101
|
Chen YY, Chang HC, Lin YJ, Chien KL, Hsieh YC, Chung FP, Lin CH, Lip GYH, Chen SA. The impact of sodium-glucose co-transporter-2 inhibitors on dementia and cardiovascular events in diabetic patients with atrial fibrillation. Diabetes Metab Res Rev 2024; 40:e3775. [PMID: 38340046 DOI: 10.1002/dmrr.3775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 02/12/2024]
Abstract
AIMS The effectiveness of sodium-glucose co-transporter-2 inhibitors (SGLT2i) on incident dementia in patients with diabetes and atrial fibrillation (AF) remains unknown. This study aimed to investigate the association between SGLT2i and the risk of incident dementia in diabetic patients with AF, and to explore the interactions with oral anticoagulants or dipeptidyl peptidase-4 inhibitors (DPP4i). MATERIALS AND METHODS We conducted a cohort study using Taiwan's National Health Insurance Research Database. Patients with diabetes and AFwithout a prior history of established cardiovascular diseases, were identified. Using propensity score matching, 810 patients receiving SGLT2i were matched with 1620 patients not receiving SGLT2i. The primary outcome was incident dementia, and secondary outcomes included composite cardiovascular events and mortality. RESULTS After up to 5 years of follow-up, SGLT2i use was associated with a significantly lower risk of incident dementia (hazard: 0.71, 95% confidence interval: 0.51-0.98), particularly vascular dementia (HR: 0.44, 95% CI: 0.24-0.82). SGLT2i was related to reduced risks of AF-related hospitalisation (HR: 0.72, 95% CI: 0.56-0.93), stroke (HR: 0.75, 95% CI: 0.60-0.94), and all-cause death (HR: 0.33, 95% CI: 0.24-0.44). The protective effects were consistent irrespective of the concurrent use of non-vitamin K antagonist oral anticoagulants (NOACs) or DPP4i. CONCLUSIONS In diabetic patients with AF, SGLT2i was associated with reduced risks of incident dementia, AF-related hospitalisation, stroke, and all-cause death. The protective effects were independent of either concurrent use of NOACs or DPP4i.
Collapse
Affiliation(s)
- Yun-Yu Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Post-Baccalaureate Medicine and College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Hao-Chih Chang
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medicine, Taipei Veterans General Hospital Taoyuan Branch, Taoyuan, Taiwan
| | - Yenn-Jiang Lin
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kuo-Liong Chien
- Institute of Epidemiology and Preventive Medicine College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yu-Cheng Hsieh
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Fa-Po Chung
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
- Danish Center for Clinical Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Shih-Ann Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
102
|
Zhang LK, Liu L, Liu Q, Zhang Y, Li Z, Xu H, Bai W, Guo Y, Zhang D, Chen Z, Xia K, Li CH, Ge J, Guan YQ. Hippocampal-derived extracellular vesicle synergistically deliver active adenosine hippocampus targeting to promote cognitive recovery after stroke. Colloids Surf B Biointerfaces 2024; 234:113746. [PMID: 38199187 DOI: 10.1016/j.colsurfb.2024.113746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Ischemic stroke is a neurological disease that leads to brain damage and severe cognitive impairment. In this study, extracellular vesicles(Ev) derived from mouse hippocampal cells (HT22) were used as carriers, and adenosine (Ad) was encapsulated to construct Ev-Ad to target the damaged hippocampus. The results showed that, Ev-Ad had significant antioxidant effect and inhibited apoptosis. In vivo, Ev-Ad reduced cell death and reversed inflammation in hippocampus of ischemic mice, and improved long-term memory and learning impairment by regulating the expression of the A1 receptor and the A2A receptor in the CA1 region. Thus, the developmental approach based on natural carriers that encapsulating Ad not only successfully restored nerves after ischemic stroke, but also improved cognitive impairment in the later stage of ischemic stroke convalescence. The development and design of therapeutic drugs provides a new concept and method for the treatment of cognitive impairment in the convalescent phase after ischemic stroke.
Collapse
Affiliation(s)
- Ling-Kun Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China; MOE Key laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China; School of Engineering, Westlake University, Hangzhou 310030, China
| | - Li Liu
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Qingpeng Liu
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yiquan Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ziqing Li
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Haoming Xu
- School of Life Science, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China
| | - Weiwei Bai
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yiyan Guo
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Dandan Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhendong Chen
- School of Life Science, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China
| | - Kunwen Xia
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chu-Hua Li
- School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China.
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou 510631, China; MOE Key laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China.
| |
Collapse
|
103
|
Gulej R, Nyúl-Tóth Á, Csik B, Petersen B, Faakye J, Negri S, Chandragiri SS, Mukli P, Yabluchanskiy A, Conley S, Huffman DM, Csiszar A, Tarantini S, Ungvari Z. Rejuvenation of cerebromicrovascular function in aged mice through heterochronic parabiosis: insights into neurovascular coupling and the impact of young blood factors. GeroScience 2024; 46:327-347. [PMID: 38123890 PMCID: PMC10828280 DOI: 10.1007/s11357-023-01039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Age-related impairment of neurovascular coupling (NVC; "functional hyperemia") is a critical factor in the development of vascular cognitive impairment (VCI). Recent geroscience research indicates that cell-autonomous mechanisms alone cannot explain all aspects of neurovascular aging. Circulating factors derived from other organs, including pro-geronic factors (increased with age and detrimental to vascular homeostasis) and anti-geronic factors (preventing cellular aging phenotypes and declining with age), are thought to orchestrate cellular aging processes. This study aimed to investigate the influence of age-related changes in circulating factors on neurovascular aging. Heterochronic parabiosis was utilized to assess how exposure to young or old systemic environments could modulate neurovascular aging. Results demonstrated a significant decline in NVC responses in aged mice subjected to isochronic parabiosis (20-month-old C57BL/6 mice [A-(A)]; 6 weeks of parabiosis) when compared to young isochronic parabionts (6-month-old, [Y-(Y)]). However, exposure to young blood from parabionts significantly improved NVC in aged heterochronic parabionts [A-(Y)]. Conversely, young mice exposed to old blood from aged parabionts exhibited impaired NVC responses [Y-(A)]. In conclusion, even a brief exposure to a youthful humoral environment can mitigate neurovascular aging phenotypes, rejuvenating NVC responses. Conversely, short-term exposure to an aged humoral milieu in young mice accelerates the acquisition of neurovascular aging traits. These findings highlight the plasticity of neurovascular aging and suggest the presence of circulating anti-geronic factors capable of rejuvenating the aging cerebral microcirculation. Further research is needed to explore whether young blood factors can extend their rejuvenating effects to address other age-related cerebromicrovascular pathologies, such as blood-brain barrier integrity.
Collapse
Affiliation(s)
- Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Benjamin Petersen
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Janet Faakye
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sharon Negri
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Siva Sai Chandragiri
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Shannon Conley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Derek M Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA.
| |
Collapse
|
104
|
Gannon O, Tremble SM, McGinn C, Guth R, Scoppettone N, Hunt RD, Prakash K, Johnson AC. Angiotensin II-mediated hippocampal hypoperfusion and vascular dysfunction contribute to vascular cognitive impairment in aged hypertensive rats. Alzheimers Dement 2024; 20:890-903. [PMID: 37817376 PMCID: PMC10917018 DOI: 10.1002/alz.13491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023]
Abstract
INTRODUCTION Chronic hypertension increases the risk of vascular cognitive impairment (VCI) by ∼60%; however, how hypertension affects the vasculature of the hippocampus remains unclear but could contribute to VCI. METHODS Memory, hippocampal perfusion, and hippocampal arteriole (HA) function were investigated in male Wistar rats or spontaneously hypertensive rats (SHR) in early (4 to 5 months old), mid (8 to 9 months old), or late adulthood (14 to 15 months old). SHR in late adulthood were chronically treated with captopril (angiotensin converting enzyme inhibitor) or apocynin (antioxidant) to investigate the mechanisms by which hypertension contributes to VCI. RESULTS Impaired memory in SHR in late adulthood was associated with HA endothelial dysfunction, hyperconstriction, and ∼50% reduction in hippocampal blood flow. Captopril, but not apocynin, improved HA function, restored perfusion, and rescued memory function in aged SHR. DISCUSSION Hippocampal vascular dysfunction contributes to hypertension-induced memory decline through angiotensin II signaling, highlighting the therapeutic potential of HAs in protecting neurocognitive health later in life. HIGHLIGHTS Vascular dysfunction in the hippocampus contributes to vascular cognitive impairment. Memory declines with age during chronic hypertension. Angiotensin II causes endothelial dysfunction in the hippocampus in hypertension. Angiotensin II-mediated hippocampal arteriole dysfunction reduces blood flow. Vascular dysfunction in the hippocampus impairs perfusion and memory function.
Collapse
Affiliation(s)
- Olivia Gannon
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Sarah M. Tremble
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Conor McGinn
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Ruby Guth
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Nadia Scoppettone
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Ryan D. Hunt
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Kirtika Prakash
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Abbie C. Johnson
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| |
Collapse
|
105
|
Huang J, Cheng R, Liu X, Chen L, Luo T. Unraveling the link: white matter damage, gray matter atrophy and memory impairment in patients with subcortical ischemic vascular disease. Front Neurosci 2024; 18:1355207. [PMID: 38362024 PMCID: PMC10867202 DOI: 10.3389/fnins.2024.1355207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction Prior MRI studies have shown that patients with subcortical ischemic vascular disease (SIVD) exhibited white matter damage, gray matter atrophy and memory impairment, but the specific characteristics and interrelationships of these abnormal changes have not been fully elucidated. Materials and methods We collected the MRI data and memory scores from 29 SIVD patients with cognitive impairment (SIVD-CI), 29 SIVD patients with cognitive unimpaired (SIVD-CU) and 32 normal controls (NC). Subsequently, the thicknesses and volumes of the gray matter regions that are closely related to memory function were automatically assessed using FreeSurfer software. Then, the volume, fractional anisotropy (FA), mean diffusivity (MD), amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) values of white matter hyperintensity (WMH) region and normal-appearing white matter (NAWM) were obtained using SPM, DPARSF, and FSL software. Finally, the analysis of covariance, spearman correlation and mediation analysis were used to analyze data. Results Compared with NC group, patients in SIVD-CI and SIVD-CU groups showed significantly abnormal volume, FA, MD, ALFF, and ReHo values of WMH region and NAWM, as well as significantly decreased volume and thickness values of gray matter regions, mainly including thalamus, middle temporal gyrus and hippocampal subfields such as cornu ammonis (CA) 1. These abnormal changes were significantly correlated with decreased visual, auditory and working memory scores. Compared with the SIVD-CU group, the significant reductions of the left CA2/3, right amygdala, right parasubiculum and NAWM volumes and the significant increases of the MD values in the WMH region and NAWM were found in the SIVD-CI group. And the increased MD values were significantly related to working memory scores. Moreover, the decreased CA1 and thalamus volumes mediated the correlations between the abnormal microstructure indicators in WMH region and the decreased memory scores in the SIVD-CI group. Conclusion Patients with SIVD had structural and functional damages in both WMH and NAWM, along with specific gray matter atrophy, which were closely related to memory impairment, especially CA1 atrophy and thalamic atrophy. More importantly, the volumes of some temporomesial regions and the MD values of WMH regions and NAWM may be potentially helpful neuroimaging indicators for distinguishing between SIVD-CI and SIVD-CU patients.
Collapse
Affiliation(s)
- Jing Huang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Runtian Cheng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoshuang Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Chen
- Department of Radiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tianyou Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
106
|
Yang C, Wang Y, Li Y, Wang X, Hua W, Yang Z, Wang H. Sub-dose anesthetics combined with chloride regulators protect the brain against chronic ischemia-hypoxia injury. CNS Neurosci Ther 2024; 30:e14379. [PMID: 37545014 PMCID: PMC10848060 DOI: 10.1111/cns.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Cerebral ischemia-hypoxia leads to excitotoxicity-mediated neuronal damage and cognitive dysfunction, especially in the elderly. Excessive intracellular [Cl- ]i accumulation weakens γ-aminobutyric acid (GABA) compensatory effects. Sub-anesthetic dose of propofol protected the brain against ischemia-hypoxia, which was abolished by blocking Cl- efflux transporter K+ /Cl- cotransporter 2 (KCC2). We aimed to determine whether low-dose anesthetic combined with [Cl- ]i regulators could restore the compensatory GABAergic system and improve cognitive function. METHODS Chronic cerebral hypoxia (CCH) model was established by bilateral carotid artery ligation in aged rats. Sub-dose of anesthetics (propofol and sevoflurane) with or without KCC2 agonist N-ethylmaleimide (NEM) or Na+ /K+ /Cl- cotransporter 1 (NKCC1) antagonist bumetanide (BTN) was administered systemically 30 days post-surgery. Primary rat hippocampal neuronal cultures were subjected to hypoxic injury with or without drug treatment. Memory function, hippocampal neuronal survival, GABAergic system functioning, and brain-derived neurotrophic factor (BDNF) expressions were evaluated. RESULTS Sub-anesthetic dose of combined propofol (1.2 μg mL-1 ) and sevoflurane [0.7 MAC (minimum alveolar concentration)] did not aggravate the hypoxic brain injury in rats or cell damage in neuronal cultures. Adding either BTN or NEM protected against hypoxic injury, associated with improved cognitive function in vivo, less intracellular accumulation of [Cl- ]i , reduced cell death, restored GABAergic compensation, and increased BDNF expression both in vivo and in vitro. CONCLUSION Sub-anesthetic dose of propofol and sevoflurane is a recommended anesthesia regimen in at-risk patients. Restoration of [Cl- ]i homeostasis and GABAergic could further reduce the brain damage caused by ischemia-hypoxia.
