprived culture conditions. HD5-mediated apoptosis was observed as early as 2 h after addition of defensins to serum-deprived primary CD4+ T cells. In contrast to primary CD4+ T cells, HD5 did not induce cytotoxicity and promote HIV infectivity of HeLa-CD4-CCR5 cells under serum-deprived conditions. CONCLUSIONS These results indicate that under serum-deprived culture conditions HD5 is toxic for primary CD4+ T cells, warranting caution in data interpretation.
Collapse
Affiliation(s)
- Jian Ding
- Public Health Research Institute, Rutgers Biomedical and Health Sciences-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Carley Tasker
- Department of Microbiology and Molecular Genetics, Rutgers Biomedical and Health Sciences-New Jersey Medical School, Newark, New Jersey, United States of America
- Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Kimyata Valere
- Department of Microbiology and Molecular Genetics, Rutgers Biomedical and Health Sciences-New Jersey Medical School, Newark, New Jersey, United States of America
- Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Tiina Sihvonen
- Public Health Research Institute, Rutgers Biomedical and Health Sciences-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Dante B. Descalzi-Montoya
- Department of Pathology and Laboratory Medicine, Rutgers Biomedical and Health Sciences-New Jersey Medical School, Newark, New Jersey, United States of America
- Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Theresa L. Chang
- Public Health Research Institute, Rutgers Biomedical and Health Sciences-New Jersey Medical School, Newark, New Jersey, United States of America
- Department of Microbiology and Molecular Genetics, Rutgers Biomedical and Health Sciences-New Jersey Medical School, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
102
|
Cellular response to Trypanosoma cruzi infection induces secretion of defensin α-1, which damages the flagellum, neutralizes trypanosome motility, and inhibits infection. Infect Immun 2013; 81:4139-48. [PMID: 23980110 DOI: 10.1128/iai.01459-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human defensins play a fundamental role in the initiation of innate immune responses to some microbial pathogens. Here we show that colonic epithelial model HCT116 cells respond to Trypanosoma cruzi infection by secreting defensin α-1, which reduces infection. We also report the early effects of defensin α-1 on invasive trypomastigotes that involve damage of the flagellar structure to inhibit parasite motility and reduce cellular infection. Short exposure of defensin α-1 to trypomastigotes shows that defensin α-1 binds to the flagellum, resulting in flagellar membrane and axoneme alterations, followed by breaking of the flagellar membrane connected to the trypanosome body, leading to detachment and release of the parasite flagellum. In addition, defensin α-1 induces a significant reduction in parasite motility in a peptide concentration-dependent manner, which is abrogated by anti-defensin α-1 IgG. Preincubation of trypomastigotes with a concentration of defensin α-1 that inhibits 50% trypanosome motility significantly reduced cellular infection by 80%. Thus, human defensin α-1 is an innate immune molecule that is secreted by HCT116 cells in response to T. cruzi infection, inhibits T. cruzi motility, and plays an important role in reducing cellular infection. This is the first report showing a novel cellular innate immune response to a human parasite by secretion of defensin α-1, which neutralizes the motility of a human parasite to reduce cellular infection. The mode of activity of human defensin α-1 against T. cruzi and its function may provide insights for the development of new antiparasitic strategies.
Collapse
|
103
|
Flatt JW, Kim R, Smith JG, Nemerow GR, Stewart PL. An intrinsically disordered region of the adenovirus capsid is implicated in neutralization by human alpha defensin 5. PLoS One 2013; 8:e61571. [PMID: 23620768 PMCID: PMC3631211 DOI: 10.1371/journal.pone.0061571] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/10/2013] [Indexed: 11/18/2022] Open
Abstract
Human α-defensins are proteins of the innate immune system that suppress viral and bacterial infections by multiple mechanisms including membrane disruption. For viruses that lack envelopes, such as human adenovirus (HAdV), other, less well defined, mechanisms must be involved. A previous structural study on the interaction of an α-defensin, human α-defensin 5 (HD5), with HAdV led to a proposed mechanism in which HD5 stabilizes the vertex region of the capsid and blocks uncoating steps required for infectivity. Studies with virus chimeras comprised of capsid proteins from sensitive and resistant serotypes supported this model. To further characterize the critical binding site, we determined subnanometer resolution cryo-electron microscopy (cryoEM) structures of HD5 complexed with both neutralization-sensitive and -resistant HAdV chimeras. Models were built for the vertex regions of these chimeras with monomeric and dimeric forms of HD5 in various initial orientations. CryoEM guided molecular dynamics flexible fitting (MDFF) was used to restrain the majority of the vertex model in well-defined cryoEM density. The RGD-containing penton base loops of both the sensitive and resistant virus chimeras are predicted to be intrinsically disordered, and little cryoEM density is observed for them. In simulations these loops from the sensitive virus chimera, interact with HD5, bridge the penton base and fiber proteins, and provides significant stabilization with a three-fold increase in the intermolecular nonbonded interactions of the vertex complex. In the case of the resistant virus chimera, simulations revealed fewer bridging interactions and reduced stabilization by HD5. This study implicates a key dynamic region in mediating a stabilizing interaction between a viral capsid and a protein of the innate immune system with potent anti-viral activity.
Collapse
Affiliation(s)
- Justin W. Flatt
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Robert Kim
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jason G. Smith
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Glen R. Nemerow
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Phoebe L. Stewart
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
104
|
Abstract
The propensity for capsid disassembly and uncoating of human adenovirus is modulated by interactions with host cell molecules like integrins and alpha defensins. Here, we use atomic force microscopy (AFM) nanoindentation to elucidate, at the single-particle level, the mechanism by which binding of these host molecules affects virus particle elasticity. Our results demonstrate the direct link between integrin or defensin binding and the mechanical properties of the virus. We show that the structure and geometry of adenovirus result in an anisotropic elastic response that relates to icosahedral symmetry. This elastic response changes upon binding host molecules. Whereas integrin binding softens the vertex regions, binding of a human alpha defensin has exactly the opposite effect. Our results reveal that the ability of these host molecules to influence adenovirus disassembly correlates with a direct effect on the elastic strength of the penton region. Host factors that influence adenovirus infectivity thus modulate the elastic properties of the capsid. Our findings reveal a direct link between virus-host interactions and capsid mechanics.
Collapse
|
105
|
Wommack AJ, Robson SA, Wanniarachchi YA, Wan A, Turner CJ, Wagner G, Nolan EM. NMR solution structure and condition-dependent oligomerization of the antimicrobial peptide human defensin 5. Biochemistry 2012; 51:9624-37. [PMID: 23163963 DOI: 10.1021/bi301255u] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human defensin 5 (HD5) is a 32-residue host-defense peptide expressed in the gastrointestinal, reproductive, and urinary tracts that has antimicrobial activity. It exhibits six cysteine residues that are regiospecifically oxidized to form three disulfide bonds (Cys(3)-Cys(31), Cys(5)-Cys(20), and Cys(10)-Cys(30)) in the oxidized form (HD5(ox)). To probe the solution structure and oligomerization properties of HD5(ox), and select mutant peptides lacking one or more disulfide bonds, NMR solution studies and analytical ultracentrifugation experiments are reported in addition to in vitro peptide stability assays. The NMR solution structure of HD5(ox), solved at pH 4.0 in 90:10 H(2)O/D(2)O, is presented (PDB: 2LXZ ). Relaxation T(1)/T(2) measurements and the rotational correlation time (τ(c)) estimated from a (15)N-TRACT experiment demonstrate that HD5(ox) is dimeric under these experimental conditions. Exchange broadening of the Hα signals in the NMR spectra suggests that residues 19-21 (Val(19)-Cys(20)-Glu(21)) contribute to the dimer interface in solution. Exchange broadening is also observed for residues 7-14 comprising the loop. Sedimentation velocity and equilibrium studies conducted in buffered aqueous solution reveal that the oligomerization state of HD5(ox) is pH-dependent. Sedimentation coefficients of ca. 1.8 S and a molecular weight of 14 363 Da were determined for HD5(ox) at pH 7.0, supporting a tetrameric form ([HD5(ox)] ≥ 30 μM). At pH 2.0, a sedimentation coefficient of ca. 1.0 S and a molecular weight of 7079 Da, corresponding to a HD5(ox) dimer, were obtained. Millimolar concentrations of NaCl, CaCl(2), and MgCl(2) have a negligible effect on the HD5(ox) sedimentation coefficients in buffered aqueous solution at neutral pH. Removal of a single disulfide bond results in a loss of peptide fold and quaternary structure. These biophysical investigations highlight the dynamic and environmentally sensitive behavior of HD5(ox) in solution, and provide important insights into HD5(ox) structure/activity relationships and the requirements for antimicrobial action.
