101
|
Monteiro SS, Rocha-Santos T, Prata JC, Duarte AC, Girão AV, Lopes P, Cristovão T, da Costa JP. A straightforward method for microplastic extraction from organic-rich freshwater samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152941. [PMID: 35007581 DOI: 10.1016/j.scitotenv.2022.152941] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/29/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
The extraction of microplastics from organic-rich freshwater samples is challenging and limited information is available in the literature. This study aims at developing efficient methods for water volume reduction and organic matter removal in freshwater samples, while focusing on the reduction of the economic and environmental costs, maintaining microplastics integrity and avoiding contamination. For the water volume reduction approach, centrifuging freshwater samples (water, sediment, algae, leaves, driftwood, fish tissue) at different speeds (3500, 6000 rpm) and times (5, 10 min) showed that 3500 rpm for 5 min was efficient to settle the mineral and organic material, while preserving the polymers and showing high microplastic recovering rates (93 ± 6%). These recovery rates were significantly higher than the traditional sieving approach (77 ± 22%). The posterior minimal consumption of reagents resulting from the reduction of water volume helped to reduce the economic and environmental costs of the devised methodology, becoming more aligned with green chemistry principles. For biogenic organic matter removal, four digestion solutions were tested on freshwater samples, namely 10% potassium hydroxide, Fenton reagent (30% H2O2 + Fe(II)), 7% and 10% sodium hypochlorite (NaClO), under 3 periods of time (1, 6 and 15 h), at 50 °C. Both 7% and 10% NaClO showed the highest rates of organic matter removal (86 ± 1% and 90 ± 1%, respectively), after 6 h at 50 °C. Exposure of virgin and aged polymers (polyethylene, polypropylene, polystyrene, polyvinyl chloride, nylon, polyethylene terephthalate) to NaClO showed no weight, visual, surface structure, Fourier transform infrared spectra and carbonyl index changes, except for nylon, although not to an extent that affected its identification. This method resulted in high recovery rates of polymers (92 ± 6%). Thus, 7% NaClO at 50 °C for 6 h (or overnight) may be efficiently used for microplastic analysis in organic-rich freshwater samples.
Collapse
Affiliation(s)
- Silvia S Monteiro
- CESAM and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Teresa Rocha-Santos
- CESAM and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Joana C Prata
- CESAM and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Armando C Duarte
- CESAM and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana Violeta Girão
- CICECO and Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | - João Pinto da Costa
- CESAM and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
102
|
Toxic Chemicals and Persistent Organic Pollutants Associated with Micro-and Nanoplastics Pollution. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100310] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
103
|
Zhou Z, Wan L, Cai W, Tang J, Wu Z, Zhang K. Species-specific microplastic enrichment characteristics of scleractinian corals from reef environment: Insights from an in-situ study at the Xisha Islands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152845. [PMID: 34990693 DOI: 10.1016/j.scitotenv.2021.152845] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The microplastic pollution has become a worldwide ecological concerns and imposed negative impacts on the coral reef ecosystems. In the present study, the distribution and characteristics of microplastics in the seawater, marine sediment and three scleractinian coral species (Pocillopora damicornis, Galaxea fascicularis, and Porites lutea) at five representative atolls in the Xisha Islands were investigated. The average microplastic abundances in the seawater and marine sediment were 9.5 ± 3.7 particles L-1 and 280.9 ± 231.9 particles kg-1 (dry weight), and the average contents of microplastics in P. damicornis, G. fascicularis and P. lutea were 0.9 ± 0.5 particles cm-2, 1.2 ± 0.6 particles cm-2, and 2.5 ± 1.6 particles cm-2, respectively. There were no significant correlations for the microplastic concentration between the reef environment and the corals. These results infer that the microplastic pollution is severe in the coral reef ecosystem in the Xisha Islands, and scleractinian corals could enrich microplastics from the reef environment. In addition, more than 80% of the microplastics in the seawater, marine sediment and corals were smaller than 2 mm, and the most common types of microplastics were cellophane (61.13%) and polyethylene terephthalate (33.49%). Black and fibers were the most common color and shape of the microplastics in the seawater and marine sediment, respectively. The microplastics in transparent color, film shape and small size (<2 mm) were highly accumulated in corals. Besides, cluster analysis showed that significant difference of microplastic characteristics existed between the corals and the reef environment, and the features of enriched microplastics among three coral species were also different. Moreover, P. lutea exhibited a stronger ability in enriching microplastics than G. fascicularis and P. damicornis. These results suggest that the microplastic-enriching capacities of scleractinian corals are species-specific, and species acclimated to microplastic pollution might become predominant in future coral community.
Collapse
Affiliation(s)
- Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China.
| | - Lu Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Wenqi Cai
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Jia Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Zhongjie Wu
- Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| |
Collapse
|
104
|
Rahman MZ, Hoque ME, Alam MR, Rouf MA, Khan SI, Xu H, Ramakrishna S. Face Masks to Combat Coronavirus (COVID-19)-Processing, Roles, Requirements, Efficacy, Risk and Sustainability. Polymers (Basel) 2022; 14:1296. [PMID: 35406172 PMCID: PMC9003287 DOI: 10.3390/polym14071296] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/26/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Increasingly prevalent respiratory infectious diseases (e.g., COVID-19) have posed severe threats to public health. Viruses including coronavirus, influenza, and so on can cause respiratory infections. A pandemic may potentially emerge owing to the worldwide spread of the virus through persistent human-to-human transmission. However, transmission pathways may vary; respiratory droplets or airborne virus-carrying particles can have a key role in transmitting infections to humans. In conjunction with social distancing, hand cleanliness, and other preventative measures, the use of face masks is considered to be another scientific approach to combat ubiquitous coronavirus. Different types of face masks are produced using a range of materials (e.g., polypropylene, polyacrylonitrile, polycarbonate, polyurethane, polystyrene, polyester and polyethylene) and manufacturing techniques (woven, knitted, and non-woven) that provide different levels of protection to the users. However, the efficacy and proper disposal/management of the used face masks, particularly the ones made of non-biodegradable polymers, pose great environmental concerns. This review compiles the recent advancements of face masks, covering their requirements, materials and techniques used, efficacy, challenges, risks, and sustainability towards further enhancement of the quality and performance of face masks.
Collapse
Affiliation(s)
- Md Zillur Rahman
- Department of Mechanical Engineering, Ahsanullah University of Science and Technology (AUST), Dhaka 1208, Bangladesh
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka 1216, Bangladesh;
| | - Md Rubel Alam
- Department of Knitwear Manufacturing and Technology, BGMEA University of Fashion and Technology (BUFT), Dhaka 1230, Bangladesh; (M.R.A.); (M.A.R.)
| | - Md Abdur Rouf
- Department of Knitwear Manufacturing and Technology, BGMEA University of Fashion and Technology (BUFT), Dhaka 1230, Bangladesh; (M.R.A.); (M.A.R.)
| | - Saiful Islam Khan
- Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka 1216, Bangladesh;
| | - Huaizhong Xu
- Department of Biobased Materials Science, Kyoto Institute of Technology (KIT), Matsugasaki Hashikamicho 1, Sakyoku, Kyoto 606-8585, Japan
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore (NUS), Singapore 117575, Singapore;
| |
Collapse
|
105
|
Truong HAT, Mothe SR, Min JL, Tan HM, Jackson AW, Nguyen DT, Ye DKJ, Kanaujia P, Thoniyot P, Dang TT. Immuno-modulatory Effects of Microparticles Formulated from Degradable Polystyrene Analogue. Macromol Biosci 2022; 22:e2100472. [PMID: 35261175 DOI: 10.1002/mabi.202100472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 11/11/2022]
Abstract
Environmental accumulation of non-degradable polystyrene (PS) microparticles from plastic waste poses potential adverse impact on marine life and human health. Herein, we formulate microparticles from a degradable polystyrene analogue (dePS) and comprehensively evaluate their immuno-modulatory characteristics. Both dePS copolymer and microparticles are chemically degradable under accelerated hydrolytic condition. In vitro studies show that dePS microparticles are non-toxic to three immortalized cell lines. While dePS microparticles do not induce macrophage polarization in vitro, dePS microparticles induce in vivo upregulation of both pro-inflammatory and anti-inflammatory biomarkers in immuno-competent mice, suggesting the coexistence of mixed phenotypes of macrophages in the host immune response to these microparticles. Interestingly, on day 7 post-injection, dePS microparticles induce a lower level of several immuno-modulatory biomarkers (MMPs activity, TNF-α, and arginase activity) compared to that of reference poly(lactic-co-glycolic acid) PLGA microparticles. Remarkably, compared to PS microparticles, dePS microparticles exhibit similar in vitro and in vivo bioactivity while acquiring additional chemical degradability. Overall, our research gains new insights into the host immune response to dePS microparticles and suggests that this degradable polystyrene analogue might be explored as an alternative material choice for biomedical and consumer care applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hong Anh T Truong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Avenue, Singapore, 637459, Singapore
| | - Srinivasa Reddy Mothe
- Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (ASTAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Jaclyn Lee Min
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Avenue, Singapore, 637459, Singapore
| | - Hui Min Tan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Avenue, Singapore, 637459, Singapore
| | - Alexander W Jackson
- Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (ASTAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Dang Tri Nguyen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Avenue, Singapore, 637459, Singapore
| | - Danson Kwong Jia Ye
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Avenue, Singapore, 637459, Singapore
| | - Parijat Kanaujia
- Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (ASTAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Praveen Thoniyot
- Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (ASTAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Tram Thuy Dang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Avenue, Singapore, 637459, Singapore
| |
Collapse
|
106
|
Zhang Z, Gao SH, Luo G, Kang Y, Zhang L, Pan Y, Zhou X, Fan L, Liang B, Wang A. The contamination of microplastics in China's aquatic environment: Occurrence, detection and implications for ecological risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118737. [PMID: 34954308 DOI: 10.1016/j.envpol.2021.118737] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/24/2021] [Accepted: 12/20/2021] [Indexed: 05/26/2023]
Abstract
The widespread occurrence of microplastics in aquatic ecosystems that resulted in environmental contamination has attracted worldwide attention. Microplastics pose a potential threat to the growth and health of aquatic organisms, thereby affecting the function of the ecosystems. As one of the top ten countries producing and consuming plastic products globally, China's aquatic ecosystems have been profoundly affected by microplastics. In this review, we have summarized the microplastics contamination in three typical water environments (marine environment, freshwater environment, and wastewater treatment plants) in China, elaborated on the adverse impacts of microplastics on the ecological environment, and evaluated the potential ecological risks exposed to the ecosystem. In addition, the progress of microplastics extraction methods, as the important basis of microplastics related research, in aquatic ecosystems was introduced, especially the difference between the extraction of microplastics from wastewater and sludge samples. At present, most of the research on microplastics focuses on "one point", such as a certain river or wastewater treatment plant. Research on the mitigation and transfer of microplastics among different connected water environments is still lacking. Also, the microscale ecotoxicity caused by microplastics is poorly understood. In the end, we proposed suggestions and perspectives for future research regarding microplastics in the aquatic ecosystems in China.
Collapse
Affiliation(s)
- Ziqi Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China.
| | - Gaoyang Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yuanyuan Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Liying Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yusheng Pan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Lu Fan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
107
|
Zhang T, Jiang B, Xing Y, Ya H, Lv M, Wang X. Current status of microplastics pollution in the aquatic environment, interaction with other pollutants, and effects on aquatic organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16830-16859. [PMID: 35001283 DOI: 10.1007/s11356-022-18504-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Microplastics, as emerging pollutants, have received great attention in the past few decades due to its adverse effects on the environment. Microplastics are ubiquitous in the atmosphere, soil, and water bodies, and mostly reported in aqueous environment. This paper summarizes the abundance and types of microplastics in different aqueous environments and discusses the interactions of microplastics with other contaminants such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), antibiotics, and heavy metals. The toxicity of microplastics to aquatic organisms and microorganisms is addressed. Particularly, the combined toxic effects of microplastics and other pollutants are discussed, demonstrating either synergetic or antagonistic effects. Future prospectives should be focused on the characterization of different types and shapes of microplastics, the standardization of microplastic units, exploring the interaction and toxicity of microplastics with other pollutants, and the degradation of microplastics, for a better understanding of the ecological risks of microplastics.
