101
|
Kozik A, Huang YJ. Ecological interactions in asthma: from environment to microbiota and immune responses. Curr Opin Pulm Med 2020; 26:27-32. [PMID: 31567329 PMCID: PMC7147973 DOI: 10.1097/mcp.0000000000000632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Asthma is a heterogeneous condition shaped not only by genetics but also host conditioning by environmental factors. Recognizing the ecological context of microbe-immune interactions across environments and body sites is a necessary step toward better understanding how human microbiota influence or drive the pathogenesis and pathophysiology of asthma in its various presentations. RECENT FINDINGS There is increasing evidence of a critical role for microbiota in asthma pathogenesis and outcomes across various body compartments, including the upper and lower airways, and gut. We discuss recent studies from this area including: development of a method to quantify microbial farm-effect in nonfarm environments, relationships between environmental microbial exposures and asthma prevalence across different geographies, microbiome-mediated responses to ozone, and microbiome-immune interactions within and across body compartments. Beyond bacteria, recent reports of asthma-associated differences in archaea and fungal organisms also are highlighted. SUMMARY Collective evidence warrants application of an ecological framework to advance mechanistic insights into microbiota-immune interactions in asthma. This is necessary to achieve goals of developing successful therapeutic interventions targeting modification of microbiomes.
Collapse
Affiliation(s)
- Ariangela Kozik
- University of Michigan, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, 6301B MSRB3/SPC5642, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-5642
| | - Yvonne J. Huang
- University of Michigan, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, 6301B MSRB3/SPC5642, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-5642
| |
Collapse
|
102
|
Abstract
The diagnosis of asthma can be particularly difficult in young children, in whom wheezing is not always synonym with asthma. It is also difficult to predict which preschool children with wheeze will go on to be true asthmatics. In this chapter, we will characterize preschool wheezing and asthma and discuss early risk factors for the development of severe asthma. We will also review risk factors for severe acute wheezing in young children. Finally, we will describe the natural history and prognosis of wheezing and some of the attempts at early identification of children who will develop severe asthma.
Collapse
Affiliation(s)
- Erick Forno
- Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Sejal Saglani
- Imperial College London, National Heart & Lung Institute, London, UK
| |
Collapse
|
103
|
Michalovich D, Rodriguez-Perez N, Smolinska S, Pirozynski M, Mayhew D, Uddin S, Van Horn S, Sokolowska M, Altunbulakli C, Eljaszewicz A, Pugin B, Barcik W, Kurnik-Lucka M, Saunders KA, Simpson KD, Schmid-Grendelmeier P, Ferstl R, Frei R, Sievi N, Kohler M, Gajdanowicz P, Graversen KB, Lindholm Bøgh K, Jutel M, Brown JR, Akdis CA, Hessel EM, O'Mahony L. Obesity and disease severity magnify disturbed microbiome-immune interactions in asthma patients. Nat Commun 2019; 10:5711. [PMID: 31836714 PMCID: PMC6911092 DOI: 10.1038/s41467-019-13751-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
In order to improve targeted therapeutic approaches for asthma patients, insights into the molecular mechanisms that differentially contribute to disease phenotypes, such as obese asthmatics or severe asthmatics, are required. Here we report immunological and microbiome alterations in obese asthmatics (n = 50, mean age = 45), non-obese asthmatics (n = 53, mean age = 40), obese non-asthmatics (n = 51, mean age = 44) and their healthy counterparts (n = 48, mean age = 39). Obesity is associated with elevated proinflammatory signatures, which are enhanced in the presence of asthma. Similarly, obesity or asthma induced changes in the composition of the microbiota, while an additive effect is observed in obese asthma patients. Asthma disease severity is negatively correlated with fecal Akkermansia muciniphila levels. Administration of A. muciniphila to murine models significantly reduces airway hyper-reactivity and airway inflammation. Changes in immunological processes and microbiota composition are accentuated in obese asthma patients due to the additive effects of both disease states, while A. muciniphila may play a non-redundant role in patients with a severe asthma phenotype.
Collapse
Affiliation(s)
| | - Noelia Rodriguez-Perez
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sylwia Smolinska
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland.,ALL-MED' Medical Research Institute, Wroclaw, Poland
| | - Michal Pirozynski
- Department of Allergology and Pulmonology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - David Mayhew
- Computational Biology, Human Genetics, GSK R&D, Collegeville, PA, USA
| | - Sorif Uddin
- Adaptive Immunity Research Unit, GSK R&D, Stevenage, UK.,Boehringer Ingelheim, 88397, Biberach an der Riß, Germany
| | - Stephanie Van Horn
- Target and Pathway Validation, Target Sciences, GSK R&D, Collegeville, PA, USA
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Can Altunbulakli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Andrzej Eljaszewicz
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Benoit Pugin
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Weronika Barcik
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | | | | | | | - Peter Schmid-Grendelmeier
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | - Ruth Ferstl
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Remo Frei
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Noriane Sievi
- Pulmonary Division, University Hospital of Zurich, Zurich, Switzerland
| | - Malcolm Kohler
- Pulmonary Division, University Hospital of Zurich, Zurich, Switzerland
| | - Pawel Gajdanowicz
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland.,ALL-MED' Medical Research Institute, Wroclaw, Poland
| | - Katrine B Graversen
- National Food Institute, Technical University of Denmark, Copenhagen, Denmark
| | | | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland.,ALL-MED' Medical Research Institute, Wroclaw, Poland
| | - James R Brown
- Computational Biology, Human Genetics, GSK R&D, Collegeville, PA, USA
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | | | - Liam O'Mahony
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland. .,Depts of Medicine and Microbiology, APC Microbiome Ireland, National University of Ireland, Cork, Ireland.
| |
Collapse
|
104
|
Sbihi H, Boutin RCT, Cutler C, Suen M, Finlay BB, Turvey SE. Thinking bigger: How early-life environmental exposures shape the gut microbiome and influence the development of asthma and allergic disease. Allergy 2019; 74:2103-2115. [PMID: 30964945 DOI: 10.1111/all.13812] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/27/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023]
Abstract
Imbalance, or dysbiosis, of the gut microbiome of infants has been linked to an increased risk of asthma and allergic diseases. Most studies to date have provided a wealth of data showing correlations between early-life risk factors for disease and changes in the structure of the gut microbiome that disrupt normal immunoregulation. These studies have typically focused on one specific risk factor, such as mode of delivery or early-life antibiotic use. Such "micro-level" exposures have a considerable impact on affected individuals but not necessarily the whole population. In this review, we place these mechanisms under a larger lens that takes into account the influence of upstream "macro-level" environmental factors such as air pollution and the built environment. While these exposures likely have a smaller impact on the microbiome at an individual level, their ubiquitous nature confers them with a large influence at the population level. We focus on features of the indoor and outdoor human-made environment, their microbiomes and the research challenges inherent in integrating the built environment microbiomes with the early-life gut microbiome. We argue that an exposome perspective integrating internal and external microbiomes with macro-level environmental factors can provide a more comprehensive framework to define how environmental exposures can shape the gut microbiome and influence the development of allergic disease.
Collapse
Affiliation(s)
- Hind Sbihi
- Department of Pediatrics, British Columbia Children’s Hospital The University of British Columbia Vancouver British Columbia Canada
| | - Rozlyn CT. Boutin
- Department of Microbiology and Immunology, Michael Smith Laboratories The University of British Columbia Vancouver British Columbia Canada
| | - Chelsea Cutler
- Department of Pediatrics, British Columbia Children’s Hospital The University of British Columbia Vancouver British Columbia Canada
| | - Mandy Suen
- Department of Pediatrics, British Columbia Children’s Hospital The University of British Columbia Vancouver British Columbia Canada
| | - B. Brett Finlay
- Department of Microbiology and Immunology, Michael Smith Laboratories The University of British Columbia Vancouver British Columbia Canada
| | - Stuart E. Turvey
- Department of Pediatrics, British Columbia Children’s Hospital The University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
105
|
Affiliation(s)
- Shilpa J Patel
- Division of Emergency Medicine, Children's National Medical Center, Washington, DC
| | - Stephen J Teach
- Division of Emergency Medicine, Children's National Medical Center, Washington, DC
| |
Collapse
|
106
|
Diamant Z, Vijverberg S, Alving K, Bakirtas A, Bjermer L, Custovic A, Dahlen S, Gaga M, Gerth van Wijk R, Del Giacco S, Hamelmann E, Heaney LG, Heffler E, Kalayci Ö, Kostikas K, Lutter R, Olin A, Sergejeva S, Simpson A, Sterk PJ, Tufvesson E, Agache I, Seys SF. Toward clinically applicable biomarkers for asthma: An EAACI position paper. Allergy 2019; 74:1835-1851. [PMID: 30953574 DOI: 10.1111/all.13806] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 12/13/2022]
Abstract
Inflammation, structural, and functional abnormalities within the airways are key features of asthma. Although these processes are well documented, their expression varies across the heterogeneous spectrum of asthma. Type 2 inflammatory responses are characterized by increased levels of eosinophils, FeNO, and type 2 cytokines in blood and/or airways. Presently, type 2 asthma is the best-defined endotype, typically found in patients with allergic asthma, but surprisingly also in nonallergic patients with (severe) asthma. The etiology of asthma with non-type 2 inflammation is less clear. During the past decade, targeted therapies, including biologicals and small molecules, have been increasingly integrated into treatment strategies of severe asthma. These treatments block specific inflammatory pathways or single mediators. Single or composite biomarkers help to identify patients who will benefit from these treatments. So far, only a few inflammatory biomarkers have been validated for clinical application. The European Academy of Allergy & Clinical Immunology Task Force on Biomarkers in Asthma was initiated to review different biomarker sampling methods and to investigate clinical applicability of new and existing inflammatory biomarkers (point-of-care) to support diagnosis, targeted treatment, and monitoring of severe asthma. Subsequently, we discuss existing and novel targeted therapies for asthma as well as applicable biomarkers.
