101
|
Chen X, Liang J, Bao L, Gu X, Zha S, Chen X. Competitive and cooperative sorption between triclosan and methyl triclosan on microplastics and soil. ENVIRONMENTAL RESEARCH 2022; 212:113548. [PMID: 35613630 DOI: 10.1016/j.envres.2022.113548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The sorption behavior of single contaminant on microplastics (MPs) has been extensively studied; however, little is known about that in the more actual scenario containing multiple contaminants. In this study, the interaction between triclosan (TCS) and its primary metabolite, methyl triclosan (MTCS) on polyethylene (PE), polystyrene (PS), and soil was investigated. Results indicate that the more hydrophobic MTCS had much higher sorption capacity and affinity than TCS. Competitive sorption between them occurred in most cases and appeared to be concentration-dependent (in the range of 0.1-5 mg TCS/L and 0.01-≤0.05 mg MTCS/L of primary solutes, respectively): more pronounced at low concentrations of primary solute, while progressively weaker with the increase of concentrations. Among the sorbents, MTCS exhibited strong antagonistic effect on TCS sorption for MPs, especially PS, while significant suppression of MTCS sorption by TCS took place for soil and PS rather than PE. Additionally, it is interesting to observe that the presence of TCS substantially facilitated the sorption of MTCS exclusively at high concentrations on both PS and soil, presumably attributed to the solute-multilayer formation. Furthermore, the magnitude of the two effects varied with solution pH: TCS sorption at alkaline pH was the most suppressed by MTCS because the less hydrophobic dissociated TCS tended to be displaced, and the highest cooperative sorption of MTCS with TCS occurred at acidic pH because neutral TCS preferentially adsorbed on sorbent surface could provide additional sorption sites for MTCS. Both competitive and cooperative effects between multiple contaminants may affect their fate and transport, thereby these findings are helpful for assessing the environmental risk of MPs and TCS in soil.
Collapse
Affiliation(s)
- Xian Chen
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou, 213001, China.
| | - Jingcheng Liang
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou, 213001, China.
| | - Lijing Bao
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou, 213001, China.
| | - Xuanning Gu
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou, 213001, China.
| | - Simin Zha
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou, 213001, China.
| | - Xingming Chen
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou, 213001, China.
| |
Collapse
|
102
|
Changfu Y, Jiani G, Yidi Y, Yijin L, Yiyao L, Yu F. Interface behavior changes of weathered polystyrene with ciprofloxacin in seawater environment. ENVIRONMENTAL RESEARCH 2022; 212:113132. [PMID: 35305981 DOI: 10.1016/j.envres.2022.113132] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/21/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
With the progress of research on micro-nano plastics, the weathering degradation process in the natural environment has gradually become the focus of academic discussion. This study adopted the Fenton immersion method to accelerate the simulation of the weathering process of microplastics in nature, and explored the interface behavior of the weathered microplastics and hydrophilic antibiotics. It was found that the weathered polystyrene (PS) has a smaller crystallinity, increased oxygen-containing functional groups, and cracks appear on the surface, making it more likely to be weathered. At the same time, the rougher surface and stronger hydrophilicity of the weathered PS particles made it easier to adsorb hydrophilic antibiotics. Subsequent studies showed that the adsorption of ciprofloxacin (CIP·HCl) by weathered PS is much larger than that of original PS particles, whose maximum adsorption is 5.45 mg/g in the isotherm experiments. We found that the adsorption behavior of weathered PS particles with CIP in seawater would be weakened in the real seawater environment and humic acid, which might be due to the competitive adsorption of CIP by various ions. Further studies have shown that changes in the ionic strength and pH of the solution also affected the adsorption behavior to varying degrees. The results of dynamic adsorption were the same as the static adsorption, and the adsorption rate and capacity of weathered PS particles were enhanced compared with the original particles. The results of this article not only provided a data reference for studying the weathering process of microplastics but also helped to explore the ultimate fate of microplastics.
Collapse
Affiliation(s)
- Yang Changfu
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China
| | - Guan Jiani
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China
| | - Yang Yidi
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China
| | - Liu Yijin
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China
| | - Li Yiyao
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China
| | - Fei Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China.
| |
Collapse
|
103
|
Jia YW, Wang P, Yang S, Huang Z, Liu YH, Zhao JL. Influence of microplastics on triclosan bioaccumulation and metabolomics variation in Tilapia fish tissues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62984-62993. [PMID: 35445920 DOI: 10.1007/s11356-022-20278-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) and chemical pollutants usually coexist in aquatic environments. The bioaccumulation and metabolism of pollutants in aquatic organisms can be influenced by MPs. In this study, the bioaccumulation of triclosan (TCS) in tilapia tissues was determined, and metabolomics in the liver, gills, and gut were investigated after 10-day exposure to micro-sized polystyrene (PS) and TCS in water. The results showed that TCS bioaccumulated in various tissues, with the highest average concentration of 2728 ± 577 ng g-1 in the gut. The log bioaccumulation factors (BAFs) for TCS in these tissues were in the range of 0.99-3.56. Compared to the TCS treatment alone, MPs showed enhancement on the bioaccumulation of TCS in tilapia skin, liver, gut, gills, and stomach tissues in the TCS plus MP exposure. Especially in the skin and liver, the TCS concentrations were up to 2.06 and 1.38 times higher in the co-exposure of TCS and MPs, respectively. Based on the metabolomic analysis, MPs mainly disturbed the lipid and energy metabolism in tilapia fish. The altered metabolites between treatment with TCS alone and TCS + MPs were consistent, indicating that TCS has stronger disturbance in lipid and energy metabolism than MPs. This implies that the metabolism influence by the mixture of MPs and compounds is complicated in fish tissues.
Collapse
Affiliation(s)
- Yu-Wei Jia
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), Brussel, Belgium
| | - Ping Wang
- Guangdong Provincial Institute of Biological Products and Materia Medica, Guangzhou, 510440, People's Republic of China.
| | - Sheng Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
- School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Zheng Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
- School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Yue-Hong Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
- School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
- School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
104
|
Fu J, Li Y, Peng L, Gao W, Wang G. Distinct chemical adsorption behaviors of sulfanilamide as a model antibiotic onto weathered microplastics in complex systems. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
105
|
Gopinath PM, Parvathi VD, Yoghalakshmi N, Kumar SM, Athulya PA, Mukherjee A, Chandrasekaran N. Plastic particles in medicine: A systematic review of exposure and effects to human health. CHEMOSPHERE 2022; 303:135227. [PMID: 35671817 DOI: 10.1016/j.chemosphere.2022.135227] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/15/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Single-use plastics (SUPs) have become an essential constituent of our daily life. It is being exploited in numerous pharmaceutical and healthcare applications. Despite their advantages and widespread use in the pharma and medical sectors, the potential clinical problems of plastics, especially the release of micro-nanoplastics (MNPs) and additives from medical plastics (e.g. bags, containers, and administrative sets) and sorption of drugs remain understudied. Certainly, the MNPs are multifaceted stressors that cause detrimental effects to the ecosystem and human health. The origin and persistence of MNPs in pharmaceutical products, their administration to humans, endurance and possible health implication, translocation, and excretion have not been reviewed in detail. The prime focus of this article is to conduct a systematic review on the leaching of MNPs and additives from pharmaceutical containers/administrative sets and their interaction with the pharmaceutical constituents. This review also explores the primary and secondary routes of MNPs entry from healthcare plastic products and their potential health hazards to humans. Furthermore, the fate of plastic waste generated in hospitals, their disposal, and associated MNPs release to the environment, along with preventive, and alternative measures are discussed herein.
Collapse
Affiliation(s)
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, SRIHER: Sri Ramachandra Institute of Higher Education and Research, Sri Ramachandra University, Chennai 600116, Tamil Nadu, India
| | - Nagarajan Yoghalakshmi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, SRIHER: Sri Ramachandra Institute of Higher Education and Research, Sri Ramachandra University, Chennai 600116, Tamil Nadu, India
| | - Srinivasan Madhan Kumar
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, SRIHER: Sri Ramachandra Institute of Higher Education and Research, Sri Ramachandra University, Chennai 600116, Tamil Nadu, India
| | | | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, 632 014, India
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, 632 014, India.
| |
Collapse
|
106
|
Liu P, Wu X, Pan S, Dai J, Zhang Z, Guo X. Photochlorination-induced degradation of microplastics and interaction with Cr(VI) and amlodipine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155499. [PMID: 35472361 DOI: 10.1016/j.scitotenv.2022.155499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Wastewater treatment plants (WWTPs) are the important source of microplastics (MPs) in the environment, and disinfection processes bear high potential to degrade MPs. This study investigated the physicochemical degradation, dissolved organic products and interaction with co-existed pollutants (heavy metal and pharmaceutical) on polyethylene (PE), polypropylene (PP) and polystyrene (PS) MPs during simulated disinfection processes. Compared to photo or chlorination, photochlorination significantly resulted in the physicochemical degradation, including morphology alteration, fragmentation, and chemical oxidation on PP and PS MPs, but showed relatively low effect on PE, indicating the different resistance among polymers to disinfected treatment. Photochlorination also caused the formation of chain-scission organic compounds and even chlorinated products from MPs (e.g. C11H19O4Cl for PP and monochlorophenol, dichlorophenol, chloroacetophenone and chlorobenzoic acid for PS), which may form disinfection byproducts to induce healthy risk. The adsorption potentials of MPs for Cr(VI) or amlodipine were enhanced by photochlorination since the cracking and formed oxygen functional groups enhanced the pore filling and surface precipitation of Cr(VI), and the electrostatic attraction and hydrogen bonding with amlodipine. The findings indicated the physicochemical degradation of MPs and the combined pollution with co-existed pollutants, highlighting the health risks of MP-derived organic products during the disinfection treatments (even in normal dosage) in WWTPs.
Collapse
Affiliation(s)
- Peng Liu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Xiaowei Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Suyi Pan
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jiamin Dai
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Zixuan Zhang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
107
|
Liu R, Tan Z, Wu X, Liu Y, Chen Y, Fu J, Ou H. Modifications of microplastics in urban environmental management systems: A review. WATER RESEARCH 2022; 222:118843. [PMID: 35870394 DOI: 10.1016/j.watres.2022.118843] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/19/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) are a worldwide environmental pollution issue. Besides the natural environmental stresses, various treatments in urban environmental management systems induce modifications on MPs, further affecting their environmental behavior. Investigating these modifications and inherent mechanisms is crucial for assessing the environmental impact and risk of MPs. In this review, up-to-date knowledge regarding the modifications of MPs in urban environmental management systems was summarized. Variations of morphology, chemical composition, hydrophilicity and specific surface area of MPs were generalized. The aging and degradation of MPs during drinking water treatment, wastewater treatment, sewage sludge treatment and solid waste treatment were investigated. A high abundance of MPs occurred in sewage sludge and aging solid waste, while digestion and composting contributed to significant decomposition and reduction of MPs. These treatments have become converters for MPs before entering the environment. Several novel technologies for MPs removal were listed; However, no appropriate methods can be put into actual application by now, except the membrane separation. The corresponding effects of degradation on the behaviors of MPs, including adsorption, sinking and contaminant leakage, were discussed. Finally, three priorities for research were proposed. This critical review provides viewpoints and references for risk evaluation of MPs after treatments in urban environmental management systems.