Collapse
Affiliation(s)
- Tian Zhang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- National Engineering Laboratory for Site Remediation Technologies, Beijing, 100015, People's Republic of China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Haobo Ya
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Mingjie Lv
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Xin Wang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| |
Collapse
|
108
|
Wang Q, Li J, Zhu X, Sun C, Teng J, Chen L, Shan E, Zhao J. Microplastics in fish meals: An exposure route for aquaculture animals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151049. [PMID: 34673075 DOI: 10.1016/j.scitotenv.2021.151049] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are widely detected in many marine fishes. Fish meal contaminated by MP may constitute a potential threat to aquaculture animals. This study analyzed the characteristics of MP in fish meals from ten major fish meal-producing countries around the world. Microplastics were isolated from fish meal, examined under a microscope and identified using Fourier transform infrared microspectroscopy (μ-FT-IR). The results showed that MP pollution was widely detected in fish meal samples from ten countries. The average MP abundance of fish meals was 5.5 ± 1.6 items/g, with higher levels in China, Peru and Myanmar, which might be related to the high pollution level in fish and their habitats. In isolated MPs, fibers were the main shape type, and the most common size was 500-1000 μm. A total of 6 polymers were identified, with cellophane (CP), polypropylene (PP) and polyethylene teraphalate (PET) being the most common types. The total amount of MP ingestion from fish meals by different cultured animals was also estimated, with Atlantic salmon Salmon salar ingesting the largest number of MPs (9361 items), and red swamp crayfish Procambarus clarkii ingesting the smallest number of MPs (19 items). Thus, fish meal constitutes an important exposure route of MPs for aquaculture animals. The results of this study will provide a basis to assess the potential health risks of MPs in fish meals around the world.
Collapse
Affiliation(s)
- Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Jinjun Li
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Fisheries Science Department, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiaopeng Zhu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chaofan Sun
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jia Teng
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Limei Chen
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Fisheries Science Department, Tianjin Agricultural University, Tianjin 300384, China
| | - Encui Shan
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
109
|
Cutroneo L, Capello M, Domi A, Consani S, Lamare P, Coyle P, Bertin V, Dornic D, Reboa A, Geneselli I, Anghinolfi M. Microplastics in the abyss: a first investigation into sediments at 2443-m depth (Toulon, France). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9375-9385. [PMID: 35001272 DOI: 10.1007/s11356-021-17997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Plastic and microplastic pollutions are known to be widespread across the planet in all types of environments. However, relatively little about microplastic quantities in the deeper areas of the oceans is known, due to the difficulty to reach these environments. In this work, we present an investigation of microplastic (<5 mm) distribution performed in the bottom sediments of the abyssal plain off the coast and the canyon of Toulon (France). Four samples of deep-sea sediment were collected at the depth of 2443 m during the sea operations carried out by the French oceanographic cruises for the KM3NeT project. The chemical and physical characterisation of the sediment was carried out, and items were extracted from sediments by density separation and analysed by optical microscope and µRaman spectroscopy. Results show microplastics in the deep-sea sediments with a concentration of about 80 particles L-1, confirming the hypothesis of microplastics spread to abyssal sediments in the Mediterranean Sea.
Collapse
Affiliation(s)
- Laura Cutroneo
- DISTAV, University of Genoa, 26 Corso Europa, I-16132, Genoa, Italy
| | - Marco Capello
- DISTAV, University of Genoa, 26 Corso Europa, I-16132, Genoa, Italy.
| | - Alba Domi
- DIFI, University of Genoa, Via Dodecaneso, 33, 16146, Genoa, Italy
- National Institute for Nuclear Physics, 33 Via Dodecaneso, I-16146, Genoa, Italy
| | - Sirio Consani
- DISTAV, University of Genoa, 26 Corso Europa, I-16132, Genoa, Italy
| | - Patrick Lamare
- Aix-Marseille Université, CNRS/IN2P3, CPPM, Marseille, France
| | - Paschal Coyle
- Aix-Marseille Université, CNRS/IN2P3, CPPM, Marseille, France
| | - Vincent Bertin
- Aix-Marseille Université, CNRS/IN2P3, CPPM, Marseille, France
| | - Damien Dornic
- Aix-Marseille Université, CNRS/IN2P3, CPPM, Marseille, France
| | - Anna Reboa
- DISTAV, University of Genoa, 26 Corso Europa, I-16132, Genoa, Italy
| | - Irene Geneselli
- DISTAV, University of Genoa, 26 Corso Europa, I-16132, Genoa, Italy
| | - Marco Anghinolfi
- DIFI, University of Genoa, Via Dodecaneso, 33, 16146, Genoa, Italy
- National Institute for Nuclear Physics, 33 Via Dodecaneso, I-16146, Genoa, Italy
| |
Collapse
|
110
|
Microplastics Occurrence in the European Common Frog (Rana temporaria) from Cottian Alps (Northwest Italy). DIVERSITY 2022. [DOI: 10.3390/d14020066] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microplastics (MPs) pollution is arousing growing attention, yet knowledge about its occurrence in amphibians is scant to date. With this study, we aimed to determine whether plastic (>5000 μm) and MPs (10–5000 μm) could be detected in adult Rana temporaria from a high-mountain ecosystem (the Cottian Alps, northwest Italy). To do this, aquatic compartments and the digestive tract of adult R. temporaria were analyzed. Water, sediment, periphyton, aquatic macroinvertebrates, and tadpoles tested negative for plastic and MPs. Microplastics were detected in all the adult frogs (n = 5); all the identified items (one per specimen) were fibers (size range: 550.91–2355.51 µm). A statistically significant positive correlation between the particle length and frog size was recorded. The predominant fiber color was blue. The chemical composition was polyamide (60%), polyethylene (20%), and polyethylene terephthalate (20%). Since both the biotic and the abiotic freshwater compartments (tadpoles included) revealed the absence of MPs, it can be assumed that adult frogs ingest MPs from the surrounding terrestrial environment.
Collapse
|
111
|
Jiang Y, Yang F, Hassan Kazmi SSU, Zhao Y, Chen M, Wang J. A review of microplastic pollution in seawater, sediments and organisms of the Chinese coastal and marginal seas. CHEMOSPHERE 2022; 286:131677. [PMID: 34346336 DOI: 10.1016/j.chemosphere.2021.131677] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/11/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
China is considered to account for nearly a third of all plastic waste discharging from land to the ocean. To overall assess microplastic pollution status in Chinese coastal and marginal seas, this study summarized the abundance and characteristics of microplastics in the seawater, sediments and marine organisms. The results showed that the abundance of microplastics in the seawater of four major seas of China was 0.13-545 items/m³, and microplastic abundance in the sediments from the estuaries was 20-7900 items/kg, which are at middle level or even lower than those detected in other countries. By contrast, severe microplastic pollution was recorded in the estuaries, suggesting that plastic waste and microplastic interception measures should be conducted on the rivers to prevent the input of microplastics. In addition, microplastics were widely detected in marine fishes, mollusks, zooplankton, mammals and birds, which highlights the potential impacts of microplastic pollution on the whole marine ecosystem. Compared to the dry season, higher microplastic abundance was found in the rainy season, revealing that plastic waste recycling should be strengthened before the onset of rainy season. We suggest that all countries respond actively to the ubiquitous microplastic pollution through practical policies and measures to prevent microplastics from further damaging the marine ecosystem.
Collapse
Affiliation(s)
- Yong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Fan Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | | | - Yanan Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Mei Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
112
|
Zhao L, Ru S, He J, Zhang Z, Song X, Wang D, Li X, Wang J. Eelgrass (Zostera marina) and its epiphytic bacteria facilitate the sinking of microplastics in the seawater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118337. [PMID: 34644624 DOI: 10.1016/j.envpol.2021.118337] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/17/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Marine microplastics have received considerable attention as a global environmental issue. However, despite the constant accumulation of microplastics in the ocean, their transport processes and mechanisms remain poorly understood. This study investigated microplastics in the sediments of seagrass meadows and nearby regions without seagrass along the Shandong coast and found that the sediment in the seagrass meadows was a sink for microplastics. Subsequently, we evaluated the influence of eelgrass (Zostera marina), a common coastal seagrass, on the sedimentation of suspended polystyrene microplastics. The results showed that 0.5, 1.0, and 2.0 g/L eelgrass leaves decreased the abundance of microplastics in seawater in a dose-dependent manner over a period of 3-48 h under shaking conditions at 120 rpm at 22 °C. After 48 h of shaking, microplastic abundances in the 0.5, 1.0, and 2.0 g/L eelgrass groups significantly decreased by 46.9%, 53.1%, and 88.4%, respectively. Microplastics can adhere to eelgrass leaves and form biofilms, which promoted the formation of white floc that traps the suspended microplastics, causing them to sink. Furthermore, two epiphytic bacteria (Vibrio and Exiguobacterium) isolated from the eelgrass leaves decreased the abundances of suspended microplastics by 95.7% and 94.5%, respectively, in 48 h by accelerating the formation of biofilms on the microplastics. Therefore, eelgrass and its epiphytic bacteria facilitated the sinking of microplastics and increased the accumulation of microplastics in the sediments of seagrass meadows in coastal regions.
Collapse
Affiliation(s)
- Lingchao Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jianlong He
- Shandong Marine Resources and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai, 264006, China
| | - Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiukai Song
- Shandong Marine Resources and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai, 264006, China
| | - Dong Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xuan Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
113
|
Zainuddin AH, Aris AZ, Zaki MRM, Yusoff FM, Wee SY. Occurrence, potential sources and ecological risk estimation of microplastic towards coastal and estuarine zones in Malaysia. MARINE POLLUTION BULLETIN 2022; 174:113282. [PMID: 34995888 DOI: 10.1016/j.marpolbul.2021.113282] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Extensive global plastic production has led to microplastic (MP) pollution of marine ecosystems. This study analysed the abundance of MPs in the surface water of tropical coastal and estuarine zones in Malaysia affected by rapid urbanisation and intense human activity. It also estimated the risk posed by MPs to the marine environment. Mean MP abundance ranged from 2.10 to 6.80 particles/L. Fourier-transform infrared spectroscopic analysis found that the MP polymers were dominated by cellophane (54%), followed by polyester (33%) and polyethylene (2%). The risk posed by MPs was estimated with the risk quotient (RQ) method which found no potential ecological risk to both coastal and estuarine areas (RQ < 1). This study will serve as a baseline for future monitoring of MP pollution of marine water to assess the impact of heavily urbanised coastal and estuarine zones.
Collapse
Affiliation(s)
- Azim Haziq Zainuddin
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia
| | - Ahmad Zaharin Aris
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia; Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Environmental Health, Faculty of Public Health, Airlangga University, Surabaya 60115, Indonesia.
| | - Muhammad Rozaimi Mohd Zaki
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Fatimah Md Yusoff
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia; Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sze Yee Wee
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
114
|
Esposito G, Prearo M, Renzi M, Anselmi S, Cesarani A, Barcelò D, Dondo A, Pastorino P. Occurrence of microplastics in the gastrointestinal tract of benthic by-catches from an eastern Mediterranean deep-sea environment. MARINE POLLUTION BULLETIN 2022; 174:113231. [PMID: 34933217 DOI: 10.1016/j.marpolbul.2021.113231] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Concern about microplastic pollution little is known about levels in deep-sea species; to fill this knowledge gap, levels of microplastics in the gastrointestinal (GI) tracts of 34 fish from eight different deep-sea by-catches: blackmouth catshark, lesser spotted dogfish, and velvet belly, armless snake eel, hollowsnout grenadier, phaeton dragonet, royal flagfin, and slender snipe eel were measured. All were collected at the same site (east Sardinia, Mediterranean Sea; 40°10'12.49″N, 9°44'12.31″E) using a bottom gillnet at depths between -820/250 and -1148 ft./350 m. Microplastics (MPs) were retrieved in 16 out of 34 fish. At least one microplastic item was found in 48% (33%, E. spinax - 75%, G. melastomus) of the samples. The most frequent was polyethylene (PE), with nine items (filaments, films, fragments) found in five specimens. This preliminary study of by-catches adds new data on MPs ingestion by species inhabiting a deep-sea environment of the Mediterranean.