Collapse
Affiliation(s)
- Zuzana Diamant
- Department of Respiratory Medicine and Allergology Institute for Clinical Science Skane University Hospital Lund Sweden
- Department of Clinical Pharmacy and Pharmacology UMCG and QPS‐NL Groningen The Netherlands
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
| | - Susanne Vijverberg
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Kjell Alving
- Department of Women's and Children's Health Uppsala University Uppsala Sweden
| | - Arzu Bakirtas
- Department of Pediatrics Division of Pediatric Allergy and Asthma Gazi University School of Medicine Ankara Turkey
| | - Leif Bjermer
- Department of Clinical Pharmacy and Pharmacology UMCG and QPS‐NL Groningen The Netherlands
| | - Adnan Custovic
- Section of Paediatrics Department of Medicine Imperial College London London UK
| | - Sven‐Erik Dahlen
- Experimental Asthma and Allergy Research Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
| | - Mina Gaga
- 7th Respiratory Medicine Department and Asthma Centre Athens Chest Hospital Athens Greece
| | - Roy Gerth van Wijk
- Section of Allergology Department of Internal Medicine Erasmus Medical Center Rotterdam the Netherlands
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health University of Cagliari Cagliari Italy
| | - Eckard Hamelmann
- Children's Center Protestant Hospital Bethel Bielefeld Germany
- Allergy Center Ruhr University Bochum Bochum Germany
| | - Liam G. Heaney
- Centre for Experimental Medicine, School of MedicineDentistry and Biomedical Sciences, Queen's University Belfast Belfast UK
| | - Enrico Heffler
- Department of Biomedical Sciences Humanitas University Milan Italy
- Personalized Medicine, Asthma and Allergy Humanitas Research Hospital Milan Italy
| | - Ömer Kalayci
- Division of Pediatric Allergy Faculty of Medicine Hacettepe University Ankara Turkey
| | - Konstantinos Kostikas
- Respiratory Medicine Department University of Ioannina Medical School Ioannina Greece
| | - Rene Lutter
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Anna‐Carin Olin
- Section of Occupational and Environmental Medicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | | | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine Faculty of Biology, Medicine and Health Manchester Academic Health Sciences Centre University of Manchester and University Hospital of South Manchester NHS Foundation Trust Manchester UK
| | - Peter J. Sterk
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Ellen Tufvesson
- Department of Clinical Pharmacy and Pharmacology UMCG and QPS‐NL Groningen The Netherlands
| | - Ioana Agache
- Department of Allergy and Clinical Immunology Faculty of Medicine Transylvania University Brasov Brasov Romania
| | - Sven F. Seys
- Allergy and Clinical Immunology Research Group Department of Microbiology, Immunology and Transplantation KU Leuven Leuven Belgium
| |
Collapse
|
107
|
Interactions between microbiome and lungs: Paving new paths for microbiome based bio-engineered drug delivery systems in chronic respiratory diseases. Chem Biol Interact 2019; 310:108732. [DOI: 10.1016/j.cbi.2019.108732] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/18/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022]
|
108
|
López Caro JC, Santibáñez M, García Rivero JL, Villanueva M, Sainz J, González Astorqui P, Hierro M, Rodríguez Porres M, Paras Bravo P, Mira A, Rodriguez JC, Galiana A. Sputum Microbiome Dynamics in Chronic Obstructive Pulmonary Disease Patients during an Exacerbation Event and Post-Stabilization. Respiration 2019; 98:447-454. [PMID: 31437842 DOI: 10.1159/000501988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 07/08/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) affects up to 65 million people worldwide, and COPD exacerbation causes tissue damage and subsequent loss of lung function. It is a multifactorial event in which respiratory infections are involved, but little is known about its dynamics. OBJECTIVES The objective of our study was to determine the microbiome composition during an exacerbation event and post-stabilization. METHODS We conducted an observational analytical study of a cohort of 55 COPD patients in which 2 sputum samples (the first taken during an exacerbation event and the second during clinical post-stabilization) were submitted to 16s RNA ribosomal analysis by Illumina Miseq Next Generation Sequencing (NGS). The presence of respiratory viruses was also determined. RESULTS Our study found a stable microbiome composition in the post-stabilization sputum samples of COPD patients, and 4 additional microbiomes in samples taken during the exacerbation, 3 of which showed a marked dysbiosis by Haemophilus, Pseudomonas, and Serratia. The fourth exacerbation microbiome had a very similar composition to post-stabilization samples, but some pathogens such as Moraxella and respiratory viruses were also found. CONCLUSIONS Our study reveals the main protagonists involved in lung microbiome dynamics during an exacerbation event and post-stabilization in COPD patients by NGS analysis.
Collapse
Affiliation(s)
| | - Miguel Santibáñez
- Nursing Department, Universidad de Cantabria-IDIVAL, Santander, Spain
| | - Juan Luis García Rivero
- Department of Pneumology, Hospital de Laredo, Servicio Cántabro de Salud (SCS), Laredo, Spain
| | - Manuel Villanueva
- Department of Pneumology, Hospital de Avilés, Servicio de Salud del Principado de Asturias, Avilés, Spain
| | - Jesús Sainz
- Centro de Salud de Santoña, Servicio Cántabro de Salud (SCS), Castro Urdiales, Santoña, Spain
| | | | - Margarita Hierro
- Centro de Salud de La Barrera, Servicio Cántabro de Salud (SCS), Castro Urdiales, Spain
| | | | - Paula Paras Bravo
- Nursing Department, Universidad de Cantabria-IDIVAL, Santander, Spain
| | - Alex Mira
- Oral Microbiome Laboratory, Centro Superior de Investigación en Salud Pública (CSISP-FISABIO), Conselleria de Sanitat, Valencia, Spain
| | - Juan Carlos Rodriguez
- Department of Microbiology, University General Hospital of Alicante (ISABIAL), Alicante, Spain
| | - Antonio Galiana
- Fundacion para el Fomento de la Investigacion Sanitaria y Biomedica de la Comunidad Valenciana, Department of Microbiology, University General Hospital of Elche, Elche, Alicante, Spain,
| | | |
Collapse
|
109
|
Siebert JC, Neff CP, Schneider JM, Regner EH, Ohri N, Kuhn KA, Palmer BE, Lozupone CA, Görg C. VOLARE: visual analysis of disease-associated microbiome-immune system interplay. BMC Bioinformatics 2019; 20:432. [PMID: 31429723 PMCID: PMC6701114 DOI: 10.1186/s12859-019-3021-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/06/2019] [Indexed: 02/08/2023] Open
Abstract
Background Relationships between specific microbes and proper immune system development, composition, and function have been reported in a number of studies. However, researchers have discovered only a fraction of the likely relationships. “Omic” methodologies such as 16S ribosomal RNA (rRNA) sequencing and time-of-flight mass cytometry (CyTOF) immunophenotyping generate data that support generation of hypotheses, with the potential to identify additional relationships at a level of granularity ripe for further experimentation. Pairwise linear regressions between microbial and host immune features provide one approach for quantifying relationships between “omes”, and the differences in these relationships across study cohorts or arms. This approach yields a top table of candidate results. However, the top table alone lacks the detail that domain experts such as microbiologists and immunologists need to vet candidate results for follow-up experiments. Results To support this vetting, we developed VOLARE (Visualization Of LineAr Regression Elements), a web application that integrates a searchable top table, small in-line graphs illustrating the fitted models, a network summarizing the top table, and on-demand detailed regression plots showing full sample-level detail. We applied VOLARE to three case studies—microbiome:cytokine data from fecal samples in human immunodeficiency virus (HIV), microbiome:cytokine data in inflammatory bowel disease and spondyloarthritis, and microbiome:immune cell data from gut biopsies in HIV. We present both patient-specific phenomena and relationships that differ by disease state. We also analyzed interaction data from system logs to characterize usage scenarios. This log analysis revealed that users frequently generated detailed regression plots, suggesting that this detail aids the vetting of results. Conclusions Systematically integrating microbe:immune cell readouts through pairwise linear regressions and presenting the top table in an interactive environment supports the vetting of results for scientific relevance. VOLARE allows domain experts to control the analysis of their results, screening dozens of candidate relationships with ease. This interactive environment transcends the limitations of a static top table. Electronic supplementary material The online version of this article (10.1186/s12859-019-3021-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janet C Siebert
- Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA. .,CytoAnalytics, Denver, CO, 80113, USA.
| | - Charles Preston Neff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jennifer M Schneider
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Emilie H Regner
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Neha Ohri
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kristine A Kuhn
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Brent E Palmer
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Catherine A Lozupone
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | | |
Collapse
|
110
|
Ma T, Xiao D, Xing X. MetaBMF: a scalable binning algorithm for large-scale reference-free metagenomic studies. Bioinformatics 2019; 36:356-363. [PMID: 31347687 PMCID: PMC7868002 DOI: 10.1093/bioinformatics/btz577] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/21/2019] [Accepted: 07/18/2019] [Indexed: 01/31/2023] Open
Abstract
MOTIVATION Metagenomics studies microbial genomes in an ecosystem such as the gastrointestinal tract of a human. Identification of novel microbial species and quantification of their distributional variations among different samples that are sequenced using next-generation-sequencing technology hold the key to the success of most metagenomic studies. To achieve these goals, we propose a simple yet powerful metagenomic binning method, MetaBMF. The method does not require prior knowledge of reference genomes and produces highly accurate results, even at a strain level. Thus, it can be broadly used to identify disease-related microbial organisms that are not well-studied. RESULTS Mathematically, we count the number of mapped reads on each assembled genomic fragment cross different samples as our input matrix and propose a scalable stratified angle regression algorithm to factorize this count matrix into a product of a binary matrix and a nonnegative matrix. The binary matrix can be used to separate microbial species and the nonnegative matrix quantifies the species distributions in different samples. In simulation and empirical studies, we demonstrate that MetaBMF has a high binning accuracy. It can not only bin DNA fragments accurately at a species level but also at a strain level. As shown in our example, we can accurately identify the Shiga-toxigenic Escherichia coli O104: H4 strain which led to the 2011 German E.coli outbreak. Our efforts in these areas should lead to (i) fundamental advances in metagenomic binning, (ii) development and refinement of technology for the rapid identification and quantification of microbial distributions and (iii) finding of potential probiotics or reliable pathogenic bacterial strains. AVAILABILITY AND IMPLEMENTATION The software is available at https://github.com/didi10384/MetaBMF.
