101
|
Galliano A, Ye C, Su F, Wang C, Rakshit R, Guerin M, Flament F, Steel A. Assessing the effect of cleansing products on artificially polluted human hairs and skin through in vivo and in vitro models. Skin Res Technol 2023; 29:e13220. [PMID: 36609868 PMCID: PMC10155848 DOI: 10.1111/srt.13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/26/2022] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Based on in vivo data, in vitro models and new methods are created to mimic the impact of aerial pollution onto the hair surface and assess the efficacy of different formulae prototypes. MATERIAL AND METHODS Two protocols are developed to mimic the pollution effect, in vitro, on purchased swatches, and in vivo, on scalps and forearms. First, with an artificial sebum mixed with Carbon Black particles, named "sebollution," we evaluated, through an instrumental color measurement, the cleansing efficacy of some shampoo on scalp and hair. The second protocol allowed to assess the interaction between hair care product deposit (shampoo, conditioner, mask, and leave-on) on hair and carbon black particles spread on fiber. The quantification of particle coverage allowed to evaluate the efficiency of a formula to limit the aerial pollution deposit on hair fiber. RESULTS To simplify and accelerate the evaluation of 42 shampoo formulae, an extrapolation of the scalp cleaning process was validated on forearm. The respective cleanabilities were calculated and covered a large range of efficacy, from 5%, for a basic bland shampoo generally used to reset swatches, to a strong deep cleansing efficacy of 100%. On hair swatches, cleanability efficiencies of five shampoo were also evaluated to eliminate the deposited of sebollution, in a range of 40%-80%. To quantify the efficacy of preventing the deposition of carbon particle on hair surface, the percentage of coverage of 45 different products was measured, from 2% to 16%. The performance depended of the product category (shampoo, conditioner, mask, and leave-on), driven by the performance of the product deposit, and the capacity of this deposit to interact with aerial pollution. CONCLUSION Three new protocols and evaluation methods are proposed to evaluate and quantify the performance of hair care product, to remove/clean, limit, and protect the hair fibers against the aerial pollution that could interact with hair, scalp and sebum. The validation of these approaches was done through the testing of a large panel of hair care product leading to a complete and sincere evaluation of cleansing and anti-deposit efficacy. Combining the knowledge acquired on pollution impact on hair and the development of specific way of evaluation, this work reinforced the rationale of using and developing new cosmetic products that reduced the impact of pollution upon some hair properties.
Collapse
Affiliation(s)
- Anthony Galliano
- L'Oréal Research and InnovationCentre Charles ZviakSaint‐OuenFrance
| | - Chengda Ye
- L'Oréal Research and InnovationShanghaiChina
| | - Fengjie Su
- L'Oréal Research and InnovationShanghaiChina
| | - Chad Wang
- L'Oréal Research and InnovationShanghaiChina
| | | | - Myriam Guerin
- L'Oréal Research and InnovationCentre Charles ZviakSaint‐OuenFrance
| | - Frédéric Flament
- L'Oréal Research and InnovationCentre Charles ZviakSaint‐OuenFrance
| | | |
Collapse
|
102
|
Frantz MC, Rozot R, Marrot L. NRF2 in dermo-cosmetic: From scientific knowledge to skin care products. Biofactors 2023; 49:32-61. [PMID: 36258295 DOI: 10.1002/biof.1907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022]
Abstract
The skin is the organ that is most susceptible to the impact of the exposome. Located at the interface with the external environment, it protects internal organs through the barrier function of the epidermis. It must adapt to the consequences of the harmful effects of solar radiation, the various chemical constituents of atmospheric pollution, and wounds associated with mechanical damage: oxidation, cytotoxicity, inflammation, and so forth. In this biological context, a capacity to adapt to the various stresses caused by the exposome is essential; otherwise, more or less serious conditions may develop accelerated aging, pigmentation disorders, atopy, psoriasis, and skin cancers. Nrf2-controlled pathways play a key role at this level. Nrf2 is a transcription factor that controls genes involved in oxidative stress protection and detoxification of chemicals. Its involvement in UV protection, reduction of inflammation in processes associated with healing, epidermal differentiation for barrier function, and hair regrowth, has been demonstrated. The modulation of Nrf2 in the skin may therefore constitute a skin protection or care strategy for certain dermatological stresses and disorders initiated or aggravated by the exposome. Nrf2 inducers can act through different modes of action. Keap1-dependent mechanisms include modification of the cysteine residues of Keap1 by (pro)electrophiles or prooxidants, and disruption of the Keap1-Nrf2 complex. Indirect mechanisms are suggested for numerous phytochemicals, acting on upstream pathways, or via hormesis. While developing novel and safe Nrf2 modulators for skin care may be challenging, new avenues can arise from natural compounds-based molecular modeling and emerging concepts such as epigenetic regulation.