Collapse
Affiliation(s)
- Giuseppe Esposito
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle D'Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Marino Prearo
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle D'Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Monia Renzi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy.
| | - Serena Anselmi
- Bioscience Research Center, Via Aurelia Vecchia 32, 58015 Orbetello, Italy
| | - Alberto Cesarani
- Department of Agriculture, University of Sassari, Viale Italia 39/a, 07100 Sassari, Italy
| | - Damià Barcelò
- Institute of Environmental Assessment and Water Research, IDAEA - CSIC, C/ Jordi Girona 18 - 26, 08034 Barcelona, Spain; Catalan Institute for Water Research, ICRA - CERCA, Emili Grahit 101, 17003 Girona, Spain
| | - Alessandro Dondo
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle D'Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Paolo Pastorino
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle D'Aosta, Via Bologna 148, 10154 Torino, Italy
| |
Collapse
|
115
|
Bošković N, Joksimović D, Perošević-Bajčeta A, Peković M, Bajt O. Distribution and characterization of microplastics in marine sediments from the Montenegrin coast. JOURNAL OF SOILS AND SEDIMENTS 2022; 22:2958-2967. [PMID: 35221794 PMCID: PMC8857885 DOI: 10.1007/s11368-022-03166-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/11/2022] [Indexed: 05/07/2023]
Abstract
PURPOSE Plastic pollution in the world has led to an abundance of microplastics (MPs) and has been identified as a potential factor that can lead to serious environmental problems, especially in oceans and seas. Information on the current status of MPs pollution along the Montenegrin coast is insufficiently investigated. This study monitors the abundance, distribution, and sources of MPs, and identifies present polymers in the surface sediment of the Montenegrin coast, as well as comparison with previous research. MATERIALS AND METHODS Ten sampling sites along the Montenegrin coast were selected to collect surface sediment samples. The upper layer of sediment (0-5 cm) was collected by a Petite ponar grab. The samples were dried, and density separation was performed using a NaCl solution. The abundance and morphological characteristics of MPs were determined using an optical microscope (DP-Soft software), while FT-IR analysis was done to identify the polymer type. RESULTS AND DISCUSSION Microplastics were identified in all sediment samples with an average abundance of 307 ± 133 (SD) MPs/kg in dry sediment. The highest abundance of MPs was found in locations in the vicinity of highly populated areas, near wastewater discharges, and areas with high fishing and tourist activities. The most dominant shape types of MPs in all samples were filaments and fragments. The most common colors of MPs were blue and red, while the dominant MPs sizes were 0.1-0.5 mm and 0.5-1.0 mm. Of the eight identified polymers, PP, PE, and PET were the most common. CONCLUSION This study reveals MPs characteristics (abundance, distribution, shape type, colors, size, polymers type) in surface sediment along the Montenegrin coast, as well as the most significant sources of MPs pollution, and provides important data for further research on MPs to identify the effects of MPs pollution on the quality, health, and functionality of the marine environment.
Collapse
Affiliation(s)
- Neda Bošković
- Institute of Marine Biology, University of Montenegro, Put I Bokeljške brigade 68, Kotor, 85330 Montenegro
| | - Danijela Joksimović
- Institute of Marine Biology, University of Montenegro, Put I Bokeljške brigade 68, Kotor, 85330 Montenegro
| | - Ana Perošević-Bajčeta
- Institute of Marine Biology, University of Montenegro, Put I Bokeljške brigade 68, Kotor, 85330 Montenegro
| | - Milica Peković
- Institute of Marine Biology, University of Montenegro, Put I Bokeljške brigade 68, Kotor, 85330 Montenegro
| | - Oliver Bajt
- Marine Biology Station, National Institute of Biology, Fornače 41, Piran, 6330 Slovenia
- Faculty of Maritime Studies and Transport, University of Ljubljana, Pot pomorscakov 4, Portoroz, 6320 Slovenia
| |
Collapse
|
116
|
Lin P, Guo Y, He L, Liao X, Chen X, He L, Lu Z, Qian ZJ, Zhou C, Hong P, Sun S, Li C. Nanoplastics aggravate the toxicity of arsenic to AGS cells by disrupting ABC transporter and cytoskeleton. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112885. [PMID: 34634601 DOI: 10.1016/j.ecoenv.2021.112885] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
The coexistence of nanoplastics (NPs) and pollutants such as arsenic (As) has become an unignorable environmental problem. However, there is still a considerable knowledge gap about the impact of NPs and pollutants on human health risks. In this study, the human gastric adenocarcinoma (AGS) cells were used as a model to investigate the toxicity of NPs with different particle sizes and As by MTT assay, western blotting, immunofluorescence and so on. The results showed that 20 nm (8 μg/mL), 50 nm (128 μg/mL), 200 nm (128 μg/mL), 500 nm (128 μg/mL), 1000 nm (128 μg/mL) polystyrene (PS) did not affect cell viability, ROS, intracellular calcium and activate apoptosis pathway in AGS cells. However, noncytotoxic concentration of NPs enhanced the cytotoxicity and intracellular accumulation of As. NPs destroys the fluidity of cell membrane and cytoskeleton, inhibits the activity of ABC transporter, and leads to the accumulation of As in cells. This work highlights that the damage caused by NPs, especially at the level of noncytotoxicity, joint with As cannot be ignored and provides a specific toxicological mechanism of NPs accompanied by exposure to As.
Collapse
Affiliation(s)
- Peichun Lin
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Yitao Guo
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei He
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xiuchun Liao
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xueru Chen
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Liuying He
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zifan Lu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China.
| | - Zhong-Ji Qian
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Chunxia Zhou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China; School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Pengzhi Hong
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China; School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Shengli Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China.
| |
Collapse
|
117
|
Zhang D, Li X, Zhang C, Xiao Z, Li Y, Liang Y, Dang H. Electrostimulated bio-dechlorination of a PCB mixture (Aroclor 1260) in a marine-originated dechlorinating culture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118157. [PMID: 34530245 DOI: 10.1016/j.envpol.2021.118157] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/13/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Aroclor 1260, a commercial polychlorinated biphenyl (PCB) mixture, is highly recalcitrant to biotransformation. A negatively polarized cathode (-0.35 V vs. standard hydrogen electrode) was applied for the first time to a marine-origin PCB dechlorinating culture that substantially increased the microbial dechlorination rate of Aroclor 1260 (from 8.6 to 11.6 μM Cl- d-1); meta-chlorine removal was stimulated and higher proportions of tetra-CBs (43.2-46.6%), the predominant dechlorination products, were observed compared to the open circuit conditions (23.7-25.1%). The dechlorination rate was further enhanced (14.1 μM Cl- d-1) by amendment with humin as a solid-phase redox mediator. After the suspension culture was renewed using an anaerobic medium, dechlorination activity was effectively maintained solely by cathodic biofilms, where cyclic voltammetry results indicated their redox activity. Electric potential had a significant effect on microbial community structure in the cathodic biofilm, where a greater abundance of Dehalococcoides (2.59-3.02%), as potential dechlorinators, was observed compared to that in the suspension culture (0.41-0.55%). Moreover, Dehalococcoides adhering to the cathode showed a higher chlorine removal rate than in the suspension culture. These findings provide insights into the dechlorination mechanism of cathodic biofilms involving Dehalococcoides for PCB mixtures and extend the application prospects of bioremediation to PCB contamination in the natural environment.
Collapse
Affiliation(s)
- Dongdong Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China; Ocean Research Center of Zhoushan, Zhejiang University, Zhoushan, 316021, Zhejiang, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, And Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xinkai Li
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Chunfang Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin, 541006, Guangxi, China
| | - Zhixing Xiao
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Yanhong Li
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin, 541006, Guangxi, China
| | - Yanpeng Liang
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin, 541006, Guangxi, China
| | - Hongyue Dang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, And Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
118
|
Torres-Agullo A, Karanasiou A, Moreno T, Lacorte S. Overview on the occurrence of microplastics in air and implications from the use of face masks during the COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149555. [PMID: 34426330 PMCID: PMC8520475 DOI: 10.1016/j.scitotenv.2021.149555] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 05/20/2023]
Abstract
Environmental pollution from microplastics (MPs) in air is a matter of growing concern because of human health implications. Airborne MPs can be directly and continuously inhaled in air environments. Especially high MPs contributions can be found in indoor air due to the erosion and breakage of consumer, domestic and construction products, although there is little information available on their sources and concentrations and the risks they might pose. This is in part due to the fact that sampling and analysis of airborne MPs is a complex and multistep procedure where techniques used are not yet standardized. In this study, we provide an overview on the presence of MPs in indoor air, potential health impacts, the available methods for their sampling and detection and implications from the use of face masks during the COVID-19 pandemic.
Collapse
Affiliation(s)
- A Torres-Agullo
- Institute of Environmental Assessment and Water Research of the Spanish Research Council (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - A Karanasiou
- Institute of Environmental Assessment and Water Research of the Spanish Research Council (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - T Moreno
- Institute of Environmental Assessment and Water Research of the Spanish Research Council (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - S Lacorte
- Institute of Environmental Assessment and Water Research of the Spanish Research Council (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
119
|
Stenger KS, Wikmark OG, Bezuidenhout CC, Molale-Tom LG. Microplastics pollution in the ocean: Potential carrier of resistant bacteria and resistance genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118130. [PMID: 34562691 DOI: 10.1016/j.envpol.2021.118130] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/24/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Microplastics pollution in marine environments is concerning. Microplastics persist and accumulate in various sections of the ocean where they present opportunity for micropollutant accumulation and microbial colonisation. Even though biofilm formation on plastics was first reported in the 1970's, it is only in recent years were plastic associated biofilms have gained research attention. Plastic surfaces pose a problem as they are a niche ready for colonisation by diverse biofilm assemblages, composed of specific bacterial communities and putative pathogens prone to acquiring ARGs and resistance in the biofilm. However, the nature of antibiotic resistance on aquatic plastic debris is not yet fully understood and remains a concern. Given the inevitable increase of plastic production and waste generation, microplastics released into the environment may prove to be problematic. This review explores microplastic waste in the ocean and possible concerns that may arise from the presence of microplastics in conjunction with favourable conditions for the development and dispersal of antibiotic resistance in the ocean and food web.