Collapse
Affiliation(s)
- Terry Ma
- Department of Statistics, University of Georgia, Athens, GA 30601
| | - Di Xiao
- Department of Statistics, University of Georgia, Athens, GA 30601
| | - Xin Xing
- To whom correspondence should be addressed.
| |
Collapse
|
111
|
Dey P. Gut microbiota in phytopharmacology: A comprehensive overview of concepts, reciprocal interactions, biotransformations and mode of actions. Pharmacol Res 2019; 147:104367. [PMID: 31344423 DOI: 10.1016/j.phrs.2019.104367] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
Abstract
The dynamic and delicate interactions amongst intestinal microbiota, metabolome and metabolism dictates human health and disease. In recent years, our understanding of gut microbial regulation of intestinal immunometabolic and redox homeostasis have evolved mainly out of in vivo studies associated with high-fat feeding induced metabolic diseases. Techniques utilizing fecal transplantation and germ-free mice have been instrumental in reproducibly demonstrating how the gut microbiota affects disease pathogenesis. However, the pillars of modern drug discovery i.e. evidence-based pharmacological studies critically lack focus on intestinal microflora. This is primarily due to targeted in vitro molecular-approaches at cellular-level that largely overlook the etiology of disease pathogenesis from the physiological perspective. Thus, this review aims to provide a comprehensive understanding of the key notions of intestinal microbiota and dysbiosis, and highlight the microbiota-phytochemical bidirectional interactions that affects bioavailability and bioactivity of parent phytochemicals and their metabolites. Potentially by focusing on the three major aspects of gut microbiota i.e. microbial abundance, diversity, and functions, I will discuss phytochemical-microbiota reciprocal interactions, biotransformation of phytochemicals and plant-derived drugs, and pre-clinical and clinical efficacies of herbal medicine on dysbiosis. Additionally, in relation to phytochemical pharmacology, I will briefly discuss the role of dietary-patterns associated with changes in microbial profiles and review pharmacological study models considering possible microbial effects. This review therefore, emphasize on the timely and critically needed evidence-based phytochemical studies focusing on gut microbiota and will provide newer insights for future pre-clinical and clinical phytopharmacological interventions.
Collapse
Affiliation(s)
- Priyankar Dey
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
112
|
Dhakal S, Wang L, Antony L, Rank J, Bernardo P, Ghimire S, Bondra K, Siems C, Lakshmanappa YS, Renu S, Hogshead B, Krakowka S, Kauffman M, Scaria J, LeJeune JT, Yu Z, Renukaradhya GJ. Amish (Rural) vs. non-Amish (Urban) Infant Fecal Microbiotas Are Highly Diverse and Their Transplantation Lead to Differences in Mucosal Immune Maturation in a Humanized Germfree Piglet Model. Front Immunol 2019; 10:1509. [PMID: 31379808 PMCID: PMC6648804 DOI: 10.3389/fimmu.2019.01509] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome plays an important role in the immune system development, maintenance of normal health status, and in disease progression. In this study, we comparatively examined the fecal microbiomes of Amish (rural) and non-Amish (urban) infants and investigated how they could affect the mucosal immune maturation in germ-free piglets that were inoculated with the two types of infant fecal microbiota (IFM). Differences in microbiome diversity and structure were noted between the two types of fecal microbiotas. The fecal microbiota of the non-Amish (urban) infants had a greater relative abundance of Actinobacteria and Bacteroidetes phyla, while that of the Amish (rural) counterparts was dominated by Firmicutes. Amish infants had greater species richness compared with the non-Amish infants' microbiota. The fecal microbiotas of the Amish and the non-Amish infants were successfully transplanted into germ-free piglets, and the diversity and structure of the microbiota in the transplanted piglets remained similar at phylum level but not at the genus level. Principal coordinates analysis (PCoA) based on Weighted-UniFrac distance revealed distinct microbiota structure in the intestines of the transplanted piglets. Shotgun metagenomic analysis also revealed clear differences in functional diversity of fecal microbiome between Amish and non-Amish donors as well as microbiota transplanted piglets. Specific functional features were enriched in either of the microbiota transplanted piglet groups directly corresponding to the predominance of certain bacterial populations in their gut environment. Some of the colonized bacterial genera were correlated with the frequency of important lymphoid and myeloid immune cells in the ileal submucosa and mesenteric lymph nodes (MLN), both important for mucosal immune maturation. Overall, this study demonstrated that transplantation of diverse IFM into germ-free piglets largely recapitulates the differences in gut microbiota structure between rural (Amish) and urban (non-Amish) infants. Thus, fecal microbiota transplantation to germ-free piglets could be a useful large animal model system for elucidating the impact of gut microbiota on the mucosal immune system development. Future studies can focus on determining the additional advantages of the pig model over the rodent model.
Collapse
Affiliation(s)
- Santosh Dhakal
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Lingling Wang
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, OH, United States
| | - Linto Antony
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States
| | - Jennifer Rank
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Pauline Bernardo
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Shristi Ghimire
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Kathy Bondra
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Christina Siems
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Yashavanth Shaan Lakshmanappa
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Sankar Renu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Bradley Hogshead
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Steven Krakowka
- The Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Mike Kauffman
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States
| | - Jeffrey T LeJeune
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Zhongtang Yu
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, OH, United States
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
113
|
Hansen R, Gerasimidis K, Turner S. Asthma causation and the gastrointestinal microbiome and metabolome: Might there be a signal, or is it just noise? J Allergy Clin Immunol 2019; 144:401-403. [PMID: 31078572 DOI: 10.1016/j.jaci.2019.04.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/17/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Richard Hansen
- Department of Paediatric Gastroenterology, Royal Hospital for Children, Glasgow, United Kingdom
| | | | - Steve Turner
- Child Health, University of Aberdeen, Aberdeen, United Kingdom.
| |
Collapse
|
114
|
Mikrobiom der Lungen. Monatsschr Kinderheilkd 2019. [DOI: 10.1007/s00112-019-0691-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
115
|
Christou EAA, Giardino G, Stefanaki E, Ladomenou F. Asthma: An Undermined State of Immunodeficiency. Int Rev Immunol 2019; 38:70-78. [PMID: 30939053 DOI: 10.1080/08830185.2019.1588267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Asthma is a heterogeneous chronic respiratory disease characterized by an increased burden of infections. Respiratory tract infections associated with an increased risk for asthma especially when occurring in the first months of life, also represent the most common cause of asthma exacerbations. The association between asthma and the increased frequency of infections and microbiota dysbiosis might be explained by a common mechanism, such as an underlying immune system defect. Apart from the well-established association between primary immunodeficiencies and asthma, several alterations in the immune response following infection have also been observed in asthmatic patients. An impairment in lung epithelial barrier integrity exists and is associated with both an increased susceptibility to infections and the development of asthma. Asthmatic patients are also found to have a deficient interferon (IFN) response upon infection. Additionally, defects in Toll-like receptor (TLR) signaling are observed in asthma and are correlated with both recurrent infections and asthma development. In this review, we summarize the common pathophysiological background of asthma and infections, highlighting the importance of an underlying immune system defect that predispose individuals to recurrent infections and asthma.
Collapse
Affiliation(s)
| | - Giuliana Giardino
- b Department of Translational Medical Sciences , University of Naples Federico II , Naples , Italy
| | - Evangelia Stefanaki
- c Department of Pediatrics , Venizeleion General Hospital , Heraklion , Greece
| | - Fani Ladomenou
- c Department of Pediatrics , Venizeleion General Hospital , Heraklion , Greece
| |
Collapse
|
116
|
Muñoz X, Barreiro E, Bustamante V, Lopez-Campos JL, González-Barcala FJ, Cruz MJ. Diesel exhausts particles: Their role in increasing the incidence of asthma. Reviewing the evidence of a causal link. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:1129-1138. [PMID: 30586799 DOI: 10.1016/j.scitotenv.2018.10.188] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/13/2018] [Accepted: 10/13/2018] [Indexed: 05/12/2023]
Abstract
Exposure to air pollutants has been correlated with an increase in the severity of asthma and in the exacerbation of pre-existing asthma. However, whether or not environmental pollution can cause asthma remains a controversial issue. The present review analyzes the current scientific evidence of the possible causal link between diesel exhaust particles (DEP), the solid fraction of the complex mixture of diesel exhaust, and asthma. The mechanisms that influence the expression and development of asthma are complex. In children prolonged exposure to pollutants such as DEPs may increase asthma prevalence. In adults, this causal relation is less clear, probably because of the heterogeneity of the studies carried out. There is also evidence of physiological mechanisms by which DEPs can cause asthma. The most frequently described interactions between cellular responses and DEP are the induction of pulmonary oxidative stress and inflammation and the activation of receptors of the bronchial epithelium such as toll-like receptors or increases in Th2 and Th17 cytokines, which generally orchestrate the asthmatic response. Others support indirect mechanisms through epigenetic changes, pulmonary microbiome modifications, or the interaction of DEP with environmental antigens to enhance their activity. However, in spite of this evidence, more studies are needed to assess the harmful effects of pollution - not only in the short term in the form of increases in the rate of exacerbations, but in the medium and long term as well, as a possible trigger of the disease.
Collapse
Affiliation(s)
- X Muñoz
- Pulmonology Service, Medicine Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - E Barreiro
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Pulmonology Department-Muscle Research and Respiratory System Unit (URMAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM)-Hospital del Mar, Department of Experimental and Health Sciences (CEXS), Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - V Bustamante
- Pneumology Department, Hospital Universitario Basurto, Osakidetza/University of the Basque Country, Bilbao, Spain
| | - J L Lopez-Campos
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Unidad Médico-quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain
| | - F J González-Barcala
- Respiratory Department, Clinic University Hospital, Santiago de Compostela, Spain
| | - M J Cruz
- Pulmonology Service, Medicine Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
117
|
Siebert JC, Görg C, Palmer B, Lozupone C. Visualizing microbiome-immune system interplay. Immunotherapy 2019; 11:63-67. [PMID: 30730269 PMCID: PMC6354219 DOI: 10.2217/imt-2018-0138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Janet C Siebert
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- CytoAnalytics, Denver, CO 80113, USA
| | - Carsten Görg
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brent Palmer
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Catherine Lozupone
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
118
|
Mazel-Sanchez B, Yildiz S, Schmolke M. Ménage à trois: Virus, Host, and Microbiota in Experimental Infection Models. Trends Microbiol 2019; 27:440-452. [PMID: 30638775 DOI: 10.1016/j.tim.2018.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/29/2018] [Accepted: 12/13/2018] [Indexed: 12/22/2022]
Abstract
Infections of mammals with pathogenic viruses occur mostly in the polymicrobial environment of mucosal surfaces or the skin. In recent years our understanding of immune modulation by the commensal microbiota has increased dramatically. The microbiota is today accepted as the prime educator and maintainer of innate and adaptive immune functions. It became further apparent that some viral pathogens profit from the presence of commensal bacteria and their metabolites, especially in the intestinal tract. We further learned that the composition and abundance of the microbiota can change as a consequence of acute and chronic viral infections. Here we discuss recent developments in our understanding of the triangular relationship of virus, host, and microbiota under experimental infection settings.