Collapse
Affiliation(s)
- Andrew J Wommack
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
106
|
Reduced infectivity of adenovirus type 5 particles and degradation of entering viral genomes associated with incomplete processing of the preterminal protein. J Virol 2012; 86:13554-65. [PMID: 23035217 DOI: 10.1128/jvi.02337-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
To investigate further the contribution of the adenovirus type 5 (Ad5) E1B 55-kDa protein to genome replication, viral DNA accumulation was examined in primary human fibroblasts and epithelial cells infected with Ad5 or the E1B 55-kDa-null mutant Hr6. Unexpectedly, all cell types were observed to contain a significantly higher concentration of entering Hr6 than of Ad5 DNA, as did an infectious unit of Hr6. However, the great majority of the Hr6 genomes were degraded soon after entry. As this unusual phenotype cannot be ascribed to the Hr6 E1B frameshift mutation (J. S. Chahal and S. J. Flint, J. Virol. 86:3064-3072, 2012), the sequences of the Ad5 and Hr6 genomes were compared by using high-throughput sequencing. Seven previously unrecognized mutations were identified in the Hr6 genome, two of which result in substitutions in virion proteins, G315V in the preterminal protein (preTP) and A406V in fiber protein IV. Previous observations and the visualization by immunofluorescence of greater numbers of viral genomes entering the cytosol of Hr6-infected cells than of Ad5-infected cells indicated that the fiber mutation could not be responsible for the low-infectivity phenotype of Hr6. However, comparison of the forms of terminal protein present in purified virus particles indicated that the production of mature terminal protein from a processing intermediate is impaired in Hr6 particles. We therefore propose that complete processing of preTP within virus particles is necessary for the ability of viral genomes to become localized at appropriate sites and persist in infected cells.
Collapse
|
107
|
Furci L, Tolazzi M, Sironi F, Vassena L, Lusso P. Inhibition of HIV-1 infection by human α-defensin-5, a natural antimicrobial peptide expressed in the genital and intestinal mucosae. PLoS One 2012; 7:e45208. [PMID: 23028850 PMCID: PMC3459904 DOI: 10.1371/journal.pone.0045208] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/17/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND α-defensin-5 (HD5) is a key effector of the innate immune system with broad anti-bacterial and anti-viral activities. Specialized epithelial cells secrete HD5 in the genital and gastrointestinal mucosae, two anatomical sites that are critically involved in HIV-1 transmission and pathogenesis. We previously found that human neutrophil defensins (HNP)-1 and -2 inhibit HIV-1 entry by specific bilateral interaction both with the viral envelope and with its primary cellular receptor, CD4. Despite low amino acid identity, human defensin-5 (HD5) shares with HNPs a high degree of structural homology. METHODOLOGY/PRINCIPAL FINDINGS Here, we demonstrate that HD5 inhibits HIV-1 infection of primary CD4(+) T lymphocytes at low micromolar concentration under serum-free and low-ionic-strength conditions similar to those occurring in mucosal fluids. Blockade of HIV-1 infection was observed with both primary and laboratory-adapted strains and was independent of the viral coreceptor-usage phenotype. Similar to HNPs, HD5 inhibits HIV-1 entry into the target cell by interfering with the reciprocal interaction between the external envelope glycoprotein, gp120, and CD4. At high concentrations, HD5 was also found to downmodulate expression of the CXCR4 coreceptor, but not of CCR5. Consistent with its broad spectrum of activity, antibody competition studies showed that HD5 binds to a region overlapping with the CD4- and coreceptor-binding sites of gp120, but not to the V3 loop region, which contains the major determinants of coreceptor-usage specificity. CONCLUSION/SIGNIFICANCE These findings provide new insights into the first line of immune defense against HIV-1 at the mucosal level and open new perspectives for the development of preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Lucinda Furci
- Unit of Human Virology, Department of Biological and Technological Research, San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | | | |
Collapse
|
108
|
Okorochenkov SA, Zheltukhina GA, Nebol'sin VE. [Antimicrobial peptides: mode of action and perspectives of practical application]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2012; 58:131-43. [PMID: 22724354 DOI: 10.18097/pbmc20125802131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review is devoted to antimicrobial peptides (AMP's) that demonstrate activity against bacteria, viruses and fungi. It considers structure and mechanism of AMP interaction with lipid membrane and intracellular targets of pathogens. Special attention is paid to modem state and perspectives of AMP practical application and also to approaches that increase efficacy and reduce toxicity of AMP by chemical modification of their structure.
Collapse
|
109
|
Abstract
A key step in adenovirus cell entry is viral penetration of cellular membranes to gain access to the cytoplasm and deliver the genome to the nucleus. Yet little is known about this important event in the adenoviral life cycle. Using the cytosolic protein galectin-3 (gal3) as a marker of membrane rupture with both live- and fixed-cell imaging, we demonstrate that in the majority of instances, exposure of pVI and recruitment of gal3 to ruptured membranes occur early at or near the cell surface and occur minimally in EEA-1-positive (EEA-1(+)) early endosomes or LAMP-1(+) late endosomes/lysosomes. Live-cell imaging of Ad5 egress from gal3(+) endosomes occurs most frequently from perinuclear locations. While the Ad5 capsid is observed escaping from gal3(+) endosomes, pVI appears to remain associated with the gal3(+) ruptured endosomes. Thus, Ad5 membrane rupture and endosomal escape appear to be both spatially and temporally distinct events.
Collapse
|
110
|
Demirkhanyan LH, Marin M, Padilla-Parra S, Zhan C, Miyauchi K, Jean-Baptiste M, Novitskiy G, Lu W, Melikyan GB. Multifaceted mechanisms of HIV-1 entry inhibition by human α-defensin. J Biol Chem 2012; 287:28821-38. [PMID: 22733823 DOI: 10.1074/jbc.m112.375949] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The human neutrophil peptide 1 (HNP-1) is known to block the human immunodeficiency virus type 1 (HIV-1) infection, but the mechanism of inhibition is poorly understood. We examined the effect of HNP-1 on HIV-1 entry and fusion and found that, surprisingly, this α-defensin inhibited multiple steps of virus entry, including: (i) Env binding to CD4 and coreceptors; (ii) refolding of Env into the final 6-helix bundle structure; and (iii) productive HIV-1 uptake but not internalization of endocytic markers. Despite its lectin-like properties, HNP-1 could bind to Env, CD4, and other host proteins in a glycan- and serum-independent manner, whereas the fusion inhibitory activity was greatly attenuated in the presence of human or bovine serum. This demonstrates that binding of α-defensin to molecules involved in HIV-1 fusion is necessary but not sufficient for blocking the virus entry. We therefore propose that oligomeric forms of defensin, which may be disrupted by serum, contribute to the anti-HIV-1 activity perhaps through cross-linking virus and/or host glycoproteins. This notion is supported by the ability of HNP-1 to reduce the mobile fraction of CD4 and coreceptors in the plasma membrane and to precipitate a core subdomain of Env in solution. The ability of HNP-1 to block HIV-1 uptake without interfering with constitutive endocytosis suggests a novel mechanism for broad activity against this and other viruses that enter cells through endocytic pathways.