Collapse
Affiliation(s)
- K S Stenger
- Unit for Environmental Sciences and Management - Microbiology, North-West University, Potchefstroom, South Africa.
| | - O G Wikmark
- Unit for Environmental Sciences and Management - Microbiology, North-West University, Potchefstroom, South Africa; GenØk - Centre for Biosafety, Tromsø, Norway.
| | - C C Bezuidenhout
- Unit for Environmental Sciences and Management - Microbiology, North-West University, Potchefstroom, South Africa.
| | - L G Molale-Tom
- Unit for Environmental Sciences and Management - Microbiology, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
120
|
Yang C, Wu W, Zhou X, Hao Q, Li T, Liu Y. Comparing the sorption of pyrene and its derivatives onto polystyrene microplastics: Insights from experimental and computational studies. MARINE POLLUTION BULLETIN 2021; 173:113086. [PMID: 34695688 DOI: 10.1016/j.marpolbul.2021.113086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
In this study, the sorption behaviors and mechanisms between polystyrene microplastics (micro-PS) and 4-rings polycyclic aromatic hydrocarbons (PAHs) pyrene (Pyr) and its derivatives (S-Pyr), including 1-methylpyrene (P-CH3), 1-hydroxypyrene (P-OH), 1-aminopyrene (P-NH2), 1-pyrenecarboxylic acid (P-COOH) were investigated at neutrality. The results revealed that the sorption rates of micro-PS for S-Pyr were higher than those for parent Pyr. Meanwhile, -CH3 could slightly facilitate the sorption, whereas -OH, P-NH2, and P-COOH intensively inhibit the sorption of S-Pyr onto micro-PS. The sorption capacities of Pyr/S-Pyr increased with decreasing size of micro-PS. Besides, the effects of salinity and temperature on the sorption characteristics of micro-PS for Pyr/S-Pyr depended on their substituents. Combined with experimental and computational methods, it could be concluded that the main sorption mechanisms were possibly hydrophobic interaction, π-π interaction and pore-filling. The observations reported here could improve predictions of environmental behaviors and bioavailability of PAHs and micro-PS.
Collapse
Affiliation(s)
- Chenghu Yang
- Marine Fisheries Research Institute of Zhejiang, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China; Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China
| | - Wei Wu
- Marine Fisheries Research Institute of Zhejiang, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China; Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China
| | - Xiaotian Zhou
- Marine Fisheries Research Institute of Zhejiang, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China; Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China
| | - Qing Hao
- Marine Fisheries Research Institute of Zhejiang, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China; Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China
| | - Tiejun Li
- Marine Fisheries Research Institute of Zhejiang, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China; Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China
| | - Yangzhi Liu
- Marine Fisheries Research Institute of Zhejiang, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China; The Institute of Environment, Resources, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
121
|
Ajay K, Behera D, Bhattacharya S, Mishra PK, Ankit Y, Anoop A. Distribution and characteristics of microplastics and phthalate esters from a freshwater lake system in Lesser Himalayas. CHEMOSPHERE 2021; 283:131132. [PMID: 34144286 DOI: 10.1016/j.chemosphere.2021.131132] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/22/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
The occurrence, distribution, characterization and quantification of microplastics (MPs) and phthalic acid esters (PAEs) from the freshwater aquatic environment are not thoroughly explored in the Indian Himalayas despite concern over their adverse effects on human health and ecosystem. In this study, we have investigated the presence of MPs and PAEs in an aquatic system from Indian subcontinent. The MPs were detected in all water and sediment samples with abundances ranging from 02-64 particles/L and 15-632 particles/kg dw, respectively. The abundance of MPs, dominated by polyethylene and polystyrene, with the majority being fibres and fragments indicated that they were derived from plastic paints, boats or synthetic products. The concentrations of PAEs in the surface sediment samples varied from 06-357 ng/g dw. The most abundant PAEs in the sediments were dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP), since they were present in all the samples collected from the lake basin. The relatively higher abundances of MPs and higher concentrations of PAEs were generally found in the vicinity of areas impacted by anthropogenic activities. A clear correlation between the abundance of microplastics and PAEs concentration was observed suggesting that they are closely attributed to a single source. This study also provides an alternative approach to utilize the chemical additives in plastics as markers to trace the presence and distribution of MPs in the aquatic environment.
Collapse
Affiliation(s)
- Kumar Ajay
- Indian Institute of Science Education and Research Mohali, Manauli, Punjab, 140306, India
| | - Diptimayee Behera
- Indian Institute of Science Education and Research Mohali, Manauli, Punjab, 140306, India
| | - Sharmila Bhattacharya
- Indian Institute of Science Education and Research Mohali, Manauli, Punjab, 140306, India
| | - Praveen K Mishra
- Wadia Institute of Himalayan Geology, Dehradun, 248001, Uttarakhand, India
| | - Yadav Ankit
- Indian Institute of Science Education and Research Mohali, Manauli, Punjab, 140306, India.
| | - Ambili Anoop
- Indian Institute of Science Education and Research Mohali, Manauli, Punjab, 140306, India.
| |
Collapse
|
122
|
First evidence of microplastics in the Marine Protected Area Namuncurá at Burdwood Bank, Argentina: a study on Henricia obesa and Odontaster penicillatus (Echinodermata: Asteroidea). Polar Biol 2021. [DOI: 10.1007/s00300-021-02959-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
123
|
Pagter E, Nash R, Frias J, Kavanagh F. Assessing microplastic distribution within infaunal benthic communities in a coastal embayment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148278. [PMID: 34126489 DOI: 10.1016/j.scitotenv.2021.148278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/23/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
Marine anthropogenic litter is increasing in prevalence in both the marine environment and its inhabitants. This study assesses the levels of anthropogenic microplastics in benthic infauna from 20 subtidal stations in Galway Bay, Ireland. Microplastics were removed from the organisms using an alkaline digestion (KOH) and their synthetic origin was confirmed by μFTIR spectroscopic analysis. The average number of microplastics recorded for all organisms was 0.79 ± 1.14 particles individual-1, similar to previously published results on subtidal fauna of the North Sea. Fibres were the dominant particle type (98%) and the majority were identified as natural (cellulose, cotton). Synthetic polymers identified included PVA (polyvinyl acetate), EPDM (synthetic rubber), PE (polyethylene) and PVC (polyvinyl chloride). Fibres less than 1 mm made up 55% of the recovered lengths. Colours recorded in the organisms were mainly blue and were reflective of the surrounding habitats. Of the five phyla collected, the highest incidence and uptake was associated with the Annelida. A significant difference in ingested MPs was only evident when depth (greater and less than 30 m) was considered as a factor. In addition, no significant differences were found between either the numbers of ingested MPs and phyla or feeding strategies. The results indicate that future studies should follow an ecosystem-based approach to monitor MPs levels in an area where specific bioindicator(s) have not been identified or are unsuitable.
Collapse
Affiliation(s)
- Elena Pagter
- Marine and Freshwater Research Centre (MFRC), Galway-Mayo Institute of Technology (GMIT), Old Dublin Rd., Galway H91 T8NW, Ireland.
| | - Róisín Nash
- Marine and Freshwater Research Centre (MFRC), Galway-Mayo Institute of Technology (GMIT), Old Dublin Rd., Galway H91 T8NW, Ireland
| | - João Frias
- Marine and Freshwater Research Centre (MFRC), Galway-Mayo Institute of Technology (GMIT), Old Dublin Rd., Galway H91 T8NW, Ireland
| | - Fiona Kavanagh
- Marine and Freshwater Research Centre (MFRC), Galway-Mayo Institute of Technology (GMIT), Old Dublin Rd., Galway H91 T8NW, Ireland
| |
Collapse
|
124
|
Ali MU, Lin S, Yousaf B, Abbas Q, Munir MAM, Ali MU, Rasihd A, Zheng C, Kuang X, Wong MH. Environmental emission, fate and transformation of microplastics in biotic and abiotic compartments: Global status, recent advances and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148422. [PMID: 34412398 DOI: 10.1016/j.scitotenv.2021.148422] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 05/27/2023]
Abstract
The intensive use and wide-ranging application of plastic- and plastic-derived products have resulted in alarming levels of plastic pollution in different environmental compartments worldwide. As a result of various biogeochemical mechanisms, this plastic litter is converted into small, ubiquitous and persistent fragments called microplastics (<5 mm), which are of significant and increasing concern to the scientific community. Microplastics have spread across the globe and now exist in virtually all environmental compartments (the soil, atmosphere, and water). Although these compartments are often considered to be independent environments, in reality, they are very closely linked. Ample research has been done on microplastics, but there are still questions and knowledge gaps regarding the emission, occurrence, distribution, detection, environmental fate and transport of MPs in different environmental compartments. The current article is intended to provide a systematic overview of MP emissions, pollution conditions, sampling and analytical approaches, transport, fates and transformation mechanisms in different environmental compartments. It also identifies research gaps and future research directions and perspectives.
Collapse
Affiliation(s)
- Muhammad Ubaid Ali
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Siyi Lin
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Balal Yousaf
- Department of Environment Engineering, Middle East Technical University, Ankara 06800, Turkey; CAS-Key Laboratory of Crust-Mantle Materials and the Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China.
| | - Qumber Abbas
- Department of Environment Engineering, Middle East Technical University, Ankara 06800, Turkey.
| | - Mehr Ahmed Mujtaba Munir
- CAS-Key Laboratory of Crust-Mantle Materials and the Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China.
| | - Muhammad Uzair Ali
- Business School of Xiangtan University, Xiangtan University, Hunan, China.
| | - Audil Rasihd
- Department of Botany, Faculty of Science, University of Gujrat, Gujrat 50700, Pakistan.
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Xingxing Kuang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Ming Hung Wong
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
125
|
Marrone A, La Russa MF, Randazzo L, La Russa D, Cellini E, Pellegrino D. Microplastics in the Center of Mediterranean: Comparison of the Two Calabrian Coasts and Distribution from Coastal Areas to the Open Sea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010712. [PMID: 34682461 PMCID: PMC8535489 DOI: 10.3390/ijerph182010712] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/31/2022]
Abstract
Plastic is everywhere—increasing evidence suggests that plastic pollution is ubiquitous and persistent in ecosystems worldwide. Microplastic pollution in marine environments is particularly insidious, as small fragmentation can increase interaction with biota and food chain access. Of particular concern is the Mediterranean Sea, which has become a large area of accumulation of plastic debris, including microplastics, whose polymeric composition is still largely unknown. In this study, we analyzed the polymeric composition, particle size distribution, shape, and color of small plastic particles (ranging from 50 to 5000 µm) collected from the sea surface in six stations at the center of the Mediterranean Sea. We also described, for the first time, the different distribution of microplastics from coastal areas up to 12 nautical miles offshore. The microplastic density was 0.13 ± 0.19 particles/m2, with a marked prevalence of smaller particles (73% < 3 mm) and a peak between 1 and 2 mm (34.74%). Microplastics composition analysis showed that the most abundant material was polyethylene (69%), followed by polypropylene (24%). Moreover, we reported a comparison of the two Calabrian coasts providing the first characterization of a great difference in microplastic concentration between the Tyrrhenian and Ionian sides (87% vs. 13%, respectively), probably due to the complex marine and atmospheric circulation, which make the Tyrrhenian side an area of accumulation of materials originating even from faraway places. We demonstrate, for the first time, a great difference in microplastic concentration between Tyrrhenian and Ionian Calabrian coasts, providing a full characterization and highlighting that microplastic pollution is affected by both local release and hydrography of the areas.
Collapse
Affiliation(s)
- Alessandro Marrone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (M.F.L.R.); (L.R.); (D.P.)