Collapse
Affiliation(s)
- Beryl Mazel-Sanchez
- Department of Microbiology and Molecular Medicine, University of Geneva, Switzerland
| | - Soner Yildiz
- Department of Microbiology and Molecular Medicine, University of Geneva, Switzerland
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, University of Geneva, Switzerland.
| |
Collapse
|
119
|
Pang Z, Wang G, Gibson P, Guan X, Zhang W, Zheng R, Chen F, Wang Z, Wang F. Airway Microbiome in Different Inflammatory Phenotypes of Asthma: A Cross-Sectional Study in Northeast China. Int J Med Sci 2019; 16:477-485. [PMID: 30911282 PMCID: PMC6428974 DOI: 10.7150/ijms.29433] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 02/14/2019] [Indexed: 02/07/2023] Open
Abstract
Background and Objective: Asthma is a common respiratory disease with a high prevalence and morbidity that can seriously affect quality of life. Microbial colonization of the airway may participate in the pathogenesis of asthma, however the mechanisms involved have not been established. In the present study, we aimed to determine the composition of the microbiota in different asthmatic phenotypes from Northeast China. Methods: 24 mild-to-moderate asthmatics (10 eosinophilic asthma and 14 non-eosinophilic asthma) and 12 healthy volunteers participated in this cross-sectional study. DNA was extracted from their induced sputum and amplified for 16s rRNA gene sequencing on Illumina Miseq platform. Bioinformatic analysis on the microbiome was performed. Results: Alpha-diversity analysis showed that the asthmatics had a decreased richness, evenness and diversity. Non-eosinophilic asthmatics showed a decreased richness, evenness and diversity compared with eosinophilic patients. A different taxonomy of 1 phylum and 6 genera taxa between the phenotypes was identified. Compared with heathy controls, asthmatics existed a larger taxonomic difference (P<0.05 for both EA and NEA vs. HC). 5 genera as the dominance in the microbial co-occurrence network correlated with the spirometry and disease progression of asthma. The function of microbiota genes was predicted to be related with infectious, immune and metabolic diseases. Conclusion: The diversity and composition of the airway microbiome was associated with the pathogenesis of asthma in different phenotypes. The diverse composition has been identified in the present study.
Collapse
Affiliation(s)
- Zhiqiang Pang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Guoqiang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Peter Gibson
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, Australia
| | - Xuewa Guan
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Weijie Zhang
- Third Department of Respiratory Disease, Jilin Provincial People's Hospital, Changchun, China
| | - Ruipeng Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China.,Department of Interventional Therapy, Bethune First Hospital, Jilin University, Changchun, China
| | - Fang Chen
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Ziyan Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
120
|
Kim HB. Modifiable prenatal environmental factors for the prevention of childhood asthma. ALLERGY ASTHMA & RESPIRATORY DISEASE 2019; 7:179. [DOI: 10.4168/aard.2019.7.4.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 09/01/2023]
Affiliation(s)
- Hyo-Bin Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
| |
Collapse
|
121
|
Mezouar S, Chantran Y, Michel J, Fabre A, Dubus JC, Leone M, Sereme Y, Mège JL, Ranque S, Desnues B, Chanez P, Vitte J. Microbiome and the immune system: From a healthy steady-state to allergy associated disruption. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.humic.2018.10.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
122
|
Malcomson FC. Mechanisms underlying the effects of nutrition, adiposity and physical activity on colorectal cancer risk. NUTR BULL 2018. [DOI: 10.1111/nbu.12359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
123
|
Mendy A, Wilkerson J, Salo PM, Cohn RD, Zeldin DC, Thorne PS. Exposure and Sensitization to Pets Modify Endotoxin Association with Asthma and Wheeze. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2018; 6:2006-2013.e4. [PMID: 29684578 PMCID: PMC6524530 DOI: 10.1016/j.jaip.2018.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Pets are major contributors of endotoxin in homes, but whether they influence endotoxin association with respiratory outcomes is unclear. OBJECTIVE To examine whether exposure and sensitization to dog and cat modify the relationship between endotoxin exposure and asthma and wheeze. METHODS We analyzed data from 6051 participants in the 2005-2006 cycle of the National Health and Nutrition Examination Survey (NHANES). House dust from bedroom floor and bedding was evaluated for endotoxin and for dog (Canis familiaris 1) and cat (Feline domesticus 1) allergens. The NHANES also collected data on respiratory outcomes and measured IgE specific to allergens. Associations of log-endotoxin and pet exposure with respiratory outcomes were examined, adjusting for covariates including pet avoidance. RESULTS Dog and cat ownership among participants was 48.3% and 37.5%, respectively. Endotoxin geometric mean (SE) was 15.49 (0.50) EU/mg. Endotoxin and pet allergen levels were significantly higher in households with a dog or cat. Overall, endotoxin was positively associated with wheeze (odds ratio [OR], 1.30; 95% CI, 1.04-1.62), but not with asthma. However, in participants nonsensitized to dog, the odds of endotoxin association with wheeze were higher with exposure to dog allergen (OR, 1.80; 95% CI, 1.27-2.53; Pinteraction = .048). In participants sensitized to cat and exposed to cat allergen, endotoxin became positively associated with asthma (OR, 1.92; 95% CI, 1.21-3.0; Pinteraction = .040). With coexposure to dog and cat allergens, endotoxin association with asthma and wheeze was exacerbated (OR, 2.00; 95% CI, 1.04-3.83; Pinteraction = .012 and OR, 1.88; 95% CI, 1.32-2.66; Pinteraction = .016, respectively). CONCLUSIONS Exposure to dog and cat allergens enhances the association of endotoxin with asthma and wheeze.
Collapse
Affiliation(s)
- Angelico Mendy
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa
| | | | - Päivi M Salo
- Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC
| | | | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC
| | - Peter S Thorne
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
124
|
Adamovsky O, Buerger AN, Wormington AM, Ector N, Griffitt RJ, Bisesi JH, Martyniuk CJ. The gut microbiome and aquatic toxicology: An emerging concept for environmental health. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2758-2775. [PMID: 30094867 DOI: 10.1002/etc.4249] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/02/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
The microbiome plays an essential role in the health and onset of diseases in all animals, including humans. The microbiome has emerged as a central theme in environmental toxicology because microbes interact with the host immune system in addition to its role in chemical detoxification. Pathophysiological changes in the gastrointestinal tissue caused by ingested chemicals and metabolites generated from microbial biodegradation can lead to systemic adverse effects. The present critical review dissects what we know about the impacts of environmental contaminants on the microbiome of aquatic species, with special emphasis on the gut microbiome. We highlight some of the known major gut epithelium proteins in vertebrate hosts that are targets for chemical perturbation, proteins that also directly cross-talk with the microbiome. These proteins may act as molecular initiators for altered gut function, and we propose a general framework for an adverse outcome pathway that considers gut dysbiosis as a major contributing factor to adverse apical endpoints. We present 2 case studies, nanomaterials and hydrocarbons, with special emphasis on the Deepwater Horizon oil spill, to illustrate how investigations into the microbiome can improve understanding of adverse outcomes. Lastly, we present strategies to functionally relate chemical-induced gut dysbiosis with adverse outcomes because this is required to demonstrate cause-effect relationships. Further investigations into the toxicant-microbiome relationship may prove to be a major breakthrough for improving animal and human health. Environ Toxicol Chem 2018;37:2758-2775. © 2018 SETAC.
Collapse
Affiliation(s)
- Ondrej Adamovsky
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Amanda N Buerger
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Alexis M Wormington
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Naomi Ector
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Robert J Griffitt
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Gulfport, Mississippi, USA
| | - Joseph H Bisesi
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
125
|
Wong L, Van Bever HP. Primary Prevention of Asthma: Will It Be Possible in the Future? CURRENT TREATMENT OPTIONS IN ALLERGY 2018. [DOI: 10.1007/s40521-018-0192-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
126
|
Kelly RS, McGeachie MJ, Lee-Sarwar KA, Kachroo P, Chu SH, Virkud YV, Huang M, Litonjua AA, Weiss ST, Lasky-Su J. Partial Least Squares Discriminant Analysis and Bayesian Networks for Metabolomic Prediction of Childhood Asthma. Metabolites 2018; 8:metabo8040068. [PMID: 30360514 PMCID: PMC6316795 DOI: 10.3390/metabo8040068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 01/07/2023] Open
Abstract
To explore novel methods for the analysis of metabolomics data, we compared the ability of Partial Least Squares Discriminant Analysis (PLS-DA) and Bayesian networks (BN) to build predictive plasma metabolite models of age three asthma status in 411 three year olds (n = 59 cases and 352 controls) from the Vitamin D Antenatal Asthma Reduction Trial (VDAART) study. The standard PLS-DA approach had impressive accuracy for the prediction of age three asthma with an Area Under the Curve Convex Hull (AUCCH) of 81%. However, a permutation test indicated the possibility of overfitting. In contrast, a predictive Bayesian network including 42 metabolites had a significantly higher AUCCH of 92.1% (p for difference < 0.001), with no evidence that this accuracy was due to overfitting. Both models provided biologically informative insights into asthma; in particular, a role for dysregulated arginine metabolism and several exogenous metabolites that deserve further investigation as potential causative agents. As the BN model outperformed the PLS-DA model in both accuracy and decreased risk of overfitting, it may therefore represent a viable alternative to typical analytical approaches for the investigation of metabolomics data.
Collapse
Affiliation(s)
- Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Boston, MA 02115, USA.
| | - Michael J McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Boston, MA 02115, USA.
| | - Kathleen A Lee-Sarwar
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Boston, MA 02115, USA.
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Priyadarshini Kachroo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Boston, MA 02115, USA.
| | - Su H Chu
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Boston, MA 02115, USA.
| | - Yamini V Virkud
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA 02114, USA.
| | - Mengna Huang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Boston, MA 02115, USA.
| | - Augusto A Litonjua
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Boston, MA 02115, USA.
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Boston, MA 02115, USA.