Collapse
Affiliation(s)
- Lusine H Demirkhanyan
- Division of Pediatric Infectious Diseases, Emory University Children's Center, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Abstract
Despite a central role in immunity, antibody neutralization of virus infection is poorly understood. Here we show how the neutralization and persistence of adenovirus type 5, a prevalent nonenveloped human virus, are dependent upon the intracellular antibody receptor TRIM21. Cells with insufficient amounts of TRIM21 are readily infected, even at saturating concentrations of neutralizing antibody. Conversely, high TRIM21 expression levels decrease the persistent fraction of the infecting virus and allows neutralization by as few as 1.6 antibody molecules per virus. The direct interaction between TRIM21 and neutralizing antibody is essential, as single-point mutations within the TRIM21-binding site in the Fc region of a potently neutralizing antibody impair neutralization. However, infection at high multiplicity can saturate TRIM21 and overcome neutralization. These results provide insight into the mechanism and importance of a newly discovered, effector-driven process of antibody neutralization of nonenveloped viruses.
Collapse
|
112
|
Gounder AP, Wiens ME, Wilson SS, Lu W, Smith JG. Critical determinants of human α-defensin 5 activity against non-enveloped viruses. J Biol Chem 2012; 287:24554-62. [PMID: 22637473 DOI: 10.1074/jbc.m112.354068] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human α-defensins, such as human α-defensin 5 (HD5), block infection of non-enveloped viruses, including human adenoviruses (AdV), papillomaviruses (HPV), and polyomaviruses. Through mutational analysis of HD5, we have identified arginine residues that contribute to antiviral activity against AdV and HPV. Of two arginine residues paired on one face of HD5, Arg-28 is critical for both viruses, while Arg-9 is only important for AdV. Two arginine residues on the opposite face of the molecule (Arg-13 and Arg-32) and unpaired Arg-25 are less important for both. In addition, hydrophobicity at residue 29 is a major determinant of anti-adenoviral activity, and a chemical modification that prevents HD5 self-association was strongly attenuating. Although HD5 binds to the capsid of AdV, the molecular basis for this interaction is undefined. Capsid binding by HD5 is not purely charge-dependent, as substitution of lysine for Arg-9 and Arg-28 was deleterious. Analysis of HD5 analogs that retained varying levels of potency demonstrated that anti-adenoviral activity is directly correlated with HD5 binding to the virus, confirming that the viral capsid rather than the cell is the relevant target. Also, AdV aggregation induced by HD5 binding is not sufficient for neutralization. Rather, these studies confirm that the major mechanism of HD5-mediated neutralization of AdV depends upon specific binding to the viral capsid through interactions mediated in part by critical arginine residues, hydrophobicity at residue 29, and multimerization of HD5, which increases initial binding of virus to the cell but prevents subsequent viral uncoating and genome delivery to the nucleus.
Collapse
Affiliation(s)
- Anshu P Gounder
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
113
|
Disulfide-bond formation by a single cysteine mutation in adenovirus protein VI impairs capsid release and membrane lysis. Virology 2012; 428:41-7. [PMID: 22516138 DOI: 10.1016/j.virol.2012.03.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/15/2012] [Accepted: 03/30/2012] [Indexed: 11/21/2022]
Abstract
The internal capsid protein VI mediates adenovirus (AdV) endosome penetration during cell entry. Essential to this process is the release of protein VI from the AdV capsid and subsequent membrane targeting and insertion by the liberated VI molecules within the endocytic vesicle. In this study, we describe a human AdV (HAdV) substitution mutant (AdV VI-G48C) within the critical N-terminal amphipathic α-helical domain of protein VI. The VI-G48C virus displays altered capsid stability that impacts protein VI release, membrane disruption and virus infectivity. This is due in part to aberrant disulfide-bonding of protein VI molecules within the AdV particle. Our results provide insight into the structural organization of protein VI in the virus particle, as well as highlight the role of protein VI in cell entry.
Collapse
|
114
|
Spencer JD, Hains DS, Porter E, Bevins CL, DiRosario J, Becknell B, Wang H, Schwaderer AL. Human alpha defensin 5 expression in the human kidney and urinary tract. PLoS One 2012; 7:e31712. [PMID: 22359618 PMCID: PMC3281003 DOI: 10.1371/journal.pone.0031712] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 01/11/2012] [Indexed: 11/18/2022] Open
Abstract
Background The mechanisms that maintain sterility in the urinary tract are incompletely understood. Recent studies have implicated the importance of antimicrobial peptides (AMP) in protecting the urinary tract from infection. Here, we characterize the expression and relevance of the AMP human alpha-defensin 5 (HD5) in the human kidney and urinary tract in normal and infected subjects. Methodology/Principal Findings Using RNA isolated from human kidney, ureter, and bladder tissue, we performed quantitative real-time PCR to show that DEFA5, the gene encoding HD5, is constitutively expressed throughout the urinary tract. With pyelonephritis, DEFA5 expression significantly increased in the kidney. Using immunoblot analysis, HD5 production also increased with pyelonephritis. Immunostaining localized HD5 to the urothelium of the bladder and ureter. In the kidney, HD5 was primarily produced in the distal nephron and collecting tubules. Using immunoblot and ELISA assays, HD5 was not routinely detected in non-infected human urine samples while mean urinary HD5 production increased with E.coli urinary tract infection. Conclusions/Significance DEFA5 is expressed throughout the urinary tract in non-infected subjects. Specifically, HD5 is expressed throughout the urothelium of the lower urinary tract and in the collecting tubules of the kidney. With infection, HD5 expression increases in the kidney and levels become detectable in the urine. To our knowledge, our findings represent the first to quantitate HD5 expression and production in the human kidney. Moreover, this is the first report to detect the presence of HD5 in infected urine samples. Our results suggest that HD5 may have an important role in maintaining urinary tract sterility.
Collapse
Affiliation(s)
- John David Spencer
- Pediatric Nephrology Fellowship Program, Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Division of Nephrology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - David S. Hains
- Division of Nephrology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Edith Porter
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Charles L. Bevins
- Department of Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Julianne DiRosario
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Brian Becknell
- Pediatric Nephrology Fellowship Program, Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Division of Nephrology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Huanyu Wang
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Andrew L. Schwaderer
- Division of Nephrology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
115
|
The Papillomavirus Virion: A Machine Built to Hide Molecular Achilles’ Heels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:403-22. [DOI: 10.1007/978-1-4614-0980-9_18] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
116
|
Abstract
The conventional treatment of infectious agents is increasingly encountering antimicrobial resistance. This resistance has led to an intense search for novel treatment modalities for infectious diseases. Elucidation of the mechanisms underlying the inhibitory activity of chemokines has been instrumental in the rational design of anti-human immunodeficiency virus chemokine drugs. The immune-based therapies, in combination with antimicrobial drugs, for viral hepatitis have attracted much attention. Recognition of toll-like receptors by synthetic immunomodulators is used for certain viral infections. New methodologies have the potential to identify novel targets and foster the development of individually tailored immunomodulatory drug treatments.
Collapse
Affiliation(s)
- K Noel Masihi
- Robert Koch Institute, Nordufer 20, D-13353 Berlin, Germany
| | | |
Collapse
|
117
|
Henaff D, Salinas S, Kremer EJ. An adenovirus traffic update: from receptor engagement to the nuclear pore. Future Microbiol 2011; 6:179-92. [PMID: 21366418 DOI: 10.2217/fmb.10.162] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Adenoviruses have a bipolar nature: they are ubiquitous pathogens that occasionally cause life-threatening diseases or they can be engineered into powerful gene transfer vectors. The goal of this article is to summarize the most recent advances in adenovirus receptor engagement, internalization, endosomal maturation, endosomal escape and trafficking to the nuclear pore. A better understanding of this initial part of the adenovirus lifecycle may identify new mechanistic-based treatments for adenovirus-induced diseases and help in the engineering of more efficient vectors.