Collapse
Affiliation(s)
- Ruijuan Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China
| | - Zongyi Tan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China
| | - Xinni Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China
| | - Yuan Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Yuheng Chen
- Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China; Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 511443, China
| | - Jianwei Fu
- Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China; Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 511443, China
| | - Huase Ou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
108
|
Rout S, Yadav S, Joshi V, Karpe R, Pulhani V, Kumar AV. Microplastics as vectors of radioiodine in the marine environment: A study on sorption and interaction mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119432. [PMID: 35550128 DOI: 10.1016/j.envpol.2022.119432] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Radioiodine is one of the long-lived fission products and also an important radionuclide released during nuclear accidents, which generates interest in its environmental fate. Its sorption has been studied in a wide range of materials, but no equivalent study exists for microplastics, an emerging environmental vector. Weathering and biofilm formation on microplastics can enhance radioiodine sorption. For the first time, we're reporting how radioiodine interacts with different types of polyethylene derived microplastics (pristine, irradiated, and biofilm developed microplastics). This study revealed that exposure to radiation and the marine environment significantly alters the physico-chemical properties of microplastics. In particular, in marine-exposed samples, a signature of biofilm development was detected. Speciation study indicates that iodine exists in the iodide form in the studied marine environment. The study revealed that, iodide ions attach to biofilm-developed microplastics via electrostatic, ion-dipole, pore filling, and van der Waals interactions. Pore filling, ion-dipole, and van der Waals interactions may cause iodide binding to irradiated microplastics, whereas pore-filling and van der Waals interactions cause iodide binding to pristine microplastics. The distribution coefficient (Kd) of iodine on microplastics is positively correlated with biofilm biomass, which signifies the role of biofilm in radioiodine uptake. The Kd indicates microplastics are potential iodide accumulators and could be a possible vector in the marine system.
Collapse
Affiliation(s)
- Sabyasachi Rout
- Environmental Monitoring and Assessment Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
| | - Sonali Yadav
- Environmental Monitoring and Assessment Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Vikram Joshi
- Environmental Monitoring and Assessment Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Rupali Karpe
- Environmental Monitoring and Assessment Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Vandana Pulhani
- Environmental Monitoring and Assessment Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - A V Kumar
- Environmental Monitoring and Assessment Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| |
Collapse
|
109
|
Cao J, Yang Q, Jiang J, Dalu T, Kadushkin A, Singh J, Fakhrullin R, Wang F, Cai X, Li R. Coronas of micro/nano plastics: a key determinant in their risk assessments. Part Fibre Toxicol 2022; 19:55. [PMID: 35933442 PMCID: PMC9356472 DOI: 10.1186/s12989-022-00492-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/08/2022] [Indexed: 12/17/2022] Open
Abstract
As an emerging pollutant in the life cycle of plastic products, micro/nanoplastics (M/NPs) are increasingly being released into the natural environment. Substantial concerns have been raised regarding the environmental and health impacts of M/NPs. Although diverse M/NPs have been detected in natural environment, most of them display two similar features, i.e.,high surface area and strong binding affinity, which enable extensive interactions between M/NPs and surrounding substances. This results in the formation of coronas, including eco-coronas and bio-coronas, on the plastic surface in different media. In real exposure scenarios, corona formation on M/NPs is inevitable and often displays variable and complex structures. The surface coronas have been found to impact the transportation, uptake, distribution, biotransformation and toxicity of particulates. Different from conventional toxins, packages on M/NPs rather than bare particles are more dangerous. We, therefore, recommend seriously consideration of the role of surface coronas in safety assessments. This review summarizes recent progress on the eco-coronas and bio-coronas of M/NPs, and further discusses the analytical methods to interpret corona structures, highlights the impacts of the corona on toxicity and provides future perspectives.
Collapse
Affiliation(s)
- Jiayu Cao
- School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Qing Yang
- School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jie Jiang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, Jiangsu, China
| | - Tatenda Dalu
- School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit, 1200, South Africa
| | - Aliaksei Kadushkin
- Department of Biological Chemistry, Belarusian State Medical University, 220116, Minsk, Belarus
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Rawil Fakhrullin
- Kazan Federal University, Institute of Fundamental Medicine & Biology, Kreml Uramı 18, Kazan, Republic of Tatarstan, Russian Federation, 420008
| | - Fangjun Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, Liaoning, China
| | - Xiaoming Cai
- School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
110
|
Pal DB, Tiwari AK, Mohammad A, Prasad N, Srivastava N, Srivastava KR, Singh R, Yoon T, Syed A, Bahkali AH, Gupta VK. Enhanced biogas production potential analysis of rice straw: Biomass characterization, kinetics and anaerobic co-digestion investigations. BIORESOURCE TECHNOLOGY 2022; 358:127391. [PMID: 35636675 DOI: 10.1016/j.biortech.2022.127391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Present study of the biofuel potential of rice straw (RS) waste biomass materials. The average activation energy of rice straw was determined from KAS, FWO and Starink are 84.11, 89.62 and 84.52 kJ/mol, respectively. The characterized rice straw biomass has been tested for biogas potential under co-digestion mode of rice straw and cow dung in ratio 1/2. The maximum 339 ml/g Vs of biogas has been recorded in 35 days with CH4 concentration of 58.3%. The rest being CO2 as well as H2S has been found in trace amounts with observed 85% total solids and 74% volatile solids, present in rice straw.
Collapse
Affiliation(s)
- Dan Bahadur Pal
- Department of Chemical Engineering, Birla Institute of Technology, Mesra Ranchi 835215, Jharkhand, India
| | - Amit Kumar Tiwari
- Department of Chemical Engineering, Birla Institute of Technology, Mesra Ranchi 835215, Jharkhand, India
| | - Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk 38541, South Korea
| | - Nirupama Prasad
- Department of Chemical Engineering, Birsa Institute of Technology Sindri, Dhanbad 828123, India
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| | - K R Srivastava
- Indian Biogas Association 216, Spaze i-Tech Park, Sector 49, Gurugram, Haryana, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi 110052, India
| | - Taeho Yoon
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk 38541, South Korea
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
111
|
Tan J, Chen Y, Mo Z, Tan C, Wen R, Chen Z, Tian H. Zinc oxide nanoparticles and polyethylene microplastics affect the growth, physiological and biochemical attributes, and Zn accumulation of rice seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61534-61546. [PMID: 35445922 DOI: 10.1007/s11356-022-19262-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Metal nanoparticles and microplastics are becoming important pollutants in agricultural fields, but there are few studies on the interaction of zinc oxide nanoparticles (ZnONPs) and polyethylene (PE) microplastics with rice seedlings. The two rice cultivars Xiangyaxiangzhan and Yuxiangyouzhan were grown at three ZnONP levels (0 mg L-1, 50 mg L-1, and 500 mg L-1) and three PE levels (0 mg L-1, 250 mg L-1, and 500 mg L-1), and the growth, physiological attributes, and Zn uptake of rice seedlings were measured. Result showed that the ZnONPs and PE treatment effects on the investigated parameters differed between the cultivars, whilst Yuxiangyouzhan produced 6.98% higher in mean total dry biomass than Xiangyaxiangzhan. The mean total dry biomass in Xiangyaxiagnzhan and Yuxiangyouzhan changed by 10.22-30.85% and - 11.74-25.58% under ZnONPs, respectively. The PE treatments reduced growth parameters in Xiangyaxiangzhan, whilst the 250 mg L-1 PE treatment reduced the growth parameter of Yuxiangyouzhan. Besides, the ZnONP treatment had a stronger effect on rice seedling growth than the PE treatment. Furthermore, the ZnONPs modulated the physiological parameter in plant tissue of the two rice varieties. ZnONP treatment lead to the accumulation of Zn in plant tissue and the shoot Zn content was strongly related to shoot cellulose content. Overall, ZnONPs and PE treatments modulated the growth, physiological and biochemical attributes, and Zn uptake of rice seedlings, and the cultivars and dose effects could not be ignored.
Collapse
Affiliation(s)
- Jiangtao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yongjian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaowen Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, 510642, China
| | - Chunju Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Runhao Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhengtong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Hua Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China.
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, 510642, China.
| |
Collapse
|
112
|
Zhang Z, Zhao S, Chen L, Duan C, Zhang X, Fang L. A review of microplastics in soil: Occurrence, analytical methods, combined contamination and risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119374. [PMID: 35490998 DOI: 10.1016/j.envpol.2022.119374] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) pollution is becoming a serious environmental issue of global concern. Currently, the effects of MPs on aquatic ecosystems have been studied in detail and in depth from species to communities. However, soils, the largest reservoir of MPs, have been less studied, and little is known about the occurrence, environmental fate and ecological impacts of MPs. Therefore, based on the existing knowledge, this paper firstly focused specifically on the main sources of soil MPs pollution and explored the main reasons for their strong heterogeneity in spatial distribution. Secondly, as a primary prerequisite for evaluating MPs contamination, we systematically summarized the analytical methods for soil MPs and critically compared the advantages and disadvantages of the different methods in the various operational steps. Furthermore, this review highlighted the combined contamination of MPs with complex chemical contaminants, the sorption mechanisms and the associated factors in the soil. Finally, the risks posed by MPs to soil, plants, the food chain and even humans were outlined, and future directions for soil MPs research were proposed, while the urgent need for a unified approach to MPs extraction and identification was emphasized. This study provides a theoretical reference for a comprehensive understanding of the separation of soil MPs and their ecological risk as carriers of pollution.