Collapse
Affiliation(s)
- Chenyi Yang
- Nankai UniversityTianjinChina
- Nankai University Affinity the Third Central HospitalTianjinChina
- The Third Central Clinical College of Tianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesTianjinChina
- Artificial Cell Engineering Technology Research CenterTianjinChina
- Tianjin Institute of Hepatobiliary DiseaseTianjinChina
| | - Ye Wang
- The Third Central Clinical College of Tianjin Medical UniversityTianjinChina
| | - Yun Li
- The Third Central Clinical College of Tianjin Medical UniversityTianjinChina
| | - Xinyi Wang
- Nankai University Affinity the Third Central HospitalTianjinChina
- The Third Central Clinical College of Tianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesTianjinChina
- Artificial Cell Engineering Technology Research CenterTianjinChina
- Tianjin Institute of Hepatobiliary DiseaseTianjinChina
| | - Wei Hua
- Nankai University Affinity the Third Central HospitalTianjinChina
- The Third Central Clinical College of Tianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesTianjinChina
- Artificial Cell Engineering Technology Research CenterTianjinChina
- Tianjin Institute of Hepatobiliary DiseaseTianjinChina
| | | | - Haiyun Wang
- Nankai UniversityTianjinChina
- Nankai University Affinity the Third Central HospitalTianjinChina
- The Third Central Clinical College of Tianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesTianjinChina
- Artificial Cell Engineering Technology Research CenterTianjinChina
- Tianjin Institute of Hepatobiliary DiseaseTianjinChina
| |
Collapse
|
107
|
Romay MC, Knutsen RH, Ma F, Mompeón A, Hernandez GE, Salvador J, Mirkov S, Batra A, Sullivan DP, Procissi D, Buchanan S, Kronquist E, Ferrante EA, Muller WA, Walshon J, Steffens A, McCortney K, Horbinski C, Tournier‑Lasserve E, Sonabend AM, Sorond FA, Wang MM, Boehm M, Kozel BA, Iruela-Arispe ML. Age-related loss of Notch3 underlies brain vascular contractility deficiencies, glymphatic dysfunction, and neurodegeneration in mice. J Clin Invest 2024; 134:e166134. [PMID: 38015629 PMCID: PMC10786701 DOI: 10.1172/jci166134] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
Vascular aging affects multiple organ systems, including the brain, where it can lead to vascular dementia. However, a concrete understanding of how aging specifically affects the brain vasculature, along with molecular readouts, remains vastly incomplete. Here, we demonstrate that aging is associated with a marked decline in Notch3 signaling in both murine and human brain vessels. To clarify the consequences of Notch3 loss in the brain vasculature, we used single-cell transcriptomics and found that Notch3 inactivation alters regulation of calcium and contractile function and promotes a notable increase in extracellular matrix. These alterations adversely impact vascular reactivity, manifesting as dilation, tortuosity, microaneurysms, and decreased cerebral blood flow, as observed by MRI. Combined, these vascular impairments hinder glymphatic flow and result in buildup of glycosaminoglycans within the brain parenchyma. Remarkably, this phenomenon mirrors a key pathological feature found in brains of patients with CADASIL, a hereditary vascular dementia associated with NOTCH3 missense mutations. Additionally, single-cell RNA sequencing of the neuronal compartment in aging Notch3-null mice unveiled patterns reminiscent of those observed in neurodegenerative diseases. These findings offer direct evidence that age-related NOTCH3 deficiencies trigger a progressive decline in vascular function, subsequently affecting glymphatic flow and culminating in neurodegeneration.
Collapse
Affiliation(s)
- Milagros C. Romay
- Department of Cell and Development Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Feiyang Ma
- Department of Cell and Development Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ana Mompeón
- Department of Cell and Development Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Gloria E. Hernandez
- Department of Cell and Development Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Jocelynda Salvador
- Department of Cell and Development Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Snezana Mirkov
- Department of Cell and Development Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ayush Batra
- Department of Pathology
- Department of Neurology, and
| | | | - Daniele Procissi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Samuel Buchanan
- Department of Cell and Development Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Elise Kronquist
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Elisa A. Ferrante
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
- Laboratory of Cardiovascular Regenerative Medicine, NIH, Bethesda, Maryland, USA
| | | | - Jordain Walshon
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alicia Steffens
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kathleen McCortney
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Craig Horbinski
- Department of Pathology
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Elisabeth Tournier‑Lasserve
- Inserm NeuroDiderot, Université Paris Cité, Paris, France
- Service de Génétique Neurovasculaire, Assistance Publique–Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France
| | - Adam M. Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Michael M. Wang
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Manfred Boehm
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
- Laboratory of Cardiovascular Regenerative Medicine, NIH, Bethesda, Maryland, USA
| | - Beth A. Kozel
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - M. Luisa Iruela-Arispe
- Department of Cell and Development Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
108
|
Duan L, Xiao R, Liu S, Shi Y, Feng Y. Causality between cognitive performance and cardiovascular disease: A bidirectional Mendelian randomization study. Gene 2024; 891:147822. [PMID: 37758004 DOI: 10.1016/j.gene.2023.147822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Growing evidence points to a connection between cardiovascular disease and cognitive impairment. These observational study findings, however, were not all uniform, and some did not discover a link like this. Investigating the causal link between cognitive impairment and cardiovascular disease is vital. METHOD Using publicly available genome-wide association study (GWAS) summary datasets and stringent screening instrumental variables, we carried out a bidirectional Mendelian randomization study. To investigate the causality between cardiovascular disease and cognitive impairment, three different MR techniques-inverse variance weighted (IVW), MR-Egger, and weighted median-as well as various sensitivity analyses-Cochran's Q, ivw_radial, leave-one-out (LOO), MR-Egger intercept, and MR-PRESSO-were used. RESULTS The causal impact of genetically predicted cognitive performance on hypertension, atrial fibrillation, heart failure, coronary atherosclerosis, coronary artery disease, and myocardial infarction was detected in the forward MR analysis, but not stroke or any subtypes. We only discover the causal effects of hypertension, any stroke, and its subtypes (ischemic and small vessel stroke) on cognitive performance in the reverse MR analysis. CONCLUSION This MR analysis offers proof of a causal link between cognitive impairment and elevated cardiovascular disease risk. Our research emphasizes the value of cognitively impaired patients being screened for cardiovascular disease, which may offer fresh perspectives on cardiovascular disease prevention.
Collapse
Affiliation(s)
- Lincheng Duan
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Xiao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shupei Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Shi
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Feng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
109
|
Verdelho A, Correia M, Gonçalves-Pereira M, Madureira S, Vilela P, Santos AC, Rodrigues M, Borges M, Ferro JM, Santa-Clara H. Physical Activity in Mild Vascular Cognitive Impairment: Results of the AFIVASC Randomized Controlled Trial at 6 Months. J Alzheimers Dis 2024; 101:1379-1392. [PMID: 39269835 DOI: 10.3233/jad-240246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Background Vascular cognitive impairment is frequent, in mild (mVCI) or severe forms (vascular dementia). Objective To do a randomized controlled-trial to evaluate the impact of physical activity on cognition (primary outcome), neurocognitive measures, quality of life, functional status, and physical function (secondary outcomes), in patients with mVCI. Methods A hundred and four patients with mVCI (mean age 71.2 years; 53 women) were randomized for a six-month intervention of moderate physical activity (60-minute sessions, 3 times/week) (n = 53) or best-practice "usual care" (n = 51). Comprehensive evaluations of primary and secondary outcomes included an objective measure of physical activity through accelerometry at baseline and after intervention. Results Mean session attendance was 58%. Adverse events were negligible. After 6 months, no significant primary outcome change was observed, either in the intervention or 'usual care' group. The intervention group improved significantly in some secondary outcomes in physical function - aerobic capacity (U = 403; p = 0.000) and agility (U = 453; p = 0.005) after 6 months. Regardless of randomization arm, a post-hoc analysis based on fulfilling at least 21.5 minutes/day of moderate or 10.7 minutes/day of vigorous physical activity (World Health Organization-WHO standards) revealed improvements. These were not only in motor capacity but also on the global measure of cognition, executive functions and memory. Conclusions Physical activity was safe and beneficial regarding domains of physical function. No significant cognitive decline was registered over 6-months, regardless of intervention allocation. Larger samples, longer follow-ups and focus on intervention adherence are needed to fully analyze the impact of WHO recommendations for physical activity in mVCI populations.
Collapse
Affiliation(s)
- Ana Verdelho
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Unidade de Saúde Local de Santa Maria, Centro de Estudos Egas Moniz, Instituto de Saúde Ambiental - ISAMB, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Manuel Correia
- Neurology Service, Hospital de Santo António, Unidade Local de Saúde de Santo António, Centro Hospitalar Universitário de Santo António and Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade of Porto, Porto, Portugal
| | - Manuel Gonçalves-Pereira
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, CHRC, Associate Laboratory REAL (LA-REAL), Lisbon, Portugal
| | - Sofia Madureira
- Instituto Medicina Molecular João Lobo Antunes (IMM), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Vilela
- Neuroradiology Department, Hospital da Luz, Lisbon, Portugal
| | | | - Mário Rodrigues
- Instituto de Saúde Ambiental - ISAMB, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Mariana Borges
- Instituto Medicina Molecular João Lobo Antunes (IMM), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - José M Ferro
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Helena Santa-Clara
- Exercise and Health Laboratory, Faculdade de Motricidade Humana, Centro Interdisciplinar de Estudo da Performance Humana - CIPER, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
110
|
Wen J, Satyanarayanan SK, Li A, Yan L, Zhao Z, Yuan Q, Su KP, Su H. Unraveling the impact of Omega-3 polyunsaturated fatty acids on blood-brain barrier (BBB) integrity and glymphatic function. Brain Behav Immun 2024; 115:335-355. [PMID: 37914102 DOI: 10.1016/j.bbi.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/05/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023] Open
Abstract
Alzheimer's disease (AD) and other forms of dementia represent major public health challenges but effective therapeutic options are limited. Pathological brain aging is associated with microvascular changes and impaired clearance systems. The application of omega-3 polyunsaturated fatty acids (n-3 or omega-3 PUFAs) is one of the most promising nutritional interventions in neurodegenerative disorders from epidemiological data, clinical and pre-clinical studies. As essential components of neuronal membranes, n-3 PUFAs have shown neuroprotection and anti-inflammatory effects, as well as modulatory effects through microvascular pathophysiology, amyloid-beta (Aβ) clearance and glymphatic pathways. This review meticulously explores these underlying mechanisms that contribute to the beneficial effects of n-3 PUFAs against AD and dementia, synthesizing evidence from both animal and interventional studies.
Collapse
Affiliation(s)
- Jing Wen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Senthil Kumaran Satyanarayanan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong
| | - Ang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Lingli Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Ziai Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Qiuju Yuan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong
| | - Kuan-Pin Su
- An-Nan Hospital, China Medical University, Tainan, Taiwan; Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan; Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan.
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau.
| |
Collapse
|
111
|
Wolfova K, Miller EC. Impact of adverse pregnancy outcomes on brain vascular health and cognition. Res Pract Thromb Haemost 2024; 8:102331. [PMID: 38404945 PMCID: PMC10884518 DOI: 10.1016/j.rpth.2024.102331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/19/2023] [Accepted: 01/07/2024] [Indexed: 02/27/2024] Open
Abstract
A State of the Art lecture titled "Impact of Adverse Pregnancy Outcomes on Brain Vascular Health and Cognition" was presented at the International Society on Thrombosis and Haemostasis Congress in 2023. Adverse pregnancy outcomes, encompassing conditions such as gestational hypertension, eclampsia, preeclampsia, preterm birth, fetal growth restriction, stillbirth, and gestational diabetes, may form part of an underrecognized pathway from early adulthood reproductive health factors to later-life vascular cognitive impairment and dementia in women. Adverse pregnancy outcomes are caused by dysregulated vascular and metabolic adaptations during pregnancy, and these pathophysiological changes may persist after delivery. Adverse pregnancy outcomes may contribute to the increased risk of cognitive impairment and dementia directly through vascular and metabolic dysregulation and subsequent development of cardiovascular diseases, or other biological processes may be at play, such as shared maternal risk factors. Extensive epidemiologic evidence has shown that many cognitive impairment and dementia cases may be prevented or delayed by strategies targeting midlife cardiovascular health. Despite the recognized importance of adverse pregnancy outcomes for cardiovascular health, the literature on associated long-term health outcomes is limited. In this State of the Art review article, we summarize the current epidemiologic evidence on the relationship between adverse pregnancy outcomes and cognitive impairment and dementia and provide an overview of the potential pathophysiological mechanisms. Finally, we summarize relevant new data on this topic presented during the 2023 International Society on Thrombosis and Haemostasis Congress.
Collapse
Affiliation(s)
- Katrin Wolfova
- Department of Neurology, Columbia University, New York, New York, USA
- Department of Epidemiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eliza C. Miller
- Department of Neurology, Columbia University, New York, New York, USA
| |
Collapse
|
112
|
Sayfullaeva J, McLoughlin J, Kwakowsky A. Hormone Replacement Therapy and Alzheimer's Disease: Current State of Knowledge and Implications for Clinical Use. J Alzheimers Dis 2024; 101:S235-S261. [PMID: 39422965 DOI: 10.3233/jad-240899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder responsible for over half of dementia cases, with two-thirds being women. Growing evidence from preclinical and clinical studies underscores the significance of sex-specific biological mechanisms in shaping AD risk. While older age is the greatest risk factor for AD, other distinct biological mechanisms increase the risk and progression of AD in women including sex hormones, brain structural differences, genetic background, immunomodulation and vascular disorders. Research indicates a correlation between declining estrogen levels during menopause and an increased risk of developing AD, highlighting a possible link with AD pathogenesis. The neuroprotective effects of estrogen vary with the age of treatment initiation, menopause stage, and type. This review assesses clinical and observational studies conducted in women, examining the influence of estrogen on cognitive function or addressing the ongoing question regarding the potential use of hormone replacement therapy (HRT) as a preventive or therapeutic option for AD. This review covers recent literature and discusses the working hypothesis, current use, controversies and challenges regarding HRT in preventing and treating age-related cognitive decline and AD. The available evidence indicates that estrogen plays a significant role in influencing dementia risk, with studies demonstrating both beneficial and detrimental effects of HRT. Recommendations regarding HRT usage should carefully consider the age when the hormonal supplementation is initiated, baseline characteristics such as genotype and cardiovascular health, and treatment duration until this approach can be more thoroughly investigated or progress in the development of alternative treatments can be made.