- Correspondence:
| | - Mauro F. La Russa
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (M.F.L.R.); (L.R.); (D.P.)
| | - Luciana Randazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (M.F.L.R.); (L.R.); (D.P.)
| | - Daniele La Russa
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Emilio Cellini
- Regional Agency for the Environment (ARPACAL), Regional Marine Strategy Centre (CRSM), 88100 Catanzaro, Italy;
| | - Daniela Pellegrino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (M.F.L.R.); (L.R.); (D.P.)
| |
Collapse
|
126
|
Expósito N, Rovira J, Sierra J, Folch J, Schuhmacher M. Microplastics levels, size, morphology and composition in marine water, sediments and sand beaches. Case study of Tarragona coast (western Mediterranean). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147453. [PMID: 33964765 DOI: 10.1016/j.scitotenv.2021.147453] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Mediterranean Sea has been proposed as the sixth greatest accumulation zone for marine litter and the most affected regarding to microplastics (MPs). Tarragona (Catalonia, NE Spain) coastal region suffers high pressure due to urbanization, tourism, industrial harbour and petrochemical/plastic industries. The present study aims to quantify and characterize in size, morphology and composition the MPs present in sandy beaches, marine sediments, and surface seawaters of Tarragona coastal region. MPs mean abundance were 1.30 items/m3 in surface seawaters, 32.4 items/kg in marine sediments, and 10.7 items/kg in sandy beaches. Polyester fibres were dominant MPs in bottom sediments and seawater meanwhile polyethylene and polypropylene fragments were the main MPs in beaches. The fibres balls associated with bottom sediments, organic matter and plankton were abundant, masking the real quantity of fibres in each reservoir. The abundance by volume of seawater MPs was higher to those found in oceanic areas and similar to other areas of Mediterranean Sea, corroborating that Western Mediterranean Sea as a region of MPs accumulation. MPs composition and abundance suggested the input of numerous land-base-sources, WWTP (wastewater treatment plants) effluents discharges, and emissaries as the most important. Marine MPs pollution were studied from an integrative point of view, that includes superficial sea water, sand from beaches and sediments. The dynamics of MPs in Tarragona coast were characterized by seawater as the media that receive and facilitate dispersion and fragmentation. The shoreline acts as an intermediate reservoir with constant weathering and active exchange with seawater surface and the sediments acts as a significant sink for medium MPs sizes. It is necessary to develop protocols and guidelines for MPs analysis to obtain harmonized and comparable results.
Collapse
Affiliation(s)
- Nora Expósito
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
| | - Joaquim Rovira
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain.
| | - Jordi Sierra
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain; Laboratory of Soil Science, Faculty of Pharmacy, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Catalonia, Spain
| | - Jaume Folch
- Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Tarragona, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
| |
Collapse
|
127
|
Feng S, Lu H, Yao T, Xue Y, Yin C, Tang M. Spatial characteristics of microplastics in the high-altitude area on the Tibetan Plateau. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126034. [PMID: 33992006 DOI: 10.1016/j.jhazmat.2021.126034] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) have been widely detected in the environments, yet the sources of MPs in freshwater of remote areas at high altitude were not well understood. This study investigated the abundance and distribution of MPs in water bodies and sediments at the Qinghai-Tibet Plateau (QTP). MPs were detected in all samples (47 water and 33 sediment samples) with the mean abundance of 624.70 ± 411.39 items/m3 in water and 41.52 ± 22.31 items/kg in sediment. In descending order, the highest MP oncentrations were found in turbid rivers>agricultural channel water>lakes>ordinary rivers. The results showed that MP abundance was associated with the water quality (especially COD) on the QTP, and it was negatively correlated with altitude due to less human activities (especially agricultural activities) at high altitude areas. In addition, more abundant MPs with small sized was found in the higher altitudes than low ones. Determining the effects of different environments on the distribution and degradation of MPs in the high altitude area of the QTP, this study emphasized the attention to be given to this emerging pollutant in the high altitude remote areas.
Collapse
Affiliation(s)
- Sansan Feng
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China; School of Renewable Energy, North China Electric Power University, Beijing 102206, China
| | - Hongwei Lu
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China.
| | - Tianci Yao
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Yuxuan Xue
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Chuang Yin
- School of Renewable Energy, North China Electric Power University, Beijing 102206, China
| | - Meng Tang
- School of Renewable Energy, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
128
|
Bellasi A, Binda G, Pozzi A, Boldrocchi G, Bettinetti R. The extraction of microplastics from sediments: An overview of existing methods and the proposal of a new and green alternative. CHEMOSPHERE 2021; 278:130357. [PMID: 33823347 DOI: 10.1016/j.chemosphere.2021.130357] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 05/21/2023]
Abstract
Microplastics (MPs) contamination is an existing and concerning environmental issue. Plastic particles have been observed worldwide in every natural matrix, with water environments being the final sink of dispersed MPs. Microplastic distribution in water ecosystems varies as a function of multiple factors, including polymer properties (e.g., density and wettability) and environmental conditions (e.g., water currents and temperature). Because of the tendency of MPs to settle, sediment is known to be one of the most impacted environmental matrices. Despite the increasing awareness of their diffusion in sediments, a proper quantification of dispersed particles is still difficult, due to the lack of standard protocols, which avoid a proper comparison of different sites. This hampers the current knowledge on environmental implications and toxicological effects of MPs in sediments. In this work, we examined 49 studies carried out from 2004 to 2020 to describe the different extraction methods applied, and to highlight pros and cons, with the aim of evaluating the more promising protocols. Therefore, we evaluated each proposed method by considering precision, reproducibility, economic viability and greenness (in term of used reagents). Finally, we proposed a valid alternative procedure in term of reliability and costs, which can attract increasing interest for future studies.
Collapse
Affiliation(s)
- A Bellasi
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, Italy.
| | - G Binda
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, Italy.
| | - A Pozzi
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, Italy.
| | - G Boldrocchi
- Department of Human and Innovation for the Territory, University of Insubria, Via Valleggio 11, 22100, Como, Italy.
| | - R Bettinetti
- Department of Human and Innovation for the Territory, University of Insubria, Via Valleggio 11, 22100, Como, Italy.
| |
Collapse
|
129
|
Rios-Mendoza LM, Ontiveros-Cuadras JF, Leon-Vargas D, Ruiz-Fernández AC, Rangel-García M, Pérez-Bernal LH, Sanchez-Cabeza JA. Microplastic contamination and fluxes in a touristic area at the SE Gulf of California. MARINE POLLUTION BULLETIN 2021; 170:112638. [PMID: 34174745 DOI: 10.1016/j.marpolbul.2021.112638] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are long-lasting anthropogenic pollutants, observed in all types of natural environments. The MPs abundance and their temporal variability in beach sands, surface waters (manta trawl), and suspended sediments (sediment trap) were assessed in Mazatlán, Mexico, a tourism destination on the northern Pacific coast, under the hypothesis that MP contamination is influenced by rainfall and population density. The MP concentrations in beach sands from urban and rural areas nearby Mazatlán (4-36 MPs m-2) and in surface waters (1.7-2.0 MPs m-3) were comparable between type of sampling sites; whereas the MP fluxes in sediment trap samples varied widely (40-782 MPs m-2 day-1) with highest values during the rainfall season. The MPs recovered were mostly white/clear (48-54%), and the prevailing shapes were fragments in beach sands and surface waters (59-80%), and fibers (75%) in suspended sediments. The synthetic polymers polypropylene, polyethylene, and polyethylene terephthalate were the most abundant in the study area.
Collapse
Affiliation(s)
- Lorena M Rios-Mendoza
- University of Wisconsin Superior, Belknap St. and Catlin Ave., Superior, WI 54880, Barstow Hall 311A, United States of America.
| | - Jorge Feliciano Ontiveros-Cuadras
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Procesos Oceánicos y Costeros, Ciudad Universitaria, 04510 México City, Mexico.
| | - Daniela Leon-Vargas
- University of Wisconsin Superior, Belknap St. and Catlin Ave., Superior, WI 54880, Barstow Hall 311A, United States of America.
| | - Ana Carolina Ruiz-Fernández
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Calz, Joel Montes Camarena s/n, 82040 Mazatlán, Mexico.
| | - Martín Rangel-García
- Universidad Nacional Autónoma de México, Posgrado en Química, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Libia Hascibe Pérez-Bernal
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Calz, Joel Montes Camarena s/n, 82040 Mazatlán, Mexico.
| | - Joan-Albert Sanchez-Cabeza
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Calz, Joel Montes Camarena s/n, 82040 Mazatlán, Mexico.
| |
Collapse
|
130
|
Jiang S, Su T, Zhao J, Wang Z. Isolation, Identification, and Characterization of Polystyrene-Degrading Bacteria From the Gut of Galleria Mellonella (Lepidoptera: Pyralidae) Larvae. Front Bioeng Biotechnol 2021; 9:736062. [PMID: 34485265 PMCID: PMC8416307 DOI: 10.3389/fbioe.2021.736062] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/09/2021] [Indexed: 01/13/2023] Open
Abstract
Polystyrene (PS) is a widely used petroleum-based plastic, that pollutes the environment because it is difficult to degrade. In this study, a PS degrading bacterium identified as Massilia sp. FS1903 was successfully isolated from the gut of Galleria mellonella (Lepidoptera: Pyralidae) larvae that were fed with PS foam. Scanning electron microscopy and X-ray energy dispersive spectrometry showed that the structure and morphology of the PS film was destroyed by FS 1903, and that more oxygen appeared on the degraded PS film. A water contact angle assay verified the chemical change of the PS film from initially hydrophobic to hydrophilic after degradation. X-ray photoelectron spectroscopy further demonstrated that more oxygen-containing functional groups were generated during PS degradation. After 30 days of bacterial stain incubation with 0.15 g PS, 80 ml MSM, 30°C and PS of Mn 64400 and Mw 144400 Da, the weight of the PS film significantly decreased, with 12.97 ± 1.05% weight loss. This amount of degradation exceeds or is comparable to that previously reported for other species of bacteria reported to degrade PS. These results show that Massilia sp. FS1903 can potentially be used to degrade PS waste.
Collapse
Affiliation(s)
- Shan Jiang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, China
| | - Tingting Su
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, China
| | - Jingjing Zhao
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, China
| | - Zhanyong Wang
- Department of Biotechnology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
131
|
Manbohi A, Mehdinia A, Rahnama R, Dehbandi R, Hamzehpour A. Spatial distribution of microplastics in sandy beach and inshore-offshore sediments of the southern Caspian Sea. MARINE POLLUTION BULLETIN 2021; 169:112578. [PMID: 34102414 DOI: 10.1016/j.marpolbul.2021.112578] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
The occurrence of microplastics (MPs) in nearshore zones of the southern Caspian coasts is well documented; however, no data are available on MP occurrence in offshore sediments. In this study, six sandy beach stations and 18 inshore-offshore stations (six transects) were surveyed. MPs were detected in all sediment samples. The mean abundances of MPs in the beach and inshore-offshore stations were 196.67 ± 11.58 and 103.15 ± 7.21 MPs/kg, respectively. Fibers constituted the most common shape of MPs. Polystyrene (PS) and polyethylene terephthalate (PET) were the major polymer types found in the beach and inshore-offshore sediments, respectively. In most transects, negative MP gradients were observed from nearshore to offshore, which showed that coastal fishing, tourism, and rivers were the main sources of MPs in this area. These results will improve our understanding on MPs pollution in the marine ecosystem. We recommend further MP studies in different parts of the Caspian Sea to develop appropriate management programs.
Collapse
Affiliation(s)
- Ahmad Manbohi
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran 1411813389, Iran.
| | - Ali Mehdinia
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran 1411813389, Iran
| | - Reza Rahnama
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran 1411813389, Iran
| | - Reza Dehbandi
- Department of Environmental Health Engineering, Faculty of Health and Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Hamzehpour
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran 1411813389, Iran
| |
Collapse
|
132
|
Ge M, Wang X, Yang G, Wang Z, Li Z, Zhang X, Xu Q. Persistent organic pollutants (POPs) in deep-sea sediments of the tropical western Pacific Ocean. CHEMOSPHERE 2021; 277:130267. [PMID: 33774242 DOI: 10.1016/j.chemosphere.2021.130267] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Persistent organic pollutants (POPs) are toxic compounds that can persist for extended periods in the environment. The marine environment is considered an important sink for POPs. However, information regarding POPs in deep-sea environments remains limited. In this study, surface sediments from depths below 2,000 m were collected in the western Pacific Ocean to analyze polycyclic aromatic hydrocarbons (PAHs), organic pesticides, and polychlorinated biphenyls (PCBs). The concentrations of PAHs were highest (5.2-24.6 ng g-1 dw). Hexachlorocyclohexanes (HCHs) were the predominant organic pesticide (30-1,730 pg g-1 dw). Dicofol, chlorpyrifos, and malathion were detected only at a few sites. PCBs were not detected in the study area. A principal component analysis with multiple linear regression (PCA-MLR) indicated that PAHs in sediments mainly originated from biomass and coal combustion (∼62%) and petrogenic (∼38%) sources. This study revealed the distribution and potential sources of POPs in sediments of a deep-sea region in the western Pacific Ocean. Further studies of the transformations, sedimentation, and biological interactions of POPs are needed to better understand the fates of POPs in the marine environment and the ecological risks they pose.