Collapse
Affiliation(s)
- Zhiqin Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shuling Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chengjiao Duan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xingchang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| |
Collapse
|
113
|
Do ATN, Ha Y, Kwon JH. Leaching of microplastic-associated additives in aquatic environments: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119258. [PMID: 35398401 DOI: 10.1016/j.envpol.2022.119258] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/12/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Microplastic pollution has attracted significant attention as an emerging global environmental problem. One of the most important issues with microplastics is the leaching of harmful additives. This review summarizes the recent advances in the understanding of the leaching phenomena in the context of the phase equilibrium between microplastics and water, and the release kinetics. Organic additives, which are widely used in plastic products, have been introduced because they have diverse physicochemical properties and mass fractions in plastics. Many theoretical and empirical models have been utilized in laboratory and field studies. However, the partition or distribution constant between microplastics and water (Kp) and the diffusivity of an additive in microplastics (D) are the two key properties explaining the leaching equilibrium and kinetics of hydrophobic organic additives. Because microplastics in aquatic environments undergo dynamic weathering, leaching of organic additives with high Kp and/or low D cannot be described by a leaching model that only considers microplastic and water phases with a fixed boundary. Surface modifications of microplastics as well as biofilms colonizing microplastic surfaces can alter the leaching equilibrium and kinetics and transform additives. Further studies on the release of hydrophobic organic additives and their transformation products under various conditions are required to extend our understanding of the environmental fate and transport of these additives in aquatic environments.
Collapse
Affiliation(s)
- Anh T Ngoc Do
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yeonjeong Ha
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
114
|
A Novel Analytical Approach to Assessing Sorption of Trace Organic Compounds into Micro- and Nanoplastic Particles. Biomolecules 2022; 12:biom12070953. [PMID: 35883509 PMCID: PMC9312822 DOI: 10.3390/biom12070953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Assessing the sorption of trace organic compounds (TOrCs) into micro- and nanoplastic particles has traditionally been performed using an aqueous phase analysis or solvent extractions from the particle. Using thermal extraction/desorption–gas chromatography/mass spectrometry (TD-Pyr-GC/MS) offers a possibility to analyze the TOrCs directly from the particle without a long sample preparation. In this study, a combination of two analytical methods is demonstrated. First, the aqueous phase is quantified for TOrC concentrations using Gerstel Twister® and TD-GC/MS. Subsequently, the TOrCs on the particles are analyzed. Different polymer types and sizes (polymethyl methacrylate (PMMA), 48 µm; polyethylene (PE), 48 µm; polystyrene (PS), 41 µm; and PS, 78 nm) were analyzed for three selected TOrCs (phenanthrene, triclosan, and α-cypermethrin). The results revealed that, over a period of 48 h, the highest and fastest sorption occurred for PS 78 nm particles. This was confirmed with a theoretical calculation of the particle surface area. It was also shown for the first time that direct quantification of TOrCs from PS 78 nm nanoparticles is possible. Furthermore, in a mixed solute solution, the three selected TOrCs were sorbed onto the particles simultaneously.
Collapse
|
115
|
Vidovix TB, Januário EFD, Araújo MF, Bergamasco R, Vieira AMS. Investigation of two new low-cost adsorbents functionalized with magnetic nanoparticles for the efficient removal of triclosan and a synthetic mixture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46813-46829. [PMID: 35171415 DOI: 10.1007/s11356-022-19187-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Triclosan (TCS) is widely used in the production of antibacterial products, being often found in wastewater. Therefore, this study developed new materials via soybean hulls (SBHF) and açaí seeds (AÇSF) functionalization with iron oxide nanoparticles to be applied in the TCS adsorption. The characterization confirmed the functionalization of the materials. The adsorption results indicated that the equilibrium of the process occurred after 480 and 960 min for SBHF and AÇSF, respectively. The maximum adsorptive capacity values were 158.35 and 155.09 mg g-1 for SBHF and AÇSF, respectively, at 318 K. The kinetic and isothermal data better fitted to the pseudo-second-order and Langmuir models. Thermodynamics indicated that the processes had an endothermic, spontaneous, and reversible character. The main adsorption mechanisms were H-bond and π-interactions. The pH and ionic strength studies indicated that the adsorption efficiency has not been reduced pronouncedly. The biosorbents reuse was effective for five cycles. In the synthetic mixture, the removal rate was satisfactory (92.53% and 57.02%, respectively for SBHF and AÇSF). These results demonstrate the biosorbents high potential for large-scale application.
Collapse
Affiliation(s)
- Taynara Basso Vidovix
- Department of Chemical Engineering, State University of Maringá, MaringáParaná, 87020-900, Brazil
| | | | - Micael Furioso Araújo
- Department of Chemical Engineering, State University of Maringá, MaringáParaná, 87020-900, Brazil
| | - Rosângela Bergamasco
- Department of Chemical Engineering, State University of Maringá, MaringáParaná, 87020-900, Brazil
| | | |
Collapse
|
116
|
Pal DB, Singh A, Saini R, Srivastava N, Muzammil K, Ahmad I, Gupta VK. Studies on adsorption behavior of electrospun nanofibers for pollutant remediation from simulated wastewater. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02516-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
117
|
Prajapati A, Narayan Vaidya A, Kumar AR. Microplastic properties and their interaction with hydrophobic organic contaminants: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49490-49512. [PMID: 35589887 DOI: 10.1007/s11356-022-20723-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) have been defined as particles of size < 5 mm and are characterized by hydrophobicity and large surface areas. MPs interact with co-occurring hydrophobic organic contaminants (HOCs) via sorption-desorption processes in aquatic and terrestrial environments. Ingestion of MPs by living organisms may increase exposure to HOC levels. The key mechanisms for the sorption of HOCs onto MPs are hydrophobic interaction, electrostatic interaction, π-π interactions, hydrogen bonding, and Van der Waals forces (vdW). Polymer type, UV-light-induced surface modifications, and the formation of oxygen-containing functional groups have a greater influence on electrostatic and hydrogen bonding interactions. In contrast, the formation of oxygen-containing functional groups negatively influences hydrophobic interaction. MP characteristics such as crystallinity, weathering, and surface morphology affect sorption capacity. Matrix properties such as pH, ionic strength, and dissolved organic matter (DOM) also influence sorption capacity by exerting synergistic/antagonistic effects. We reviewed the mechanisms of HOC sorption onto MPs and the polymer and matrix properties that influence the HOC sorption. Knowledge gaps and future research directions are outlined.
Collapse
Affiliation(s)
- Archana Prajapati
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, India, 440 020
| | - Atul Narayan Vaidya
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, India, 440 020
| | - Asirvatham Ramesh Kumar
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, India, 440 020.
| |
Collapse
|
118
|
Budhiraja V, Urh A, Horvat P, Krzan A. Synergistic Adsorption of Organic Pollutants on Weathered Polyethylene Microplastics. Polymers (Basel) 2022; 14:2674. [PMID: 35808719 PMCID: PMC9269090 DOI: 10.3390/polym14132674] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 12/10/2022] Open
Abstract
Microplastics (MPs) are persistent tiny pieces of plastic material in the environment that are capable of adsorbing environmental organic pollutants from their surroundings. The interaction of MPs with organic pollutants alters their environmental behavior, i.e., their adsorption, degradation and toxicity, etc. Polyethylene (PE) is the most widely used plastic material. The environmental weathering of PE results in changes to its surface chemistry, making the polymer a much better vector for organic pollutants than virgin PE. In this study, a laboratory-accelerated weathering experiment was carried out with a virgin PE film and an oxidatively degradable PE (OXO-PE) film, i.e., PE modified by the addition of a pro-oxidant catalyst. The degradation of PE and OXO-PE was assessed through Fourier transform infra-red (FTIR) spectroscopy and their wettability was measured by contact angle (CA) measurements. Their thermal properties and morphology were studied using thermogravimetric analyses (TGA) and scanning electron microscopy (SEM), respectively. Further, the adsorption of two model organic pollutants onto weathered and virgin PE was analyzed. Triclosan (TCS) and methylparaben (MeP) were chosen as model organic pollutants for the adsorption experiment due to their frequent use in the cosmetics industry, their uncontrolled release into the environment and their toxicity. The adsorption of both model pollutants onto PE and OXO-PE MP was analyzed by using gas chromatography with a flame ionization detector (GC-FID). The adsorption of MeP onto OXO-PE was higher than onto PE MPs. However, TCS showed insignificant adsorption onto PE and OXO-PE. When both pollutants were present simultaneously, the adsorption of TCS onto both PE and OXO-PE was significantly influenced by the presence of MeP. This result demonstrates that the adsorption behavior of one pollutant can be significantly altered by the presence of another pollutant. Both the effect of weathering on the adsorption of organic pollutants as well as the interaction between organic pollutants adsorbing onto MPs is highly relevant to actual MP pollution in the environment, where MPs are exposed to weathering conditions and mixtures of organic pollutants.
Collapse
Affiliation(s)
| | | | | | - Andrej Krzan
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (V.B.); (A.U.); (P.H.)
| |
Collapse
|
119
|
Tang B, Tang Y, Zhou X, Liu M, Li H, Qi J. The Inhibition of Microcystin Adsorption by Microplastics in the Presence of Algal Organic Matters. TOXICS 2022; 10:toxics10060339. [PMID: 35736947 PMCID: PMC9230722 DOI: 10.3390/toxics10060339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Abstract
Microplastics (MPs) could act as vectors of synthetic chemicals; however, their influence on the adsorption of chemicals of natural origin (for example, MC-LR and intracellular organic matter (IOM), which could be concomitantly released by toxic Microcystis in water) is less understood. Here, we explored the adsorption of MC-LR by polyethylene (PE), polystyrene (PS), and polymethyl methacrylate (PMMA). The results showed that the MPs could adsorb both MC-LR and IOM, with the adsorption capability uniformly following the order of PS, PE, and PMMA. However, in the presence of IOM, the adsorption of MC-LR by PE, PS, and PMMA was reduced by 22.3%, 22.7% and 5.4%, respectively. This is because the benzene structure and the specific surface area of PS facilitate the adsorption of MC-LR and IOM, while the formation of Π-Π bonds favor its interaction with IOM. Consequently, the competition for binding sites between MC-LR and IOM hindered MC-LR adsorption. The C=O in PMMA benefits its conjunction with hydroxyl and carboxyl in the IOM through hydrogen bonding; thus, the adsorption of MC-LR is also inhibited. These findings highlight that the adsorption of chemicals of natural origin by MPs is likely overestimated in the presence of metabolites from the same biota.
Collapse
Affiliation(s)
- Bingran Tang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China; (B.T.); (X.Z.); (M.L.)
| | - Ying Tang
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, Department of Soil Science, College of Resources and Environment, Southwest University, Chongqing 400715, China;
| | - Xin Zhou
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China; (B.T.); (X.Z.); (M.L.)
| | - Mengzi Liu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China; (B.T.); (X.Z.); (M.L.)
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China; (B.T.); (X.Z.); (M.L.)