Collapse
Affiliation(s)
- Jessica Sayfullaeva
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - John McLoughlin
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Andrea Kwakowsky
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| |
Collapse
|
113
|
Li W, Jiang J, Yin X, Zhang Y, Zou X, Sun M, Jia J, Ma B, Xu J. Mediation of Regional Cerebral Blood Flow in the Relationship between Specific Gut Microbiota and Cognition in Vascular Cognitive Impairment. J Alzheimers Dis 2024; 97:435-445. [PMID: 38108351 DOI: 10.3233/jad-230709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
BACKGROUND Gut microbiota could affect the onset and development of vascular cognitive impairment (VCI) through modulating metabolic and immune pathways. However, the vascular mechanisms involved remain unclear. OBJECTIVE To investigate the gut microbiota associated with VCI and examine the mediating effects of regional cerebral blood flow (CBF) to explore potential therapeutic targets for VCI. METHODS This prospective study enrolled patients with VCI (n = 16) and healthy controls (n = 18) from the Chinese Imaging, Biomarkers, and Lifestyle study between January 1 and June 30, 2022. The gut microbiota composition and diversity were determined by 16 S ribosomal RNA gene sequencing. The association between gut microbiota and Montreal Cognitive Assessment (MoCA) scores was determined using Spearman's correlation analysis. Regional CBF was calculated using pseudo-continuous arterial spin labeling. The mediating effects of regional CBF on the relationship between specific gut microbiota and cognition in VCI were investigated using mediation analysis. RESULTS Compared to healthy controls, patients with VCI had significantly greater abundance of Bifidobacterium, Veillonella, R uminococcus gnavus , Fusobacterium, and Erysipelatoclostridium and smaller abundance of Collinsella. The abundance of Ruminococcus gnavus was negatively associated with MoCA scores in patients with VCI, with the CBF in the left hypothalamus, right hypothalamus, and left amygdala accounting for 63.96%, 48.22%, and 36.51%, respectively, of this association after adjusting for confounders. CONCLUSIONS Ruminococcus gnavus is associated with cognition in VCI, which is strongly mediated by CBF in the bilateral hypothalamus and left amygdala. These findings highlight the potential regulatory roles of nutrition and metabolism-related areas of the brain in VCI.
Collapse
Affiliation(s)
- Wenyi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jiwei Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | | | - Yuan Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xinying Zou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Mengfan Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jianjun Jia
- Department of Geriatric Neurology, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Baiping Ma
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
114
|
Tu R, Xia J. Stroke and Vascular Cognitive Impairment: The Role of Intestinal Microbiota Metabolite TMAO. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:102-121. [PMID: 36740795 DOI: 10.2174/1871527322666230203140805] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/18/2022] [Accepted: 12/12/2022] [Indexed: 02/07/2023]
Abstract
The gut microbiome interacts with the brain bidirectionally through the microbiome-gutbrain axis, which plays a key role in regulating various nervous system pathophysiological processes. Trimethylamine N-oxide (TMAO) is produced by choline metabolism through intestinal microorganisms, which can cross the blood-brain barrier to act on the central nervous system. Previous studies have shown that elevated plasma TMAO concentrations increase the risk of major adverse cardiovascular events, but there are few studies on TMAO in cerebrovascular disease and vascular cognitive impairment. This review summarized a decade of research on the impact of TMAO on stroke and related cognitive impairment, with particular attention to the effects on vascular cognitive disorders. We demonstrated that TMAO has a marked impact on the occurrence, development, and prognosis of stroke by regulating cholesterol metabolism, foam cell formation, platelet hyperresponsiveness and thrombosis, and promoting inflammation and oxidative stress. TMAO can also influence the cognitive impairment caused by Alzheimer's disease and Parkinson's disease via inducing abnormal aggregation of key proteins, affecting inflammation and thrombosis. However, although clinical studies have confirmed the association between the microbiome-gut-brain axis and vascular cognitive impairment (cerebral small vessel disease and post-stroke cognitive impairment), the molecular mechanism of TMAO has not been clarified, and TMAO precursors seem to play the opposite role in the process of poststroke cognitive impairment. In addition, several studies have also reported the possible neuroprotective effects of TMAO. Existing therapies for these diseases targeted to regulate intestinal flora and its metabolites have shown good efficacy. TMAO is probably a new target for early prediction and treatment of stroke and vascular cognitive impairment.
Collapse
Affiliation(s)
- Ruxin Tu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Human Clinical Research Center for Cerebrovascular Disease, Changsha, China
| |
Collapse
|
115
|
Almkvist O, Larsson M, Graff C. Odor Identification Across Time in Mutation Carriers and Non-Carriers in Autosomal-Dominant Alzheimer's Disease. J Alzheimers Dis 2024; 97:587-598. [PMID: 38160354 PMCID: PMC10836570 DOI: 10.3233/jad-230618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Impaired odor identification is a characteristic of sporadic Alzheimer'sdisease(AD), but its presence in autosomal-dominantAD (adAD) remains uncertain. OBJECTIVE To investigate odor identification ability in mutation carriers (MC) and non-carriers (NC) of adAD in relation to years to estimated clinical onset clinical onset (YECO) of disease. METHODS Participants from six families with autosomal-dominant mutations (APP Swedish, APP Arctic, and PSEN1 mutations) included 20 MC and 20 NC. The groups were comparable in age, gender, education, number of APOE ɛ4 alleles, and YECO, but differed in global cognition (Mini-Mental State Examination). The MC group included individuals in asymptomatic, symptomatic cognitively unimpaired, mild cognitive impairment, and dementia stages of disease, spanning approximately 40 years of the AD continuum. All NC were asymptomatic. Olfactory function was assessed by means of free and cued identification of common odors summarized as total identification. RESULTS MC performed poorer than NC in free and total identification. Four MC and none of the NC were anosmic. Olfactory functions in MC and NC were significantly and inversely related to time course (YECO) for both free and total identification. The decline in free identification began approximately 10 years prior to the estimated clinical onset of AD in MC. Odor identification proficiency was associated with episodic memory and executive function in MC and NC. CONCLUSIONS Impaired odor identification is present well before the clinical diagnosis of AD in MC and is associated with disease progression. Odor identification ability may be a useful early biomarker for adAD.
Collapse
Affiliation(s)
- Ove Almkvist
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Maria Larsson
- Gösta Ekman Laboratories, Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Caroline Graff
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
116
|
Paul D, Agrawal R, Singh S. Alzheimer's disease and clinical trials. J Basic Clin Physiol Pharmacol 2024; 35:31-44. [PMID: 38491747 DOI: 10.1515/jbcpp-2023-0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024]
Abstract
Alzheimer's disease (AD) is spreading its root disproportionately among the worldwide population. Many genes have been identified as the hallmarks of AD. Based upon the knowledge, many clinical trials have been designed and conducted. Attempts have been made to alleviate the pathology associated with AD by targeting the molecular products of these genes. Irrespective of the understanding on the genetic component of AD, many clinical trials have failed and imposed greater challenges on the path of drug discovery. Therefore, this review aims to identify research and review articles to pinpoint the limitations of drug candidates (thiethylperazine, CT1812, crenezumab, CNP520, and lecanemab), which are under or withdrawn from clinical trials. Thorough analysis of the cross-talk pathways led to the identification of many confounding factors, which could interfere with the success of clinical trials with drug candidates such as thiethylperazine, CT1812, crenezumab, and CNP520. Though these drug candidates were enrolled in clinical trials, yet literature review shows many limitations. These limitations raise many questions on the rationale behind the enrollments of these drug candidates in clinical trials. A meticulous prior assessment of the outcome of clinical studies may stop risky clinical trials at their inceptions. This may save time, money, and resources.
Collapse
Affiliation(s)
- Deepraj Paul
- Department of Pharmacology, 621320 College of Pharmacy JSS Academy of Technical Education , Noida, Uttar Pradesh, India
| | - Rohini Agrawal
- Department of Pharmacology, 621320 College of Pharmacy JSS Academy of Technical Education , Noida, Uttar Pradesh, India
| | - Swati Singh
- Department of Pharmacology, 621320 College of Pharmacy JSS Academy of Technical Education , Noida, Uttar Pradesh, India
| |
Collapse
|
117
|
Putignano S, Forgione L, Fusco M, Giacummo A, Magli E, Marino S, Marzano R, Putignano D, Santamaria F, Spatarella M, Santagada V. Early Detection Screening of Cognitive Decline in Patients Over 60 Years: ELDERCARE Study. J Alzheimers Dis 2024; 98:145-150. [PMID: 38339935 PMCID: PMC11191486 DOI: 10.3233/jad-231295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2023] [Indexed: 02/12/2024]
Abstract
Background Dementia is the fourth leading cause of death in people > 65 years old in western countries. Objective This cross-sectional assisted survey aimed to evaluate a multidisciplinary team approach of specialists of the Associazione Geriatri Extraospedalieri a favore di Anziani Svantaggiati and pharmacists to facilitate progress in the early identification and management of cognitive decline in patients > 60 years. Methods A multidisciplinary team conducted this cross-sectional assisted survey. Patients (>60 years) with independent and/or assisted walking, subjective memory impairment, mild cognitive impairment or mild Alzheimer's disease (AD) who regularly attended pharmacies underwent the survey. An internal medical examination, a cardiovascular visit, and a short neuropsychological evaluation were conducted for each patient. Demographic, anamnestic, and clinical data were collected anonymously. Results 279 eligible patients underwent the screening phase. 44% were overweight, 23% obese and 29% hypertensive. 62% of cases showed alterations of supra-aortic trunk with different percentages of stenosis. The neuropsychological evaluation highlighted that 67% of cases were normal according to age and education level, while 18% were in a state condition of cognitive frailty. Mild/moderate cognitive decline, or probably AD, was identified in 14% of cases. Conclusions A multidisciplinary collaboration between pharmacists and specialist medical doctors is essential in early identification of prodromal symptoms of cognitive impairment and AD. The Prompt detection of the condition in this group of patients allowed the specialists to recommend in-depth diagnostic tests and follow-up procedures to slow the course of the disease. This would give time to carry out adequate caregiver training.
Collapse
Affiliation(s)
- Salvatore Putignano
- Associazione Geriatri Extraospedalieri a favore di Anziani Svantaggiati (A.G.E.A.S.), Naples, Italy
| | - Luigi Forgione
- Associazione Geriatri Extraospedalieri a favore di Anziani Svantaggiati (A.G.E.A.S.), Naples, Italy
| | - Mariano Fusco
- Ordine dei Farmacisti della Provincia di Napoli, Naples, Italy
| | - Attilio Giacummo
- Associazione Geriatri Extraospedalieri a favore di Anziani Svantaggiati (A.G.E.A.S.), Naples, Italy
| | - Elisa Magli
- Ordine dei Farmacisti della Provincia di Napoli, Naples, Italy
| | - Saverio Marino
- Associazione Geriatri Extraospedalieri a favore di Anziani Svantaggiati (A.G.E.A.S.), Naples, Italy
| | | | - Daria Putignano
- Associazione Geriatri Extraospedalieri a favore di Anziani Svantaggiati (A.G.E.A.S.), Naples, Italy
| | - Francesco Santamaria
- Associazione Geriatri Extraospedalieri a favore di Anziani Svantaggiati (A.G.E.A.S.), Naples, Italy
| | | | | |
Collapse
|
118
|
Fang X, Fan F, Border JJ, Roman RJ. Cerebrovascular Dysfunction in Alzheimer's Disease and Transgenic Rodent Models. JOURNAL OF EXPERIMENTAL NEUROLOGY 2024; 5:42-64. [PMID: 38434588 PMCID: PMC10906803 DOI: 10.33696/neurol.5.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Alzheimer's Disease (AD) and Alzheimer's Disease-Related Dementia (ADRD) are the primary causes of dementia that has a devastating effect on the quality of life and is a tremendous economic burden on the healthcare system. The accumulation of extracellular beta-amyloid (Aβ) plaques and intracellular hyperphosphorylated tau-containing neurofibrillary tangles (NFTs) in the brain are the hallmarks of AD. They are also thought to be the underlying cause of inflammation, neurodegeneration, brain atrophy, and cognitive impairments that accompany AD. The discovery of APP, PS1, and PS2 mutations that increase Aβ production in families with early onset familial AD led to the development of numerous transgenic rodent models of AD. These models have provided new insight into the role of Aβ in AD; however, they do not fully replicate AD pathology in patients. Familial AD patients with mutations that elevate the production of Aβ represent only a small fraction of dementia patients. In contrast, those with late-onset sporadic AD constitute the majority of cases. This observation, along with the failure of previous clinical trials targeting Aβ or Tau and the modest success of recent trials using Aβ monoclonal antibodies, has led to a reappraisal of the view that Aβ accumulation is the sole factor in the pathogenesis of AD. More recent studies have established that cerebral vascular dysfunction is one of the earliest changes seen in AD, and 67% of the candidate genes linked to AD are expressed in the cerebral vasculature. Thus, there is an increasing appreciation of the vascular contribution to AD, and the National Institute on Aging (NIA) and the Alzheimer's Disease Foundation recently prioritized it as a focused research area. This review summarizes the strengths and limitations of the most commonly used transgenic AD animal models and current views about the contribution of Aβ accumulation versus cerebrovascular dysfunction in the pathogenesis of AD.