Collapse
Affiliation(s)
| | - Roger Rozot
- Advanced Research, L'OREAL Research & Innovation, Aulnay-sous-Bois, France
| | - Laurent Marrot
- Advanced Research, L'OREAL Research & Innovation, Aulnay-sous-Bois, France
| |
Collapse
|
103
|
Vingan NR, Parsa S, Barillas J, Culver A, Kenkel JM. Evaluation and characterization of facial skin aging using optical coherence tomography. Lasers Surg Med 2023; 55:22-34. [PMID: 36208115 DOI: 10.1002/lsm.23611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/05/2022] [Accepted: 09/26/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The skin aging exposome encompasses internal and external factors that contribute to clinical signs of facial aging. Aging skin can be characterized by distinctive features such as wrinkles, lentigines, elastosis, and roughness. Optical coherence tomography (OCT) is capable of noninvasively measuring skin characteristics. This study aimed to assess bilateral features using OCT to explore temporal skin changes among decades and potential changes in facial skin aging based on laterality. METHODS A total of 97 subjects between 20 and 89 years old with Fitzpatrick skin types I to IV were enrolled. VivoSight, a Multi-Beam OCT system intended to gather topographical and histological images of skin, was used to scan the area inferolateral to the lateral canthus, bilaterally. Investigators compared characteristics of skin roughness, attenuation coefficient and blood flow across age groups and based on laterality to determine any differences. RESULTS Only data from successful OCT scans were used. Seventy subjects, 10 from each specified decade, had successful bilateral scans and were thus included in the analysis. Chronological aging was characterized by significantly decreased dermal attenuation coefficient with increased age. Skin roughness measurements showed trends of increased roughness with age; however, no statistically significant changes were seen between groups. Qualitative differences amongst scans taken on right and left sides of the face showed no significance regarding roughness, density or blood flow at depths ranging from 0.05 to 0.5 mm. CONCLUSIONS OCT is an effective method for evaluating changes in aging skin. Our results illustrate a decline in skin density with chronological age. Additionally, it was illustrated that structural change in the epidermis and dermis does occur, however on a microscopic scale, there are no significant differences based on laterality. OCT holds promise as a noninvasive technique for characterization of aging skin. Its utility and application in the clinical management and treatment of aged skin requires further research; however, the technology has potential to personalize therapies based on objective findings.
Collapse
Affiliation(s)
- Nicole R Vingan
- Department of Plastic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Shyon Parsa
- University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - Jennifer Barillas
- Department of Plastic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Abby Culver
- Department of Plastic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jeffrey M Kenkel
- Department of Plastic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
104
|
Hydrolipidic Characteristics and Clinical Efficacy of a Dermocosmetic Formulation for the Improvement of Homeostasis on Oily Mature Skin. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010087. [PMID: 36676036 PMCID: PMC9861166 DOI: 10.3390/life13010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Although the scientific literature associates mature skin with dry skin and the secretion of sebum on the face decreases over the years, in tropical countries, such as Brazil, mature skin can still present oily characteristics. Thus, the knowledge of the hydrophilic characteristics of mature skin is fundamental to help the development of more effective treatments for this skin type. In this context, the study aimed to evaluate the hydrophilic characteristics and the clinical efficacy of a cosmetic formulation for mature skin added with alfalfa and lentil extracts by using biophysical and skin imaging techniques. METHODS Twenty-eight healthy females aged between 45 and 59 years were enrolled. Measurements of the stratum corneum water content, sebum content, transepidermal water loss, skin microrelief, and pores count were performed before and after the 28-day formulation application. RESULTS The mature skin presented as oily with wrinkles and pores. The proposed formulation significantly reduced the sebum content and the number of fine and large pores and improved skin microrelief and hydration after a 28-day period of the application when compared to the vehicle. CONCLUSIONS The proposed formulation was effective in oily mature skin treatment, improving its general skin aging and oiliness conditions, and reducing pores count in just 28 days.
Collapse
|
105
|
Salazar J, Carmona T, Zacconi FC, Venegas-Yazigi D, Cabello-Verrugio C, Il Choi W, Vilos C. The Human Dermis as a Target of Nanoparticles for Treating Skin Conditions. Pharmaceutics 2022; 15:10. [PMID: 36678639 PMCID: PMC9860843 DOI: 10.3390/pharmaceutics15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Skin has a preventive role against any damage raised by harmful microorganisms and physical and chemical assaults from the external environment that could affect the body's internal organs. Dermis represents the main section of the skin, and its contribution to skin physiology is critical due to its diverse cellularity, vasculature, and release of molecular mediators involved in the extracellular matrix maintenance and modulation of the immune response. Skin structure and complexity limit the transport of substances, promoting the study of different types of nanoparticles that penetrate the skin layers under different mechanisms intended for skin illness treatments and dermo-cosmetic applications. In this work, we present a detailed morphological description of the dermis in terms of its structures and resident cells. Furthermore, we analyze the role of the dermis in regulating skin homeostasis and its alterations in pathophysiological conditions, highlighting its potential as a therapeutic target. Additionally, we describe the use of nanoparticles for skin illness treatments focused on dermis release and promote the use of metal-organic frameworks (MOFs) as an integrative strategy for skin treatments.