- Correspondence: (H.L.); (J.Q.)
| | - Jun Qi
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing 400045, China
- Correspondence: (H.L.); (J.Q.)
| |
Collapse
|
120
|
Yu Y, Li H, Chen J, Wang F, Chen X, Huang B, He Y, Cai Z. Exploring the adsorption behavior of benzotriazoles and benzothiazoles on polyvinyl chloride microplastics in the water environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153471. [PMID: 35101490 DOI: 10.1016/j.scitotenv.2022.153471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/03/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
As a kind of emerging pollutant, microplastics (MPs) play an important role as a carrier for pollutant migration in the water environment. Carried by the MPs, benzotriazoles, and benzothiazoles (collectively referred to as BTs)1 are ubiquitous water contaminants. In this paper, the adsorption behavior of BTs on polyvinyl chloride (PVC) MPs was first studied systematically to explain the adsorptive mechanisms and the consequential pollution caused by the absorption-desorption process. The studies on kinetics, isotherms, and thermodynamics revealed that the adsorption of BTs on PVC MPs was a multi-rate, heterogeneous multi-layer, and exothermic process, which was affected by external diffusion, intra-particle diffusion, and dynamic equilibrium. The factors including pH, salinity, and particle size also influenced the adsorption process. In the multi-solute system, competitive adsorption would occur between different BTs. The desorption of BTs from PVC MPs was positively associated with the increase of adsorption amount. Based on the results, the adsorption mechanisms of PVC MPs were clarified, involving hydrophobic interaction, electrostatic force, and non-covalent bonds. It was demonstrated that BTs in the water environment could most probably be accumulated and migrated through MPs, and eventually carried into organisms, posing an increased risk to the ecological environment.
Collapse
Affiliation(s)
- Yanbin Yu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China; College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Huichen Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Jinfeng Chen
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, PR China
| | - Fangjie Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Xiaoning Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Bowen Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Yu He
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China.
| | - Zongwei Cai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
121
|
Wang C, Wang L, Ok YS, Tsang DCW, Hou D. Soil plastisphere: Exploration methods, influencing factors, and ecological insights. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128503. [PMID: 35739682 DOI: 10.1016/j.jhazmat.2022.128503] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 06/15/2023]
Abstract
Microplastic (MP), an emerging contaminant, is globally prevalent and poses potential environmental threats and ecological risks to both aquatic and terrestrial ecosystems. When MPs enter into natural environments, they may serve as artificial substrates for microbial colonization and plastisphere formation, providing new ecological niches for microorganisms. Recent studies of the plastisphere have focused on aquatic ecosystems. However, our understanding of the soil plastisphere e.g. its formation process, microbial ecology, co-transport of organic pollutants and heavy metals, and effects on biogeochemical processes is still very limited. This review summarizes latest methods used to explore the soil plastisphere, assesses the factors influencing the microbial ecology of the soil plastisphere, and sheds light on potential ecological risks caused by the soil plastisphere. The formation and succession of soil plastisphere communities can be driven by MP characteristics and soil environmental factors. The soil plastisphere may affect a series of ecological processes, especially the co-transport of environmental contaminants, biodegradation of MPs, and soil carbon cycling. We aim to narrow the knowledge gap between the soil and aquatic plastisphere, and provide valuable guidance for future research on the soil plastisphere in MP-contaminated soils.
Collapse
Affiliation(s)
- Chengqian Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
122
|
Lin L, Yuan B, Hong H, Li H, He L, Lu H, Liu J, Yan C. Post COVID-19 pandemic: Disposable face masks as a potential vector of antibiotics in freshwater and seawater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153049. [PMID: 35032530 PMCID: PMC8755449 DOI: 10.1016/j.scitotenv.2022.153049] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 05/06/2023]
Abstract
With the outbreak and widespread of the COVID-19 pandemic, large numbers of disposable face masks (DFMs) were abandoned in the environment. This study first investigated the sorption and desorption behaviors of four antibiotics (tetracycline (TC), ciprofloxacin (CIP), sulfamethoxazole (SMX), and triclosan (TCS)) on DFMs in the freshwater and seawater. It was found that the antibiotics in the freshwater exhibited relatively higher sorption and desorption capacities on the DFMs than those in the seawater. Here the antibiotics sorption processes were greatly related to their zwitterion species while the effect of salinity on the sorption processes was negligible. However, the desorption processes were jointly dominated by solution pH and salinity, with greater desorption capacities at lower pH values and salinity. Interestingly, we found that the distribution coefficient (Kd) of TCS (0.3947 L/g) and SMX (0.0399 L/g) on DFMs was higher than those on some microplastics in freshwater systems. The sorption affinity of the antibiotics onto the DFMs followed the order of TCS > SMX > CIP > TC, which was positively correlated with octanol-water partition coefficient (log Kow) of the antibiotics. Besides, the sorption processes of the antibiotics onto the DFMs were mainly predominated by film diffusion and partitioning mechanism. Overall, hydrophobic interaction regulated the antibiotics sorption processes. These findings would help to evaluate the environmental behavior of DFMs and to provide the analytical framework of their role in the transport of other pollutants.
Collapse
Affiliation(s)
- Lujian Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Bo Yuan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Hualong Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Hanyi Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Le He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Haoliang Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Jingchun Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Chongling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
123
|
Martinho SD, Fernandes VC, Figueiredo SA, Delerue-Matos C. Microplastic Pollution Focused on Sources, Distribution, Contaminant Interactions, Analytical Methods, and Wastewater Removal Strategies: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5610. [PMID: 35565001 PMCID: PMC9104288 DOI: 10.3390/ijerph19095610] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023]
Abstract
Plastics have been one of the most useful materials in the world, due to their distinguishing characteristics: light weight, strength, flexibility, and good durability. In recent years, the growing consumption of plastics in industries and domestic applications has revealed a serious problem in plastic waste treatments. Pollution by microplastics has been recognized as a serious threat since it may contaminate all ecosystems, including oceans, terrestrial compartments, and the atmosphere. This micropollutant is spread in all types of environments and is serving as a "minor but efficient" vector for carrier contaminants such as pesticides, pharmaceuticals, metals, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). The need to deeply study and update the evolution of microplastic sources, toxicology, extraction and analysis, and behavior is imperative. This review presents an actual state of microplastics, addressing their presence in the environment, the toxicological effects and the need to understand their extent, their interactions with toxic pollutants, the problems that arise in the definition of analytical methods, and the possible alternatives of treatments.
Collapse
Affiliation(s)
| | - Virgínia Cruz Fernandes
- REQUIMTE/LAVQ—Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Instituto Superior de Engenharia do Porto—Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (S.D.M.); (C.D.-M.)
| | - Sónia A. Figueiredo
- REQUIMTE/LAVQ—Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Instituto Superior de Engenharia do Porto—Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (S.D.M.); (C.D.-M.)
| | | |
Collapse
|
124
|
Yu F, Bai X, Liang M, Ma J. HKUST-1-Derived Cu@Cu(I)@Cu(II)/Carbon adsorbents for ciprofloxacin removal with high adsorption performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
125
|
Shi C, Zhang S, Zhao J, Ma J, Wu H, Sun H, Cheng S. Experimental study on removal of microplastics from aqueous solution by magnetic force effect on the magnetic sepiolite. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
126
|
Li W, Zu B, Yang Q, An J, Li J. Nanoplastic adsorption characteristics of bisphenol A: The roles of pH, metal ions, and suspended sediments. MARINE POLLUTION BULLETIN 2022; 178:113602. [PMID: 35381461 DOI: 10.1016/j.marpolbul.2022.113602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/09/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Nanoplastics (NPs) are widely found in the environment and can act as a vector for various toxic substances and promote their diffusion and bioenrichment, but the underlying mechanisms are largely unknown. Here, the adsorption characteristics of bisphenol A (BPA) onto NPs were explored. The results show that the adsorption of BPA on NPs was dominated by saturated single-layer adsorption and affected by both intra-particle diffusion and liquid film diffusion. Electrostatic interaction, π-π interaction, and hydrophobic effects played key roles in adsorption. In addition, the introduction of electrolytes inhibited the adsorption of BPA onto NPs. Interestingly, the introduction of suspended sediment promoted the formation of heterogeneous aggregates of NPs-SS, thereby reducing the adsorption capacity, indicating that aggregation may play an important role in the adsorption behavior of NPs. Overall, our results provide new insights into the adsorption behavior of BPA on NPs and the underlying mechanisms under different environmental conditions.
Collapse
Affiliation(s)
- Wang Li
- Chongqing Engineering Laboratory of Environmental Hydraulic Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Bo Zu
- Chongqing Engineering Laboratory of Environmental Hydraulic Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Qingwei Yang
- Chongqing Engineering Laboratory of Environmental Hydraulic Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Junwen An
- Chongqing Engineering Laboratory of Environmental Hydraulic Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Jiawen Li
- Chongqing Research Academy of Ecology and Environmental Sciences, Chongqing 401147, China
| |
Collapse
|
127
|
Renner KO, Foster HA, Routledge EJ, Scrimshaw MD. A Comparison of Different Approaches for Characterizing Microplastics in Selected Personal Care Products. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:880-887. [PMID: 33818803 DOI: 10.1002/etc.5057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/27/2020] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Any uncertainty in determining numbers of microplastics in the environment may be a barrier to assessing their impact and may stem from various aspects of methodologies used to quantify them. We undertook a comparison of approaches to quantify and characterize microplastics in 4 personal care products. The aim was not only to determine how many particles were present but to assess any differences due to the methods used. Counting of extracted microplastics was undertaken using particle size analysis, light microscopy, and imaging flow cytometry. Micro-Fourier transform infrared spectroscopy (µ-FTIR) was used to characterize the particles in each product. The mean size distribution of microplastics differed depending on the method employed, and it was apparent that imaging flow cytometry was affected by high background noise that may require staining of plastics to overcome. The application of µ-FTIR confirmed polyethylene as the microplastic in each product. Methodological challenges encountered in the study and the literature have highlighted the need for standardization of methods for determining microplastics. Environ Toxicol Chem 2022;41:880-887. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Kofi O Renner
- Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Helen A Foster
- Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Edwin J Routledge
- Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Mark D Scrimshaw
- Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
128
|
Wang Y, Liu C, Wang F, Sun Q. Behavior and mechanism of atrazine adsorption on pristine and aged microplastics in the aquatic environment: Kinetic and thermodynamic studies. CHEMOSPHERE 2022; 292:133425. [PMID: 34954195 DOI: 10.1016/j.chemosphere.2021.133425] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) are emerging pollutants that have gained much attention due to their potential harm to aquatic ecosystems and organisms. In particular, MP conjugates are loaded with chemical contaminants (e.g., atrazine pesticide), which may be ingested by organisms and can pose higher risks. However, the combined pollution effects and interaction mechanisms remain poorly understood. In this study, we systematically explored the adsorption behaviors and mechanisms of atrazine (ATZ) on pristine and aged MPs using kinetics, isotherms, and thermodynamic models. The target MPs included polystyrene (PS), polyethylene (PE), and polypropylene (PP) as well as the corresponding aged types. Moreover, the effects of pH, humic acid (HA), ionic strength, and ion species (Cl-, SO42-, HCO3-, Mg2+, and Ca2+) of aqueous factors were evaluated. The adsorption capacities of MPs under kinetic equilibrium conditions were as follows: aged PE (0.940 mg g-1) > aged PP (0.677 mg g-1) > aged PS (0.663 mg g-1) > PS (0.565 mg g-1) > PE (0.535 mg g-1) > PP (0.410 mg g-1). The adsorption kinetics and isotherm model results suggested a combination of physisorption and chemisorption. The aging process and pH significantly affected the intrinsic charge on the surface of the MPs and their adsorption capacities. Moreover, the presence of water medium parameters might enhance or inhibit adsorption of different MPs. Hydrophobic and electrostatic attraction mainly contributed to the adsorption of ATZ on pristine MPs, whereas complex surface diffusion and hydrogen bonding dominated the ATZ adsorption on aged MPs with more oxygen-containing groups. In addition, we examined the desorption performance of ATZ from MPs under simulated gastric and intestinal conditions of warm-blooded animals, and found that the ATZ desorption ratio of aged PE (35.3%) showed the most significant effects among the six target types of MPs. This study provides in-depth insights into the co-existence and complex behaviors of MPs and the pesticide pollutant ATZ, to attract further attention to their ecological risks in freshwater environments.