Collapse
Affiliation(s)
- Meiling Ge
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Xuetao Wang
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Gang Yang
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Zongling Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Zhong Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Xuelei Zhang
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Qinzeng Xu
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
| |
Collapse
|
133
|
Mallik A, Xavier KAM, Naidu BC, Nayak BB. Ecotoxicological and physiological risks of microplastics on fish and their possible mitigation measures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146433. [PMID: 33743469 DOI: 10.1016/j.scitotenv.2021.146433] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) are widely distributed and extensively found within marine ecosystems, and approximately 8 million tons of plastics are being dumped into the sea annually. Once reached the marine environment, plastics tend to get fragmented into smaller particles through photo-degradation, mechanical and biological processes. These MPs have raised concerns globally due to their potential toxic impacts on a wide variety of aquatic fauna and humans. Ingested microplastics can cause severe health implications in fishes, including reduced feeding intensity, improper gill functioning, immuno-suppression, and compromised reproducibility. Several studies were also conducted to scrutinize MPs trophic transfer through the food chain from primary producers to top predators and their bioaccumulation. This paper briefly summarizes all the possible sources, routes, bioavailability, trophic transfer, and consequences of microplastics in fishes. The review article also intended to highlight various mitigation strategies like implementing Four R's concept (refuse, reduce, reuse, and recycle), integrated strategies, ban on single-use plastics, use bioplastics, and create behavioural changes with public awareness.
Collapse
Affiliation(s)
- Abhijit Mallik
- Fishery Resource Harvest and Postharvest Management Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | - K A Martin Xavier
- Fishery Resource Harvest and Postharvest Management Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India.
| | - Bejawada Chanikya Naidu
- Fishery Resource Harvest and Postharvest Management Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | - Binaya Bhusan Nayak
- Fishery Resource Harvest and Postharvest Management Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| |
Collapse
|
134
|
Pan CG, Mintenig SM, Redondo-Hasselerharm PE, Neijenhuis PHMW, Yu KF, Wang YH, Koelmans AA. Automated μFTIR Imaging Demonstrates Taxon-Specific and Selective Uptake of Microplastic by Freshwater Invertebrates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9916-9925. [PMID: 34236184 PMCID: PMC8384233 DOI: 10.1021/acs.est.1c03119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/26/2021] [Indexed: 05/30/2023]
Abstract
Microplastic particles can be deposited to sediments and subsequently ingested by benthic organisms. It is unknown to what extent ingestion of microplastic is taxon-specific or whether taxa can be selective toward certain types of microplastics. Here, we used state-of-the-art automated micro-Fourier-transform infrared (μFTIR) imaging and attenuated total reflectance FTIR spectroscopy to determine small-size (20-500 μm) and large-size (500-5000 μm) microplastic particles in sediments and a range of benthic invertebrate species sampled simultaneously from the Dommel River in the Netherlands. Microplastic number concentrations differed across taxa at the same locations, demonstrating taxon-specific uptake, whereas size distributions were the same across sediments and taxa. At the site with the highest concentration, microplastic occupied up to 4.0% of the gut volume of Asellidae. Particle shape distributions were often not statistically different between sediments and taxa, except for Astacidea at one of the locations where the proportion of particles with a length to width ratio >3 (i.e., fibers) was twice as high in sediments than in Astacidea. Acrylates/polyurethane/varnish was predominately found in sediments, while soft and rubbery polymers ethylene propylene diene monomer and polyethylene-chlorinated were the dominant polymers found in invertebrates. Microplastic polymer composition and thus polymer density differed significantly between invertebrates and their host sediment. Trophic transfer at the base of the food web appears to have a filter function with respect to microplastic particle types and shapes. Together with the very high ingestion rates, this has clear implications for ecological and human health risks, where uptake concerns edible species (e.g., Astacidea).
Collapse
Affiliation(s)
- Chang-Gui Pan
- School
of Marine Sciences, Guangxi University, Nanning 530004, China
- Aquatic
Ecology and Water Quality Management Group, Wageningen University, Wageningen 6708 PB, The Netherlands
| | - Svenja M. Mintenig
- Copernicus
Institute of Sustainable Development, Utrecht
University, Utrecht 3584 CS, The Netherlands
| | | | - Paula H. M. W. Neijenhuis
- Aquatic
Ecology and Water Quality Management Group, Wageningen University, Wageningen 6708 PB, The Netherlands
| | - Ke-Fu Yu
- School
of Marine Sciences, Guangxi University, Nanning 530004, China
- Southern
Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Ying-Hui Wang
- School
of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Albert A. Koelmans
- Aquatic
Ecology and Water Quality Management Group, Wageningen University, Wageningen 6708 PB, The Netherlands
| |
Collapse
|
135
|
Eo S, Hong SH, Song YK, Han GM, Seo S, Shim WJ. Prevalence of small high-density microplastics in the continental shelf and deep sea waters of East Asia. WATER RESEARCH 2021; 200:117238. [PMID: 34051457 DOI: 10.1016/j.watres.2021.117238] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Microplastics are widely distributed throughout aquatic environments. Information about the vertical distribution and fate of microplastics in seawater remains limited. To elucidate the vertical distribution of microplastics, three to six vertical water column layers were sampled based on the thermocline depth, from which the vertical distribution and characteristics of microplastics larger than 20 μm were investigated in continental shelf and deep-sea waters around South Korea. In addition, microplastics incorporated into marine aggregates (aggregated fraction) were investigated to determine the contribution of aggregates to vertical transport of microplastics. The abundance of microplastics was in the range of 15-9,400 particles/m3. No consistent trend was observed in the overall vertical profiles. The size, shape and polymer compositions of microplastics at each station were generally comparable throughout the water column. Unexpectedly, high-density (HD; > 1.02 g/cm3) polymers accounted for an average of 73% of total microplastics. As polymer density increased, the proportion of microplastics less than 100 μm in size increased. HD polymers also accounted for 68% of the aerosol samples collected together with water samples. Due to the relatively high proportion of HD polymers in far-offshore waters, high-density solution should be used to extract microplastics, even from surface seawaters. The aggregated fraction accounted for 0-28.6% (average, 3.4%) of total microplastics. Marine aggregates are considered an important mechanism of transport for microplastics less dense than seawater to the deep-water column, but they showed lower proportions than expected in continental shelf and deep-sea waters around South Korea.
Collapse
Affiliation(s)
- Soeun Eo
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sang Hee Hong
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Young Kyoung Song
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Gi Myung Han
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Seongbong Seo
- Ocean Circulation and Climate Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | - Won Joon Shim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
136
|
Kitahashi T, Nakajima R, Nomaki H, Tsuchiya M, Yabuki A, Yamaguchi S, Zhu C, Kanaya Y, Lindsay DJ, Chiba S, Fujikura K. Development of robust models for rapid classification of microplastic polymer types based on near infrared hyperspectral images. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2215-2222. [PMID: 33908466 DOI: 10.1039/d1ay00110h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hyperspectral data in the near infrared range were examined for nine common types of plastic particles of 1 mm and 100-500 μm sizes on dry and wet glass fiber filters. Weaker peak intensities were detected for small particles compared to large particles, and the reflectances were weaker at longer wavelengths when the particles were measured on a wet filter. These phenomena are explainable due to the effect of the correlation between the particle size and the absorption of infrared light by water. We constructed robust classification models that are capable of classifying polymer types, regardless of particle size or filter conditions (wet vs. dry), based on hyperspectral data for small particles measured on wet filters. Using the models, we also successfully classified the polymer type of polystyrene beads covered with microalgae, which simulates the natural conditions of microplastics in the ocean. This study suggests that hyperspectral imaging techniques with appropriate classification models allow the identification of microplastics without the time- and labor-consuming procedures of drying samples and removing biofilms, thus enabling more rapid analyses.
Collapse
Affiliation(s)
- Tomo Kitahashi
- Marine Biodiversity and Environmental Assessment Research Center (BioEnv), Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan.
| | - Ryota Nakajima
- Marine Biodiversity and Environmental Assessment Research Center (BioEnv), Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan.
| | - Hidetaka Nomaki
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Masashi Tsuchiya
- Marine Biodiversity and Environmental Assessment Research Center (BioEnv), Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan.
| | - Akinori Yabuki
- Marine Biodiversity and Environmental Assessment Research Center (BioEnv), Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan.
| | - Sojiro Yamaguchi
- JFE Techno Research, 1 Kawasaki-cho, Chuo-ku, Chiba 260-0835, Japan
| | - Chunmao Zhu
- Earth Surface System Research Center (ESS), Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 3173-25, Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan
| | - Yugo Kanaya
- Earth Surface System Research Center (ESS), Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 3173-25, Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan
| | - Dhugal J Lindsay
- Advanced Science and Technology Research (ASTER) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Sanae Chiba
- Marine Biodiversity and Environmental Assessment Research Center (BioEnv), Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan.
| | - Katsunori Fujikura
- Marine Biodiversity and Environmental Assessment Research Center (BioEnv), Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan.
| |
Collapse
|
137
|
Duan J, Bolan N, Li Y, Ding S, Atugoda T, Vithanage M, Sarkar B, Tsang DCW, Kirkham MB. Weathering of microplastics and interaction with other coexisting constituents in terrestrial and aquatic environments. WATER RESEARCH 2021; 196:117011. [PMID: 33743325 DOI: 10.1016/j.watres.2021.117011] [Citation(s) in RCA: 232] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/14/2021] [Accepted: 03/03/2021] [Indexed: 05/21/2023]
Abstract
Weathering of microplastics (MPs, < 5 mm) in terrestrial and aquatic environments affects MP transport and distribution. This paper first summarizes the sources of MPs, including refuse in landfills, biowastes, plastic films, and wastewater discharge. Once MPs enter water and soil, they undergo different weathering processes. MPs can be converted into small molecules (e.g., oligomers and monomers), and may be completely mineralized under the action of free radicals or microorganisms. The rate and extent of weathering of MPs depend on their physicochemical properties and environmental conditions of the media to which they are exposed. In general, water dissipates heat better, and has a lower temperature, than land; thus, the weathering rate of MPs in the aquatic environment is slower than in the terrestrial environment. These weathering processes increase oxygen-containing functional groups and the specific surface area of MPs, which influence the sorption and aggregation that occur between weathered MPs and their co-existing constituents. More studies are needed to investigate the various weathering processes of diverse MPs under natural field conditions in soils, sediments, and aquatic environments, to understand the impact of weathered MPs in the environment.
Collapse
Affiliation(s)
- Jiajun Duan
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Nanthi Bolan
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Shiyuan Ding
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Thilakshani Atugoda
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - M B Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
138
|
Abbasi S, Turner A, Hoseini M, Amiri H. Microplastics in the Lut and Kavir Deserts, Iran. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5993-6000. [PMID: 33852274 DOI: 10.1021/acs.est.1c00615] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Although microplastics (MPs) are ubiquitous environmental contaminants, little is known about their occurrence and behavior in the terrestrial setting. In this study, MPs have been isolated from soils collected from various geomorphological features (yardangs, sand dunes, moving sands, seasonal lakes) of the Kavir and Lut Deserts on the Iranian plateau. The number of MPs identified in 300 g samples ranged from zero (not detected) in several yardang tops to 25 on some yardang hillsides, with an overall average abundance of about 0.02 MP g-1. The majority of MPs were of a fibrous nature with a size distribution (≤100 μm to ≥1000 μm) skewed toward the lower end, and analysis of a selection of particles by μ-Raman spectroscopy showed that polyethylene terephthalate and Nylon (polyamide) were the principal polymers. Scanning electron microscopy revealed intense degradation of some particles but limited weathering of others. With little evidence of meso- and macroplastics in the deserts, it appears that the majority of MPs are brought into these environments from distant sources via the wind, with smaller, seasonal contributions from runoff associated with the adjacent mountains. It is proposed that some windborne MPs are transported through the deserts relatively rapidly, while others are subject to internal recycling and significant photo-oxidation and mechanical weathering.