Collapse
Affiliation(s)
- Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Fan Fan
- Department of Physiology, Augusta University, Augusta, GA 30912, USA
| | - Jane J. Border
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
119
|
Buele J, Varela-Aldás JL, Palacios-Navarro G. Virtual reality applications based on instrumental activities of daily living (iADLs) for cognitive intervention in older adults: a systematic review. J Neuroeng Rehabil 2023; 20:168. [PMID: 38110970 PMCID: PMC10729470 DOI: 10.1186/s12984-023-01292-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND In recent years, the use of virtual reality (VR) as a complementary intervention in treating cognitive impairment has significantly increased. VR applications based on instrumental activities of daily living (iADL-VR) could offer a promising approach with greater ecological validity for intervention in groups with cognitive impairments. However, the effectiveness of this approach is still debated. OBJECTIVE This systematic review aims to synthesize the effects of iADL-VR interventions to rehabilitate, train, or stimulate cognitive functions in healthy adults and people with mild cognitive impairment (MCI) and different types of dementia. METHODS A systematic search was performed in the Scopus, PubMed, IEEE Xplore, Web of Science, and APA PsycNet databases until September 2022 and repeated in April 2023. The selected studies met the search terms, were peer-reviewed, included an iADL-VR intervention, and were written in English. Descriptive, qualitative studies, reviews, cognitive assessment, non-intervention studies, those unrelated to VR or iADL, those focused on motor aspects, and non-degenerative disorders were excluded. The PEDro scale was used to assess the methodological quality of the controlled studies. To present and synthesize the results, we organized the extracted data into three tables, including PEDro scores, participant characteristics, and study characteristics. RESULTS Nineteen studies that met the inclusion and exclusion criteria were included. The total sample reached 590 participants, mostly women (72.67%). Approximately 30% were diagnosed with Alzheimer's disease or dementia, and 20% had mild cognitive impairment. Variables such as authors and year of publication, study design, type of intervention and VR applied, duration of the intervention, main findings, and conclusions were extracted. Regarding demographic characteristics, the sample size, age, sex, years of education, neurological diagnosis, dropouts, and the city and country where the intervention took place were recorded. Almost all studies showed improvements in some or all the outcomes after the intervention, generally greater in the iADL-VR group than in the control group. CONCLUSION iADL-VR interventions could be beneficial in improving the performance of cognitive functions in older adults and people with MCI and different types of dementia. The ecological component of these tasks makes them very suitable for transferring what has been learned to the real world. However, such transfer needs to be confirmed by further studies with larger and more homogeneous samples and longer follow-up periods. This review had no primary funding source and was registered with PROSPERO under registration ID: 375166.
Collapse
Affiliation(s)
- Jorge Buele
- SISAu Research Group, Facultad de Ingeniería, Industria y Producción, Universidad Indoamérica, Ambato, Ecuador
- Department of Electronic Engineering and Communications, University of Zaragoza, Teruel, Spain
| | - José Luis Varela-Aldás
- Centro de Investigaciones de Ciencias Humanas y de la Educación (CICHE), Universidad Indoamérica, Ambato, Ecuador
| | | |
Collapse
|
120
|
Liu H, Huang Y, Yang J, Xu X, Dai Q, Zhang Y, Zhao L, Zhang M, Zhang J, Liu T, Zhong L. Involvement of estrogen receptor activation in kaempferol-3-O-glucoside's protection against aging-related cognition impairment and microglial inflammation. Exp Cell Res 2023; 433:113849. [PMID: 37926343 DOI: 10.1016/j.yexcr.2023.113849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Estrogens have been demonstrated to inhibit age-related cognitive decline via binding to estrogen receptors (ERs). As a natural flavonoid component of Cuscuta Chinensis Lam., Kaempferol-3-O-glucoside (K-3-G) not only possesses anti-neuroinflammatory potential but also functions as an agonist for ERα and ERβ. This study aimed to determine whether K-3-G improved cognition during the aging process, with an emphasis on its effect on microglial inflammation. In vivo, K-3-G (5 or 10 mg/kg/day) was orally given to the senescence-accelerated mouse prone 8 (SAMP8) mice from six to eight-month old. In addition to mitigating the memory and learning deficits of SAMP8 mice, K-3-G upregulated the expression of ERα and ERβ in their hippocampal CA1 region, with the higher dose being more effective. Less Iba-1+ microglial cells presented in SAMP8 mice treated with K-3-G. The formation of NLR Family Pyrin Domain Containing 3 (NLRP3) complex, production of pro-inflammatory cytokines and oxidative stress-related markers, as well as expression of pro-apoptotic proteins were reduced by K-3-G. In vitro, BV2 microglial cells exposed to oligomeric amyloid beta (Aβ)1-42 were treated with 100 μM K-3-G. K-3-G showed similar anti-inflammatory effects on BV2 cells as in vivo. K-3-G-induced alterations were partly diminished by fulvestrant, an ER antagonist. Moreover, dual-luciferase reporter system demonstrated that K-3-G induced ER expression by activating the transcription of estrogen-response elements (EREs). Collectively, these findings demonstrate that K-3-G may be a novel therapeutic agent for senescence-related cognitive impairment by inhibiting microglial inflammation through its action on ERs.
Collapse
Affiliation(s)
- Hong Liu
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yang Huang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jing Yang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xuejiao Xu
- Department of Internal Classic of Medicine, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Qiaomei Dai
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yuwei Zhang
- Department of Physiology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Li Zhao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Mengdi Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jing Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Tonghui Liu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Lili Zhong
- Department of Pathology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| |
Collapse
|
121
|
Fekete M, Lehoczki A, Tarantini S, Fazekas-Pongor V, Csípő T, Csizmadia Z, Varga JT. Improving Cognitive Function with Nutritional Supplements in Aging: A Comprehensive Narrative Review of Clinical Studies Investigating the Effects of Vitamins, Minerals, Antioxidants, and Other Dietary Supplements. Nutrients 2023; 15:5116. [PMID: 38140375 PMCID: PMC10746024 DOI: 10.3390/nu15245116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cognitive impairment and dementia are burgeoning public health concerns, especially given the increasing longevity of the global population. These conditions not only affect the quality of life of individuals and their families, but also pose significant economic burdens on healthcare systems. In this context, our comprehensive narrative review critically examines the role of nutritional supplements in mitigating cognitive decline. Amidst growing interest in non-pharmacological interventions for cognitive enhancement, this review delves into the efficacy of vitamins, minerals, antioxidants, and other dietary supplements. Through a systematic evaluation of randomized controlled trials, observational studies, and meta-analysis, this review focuses on outcomes such as memory enhancement, attention improvement, executive function support, and neuroprotection. The findings suggest a complex interplay between nutritional supplementation and cognitive health, with some supplements showing promising results and others displaying limited or context-dependent effectiveness. The review highlights the importance of dosage, bioavailability, and individual differences in response to supplementation. Additionally, it addresses safety concerns and potential interactions with conventional treatments. By providing a clear overview of current scientific knowledge, this review aims to guide healthcare professionals and researchers in making informed decisions about the use of nutritional supplements for cognitive health.
Collapse
Affiliation(s)
- Mónika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
| | - Andrea Lehoczki
- National Institute for Haematology and Infectious Diseases, Department of Haematology and Stem Cell Transplantation, South Pest Central Hospital, 1097 Budapest, Hungary;
| | - Stefano Tarantini
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, OK 73104, USA
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
| | - Tamás Csípő
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
| | - Zoltán Csizmadia
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
| | - János Tamás Varga
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
122
|
Wang H, Ling Q, Wu Y, Zhang M. Association between the triglyceride glucose index and cognitive impairment and dementia: a meta-analysis. Front Aging Neurosci 2023; 15:1278730. [PMID: 38161596 PMCID: PMC10757637 DOI: 10.3389/fnagi.2023.1278730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024] Open
Abstract
Background The triglyceride and glucose (TyG) index is an alternative index of insulin resistance (IR). We aimed to clarify the relationship between the TyG index and cognitive impairment and dementia. Methods We conducted a comprehensive search of the PubMed, Cochrane Library, and Embase databases until February 2023 to identify relevant studies. Random-effects models were used to pool effect sizes, and the Grading of Recommendations Assessment, Development, and Evaluation system (GRADE) was used to assess the quality of the evidence. Results Ten studies were included, with seven of which investigated the relationship between the TyG index and cognitive impairment and three exploring the association between the TyG index and dementia. When the TyG index was described as a categorical variable, it was positively associated with the risk of cognitive impairment (OR = 2.32; 95% CI 1.39-3.87) and dementia (OR = 1.14, 95% CI 1.12-1.16). The association of the TyG index with the risk of cognitive impairment (OR = 3.39, 95% CI 1.67-6.84) and dementia (OR = 1.37, 95% CI 1.03-1.83) remained significant for per 1 unit increment in the TyG index. The GRADE assessment indicated a very low certainty for cognitive impairment. Low certainty and moderate certainty were observed for dementia when the TyG index was analyzed as a categorical variable and as a continuous variable, respectively. Conclusion The TyG index is associated with an increased risk of cognitive impairment and dementia. Further prospective research is warranted to confirm these findings.Systematic review registration: https://www.crd.york.ac.uk/, Protocol registration number: CRD42023388028.
Collapse
Affiliation(s)
- Huan Wang
- Department of Geriatrics, Liaoning Jinqiu Hospital, Shenyang, China
| | - Qin Ling
- Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Yifan Wu
- Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Mingjie Zhang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
123
|
Huang J, Yu Y, Li H, Wei Y, Sun M. Effect of dietary protein intake on cognitive function in the elderly with chronic kidney disease: analysis of the National Health and Nutrition Examination Survey 2011-2014. Ren Fail 2023; 45:2294147. [PMID: 38097960 PMCID: PMC10732213 DOI: 10.1080/0886022x.2023.2294147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Cognitive dysfunction is prevalent among the elderly diagnosed with chronic kidney disease (CKD). Low protein diets are used for retarding the progression of CKD in clinical practice. Nonetheless, the impact of dietary protein consumption on cognitive function in this population remains uncertain. METHODS We recruited 2306 participants (≥60 years) from 2011 to 2014 National Health and Nutrition Examination Survey (NHANES). 24-h dietary recall questionnaire was utilized to evaluate protein intake. Cognitive function was measured using the Consortium to Establish a Registry for Alzheimer's Disease (CERAD), Animal Fluency Test (AFT), and Digit Symbol Substitution Test (DSST). Participants' characteristics were analyzed, and the interaction between protein consumption and CKD on cognitive impairment were analyzed using a logistic regression model. RESULTS We divided participants into three groups based on CKD stages: no CKD, CKD stage G1 to G2 (19%), and CKD stage G3 to G5 (18%). The average protein intake was 0.97 g/(kg·d). In the higher protein intake group, CKD stages G1 to G2 elevated the risk of immediate memory impairment (OR: 2.441, 95% Cl: 1.161-5.132 for protein consumption in 1.0-1.2g/(kg·d); OR: 2.225, 95% Cl: 1.015-4.876 for protein consumption in >1.2 g/(kg·d)). However, no similar resuts were observed in the lower protein intake group. In addition, the interaction between CKD status and protein intake on immediate memory was statistically significant (p = .041). CONCLUSION A higher probability of cognitive impairment in the elderly with early-stage CKD may be linked to higher protein intake. Low protein diets may be a potential strategy to release cognitive impairment in the elderly with early-stage CKD.
Collapse
Affiliation(s)
- Jingda Huang
- Department of Nephrology, First Hospital of Jilin University, Changchun, China
| | - Yang Yu
- The Fourth Clinical Medical College, Hebei Medical University, Shijiazhuang, China
| | - Huimin Li
- Department of Nephrology, First Hospital of Jilin University, Changchun, China
| | - Yihui Wei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Mindan Sun
- Department of Nephrology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
124
|
Chua XY, Torta F, Chong JR, Venketasubramanian N, Hilal S, Wenk MR, Chen CP, Arumugam TV, Herr DR, Lai MKP. Lipidomics profiling reveals distinct patterns of plasma sphingolipid alterations in Alzheimer's disease and vascular dementia. Alzheimers Res Ther 2023; 15:214. [PMID: 38087395 PMCID: PMC10714620 DOI: 10.1186/s13195-023-01359-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) and vascular dementia (VaD) are two of the commonest causes of dementia in the elderly. Of the myriad biomolecules implicated in dementia pathogenesis, sphingolipids have attracted relatively scant research attention despite their known involvement in multiple pathophysiological processes. The potential utility of peripheral sphingolipids as biomarkers in dementia cohorts with high concomitance of cerebrovascular diseases is also unclear. METHODS Using a lipidomics platform, we performed a case-control study of plasma sphingolipids in a prospectively assessed cohort of 526 participants (non-cognitively impaired, NCI = 93, cognitively impaired = 217, AD = 166, VaD = 50) using a lipidomics platform. RESULTS Distinct patterns of sphingolipid alterations were found in AD and VaD, namely an upregulation of d18:1 species in AD compared to downregulation of d16:1 species in VaD. In particular, GM3 d18:1/16:0 and GM3 d18:1/24:1 showed the strongest positive associations with AD. Furthermore, evaluation of sphingolipids panels showed specific combinations with higher sensitivity and specificity for classification of AD (Cer d16:1/24:0. Cer d18:1/16:0, GM3 d16:1/22:0, GM3 d18:1/16:0, SM d16:1/22:0, HexCer d18:1/18:0) and VAD (Cer d16:1/24:0, Cer d18:1/16:0, Hex2Cer d16:1/16:0, HexCer d18:1/18:0, SM d16:1/16:0, SM d16:1/20:0, SM d18:2/22:0) compared to NCI. CONCLUSIONS AD and VaD are associated with distinct changes of plasma sphingolipids, warranting further studies into underlying pathophysiological mechanisms and assessments of their potential utility as dementia biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Xin Ying Chua
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joyce R Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Memory, Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | | | - Saima Hilal
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Memory, Aging and Cognition Centre, National University Health System, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Memory, Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Thiruma V Arumugam
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Memory, Aging and Cognition Centre, National University Health System, Singapore, Singapore.
| |
Collapse
|
125
|
Hosoki S, Hansra GK, Jayasena T, Poljak A, Mather KA, Catts VS, Rust R, Sagare A, Kovacic JC, Brodtmann A, Wallin A, Zlokovic BV, Ihara M, Sachdev PS. Molecular biomarkers for vascular cognitive impairment and dementia. Nat Rev Neurol 2023; 19:737-753. [PMID: 37957261 DOI: 10.1038/s41582-023-00884-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/15/2023]
Abstract
As disease-specific interventions for dementia are being developed, the ability to identify the underlying pathology and dementia subtypes is increasingly important. Vascular cognitive impairment and dementia (VCID) is the second most common cause of dementia after Alzheimer disease, but progress in identifying molecular biomarkers for accurate diagnosis of VCID has been relatively limited. In this Review, we examine the roles of large and small vessel disease in VCID, considering the underlying pathophysiological processes that lead to vascular brain injury, including atherosclerosis, arteriolosclerosis, ischaemic injury, haemorrhage, hypoperfusion, endothelial dysfunction, blood-brain barrier breakdown, inflammation, oxidative stress, hypoxia, and neuronal and glial degeneration. We consider the key molecules in these processes, including proteins and peptides, metabolites, lipids and circulating RNA, and consider their potential as molecular biomarkers alone and in combination. We also discuss the challenges in translating the promise of these biomarkers into clinical application.