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
127
|
Pérez-Losada M, Authelet KJ, Hoptay CE, Kwak C, Crandall KA, Freishtat RJ. Pediatric asthma comprises different phenotypic clusters with unique nasal microbiotas. MICROBIOME 2018; 6:179. [PMID: 30286807 PMCID: PMC6172741 DOI: 10.1186/s40168-018-0564-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 09/25/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Pediatric asthma is the most common chronic childhood disease in the USA, currently affecting ~ 7 million children. This heterogeneous syndrome is thought to encompass various disease phenotypes of clinically observable characteristics, which can be statistically identified by applying clustering approaches to patient clinical information. Extensive evidence has shown that the airway microbiome impacts both clinical heterogeneity and pathogenesis in pediatric asthma. Yet, so far, airway microbiotas have been consistently neglected in the study of asthma phenotypes. Here, we couple extensive clinical information with 16S rRNA high-throughput sequencing to characterize the microbiota of the nasal cavity in 163 children and adolescents clustered into different asthma phenotypes. RESULTS Our clustering analyses identified three statistically distinct phenotypes of pediatric asthma. Four core OTUs of the pathogenic genera Moraxella, Staphylococcus, Streptococcus, and Haemophilus were present in at least 95% of the studied nasal microbiotas. Phyla (Proteobacteria, Actinobacteria, and Bacteroidetes) and genera (Moraxella, Corynebacterium, Dolosigranulum, and Prevotella) abundances, community composition, and structure varied significantly (0.05 < P ≤ 0.0001) across asthma phenotypes and one of the clinical variables (preterm birth). Similarly, microbial networks of co-occurrence of bacterial genera revealed different bacterial associations across asthma phenotypes. CONCLUSIONS This study shows that children and adolescents with different clinical characteristics of asthma also show different nasal bacterial profiles, which is indicative of different phenotypes of the disease. Our work also shows how clinical and microbial information could be integrated to validate and refine asthma classification systems and develop biomarkers of disease.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health,, George Washington University, Innovation Hall, Suite 305, 45085 University Drive, Ashburn, VA 20147 USA
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington, DC, 20052 USA
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Kayla J Authelet
- Division of Emergency Medicine, Children’s National Medical Center, Washington, DC, 20010 USA
| | - Claire E Hoptay
- Division of Emergency Medicine, Children’s National Medical Center, Washington, DC, 20010 USA
| | - Christine Kwak
- Division of Emergency Medicine, Children’s National Medical Center, Washington, DC, 20010 USA
| | - Keith A Crandall
- Computational Biology Institute, Milken Institute School of Public Health,, George Washington University, Innovation Hall, Suite 305, 45085 University Drive, Ashburn, VA 20147 USA
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington, DC, 20052 USA
| | - Robert J Freishtat
- Division of Emergency Medicine, Children’s National Medical Center, Washington, DC, 20010 USA
| |
Collapse
|
128
|
Genome-wide burden and association analyses implicate copy number variations in asthma risk among children and young adults from Latin America. Sci Rep 2018; 8:14475. [PMID: 30262839 PMCID: PMC6160443 DOI: 10.1038/s41598-018-32837-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 09/13/2018] [Indexed: 01/02/2023] Open
Abstract
The genetic architecture of asthma was relatively well explored. However, some work remains in the field to improve our understanding on asthma genetics, especially in non-Caucasian populations and with regards to commonly neglected genetic variants, such as Copy Number Variations (CNVs). In the present study, we investigated the contribution of CNVs on asthma risk among Latin Americans. CNVs were inferred from SNP genotyping data. Genome wide burden and association analyses were conducted to evaluate the impact of CNVs on asthma outcome. We found no significant difference in the numbers of CNVs between asthmatics and non-asthmatics. Nevertheless, we found that CNVs are larger in patients then in healthy controls and that CNVs from cases intersect significantly more genes and regulatory elements. We also found that a deletion at 6p22.1 is associated with asthma symptoms in children from Salvador (Brazil) and in young adults from Pelotas (Brazil). To support our results, we conducted an in silico functional analysis and found that this deletion spans several regulatory elements, including two promoter elements active in lung cells. In conclusion, we found robust evidence that CNVs could contribute for asthma susceptibility. These results uncover a new perspective on the influence of genetic factors modulating asthma risk.
Collapse
|
129
|
Cho Y, Abu-Ali G, Tashiro H, Kasahara DI, Brown TA, Brand JD, Mathews JA, Huttenhower C, Shore SA. The Microbiome Regulates Pulmonary Responses to Ozone in Mice. Am J Respir Cell Mol Biol 2018; 59:346-354. [PMID: 29529379 PMCID: PMC6189641 DOI: 10.1165/rcmb.2017-0404oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/04/2018] [Indexed: 12/28/2022] Open
Abstract
Previous reports demonstrate that the microbiome impacts allergic airway responses, including airway hyperresponsiveness, a characteristic feature of asthma. Here we examined the role of the microbiome in pulmonary responses to a nonallergic asthma trigger, ozone. We depleted the microbiota of conventional mice with either a single antibiotic (ampicillin, metronidazole, neomycin, or vancomycin) or a cocktail of all four antibiotics given via the drinking water. Mice were then exposed to room air or ozone. In air-exposed mice, airway responsiveness did not differ between antibiotic- and control water-treated mice. Ozone caused airway hyperresponsiveness, the magnitude of which was decreased in antibiotic cocktail-treated mice versus water-treated mice. Except for neomycin, single antibiotics had effects similar to those observed with the cocktail. Compared with conventional mice, germ-free mice also had attenuated airway responsiveness after ozone. 16S ribosomal RNA gene sequencing of fecal DNA to characterize the gut microbiome indicated that bacterial genera that were decreased in mice with reduced ozone-induced airway hyperresponsiveness after antibiotic treatment were short-chain fatty acid producers. Serum analysis indicated reduced concentrations of the short-chain fatty acid propionate in cocktail-treated mice but not in neomycin-treated mice. Dietary enrichment with pectin, which increased serum short-chain fatty acids, also augmented ozone-induced airway hyperresponsiveness. Furthermore, propionate supplementation of the drinking water augmented ozone-induced airway hyperresponsiveness in conventional mice. Our data indicate that the microbiome contributes to ozone-induced airway hyperresponsiveness, likely via its ability to produce short-chain fatty acids.
Collapse
Affiliation(s)
| | - Galeb Abu-Ali
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | | | | | | | | | | | - Curtis Huttenhower
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | | |
Collapse
|
130
|
Hirose K, Ito T, Nakajima H. Roles of IL-22 in allergic airway inflammation in mice and humans. Int Immunol 2018; 30:413-418. [PMID: 29394345 DOI: 10.1093/intimm/dxy010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/28/2018] [Indexed: 12/17/2023] Open
Abstract
Asthma is a chronic inflammatory disease of the airways that is characterized by eosinophilic inflammation, mucus hypersecretion and airway remodeling that leads to airway obstruction. Although these pathognomonic features of asthma are primarily mediated by allergen-specific T helper type 2 cells (Th2 cells) and their cytokines, recent studies have revealed critical roles of lung epithelial cells in the pathogenesis of asthma. Lung epithelial cells not only form physical barriers by covering the surfaces of the airways but also sense inhaled allergens and initiate communication between the environment and the immune system. The causative involvement of lung epithelium in the pathogenesis of asthma suggests that some molecules that modulate epithelial function have a regulatory role in asthma. IL-22, an IL-10-family cytokine produced by IL-17A-producing T helper cells (Th17 cells), γδ T cells and group 3 innate lymphoid cells (ILC3s), primarily targets epithelial cells and promotes their proliferation. In addition, IL-22 has been shown to induce epithelial production of various molecules that regulate local immune responses. These findings indicate that IL-22 plays crucial roles in the pathogenesis of asthma by regulating epithelial function. Here, we review the current understanding of the molecular and cellular mechanisms underlying IL-22-mediated regulation of airway inflammation in asthma.
Collapse
Affiliation(s)
- Koichi Hirose
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
- Department of Rheumatology, School of Medicine, International University of Health and Welfare, Narita City, Chiba, Japan
| | - Takashi Ito
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| |
Collapse
|
131
|
Qian G, Jiang W, Zou B, Feng J, Cheng X, Gu J, Chu T, Niu C, He R, Chu Y, Lu M. LPS inactivation by a host lipase allows lung epithelial cell sensitization for allergic asthma. J Exp Med 2018; 215:2397-2412. [PMID: 30021797 PMCID: PMC6122967 DOI: 10.1084/jem.20172225] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/16/2018] [Accepted: 07/06/2018] [Indexed: 01/17/2023] Open
Abstract
This study provides strong evidence that intestinal commensal LPS desensitizes lung epithelial cells and therefore diminishes allergic responses to inhaled allergens. A host lipase, acyloxyacyl hydrolase (AOAH), prevents the desensitization by inactivating commensal LPS. Allergic asthma is a chronic inflammatory disease primarily mediated by Th2 immune mechanisms. Numerous studies have suggested that early life exposure to lipopolysaccharide (LPS) is negatively associated with allergic asthma. One proposed mechanism invokes desensitization of lung epithelial cells by LPS. We report here that acyloxyacyl hydrolase (AOAH), a host lipase that degrades and inactivates LPS, renders mice more susceptible to house dust mite (HDM)–induced allergic asthma. Lung epithelial cells from Aoah−/− mice are refractory to HDM stimulation, decreasing dendritic cell activation and Th2 responses. Antibiotic treatment that diminished commensal LPS-producing bacteria normalized Aoah−/− responses to HDM, while giving LPS intrarectally ameliorated asthma. Aoah−/− mouse feces, plasma, and lungs contained more bioactive LPS than did those of Aoah+/+ mice. By inactivating commensal LPS, AOAH thus prevents desensitization of lung epithelial cells. An enzyme that prevents severe lung inflammation/injury in Gram-negative bacterial pneumonia has the seemingly paradoxical effect of predisposing to a Th2-mediated airway disease.
Collapse
Affiliation(s)
- Guojun Qian
- Department of Immunology, MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Jiang
- Department of Immunology, MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Benkun Zou
- Department of Immunology, MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jintao Feng
- Department of Immunology, MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaofang Cheng
- Department of Immunology, MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jie Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianqing Chu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Niu
- Department of Immunology, MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Rui He
- Department of Immunology, MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mingfang Lu
- Department of Immunology, MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
132
|
Olvera Alvarez HA, Appleton AA, Fuller CH, Belcourt A, Kubzansky LD. An Integrated Socio-Environmental Model of Health and Well-Being: a Conceptual Framework Exploring the Joint Contribution of Environmental and Social Exposures to Health and Disease Over the Life Span. Curr Environ Health Rep 2018; 5:233-243. [PMID: 29574677 DOI: 10.1007/s40572-018-0191-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF THE REVIEW Environmental and social determinants of health often co-occur, particularly among socially disadvantaged populations, yet because they are usually studied separately, their joint effects on health are likely underestimated. Building on converging bodies of literature, we delineate a conceptual framework to address these issues. RECENT FINDINGS Previous models provided a foundation for study in this area, and generated research pointing to additional important issues. These include a stronger focus on biobehavioral pathways, both positive and adverse health outcomes, and intergenerational effects. To accommodate the expanded set of issues, we put forward the Integrated Socio-Environmental Model of Health and Well-Being (ISEM), which examines how social and environmental factors combine and potentially interact, via multi-factorial pathways, to affect health and well-being over the life span. We then provide applied examples including the study of how food environments affect dietary behavior. The ISEM provides a comprehensive, theoretically informed framework to guide future research on the joint contribution of social and environmental factors to health and well-being across the life span.