Collapse
Affiliation(s)
- Daniel Henaff
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, 34293 Montpellier, France
| | | | | |
Collapse
|
118
|
Okorochenkov SA, Zheltukhina GA, Nebol’sin VE. Antimicrobial peptides: the mode of action and perspectives of practical application. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2011. [DOI: 10.1134/s1990750811020120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
119
|
Pfeiffer JK, Sonnenburg JL. The intestinal microbiota and viral susceptibility. Front Microbiol 2011; 2:92. [PMID: 21833331 PMCID: PMC3153051 DOI: 10.3389/fmicb.2011.00092] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 04/14/2011] [Indexed: 11/13/2022] Open
Abstract
Many infections start with microbial invasion of mucosal surfaces, which are typically colonized by a community of resident microbes. A growing body of literature demonstrates that the resident microbiota plays a significant role in host susceptibility to pathogens. Recent work has largely focused on the considerable effect that the intestinal microbiota can have upon bacterial pathogenesis. These studies reveal many significant gaps in our knowledge about the mechanisms by which the resident community impacts pathogen invasion and the nature of the ensuing host immune response. It is likely that as viral pathogens become the focus of studies that examine microbiota-host interaction, substantial effects of resident communities exerted via diverse mechanisms will be elucidated. Here we provide a perspective of the exciting emerging field that examines how the intestinal microbiota influences host susceptibility to viruses.
Collapse
Affiliation(s)
- Julie K. Pfeiffer
- Department of Microbiology, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Justin L. Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of MedicineStanford, CA, USA
| |
Collapse
|
120
|
Moyer CL, Wiethoff CM, Maier O, Smith JG, Nemerow GR. Functional genetic and biophysical analyses of membrane disruption by human adenovirus. J Virol 2011; 85:2631-41. [PMID: 21209115 PMCID: PMC3067937 DOI: 10.1128/jvi.02321-10] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 12/23/2010] [Indexed: 02/07/2023] Open
Abstract
The identification of the adenovirus (AdV) protein that mediates endosome penetration during infection has remained elusive. Several lines of evidence from previous studies suggest that the membrane lytic factor of AdV is the internal capsid protein VI. While these earlier results imply a role for protein VI in endosome disruption, direct evidence during cell entry has not been demonstrated. To acquire more definitive proof, we engineered random mutations in a critical N-terminal amphipathic α-helix of VI in an attempt to generate AdV mutants that lack efficient membrane penetration and infection. Random mutagenesis within the context of the AdV genome was achieved via the development of a novel technique that incorporates both error-prone PCR and recombineering. Using this system, we identified a single mutation, L40Q, that significantly reduced infectivity and selectively impaired endosome penetration. Furthermore, we obtained biophysical data showing that the lack of efficient endosomalysis is associated with reduced insertion of the L40Q mutation in protein VI (VI-L40Q) into membranes. Our studies indicate that protein VI is the critical membrane lytic factor of AdV during cellular entry and reveal the biochemical basis for its membrane interactions.
Collapse
Affiliation(s)
- Crystal L. Moyer
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois, Department of Microbiology, University of Washington School of Medicine, Seattle, Washington
| | - Christopher M. Wiethoff
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois, Department of Microbiology, University of Washington School of Medicine, Seattle, Washington
| | - Oana Maier
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois, Department of Microbiology, University of Washington School of Medicine, Seattle, Washington
| | - Jason G. Smith
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois, Department of Microbiology, University of Washington School of Medicine, Seattle, Washington
| | - Glen R. Nemerow
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois, Department of Microbiology, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
121
|
Gregory SM, Nazir SA, Metcalf JP. Implications of the innate immune response to adenovirus and adenoviral vectors. Future Virol 2011; 6:357-374. [PMID: 21738557 PMCID: PMC3129286 DOI: 10.2217/fvl.11.6] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adenovirus (AdV) is a common cause of respiratory illness in both children and adults. Respiratory symptoms can range from those of the common cold to severe pneumonia. Infection can also cause significant disease in the immunocompromised and among immunocompetent subjects in close quarters. Fortunately, infection with AdV in the normal host is generally mild. This is one reason why its initial use as a gene-therapy vector appeared to be so promising. Unfortunately, both innate and adaptive responses to the virus have limited the development of AdV vectors as a tool of gene therapy by increasing toxicity and limiting duration of transgene expression. This article will focus on the innate immune response to infection with wild-type AdV and exposure to AdV gene-therapy vectors. As much of the known information relates to the pulmonary inflammatory response, this organ system will be emphasized. This article will also discuss how that understanding has led to the creation of new vectors for use in gene therapy.
Collapse
Affiliation(s)
- Seth M Gregory
- Division of Pulmonary & Critical Care Medicine of the Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Shoab A Nazir
- Division of Pulmonary & Critical Care Medicine of the Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jordan P Metcalf
- Division of Pulmonary & Critical Care Medicine of the Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104-5097, USA
| |
Collapse
|
122
|
Abstract
Infectious diseases continue to impact human morbidity and mortality. Every individual is vulnerable to microbial infections regardless of socioeconomic status, gender, age group or ethnic background. There has been an explosion of international air travel with an estimated 2 billion passengers travelling on commercial airlines every year. The rapid expansion of globalization and mass tourism has facilitated the spread of disease-causing pathogens from one continent to another at unprecedented rates.
Collapse
Affiliation(s)
- F.P. Nijkamp
- Faculteit Farmacie, Rijksuniversiteit Utrecht, Utrecht, Netherlands
| | - Michael J. Parnham
- Diseases "Dr. Fran Mihaljevic", Research & Clinical Immunology Unit, University Hospital for Infectious, Mirogojska cesta 8, Zagreb, 10000 Croatia
| |
Collapse
|
123
|
Maier O, Wiethoff CM. N-terminal α-helix-independent membrane interactions facilitate adenovirus protein VI induction of membrane tubule formation. Virology 2010; 408:31-8. [PMID: 20869737 PMCID: PMC3075975 DOI: 10.1016/j.virol.2010.08.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/12/2010] [Accepted: 08/30/2010] [Indexed: 02/06/2023]
Abstract
Adenovirus disrupts endosomal membranes during cell entry. The membrane lytic capsid protein VI (pVI) facilitates entry by fragmenting membranes. Although an N-terminal amphipathic α-helix (VI-Φ) possesses similar membrane affinity as pVI, truncated protein lacking VI-Φ (VIΔ54) still possesses moderate membrane affinity. We demonstrate that incorporation of nickel-NTA lipids in membranes enhances the membrane affinity and the membrane lytic activity of VIΔ54. We also demonstrate that 3 predicted pVI α-helices within residues 54-114 associate with membranes, sitting roughly parallel to the membrane surface. His-tagged VIΔ54 is capable of fragmenting membranes similar to pVI and the VI-Φ peptide. Interestingly, neither VI-Φ nor His-tagged VIΔ54 can induce tubule formation in giant lipid vesicles as observed for pVI. These data suggest cooperativity between the amphipathic α-helix and residues in VIΔ54 to induce positive membrane curvature and tubule formation. These results provide additional details regarding the mechanism of nonenveloped virus membrane penetration.
Collapse
Affiliation(s)
- Oana Maier
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
| | | |
Collapse
|
124
|
A Kunitz protease inhibitor from Dermacentor variabilis, a vector for spotted fever group rickettsiae, limits Rickettsia montanensis invasion. Infect Immun 2010; 79:321-9. [PMID: 20956566 DOI: 10.1128/iai.00362-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A defining facet of tick-Rickettsia symbioses is the molecular strategy employed by each partner to ensure its own survival. Ticks must control rickettsial colonization to avoid immediate death. In the current study, we show that rickettsial abundance in the tick midgut increases once the expression of a Kunitz-type serine protease inhibitor from the American dog tick (Dermacentor variabilis) (DvKPI) is suppressed by small interfering RNA (siRNA). A series of in vitro invasion assays suggested that DvKPI limits rickettsial colonization during host cell entry. Interestingly, we observed that DvKPI associates with rickettsiae in vitro as well as in the tick midgut. Collectively, our data demonstrate that DvKPI limits host cell invasion by Rickettsia montanensis, possibly through an association with the bacterium.