Collapse
Affiliation(s)
- Satoshi Hosoki
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Gurpreet K Hansra
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Anne Poljak
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Vibeke S Catts
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Ruslan Rust
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Abhay Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Amy Brodtmann
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
126
|
Vestergaard SB, Dahm CC, Gottrup H, Valentin JB, Johnsen SP, Andersen G, Mortensen JK. Intravenous thrombolysis for acute ischemic stroke is associated with lower risk of post-stroke dementia: A nationwide cohort study. Eur Stroke J 2023; 8:947-955. [PMID: 37665134 PMCID: PMC10683737 DOI: 10.1177/23969873231197530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
INTRODUCTION Dementia after stroke is common and is a great concern for patients and their caregivers. The objective was to investigate if intravenous thrombolysis (IVT) for acute ischemic stroke (AIS) was associated with lower risk of dementia after stroke. PATIENTS AND METHODS When IVT was introduced in Denmark, not all eligible patients were treated due to restricted access. We conducted a nationwide register-based cohort study of all patients with AIS in Denmark from 2004 to 2011. IVT-treated patients were propensity score-matched with comparable non-treated patients. Cox proportional hazards regression was used to estimate the hazard ratio (HR) for all-cause and vascular dementia 2, 5, and 10 years after stroke. RESULTS Of the 5919 patients eligible for the study, 2305 IVT-treated patients were propensity score-matched with 2305 non-treated patients. Mean (SD) age was 66.6 (13.3) and 61.2% were male. Rate of all-cause dementia was lower for the IVT-treated 2 years (8.4/1000 person years (PY) vs 13.6/1000 PY, HR 0.63 (0.40-0.99)) and 5 years after stroke (7.3/1000 PY vs 11.4/1000 PY, HR 0.65 (0.46-0.91)). 10 years after stroke, the rates of all-cause dementia remained in favor of IVT (8.0/1000 PY vs 9.8/1000 PY, HR 0.83 (0.64-1.07)). IVT-treated had lower rates of vascular dementia 2 years (2.4/1000 PY vs 7.4/1000 PY, HR 0.33 (0.15-0.71)), 5 years (2.3/1000 PY vs 6.2/1000 PY, HR 0.38 (0.23-0.65)), and 10 years after stroke (3.0/1000 PY vs 5.4/1000 PY, HR 0.56 (0.38-0.81)). CONCLUSION IVT treatment was associated with lower long-term risk of both vascular and all-cause dementia after AIS.
Collapse
Affiliation(s)
- Sigrid Breinholt Vestergaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Hanne Gottrup
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Jan Brink Valentin
- Danish Center for Clinical Health Services Research, Department of Clinical Medicine, Aalborg University & Aalborg University Hospital, Aalborg, Denmark
| | - Søren Paaske Johnsen
- Danish Center for Clinical Health Services Research, Department of Clinical Medicine, Aalborg University & Aalborg University Hospital, Aalborg, Denmark
| | - Grethe Andersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Janne Kærgård Mortensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
127
|
Pandics T, Major D, Fazekas-Pongor V, Szarvas Z, Peterfi A, Mukli P, Gulej R, Ungvari A, Fekete M, Tompa A, Tarantini S, Yabluchanskiy A, Conley S, Csiszar A, Tabak AG, Benyo Z, Adany R, Ungvari Z. Exposome and unhealthy aging: environmental drivers from air pollution to occupational exposures. GeroScience 2023; 45:3381-3408. [PMID: 37688657 PMCID: PMC10643494 DOI: 10.1007/s11357-023-00913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023] Open
Abstract
The aging population worldwide is facing a significant increase in age-related non-communicable diseases, including cardiovascular and brain pathologies. This comprehensive review paper delves into the impact of the exposome, which encompasses the totality of environmental exposures, on unhealthy aging. It explores how environmental factors contribute to the acceleration of aging processes, increase biological age, and facilitate the development and progression of a wide range of age-associated diseases. The impact of environmental factors on cognitive health and the development of chronic age-related diseases affecting the cardiovascular system and central nervous system is discussed, with a specific focus on Alzheimer's disease, Parkinson's disease, stroke, small vessel disease, and vascular cognitive impairment (VCI). Aging is a major risk factor for these diseases. Their pathogenesis involves cellular and molecular mechanisms of aging such as increased oxidative stress, impaired mitochondrial function, DNA damage, and inflammation and is influenced by environmental factors. Environmental toxicants, including ambient particulate matter, pesticides, heavy metals, and organic solvents, have been identified as significant contributors to cardiovascular and brain aging disorders. These toxicants can inflict both macro- and microvascular damage and many of them can also cross the blood-brain barrier, inducing neurotoxic effects, neuroinflammation, and neuronal dysfunction. In conclusion, environmental factors play a critical role in modulating cardiovascular and brain aging. A deeper understanding of how environmental toxicants exacerbate aging processes and contribute to the pathogenesis of neurodegenerative diseases, VCI, and dementia is crucial for the development of preventive strategies and interventions to promote cardiovascular, cerebrovascular, and brain health. By mitigating exposure to harmful environmental factors and promoting healthy aging, we can strive to reduce the burden of age-related cardiovascular and brain pathologies in the aging population.
Collapse
Affiliation(s)
- Tamas Pandics
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Public Health Laboratory, National Public Health Centre, Budapest, Hungary
- Department of Public Health Siences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - David Major
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsofia Szarvas
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Peterfi
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Anna Tompa
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Shannon Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Adam G Tabak
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- UCL Brain Sciences, University College London, London, UK
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, H-1052, Hungary
| | - Roza Adany
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- ELKH-DE Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
- Epidemiology and Surveillance Centre, Semmelweis University, 1085, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
128
|
van Kraaij SJW, Borghans L, Klaassen ES, Gal P, van der Grond J, Tripp K, Winrow C, Glasser C, Groeneveld GJ. Randomized placebo-controlled crossover study to assess tolerability and pharmacodynamics of zagociguat, a soluble guanylyl cyclase stimulator, in healthy elderly. Br J Clin Pharmacol 2023; 89:3606-3617. [PMID: 37488930 DOI: 10.1111/bcp.15861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023] Open
Abstract
AIMS Dysfunction of nitric oxide-soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate signalling is implicated in the pathophysiology of cognitive impairment. Zagociguat is a central nervous system (CNS) penetrant sGC stimulator designed to amplify nitric oxide-cyclic guanosine monophosphate signalling in the CNS. This article describes a phase 1b study evaluating the safety and pharmacodynamic effects of zagociguat. METHODS In this randomized crossover study, 24 healthy participants aged ≥65 years were planned to receive 15 mg zagociguat or placebo once daily for 2 15-day periods separated by a 27-day washout. Adverse events, vital signs, electrocardiograms and laboratory tests were conducted to assess safety. Pharmacokinetics of zagociguat were evaluated in blood and cerebrospinal fluid (CSF). Pharmacodynamic assessments included evaluation of cerebral blood flow, CNS tests, pharmaco-electroencephalography, passive leg movement and biomarkers in blood, CSF and brain. RESULTS Twenty-four participants were enrolled; 12 participants completed both treatment periods, while the other 12 participants completed only 1 treatment period. Zagociguat was well-tolerated and penetrated the blood-brain barrier, with a CSF/free plasma concentration ratio of 0.45 (standard deviation 0.092) measured 5 h after the last dose of zagociguat on Day 15. Zagociguat induced modest decreases in blood pressure. No consistent effects of zagociguat on other pharmacodynamic parameters were detected. CONCLUSION Zagociguat was well-tolerated and induced modest blood pressure reductions consistent with other sGC stimulators. No clear pharmacodynamic effects of zagociguat were detected. Studies in participants with proven reduced cerebral blood flow or CNS function may be an avenue for further evaluation of the compound.
Collapse
Affiliation(s)
- Sebastiaan J W van Kraaij
- Centre for Human Drug Research, Leiden, The Netherlands
- Department of Surgery, Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | - Pim Gal
- Centre for Human Drug Research, Leiden, The Netherlands
- Department of Surgery, Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ken Tripp
- Cyclerion Therapeutics, Cambridge, Massachusetts, USA
| | | | - Chad Glasser
- Cyclerion Therapeutics, Cambridge, Massachusetts, USA
| | - Geert Jan Groeneveld
- Centre for Human Drug Research, Leiden, The Netherlands
- Department of Surgery, Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
129
|
Sabayan B, Goudarzi R, Ji Y, Borhani‐Haghighi A, Olson‐Bullis BA, Murray AM, Sedaghat S. Intracranial Atherosclerosis Disease Associated With Cognitive Impairment and Dementia: Systematic Review and Meta-Analysis. J Am Heart Assoc 2023; 12:e032506. [PMID: 37955546 PMCID: PMC10727275 DOI: 10.1161/jaha.123.032506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Intracranial atherosclerosis disease (ICAD) alters cerebrovascular hemodynamics and brain structural integrity. Multiple studies have evaluated the link between ICAD and cognitive impairment, with mixed results. This study aims to systematically review and summarize the current evidence on this link. METHODS AND RESULTS PubMed, EMBASE, PsycInfo, and Web of Science were searched from 2000 to 2023 without language restriction. Cross-sectional and prospective cohort studies as well as postmortem studies were included. Studies containing data on the link between ICAD, defined as at least 50% stenosis in 1 intracranial vessel, and cognitive impairment and dementia were screened by 2 independent reviewers. A total of 22 (17 observational and 5 postmortem) unique studies, comprising 11 184 individuals (average age range, 59.8-87.6 years; 45.7% women; 36.5% Asian race), were included in the systematic review. Seven of 10 cross-sectional studies and 5 of 7 prospective studies showed a significant association between ICAD and cognitive impairment. In the pooled analysis, ICAD was associated with greater cognitive impairment (measure of association, 1.87 [95% CI, 1.49-2.35]). Meta-regression analyses did not show a significant impact of age, sex, and race. All postmortem studies showed that patients with Alzheimer disease and vascular dementia had a higher burden of ICAD compared with controls. CONCLUSIONS This study shows that ICAD is associated with cognitive impairment and dementia across age, sex, and race groups. Our findings may underscore the need to develop individualized dementia preventive care plans in patients with ICAD.
Collapse
Affiliation(s)
- Behnam Sabayan
- Department of Neurology, Hennepin Healthcare Research InstituteHennepin County Medical CenterMinneapolisMN
- Division of Epidemiology and Community Health, School of Public HealthUniversity of MinnesotaMinneapolisMN
| | - Roham Goudarzi
- Faculty of ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Yuekai Ji
- Division of Epidemiology and Community Health, School of Public HealthUniversity of MinnesotaMinneapolisMN
| | | | | | - Anne M. Murray
- Berman Center for Outcomes and Clinical Research and Geriatrics Division, Department of MedicineHennepin Healthcare Research InstituteMinneapolisMN
| | - Sanaz Sedaghat
- Division of Epidemiology and Community Health, School of Public HealthUniversity of MinnesotaMinneapolisMN
| |
Collapse
|
130
|
Skórka P, Kargul M, Seemannová D, Gajek B, Gutowski P, Kazimierczak A, Rynio P. The Influence of Individualized Three-Dimensional Holographic Models on Patients' Knowledge Qualified for Intervention in the Treatment of Peripheral Arterial Disease (PAD). J Cardiovasc Dev Dis 2023; 10:464. [PMID: 37998522 PMCID: PMC10671973 DOI: 10.3390/jcdd10110464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
We sought to determine the role of the patient-specific, three-dimensional (3D) holographic vascular model in patient medical knowledge and its influence on obtaining a more conscious informed consent process for percutaneous balloon angioplasty (PTA). Patients with peripheral arterial disease who had been scheduled for PTA were enrolled in the study. Information regarding the primary disease, planned procedure, and informed consent was recorded in typical fashion. Subsequently, the disease and procedure details were presented to the patient, showing the patients their individual model. A patient and medical supervisor equipped with mixed reality headsets could both simultaneously manipulate the hologram using gestures. The holographic 3D model had been created on a scale of 1:1 based on computed tomography scans. The patient's knowledge was tested by the completion of a questionnaire before and after the interaction in a mixed reality environment. Seventy-nine patients manipulated arterial holograms in mixed reality head-mounted devices. Before the 3D holographic artery model interaction, the mean ± standard deviation score of the knowledge test was 2.95 ± 1.21 points. After the presentation, the score had increased to 4.39 ± 0.82, with a statistically significant difference (p = 0.0000) between the two scores. Using a Likert scale from 1 to 5, the patients had scored the use of the 3D holographic model at 3.90 points regarding its usefulness in comprehending their medical condition; at 4.04 points regarding the evaluation of the holograms as helpful in understanding the course of surgery; and rated the model at 1.99 points in reducing procedure-related stress. Using a nominal scale (know or don't know), the patients had self-assessed their knowledge of the procedure before and after the 3D model presentation, with a score of 6.29 ± 2.01 and 8.39 ± 1.54, respectively. The study group tolerated the use of head-mounted devices. Only one patient had nausea and dizziness, while four patients experienced transient eye pain. The 3D holographic arterial model aided in the understanding of patients' knowledge regarding the disease and procedure, making the informed consent process more conscious. The holograms improved the patient's self-consciousness. Mixed reality headset-related complications were rare and within acceptable rates.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Paweł Rynio
- Department of Vascular Surgery and Angiology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (P.S.)
| |
Collapse
|
131
|
Ungvari A, Gulej R, Csik B, Mukli P, Negri S, Tarantini S, Yabluchanskiy A, Benyo Z, Csiszar A, Ungvari Z. The Role of Methionine-Rich Diet in Unhealthy Cerebrovascular and Brain Aging: Mechanisms and Implications for Cognitive Impairment. Nutrients 2023; 15:4662. [PMID: 37960316 PMCID: PMC10650229 DOI: 10.3390/nu15214662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
As aging societies in the western world face a growing prevalence of vascular cognitive impairment and Alzheimer's disease (AD), understanding their underlying causes and associated risk factors becomes increasingly critical. A salient concern in the western dietary context is the high consumption of methionine-rich foods such as red meat. The present review delves into the impact of this methionine-heavy diet and the resultant hyperhomocysteinemia on accelerated cerebrovascular and brain aging, emphasizing their potential roles in cognitive impairment. Through a comprehensive exploration of existing evidence, a link between high methionine intake and hyperhomocysteinemia and oxidative stress, mitochondrial dysfunction, inflammation, and accelerated epigenetic aging is drawn. Moreover, the microvascular determinants of cognitive deterioration, including endothelial dysfunction, reduced cerebral blood flow, microvascular rarefaction, impaired neurovascular coupling, and blood-brain barrier (BBB) disruption, are explored. The mechanisms by which excessive methionine consumption and hyperhomocysteinemia might drive cerebromicrovascular and brain aging processes are elucidated. By presenting an intricate understanding of the relationships among methionine-rich diets, hyperhomocysteinemia, cerebrovascular and brain aging, and cognitive impairment, avenues for future research and potential therapeutic interventions are suggested.