Collapse
Affiliation(s)
- Hector A Olvera Alvarez
- School of Nursing, University of Texas El Paso, 500 W. University Ave, El Paso, TX, 79968, USA.
| | - Allison A Appleton
- School of Public Health, Department of Epidemiology and Biostatistics, University at Albany, 1 University Place, Rensselaer, NY, 12144, USA
| | - Christina H Fuller
- School of Public Health, Division of Environmental Health, Georgia State University, P.O. Box 3995, Atlanta, GA, 30302, USA
| | - Annie Belcourt
- School of Community and Public Health Sciences/Pharmacy Practice, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
| | - Laura D Kubzansky
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| |
Collapse
|
133
|
Brigham EP, Steffen LM, London SJ, Boyce D, Diette GB, Hansel NN, Rice J, McCormack MC. Diet Pattern and Respiratory Morbidity in the Atherosclerosis Risk in Communities Study. Ann Am Thorac Soc 2018; 15:675-682. [PMID: 29446981 PMCID: PMC6137676 DOI: 10.1513/annalsats.201707-571oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 02/15/2018] [Indexed: 01/30/2023] Open
Abstract
RATIONALE Dietary intake is a potential risk factor for respiratory morbidity in adult populations. Few studies capture the effect of dietary patterns, representative of the combination of nutrients consumed, on self-reported respiratory morbidity in combination with objective measures of lung function. OBJECTIVES To evaluate patterns of dietary intake in relation to respiratory morbidity and objective measures of lung function in a U.S. POPULATION METHODS The ARIC (Atherosclerosis Risk in Communities) study investigators enrolled 15,792 participants from four U.S. communities between 1987 and 1989 and collected data using a validated food frequency questionnaire to assess diet. Principal component analysis was applied, and patterns representative of "Western" and "Prudent" diets emerged. We investigated cross-sectional associations between dietary patterns and pulmonary assessments that included asthma and chronic obstructive pulmonary disease (COPD) diagnosis, respiratory symptoms, and lung function. Multivariable Poisson regression models included quintiles of dietary patterns and potential confounders. Interaction of dietary patterns with obesity, sex, and smoking status was assessed in relation to all outcomes. RESULTS Higher scores in the "Western" dietary pattern (quintile 5 vs. quintile 1) were associated with higher prevalence of COPD (prevalence ratio [PR], 1.62; 95% confidence ratio [CI], 1.33-1.97), wheeze (PR, 1.37; 95% CI, 1.11-1.69), cough (PR, 1.32; 95% CI, 1.32-1.59), and phlegm (PR, 1.27; 95% CI, 1.05-1.54) and lower percent predicted forced expiratory volume in 1 second (FEV1), percent predicted forced vital capacity (FVC), and FEV1/FVC ratio. Higher scores in the "Prudent" dietary pattern (quintile 5 vs. quintile 1) were associated with lower prevalence of COPD (PR, 0.82; 95% CI, 0.70-0.95) and cough (PR, 0.77; 95% CI, 0.67-0.89) and higher percent predicted FEV1 and FEV1/FVC ratio. The prevalence of asthma was not related to dietary intake. CONCLUSIONS A "Western" dietary pattern was associated with respiratory symptoms, lower lung function, and COPD in ARIC participants.
Collapse
Affiliation(s)
- Emily P. Brigham
- Division of Pulmonary and Critical Care Medicine, School of Medicine
| | - Lyn M. Steffen
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota; and
| | - Stephanie J. London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Danielle Boyce
- Division of Pulmonary and Critical Care Medicine, School of Medicine
| | - Gregory B. Diette
- Division of Pulmonary and Critical Care Medicine, School of Medicine
- Bloomberg School of Public Health, and
| | - Nadia N. Hansel
- Division of Pulmonary and Critical Care Medicine, School of Medicine
- Bloomberg School of Public Health, and
| | - Jessica Rice
- Division of Pediatric Pulmonary Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Meredith C. McCormack
- Division of Pulmonary and Critical Care Medicine, School of Medicine
- Bloomberg School of Public Health, and
| |
Collapse
|
134
|
Harnessing the Power of Microbiome Assessment Tools as Part of Neuroprotective Nutrition and Lifestyle Medicine Interventions. Microorganisms 2018; 6:microorganisms6020035. [PMID: 29693607 PMCID: PMC6027349 DOI: 10.3390/microorganisms6020035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/02/2018] [Accepted: 04/20/2018] [Indexed: 12/11/2022] Open
Abstract
An extensive body of evidence documents the importance of the gut microbiome both in health and in a variety of human diseases. Cell and animal studies describing this relationship abound, whilst clinical studies exploring the associations between changes in gut microbiota and the corresponding metabolites with neurodegeneration in the human brain have only begun to emerge more recently. Further, the findings of such studies are often difficult to translate into simple clinical applications that result in measurable health outcomes. The purpose of this paper is to appraise the literature on a select set of faecal biomarkers from a clinician’s perspective. This practical review aims to examine key physiological processes that influence both gastrointestinal, as well as brain health, and to discuss how tools such as the characterisation of commensal bacteria, the identification of potential opportunistic, pathogenic and parasitic organisms and the quantification of gut microbiome biomarkers and metabolites can help inform clinical decisions of nutrition and lifestyle medicine practitioners.
Collapse
|
135
|
Gupta N, Kumar R, Agrawal B. New Players in Immunity to Tuberculosis: The Host Microbiome, Lung Epithelium, and Innate Immune Cells. Front Immunol 2018; 9:709. [PMID: 29692778 PMCID: PMC5902499 DOI: 10.3389/fimmu.2018.00709] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/22/2018] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis (TB) is a highly contagious infection and devastating chronic disease, causing 10.4 million new infections and 1.8 million deaths every year globally. Efforts to control and eradicate TB are hampered by the rapid emergence of drug resistance and limited efficacy of the only available vaccine, BCG. Immunological events in the airways and lungs are of major importance in determining whether exposure to Mycobacterium tuberculosis (Mtb) results in successful infection or protective immunity. Several studies have demonstrated that the host microbiota is in constant contact with the immune system, and thus continually directs the nature of immune responses occurring during new infections. However, little is known about its role in the eventual outcome of the mycobacterial infection. In this review, we highlight the changes in microbial composition in the respiratory tract and gut that have been linked to the alteration of immune responses, and to the risk, prevention, and treatment of TB. In addition, we summarize our current understanding of alveolar epithelial cells and the innate immune system, and their interaction with Mtb during early infection. Extensive studies are warranted to fully understand the all-inclusive role of the lung microbiota, its interaction with epithelium and innate immune responses and resulting adaptive immune responses, and in the pathogenesis and/or protection from Mtb infection. Novel interventions aimed at influencing the microbiota, the alveolar immune system and innate immunity will shape future strategies of prevention and treatment for TB.
Collapse
Affiliation(s)
- Nancy Gupta
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Rakesh Kumar
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Babita Agrawal
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
136
|
|
137
|
Yildiz S, Mazel-Sanchez B, Kandasamy M, Manicassamy B, Schmolke M. Influenza A virus infection impacts systemic microbiota dynamics and causes quantitative enteric dysbiosis. MICROBIOME 2018; 6:9. [PMID: 29321057 PMCID: PMC5763955 DOI: 10.1186/s40168-017-0386-z] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/14/2017] [Indexed: 05/08/2023]
Abstract
BACKGROUND Microbiota integrity is essential for a growing number of physiological processes. Consequently, disruption of microbiota homeostasis correlates with a variety of pathological states. Importantly, commensal microbiota provide a shield against invading bacterial pathogens, probably by direct competition. The impact of viral infections on host microbiota composition and dynamics is poorly understood. Influenza A viruses (IAV) are common respiratory pathogens causing acute infections. Here, we show dynamic changes in respiratory and intestinal microbiota over the course of a sublethal IAV infection in a mouse model. RESULTS Using a combination of 16S rRNA gene-specific next generation sequencing and qPCR as well as culturing of bacterial organ content, we found body site-specific and transient microbiota responses. In the lower respiratory tract, we observed only minor qualitative changes in microbiota composition. No quantitative impact on bacterial colonization after IAV infection was detectable, despite a robust antimicrobial host response and increased sensitivity to bacterial super infection. In contrast, in the intestine, IAV induced robust depletion of bacterial content, disruption of mucus layer integrity, and higher levels of antimicrobial peptides in Paneth cells. As a functional consequence of IAV-mediated microbiota depletion, we demonstrated that the small intestine is rendered more susceptible to bacterial pathogen invasion, in a Salmonella typhimurium super infection model. CONCLUSION We show for the first time the consequences of IAV infection for lower respiratory tract and intestinal microbiobiota in a qualitative and quantitative fashion. The discrepancy of relative 16S rRNA gene next-generation sequencing (NGS) and normalized 16S rRNA gene-specific qPCR stresses the importance of combining qualitative and quantitative approaches to correctly analyze composition of organ associated microbial communities. The transiently induced dysbiosis underlines the overall stability of microbial communities to effects of acute infection. However, during a short-time window, specific ecological niches might lose their microbiota shield and remain vulnerable to bacterial invasion.
Collapse
Affiliation(s)
- Soner Yildiz
- Department of Microbiology and Molecular Medicine, University Medical Center (CMU), University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Béryl Mazel-Sanchez
- Department of Microbiology and Molecular Medicine, University Medical Center (CMU), University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | | | - Balaji Manicassamy
- Department of Microbiology, University of Chicago, Chicago, IL 60637 USA
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, University Medical Center (CMU), University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| |
Collapse
|
138
|
Sokolowska M, Frei R, Lunjani N, Akdis CA, O'Mahony L. Microbiome and asthma. Asthma Res Pract 2018; 4:1. [PMID: 29318023 PMCID: PMC5755449 DOI: 10.1186/s40733-017-0037-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/18/2017] [Indexed: 12/14/2022] Open
Abstract
The mucosal immune system is in constant communication with the vast diversity of microbes present on body surfaces. The discovery of novel molecular mechanisms, which mediate host-microbe communication, have highlighted the important roles played by microbes in influencing mucosal immune responses. Dendritic cells, epithelial cells, ILCs, T regulatory cells, effector lymphocytes, NKT cells and B cells can all be influenced by the microbiome. Many of the mechanisms being described are bacterial strain- or metabolite-specific. Microbial dysbiosis in the gut and the lung is increasingly being associated with the incidence and severity of asthma. More accurate endotyping of patients with asthma may be assisted by further analysis of the composition and metabolic activity of an individual’s microbiome. In addition, the efficacy of specific therapeutics may be influenced by the microbiome and novel bacterial-based therapeutics should be considered in future clinical studies.