Collapse
|
125
|
Smith JG, Silvestry M, Lindert S, Lu W, Nemerow GR, Stewart PL. Insight into the mechanisms of adenovirus capsid disassembly from studies of defensin neutralization. PLoS Pathog 2010; 6:e1000959. [PMID: 20585634 PMCID: PMC2891831 DOI: 10.1371/journal.ppat.1000959] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 05/20/2010] [Indexed: 12/23/2022] Open
Abstract
Defensins are effectors of the innate immune response with potent antibacterial activity. Their role in antiviral immunity, particularly for non-enveloped viruses, is poorly understood. We recently found that human alpha-defensins inhibit human adenovirus (HAdV) by preventing virus uncoating and release of the endosomalytic protein VI during cell entry. Consequently, AdV remains trapped in the endosomal/lysosomal pathway rather than trafficking to the nucleus. To gain insight into the mechanism of defensin-mediated neutralization, we analyzed the specificity of the AdV-defensin interaction. Sensitivity to alpha-defensin neutralization is a common feature of HAdV species A, B1, B2, C, and E, whereas species D and F are resistant. Thousands of defensin molecules bind with low micromolar affinity to a sensitive serotype, but only a low level of binding is observed to resistant serotypes. Neutralization is dependent upon a correctly folded defensin molecule, suggesting that specific molecular interactions occur with the virion. CryoEM structural studies and protein sequence analysis led to a hypothesis that neutralization determinants are located in a region spanning the fiber and penton base proteins. This model was supported by infectivity studies using virus chimeras comprised of capsid proteins from sensitive and resistant serotypes. These findings suggest a mechanism in which defensin binding to critical sites on the AdV capsid prevents vertex removal and thereby blocks subsequent steps in uncoating that are required for release of protein VI and endosomalysis during infection. In addition to informing the mechanism of defensin-mediated neutralization of a non-enveloped virus, these studies provide insight into the mechanism of AdV uncoating and suggest new strategies to disrupt this process and inhibit infection.
Collapse
Affiliation(s)
- Jason G. Smith
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Mariena Silvestry
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Steffen Lindert
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Wuyuan Lu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Glen R. Nemerow
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Phoebe L. Stewart
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
126
|
Maier O, Galan DL, Wodrich H, Wiethoff CM. An N-terminal domain of adenovirus protein VI fragments membranes by inducing positive membrane curvature. Virology 2010; 402:11-9. [PMID: 20409568 PMCID: PMC3028504 DOI: 10.1016/j.virol.2010.03.043] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 03/01/2010] [Accepted: 03/26/2010] [Indexed: 10/19/2022]
Abstract
Adenovirus (Ad) membrane penetration during cell entry is poorly understood. Here we show that antibodies which neutralize the membrane lytic activity of the Ad capsid protein VI interfere with Ad endosomal membrane penetration. In vitro studies using a peptide corresponding to an N-terminal amphipathic alpha-helix of protein VI (VI-Phi), as well as other truncated forms of protein VI suggest that VI-Phi is largely responsible for protein VI binding to and lysing of membranes. Additional studies suggest that VI-Phi lies nearly parallel to the membrane surface. Protein VI fragments membranes and induces highly curved structures. Further studies suggest that protein VI induces positive membrane curvature. These data support a model in which protein VI binds membranes, inducing positive curvature strain which ultimately leads to membrane fragmentation. These results agree with previous observations of Ad membrane permeabilization during cell entry and provide an initial mechanistic description of a nonenveloped virus membrane lytic protein.
Collapse
Affiliation(s)
- Oana Maier
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | | | | | | |
Collapse
|
127
|
Wang YD, Kung CW, Chen JY. Antiviral activity by fish antimicrobial peptides of epinecidin-1 and hepcidin 1-5 against nervous necrosis virus in medaka. Peptides 2010; 31:1026-33. [PMID: 20214942 DOI: 10.1016/j.peptides.2010.02.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 02/24/2010] [Accepted: 02/25/2010] [Indexed: 12/31/2022]
Abstract
The nervous necrosis virus (NNV)-medaka infection model was used in this study for analysis of NNV infection and treatment of NNV with the antimicrobial peptides (AMPs) of epinecidin-1 and hepcidin 1-5 at the organismal level. Our results showed that co-treatment of AMPs with the virus was effective in promoting a significant increase in medaka survival. Re-challenge with the virus also showed high survival suggesting that these two AMPs enhanced fish survival. However, pretreatment or post-treatment with AMPs showed that both of these AMPs increased medaka survival and suggested that AMPs can be used as drugs to rescue infected medaka. The data presented here indicate that epinecidin-1 and hepcidin 1-5 have in vivo antivirus activity against the NNV, and hepcidin 1-5 functions like a lytic peptide after an in vitro assay. Infection after pretreatment, co-treatment, and post-treatment with epinecidin-1 or hepcidin 1-5 was verified by RT-PCR which showed both peptides can downregulate NNV and interferon gene expressions. In addition, our results suggest that epinecidin-1 or hepcidin 1-5 may prove to be an effective chemotherapeutic agent for aquaculture in the future.
Collapse
Affiliation(s)
- Yi-Da Wang
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd., Jiaushi, Ilan 262, Taiwan
| | | | | |
Collapse
|
128
|
Wei G, Pazgier M, de Leeuw E, Rajabi M, Li J, Zou G, Jung G, Yuan W, Lu WY, Lehrer RI, Lu W. Trp-26 imparts functional versatility to human alpha-defensin HNP1. J Biol Chem 2010; 285:16275-85. [PMID: 20220136 PMCID: PMC2871495 DOI: 10.1074/jbc.m110.102749] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 02/16/2010] [Indexed: 12/21/2022] Open
Abstract
We performed a comprehensive alanine scan of human alpha-defensin HNP1 and tested the ability of the resulting analogs to kill Staphylococcus aureus, inhibit anthrax lethal factor, and bind human immunodeficiency virus-1 gp120. By far, the most deleterious mutation for all of these functions was W26A. The activities lost by W26A-HNP1 were restored progressively by replacing W26 with non-coded, straight-chain aliphatic amino acids of increasing chain length. The hydrophobicity of residue 26 also correlated with the ability of the analogs to bind immobilized wild type HNP1 and to undergo further self-association. Thus, the hydrophobicity of residue 26 is not only a key determinant of the direct interactions of HNP1 with target molecules, but it also governs the ability of this peptide to form dimers and more complex quaternary structures at micromolar concentrations. Although all defensin peptides are cationic, their amphipathicity is at least as important as their positive charge in enabling them to participate in innate host defense.
Collapse
Affiliation(s)
- Gang Wei
- From the Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- the School of Pharmacy, Fudan University, Shanghai 201203, China, and
| | - Marzena Pazgier
- From the Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Erik de Leeuw
- From the Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Mohsen Rajabi
- From the Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Jing Li
- From the Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Guozhang Zou
- From the Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Grace Jung
- the Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095
| | - Weirong Yuan
- From the Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Wei-Yue Lu
- the School of Pharmacy, Fudan University, Shanghai 201203, China, and
| | - Robert I. Lehrer
- the Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095
| | - Wuyuan Lu
- From the Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
129
|
Direct evidence from single-cell analysis that human {alpha}-defensins block adenovirus uncoating to neutralize infection. J Virol 2010; 84:4041-9. [PMID: 20130047 DOI: 10.1128/jvi.02471-09] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human alpha-defensins are evolutionarily conserved effectors of the innate immune response with broadly acting antibacterial activity. Their role in antiviral immunity is less well understood. We previously showed that these antimicrobial peptides are potent inhibitors of human adenovirus infection. Based on biochemical studies and indirect evidence from confocal microscopy, we proposed that defensins bind to and stabilize the virus capsid and neutralize infection by preventing the release of the endosomalytic protein VI. To determine whether defensin action also restricts exposure of the viral genome, we developed a system to evaluate adenovirus uncoating during cell entry by monitoring the exposure of BrdU-labeled viral genomes. This assay allowed us to determine the kinetics of uncoating of virus particles in single cells. Using this assay, we now provide direct evidence that human alpha-defensins block adenovirus infection by preventing uncoating during cell entry.