Collapse
Affiliation(s)
- Anna Ungvari
- Department of Public Health, Semmelweis University, 1089 Budapest, Hungary
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Sharon Negri
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary;
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Translational Medicine, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
132
|
Nelissen E, Schepers M, Ponsaerts L, Foulquier S, Bronckaers A, Vanmierlo T, Sandner P, Prickaerts J. Soluble guanylyl cyclase: A novel target for the treatment of vascular cognitive impairment? Pharmacol Res 2023; 197:106970. [PMID: 37884069 DOI: 10.1016/j.phrs.2023.106970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Vascular cognitive impairment (VCI) describes neurodegenerative disorders characterized by a vascular component. Pathologically, it involves decreased cerebral blood flow (CBF), white matter lesions, endothelial dysfunction, and blood-brain barrier (BBB) impairments. Molecularly, oxidative stress and inflammation are two of the major underlying mechanisms. Nitric oxide (NO) physiologically stimulates soluble guanylate cyclase (sGC) to induce cGMP production. However, under pathological conditions, NO seems to be at the basis of oxidative stress and inflammation, leading to a decrease in sGC activity and expression. The native form of sGC needs a ferrous heme group bound in order to be sensitive to NO (Fe(II)sGC). Oxidation of sGC leads to the conversion of ferrous to ferric heme (Fe(III)sGC) and even heme-loss (apo-sGC). Both Fe(III)sGC and apo-sGC are insensitive to NO, and the enzyme is therefore inactive. sGC activity can be enhanced either by targeting the NO-sensitive native sGC (Fe(II)sGC), or the inactive, oxidized sGC (Fe(III)sGC) and the heme-free apo-sGC. For this purpose, sGC stimulators acting on Fe(II)sGC and sGC activators acting on Fe(III)sGC/apo-sGC have been developed. These sGC agonists have shown their efficacy in cardiovascular diseases by restoring the physiological and protective functions of the NO-sGC-cGMP pathway, including the reduction of oxidative stress and inflammation, and improvement of vascular functioning. Yet, only very little research has been performed within the cerebrovascular system and VCI pathology when focusing on sGC modulation and its potential protective mechanisms on vascular and neural function. Therefore, within this review, the potential of sGC as a target for treating VCI is highlighted.
Collapse
Affiliation(s)
- Ellis Nelissen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands.
| | - Melissa Schepers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands; Neuro-immune connect and repair lab, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium
| | - Laura Ponsaerts
- Neuro-immune connect and repair lab, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium; Department of Cardio & Organ Systems (COS), Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Sébastien Foulquier
- Department of Pharmacology and Toxicology, School for Mental Health and Neuroscience (MHeNS), School for Cardiovascular Diseases (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Annelies Bronckaers
- Department of Cardio & Organ Systems (COS), Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Tim Vanmierlo
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands; Neuro-immune connect and repair lab, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium
| | - Peter Sandner
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, 42113 Wuppertal, Germany; Hannover Medical School, 30625 Hannover, Germany
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| |
Collapse
|
133
|
He Y, Li Z, Shi X, Ding J, Wang X. Metformin attenuates white matter injury and cognitive impairment induced by chronic cerebral hypoperfusion. J Cereb Blood Flow Metab 2023; 43:78-94. [PMID: 37177813 PMCID: PMC10638997 DOI: 10.1177/0271678x231175189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 05/15/2023]
Abstract
Vascular cognitive impairment and dementia (VCID) is a series of cognitive dysfunction associated with cerebrovascular diseases and currently lacks effective treatments. The white matter, which is essential for neuronal information processing and integration, is nourished by a network of capillaries and is vulnerable to chronic hypoperfusion. Here, we show that metformin, a widely used drug for the treatment of type 2 diabetes, alleviates the white matter damage and improves cognitive impairment in a mouse model of VCID established by bilateral carotid artery stenosis (BCAS)-induced chronic hypoperfusion. Mechanistically, metformin restores the dysfunctions of oligodendrocyte precursor cells (OPCs) under hypoxia. Metformin up-regulates prolyl hydroxylases 2 via activating the AMP-activated protein kinase pathway, leading to hypoxia-inducible factor-1α (HIF-1α) degradation in OPCs. These findings suggest that metformin may have a promising therapeutic role in alleviating cognitive abnormalities by ameliorating white matter damage of VCID.
Collapse
Affiliation(s)
- Yixi He
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhenghao Li
- Institute of Neuroscience, MOE Key Laboratory of Molecular Neurobiology, NMU, Shanghai, China
| | - Xiaoyu Shi
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
134
|
Ishikawa H, Shindo A, Mizutani A, Tomimoto H, Lo EH, Arai K. A brief overview of a mouse model of cerebral hypoperfusion by bilateral carotid artery stenosis. J Cereb Blood Flow Metab 2023; 43:18-36. [PMID: 36883344 PMCID: PMC10638994 DOI: 10.1177/0271678x231154597] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 03/09/2023]
Abstract
Vascular cognitive impairment (VCI) refers to all forms of cognitive disorder related to cerebrovascular diseases, including vascular mild cognitive impairment, post-stroke dementia, multi-infarct dementia, subcortical ischemic vascular dementia (SIVD), and mixed dementia. Among the causes of VCI, more attention has been paid to SIVD because the causative cerebral small vessel pathologies are frequently observed in elderly people and because the gradual progression of cognitive decline often mimics Alzheimer's disease. In most cases, small vessel diseases are accompanied by cerebral hypoperfusion. In mice, prolonged cerebral hypoperfusion is induced by bilateral carotid artery stenosis (BCAS) with surgically implanted metal micro-coils. This cerebral hypoperfusion BCAS model was proposed as a SIVD mouse model in 2004, and the spreading use of this mouse SIVD model has provided novel data regarding cognitive dysfunction and histological/genetic changes by cerebral hypoperfusion. Oxidative stress, microvascular injury, excitotoxicity, blood-brain barrier dysfunction, and secondary inflammation may be the main mechanisms of brain damage due to prolonged cerebral hypoperfusion, and some potential therapeutic targets for SIVD have been proposed by using transgenic mice or clinically used drugs in BCAS studies. This review article overviews findings from the studies that used this hypoperfused-SIVD mouse model, which were published between 2004 and 2021.
Collapse
Affiliation(s)
- Hidehiro Ishikawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akane Mizutani
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
135
|
Zhao N, Zhu X, Xie L, Guan X, Tang L, Jiang G, Pang T. The Combination of Citicoline and Nicotinamide Mononucleotide Induces Neurite Outgrowth and Mitigates Vascular Cognitive Impairment via SIRT1/CREB Pathway. Cell Mol Neurobiol 2023; 43:4261-4277. [PMID: 37812361 DOI: 10.1007/s10571-023-01416-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/17/2023] [Indexed: 10/10/2023]
Abstract
Vascular dementia (VD) is characterized with vascular cognitive impairment (VCI), which currently has few effective therapies in clinic. Neuronal damage and white matter injury are involved in the pathogenesis of VCI. Citicoline has been demonstrated to exhibit neuroprotection and neurorepair to improve cognition in cerebrovascular diseases. Nicotinamide adenine dinucleotide (NAD+)-dependent sirtuin (SIRT) signaling pathway constitutes a strong intrinsic defense system against various stresses including neuroinflammation in VCI. Our hypothesis is that the combined use of citicoline and the precursor of NAD+, nicotinamide mononucleotide (NMN), could enhance action on cognitive function in VCI. We investigated the synergistic effect of these two drugs in the rat model of VCI by bilateral common carotid artery occlusion (BCCAO). Citicoline significantly enhanced neurite outgrowth in Neuro-2a cells, and the combination of citicoline and NMN remarkably induced neurite outgrowth in Neuro-2a cells and primary cortical neuronal cells with an optimal proportion of 4:1. In the rat model of BCCAO, when two drugs in combination of 160 mg/kg citicoline and 40 mg/kg NMN, this combination administrated at 7 days post-BCCAO significantly improved the cognitive impairment in BCCAO rats compared with vehicle group by the analysis of the Morris water maze and the novel object recognition test. This combination also decreased microglial activation and neuroinflammation, and protected white matter integrity indicated by the increased myelin basic protein (MBP) expression through activation of SIRT1/TORC1/CREB signaling pathway. Our results suggest that the combination of citicoline and NMN has a synergistic effect for the treatment of VD associated with VCI.
Collapse
Affiliation(s)
- Ning Zhao
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Xiaofeng Zhu
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Luyang Xie
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Xin Guan
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Leilei Tang
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, 728 Yucai North Road, Hangzhou, 311200, People's Republic of China
| | - Guojun Jiang
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, 728 Yucai North Road, Hangzhou, 311200, People's Republic of China.
| | - Tao Pang
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
136
|
Davidson CG, Woodford SJ, Mathur S, Valle DB, Foster D, Kioutchoukova I, Mahmood A, Lucke-Wold B. Investigation into the vascular contributors to dementia and the associated treatments. EXPLORATION OF NEUROSCIENCE 2023; 2:224-237. [PMID: 37981945 PMCID: PMC10655228 DOI: 10.37349/en.2023.00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/20/2023] [Indexed: 11/21/2023]
Abstract
As the average lifespan has increased, memory disorders have become a more pressing public health concern. However, dementia in the elderly population is often neglected in light of other health priorities. Therefore, expanding the knowledge surrounding the pathology of dementia will allow more informed decision-making regarding treatment within elderly and older adult populations. An important emerging avenue in dementia research is understanding the vascular contributors to dementia. This review summarizes potential causes of vascular cognitive impairment like stroke, microinfarction, hypertension, atherosclerosis, blood-brain-barrier dysfunction, and cerebral amyloid angiopathy. Also, this review address treatments that target these vascular impairments that also show promising results in reducing patient's risk for and experience of dementia.
Collapse
Affiliation(s)
| | | | - Shreya Mathur
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | - Devon Foster
- University of Central Florida, Orlando, FL 32816, USA
| | | | - Arman Mahmood
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
137
|
Chen L, Zhen Y, Wang X, Wang J, Zhu G. Neurovascular glial unit: A target of phytotherapy for cognitive impairments. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155009. [PMID: 37573807 DOI: 10.1016/j.phymed.2023.155009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/29/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Neurovascular glial unit (NVGU) dysfunction has been reported to be an early and critical event in the pathophysiology of Alzheimer's disease (AD) and vascular dementia (VD). Although herbal medicines, with their favorable safety profiles and low adverse effects, have been suggested to be useful for the treatment of cognitive impairment, the potential role of the NVGU as the target of the effects of herbal medicines is still unclear. PURPOSE This review aimed to retrieve evidence from experimental studies of phytopharmaceuticals targeting the NVGU for the treatment of cognitive impairment in AD and VD, and discussed the potential of phytopharmaceuticals to improve cognitive impairment from the perspective of the NVGU. STUDY DESIGN AND METHODS We systematically searched PubMed, Google Scholar, Web of Science, and CNKI. The keywords used for searching information on the NVGU in the treatment of cognitive impairments included "Alzheimer's disease," "Vascular dementia," "Herbal medicines," "Natural products," "Neurovascular," "Adverse reaction," and "Toxicity, etc." We selected studies on the basis of predefined eligibility criteria. RESULTS NVGU mainly consists of endothelial cells, pericytes, astrocytes, microglia, oligodendrocytes, and neurons, and damage to these cells can induce cognitive impairment by impairing the blood-brain barrier (BBB) and cerebral blood flow (CBF) as well as neuronal function. The active components of herbal medicines, including Ginkgo biloba L., Ginseng Radix et Rhizoma, Epimedium Folium, Chuanxiong Rhizoma, Carthami flos, and Acorus tatarinowii Schott, as well as traditional Chinese medicine prescriptions have shown the potential to improve BBB function and increase CBF to prevent cognitive impairment by inhibiting astrocyte and microglia activation, protecting oligodendrocyte myelin function, reducing neuronal apoptosis, and promoting angiogenesis. CONCLUSIONS Herbal medicines demonstrate great potential to prevent cognitive impairment. Multiple components from herbal medicines may function through different signaling pathways to target the NVGU. Future studies using novel drug-carrier or delivery systems targeting the NVGU will certainly facilitate the development of phytopharmaceuticals for AD and VD.