Collapse
Affiliation(s)
- Yi Wang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China; Fujian Province Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, 350007, China
| | - Changqing Liu
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China; Fujian Province Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, 350007, China
| | - Feifeng Wang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China; Fujian Province Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, 350007, China.
| | - Qiyuan Sun
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China; Fujian Province Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, 350007, China.
| |
Collapse
|
129
|
Pan J, Bai X, Li Y, Yang B, Yang P, Yu F, Ma J. HKUST-1 derived carbon adsorbents for tetracycline removal with excellent adsorption performance. ENVIRONMENTAL RESEARCH 2022; 205:112425. [PMID: 34843724 DOI: 10.1016/j.envres.2021.112425] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
As the abuse of antibiotics has led to increasingly serious environmental pollution problems, studies have found that the adsorption method can be used to efficiently and quickly remove residual antibiotics in water with low cost and high efficiency. Metal-organic frameworks and their derived porous carbons have received widespread attention as a new type of adsorption material. In this study, HKUST-1 was synthesized by a hydrothermal method and carbonized to HDC-350 at 350 °C under an oxygen-free atmosphere. Through adsorption experiments, HDC-350 is found to show a superior adsorption effect for tetracycline (TC), with an adsorption capacity that reaches 136.88 mg g-1. The TC adsorption mechanism was studied through characterization and analysis of HDC-350. The adsorption of TC by HDC-350 mainly relies on electrostatic attraction, hydrogen bonding, metal-organic complexation, and intermolecular interactions. This study shows that HKUST-1-derived porous carbon can be used to improve the water stability of HKUST-1, and, at the same time, can effectively adsorb TC in solution, which provides good conditions for practical research applications in the future.
Collapse
Affiliation(s)
- Junyao Pan
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China
| | - Xueting Bai
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China
| | - Yiyao Li
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China
| | - Binhao Yang
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China
| | - Peiyu Yang
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China
| | - Fei Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China.
| | - Jie Ma
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, PR China
| |
Collapse
|
130
|
Wang X, Zhang R, Li Z, Yan B. Adsorption properties and influencing factors of Cu(II) on polystyrene and polyethylene terephthalate microplastics in seawater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152573. [PMID: 34954173 DOI: 10.1016/j.scitotenv.2021.152573] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
As an emerging contamination in the ocean, microplastics can act as effective vectors of pollutants, the ecological risks caused by the combined pollution of microplastics and other pollutants have attracted growing attention. In this work, Copper (Cu(II)) was chosen as the classic pollutant, polystyrene (PS) and polyethylene terephthalate (PET) pellets were used as the typical marine microplastics, the adsorption performance of Cu(II) on PS and PET beads was investigated by adsorption kinetics and isotherm experiments, and other influencing conditions, such as pH, salinity, coexisting heavy metals ions and aging treatment, were evaluated. The results indicated that the adsorption behavior of Cu(II) on PS and PET was spontaneous and endothermic in the simulated seawater environment, and the batch experimental data can be effectively described by pseudo-second-order model and Freundlich isothermal model. Besides, the adsorption capacity of microplastics for Cu(II) was the best at pH 7, the change of salinity had no obvious effect on the adsorption in the natural marine environment. Moreover, co-existence of lead (Pb(II)) exhibited evident impacts on Cu(II) sorption onto PS and PET, which confirmed the adsorption competition effect between them. Additionally, high temperature aging treatment of microplastics in different environments for different duration time could obviously affect the properties of microplastics. It was found that the microplastics after being exposed to high temperature environment in the air for 168 h showed relatively stronger adsorption amount for Cu(II). In summary, these findings suggested that electrostatic interaction and distributed diffusion mechanisms may be the main mechanisms of adsorption, while no new functional groups were generated after the adsorption, indicating that physisorption may dominate the adsorption performance of PS and PET pellets for Cu(II). This study provides supplementary insights into the role of microplastics as carriers of heavy metals in the marine environment.
Collapse
Affiliation(s)
- Xingxing Wang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ruixin Zhang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhaoying Li
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Bo Yan
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin 300457, PR China; Tianjin Marine Environmental Protection and Restoration Technology Engineering Center, Tianjin 300457, PR China; Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin 300457, PR China.
| |
Collapse
|
131
|
Li J, Huang X, Hou Z, Ding T. Sorption of diclofenac by polystyrene microplastics: Kinetics, isotherms and particle size effects. CHEMOSPHERE 2022; 290:133311. [PMID: 34919912 DOI: 10.1016/j.chemosphere.2021.133311] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Diclofenac (DCF) is a common pharmaceutical that widely distributed in natural waters, and has been received an increasing attention because of its potential toxicity. Additionally, microplastics are also ubiquitous pollutants in natural waters, but little information is available on their interactions. In this study, the sorption of DCF on polystyrene microplastics (PS MPs) with different particle sizes was investigated, and the influence of environmental factors was also explored. Results indicated that the pseudo-second-order kinetic model was suitable to describe the sorption process. The sorption capacity increased with the increase in particle size. The isotherms data for the sorption of DCF on 0.5 and 1 μm PS MPs were best fitted with the Dubinine-Radushkevich model, but the Freundlich and Langmuir models could best describe the sorption of DCF 5 and 20 μm PS MPs, respectively. It is suggested that the sorption was a chemisorption, which is also verified by Fourier transform infrared spectroscopy (FTIR) results. Furthermore, the sorption capacity decreased as pH increased, and increased as ionic strength increased. These findings give a new perspective that the microplastics with larger sizes hold promise for the treatment of DCF-contaminated water.
Collapse
Affiliation(s)
- Juying Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China; Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, Shenzhen University, Shenzhen, 518060, China
| | - Xiaotong Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhangming Hou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tengda Ding
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China; Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
132
|
Gao L, Su Y, Yang L, Li J, Bao R, Peng L. Sorption behaviors of petroleum on micro-sized polyethylene aging for different time in seawater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152070. [PMID: 34863766 DOI: 10.1016/j.scitotenv.2021.152070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs; <5 mm) and oil pollution have been receiving global attention. To date, the adsorption mechanism of petroleum by MPs is largely unknown. This study investigated the adsorption of petroleum on micro-sized polyethylene (mPE) undergoing aging (days 0, 15, 30, 90 and 180). The petroleum adsorption capacity of mPE was further assessed at varying pH (2, 5, 7.32, 10 and 12), temperature (4, 15, 25, 45 and 65 °C) and in presence of coexisting pollutants (Cu, bisphenol A (BPA) and petroleum). The results indicated that the adsorption capacity of mPE increased with the prolonged aging time and smaller-sized particles, while the adsorption capacity of the 550 and 165 μm mPE undergoing aging increased by 12.7%-50.9% and 22.1%-63.9%, respectively. The adsorption kinetics and isotherm model of mPE on petroleum were well fitted by pseudo-second order, intraparticle diffusion, Freundlich and Langmuir models, showing the sorption behavior was controlled by the diffusion of pores, liquid film diffusion, and surface adsorption. The petroleum adsorption capacity of mPE was predominant affected by surface roughness, specific surface area, hydrophobicity, oxidation functional groups, adsorption sites, hydrogen bonds, while zeta potential and crystallinity may not be the crucial factors. Likewise, temperature and pH may influence the characteristics of petroleum, and further result in a decreasing adsorption capacity of mPE to petroleum. The highest adsorption capacity of mPE to petroleum was reached at pH 7.32 and 25 °C. The coexisting Cu, BPA and petroleum competed for adsorption sites on the surface of mPE. These findings could fundamentally provide new insights for environmental risk assessment of MPs, particularly for the specific location like harbor which is commonly rich in MPs and petroleum simultaneously.
Collapse
Affiliation(s)
- Liu Gao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, PR China; College of Ecology and Environment, Hainan University, PR China
| | - Yuanyuan Su
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, PR China; College of Ecology and Environment, Hainan University, PR China
| | - Liang Yang
- College of Ecology and Environment, Hainan University, PR China
| | - Jie Li
- College of Ecology and Environment, Hainan University, PR China
| | - Ruiqi Bao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, PR China; College of Ecology and Environment, Hainan University, PR China
| | - Licheng Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, PR China; College of Ecology and Environment, Hainan University, PR China.
| |
Collapse
|
133
|
Wang H, Yu B, Li B, Zhao T, Cai Y, Luo Y, Zhang H. A contrasting alteration of sulfamethoxazole bioaccessibility in two different soils amended with polyethylene microplastic: In-situ measurement using diffusive gradients in thin films. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152187. [PMID: 34890670 DOI: 10.1016/j.scitotenv.2021.152187] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/17/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Microplastics and veterinary antibiotics are both emerging environmental contaminants that could be co-occurrence in agricultural soils. However, it's still unclear how the microplastics affect the bioaccessibility of antibiotics in a real soil environment. An in-situ measurement using diffusive gradients in thin-films devices suitable for polar organic compounds (o-DGT) coupled with soil moisture sampling were used to reveal such effects. Sulfamethoxazole (SMX) that was selected as a representative antibiotic and polyethylene (PE) microplastic with an average diameter of 35 μm were amended to the paddy soil and saline soil for the study. The result indicated that SMX degradation in the paddy soil was higher than that in the saline soil, meanwhile, PE microplastic addition promoted SMX degradation in both soils. In the paddy soil, PE microplastic addition enhanced release of SMX from soil solid to soil solution but no effects on the bioaccessibile SMX. However, in the saline soil, the PE microplastic addition reduced both SMX in soil solution and bioaccessibile SMX significantly (p < 0.05). The potential resupply ability of the labile SMX from soil solid to soil solution which was expressed as R value enhanced significantly in saline soil, while such a change was negligible in the paddy soil. This implied that long-term release risk of SMX in the PE microplastic contaminated saline soil could not be neglected. Therefore, co-occurrence of PE microplastic and SMX in the soils might increase uptake of SMX by biotas and such effects depended on soil properties.