Collapse
|
130
|
Abstract
Of the 53 different human adenovirus (HAdV) serotypes belonging to species A-G, a significant number are associated with acute respiratory, gastrointestinal and ocular infections. Replication-defective HAdV-5-based vectors also continue to play a significant role in gene transfer trials and in vaccine delivery efforts in the clinic. Although significant progress has been made from studies of AdV biology, we still have an incomplete understanding of AdV's structure as well as its multifactorial interactions with the host. Continuing efforts to improve knowledge in these areas, as discussed in this chapter, will be crucial for revealing the mechanisms of AdV pathogenesis and for allowing optimal use of AdV vectors for biomedical applications.
Collapse
Affiliation(s)
- Jason G. Smith
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 N. Torrey Pines Road, IMM-19, La Jolla, CA 92037, USA
| | - Christopher M. Wiethoff
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Phoebe L. Stewart
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Glen R. Nemerow
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 N. Torrey Pines Road, IMM-19, La Jolla, CA 92037, USA
| |
Collapse
|
131
|
Abstract
Poliovirus is an error-prone enteric virus spread by the fecal-oral route and rarely invades the central nervous system (CNS). However, in the rare instances when poliovirus invades the CNS, the resulting damage to motor neurons is striking and often permanent. In the prevaccine era, it is likely that most individuals within an epidemic community were infected; however, only 0.5% of infected individuals developed paralytic poliomyelitis. Paralytic poliomyelitis terrified the public and initiated a huge research effort, which was rewarded with two outstanding vaccines. During research to develop the vaccines, many questions were asked: Why did certain people develop paralysis? How does the virus move from the gut to the CNS? What limits viral trafficking to the CNS in the vast majority of infected individuals? Despite over 100 years of poliovirus research, many of these questions remain unanswered. The goal of this chapter is to review our knowledge of how poliovirus moves within and between hosts, how host barriers limit viral movement, how viral population dynamics impact viral fitness and virulence, and to offer hypotheses to explain the rare incidence of paralytic poliovirus disease.
Collapse
Affiliation(s)
- Julie K Pfeiffer
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
132
|
Abstract
We have identified a post-entry CCR6-dependent mechanism of inhibition of HIV occurring at an early stage of infection mediated by the induction of the host restriction factor apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G). We observed induction of APOBEC3G expression only in CCR6(+) cells but not in cells treated with the G inhibitory (Gi) pathway inhibitor pertussis toxin. CCR6 is highly expressed on peripheral blood CD4(+)CCR5(+) memory T cells and by 2 populations of CD4(+) T cells within the gut, alpha4beta7(+) and T helper type 17, that have been implicated in cell-to-cell spread of HIV and enhanced restoration of CD4(+) T cells within gut-associated lymphoid tissue, respectively. This novel CCR6-mediated mechanism of inhibition allows the identification of pathways that induce intrinsic immunity to HIV, which could be useful in devising novel therapeutics that selectively target CCR6(+) cells.
Collapse
|
133
|
Seregin SS, Appledorn DM, Patial S, Bujold M, Nance W, Godbehere S, Parameswaran N, Amalfitano A. beta-Arrestins modulate Adenovirus-vector-induced innate immune responses: differential regulation by beta-arrestin-1 and beta-arrestin-2. Virus Res 2009; 147:123-34. [PMID: 19896992 DOI: 10.1016/j.virusres.2009.10.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 10/28/2009] [Accepted: 10/29/2009] [Indexed: 12/01/2022]
Abstract
Adenovirus (Ad)-based vectors have been utilized in human gene transfer clinical trials since 1993. Unfortunately, innate immune responses directed against the Ad capsid and/or its genetic cargo can significantly limit the usage of Ad vectors. Previous studies have demonstrated that several signaling pathways are triggered by Ads, inclusive of TLR-dependent pathways. The G-protein-coupled receptor adaptors beta-arrestin-1 (beta-Arr1) and beta-arrestin-2 (beta-Arr2) are known to have pivotal roles in regulating TLR4 triggered signaling and inflammatory responses. In this study, we examined the role of beta-arrestins in Ad5-vector-induced inflammatory responses. Our studies reveal that both beta-arrestins are capable of modulating Ad5-vector-induced inflammatory responses in vivo and in vitro. Importantly, our studies divulge another level of complexity to these responses, as our results demonstrate beta-Arr1 to be a positive regulator, and beta-Arr2 a negative regulator of Ad5 induced innate immune responses. These data may allow gene therapy biologists to more accurately study the mechanisms underlying Ad5-vector-induced immune responses, and may also direct future efforts to modulate these mechanisms to improve the safety and/or efficacy of this important gene transfer vector.
Collapse
Affiliation(s)
- Sergey S Seregin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, United States
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Lehrer RI, Jung G, Ruchala P, Andre S, Gabius HJ, Lu W. Multivalent binding of carbohydrates by the human alpha-defensin, HD5. THE JOURNAL OF IMMUNOLOGY 2009; 183:480-90. [PMID: 19542459 DOI: 10.4049/jimmunol.0900244] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Four of the six human alpha-defensins (human neutrophil peptides 1-3 and human alpha-defensin 5; HD5) have a lectin-like ability to bind glycosylated proteins. Using HD5 as a model, we applied surface plasmon resonance techniques to gain insights into this property. HD5 bound natural glycoproteins > neoglycoproteins based on BSA > nonglycosylated BSA >> free sugars. The affinity of HD5 for simple sugars covalently bound to BSA was orders of magnitude greater than its affinity for the same sugars in solution. The affinity of HD5 for protein-bound carbohydrates resulted from multivalent interactions which may also involve noncarbohydrate residues of the proteins. HD5 showed concentration-dependent self-association that began at submicromolar concentrations and proceeded to dimer and tetramer formation at concentrations below 5 microM. The (R9A, R28A) and (R13A, R32A) analogs of HD5 showed greatly reduced self-association as well as minimal binding to BSA and to BSA-affixed sugars. From this and other evidence, we conclude that the extensive binding of HD5 to (neo)glycoproteins results from multivalent nonspecific interactions of individual HD5 molecules with carbohydrate and noncarbohydrate moieties of the target molecule and that the primary binding events are magnified and enhanced by subsequent in situ assembly and oligomerization of HD5. Self-association and multivalent binding may play integral roles in the ability of HD5 to protect against infections caused by viruses and other infectious agents.
Collapse
Affiliation(s)
- Robert I Lehrer
- David Geffen School of Medicine at University of California at Los Angeles, 90095, USA.
| | | | | | | | | | | |
Collapse
|
135
|
Silvestry M, Lindert S, Smith JG, Maier O, Wiethoff CM, Nemerow GR, Stewart PL. Cryo-electron microscopy structure of adenovirus type 2 temperature-sensitive mutant 1 reveals insight into the cell entry defect. J Virol 2009; 83:7375-83. [PMID: 19458007 PMCID: PMC2708647 DOI: 10.1128/jvi.00331-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 05/11/2009] [Indexed: 12/30/2022] Open
Abstract
The structure of the adenovirus type 2 temperature-sensitive mutant 1 (Ad2ts1) was determined to a resolution of 10 A by cryo-electron microscopy single-particle reconstruction. Ad2ts1 was prepared at a nonpermissive temperature and contains the precursor forms of the capsid proteins IIIa, VI, and VIII; the core proteins VII, X (mu), and terminal protein (TP); and the L1-52K protein. Cell entry studies have shown that although Ad2ts1 can bind the coxsackievirus and Ad receptor and undergo internalization via alphav integrins, this mutant does not escape from the early endosome and is targeted for degradation. Comparison of the Ad2ts1 structure to that of mature Ad indicates that Ad2ts1 has a different core architecture. The Ad2ts1 core is closely associated with the icosahedral capsid, a connection which may be mediated by preproteins IIIa and VI. Density within hexon cavities is assigned to preprotein VI, and membrane disruption assays show that hexon shields the lytic activity of both the mature and precursor forms of protein VI. The internal surface of the penton base in Ad2ts1 appears to be anchored to the core by interactions with preprotein IIIa. Our structural analyses suggest that these connections to the core inhibit the release of the vertex proteins and lead to the cell entry defect of Ad2ts1.