Collapse
Affiliation(s)
- Javier Salazar
- Laboratory of Nanomedicine and Targeted Delivery, School of Medicine, Universidad de Talca, Talca 3460000, Chile
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
- Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
| | - Thais Carmona
- Laboratory of Nanomedicine and Targeted Delivery, School of Medicine, Universidad de Talca, Talca 3460000, Chile
- Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
- Departamento de Química Analítica, Química Física e Ingeniería Química and Instituto de Investigación Química “Andrés M. Del Rio” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
- Materials Chemistry Department, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago 9170022, Chile
| | - Flavia C. Zacconi
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
- Center for Nanomedicine, Diagnostic & Drug Development (cND3), Universidad de Talca, Talca 3460000, Chile
| | - Diego Venegas-Yazigi
- Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
- Materials Chemistry Department, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago 9170022, Chile
| | - Claudio Cabello-Verrugio
- Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370035, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370035, Chile
| | - Won Il Choi
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Chungbuk, Republic of Korea
| | - Cristian Vilos
- Laboratory of Nanomedicine and Targeted Delivery, School of Medicine, Universidad de Talca, Talca 3460000, Chile
- Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
- Center for Nanomedicine, Diagnostic & Drug Development (cND3), Universidad de Talca, Talca 3460000, Chile
| |
Collapse
|
106
|
Kanshide A, Peram MR, Chandrasekhar N, Jamadar A, Kumbar V, Kugaji M. Formulation, Optimization, and Antioxidant Evaluation of Tetrahydrocurcumin-Loaded Ultradeformable Nanovesicular Cream. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09696-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
107
|
Current Understanding of the Role of Senescent Melanocytes in Skin Ageing. Biomedicines 2022; 10:biomedicines10123111. [PMID: 36551868 PMCID: PMC9775966 DOI: 10.3390/biomedicines10123111] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Melanocytes reside within the basal epidermis of human skin, and function to protect the skin from ultraviolet light through the production of melanin. Prolonged exposure of the skin to UV light can induce irreparable DNA damage and drive cells into senescence, a sustained cell cycle arrest that prevents the propagation of this damage. Senescent cells can also be detrimental and contribute to skin ageing phenotypes through their senescence-associated secretory phenotype. Senescent cells can act in both an autocrine and paracrine manner to produce widespread tissue inflammation and skin ageing. Recently, melanocytes have been identified as the main senescent cell population within the epidermis and have been linked to a variety of skin ageing phenotypes, such as epidermal thinning and the presence of wrinkles. However, the literature surrounding melanocyte senescence is limited and tends to focus on the role of senescence in the prevention of melanoma. Therefore, this review aims to explore the current understanding of the contribution of senescent melanocytes to human skin ageing.
Collapse
|
108
|
Wei X, Huang Z, Jiang L, Li Y, Zhang X, Leng Y, Jiang C. Charting the landscape of the environmental exposome. IMETA 2022; 1:e50. [PMID: 38867899 PMCID: PMC10989948 DOI: 10.1002/imt2.50] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/13/2022] [Accepted: 07/30/2022] [Indexed: 06/14/2024]
Abstract
The exposome depicts the total exposures in the lifetime of an organism. Human exposome comprises exposures from environmental and humanistic sources. Biological, chemical, and physical environmental exposures pose potential health threats, especially to susceptible populations. Although still in its nascent stage, we are beginning to recognize the vast and dynamic nature of the exposome. In this review, we systematically summarize the biological and chemical environmental exposomes in three broad environmental matrices-air, soil, and water; each contains several distinct subcategories, along with a brief introduction to the physical exposome. Disease-related environmental exposures are highlighted, and humans are also a major source of disease-related biological exposures. We further discuss the interactions between biological, chemical, and physical exposomes. Finally, we propose a list of outstanding challenges under the exposome research framework that need to be addressed to move the field forward. Taken together, we present a detailed landscape of environmental exposome to prime researchers to join this exciting new field.
Collapse
Affiliation(s)
- Xin Wei
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Zinuo Huang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Liuyiqi Jiang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Yueer Li
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Xinyue Zhang
- Department of GeneticsStanford UniversityStanfordCaliforniaUSA
| | - Yuxin Leng
- Department of Intensive Care UnitPeking University Third HospitalBeijingChina
| | - Chao Jiang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| |
Collapse
|
109
|
Kim J, Lee SG, Lee J, Choi S, Suk J, Lee JH, Yang JH, Yang JS, Kim J. Oral Supplementation of Low-Molecular-Weight Collagen Peptides Reduces Skin Wrinkles and Improves Biophysical Properties of Skin: A Randomized, Double-Blinded, Placebo-Controlled Study. J Med Food 2022; 25:1146-1154. [PMID: 36516059 DOI: 10.1089/jmf.2022.k.0097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Orally administered collagen peptides could contribute to antiaging by replacing the degraded extracellular matrix proteins caused by photoaging. This study aimed to evaluate the efficacy and safety of low-molecular-weight collagen peptides for treating photoaged and dry skin. In this randomized, placebo-controlled, parallel-group, double-blinded trial, we randomly assigned study participants (n = 100) to either the test product group or placebo group at a 1:1 ratio for 12 weeks. The wrinkle scale score, eye wrinkle volume, roughness parameters, such as the average maximum height of the wrinkle (Rz), arithmetic average within the total measuring length of the wrinkle (Ra), maximum profile valley depth of the wrinkle (Rv), and skin hydration, transepidermal water loss (TEWL), overall elasticity (R2), and ratio of elastic recovery to total deformation (R7) were evaluated at baseline, 6 weeks, and 12 weeks. Safety assessments with serial blood tests were also conducted. Efficacy assessments of data from 84 participants were conducted as the per-protocol analysis. After 12 weeks, the 10-grade crow's feet photo scale score, eye wrinkle volume, skin roughness parameters (Rz, Ra, and Rv), skin elasticity (R2 and R7), skin hydration, and TEWL were significantly improved in the test product group compared to the placebo group. There were no adverse events or abnormalities according to laboratory analysis associated with using the test material during the study period. This study showed that the oral supplementation of low-molecular-weight collagen peptides could improve the wrinkles, elasticity, hydration, and barrier integrity of photoaged facial skin. This clinical study was registered with the Korean Clinical Research Information Service and International Clinical Trials Registry Platform (No: KCT0006500).