Collapse
Affiliation(s)
- Lixia Chen
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yilan Zhen
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xuncui Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jingji Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China; The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei 230061, China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
138
|
Cho K. Neutrophil-Mediated Progression of Mild Cognitive Impairment to Dementia. Int J Mol Sci 2023; 24:14795. [PMID: 37834242 PMCID: PMC10572848 DOI: 10.3390/ijms241914795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Cognitive impairment is a serious condition that begins with amnesia and progresses to cognitive decline, behavioral dysfunction, and neuropsychiatric impairment. In the final stage, dysphagia and incontinence occur. There are numerous studies and developed drugs for cognitive dysfunction in neurodegenerative diseases, such as Alzheimer's disease (AD); however, their clinical effectiveness remains equivocal. To date, attempts have been made to overcome cognitive dysfunction and understand and delay the aging processes that lead to degenerative and chronic diseases. Cognitive dysfunction is involved in aging and the disruption of inflammation and innate immunity. Recent reports have indicated that the innate immune system is prevalent in patients with AD, and that peripheral neutrophil markers can predict a decline in executive function in patients with mild cognitive impairment (MCI). Furthermore, altered levels of pro-inflammatory interleukins have been reported in MCI, which have been suggested to play a role in the peripheral immune system during the process from early MCI to dementia. Neutrophils are the first responders of the innate immune system. Neutrophils eliminate harmful cellular debris via phagocytosis, secrete inflammatory factors to activate host defense systems, stimulate cytokine production, kill pathogens, and regulate extracellular proteases and inhibitors. This review investigated and summarized the regulation of neutrophil function during cognitive impairment caused by various degenerative diseases. In addition, this work elucidates the cellular mechanism of neutrophils in cognitive impairment and what is currently known about the effects of activated neutrophils on cognitive decline.
Collapse
Affiliation(s)
- KyoungJoo Cho
- Department of Life Science, Kyonggi University, Suwon 16227, Republic of Korea
| |
Collapse
|
139
|
Dobrynina LA, Shabalina AA, Shamtieva KV, Kremneva EI, Zabitova MR, Krotenkova MV, Burmak AG, Gnedovskaya EV. L-Arginine-eNOS-NO Functional System in Brain Damage and Cognitive Impairments in Cerebral Small Vessel Disease. Int J Mol Sci 2023; 24:14537. [PMID: 37833984 PMCID: PMC10572456 DOI: 10.3390/ijms241914537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Cerebral small vessel disease (CSVD) is a significant cause of cognitive impairment (CI), disability, and mortality. The insufficient effectiveness of antihypertensive therapy in curbing the disease justifies the search for potential targets for modifying therapy and indicators supporting its use. Using a laser-assisted optical rotational cell analyzer (LORRCA, Mechatronics, The Netherlands), the rheological properties and deformability of erythrocytes before and after incubation with 10 μmol/L of L-arginine, the nitric oxide (NO) donor, blood-brain barrier (BBB) permeability assessed by dynamic contrast-enhanced MRI, clinical, and MRI signs were studied in 73 patients with CSVD (48 women, mean age 60.1 ± 6.5 years). The control group consisted of 19 volunteers (14 women (73.7%), mean age 56.9 ± 6.4 years). The erythrocyte disaggregation rate (y-dis) after incubation with L-arginine showed better performance than other rheological characteristics in differentiating patients with reduced NO bioavailability/NO deficiency by its threshold values. Patients with y-dis > 113 s-1 had more severe CI, arterial hypertension, white matter lesions, and increased BBB permeability in grey matter and normal-appearing white matter (NAWM). A test to assess changes in the erythrocyte disaggregation rate after incubation with L-arginine can be used to identify patients with impaired NO bioavailability. L-arginine may be part of a therapeutic strategy for CSVD with CI.
Collapse
Affiliation(s)
| | | | | | | | - Maryam R. Zabitova
- Research Center of Neurology, 80 Volokolamskoe Shosse, 125367 Moscow, Russia; (L.A.D.); (A.A.S.); (K.V.S.); (E.I.K.); (M.V.K.); (A.G.B.); (E.V.G.)
| | | | | | | |
Collapse
|
140
|
Zhu ML, Zhang J, Guo LJ, Yue RZ, Li SS, Cui BY, Guo S, Niu QQ, Yu YN, Wang HH, Yang L, Yin YL, Wang SX, Zhan HQ, Gao ZT, Li P. Amorphous selenium inhibits oxidative stress injury of neurons in vascular dementia rats by activating NMDAR pathway. Eur J Pharmacol 2023; 955:175874. [PMID: 37394029 DOI: 10.1016/j.ejphar.2023.175874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/11/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
Vascular dementia (VD) is one of the most common causes of dementia, taking account for about 20% of all cases. Although studies have found that selenium supplementation can improve the cognitive ability of Alzheimer's patients, there is currently no research on the cognitive impairment caused by VD. This study aimed to investigate the role and mechanism of Amorphous selenium nanodots (A SeNDs) in the prevention of VD. The bilateral common carotid artery occlusion (BCCAO) method was used to establish a VD model. The neuroprotective effect of A SeNDs was evaluated by Morris water maze, Transcranial Doppler TCD, hematoxylin-eosin (HE) staining, Neuron-specific nuclear protein (Neu N) staining and Golgi staining. Detect the expression levels of oxidative stress and Calcium-calmodulin dependent protein kinase II (CaMK II), N-methyl-D-aspartate receptor subunit NR2A, and postsynaptic dense protein 95 (PSD95). Finally, measure the concentration of calcium ions in neuronal cells. The results showed that A SeNDs could significantly improve the learning and memory ability of VD rats, restore the posterior arterial blood flow of the brain, improve the neuronal morphology and dendritic remodeling of pyramidal cells in hippocampal CA1 area, reduce the level of oxidative stress in VD rats, increase the expression of NR2A, PSD95, CaMK II proteins and reduce intracellular calcium ion concentration, but the addition of selective NR2A antagonist NVP-AAMO77 eliminated these benefits. It suggests that A SeNDs may improve cognitive dysfunction in vascular dementia rats by regulating the NMDAR pathway.
Collapse
Affiliation(s)
- Mo-Li Zhu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, College of Pharmacy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jie Zhang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, College of Pharmacy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Li-Juan Guo
- Department of Oncology, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453119, China
| | - Rui-Zhu Yue
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, College of Pharmacy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Shan-Shan Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, College of Pharmacy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Bao-Yue Cui
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, College of Pharmacy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Qian-Qian Niu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, College of Pharmacy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ya-Nan Yu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, College of Pharmacy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huan-Huan Wang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, College of Pharmacy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Ya-Ling Yin
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, College of Pharmacy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Shuang-Xi Wang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, College of Pharmacy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| | - He-Qin Zhan
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, College of Pharmacy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Zhi-Tao Gao
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Peng Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, College of Pharmacy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
141
|
Zhuang Z, Zhao Y, Song Z, Wang W, Huang N, Dong X, Xiao W, Li Y, Jia J, Liu Z, Qi L, Huang T. Leisure-Time Television Viewing and Computer Use, Family History, and Incidence of Dementia. Neuroepidemiology 2023; 57:304-315. [PMID: 37717571 PMCID: PMC10641801 DOI: 10.1159/000531237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/04/2023] [Indexed: 09/19/2023] Open
Abstract
INTRODUCTION Time spent on screen-based sedentary activities is significantly associated with dementia risk, however, whether the associations vary by family history (FHx) of dementia is currently unknown. We aimed to examine independent associations of two prevalent types of screen-based sedentary activities (television [TV] viewing and computer use) with dementia and assess the modifying effect of FHx. METHODS We included 415,048 individuals free of dementia from the UK Biobank. Associations of TV viewing, computer use, and FHx with dementia risk were determined using Cox regression models. We estimated both multiplicative- and additive-scale interactions between TV viewing and computer use and FHx. RESULTS During a median follow-up of 12.6 years, 5,549 participants developed dementia. After adjusting for potential confounding factors, we observed that moderate (2-3 h/day; hazard ratio [HR] 1.13, 95% confidence interval 0.03-1.23) and high (>3 h/day; 1.33, 1.21-1.46) TV viewing was associated with a higher dementia risk, compared with low (0-1 h/day) TV viewing. Using restricted cubic spline models, the relationship of TV viewing with dementia was nonlinear (relative to 0 h/day; p for nonlinear = 0.005). We found that >3 h/day of TV viewing was associated with a 42% (1.42, 1.18-1.71) higher dementia risk in participants with FHx while a 30% (1.30, 1.17-1.45) in those without FHx. For computer use, both low (0 h/day; 1.41, 1.33-1.50) and high (>2 h/day; 1.17, 1.05-1.29) computer use were associated with elevated dementia risk, compared with moderate (1-2 h/day) computer use. We observed a J-shaped relationship with dementia (relative to 2 h/day; p for nonlinear <0.001). Compared with 1-2 h/day of computer use, the HRs of dementia were 1.46 (1.29-1.65) and 1.10 (0.90-1.36) for 0 h/day and >2 h/day of computer use in participants with FHx, respectively, while the corresponding HRs were 1.40 (1.30-1.50) and 1.19 (1.06-1.33) in those without FHx. We observed a positive additive interaction (RERI 0.29, 0.06-0.53) between computer use and FHx, while little evidence of interaction between TV viewing and FHx. CONCLUSIONS The time spent on TV viewing and computer use were independent risk factors for dementia, and the adverse effects of computer use and FHx were additive. Our findings point to new behavioral targets for intervention on preventing an early onset of dementia, especially for those with FHx.
Collapse
Affiliation(s)
- Zhenhuang Zhuang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yimin Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zimin Song
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Wenxiu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Ninghao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xue Dong
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Wendi Xiao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yueying Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jinzhu Jia
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zhonghua Liu
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing, China
- Center for Intelligent Public Health, Academy for Artificial Intelligence, Peking University, Beijing, China
| |
Collapse
|
142
|
Badji A, Youwakim J, Cooper A, Westman E, Marseglia A. Vascular cognitive impairment - Past, present, and future challenges. Ageing Res Rev 2023; 90:102042. [PMID: 37634888 DOI: 10.1016/j.arr.2023.102042] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Vascular cognitive impairment (VCI) is a lifelong process encompassing a broad spectrum of cognitive disorders, ranging from subtle or mild deficits to prodromal and fully developed dementia, originating from cerebrovascular lesions such as large and small vessel disease. Genetic predisposition and environmental exposure to risk factors such as unhealthy lifestyles, hypertension, cardiovascular disease, and metabolic disorders will synergistically interact, yielding biochemical and structural brain changes, ultimately culminating in VCI. However, little is known about the pathological processes underlying VCI and the temporal dynamics between risk factors and disease mechanisms (biochemical and structural brain changes). This narrative review aims to provide an evidence-based summary of the link between individual vascular risk/disorders and cognitive dysfunction and the potential structural and biochemical pathophysiological processes. We also discuss some key challenges for future research on VCI. There is a need to shift from individual risk factors/disorders to comorbid vascular burden, identifying and integrating imaging and fluid biomarkers, implementing a life-course approach, considering possible neuroprotective influences of positive life exposures, and addressing biological sex at birth and gender differences. Finally, this review highlights the need for future researchers to leverage and integrate multidimensional data to advance our understanding of the mechanisms and pathophysiology of VCI.
Collapse
Affiliation(s)
- Atef Badji
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Jessica Youwakim
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montreal, QC, Canada; Groupe de Recherche sur la Signalisation Neuronal et la Circuiterie (SNC), Montreal, QC, Canada
| | - Alexandra Cooper
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Anna Marseglia
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
143
|
Maurer GS, Clayton ZS. Anthracycline chemotherapy, vascular dysfunction and cognitive impairment: burgeoning topics and future directions. Future Cardiol 2023; 19:547-566. [PMID: 36354315 PMCID: PMC10599408 DOI: 10.2217/fca-2022-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/17/2022] [Indexed: 11/12/2022] Open
Abstract
Anthracyclines, chemotherapeutic agents used to treat common forms of cancer, increase cardiovascular (CV) complications, thereby necessitating research regarding interventions to improve the health of cancer survivors. Vascular dysfunction, which is induced by anthracycline chemotherapy, is an established antecedent to overt CV diseases. Potential treatment options for ameliorating vascular dysfunction have largely been understudied. Furthermore, patients treated with anthracyclines have impaired cognitive function and vascular dysfunction is an independent risk factor for the development of mild cognitive impairment. Here, we will focus on: anthracycline chemotherapy associated CV diseases risk; how targeting mechanisms underlying vascular dysfunction may be a means to improve both CV and cognitive health; and research gaps and potential future directions for the field of cardio-oncology.
Collapse
Affiliation(s)
- Grace S Maurer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
144
|
Weddell J, Naismith SL, Bauman A, Tofler G, Zhao E, Redfern J, Buckley T, Gallagher R. Age and Marital Status Predict Mild Cognitive Impairment During Acute Coronary Syndrome Admission: An Observational Study of Acute Coronary Syndrome Inpatients. J Cardiovasc Nurs 2023; 38:462-471. [PMID: 36729065 DOI: 10.1097/jcn.0000000000000964] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Mild cognitive impairment (MCI) has been reported after acute coronary syndrome (ACS), but it is uncertain who is at risk, particularly during inpatient admission. OBJECTIVE In this study, we aimed to explore the prevalence and cognitive domains affected in MCI during ACS admission and determine factors that identify patients most at risk of MCI. METHODS Inpatients with ACS were consecutively recruited from 2 tertiary hospital cardiac wards and screened with the Montreal Cognitive Assessment and the Hopkins Verbal Learning Test. Screening included health literacy (Newest Vital Sign), depressive symptoms (Patient Health Questionnaire-9), and physical activity (Physical Activity Scale for the Elderly). Factors associated with MCI were determined using logistic regression. RESULTS Participants (n = 81) had a mean (SD) age of 63.5 (10.9) years, and 82.7% were male. In total, MCI was identified in 52.5%, 42.5% with 1 screen and 10% with both. Individually, the Montreal Cognitive Assessment identified MCI in 48.1%, and the Hopkins Verbal Learning Test identified MCI in 13.8%. In Montreal Cognitive Assessment screening, the cognitive domains in which participants most frequently did not achieve the maximum points available were delayed recall (81.5%), visuospatial executive function (48.1%), and attention (30.9%). Accounting for education, depression, physical activity, and ACS diagnosis, the likelihood of an MCI positive screen increased by 11% per year of age (odds ratio, 1.11; 95% confidence interval, 1.04-1.18) and by 3.6 times for those who are unmarried/unpartnered (odds ratio, 3.61; 95% confidence interval, 1.09-11.89). CONCLUSION An estimated half of patients with ACS screen positive for MCI during admission, with single and older patients most at risk. Multiple areas of thinking were affected with potential impact on capacity for learning heart disease management.