Collapse
Affiliation(s)
- Mariena Silvestry
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 2215 Garland Avenue, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
136
|
Ding J, Chou YY, Chang TL. Defensins in viral infections. J Innate Immun 2009; 1:413-20. [PMID: 20375599 DOI: 10.1159/000226256] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 05/05/2009] [Indexed: 12/20/2022] Open
Abstract
Defensins are antimicrobial peptides important to innate host defense. In addition to their direct antimicrobial effect, defensins modulate immune responses. Increasing evidence indicates that defensins exhibit complex functions by positively or negatively modulating infections of both enveloped and non-enveloped viruses. The effects of defensins on viral infections appear to be specific to the defensin, virus and target cell. Regulation of viral infection by defensins is achieved by multiple mechanisms. This review focuses on the interplay between defensins and viral infections, the mechanisms of action of defensins and the in vivo studies of the role of defensins in viral infections.
Collapse
Affiliation(s)
- Jian Ding
- Department of Medicine, Division of Infectious Diseases, Mount Sinai School of Medicine, New York University, New York, NY 10029, USA
| | | | | |
Collapse
|
137
|
Thacker EE, Timares L, Matthews QL. Strategies to overcome host immunity to adenovirus vectors in vaccine development. Expert Rev Vaccines 2009; 8:761-77. [PMID: 19485756 DOI: 10.1586/erv.09.29] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The first clinical evaluations of adenovirus (Ad)-based vectors for gene therapy were initiated in the mid-1990s and led to great anticipation for future utility. However, excitement surrounding gene therapy, particularly Ad-based therapy, was diminished upon the death of Jesse Gelsinger, and recent discouraging results from the HIV vaccine STEP trial have brought efficacy and safety issues to the forefront again. Even so, Ad vectors are still considered among the safest and most effective vaccine vectors. Innate and pre-existing immunity to Ad mediate much of the acute toxicities and reduced therapeutic efficacies observed following vaccination with this vector. Thus, innovative strategies must continue to be developed to reduce Ad-specific antigenicity and immune recognition. This review provides an overview and critique of the most promising strategies, including results from preclinical trials in mice and nonhuman primates, which aim to revive the future of Ad-based vaccines.
Collapse
Affiliation(s)
- Erin E Thacker
- Division of Human Gene Therapy, Departments of Medicine, University of Alabama at Birmingham, BMR2 470, 901 19th Street South, Birmingham, AL 35294-32172, USA.
| | | | | |
Collapse
|
138
|
Nemerow GR, Pache L, Reddy V, Stewart PL. Insights into adenovirus host cell interactions from structural studies. Virology 2009; 384:380-8. [PMID: 19019405 PMCID: PMC2666334 DOI: 10.1016/j.virol.2008.10.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 10/03/2008] [Indexed: 12/14/2022]
Abstract
Human adenoviruses cause a significant number of acute respiratory, enteric and ocular infections, however they have also served as useful model systems for uncovering fundamental aspects of cell and molecular biology. In addition, replication-defective forms of adenovirus are being used in gene transfer and vaccine clinical trials. Over the past decade, steady advances in structural biology techniques have helped reveal important insights into the earliest events in the adenovirus life cycle as well as virus interactions with components of the host immune system. This review highlights the continuing use of structure-based approaches to uncover the molecular features of adenovirus-host interactions.
Collapse
Affiliation(s)
- G R Nemerow
- The Scripps Research Institute, La Jolla, California, 92037, USA.
| | | | | | | |
Collapse
|
139
|
Abstract
Adenoviruses have been studied intensively for over 50 years as models of virus-cell interactions and latterly as gene vectors. With the advent of more sophisticated structural analysis techniques the disposition of most of the 13 structural proteins have been defined to a reasonable level. This review seeks to describe the functional properties of these proteins and shows that they all have a part to play in deciding the outcome of an infection and act at every level of the virus's path through the host cell. They are primarily involved in the induction of the different arms of the immune system and a better understanding of their overall properties should lead to more effective ways of combating virus infections.
Collapse
Affiliation(s)
- W C Russell
- School of Biology, Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK.
| |
Collapse
|
140
|
Abstract
Emberben az antimikrobiális peptidek három fő csoportját a defensinek, a cathelicidinek és a histatinok képezik. Ezek biokémiai sajátságaikban és antimikrobiális hatásuk spektruma tekintetében igen különbözőek, de valamennyi hasznosan szolgálja a szervezet mikrobiális fertőzésekkel szembeni védelmét. Ezeket a peptideket jó ideig csupán új típusú antimikrobiális ágenseknek tekintették, újabb tanulmányok során azonban feltárták, hogy antimikrobiális aktivitásuk mellett sok más – ugyancsak a gazdavédelmet szolgáló – biológiai aktivitással rendelkeznek. A veleszületett immunitás fontos komponenseinek bizonyultak, továbbá azt is kimutatták róluk, hogy az éretlen dendritikus sejteken és lymphocytákon lévő különböző receptorokkal való kölcsönhatás révén tulajdonképpen ezek a peptidek indítják be az adaptív immunválasz-reakciókat is, amelyekben aztán további immunmodulátori szerepet játszanak. Az LL-37-tel kapcsolatban pedig egyenesen azt állítják, hogy annak immunmoduláló aktivitása erősebb az antimikrobiális aktivitásnál. A humán α-defensinekről pedig azt is kimutatták, hogy más fajban is megőrzik aktivitásukat, egerekben ugyanis immunadjuváns hatást fejtettek ki. Újabban egyre több közleményben arról számolnak be, hogy számos emberi betegséggel társultan e gazdavédő kis peptidek termelődésének károsodása és/vagy funkcióinak zavarai figyelhetők meg. E peptidek multifunkcionális szerepének felismerése pedig a gyógyszeripar irántuk való fokozott érdeklődését eredményezte.
Collapse
Affiliation(s)
- Károly Lapis
- 1 Semmelweis Egyetem, Általános Orvostudományi Kar I. Patológia és Kísérleti Rákkutató Intézet Budapest Üllői út 26. 1085
| |
Collapse
|
141
|
Brzezinska AA, Johnson JL, Munafo DB, Crozat K, Beutler B, Kiosses WB, Ellis BA, Catz SD. The Rab27a effectors JFC1/Slp1 and Munc13-4 regulate exocytosis of neutrophil granules. Traffic 2008; 9:2151-64. [PMID: 18939952 PMCID: PMC6363534 DOI: 10.1111/j.1600-0854.2008.00838.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neutrophil granules contain secretory molecules that contribute to the implementation of all neutrophil functions. The molecular components that regulate the exocytosis of neutrophil granules have not been characterized. In this study, using small interfering RNA gene-targeting approaches and granulocytes from genetically modified mice, we characterized the Rab27a effectors JFC1/Slp1 and Munc13-4 as components of the exocytic machinery of granulocytes. Using total internal reflection fluorescence microscopy analysis, we show that Rab27a and JFC1 colocalize in predocked and docked vesicles in granulocytes. Next, we demonstrate that JFC1-downregulated granulocytes have impaired myeloperoxidase secretion. Using immunological interference, we confirm that JFC1 plays an important role in azurophilic granule exocytosis in human neutrophils. Interference with Rab27a but not with JFC1 impaired gelatinase B secretion in neutrophils, suggesting that a different Rab27a effector modulates this process. In similar studies, we confirmed that Munc13-4 regulates gelatinase secretion. Immunofluorescence analysis indicates that Munc13-4 localizes at secretory organelles in neutrophils. Using neutrophils from a Munc13-4-deficient mouse model (Jinx), we demonstrate that Munc13-4 plays a central role in the regulation of exocytosis of various sets of secretory organelles. However, mobilization of CD11b was not affected in Munc13-4-deficient neutrophils, indicating that secretory defects in these cells are limited to a selective group of exocytosable organelles.