Collapse
Affiliation(s)
- Jemin Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea.,Scar Laser and Plastic Surgery Center; Yonsei Cancer Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Gyu Lee
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Joohee Lee
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sooyeon Choi
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jangmi Suk
- Global Medical Research Center, Seoul, Korea
| | - Ju Hee Lee
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea.,Scar Laser and Plastic Surgery Center; Yonsei Cancer Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Joo Hwan Yang
- Department of Research and Development, Geltech, Busan, Republic of Korea
| | - Joon Sung Yang
- Department of Research and Development, Geltech, Busan, Republic of Korea
| | - Jihee Kim
- Scar Laser and Plastic Surgery Center; Yonsei Cancer Hospital, Yonsei University College of Medicine, Seoul, Korea.,Department of Dermatology, Yongin Severance Hospital, Yonsei University College of Medicine, Gyeonggi-do, Korea
| |
Collapse
|
110
|
Bravo B, Correia P, Gonçalves Junior JE, Sant'Anna B, Kerob D. Benefits of topical hyaluronic acid for skin quality and signs of skin aging: From literature review to clinical evidence. Dermatol Ther 2022; 35:e15903. [PMID: 36200921 PMCID: PMC10078143 DOI: 10.1111/dth.15903] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/19/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022]
Abstract
Skin aging goes beyond a chronological process and also results from extrinsic factors referred to as the exposome. Hyaluronic acid (HA) is an important component of the extracellular matrix, with loss starting at 25 years old. While many studies of HA concern topical use, few literature reviews only address the use of topical HA in dermatology. This review describes the different characteristics of HA-containing cosmeceuticals, with a focus on skin aging and the impact of exposome factors on HA synthesis and degradation. A review was performed using the terms HA, hyaluronan, topical, dermatology, cosmetic, aging treatment, exposome, and cosmeceuticals. Results are also presented from a recent randomized controlled trial (RCT), which investigated the additional benefit of using a HA epidermic filler (HA-filler serum) combined with Botulinum toxin type A (BoNTA) to treat signs of skin aging. Subjects were randomized to two groups: HA-filler serum starting 24 h after the BoNTA injection then twice daily for 24 weeks, or the control group, which received BoNTA. HA is a key ingredient used in cosmeceuticals for its hydration/antiaging properties (hygroscopic, rheological, and viscoelastic). Several clinical studies indicate that HA is both well tolerated and effective, adjuvant to both post-surgical and facial rejuvenation procedures. In the RCT, one of few studies to combine BoNTA and HA with a 6-month follow-up, the HA-filler serum lengthened the duration of BoNTA's effect in reducing wrinkles. Numerous studies support HA-based cosmeceuticals as a noninvasive, effective solution for improving skin hydration and rejuvenation.
Collapse
Affiliation(s)
| | - Priscila Correia
- Scientific Expertise, Cosmetic Active, L'Oréal Brasil, Rio de Janeiro, Brazil
| | | | - Beatriz Sant'Anna
- Scientific Expertise, Cosmetic Active, L'Oréal Brasil, Rio de Janeiro, Brazil
| | | |
Collapse
|
111
|
Commentary: Facial Aesthetic Dermatological Procedures and Photoprotection in Chinese Populations. Dermatol Ther (Heidelb) 2022; 13:13-27. [PMID: 36417087 PMCID: PMC9823167 DOI: 10.1007/s13555-022-00862-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
The medical literature on aesthetic dermatology has primarily focused on a light-skinned patient population, yet patients of darker skin types have different needs and priorities. In Chinese individuals, key concerns include altered pigmentation, which is perceived to age the individual, and also relates to the Chinese cultural standard of beauty of fair skin; many seek aesthetic treatment for this. Non-invasive cosmetic procedures such as lasers and injections are also gaining in popularity in the Chinese market, but this population is prone to hyperpigmentation as an adverse effect of such procedures. Considered and tailored approaches, both to primary concerns of photoaging and the side effects of cosmetic treatments, are warranted.
Collapse
|
112
|
Organophosphorus Flame Retardant TCPP Induces Cellular Senescence in Normal Human Skin Keratinocytes: Implication for Skin Aging. Int J Mol Sci 2022; 23:ijms232214306. [PMID: 36430782 PMCID: PMC9698913 DOI: 10.3390/ijms232214306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Tris (1-chloro-2-propyl) phosphate (TCPP) is one of the most frequently detected organophosphorus flames in the environment. Continuous daily exposure to TCPP may harm human skin. However, little is known about the adverse effects of TCPP on human skin. In this study, we first evaluated the detrimental effects and tried to uncover the underlying mechanisms of TCPP on human skin keratinocytes (HaCaT) after 24 h exposure. We found that TCPP caused a concentration-dependent decrease in HaCaT cell viability after exposure to 1.56-400 μg/mL for 24 h, with an IC50 of 275 μg/mL. TCPP also promoted the generation of intracellular reactive oxygen species (ROS) and triggered DNA damage, evidenced by an increase of phosphorylated histone H2A.X (γH2A.X) in the nucleus. Furthermore, the cell cycle was arrested at the G1 phase at 100 μg/mL by upregulation of the mRNA expression of p53 and p21 and downregulation of cyclin D1 and CDK4 expression. Additionally, both the senescence-associated-β-galactosidase activity and related proinflammatory cytokine IL-1β and IL-6 were elevated, indicating that TCPP exposure caused cellular senescence may be through the p53-dependent DNA damage signal pathway in HaCaT cells. Taken together, our data suggest that flame-retardant exposure may be a key precipitating factor for human skin aging.