Collapse
|
145
|
Fraga E, Medina V, Cuartero MI, García-Culebras A, Bravo-Ferrer I, Hernández-Jiménez M, Garcia-Segura JM, Hurtado O, Pradillo JM, Lizasoain I, Moro MÁ. Defective hippocampal neurogenesis underlies cognitive impairment by carotid stenosis-induced cerebral hypoperfusion in mice. Front Cell Neurosci 2023; 17:1219847. [PMID: 37636586 PMCID: PMC10457159 DOI: 10.3389/fncel.2023.1219847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Chronic cerebral hypoperfusion due to carotid artery stenosis is a major cause of vascular cognitive impairment and dementia (VCID). Bilateral carotid artery stenosis (BCAS) in rodents is a well-established model of VCID where most studies have focused on white matter pathology and subsequent cognitive deficit. Therefore, our aim was to study the implication of adult hippocampal neurogenesis in hypoperfusion-induced VCID in mice, and its relationship with cognitive hippocampal deficits. Mice were subjected to BCAS; 1 and 3 months later, hippocampal memory and neurogenesis/cell death were assessed, respectively, by the novel object location (NOL) and spontaneous alternation performance (SAP) tests and by immunohistology. Hypoperfusion was assessed by arterial spin labeling-magnetic resonance imaging (ASL-MRI). Hypoperfused mice displayed spatial memory deficits with decreased NOL recognition index. Along with the cognitive deficit, a reduced number of newborn neurons and their aberrant morphology indicated a remarkable impairment of the hippocampal neurogenesis. Both increased cell death in the subgranular zone (SGZ) and reduced neuroblast proliferation rate may account for newborn neurons number reduction. Our data demonstrate quantitative and qualitative impairment of adult hippocampal neurogenesis disturbances associated with cerebral hypoperfusion-cognitive deficits in mice. These findings pave the way for novel diagnostic and therapeutic targets for VCID.
Collapse
Affiliation(s)
- Enrique Fraga
- Neurovascular Pathophysiology Group, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Violeta Medina
- Neurovascular Pathophysiology Group, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - María Isabel Cuartero
- Neurovascular Pathophysiology Group, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Alicia García-Culebras
- Neurovascular Pathophysiology Group, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Isabel Bravo-Ferrer
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Macarena Hernández-Jiménez
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Juan Manuel Garcia-Segura
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid (UCM), Madrid, Spain
- ICTS Bioimagen Complutense, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Olivia Hurtado
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Jesus Miguel Pradillo
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - María Ángeles Moro
- Neurovascular Pathophysiology Group, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
146
|
Iadecola C, Anfray A, Schaeffer S, Hattori Y, Santisteban M, Casey N, Wang G, Strickland M, Zhou P, Holtzman D, Anrather J, Park L. Cell autonomous role of border associated macrophages in ApoE4 neurovascular dysfunction and susceptibility to white matter injury. RESEARCH SQUARE 2023:rs.3.rs-3222611. [PMID: 37577565 PMCID: PMC10418550 DOI: 10.21203/rs.3.rs-3222611/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Apolipoprotein-E4 (ApoE4), the strongest genetic risk factor for sporadic Alzheimer's disease, is also a risk factor for microvascular pathologies leading to cognitive impairment, particularly subcortical white matter injury. These effects have been attributed to alterations in the regulation of the brain blood supply, but the cellular source of ApoE4 and the underlying mechanisms remain unclear. In mice expressing human ApoE3 or ApoE4 we report that border associated macrophages (BAM), myeloid cells closely apposed to neocortical microvessels, are both the source and the target of the ApoE4 mediating the neurovascular dysfunction through reactive oxygen species. ApoE4 in BAM is solely responsible for the increased susceptibility to oligemic white matter damage in ApoE4 mice and is sufficient to enhance damage in ApoE3 mice. The data unveil a new aspect of BAM pathobiology and highlight a previously unrecognized cell autonomous role of BAM in the neurovascular dysfunction of ApoE4 with potential therapeutic implications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gang Wang
- Feil Family Brain and Mind Research Institute - Weill Cornell Medicine
| | | | | | | | | | - Laibaik Park
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| |
Collapse
|
147
|
Duan R, Hou J, Wang X, Huang Z, Cao H, Hu J, Peng Q, Duan H, Wang Q, Chen X. Prevotella histicola Transplantation Ameliorates Cognitive Impairment and Decreases Oxidative Stress in Vascular Dementia Rats. Brain Sci 2023; 13:1136. [PMID: 37626492 PMCID: PMC10452631 DOI: 10.3390/brainsci13081136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Vascular dementia is a type of dementia from brain damage caused by cerebrovascular lesions and vascular risk factors. Prevotella histicola is a species of Prevotella, belonging to the category of obligate anaerobe. The purpose of our work was to study the protection of Prevotella histicola on cognitive function in rats subjected to vascular dementia (VaD) and investigate underlying molecular mechanisms. The rats were randomly divided into three groups: control group, 2VO group and 2VO + Prevotella histicola group. The VaD rats (the 2VO group and 2VO + Prevotella histicola group) were generated by bilateral common carotid artery occlusion (2VO). Rats in the 2VO+ Prevotella histicola group were administered with Prevotella histicola twice daily. In comparison with the rats in the 2VO group, rats in the 2VO + Prevotella histicola group presented an enhanced cognitive ability, increased synapse-associated protein expression, a downregulation of proinflammatory factors and an upregulation of neurotrophic factors. The relevant mechanism of the protective effect of Prevotella histicola may be associated with the inhibition of glial cell-associated inflammation by regulating phosphorylation of CaMKII. In conclusion, Prevotella histicola attenuates neurological impairments via regulating synapse-associated protein expression and the liberation of inflammatory elements in vascular dementia rats. The findings above might benefit the development of Prevotella histicola transplantation as a promising treatment of VaD.
Collapse
Affiliation(s)
- Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; (R.D.); (J.H.); (X.W.); (Z.H.); (H.C.); (Q.P.)
| | - Jiankang Hou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; (R.D.); (J.H.); (X.W.); (Z.H.); (H.C.); (Q.P.)
| | - Xixi Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; (R.D.); (J.H.); (X.W.); (Z.H.); (H.C.); (Q.P.)
| | - Zhihang Huang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; (R.D.); (J.H.); (X.W.); (Z.H.); (H.C.); (Q.P.)
| | - Haiming Cao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; (R.D.); (J.H.); (X.W.); (Z.H.); (H.C.); (Q.P.)
| | - Junya Hu
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, China; (J.H.); (H.D.)
| | - Qiang Peng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; (R.D.); (J.H.); (X.W.); (Z.H.); (H.C.); (Q.P.)
| | - Huijie Duan
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, China; (J.H.); (H.D.)
| | - Qingguang Wang
- Department of Neurology, Jiangyin Hospital Affiliated to Nantong University, Wuxi 214400, China
| | - Xiangliang Chen
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; (R.D.); (J.H.); (X.W.); (Z.H.); (H.C.); (Q.P.)
| |
Collapse
|
148
|
Abstract
Pericytes are specialized cells located in close proximity to endothelial cells within the microvasculature. They play a crucial role in regulating blood flow, stabilizing vessel walls, and maintaining the integrity of the blood-brain barrier. The loss of pericytes has been associated with the development and progression of various diseases, such as diabetes, Alzheimer's disease, sepsis, stroke, and traumatic brain injury. This review examines the detection of pericyte loss in different diseases, explores the methods employed to assess pericyte coverage, and elucidates the potential mechanisms contributing to pericyte loss in these pathological conditions. Additionally, current therapeutic strategies targeting pericytes are discussed, along with potential future interventions aimed at preserving pericyte function and promoting disease mitigation.
Collapse
Affiliation(s)
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
149
|
Zhao X, Dai S, Zhang R, Chen X, Zhao M, Bergeron MF, Zhou X, Zhang J, Zhong L, Ashford JW, Liu X. Using MemTrax memory test to screen for post-stroke cognitive impairment after ischemic stroke: a cross-sectional study. Front Hum Neurosci 2023; 17:1195220. [PMID: 37529406 PMCID: PMC10387538 DOI: 10.3389/fnhum.2023.1195220] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023] Open
Abstract
Background Whereas the Montreal Cognitive Assessment (MoCA) and Addenbrooke's cognitive examination-revised (ACE-R) are commonly used tests for the detection of post-stroke cognitive impairment (PSCI), these instruments take 10-30 min to administer and do not assess processing speed, which is a critical impairment in PSCI. MemTrax (MTx) is a continuous recognition test, which evaluates complex information processing, accuracy, speed, and attention, in 2 min. Aim To evaluate whether MTx is an effective and practical tool for PSCI assessment. Methods This study enrolled acute ischemic stroke (AIS) patients who have assessed the cognitive status including MTx, clinical dementia rating (CDR), MoCA, Neuropsychiatric Inventory (NPI), Hamilton depression scale (HAMD), Hamilton anxiety scale (HAMA), the National Institute of Health Stroke Scale (NIHSS), modified Rankin scale (mRS), and Barthel Index of activity of daily living (BI) combined with the physical examinations of the neurologic system at the 90-day (D90) after the AIS. The primary endpoint of this study was establishing MTx cut-offs for distinguishing PSCI from AIS. Results Of the 104 participants, 60 were classified to the PSCI group. The optimized cut-off value of MTx-%C (percent correct) was 78%, with a sensitivity and specificity for detecting PSCI from Non-PSCI of 90.0 and 84.1%, respectively, and an AUC of 0.919. Regarding the MTx-Cp (Composite score = MTx-%C/MTx-RT), using 46.3 as a cut-off value, the sensitivity and specificity for detecting PSCI from Non-PSCI were 80.0 and 93.2%, with an AUC of 0.925. Multivariate linear regression showed that PSCI reduced the MTx-%C (Coef. -14.18, 95% CI -18.41∼-9.95, p < 0.001) and prolonged the MTx-RT (response time) (Coef. 0.29, 95% CI 0.16∼0.43, p < 0.001) and reduced the MTx-CP (Coef. -19.11, 95% CI -24.29∼-13.93, p < 0.001). Conclusion MemTrax (MTx) is valid and effective for screening for PSCI among target patients and is a potentially valuable and practical tool in the clinical follow-up, monitoring, and case management of PSCI.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Neurological Disease, Kunming, China
| | - Shujuan Dai
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Neurological Disease, Kunming, China
| | - Rong Zhang
- Department of Neurology, Kunming Second People’s Hospital, Kunming, Yunnan, China
| | - Xinjie Chen
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali, China
| | - Mingjie Zhao
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Neurological Disease, Kunming, China
| | - Michael F. Bergeron
- Department of Health Sciences, University of Hartford, West Hartford, CT, United States
| | - Xianbo Zhou
- Zhongze Therapeutics, Shanghai, China
- Center for Alzheimer’s Research, Washington Institute of Clinical Research, Vienna, VA, United States
| | - Junyan Zhang
- Department of Clinical Epidemiology and Evidence-based Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
- Bothwin Clinical Study Consultant, Shanghai, China
| | - Lianmei Zhong
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Neurological Disease, Kunming, China
| | - J. Wesson Ashford
- War Related Illness and Injury Study Center, VA Palo Alto Health Care System (HCS), Palo Alto, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Xiaolei Liu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Neurological Disease, Kunming, China
| |
Collapse
|
150
|
Ng YL, Tan CS, Egle M, Gyanwali B, Tozer DJ, Markus HS, Chen C, Hilal S. The association of diffusion tensor MRI measures of normal appearing white matter and cognition. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 5:100174. [PMID: 37457665 PMCID: PMC10344700 DOI: 10.1016/j.cccb.2023.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/29/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
Objective Median and peak height of fractional anisotropy (FA) and mean diffusivity (MD) are diffusion tensor imaging (DTI) markers used to quantify white matter microstructure changes. We examine the association of DTI histogram-derived measures in global normal appearing white matter (NAWM) and cognitive decline in patients with normal cognition and cognitive impairment no dementia from a memory clinic in Singapore. Methods A total of 252 patients (mean age: 71.1 ± 7.6 years, 53.2% women) were included. All patients underwent clinical assessments, a brain MRI scan at baseline, and neuropsychological assessments annually for 2 years. DTI scans were processed to obtain MD and FA histogram-derived measures. The National Institute of Neurological Disorders and Stroke and the Canadian Stroke Network harmonization neuropsychological battery were used to assess cognitive function. Linear regression models with generalised estimating equation (GEE) and logistic regression models were used to examine the association between DTI histogram measures and cognitive decline. Results When compared to baseline, MD and FA measures at Year 2 were associated with an accelerated worsening in global cognition (all p for interaction <0.001; Year 0 vs 2, MD median: -0.29 (95%CI: -0.49, -0.09) vs -0.45 (95%CI: -0.65,-0.25); MD peak height: 0.22 (95%CI: 0.07, 0.37) vs 0.37 (95%CI: 0.21, 0.53); FA median: 0.11 (95%CI: -0.05, 0.26) vs 0.22 (95%CI: 0.07, 0.37); FA peak height: -0.14 (95%CI: -0.28, 0.00) vs -0.24 (95%CI: -0.38, -0.10);). Similar findings were observed for executive function and visuomotor speed while only MD measures predicted worsening in memory domain. Interpretation This study shows that DTI histogram measures are associated with accelerated cognitive decline suggesting the utility of DTI as a pre-clinical marker in predicting the worsening of cognition in clinical trials.
Collapse
Affiliation(s)
- Yi Lin Ng
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Chuen Seng Tan
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Marco Egle
- Department of Clinical Neurosciences, Stroke Research Group, University of Cambridge, Cambridge, United Kingdom
| | - Bibek Gyanwali
- Memory Aging and Cognition Centre, National University Health System, Singapore
| | - Daniel J. Tozer
- Department of Clinical Neurosciences, Stroke Research Group, University of Cambridge, Cambridge, United Kingdom
| | - Hugh S. Markus
- Department of Clinical Neurosciences, Stroke Research Group, University of Cambridge, Cambridge, United Kingdom
| | - Christopher Chen
- Memory Aging and Cognition Centre, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Saima Hilal
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|