Collapse
Affiliation(s)
- Han Wang
- Zhejiang Provincial Key laboratory of Soil Contamination Bioremediation, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Ben Yu
- Zhejiang Provincial Key laboratory of Soil Contamination Bioremediation, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Baochen Li
- Zhejiang Provincial Key laboratory of Soil Contamination Bioremediation, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Ting Zhao
- Zhejiang Provincial Key laboratory of Soil Contamination Bioremediation, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yimin Cai
- Zhejiang Provincial Key laboratory of Soil Contamination Bioremediation, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yongming Luo
- Nanjing Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Haibo Zhang
- Zhejiang Provincial Key laboratory of Soil Contamination Bioremediation, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| |
Collapse
|
134
|
Rozman U, Kalčíková G. Seeking for a perfect (non-spherical) microplastic particle - The most comprehensive review on microplastic laboratory research. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127529. [PMID: 34736190 DOI: 10.1016/j.jhazmat.2021.127529] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
In recent decades, much attention has been paid to microplastic pollution, and research on microplastics has begun to grow exponentially. However, microplastics research still suffers from the lack of standardized protocols and methods for investigation of microplastics under laboratory conditions. Therefore, in this review, we summarize and critically discuss the results of 715 laboratory studies published on microplastics in the last five years to provide recommendations for future laboratory research. Analysis of the data revealed that the majority of microplastic particles used in laboratory studies are manufactured spheres of polystyrene ranging in size from 1 to 50 µm, that half of the studies did not characterize the particles used, and that a minority of studies used aged particles, investigated leaching of chemicals from microplastics, or used natural particles as a control. There is a large discrepancy between microplastics used in laboratory research and those found in the environment, and many laboratory studies suffer from a lack of environmental relevance and provide incomplete information on the microplastics used. We have summarized and discussed these issues and provided recommendations for future laboratory research on microplastics focusing on (i) microplastic selection, (ii) microplastic characterization, and (iii) test design of laboratory research on microplastics.
Collapse
Affiliation(s)
- Ula Rozman
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 113 Večna pot, SI-1000 Ljubljana, Slovenia
| | - Gabriela Kalčíková
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 113 Večna pot, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
135
|
Xu J, Zhang K, Wang L, Yao Y, Sun H. Strong but reversible sorption on polar microplastics enhanced earthworm bioaccumulation of associated organic compounds. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127079. [PMID: 34488102 DOI: 10.1016/j.jhazmat.2021.127079] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/14/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Sorption/desorption of two organic compounds (OCs), phenanthrene (PHE), and 1-nitronaphthalene (1-Nnap) on three polar and one nonpolar polypropylene (PP) microplastics (MPs) and earthworm bioaccumulation of MP associated PHE were systematically studied. Poly-butylene succinate (PBS) with the lowest glass transition temperature (Tg) showed the highest sorption toward PHE and 1-Nnap (Kd: 25,639 ± 276 and 1673 ± 28.8 L kg-1, respectively), while polylactic acid (PLA) with the highest Tg showed the least sorption (182 ± 5 and near 0), confirming that hydrophobic partition was the main driving force of sorption. However, polar interactions also contributed to the preferential sorption of 1-Nnap on polar poly-hydroxyalkanoates (PHA). Moreover, small particle size favored the sorption of MPs and simulated weathering enhanced sorption on MPs with medium/high Tg. As for desorption, slight hysteresis was observed in most cases with near-zero hysteresis index (HI), and PHE generally had higher HI than 1-Nnap. The simulated digestive solution could further promote the desorption of PHE. The PHE concentrations in earthworms with the presence of 5% PBS or PP MPs in soil were 1.50-2.35 or 1.59-1.75 times that of the control without MPs; and PBS MPs with the smallest particle size showed the greatest enhancement. The results of this study confirmed that polar MPs could strongly but reversibly sorb both polar and nonpolar OCs and hence promote the bioaccumulation of OCs to soil organisms.
Collapse
Affiliation(s)
- Jiaping Xu
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Kai Zhang
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
136
|
Xu L, Liang Y, Liao C, Xie T, Zhang H, Liu X, Lu Z, Wang D. Cotransport of micro- and nano-plastics with chlortetracycline hydrochloride in saturated porous media: Effects of physicochemical heterogeneities and ionic strength. WATER RESEARCH 2022; 209:117886. [PMID: 34861437 DOI: 10.1016/j.watres.2021.117886] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Global production and use of plastics have resulted in the wide dissemination of micro- and nano-plastics (MNPs) to the natural environment. Potentially acting as a vector, the role of MNPs on the fate and transport of environmental pollutants (e.g., antibiotics such as chlortetracycline hydrochloride; CTC) has garnered global concern recently. Herein, the cotransport of MNPs and CTC in columns packed with uncoated sand or soil colloid-coated sand (SCCS) under different degrees of physicochemical heterogeneity and ionic strength was systematically explored. Our results show that MNPs and CTC inhibit the transport of each other when they coexist. The adsorption of CTC onto sand grains, soil colloids, and MNPs, as well as the aggregation of MNPs in the presence of CTC could be the major contributors to the enhanced retention of CTC and MNPs. In SCCS with different degrees of soil colloid coating, the adsorption of CTC on soil colloids is critical to influence the transport of CTC, and the nonlinear retention of MNPs to soil colloids is mainly attributed to the alteration of collector surface roughness by soil colloids. High ionic strength slightly facilitates CTC transport due to the competition for adsorption sites and the formation of CTC macromolecules, but significantly inhibits MNPs transport by suppressing the electrostatic double layers based on colloid stability theory. Consequently, the cotransport of MNPs and CTC is governed by the coupled interplay of collector surface roughness and chemical heterogeneity, due to the soil colloid coatings and the adsorbed CTC on the surfaces associated with solution chemistries such as ionic strength. Increased cotransport of MNPs and CTC occurred under a higher concentration of MNPs due to a larger number of adsorption sites for CTC. Our findings advance the current understanding of the complex cotransport of MNPs and antibiotics in the environment. This information is valuable for understanding contaminant fate and formulating strategies for environmental remediation due to the contamination of MNPs and co-occurring contaminants.
Collapse
Affiliation(s)
- Lilin Xu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yan Liang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning 530007, China.
| | - Changjun Liao
- Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning 530007, China
| | - Tian Xie
- Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning 530007, China
| | - Hanbin Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Xingyu Liu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Zhiwei Lu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States
| |
Collapse
|
137
|
Januário EFD, Fachina YJ, Wernke G, Demiti GMM, Beltran LB, Bergamasco R, Vieira AMS. Application of activated carbon functionalized with graphene oxide for efficient removal of COVID-19 treatment-related pharmaceuticals from water. CHEMOSPHERE 2022; 289:133213. [PMID: 34890614 PMCID: PMC9757902 DOI: 10.1016/j.chemosphere.2021.133213] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 05/07/2023]
Abstract
Currently, the COVID-19 pandemic has been increasing the consumption of some drugs, such as chloroquine (CQN) and dipyrone (DIP), which are continuously discharged into water resources through domestic sewage treatment systems. The presence of these drugs in water bodies is worrisome due to their high toxicity, which makes crucial their monitoring and removal, especially by means of advanced technologies. Given this scenario, a new adsorbent material was synthesized through the combination of babassu coconut activated carbon and graphene oxide (GAC-GO). This study was evaluated in batch adsorption processes, aiming at the treatment of water contaminated with CQN and DIP. Characterization analyzes using physicochemical and spectroscopic techniques indicated that the GAC-GO functionalization was successfully performed. The equilibrium time of the adsorption process was 18 and 12 h for CQN and DIP, respectively. Kinetic and isothermal data better fitted to pseudo-second-order and Langmuir models for both drugs. Thermodynamic parameters showed that the process is endothermic and the maximum adsorption capacities of CQN and DIP were 37.65 and 62.43 mg g-1, respectively, both at 318 K. The study of the effect of ionic strength, which simulates a real effluent, demonstrated that the synthesized adsorbent has potential application for the treatment of effluents. Furthermore, satisfactory removal rates were verified for the removal of other contaminants in both simple solutions and synthetic mixtures, evidencing the versatile profile of the adsorbent.
Collapse
Affiliation(s)
| | - Yasmin Jaqueline Fachina
- State University of Maringá, Department of Chemical Engineering, Maringá, 87020-900, Paraná, Brazil
| | - Gessica Wernke
- State University of Maringá, Department of Chemical Engineering, Maringá, 87020-900, Paraná, Brazil
| | | | - Laiza Bergamasco Beltran
- State University of Maringá, Graduate Program in Food Science, Maringá, 87020-900, Paraná, Brazil
| | - Rosângela Bergamasco
- State University of Maringá, Department of Chemical Engineering, Maringá, 87020-900, Paraná, Brazil
| | | |
Collapse
|
138
|
Bai CL, Liu LY, Hu YB, Zeng EY, Guo Y. Microplastics: A review of analytical methods, occurrence and characteristics in food, and potential toxicities to biota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150263. [PMID: 34571218 DOI: 10.1016/j.scitotenv.2021.150263] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 05/27/2023]
Abstract
Microplastics (MPs) are ubiquitous in various environment compartments, including food. Here, we collected research reports of MPs in food published during 2010-2020, and summarized the analytical methods developed and utilized by researchers (e.g., digestion, separation and identification, as well as related QA/QC measures implemented), the occurrence, and the characteristics of MPs in six kinds of food. The potential effects on biota from exposure to MPs were also reviewed. The results showed that most researchers digested food samples using chemical solutions such as HNO3, H2O2, KOH, or NaOH. FT-IR and Raman spectroscopy were the main technique for identifying MPs, and microscopes were used to count MP particles. The abundances MPs were in the ranges of 0-5860, 2.00-1100, 0-698, 4.00-18.7, 0-5.68 × 104 and 900-3000 particles/kg in beverages, condiments, honey, meat, seafood and vegetables, respectively. The "maximum" annual human intake of MPs from these foods is approximately 1.42 × 105-1.54 × 105 particles/capita, equivalent to the consumption of 50 plastic bags (size: 0.04 mm × 250 mm × 400 mm, density: 0.98 g/cm3) each year. Blue-colored and fiber-shaped MP particles were the most commonly observed in food, predominated by PA, PE, PES, PET and PP types. Toxicity studies indicated that MPs, additives of MPs and adsorbents or microorganisms on the surfaces of MPs were all somewhat toxic to cells or biota. Exposure to MPs may induce oxidative stress, inflammation, neurotoxicity, and reproductive toxicity, and change the structure of intestinal microflora in cells or biota. Therefore, we call for more investigation into the residual, excretion and bioavailability of MPs or related absorbents/additives in biota and humans.