Collapse
|
113
|
Costa EF, Magalhães WV, Di Stasi LC. Recent Advances in Herbal-Derived Products with Skin Anti-Aging Properties and Cosmetic Applications. Molecules 2022; 27:7518. [PMID: 36364354 PMCID: PMC9658815 DOI: 10.3390/molecules27217518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 10/10/2023] Open
Abstract
Although aesthetic benefits are a desirable effect of the treatment of skin aging, it is also important in controlling several skin diseases, mainly in aged people. The development of new dermocosmetics has rapidly increased due to consumers' demand for non-invasive products with lower adverse effects than those currently available on the market. Natural compounds of plant origin and herbal-derived formulations have been popularized due to their various safe active products, which act through different mechanisms of action on several signaling pathways for skin aging. Based on this, the aim of the review was to identify the recent advances in herbal-derived product research, including herbal formulations and isolated compounds with skin anti-aging properties. The studies evaluated the biological effects of herbal-derived products in in vitro, ex vivo, and in vivo studies, highlighting the effects that were reported in clinical trials with available pharmacodynamics data that support their protective effects to treat, prevent, or control human skin aging. Thus, it was possible to identify that gallic and ferulic acids and herbal formulations containing Thymus vulgaris, Panax ginseng, Triticum aestivum, or Andrographis paniculata are the most promising natural products for the development of new dermocosmetics with skin anti-aging properties.
Collapse
Affiliation(s)
- Erika F. Costa
- Laboratory of Phytomedicines, Pharmacology, and Biotechnology (PhytoPharmaTech), Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Wagner V. Magalhães
- Research and Development Department, Chemyunion Ltd., Sorocaba 18087-101, SP, Brazil
| | - Luiz C. Di Stasi
- Laboratory of Phytomedicines, Pharmacology, and Biotechnology (PhytoPharmaTech), Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| |
Collapse
|
114
|
Lemongrass (Cymbopogon citratus)-incorporated chitosan bioactive films for potential skincare applications. Int J Pharm 2022; 628:122301. [DOI: 10.1016/j.ijpharm.2022.122301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022]
|
115
|
Yang J, Song J, Kim SJ, You G, Lee JB, Mok H. Chronic infrared-A irradiation-induced photoaging of human dermal fibroblasts from different donors at physiological temperature. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2022; 38:571-581. [PMID: 35437847 DOI: 10.1111/phpp.12793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/05/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In this study, we examined cellular responses to acute and chronic IRA irradiation at mild and natural levels of exposure in two types of human fibroblasts, each isolated from a different donor, at physiological temperature (34°C). METHOD Two types of human dermal fibroblasts (derived from a 20- and 50-year-old women, respectively) were exposed to different repeat numbers of IRA exposure (3, 6, 10, and 14 times; 42 mW/cm2 ) at a frequency of 3-4 times per week (4 h per irradiation). Cellular responses to acute and chronic IRA irradiation were examined by reactive oxygen species (ROS) level, apoptotic signals, cellular morphology, and collagen level. RESULTS We demonstrated that chronic IRA irradiation-induced severe cellular damage, including prolonged cell proliferation, increased intracellular ROS levels, activated cellular apoptosis, and elongated cell morphology, whereas acute IRA irradiation had negligible effects at 34°C. In addition, it was evident that the degree of cellular damage due to IRA irradiation differed according to the type of fibroblasts. CONCLUSIONS Considering the severe cellular damage induced by chronic IRA irradiation without heat, continuous exposure of skin to IRA irradiation during daily life may be harmful enough to induce photoaging.
Collapse
Affiliation(s)
- Jiwon Yang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Jihyeon Song
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | | | - Gayeon You
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | | | - Hyejung Mok
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| |
Collapse
|
116
|
Yi F, Yang XX, Yang RY, Zhao MM, Dong YM, Li L, He YF, Guo MM, Li J, Zhang XH, Lu Z, Gu J, Bao JL, Meng H. A cross-sectional study of Chinese women facial skin status with environmental factors and individual lifestyles. Sci Rep 2022; 12:18110. [PMID: 36302888 PMCID: PMC9613773 DOI: 10.1038/s41598-022-23001-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/21/2022] [Indexed: 12/30/2022] Open
Abstract
Geographical, environmental and pollution conditions affect facial skin health, but their effects on skin appearance have not been elucidated. This study aimed to describe the skin barrier and skin tone characteristics of Chinese subjects according to lifestyle and environmental conditions using in vitro measurements. In total, 1092 women aged 22-42 years were recruited from 7 representative Chinese cities. Eight skin parameters (hydration, sebum, pH, transdermal water loss, individual type angle, melanin index, erythema index, yellowness) were measured using noninvasive instruments; individual lifestyle data were also collected. Data on four meteorological factors (air temperature, relative humidity, sunshine duration, wind speed) and seven air pollution indicators (air quality index, fine particulate matter, breathable particulate matter, sulfur dioxide, nitrogen dioxide, carbon monoxide and ozone) were collected in each city from the China Meteorological Administration. Facial skin characteristics differed significantly between cities. Facial skin barrier characteristics and skin tones showed regional differences, with a better skin barrier associated with the western region, as indicated by high skin hydration and sebum secretion and a low pH value. According to the value of transdermal water loss, lighter and darker skin tones were found in the western and southern regions, respectively. Environmental conditions affected facial skin status. Air pollution induced facial skin issues, with fine particulate matter and nitrogen dioxide contributing the most. Individual lifestyles affected the facial skin barrier and skin tone.