Collapse
Affiliation(s)
- Sajjad Abbasi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz, 71454, Iran
| | - Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth PL4 8AA, U.K
| | - Mohammad Hoseini
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hoda Amiri
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health, School of Public Health and Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
139
|
Chen JC, Fang C, Zheng RH, Hong FK, Jiang YL, Zhang M, Li Y, Hamid FS, Bo J, Lin LS. Microplastic pollution in wild commercial nekton from the South China Sea and Indian Ocean, and its implication to human health. MARINE ENVIRONMENTAL RESEARCH 2021; 167:105295. [PMID: 33714106 DOI: 10.1016/j.marenvres.2021.105295] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Marine biota, especially commercially important species, serves as a basis for human nutrition. However, millions of tons of plastic litter are produced and enter the marine environment every year, with potential adverse impacts on marine organisms. In the present study, we investigated the occurrence and characteristics of microplastic (MP) pollution in the digestive tracts of 13 species of wild nektons from 20 stations sampled in the South China Sea (SCS) and the Indian Ocean (IO), and assessed the human health risks of MPs. The detection rate of MPs ranged from 0.00% to 50.00% from the SCS, which was dramatically lower than that from the IO (10.00-80.00%). The average abundance of MP was 0.18 ± 0.06 items g wet weight-1 (ww-1) in the SCS, which was significantly lower than that in the IO with a concentration of 0.70 ± 0.16 items g ww-1. Most MPs were fibers in type, black in color, and polyester (PES) in polymer composition in both the SCS and IO. Interestingly, distinct profiles of MP pollution were found between the benthic and pelagic nektons: 1) The predominant MP composition was PES in the benthic nektons, whereas polyamide (PA) accounted for a larger part of the total MP count in the pelagic nektons within the SCS; 2) The abundance of MP in the benthic nektons (0.52 ± 0.24 items individual-1) was higher than that in the pelagic nektons (0.30 ± 0.11 items individual-1). Accordingly, the mean hazard score of MPs detected in the benthic nektons (220.66 ± 210.75) was higher than that in the pelagic nektons (49.53 ± 22.87); 3) The mean size of the MP in the pelagic nektons (0.84 ± 0.17 mm) was larger than that in the benthic nektons (0.49 ± 0.09 mm). Our findings highlight the need to further investigate the ecological impacts of MPs on wild nekton, especially commercially important species, and its potential implications for human health.
Collapse
Affiliation(s)
- Jin-Can Chen
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361102, China; State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Chao Fang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361102, China
| | - Rong-Hui Zheng
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361102, China
| | - Fu-Kun Hong
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361102, China
| | - Yu-Lu Jiang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361102, China; State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Min Zhang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361102, China
| | - Yuan Li
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361102, China
| | - Fauziah Shahul Hamid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361102, China.
| | - Long-Shan Lin
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361102, China.
| |
Collapse
|
140
|
Huang D, Tao J, Cheng M, Deng R, Chen S, Yin L, Li R. Microplastics and nanoplastics in the environment: Macroscopic transport and effects on creatures. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124399. [PMID: 33191019 DOI: 10.1016/j.jhazmat.2020.124399] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/15/2020] [Accepted: 10/25/2020] [Indexed: 05/06/2023]
Abstract
Industrial progress has brought us an important polymer material, i.e. plastic. Because of mass production and use, and improper management and disposal, plastic pollution has become one of the most pivotal environmental issues in the world today. However, the current researches on microplastics/nanoplastics are mainly focused on individual aquatic, terrestrial and atmospheric environments, ignoring the fact that the natural environment is a whole. In this regard, the transport of microplastics/nanoplastics among the three environment compartments, including reciprocal contributions and inherent connections, and the impact of microplastics/nanoplastics on organisms living in multiple environments are research problems that we pay special attention to. Furthermore, this paper comprehensively reviews the transport and distribution of microplastics/nanoplastics in individual compartments and the toxicity of organisms, either alone or in combination with other pollutants. The properties of microplastics/nanoplastics, environment condition and the growth habit of organisms are critical to the transport, distribution and toxicity of microplastics/nanoplastics. These knowledge gaps need to be addressed urgently to improve cognition of the degree of plastic pollution and enhance our ability to deal with pollution. Meanwhile, it is hoped that the paper can provide a relatively complete theoretical knowledge system and multiple "leads" for future innovative ideas in this field.
Collapse
Affiliation(s)
- Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Jiaxi Tao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Rui Deng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lingshi Yin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
141
|
Feng S, Lu H, Yao T, Liu Y, Tian P, Lu J. Microplastic footprints in the Qinghai-Tibet Plateau and their implications to the Yangtze River Basin. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124776. [PMID: 33388722 DOI: 10.1016/j.jhazmat.2020.124776] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) are pervasive in the environment and have posed growing threat to ecosystems and human health. This study investigated MP abundances in surface water (fresh and salt lakes, urban and rural rivers, etc.) from 28 stations in the Qinghai-Tibet Plateau. MPs were detected in 25 out of 28 water samples with relatively low abundance (average 584.82 particles m-3). Fibers were the most frequently observed shape, particle sizes mostly ranged from 100 to 500 µm, and the greatest number of MPs was polypropylene. Source analysis identified the major sources of domestic wastewater and tourism in some areas. The concentration and proportion of small MPs (20-100 µm) in salty water were apparently greater than that in fresh water, indicating Salt intrusion accelerated MPs fragmentation. As the study area is the origin of the Yangtze River, we further compared the MP distribution throughout the watershed. Nearly two orders of magnitude in MP concentrations were increased associated with urban agglomeration in the middle and downstream areas, but the highest level was marked around the Yichang City (location of the Three Gorges Reservoir) due to interception associated with sedimentation and precipitation. This study provides data and theoretical bases for analyzing MPs migration and degradation processes in high altitudes.
Collapse
Affiliation(s)
- Sansan Feng
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China; School of Renewable Energy, North China Electric Power University, Beijing 102206, China
| | - Hongwei Lu
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China.
| | - Tianci Yao
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Yunlong Liu
- School of Renewable Energy, North China Electric Power University, Beijing 102206, China
| | - Peipei Tian
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China; School of Renewable Energy, North China Electric Power University, Beijing 102206, China
| | - Jingzhao Lu
- School of Renewable Energy, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
142
|
Selvaranjan K, Navaratnam S, Rajeev P, Ravintherakumaran N. Environmental challenges induced by extensive use of face masks during COVID-19: A review and potential solutions. ENVIRONMENTAL CHALLENGES (AMSTERDAM, NETHERLANDS) 2021; 3:100039. [PMID: 38620606 PMCID: PMC7873601 DOI: 10.1016/j.envc.2021.100039] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 04/15/2023]
Abstract
The ongoing COVID-19 disease significantly affects not only human health, it also affects the wealth of country' economy and everyday routine of human life. To control the spread of the virus, face mask is used as primary personal protective equipment (PPE). Thus, the production and usage of face masks significantly increase as the COVID-19 pandemic still escalating. Further, most of these masks contain plastics or other derivatives of plastics. Therefore, this extensive usage of face masks generates million tons of plastic wastes to the environments in a short span of time. This study aims to investigate the environmental impact induced by face mask wastes and sustainable solution to reduce this waste. An online survey was carried out to identify the types of face mask and number of masks used per week by an individual from 1033 people. Based on this survey and available literature, this study quantifies the amount of plastics waste generated by face masks. However, this survey was limited with certain ages, country and durations (July-August 2020). Thus, the prediction of plastic waste generation, only provide fundamental knowledge about the mask wastes. Results revealed that there is a huge plastic waste remained in land and marine environment in the form of mask waste, which will contribute to micro-plastic pollution. Therefore, this paper also highlights the sustainable approach to the mask production by integrating the use of natural plant fiber in the woven face mask technology to reduce the plastic waste induced by masks. Further, upcycling the mask waste and producing construction materials also discussed.
Collapse
Affiliation(s)
| | | | - Pathmanathan Rajeev
- Department of Civil and Construction Engineering, Swinburne University of Technology, Australia
| | | |
Collapse
|
143
|
Issac MN, Kandasubramanian B. Effect of microplastics in water and aquatic systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19544-19562. [PMID: 33655475 PMCID: PMC7924819 DOI: 10.1007/s11356-021-13184-2] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 02/22/2021] [Indexed: 05/21/2023]
Abstract
Surging dismissal of plastics into water resources results in the splintered debris generating microscopic particles called microplastics. The reduced size of microplastic makes it easier for intake by aquatic organisms resulting in amassing of noxious wastes, thereby disturbing their physiological functions. Microplastics are abundantly available and exhibit high propensity for interrelating with the ecosystem thereby disrupting the biogenic flora and fauna. About 71% of the earth surface is occupied by oceans, which holds 97% of the earth's water. The remaining 3% is present as water in ponds, streams, glaciers, ice caps, and as water vapor in the atmosphere. Microplastics can accumulate harmful pollutants from the surroundings thereby acting as transport vectors; and simultaneously can leach out chemicals (additives). Plastics in marine undergo splintering and shriveling to form micro/nanoparticles owing to the mechanical and photochemical processes accelerated by waves and sunlight, respectively. Microplastics differ in color and density, considering the type of polymers, and are generally classified according to their origins, i.e., primary and secondary. About 54.5% of microplastics floating in the ocean are polyethylene, and 16.5% are polypropylene, and the rest includes polyvinyl chloride, polystyrene, polyester, and polyamides. Polyethylene and polypropylene due to its lower density in comparison with marine water floats and affect the oceanic surfaces while materials having higher density sink affecting seafloor. The effects of plastic debris in the water and aquatic systems from various literature and on how COVID-19 has become a reason for microplastic pollution are reviewed in this paper.
Collapse
Affiliation(s)
- Merlin N Issac
- CIPET: Institute of Plastics Technology (IPT), HIL Colony, Edayar Road, Pathalam, Eloor, Udyogamandal P.O., Kochi, Kerala, 683501, India
| | - Balasubramanian Kandasubramanian
- Nano-Surface Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, Maharashtra, 411025, India.
| |
Collapse
|
144
|
Li X, Han X, Vogt RD, Zhou J, Zheng B, Song Y, Lu X. Distributions, temporal trends and ecological risks of polyethylene terephthalate (PET) and di-(2-ethylhexyl) phthalate (DEHP) in sediments of Jiaozhou Bay, China. MARINE POLLUTION BULLETIN 2021; 165:112176. [PMID: 33621904 DOI: 10.1016/j.marpolbul.2021.112176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/04/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Spatiotemporal distribution and ecological risk of the polyethylene terephthalate (PET) plastic polymer and plasticizer di-(2-ethylhexyl) phthalate (DEHP) were investigated using both surface and core sediments in Jiaozhou Bay, China. The concentrations of PET and DEHP ranged 210.6-1929.7 μg/kg and 0-591.2 μg/kg, respectively. The depth profiles of PET and DEHP in the sediment cores indicated that PET and DEHP pollution increased since the 1970s, which is in accord with the regional PET and DEHP consumption history. The levels of PET in Jiaozhou Bay was found to represent low ecological risk based on the assessment models for Potential Ecological Risk factor and Potential Ecological Risk. The amounts of DEHP also posed a low risk to the aquatic organisms in the sediment phase as indicated by the Risk Quotient method.