Collapse
Affiliation(s)
- Cui-Lan Bai
- Guangdong Key Laboratory of Environmental Pollution and Health, and Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou 510632, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, and Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yi-Bin Hu
- Guangdong Key Laboratory of Environmental Pollution and Health, and Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou 510632, China
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, and Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, and Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
139
|
Chu X, Zheng B, Li Z, Cai C, Peng Z, Zhao P, Tian Y. Occurrence and distribution of microplastics in water supply systems: In water and pipe scales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150004. [PMID: 34500280 DOI: 10.1016/j.scitotenv.2021.150004] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 05/26/2023]
Abstract
Microplastic (MP) pollution has received widespread attention; however, its occurrence and distribution in water supply systems, particularly in pipe scales, remains unclear. In this study, MPs were observed in water and pipe scale samples from the drinking water treatment plant (DWTP) and distribution system (DWDS), respectively. The MP concentrations ranged from 13.23 to 134.79 n/L and 569.99 to 751.73 n/kg in the water and pipe scale samples, respectively. The predominant particles in the pipe scales (50-100 μm) were smaller than those in the water samples (> 200 μm). Overall, MP fragments were the most abundant. Of all the identified MPs, nylon and polyvinyl chloride were predominant in the water and pipe scale samples, respectively. Furthermore, the DWTP and DWDS both prevented MPs from entering the tap water, thereby reducing their risk. The results of this study provide direct evidence for the strong adsorption of MPs onto pipe scales, indicating that pipe scale stability may play a role in improving water quality and security. However, the abundance of MPs in pipe scales cannot be ignored. Additionally, the results provide valuable background information on MP pollution in water supply systems.
Collapse
Affiliation(s)
- Xianxian Chu
- Department of Environmental Engineering, Tianjin University, Tianjin 300350, China
| | - Bo Zheng
- Department of Environmental Engineering, Tianjin University, Tianjin 300350, China
| | - Zhengxuan Li
- Department of Environmental Engineering, Tianjin University, Tianjin 300350, China
| | - Cheng Cai
- Department of Environmental Engineering, Tianjin University, Tianjin 300350, China
| | - Zhu Peng
- Department of Environmental Engineering, Tianjin University, Tianjin 300350, China
| | - Peng Zhao
- Department of Environmental Engineering, Tianjin University, Tianjin 300350, China
| | - Yimei Tian
- Department of Environmental Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
140
|
Effect of octadecylamine polyoxyethylene ether on the adsorption feature of sodium polystyrene sulfonate on the SiC surface and the relevant dispersion stability of slurry. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
141
|
Cui R, Jong MC, You L, Mao F, Yao D, Gin KYH, He Y. Size-dependent adsorption of waterborne Benzophenone-3 on microplastics and its desorption under simulated gastrointestinal conditions. CHEMOSPHERE 2022; 286:131735. [PMID: 34385031 DOI: 10.1016/j.chemosphere.2021.131735] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/09/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are global pollutants with heightened environmental and health concerns in recent years because of their worldwide distribution across aquatic environments, ability to load chemical contaminants and the potential for ingestion by animals, including human. In this study, three commonly used and environmentally detected plastics, i.e. polystyrene, polyethylene, polypropylene with sizes of 550, 250 and 75 μm, plus two submicron-sized polystyrene microplastics (5 and 0.5 μm) were assessed as solid adsorbents for a prevalent UV filter, benzophenone-3 (BP-3). The affinity and process of adsorption exhibited differentials among different sizes and types of MPs. Apparent desorption of BP-3 from MPs under simulated gastrointestinal conditions was not significantly enhanced, which might be due to the presence of the enzyme proteins, indicating potential risk of the contaminants carried by MPs. The desorption of BP-3 from MPs was affected by the size, type of MPs and the components of the gastrointestinal fluid.
Collapse
Affiliation(s)
- Ruofan Cui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Mui-Choo Jong
- Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore; National University of Singapore Environment Research Institute, National University of Singapore, Singapore, 138602, Singapore
| | - Luhua You
- Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore; National University of Singapore Environment Research Institute, National University of Singapore, Singapore, 138602, Singapore
| | - Feijian Mao
- Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore; National University of Singapore Environment Research Institute, National University of Singapore, Singapore, 138602, Singapore; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing, 210098, China
| | - Dingding Yao
- Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore; National University of Singapore Environment Research Institute, National University of Singapore, Singapore, 138602, Singapore
| | - Karina Yew-Hoong Gin
- National University of Singapore Environment Research Institute, National University of Singapore, Singapore, 138602, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore.
| |
Collapse
|
142
|
Simon-Sánchez L, Grelaud M, Franci M, Ziveri P. Are research methods shaping our understanding of microplastic pollution? A literature review on the seawater and sediment bodies of the Mediterranean Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118275. [PMID: 34626717 DOI: 10.1016/j.envpol.2021.118275] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 05/17/2023]
Abstract
The lack of standardization on the definition and methods in microplastic (MP) research has limited the overall interpretation and intercomparison of published data. This has presented different solutions to assess the presence of these pollutants in the natural environment, bringing the science forward. Microplastics have been reported worldwide across different biological levels and environmental compartments. In the Mediterranean Sea, numerous research efforts have been dedicated to defining the MP pollution levels. The reported MP concentrations are comparable to those found in the convergence zone of ocean gyres, pointing to this basin as one of the world's greatest plastic accumulation areas. However, to what extent are the data produced limited by the methods? Here, we present the results of a systematic review of MP research methods and occurrence targeting the seawater and sediment bodies of the Mediterranean Sea. Based on this dataset, we 1) assess the discrepancies and similarities in the methods, 2) analyze how these differences affect the reported concentrations, and 3) identify the limitations of the data produced for the Mediterranean Sea. Moreover, we reaffirm the pressing need of developing a common reporting terminology, and call for international collaboration between Mediterranean countries, especially with North African countries, to provide a complete picture of the MP pollution status in this basin.
Collapse
Affiliation(s)
- Laura Simon-Sánchez
- Institute of Environmental Science and Technology (ICTA-UAB), Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| | - Michaël Grelaud
- Institute of Environmental Science and Technology (ICTA-UAB), Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Marco Franci
- Institute of Environmental Science and Technology (ICTA-UAB), Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Patrizia Ziveri
- Institute of Environmental Science and Technology (ICTA-UAB), Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
143
|
Mo Q, Yang X, Wang J, Xu H, Li W, Fan Q, Gao S, Yang W, Gao C, Liao D, Li Y, Zhang Y. Adsorption mechanism of two pesticides on polyethylene and polypropylene microplastics: DFT calculations and particle size effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118120. [PMID: 34520951 DOI: 10.1016/j.envpol.2021.118120] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Polyethylene (PE) and polypropylene (PP) microplastics (MPs), as carriers, can bind with pesticides, which propose harmful impacts to aqueous ecosystems. Meanwhile, carbofuran and carbendazim (CBD), two widely used carbamate pesticides, are toxic to humans because of the inhibition of acetylcholinesterase activity. The interaction between two MPs and two pesticides could start in farmland and be maintained during transportation to the ocean. Herein, the adsorption behavior and mechanism of carbofuran and carbendazim (CBD) by PE and PP MPs were investigated via characterization and density functional theory (DFT) simulation. The adsorption kinetic and thermodynamic data were best described by pseudo-second-order kinetics and the Freundlich models. The adsorption behaviors of individual carbofuran/CBD on both MPs were very similar. The CBD adsorption rate and capacity of PE and PP MPs were higher than those of carbofuran. This phenomenon explained the lower negative effects of DOM (oxalic acid, glycine (Gly)) on CBD adsorption relative to those of carbofuran. The presence of oxalic acid and Gly decreased the PE adsorption by 20.40-48.02% and the PP adsorption by 19.27-42.11%, respectively. It indicated the significance of DOM in carbofuran cycling. The adsorption capacities were negatively correlated with MPs size, indicating the importance of specific surficial area. Fourier transformation infrared spectroscopy before and after adsorption suggested that the adsorption process did not produce any new covalent bond. Instead, intermolecular van der Waals forces were one of the primary adsorption mechanisms of carbofuran and CBD by MPs, as evidenced by DFT calculations. Based on the zeta potential, the electrostatic interaction explained the higher adsorption CBD by MPs than carbofuran.
Collapse
Affiliation(s)
- Qiming Mo
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Jinjin Wang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Huijuan Xu
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Wenyan Li
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Qi Fan
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Shuang Gao
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Wenyi Yang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Chengzhen Gao
- Jiangmen Agricultural and Rural Affairs Bureau, Jiangmen, 529000, China
| | - Dehua Liao
- Jiangmen Agricultural Technology Service Center, Jiangmen, 529000, China
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Yulong Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
144
|
Stenger KS, Wikmark OG, Bezuidenhout CC, Molale-Tom LG. Microplastics pollution in the ocean: Potential carrier of resistant bacteria and resistance genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118130. [PMID: 34562691 DOI: 10.1016/j.envpol.2021.118130] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/24/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Microplastics pollution in marine environments is concerning. Microplastics persist and accumulate in various sections of the ocean where they present opportunity for micropollutant accumulation and microbial colonisation. Even though biofilm formation on plastics was first reported in the 1970's, it is only in recent years were plastic associated biofilms have gained research attention. Plastic surfaces pose a problem as they are a niche ready for colonisation by diverse biofilm assemblages, composed of specific bacterial communities and putative pathogens prone to acquiring ARGs and resistance in the biofilm. However, the nature of antibiotic resistance on aquatic plastic debris is not yet fully understood and remains a concern. Given the inevitable increase of plastic production and waste generation, microplastics released into the environment may prove to be problematic. This review explores microplastic waste in the ocean and possible concerns that may arise from the presence of microplastics in conjunction with favourable conditions for the development and dispersal of antibiotic resistance in the ocean and food web.