Collapse
Affiliation(s)
- Fan Yi
- grid.411615.60000 0000 9938 1755Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Xiao-xiao Yang
- grid.411615.60000 0000 9938 1755Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Ru-ya Yang
- grid.411615.60000 0000 9938 1755Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Meng-meng Zhao
- grid.411615.60000 0000 9938 1755Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Yin-mao Dong
- grid.411615.60000 0000 9938 1755Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Li Li
- grid.411615.60000 0000 9938 1755Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Yi-fan He
- grid.411615.60000 0000 9938 1755Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Miao-miao Guo
- grid.411615.60000 0000 9938 1755Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Jing Li
- Eviskin Cosmetics Technology (Beijing) Co., Ltd., Beijing, People’s Republic of China
| | - Xiao-hui Zhang
- Eviskin Cosmetics Technology (Beijing) Co., Ltd., Beijing, People’s Republic of China
| | - Zhi Lu
- Shanghai Inoherb Cosmetic Co., Ltd., Shanghai, People’s Republic of China
| | - Jie Gu
- Shanghai Inoherb Cosmetic Co., Ltd., Shanghai, People’s Republic of China
| | - Jing-lin Bao
- Shanghai Inoherb Cosmetic Co., Ltd., Shanghai, People’s Republic of China
| | - Hong Meng
- grid.411615.60000 0000 9938 1755Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China
| |
Collapse
|
117
|
Artificial Intelligence Confirming Treatment Success: The Role of Gender- and Age-Specific Scales in Performance Evaluation. Plast Reconstr Surg 2022; 150:34S-40S. [PMID: 36170434 PMCID: PMC9512241 DOI: 10.1097/prs.0000000000009671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In plastic surgery and cosmetic dermatology, photographic data are an invaluable element of research and clinical practice. Additionally, the use of before and after images is a standard documentation method for procedures, and these images are particularly useful in consultations for effective communication with the patient. An artificial intelligence (AI)-based approach has been proven to have significant results in medical dermatology, plastic surgery, and antiaging procedures in recent years, with applications ranging from skin cancer screening to 3D face reconstructions, the prediction of biological age and perceived age. The increasing use of AI and computer vision methods is due to their noninvasive nature and their potential to provide remote diagnostics. This is especially helpful in instances where traveling to a physical office is complicated, as we have experienced in recent years with the global coronavirus pandemic. However, one question remains: how should the results of AI-based analysis be presented to enable personalization? In this paper, the author investigates the benefit of using gender- and age-specific scales to present skin parameter scores calculated using AI-based systems when analyzing image data.
Collapse
|
118
|
Infante VH, Maia Campos P. Application of a Reflectance Confocal Microscopy Imaging Analysis Score for the Evaluation of Non-Melanogenic Changes in Male Photoaged Skin. Photochem Photobiol 2022; 99:993-1002. [PMID: 36098679 DOI: 10.1111/php.13713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022]
Abstract
The photoaging process is characterized by skin changes due to ultraviolet radiation exposure and is the principal environmental factor affecting skin aging. Reflectance confocal microscopy permits noninvasive skin imaging to understand how the photoaging process may change skin. Since men do not habitually use a sunscreen, the application of skin imaging techniques is important to understand the influence of sunlight on their skin health. The aim of this study was to develop a score based on RCM imaging analyses to evaluate the morphological and structural changes of the photoaged skin according to literature data. The score was applied in order to determine possible correlations between chronological aging and sunscreen use behavior among men. Thus, 40 men aged 18 to 50 years were recruited, images from the frontal region of their skin were obtained and the score was applied. It was observed that habits are more important than age for the skin photoaging process. Men with photoprotection habits showed overall better skin morphological and structural characteristics regardless of age, demonstrating that sun protection behavior is a major key factor in the understanding of photoaging, so that men should be encouraged to start the use of cosmetic products and to perform selfcare.
Collapse
Affiliation(s)
- Victor Hugo Infante
- Sao Paulo University Faculty of Pharmaceutical Sciences, Ribeirao Preto, São Paulo, Brazil
| | - Patricia Maia Campos
- Sao Paulo University Faculty of Pharmaceutical Sciences, Ribeirao Preto, São Paulo, Brazil
| |
Collapse
|
119
|
An Open-Label Clinical Trial Analyzing the Efficacy of a Novel Telomere-Protecting Antiaging Face Cream. COSMETICS 2022. [DOI: 10.3390/cosmetics9050095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Telomere length, a hallmark of cellular senescence, decreases with age and is associated with age-related diseases. Environmental factors, including dietary and lifestyle factors, can affect the rate at which telomeres shorten, and telomere protection prevents this from happening. The protection of telomeres by natural molecules has been proposed as an antiaging strategy that may play a role in treating age-related diseases. This study investigated the effect of a cycloartane-type triterpene glycoside (astragaloside IV). Astragaloside IV is one of the primary compounds from the aqueous extract of Astragalus membranaceus, and it provides telomere protection both in vitro and in vivo. In a study cohort with 13 participants, telomere length in human skin samples was analyzed after daily treatment for 4 weeks. A comparison of the average median telomere length between the treatment and control groups (5342 bp vs. 4616 bp p = 0.0168) showed significant results. In the second clinical cohort with 20 participants, skin parameters at baseline and after 4 and 8 weeks were measured in vivo. The results show that the product improved hydration by 95%, the skin appeared brighter by 90%, and wrinkle visibility was reduced by 70%. The combination of biologically active compounds in the cream possesses telomere-protecting properties and notable antioxidant activity in vitro and in vivo.