Collapse
Affiliation(s)
- Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Obere Strasse 22, 7270 Davos, Switzerland.,Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Remo Frei
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Obere Strasse 22, 7270 Davos, Switzerland.,Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Nonhlanhla Lunjani
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Obere Strasse 22, 7270 Davos, Switzerland.,Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,University of Cape Town, Cape Town, South Africa
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Obere Strasse 22, 7270 Davos, Switzerland.,Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Liam O'Mahony
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Obere Strasse 22, 7270 Davos, Switzerland
| |
Collapse
|
139
|
Mark JD. Asthma. Integr Med (Encinitas) 2018. [DOI: 10.1016/b978-0-323-35868-2.00029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
140
|
Rodriguez‐Perez N, Schiavi E, Frei R, Ferstl R, Wawrzyniak P, Smolinska S, Sokolowska M, Sievi N, Kohler M, Schmid‐Grendelmeier P, Michalovich D, Simpson K, Hessel E, Jutel M, Martin‐Fontecha M, Palomares O, Akdis C, O'Mahony L. Altered fatty acid metabolism and reduced stearoyl-coenzyme a desaturase activity in asthma. Allergy 2017; 72:1744-1752. [PMID: 28397284 DOI: 10.1111/all.13180] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Fatty acids and lipid mediator signaling play an important role in the pathogenesis of asthma, yet this area remains largely underexplored. The aims of this study were (i) to examine fatty acid levels and their metabolism in obese and nonobese asthma patients and (ii) to determine the functional effects of altered fatty acid metabolism in experimental models. METHODS Medium- and long-chain fatty acid levels were quantified in serum from 161 human volunteers by LC/MS. Changes in stearoyl-coenzyme A desaturase (SCD) expression and activity were evaluated in the ovalbumin (OVA) and house dust mite (HDM) murine models. Primary human bronchial epithelial cells from asthma patients and controls were evaluated for SCD expression and activity. RESULTS The serum desaturation index (an indirect measure of SCD) was significantly reduced in nonobese asthma patients and in the OVA murine model. SCD1 gene expression was significantly reduced within the lungs following OVA or HDM challenge. Inhibition of SCD in mice promoted airway hyper-responsiveness. SCD1 expression was suppressed in bronchial epithelial cells from asthma patients. IL-4 and IL-13 reduced epithelial cell SCD1 expression. Inhibition of SCD reduced surfactant protein C expression and suppressed rhinovirus-induced IP-10 secretion, which was associated with increased viral titers. CONCLUSIONS This is the first study to demonstrate decreased fatty acid desaturase activity in humans with asthma. Experimental models in mice and human epithelial cells suggest that inhibition of desaturase activity leads to airway hyper-responsiveness and reduced antiviral defense. SCD may represent a new target for therapeutic intervention in asthma patients.
Collapse
Affiliation(s)
- N. Rodriguez‐Perez
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - E. Schiavi
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - R. Frei
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - R. Ferstl
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - P. Wawrzyniak
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - S. Smolinska
- Department of Clinical ImmunologyWroclaw Medical University Wroclaw Poland
- ”ALL‐MED” Medical Research Institute Wroclaw Poland
| | - M. Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - N.A. Sievi
- Pulmonary Division University Hospital of Zürich Zürich Switzerland
| | - M. Kohler
- Pulmonary Division University Hospital of Zürich Zürich Switzerland
| | - P. Schmid‐Grendelmeier
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
- Allergy Unit Department of Dermatology University Hospital of Zürich Zürich Switzerland
| | - D. Michalovich
- Refractory Respiratory Inflammation Discovery Performance Unit GlaxoSmithKlineStevenage UK
| | - K.D. Simpson
- Refractory Respiratory Inflammation Discovery Performance Unit GlaxoSmithKlineStevenage UK
| | - E.M. Hessel
- Refractory Respiratory Inflammation Discovery Performance Unit GlaxoSmithKlineStevenage UK
| | - M. Jutel
- Department of Clinical ImmunologyWroclaw Medical University Wroclaw Poland
- ”ALL‐MED” Medical Research Institute Wroclaw Poland
| | - M. Martin‐Fontecha
- Departamento de Química Orgánica I Facultad de Ciencias Químicas Universidad Complutense de Madrid Madrid Spain
| | - O. Palomares
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - C.A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - L. O'Mahony
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| |
Collapse
|
141
|
Cookson WOCM, Cox MJ, Moffatt MF. New opportunities for managing acute and chronic lung infections. Nat Rev Microbiol 2017; 16:111-120. [PMID: 29062070 DOI: 10.1038/nrmicro.2017.122] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lung diseases caused by microbial infections affect hundreds of millions of children and adults throughout the world. In Western populations, the treatment of lung infections is a primary driver of antibiotic resistance. Traditional therapeutic strategies have been based on the premise that the healthy lung is sterile and that infections grow in a pristine environment. As a consequence, rapid advances in our understanding of the composition of the microbiota of the skin and bowel have not yet been matched by studies of the respiratory tree. The recognition that the lungs are as populated with microorganisms as other mucosal surfaces provides the opportunity to reconsider the mechanisms and management of lung infections. Molecular analyses of the lung microbiota are revealing profound adverse responses to widespread antibiotic use, urbanization and globalization. This Opinion article proposes how technologies and concepts flowing from the Human Microbiome Project can transform the diagnosis and treatment of common lung diseases.
Collapse
Affiliation(s)
- William O C M Cookson
- Asmarley Centre for Genomic Medicine, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
| | - Michael J Cox
- Asmarley Centre for Genomic Medicine, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
| | - Miriam F Moffatt
- Asmarley Centre for Genomic Medicine, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
| |
Collapse
|
142
|
Abstract
PURPOSE OF REVIEW The purposes of this review were as follows: first, to provide an overview of the gut microbiota and its interactions with the gut and the central nervous system (the microbiota-gut-brain axis) in health, second, to review the relevance of this axis to the pathogenesis of neurodegenerative diseases, such as Parkinson's disease, and, finally, to assess the potential for microbiota-targeted therapies. RECENT FINDINGS Work on animal models has established the microbiota-gut-brain axis as a real phenomenon; to date, the evidence for its operation in man has been limited and has been confronted by considerable logistical challenges. Animal and translational models have incriminated a disturbed gut microbiota in a number of CNS disorders, including Parkinson's disease; data from human studies is scanty. While a theoretical basis can be developed for the use of microbiota-directed therapies in neurodegenerative disorders, support is yet to come from high-quality clinical trials. In theory, a role for the microbiota-gut-brain axis is highly plausible; clinical confirmation is awaited.
Collapse
|
143
|
Ito T, Hirose K, Saku A, Kono K, Takatori H, Tamachi T, Goto Y, Renauld JC, Kiyono H, Nakajima H. IL-22 induces Reg3γ and inhibits allergic inflammation in house dust mite-induced asthma models. J Exp Med 2017; 214:3037-3050. [PMID: 28811323 PMCID: PMC5626396 DOI: 10.1084/jem.20162108] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/29/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022] Open
Abstract
Previous studies have shown that IL-22, one of the Th17 cell-related cytokines, plays multiple roles in regulating allergic airway inflammation caused by antigen-specific Th2 cells; however, the underlying mechanism remains unclear. Here, we show that allergic airway inflammation and Th2 and Th17 cytokine production upon intratracheal administration of house dust mite (HDM) extract, a representative allergen, were exacerbated in IL-22-deficient mice. We also found that IL-22 induces Reg3γ production from lung epithelial cells through STAT3 activation and that neutralization of Reg3γ significantly exacerbates HDM-induced eosinophilic airway inflammation and Th2 cytokine induction. Moreover, exostatin-like 3 (EXTL3), a functional Reg3γ binding protein, is expressed in lung epithelial cells, and intratracheal administration of recombinant Reg3γ suppresses HDM-induced thymic stromal lymphopoietin and IL-33 expression and accumulation of type 2 innate lymphoid cells in the lung. Collectively, these results suggest that IL-22 induces Reg3γ production from lung epithelial cells and inhibits the development of HDM-induced allergic airway inflammation, possibly by inhibiting cytokine production from lung epithelial cells.
Collapse
Affiliation(s)
- Takashi Ito
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichi Hirose
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Aiko Saku
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kenta Kono
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroaki Takatori
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomohiro Tamachi
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshiyuki Goto
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Hiroshi Kiyono
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Mucosal Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
144
|
Abstract
The use of culture-independent techniques has allowed us to appreciate that the upper and lower respiratory tract contain a diverse community of microbes in health and disease. Research has only recently explored the effects of the microbiome on the host immune response. The exposure of the human body to the bacterial environment is an important factor for immunological development; thus, the interaction between the microbiome and its host is critical to understanding the pathogenesis of disease. In this article, we discuss the mechanisms that determine the composition of the airway microbiome and its effects on the host immune response. With the use of ecological principles, we have learned how the lower airways constitute a unique niche subjected to frequent microbial migration (e.g., through aspiration) and constant immunological pressure. The discussion will focus on the possible inflammatory pathways that are up- and downregulated when the immune system is challenged by dysbiosis. Identification of potential markers and microbial targets to address the modulation of inflammation in early disease, when changes may have the most effect, will be critical for future therapies.