Collapse
Affiliation(s)
- K S Stenger
- Unit for Environmental Sciences and Management - Microbiology, North-West University, Potchefstroom, South Africa.
| | - O G Wikmark
- Unit for Environmental Sciences and Management - Microbiology, North-West University, Potchefstroom, South Africa; GenØk - Centre for Biosafety, Tromsø, Norway.
| | - C C Bezuidenhout
- Unit for Environmental Sciences and Management - Microbiology, North-West University, Potchefstroom, South Africa.
| | - L G Molale-Tom
- Unit for Environmental Sciences and Management - Microbiology, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
145
|
Gnanasekaran G, G A, Mok YS. A high-flux metal-organic framework membrane (PSF/MIL-100 (Fe)) for the removal of microplastics adsorbing dye contaminants from textile wastewater. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
146
|
Lin H, Yuan Y, Jiang X, Zou JP, Xia X, Luo S. Bioavailability quantification and uptake mechanisms of pyrene associated with different-sized microplastics to Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149201. [PMID: 34303978 DOI: 10.1016/j.scitotenv.2021.149201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are the significant environmental factor for bioavailability of hydrophobic organic contaminants (HOCs) in aquatic environments. Nevertheless, the bioavailability of microplastic-associated HOCs remains unclear. In this research, the freely dissolved pyrene concentrations were kept stable with passive dosing devices, and the pyrene content in D. magna tissues as well as D. magna immobilization were analyzed to quantify bioavailability of pyrene (a representative HOC) associated with naturally-aged polystyrene (PS) MPs. Furthermore, the uptake mechanisms of pyrene associated with MPs of different sizes were explored by investigating the distribution of MPs in D. magna tissues with scanning electron microscopy. Especially, a new schematic model of bioavailability process was established. The results demonstrated that a part of pyrene associated with 0-1.5 μm MPs could directly cross cell membrane through endocytosis from intestine and exposure solutions to D. magna tissues except the 10-60 and 60-230 μm MPs. The bioavailability of microplastic-associated pyrene was ordered as 0-1.5 μm (20.0-21.6%) > 10-60 μm (10.7-13.8%) > 60-230 μm MPs (6.0-9.8%), which were essentially resulted from the difference in uptake mechanisms of pyrene associated with MPs of different sizes. This work suggests that the bioavailability of microplastic-associated HOCs should be considered when assessing water quality and environmental risk of HOCs in natural waters.
Collapse
Affiliation(s)
- Hui Lin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yinqiu Yuan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xiaoman Jiang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jian-Ping Zou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shenglian Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
147
|
Xie M, Huang JL, Lin Z, Chen R, Tan QG. Field to laboratory comparison of metal accumulation on aged microplastics in coastal waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149108. [PMID: 34303246 DOI: 10.1016/j.scitotenv.2021.149108] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/29/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
The ubiquity of microplastics in the environment has attracted much attention on their risks. Though newly produced plastics were considered inert to aqueous metals, a few studies suggest aged microplastics can accumulate metals. Still, knowledge gap exists on the comparability of metal accumulation in field condition and that acquired in controlled laboratory settings. Accordingly, we comparatively assessed the field accumulation and laboratory adsorption of metals on aged microplastics in coastal waters. Microplastics of different polymeric types were aged for 8 weeks at three coastal sites with different contamination levels. Microplastics accumulated metals to substantial concentrations during ageing (median concentrations, μg g-1: Fe = 950, Mn = 94, Zn = 19, Cu = 2.8, Ni = 1.7, Pb = 1.6, and Cd = 0.005). Adsorption capacity of (aged) microplastics was evaluated in laboratory using a stable isotope tracer method. At environmentally realistic concentrations (μg L-1, 114Cd = 1.7, 65Cu = 4.4, 62Ni = 5.4, 206Pb = 0.5, and 68Zn = 13), the median concentrations of newly adsorbed isotopes on the aged microplastics were 0.01, 1.4, 0.07, 0.56, and 1.1 μg g-1, respectively, one to two orders of magnitude higher than those adsorbed on pristine microplastics. However, the composition pattern of metals accumulated on aged microplastics differed from the composition of metals newly adsorbed in laboratory: the prior one reflected the contamination status of ageing sites and varied by polymeric types; whereas the laboratory newly adsorbed metals on aged microplastics were uniformly correlated to particulate Fe and Mn concentrations, suggesting Fe and Mn mineral coatings mediated the ensuing metal adsorption. Such discrepancy unveiled the complexity of metal accumulation behavior in the real environment and highlighted that cares should be taken when translating laboratory findings to risk assessment of metal contaminated microplastics in the real environment.
Collapse
Affiliation(s)
- Minwei Xie
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China; Key Laboratory of the Coastal and Wetland Ecosystems of Ministry of Education, Xiamen, Fujian 361102, China; Center for Marine Environmental Chemistry and Toxicology, Xiamen University, Xiamen, Fujian 361102, China
| | - Jun-Lin Huang
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhi Lin
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Rong Chen
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China; Key Laboratory of the Coastal and Wetland Ecosystems of Ministry of Education, Xiamen, Fujian 361102, China; Center for Marine Environmental Chemistry and Toxicology, Xiamen University, Xiamen, Fujian 361102, China
| | - Qiao-Guo Tan
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China; Key Laboratory of the Coastal and Wetland Ecosystems of Ministry of Education, Xiamen, Fujian 361102, China; Center for Marine Environmental Chemistry and Toxicology, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
148
|
Wang SC, Gao ZY, Liu FF, Chen SQ, Liu GZ. Effects of polystyrene and triphenyl phosphate on growth, photosynthesis and oxidative stress of Chaetoceros meülleri. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149180. [PMID: 34311354 DOI: 10.1016/j.scitotenv.2021.149180] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
The toxicity of microplastics to marine organisms has attracted much attention; however, studies of their effects on marine microalgae remain limited. Here, the effects of the single and combined toxicity of polystyrene (PS) and triphenyl phosphate (TPhP) on the cell growth, photosynthesis, and oxidative stress of Chaetoceros meülleri were investigated. PS inhibited growth of the algae cells and caused a dose-dependent effect on oxidative stress. The significantly high production of reactive oxygen species (ROS) induced severe cell membrane damage, as confirmed by high fluorescence polarization. However, there was no obvious decrease in chlorophyll a content, and 80 mg/L of PS significantly promoted chlorophyll a synthesis. The TPhP also inhibited cell growth, except at low concentrations (0.2-0.8 mg/L), which stimulated algae growth over 48 h. Moreover, no obvious decrease in chlorophyll a and maximal photochemical efficiency of PSII was found in the TPhP experimental groups except for 3.2 mg/L TPhP, where the rapid light curves showed a significantly reduced photosynthetic capacity of algae. In addition, TPhP caused high ROS levels at 96 h, resulting in cell membrane damage. Using the additive index and independent action methods, the combined toxic effects of PS and TPhP on the algae were evaluated as antagonistic; however, cell membrane damage caused by high ROS levels was still noticeable. This study has shown the potential toxicity of PS and TPhP to marine microalgae, and provided insights into the combined risk assessment of TPhP and microplastics in the marine environment.
Collapse
Affiliation(s)
- Su-Chun Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Zhi-Yin Gao
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Fei-Fei Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China.
| | - Shi-Qiang Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Guang-Zhou Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
149
|
Abstract
Microplastics are found in various environments with the increasing use of plastics worldwide. Several methods have been developed for the sampling, extraction, purification, identification, and quantification of microplastics in complex environmental matrices. This study intends to summarize recent research trends on the subject. Large microplastic particles can be sorted manually and identified through chemical analysis; however, sample preparation for small microplastic analysis is usually more difficult. Microplastics are identified by evaluating the physical and chemical properties of plastic particles separated through extraction and washing steps from a mixture of inorganic and organic particles. This identification has a high risk of producing false-positive and false-negative results in the analysis of small microplastics. Currently, a combination of physical (e.g., microscopy), chemical (e.g., spectroscopy), and thermal analyses is widely used. We aim to summarize the best strategies for microplastic analysis by comparing the strengths and limitations of each identification method.
Collapse
|
150
|
Qin R, Lin X, Chen Z, Su C, Zhu F, Yang W, Chen Z, Lu P. Evaluation of characteristics and microbial community of anaerobic granular sludge under microplastics and aromatic carboxylic acids exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148361. [PMID: 34153772 DOI: 10.1016/j.scitotenv.2021.148361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
The influences of polyether sulfone (PES) microplastics and different structures aromatic carboxylic acids such as benzoic acid (BA), phthalic acid (PA), hemimellitic acid (HA), and 1-naphthoic acid (1-NA) on the performances and characteristics of anaerobic granular sludge as well as the microbial community were investigated. The chemical oxygen demand (COD) removal efficiency was the highest in the experimental group with 40 mg/L BA, reaching 90.1%. The inhibitory effect of aromatic carboxylic acids addition on the 2,3,5-triphenyltetrazolium chloride (TTC) activity was more obvious than that on 2-para (iodo-phenyl)-3(nitrophenyl)-5(phenyl) tetrazolium chloride (INT) activity. Compared with the control group (only 0.5 g/L PES microplastics, 60.6 mg TF·g TSS·h-1), the inhibition effect of TTC activity was 32.5 mg TF·g TSS·h-1 and 44.3 mg TF·g TSS·h-1 in the 40 mg/L HA and 40 mg/L 1-NA experimental groups, respectively. When aromatic carboxylic acids were added, the activities of acetate kinase and coenzyme F420 in the anaerobic granular sludge decreased. The excitation-emission matrix (EEM) fluorescence spectra indicated that loosely bound extracellular polymeric substances (LB-EPS) began to decay. After the addition of different aromatic carboxylic acids, the CC and CH functional groups of the anaerobic granular sludge increased, suggesting that aromatic carboxylic acids migrated to the surface of anaerobic granular sludge, such a transfer would lead to changes in anaerobic granular sludge performance. High-throughput sequencing technology showed that the dominant microbial communities in the anaerobic granular sludge were Proteobacteria, Methanothrix, and Methanomicrobia. After the addition of aromatic carboxylic acids, the relative abundances of Proteobacteria, Methanobacterium, and Methanospirillum increased. In the presence of PES, 1-NA had the most serious toxicity to the anaerobic granular sludge.
Collapse
Affiliation(s)
- Ronghua Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xumeng Lin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Zhenpeng Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; University Key Laboratory of Karst Ecology and Environmental Change of Guangxi Province, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Fenghua Zhu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Wenjing Yang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Zhuxin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Pingping Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|