Collapse
|
120
|
Akulinina I, Stefanaki I, Pavlíčková E, Maiolino M, Hajduk S, Sápy M, Mertin B, Rijo H, Tekeli Ö, Valois A, Delva C, Kerob D. Topical formulation containing peptides and vitamin C in ampoules improves skin aging signs: Results of a large, international, observational study. J Cosmet Dermatol 2022; 21:3910-3916. [PMID: 35064615 PMCID: PMC9786622 DOI: 10.1111/jocd.14733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/20/2021] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Peptide-C ampoules (PC) contain peptides, 10% of vitamin C, hyaluronic acid, and Vichy volcanic mineralizing water. AIMS To assess the effectiveness and tolerability of PC. PATIENTS AND METHODS An observational study conducted in 9 countries in women ≥30 years old with signs of facial skin aging (grade >0 for forehead and/or crow's feet wrinkles and bothered by skin quality). Investigator assessments and subject questionnaires were performed at initial visit and Day 30 after application of PC twice daily for 28 days. Tolerance was assessed throughout the study. RESULTS Effectiveness and safety were analyzed in 1382 and 1742 subjects, respectively. Most subjects (mean age 48.5 ± 8.6 years) had skin phototype II or III (91.7%) and dry or combination skin (63.9%). PC was used as a standalone care or prior to a planned procedure (70%), or after a procedure (30%). Between baseline and Day 30, 63% and 64% of all subjects (N = 1360) had an improvement in forehead wrinkles and crow's feet wrinkles, respectively. Skin hydration improved in 67.3% of subjects. According to investigator and subject assessments, skin quality, skin radiance, skin aging signs, wrinkles, complexion, and skin pores significantly improved by Day 30. Similar results were observed for subgroup analyses when PC was used as standalone skin care or after a procedure. Tolerance of PC was rated as good to very good by 97.7% of subjects. CONCLUSIONS Peptide-C ampoules is effective in reducing visible signs of skin aging, and well tolerated, when used alone or as an adjunct to anti-aging procedures.
Collapse
Affiliation(s)
- Iuliia Akulinina
- The State Education Institution of Higher Professional TrainingThe First Sechenov Moscow State Medical University under Ministry of Health of the Russian Federation (Sechenov University)MoscowRussian Federation,The University of PisaPisaItaly,Pirogov Russian National Research Medical UniversityMoscowRussian Federation
| | - Irene Stefanaki
- First Department of DermatologyUniversity of Athens School of MedicineAndreas Sygros HospitalAthensGreece
| | | | | | | | | | | | - Helena Rijo
- Dermatologist Clinic Helena RijoFaroPortugal
| | | | | | | | | |
Collapse
|
121
|
Martín‐Martínez A, Sánchez‐Marzo N, Martínez‐Casanova D, Abarquero‐Cerezo M, Herranz‐López M, Barrajón‐Catalán E, Matabuena‐Yzaguirre M. High global antioxidant protection and stimulation of the collagen synthesis of new anti-aging product containing an optimized active mix. J Cosmet Dermatol 2022; 21:3993-4000. [PMID: 35050544 PMCID: PMC9788327 DOI: 10.1111/jocd.14703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 11/17/2021] [Accepted: 12/14/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To assess the in vitro efficacy on antioxidant potential, protection against global oxidative stress, and effect on collagen neosynthesis of minimalist formula (Peptide-C ampoules product) containing 10% natural vitamin C, rice and lupin bio-peptides, hyaluronic acid, and Vichy volcanic mineralizing water (active mix). METHODS In-tube quantitative tests ("in-tube screening") assessed global antioxidant properties, anti-lipid peroxidation, anti-protein glycosylation, and metalloproteinase inhibition (anti-collagenase, anti-elastase, and anti-hyaluronidase activity) properties of the formula. Protection against oxidative stress was evaluated on human keratinocyte monolayer cultures, and collagen neosynthesis was quantified on fibroblast monolayer cultures treated with supernatants from product-treated reconstructed human epidermis. RESULTS Product (5% concentration) showed high antioxidant ability (blocking 99.0% oxidation), protection against oxidative stress damage (51.8% lipid peroxidation and 37.8% protein glycosylation decreases), and inhibition of hyaluronidase (21.9%), elastase (47.1%), and collagenase (61.8%). The protective effect was validated on human keratinocyte monolayer cultures in the presence of active mix (0.025%). Oxidative stress (ROS) was reduced by 99.0%, while global oxidative stress (RMS) induced by pollution, UVA radiation, and a combination of both factors was reduced by 48.94%, 8.7%, and 96.28%, respectively. The product increased collagen neosynthesis (11.21%) by cellular dialogue in fibroblasts incubated with product/mix-treated-RHE supernatants. CONCLUSION The combination of ingredients in the product showed high global antioxidant capacity, as well as a protective effect against oxidative stress induced by UVA, pollution, or both combined factors and an ability to stimulate collagen neosynthesis in in vitro studies, which support the clinical efficacy of this product.
Collapse
Affiliation(s)
| | - Noelia Sánchez‐Marzo
- Instituto de Biología Molecular y Celular (IBMC)Miguel Hernández University (UMH) ElcheAlicanteSpain
| | | | | | - Maria Herranz‐López
- Instituto de Biología Molecular y Celular (IBMC)Miguel Hernández University (UMH) ElcheAlicanteSpain
| | - Enrique Barrajón‐Catalán
- Instituto de Biología Molecular y Celular (IBMC)Miguel Hernández University (UMH) ElcheAlicanteSpain
| | | |
Collapse
|
122
|
Jia HJ, Ge Y, Xia J, Shi YL, Wang XB. Belinostat (PXD101) resists UVB irradiation-induced cellular senescence and skin photoaging. Biochem Biophys Res Commun 2022; 627:122-129. [PMID: 36030653 DOI: 10.1016/j.bbrc.2022.08.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
Abstract
Belinostat (PXD101), a new histone deacetylase inhibitor, has shown good performance in various cancer treatments and has been approved by the FDA for the treatment of recurrent or refractory peripheral T-cell lymphoma (PTCL) in patients with drugs. PXD101 is considered to have certain anti-allergic and anti-inflammatory properties, but its beneficial effects in UVB-induced skin photoaging have not been reported. In a recent study, HacaT cells and C57BL6 mice were used to study the impact of PXD101 on UVB-induced cellular senescence and skin photoaging and to explore their potential mechanisms of action. Studies have shown that PXD101 inhibits UVB-induced HacaT cell senescence, which appears to be achieved by inhibiting activation of the UVB-induced NF-κB/p65 signaling pathway. At the same time, PXD101 inhibits the expression of MMPs. In addition, PXD101 alleviated skin damage on the dorsal skin of mice, reduced skin aging and inflammation, increased collagen fiber synthesis, and restored UVB-induced epidermal thickening. In short, we believe that PXD101 effectively inhibits cellular senescence and skin photoaging caused by UVB exposure, a potential method for developing clinical prevention and treatment of skin aging.