Collapse
|
145
|
Affiliation(s)
- Ruth Nussinov
- National Cancer Institute, Frederick, Maryland, United States of America
- Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| | - Jason A. Papin
- University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
146
|
Li N, Qiu R, Yang Z, Li J, Chung KF, Zhong N, Zhang Q. Sputum microbiota in severe asthma patients: Relationship to eosinophilic inflammation. Respir Med 2017; 131:192-198. [PMID: 28947029 DOI: 10.1016/j.rmed.2017.08.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Altered composition of airway microbiota has been reported in subjects suffering from asthma but its relation to eosinophilic phenotype is unclear. OBJECTIVE To examine the relationship between sputum microbiota, asthma severity and inflammatory type in asthmatic subjects from Guangzhou, China. METHODS Induced sputum samples were obtained from 49 non-smoking asthma patients, 25 severe and 24 non-severe, and 15 healthy subjects. Total DNA was amplified using primers specific for the V3-V5 hypervariable region of bacterial 16s rRNA and sequenced using the 454 GS FLX sequencer. Sequences were assigned to bacterial taxa by comparing them with 16s rRNA sequences in the Ribosomal Database Project. RESULTS Sputum eosinophil counts were higher and FEV1 (% predicted) was lower in severe compared to non-severe asthmatics. There were no significant differences in operational taxonomic unit (OTU) numbers at the phylum level and in diversity scores between non-severe asthmatics and severe asthmatics, and healthy subjects. At the family level, Porphyromonadaceae was most abundant in healthy subjects whereas Pseudomonadaceae and Enterobacteriaceae were higher in severe asthmatics compared to non-severe asthmatics (p < 0.05). Actinomycetaceae was particularly abundant in eosinophilic asthma patients compared to non-eosinophilic asthma (p = 0.011). Bacteroidaceae was positively correlated with FEV1 in all subjects (r = 0.335, p < 0.01), whereas body mass index was negatively associated with the number of species observed (r = -0.3, p < 0.05). Principal component analysis confirmed the positive association of Actinomycetaceae and Enterobacteriaceae abundance with eosinophilic asthma. CONCLUSION Patients with asthma have an altered airway microbiota, with specific bacteria associated with severe asthma and the eosinophilic inflammatory phenotype.
Collapse
Affiliation(s)
- Naijian Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Rihuang Qiu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhaowei Yang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Kian Fan Chung
- Airways Disease Section, National Heart & Lung Institute, Imperial College London, & Biomedical Research Unit, Royal Brompton Hospital, London, SW3, UK
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qingling Zhang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
147
|
Fukuyama J, Rumker L, Sankaran K, Jeganathan P, Dethlefsen L, Relman DA, Holmes SP. Multidomain analyses of a longitudinal human microbiome intestinal cleanout perturbation experiment. PLoS Comput Biol 2017; 13:e1005706. [PMID: 28821012 PMCID: PMC5576755 DOI: 10.1371/journal.pcbi.1005706] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/30/2017] [Accepted: 07/27/2017] [Indexed: 12/29/2022] Open
Abstract
Our work focuses on the stability, resilience, and response to perturbation of the bacterial communities in the human gut. Informative flash flood-like disturbances that eliminate most gastrointestinal biomass can be induced using a clinically-relevant iso-osmotic agent. We designed and executed such a disturbance in human volunteers using a dense longitudinal sampling scheme extending before and after induced diarrhea. This experiment has enabled a careful multidomain analysis of a controlled perturbation of the human gut microbiota with a new level of resolution. These new longitudinal multidomain data were analyzed using recently developed statistical methods that demonstrate improvements over current practices. By imposing sparsity constraints we have enhanced the interpretability of the analyses and by employing a new adaptive generalized principal components analysis, incorporated modulated phylogenetic information and enhanced interpretation through scoring of the portions of the tree most influenced by the perturbation. Our analyses leverage the taxa-sample duality in the data to show how the gut microbiota recovers following this perturbation. Through a holistic approach that integrates phylogenetic, metagenomic and abundance information, we elucidate patterns of taxonomic and functional change that characterize the community recovery process across individuals. We provide complete code and illustrations of new sparse statistical methods for high-dimensional, longitudinal multidomain data that provide greater interpretability than existing methods.
Collapse
Affiliation(s)
- Julia Fukuyama
- Statistics Department, Stanford University, Stanford, California, USA
| | - Laurie Rumker
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Kris Sankaran
- Statistics Department, Stanford University, Stanford, California, USA
| | | | - Les Dethlefsen
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - David A. Relman
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Susan P. Holmes
- Statistics Department, Stanford University, Stanford, California, USA
| |
Collapse
|
148
|
Abstract
The mucosal surfaces of the human body are typically colonized by polymicrobial communities seeded in infancy and are continuously shaped by environmental exposures. These communities interact with the mucosal immune system to maintain homeostasis in health, but perturbations in their composition and function are associated with lower airway diseases, including asthma, a developmental and heterogeneous chronic disease with various degrees and types of airway inflammation. This review will summarize recent studies examining airway microbiota dysbioses associated with asthma and their relationship with the pathophysiology of this disease.
Collapse
|
149
|
Selber-Hnatiw S, Rukundo B, Ahmadi M, Akoubi H, Al-Bizri H, Aliu AF, Ambeaghen TU, Avetisyan L, Bahar I, Baird A, Begum F, Ben Soussan H, Blondeau-Éthier V, Bordaries R, Bramwell H, Briggs A, Bui R, Carnevale M, Chancharoen M, Chevassus T, Choi JH, Coulombe K, Couvrette F, D'Abreau S, Davies M, Desbiens MP, Di Maulo T, Di Paolo SA, Do Ponte S, Dos Santos Ribeiro P, Dubuc-Kanary LA, Duncan PK, Dupuis F, El-Nounou S, Eyangos CN, Ferguson NK, Flores-Chinchilla NR, Fotakis T, Gado Oumarou H D M, Georgiev M, Ghiassy S, Glibetic N, Grégoire Bouchard J, Hassan T, Huseen I, Ibuna Quilatan MF, Iozzo T, Islam S, Jaunky DB, Jeyasegaram A, Johnston MA, Kahler MR, Kaler K, Kamani C, Karimian Rad H, Konidis E, Konieczny F, Kurianowicz S, Lamothe P, Legros K, Leroux S, Li J, Lozano Rodriguez ME, Luponio-Yoffe S, Maalouf Y, Mantha J, McCormick M, Mondragon P, Narayana T, Neretin E, Nguyen TTT, Niu I, Nkemazem RB, O'Donovan M, Oueis M, Paquette S, Patel N, Pecsi E, Peters J, Pettorelli A, Poirier C, Pompa VR, Rajen H, Ralph RO, Rosales-Vasquez J, Rubinshtein D, Sakr S, Sebai MS, Serravalle L, Sidibe F, Sinnathurai A, Soho D, Sundarakrishnan A, Svistkova V, Ugbeye TE, Vasconcelos MS, Vincelli M, Voitovich O, Vrabel P, Wang L, Wasfi M, Zha CY, Gamberi C. Human Gut Microbiota: Toward an Ecology of Disease. Front Microbiol 2017; 8:1265. [PMID: 28769880 PMCID: PMC5511848 DOI: 10.3389/fmicb.2017.01265] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/23/2017] [Indexed: 12/17/2022] Open
Abstract
Composed of trillions of individual microbes, the human gut microbiota has adapted to the uniquely diverse environments found in the human intestine. Quickly responding to the variances in the ingested food, the microbiota interacts with the host via reciprocal biochemical signaling to coordinate the exchange of nutrients and proper immune function. Host and microbiota function as a unit which guards its balance against invasion by potential pathogens and which undergoes natural selection. Disturbance of the microbiota composition, or dysbiosis, is often associated with human disease, indicating that, while there seems to be no unique optimal composition of the gut microbiota, a balanced community is crucial for human health. Emerging knowledge of the ecology of the microbiota-host synergy will have an impact on how we implement antibiotic treatment in therapeutics and prophylaxis and how we will consider alternative strategies of global remodeling of the microbiota such as fecal transplants. Here we examine the microbiota-human host relationship from the perspective of the microbial community dynamics.
Collapse
Affiliation(s)
| | - Belise Rukundo
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Masoumeh Ahmadi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Hayfa Akoubi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Hend Al-Bizri
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Adelekan F Aliu
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Lilit Avetisyan
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Irmak Bahar
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Alexandra Baird
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Fatema Begum
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | - Helene Bramwell
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Alicia Briggs
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Richard Bui
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Talia Chevassus
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Jin H Choi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Karyne Coulombe
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Meghan Davies
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Tamara Di Maulo
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | - Paola K Duncan
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Sara El-Nounou
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | - Tanya Fotakis
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Metodi Georgiev
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | - Tazkia Hassan
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Iman Huseen
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Tania Iozzo
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Safina Islam
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Dilan B Jaunky
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | - Cedric Kamani
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Filip Konieczny
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Karina Legros
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Jun Li
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Yara Maalouf
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Jessica Mantha
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | - Thi T T Nguyen
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Ian Niu
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Matthew Oueis
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Nehal Patel
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Emily Pecsi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Jackie Peters
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | | | | | | | - Surya Sakr
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Lisa Serravalle
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Fily Sidibe
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Dominique Soho
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | | | - Olga Voitovich
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Pamela Vrabel
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Lu Wang
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Maryse Wasfi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Cong Y Zha
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Chiara Gamberi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| |
Collapse
|
150
|
Liu AH, Anderson WC, Dutmer CM, Searing DA, Szefler SJ. Advances in asthma 2015: Across the lifespan. J Allergy Clin Immunol 2017; 138:397-404. [PMID: 27497278 DOI: 10.1016/j.jaci.2016.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 12/19/2022]
Abstract
In 2015, progress in understanding asthma ranged from insights to asthma inception, exacerbations, and severity to advancements that will improve disease management throughout the lifespan. 2015's insights to asthma inception included how the intestinal microbiome affects asthma expression with the identification of specific gastrointestinal bacterial taxa in early infancy associated with less asthma risk, possibly by promoting regulatory immune development at a critical early age. The relevance of epigenetic mechanisms in regulating asthma-related gene expression was strengthened. Predicting and preventing exacerbations throughout life might help to reduce progressive lung function decrease and disease severity in adulthood. Although allergy has long been linked to asthma exacerbations, a mechanism through which IgE impairs rhinovirus immunity and underlies asthma exacerbations was demonstrated and improved by anti-IgE therapy (omalizumab). Other key molecular pathways underlying asthma exacerbations, such as cadherin-related family member 3 (CDHR3) and orosomucoid like 3 (ORMDL3), were elucidated. New anti-IL-5 therapeutics, mepolizumab and reslizumab, were US Food and Drug Administration approved for the treatment of patients with severe eosinophilic asthma. In a clinical trial the novel therapeutic inhaled GATA3 mRNA-specific DNAzyme attenuated early- and late-phase allergic responses to inhaled allergen. These current findings are significant steps toward addressing unmet needs in asthma prevention, severity modification, disparities, and lifespan outcomes.
Collapse
Affiliation(s)
- Andrew H Liu
- Breathing Institute and Pulmonary Medicine Section, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colo.
| | - William C Anderson
- Allergy & Immunology Section, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colo
| | - Cullen M Dutmer
- Allergy & Immunology Section, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colo
| | - Daniel A Searing
- Allergy & Immunology Section, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colo
| | - Stanley J Szefler
- Breathing Institute and Pulmonary Medicine Section, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colo
| |
Collapse
|