Collapse
Affiliation(s)
- Xue Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin 300350, China; Tianjin International Joint Research Center for Environmental Biogeochemical Technology, Tianjin 300350, China; Department of Chemistry, University of Oslo, 0315 Oslo, Norway
| | - Xiaoxin Han
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin 300350, China; Tianjin International Joint Research Center for Environmental Biogeochemical Technology, Tianjin 300350, China; Department of Chemistry, University of Oslo, 0315 Oslo, Norway; Chuangchun Bureau of Ecology and Environment, Chuangchun 130022, China
| | - Rolf D Vogt
- Tianjin International Joint Research Center for Environmental Biogeochemical Technology, Tianjin 300350, China; Department of Chemistry, University of Oslo, 0315 Oslo, Norway; Centre for Biogeochemistry in the Anthropocene, University of Oslo, 0316 Oslo, Norway
| | - Jiaying Zhou
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin 300350, China; Tianjin International Joint Research Center for Environmental Biogeochemical Technology, Tianjin 300350, China
| | - Boyang Zheng
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin 300350, China; Tianjin International Joint Research Center for Environmental Biogeochemical Technology, Tianjin 300350, China
| | - Yutong Song
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen 1958, Denmark
| | - Xueqiang Lu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin 300350, China; Tianjin International Joint Research Center for Environmental Biogeochemical Technology, Tianjin 300350, China.
| |
Collapse
|
145
|
Lai WH, Hong CY, Tseng HH, Wey MY. Fabrication of waterproof gas separation membrane from plastic waste for CO 2 separation. ENVIRONMENTAL RESEARCH 2021; 195:110760. [PMID: 33493535 DOI: 10.1016/j.envres.2021.110760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
In this study, waste polystyrene (wPS) plastic was used to prepare gas-separation membranes with hot-pressing technology to reduce the accumulation of plastic waste. Polystyrene is a commonly used polymer for the production of plastic products, and it is also used in the synthesis of membranes for gas separation. Compared to the traditional synthesis process, hot-pressing is environmentally friendly because it does not require organic solvents. The mobility of the polymer chain and the integrity and free volume of the membrane are affected by the temperature, pressure, duration, and annealing environment of the hot-pressing process, thereby altering the performance of the membrane. Additionally, when the wPS contained polybutadiene, the gas separation membranes showed a selectivity of 17.14 for CO2/N2. The membranes also exhibited ideal waterproof performance when the membranes were operated under water pressures of 1-5 bar. Therefore, membranes derived from wPS through hot pressing are waterproof and can be used for gas separation. Furthermore, they are expected to maintain their separation performance in complex environments.
Collapse
Affiliation(s)
- Wen-Hsiung Lai
- Department of Environmental Engineering, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Chen-Yao Hong
- Department of Environmental Engineering, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Hui-Hsin Tseng
- School of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan, ROC; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan, ROC.
| | - Ming-Yen Wey
- Department of Environmental Engineering, National Chung Hsing University, Taichung, 402, Taiwan, ROC.
| |
Collapse
|
146
|
Huang W, Chen M, Song B, Deng J, Shen M, Chen Q, Zeng G, Liang J. Microplastics in the coral reefs and their potential impacts on corals: A mini-review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143112. [PMID: 33172634 DOI: 10.1016/j.scitotenv.2020.143112] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 05/26/2023]
Abstract
Plastic debris exists worldwide and research on microplastic pollution has gradually spread from the oceans to freshwater and terrestrial systems. Coral reefs not only serve as one of the most charismatic and biodiverse ecosystems on our planet, but also maintain the human harvesting of natural resources and livelihoods of hundreds of millions of people. However, the abundance and distribution characteristics of microplastics in coral reef systems receive little scientific attention. Meanwhile, the impacts of microplastics and nanoplastics on coral health and its potential mechanisms remain further studied. Herein, this review first summarized the current status of microplastics pollution in global coral reefs, especially included (i) abundance and distribution characteristics of microplastics in different media (e.g., seawater, sediment, corals), and (ii) possible sources of microplastics in reef regions. Furthermore, the main interaction mechanisms between microplastics and corals are highlighted. Following this, the direct or indirect impacts of microplastics on coral species are discussed. With the rapid increase of plastic consumption and background of pervasive global coral bleaching, research on marine microplastics must focus on the critical coral reef regions and include a comprehensive knowledge about the distribution, fate, and potential risks from an ecosystem perspective.
Collapse
Affiliation(s)
- Wei Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiaqin Deng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Maocai Shen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qiang Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
147
|
Microplastics in Surface Waters and Sediments from Guangdong Coastal Areas, South China. SUSTAINABILITY 2021. [DOI: 10.3390/su13052691] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Microplastic is an emerging global pollutant that have attracted a great deal of attention from researchers and the public. Guangdong Province has a large population and a relatively well-developed economy, but lacks a modern pollution control system. Guangdong has a long coastline with varying levels of pollution, and little research has been conducted on microplastics. Therefore, we investigated the level of microplastic pollution in coastal areas of Guangdong Province, and the abundance of microplastics in surface waters and sediments at 13 sampling sites. The abundance of microplastics in surface water and sediment samples ranged from 850 to 3500 items/L and 433.3 to 4166.3 items/kg, respectively. Fiber is the main type of microplastics in both surface water and sediment. The sampled microplastics were typically transparent. Raman results show that the surface water sample mainly includes rayon (38.2%), polyethylene terephthalate (16.4%), and ethylene/vinyl acetate copolymer (12.7%). This study used the pollution load index method to evaluate the pollution risk of microplastics along the coast of Guangdong, and provided the basis for the formulation of environmental policy.
Collapse
|
148
|
Mariano S, Tacconi S, Fidaleo M, Rossi M, Dini L. Micro and Nanoplastics Identification: Classic Methods and Innovative Detection Techniques. FRONTIERS IN TOXICOLOGY 2021; 3:636640. [PMID: 35295124 PMCID: PMC8915801 DOI: 10.3389/ftox.2021.636640] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Micro and nanoplastics are fragments with dimensions less than a millimeter invading all terrestrial and marine environments. They have become a major global environmental issue in recent decades and, indeed, recent scientific studies have highlighted the presence of these fragments all over the world even in environments that were thought to be unspoiled. Analysis of micro/nanoplastics in isolated samples from abiotic and biotic environmental matrices has become increasingly common. Hence, the need to find valid techniques to identify these micro and nano-sized particles. In this review, we discuss the current and potential identification methods used in microplastic analyses along with their advantages and limitations. We discuss the most suitable techniques currently available, from physical to chemical ones, as well as the challenges to enhance the existing methods and develop new ones. Microscopical techniques (i.e., dissect, polarized, fluorescence, scanning electron, and atomic force microscopy) are one of the most used identification methods for micro/nanoplastics, but they have the limitation to produce incomplete results in analyses of small particles. At present, the combination with chemical analysis (i.e., spectroscopy) overcome this limit together with recently introduced alternative approaches. For example, holographic imaging in microscope configuration images microplastics directly in unfiltered water, thus discriminating microplastics from diatoms and differentiates different sizes, shapes, and plastic types. The development of new analytical instruments coupled with each other or with conventional and innovative microscopy could solve the current problems in the identification of micro/nanoplastics.
Collapse
Affiliation(s)
- Stefania Mariano
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| | - Stefano Tacconi
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| | - Marco Fidaleo
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
- Research Center for Nanotechnologies Applied to Engineering, CNIS Sapienza University of Rome, Rome, Italy
- National Research Council Nanotec, Lecce, Italy
| | - Luciana Dini
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Research Center for Nanotechnologies Applied to Engineering, CNIS Sapienza University of Rome, Rome, Italy
- National Research Council Nanotec, Lecce, Italy
- *Correspondence: Luciana Dini
| |
Collapse
|
149
|
Liu Y, Zhang J, Tang Y, He Y, Li Y, You J, Breider F, Tao S, Liu W. Effects of anthropogenic discharge and hydraulic deposition on the distribution and accumulation of microplastics in surface sediments of a typical seagoing river: The Haihe River. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124180. [PMID: 33059152 DOI: 10.1016/j.jhazmat.2020.124180] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/17/2020] [Accepted: 10/03/2020] [Indexed: 05/06/2023]
Abstract
Microplastics pollution in river systems has generated great concern; however, few studies have focused on the contributions of multiple influencing factors to microplastics in river systems. In the current study, we utilized data on microplastics in surface sediments from the Haihe River, a seagoing river in northern China to establish a generalized additive model (GAM) for quantifying the effects of multiple factors on the distribution of microplastics. A high abundance of microplastics (4980 ± 2462 items∙kg-1 dry weight) was found. Small particles (< 1000 µm) accounted for a dominant proportion (44.8-61.0%). Polyethylene (PE) was the chief component with an averaged fraction of 49.3%, in which low- and high-density polyethylene contributed 90.7% and 9.3% of the PE, respectively. Microplastics abundance was positively correlated with sediment TOC and the silt fraction (p < 0.05) but negatively correlated with the sand fraction (p < 0.05). The GAM could explain approximate 60% of the total microplastics abundance, and dam (28.5%), sediment TOC (22.9%), and sewage effluent (17.6%) were the main contributors to total variations in microplastics abundance. Local sewage effluent acted as an important point source of microplastics discharge, and the dam on the river greatly affected the deposition and accumulation of microplastics.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Central Environmental Laboratory (GR-CEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - JiaoDi Zhang
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Tang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong He
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - YuJun Li
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - JinAo You
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Florian Breider
- Central Environmental Laboratory (GR-CEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Shu Tao
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - WenXin Liu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
150
|
Muhaimin AA, Adel M, Nagai K. Investigating the Effect of Repeated High Water Pressure on the Compressive and Bond Strength of Concrete with/without Steel Bar. MATERIALS 2021; 14:ma14030527. [PMID: 33499289 PMCID: PMC7865805 DOI: 10.3390/ma14030527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 11/16/2022]
Abstract
The application of reinforced concrete for permanent and temporary deep ocean structures has recently become more prevalent; however, the static and dynamic effects of high water pressure on concrete remain unexplored. This paper investigates the influence of high water pressure (60 MPa) on four series of concrete cylinders with and without an embedded steel bar under sustained and cyclic loading conditions. The residual compressive strength, bond strength, and associated evolution of surface and internal damage are evaluated after exposing concrete cylinders to a water pressure of 60 MPa. The first series is exposed to sustained water pressure for 7 and 60 days, while the other series is tested under repeated water pressure for 10, 20, 30, 60, and 150 cycles. The results reveal that residual compressive strength falls immediately by 16% within 7 days of sustained high water pressure, but the strength then remains stable up to 60 days. Under repeated high water pressure, residual compressive strength gradually reduces by up to 40% until 60 cycles, after which it remains reasonably stable until 150 cycles as crack propagation is arrested at a certain depth within the concrete cylinders. The bond strength between the steel bar and matrix is observed to decrease considerably under repeated cycles of 60 MPa water pressure up to 26%. The damage gradually propagates at the matrix/steel bar interface under the repeated water pressure, resulting in a reduction in residual pullout capacity.
Collapse
Affiliation(s)
- Ahmad Aki Muhaimin
- Department of Civil Engineering, The University of Tokyo, Tokyo 113-8654, Japan;
| | - Mohamed Adel
- Institute of Industrial Science, The University of Tokyo, Tokyo 113-8654, Japan;
- Department of Structural Engineering, Faculty of Engineering, Cairo University, Cairo 12613, Egypt
- Correspondence:
| | - Kohei Nagai
- Institute of Industrial Science, The University of Tokyo, Tokyo 113-8654, Japan;
| |
Collapse
|