Collapse
Affiliation(s)
- Agnieszka A. Brzezinska
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jennifer L. Johnson
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Daniela B. Munafo
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Karine Crozat
- Department of Genetics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Bruce Beutler
- Department of Genetics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - William B. Kiosses
- Core Microscopy Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Beverly A. Ellis
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sergio D. Catz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
142
|
Abstract
Peptides with broad-spectrum antimicrobial activity are found in the mucosal surfaces at many sites in the body, including the airway, the oral cavity, and the digestive tract. Based on their in vitro antimicrobial and other immunomodulatory activities, these host defense peptides have been proposed to play an important role in the innate defense against pathogenic microbial colonization. The genes that encode these peptides are up-regulated by pathogens, further supporting their role in innate immune defense. However, the differences in the local microbial environments between the generally sterile airway and the highly colonized oral cavity suggest a more complex role for these peptides in innate immunity. For example, beta-defensin genes are induced in the airway by all bacteria and Toll-like receptor (TLR) agonists primarily through an NF-kappaB-mediated pathway. In contrast, the same genes are induced in the gingival epithelium by only a subset of bacteria and TLR ligands, via different pathways. Furthermore, the environments into which the peptides are secreted--specifically saliva, gingival crevicular fluid, and airway surface fluid--differ greatly and can effect their respective activities in host defense. In this review, we examine the differences and similarities between host defense peptides in the oral cavity and the airway, to gain a better understanding of their contributions to immunity.
Collapse
Affiliation(s)
- G Diamond
- Department of Oral Biology, UMDNJ-New Jersey Dental School, 185 South Orange Ave., Newark 07103, NJ 07101, USA.
| | | | | |
Collapse
|
143
|
Dugan AS, Maginnis MS, Jordan JA, Gasparovic ML, Manley K, Page R, Williams G, Porter E, O'Hara BA, Atwood WJ. Human alpha-defensins inhibit BK virus infection by aggregating virions and blocking binding to host cells. J Biol Chem 2008; 283:31125-32. [PMID: 18782756 DOI: 10.1074/jbc.m805902200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BK virus (BKV) is a polyomavirus that establishes a lifelong persistence in most humans and is a major impediment to success of kidney grafts. The function of the innate immune system in BKV infection and pathology has not been investigated. Here we examine the role of antimicrobial defensins in BKV infection of Vero cells. Our data show that alpha-defensin human neutrophil protein 1 (HNP1) and human alpha-defensin 5 (HD5) inhibit BKV infection by targeting an early event in the viral lifecycle. HD5 treatment of BKV reduced viral attachment to cells, whereas cellular treatment with HD5 did not. Colocalization studies indicated that HD5 interacts directly with BKV. Ultrastructural analysis revealed HD5-induced aggregation of virions. HD5 also inhibited infection of cells by other related polyomaviruses. This is the first study to demonstrate polyomavirus sensitivity to defensins. We also show a novel mechanism whereby HD5 binds to BKV leading to aggregation of virion particles preventing normal virus binding to the cell surface and uptake into cells.
Collapse
Affiliation(s)
- Aisling S Dugan
- Department of Molecular Biology, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Abstract
A majority of species B adenoviruses (Ads) use CD46 as their primary receptor; however, the precise mechanisms involved in the binding of different Ad types to CD46 have not been resolved. Although previous studies indicate close similarities between two members of species B2 Ads in their usage of CD46, our current investigations revealed a surprisingly low CD46 binding affinity of the species B1 Ad16 fiber knob (equilibrium dissociation constant of 437 nM). We determined the crystal structure of the Ad16 fiber knob and constructed a model of this protein in complex with CD46. A comparison of this model to that of the CD46-Ad11 complex revealed structural differences in the FG and IJ loops that are part of the CD46 binding site. An analysis of a panel of recombinant fiber knobs with mutations targeting these regions in Ad16 and Ad11 uncovered a major contribution of the FG loop on CD46 binding. Two extra residues in the FG loop of the Ad16 fiber significantly reduce receptor interaction. Although avidity effects permit the use of CD46 on host cells by Ad16, virus binding occurs with lower efficiency than with B2 Ad types. The longer FG loop of the Ad16 fiber knob also is shared by other species B1 Ad fibers and, thus, may contribute to the low CD46 binding efficiencies observed for these Ad types. Our findings provide a better understanding of how different Ad types associate with CD46 and could aid in the selection of specific Ad fibers for more efficient Ad gene delivery vectors.
Collapse
|
145
|
Smith JG, Cassany A, Gerace L, Ralston R, Nemerow GR. Neutralizing antibody blocks adenovirus infection by arresting microtubule-dependent cytoplasmic transport. J Virol 2008; 82:6492-500. [PMID: 18448546 PMCID: PMC2447115 DOI: 10.1128/jvi.00557-08] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 04/17/2008] [Indexed: 01/25/2023] Open
Abstract
Neutralizing antibodies are commonly elicited by viral infection. Most antibodies that have been characterized block early stages of virus entry that occur before membrane penetration, whereas inhibition of late stages in entry that occurs after membrane penetration has been poorly characterized. Here we provide evidence that the neutralizing antihexon monoclonal antibody 9C12 inhibits adenovirus infection by blocking microtubule-dependent translocation of the virus to the microtubule-organizing center following endosome penetration. These studies identify a previously undescribed mechanism by which neutralizing antibodies block virus infection, a situation that may be relevant for other nonenveloped viruses that use microtubule-dependent transport during cell entry.
Collapse
Affiliation(s)
- Jason G Smith
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
146
|
Conservation of fiber structure and CD46 usage by subgroup B2 adenoviruses. Virology 2008; 375:573-9. [PMID: 18336857 DOI: 10.1016/j.virol.2008.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 01/25/2008] [Accepted: 02/14/2008] [Indexed: 11/20/2022]
Abstract
Most subgroup B2 adenoviruses use CD46 as their primary receptor. Recent structural and mutagenesis studies suggested that Ad11 and Ad35 likely engage this receptor in a very similar fashion. However, no comparative studies assessing the cell-associated CD46 binding efficiencies of different Ad fibers have been performed. We solved the crystal structure of Ad35 fiber knob and constructed a model of the fiber knob complexed with CD46. Comparison of our model with that of Ad11-CD46 showed that despite a larger CD46-interacting region in the IJ loop of Ad11, the buried surface area was very similar, suggesting that both fiber knobs might exhibit similar binding. In support of this, cell based competition studies demonstrated almost identical binding efficiencies of Ad11 and Ad35 fibers to cell surface CD46. These findings shed further light on CD46 association by Ad and could impact the selection of novel Ad types for gene transfer.
Collapse
|
147
|
Abstract
Vertebrates rely on antimicrobial peptides as a front-line defense against invading pathogens. Certain cationic antimicrobial peptides, such as human alpha-defensins, have traditionally been thought to destroy invading microbes by disrupting their lipid membranes. In this issue of Cell Host & Microbe, Smith and Nemerow reveal that alpha-defensins can inactivate adenoviruses, which lack lipid membranes, through direct binding of the defensin to the virus's naked protein shell.
Collapse
Affiliation(s)
- Christopher B Buck
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4263, USA.
| |
Collapse
|