Collapse
Affiliation(s)
- Hui-Jie Jia
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China
| | - Yuchen Ge
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China
| | - Jing Xia
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China
| | - Yi-Ling Shi
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China.
| | - Xiao-Bo Wang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China.
| |
Collapse
|
123
|
Fitoussi R, Faure MO, Beauchef G, Achard S. Human skin responses to environmental pollutants: A review of current scientific models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119316. [PMID: 35469928 DOI: 10.1016/j.envpol.2022.119316] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Whatever the exposure route, chemical, physical and biological pollutants modify the whole organism response, leading to nerve, cardiac, respiratory, reproductive, and skin system pathologies. Skin acts as a barrier for preventing pollutant modifications. This review aims to present the available scientific models, which help investigate the impact of pollution on the skin. The research question was "Which experimental models illustrate the impact of pollution on the skin in humans?" The review covered a period of 10 years following a PECO statement on in vitro, ex vivo, in vivo and in silico models. Of 582 retrieved articles, 118 articles were eligible. In oral and inhalation routes, dermal exposure had an important impact at both local and systemic levels. Healthy skin models included primary cells, cell lines, co-cultures, reconstructed human epidermis, and skin explants. In silico models estimated skin exposure and permeability. All pollutants affected the skin by altering elasticity, thickness, the structure of epidermal barrier strength, and dermal extracellular integrity. Some specific models concerned wound healing or the skin aging process. Underlying mechanisms were an exacerbated inflammatory skin reaction with the modulation of several cytokines and oxidative stress responses, ending with apoptosis. Pathological skin models revealed the consequences of environmental pollutants on psoriasis, atopic dermatitis, and tumour development. Finally, scientific models were used for evaluating the safety and efficacy of potential skin formulations in preventing the skin aging process or skin irritation after repeated contact. The review gives an overview of scientific skin models used to assess the effects of pollutants. Chemical and physical pollutants were mainly represented while biological contaminants were little studied. In future developments, cell hypoxia and microbiota models may be considered as more representative of clinical situations. Models considering humidity and temperature variations may reflect the impact of these changes.
Collapse
Affiliation(s)
| | - Marie-Odile Faure
- Scientific Consulting For You, 266 avenue Daumesnil, 75012, PARIS, France
| | | | - Sophie Achard
- HERA Team (Health Environmental Risk Assessment), INSERM UMR1153, CRESS-INRAE, Université Paris Cité, Faculté de Pharmacie, 4 avenue de l'Observatoire, 75270 CEDEX 06, PARIS, France.
| |
Collapse
|
124
|
Ahmed IA, Mikail MA, Zamakshshari NH, Mustafa MR, Hashim NM, Othman R. Trends and challenges in phytotherapy and phytocosmetics for skin aging. Saudi J Biol Sci 2022; 29:103363. [PMID: 35813113 PMCID: PMC9260296 DOI: 10.1016/j.sjbs.2022.103363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
Free radicals, oxidative stress, and inflammation contribute to the etiology of most chronic diseases. Natural products can be incorporated into cosmetics, cosmeceuticals, and nutricosmetics to tackle inflammation-related diseases. The use of alternative green extraction solvents such as natural deep eutectic solvents and electrochemically reduced water is trending. Delivery systems are important for the enhancement of the bioavailability, stability, solubility, and controlled release profile of the bioactives.
Oxidative stress and inflammation mostly contribute to aging and age-related conditions including skin aging. The potential of natural products in the form of naturally-derived cosmetics, cosmeceuticals, and nutricosmetics have, however, not been fully harnessed. This review, thus, critically analyzes the potential roles of natural products in inflammation-related skin aging diseases due to the increasing consumers’ concerns and demands for efficacious, safe, natural, sustainable, and religiously permitted alternatives to synthetic products. The information and data were collated from various resources and literature databases such as PubMed, Science Direct, Wiley, Springer, Taylor and Francis, Scopus, Inflibnet, Google, and Google Scholar using relevant keywords and Medical Subject Headings (MeSH). The role of green extraction solvents as promising alternatives is also elucidated. The potential enhancements of the bioavailability, stability, solubility and controlled release profile of the bioactives using different delivery systems are also presented. The current potential global market value, motivators, drivers, trends, challenges, halal, and other regulatory certifications for cosmeceuticals and nutricosmetics are equally discussed. The adoption of the suggested extractions and delivery systems would enhance the stability, bioavailability, and target delivery of the bioactives.
Collapse
|
125
|
Farris PK, Valacchi G. Ultraviolet Light Protection: Is It Really Enough? Antioxidants (Basel) 2022; 11:1484. [PMID: 36009203 PMCID: PMC9405175 DOI: 10.3390/antiox11081484] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Our current understanding of the pathogenesis of skin aging includes the role of ultraviolet light, visible light, infrared, pollution, cigarette smoke and other environmental exposures. The mechanism of action common to these exposures is the disruption of the cellular redox balance by the directly or indirectly increased formation of reactive oxygen species that overwhelm the intrinsic antioxidant defense system, resulting in an oxidative stress condition. Altered redox homeostasis triggers downstream pathways that contribute to tissue oxinflammation (cross-talk between inflammation and altered redox status) and accelerate skin aging. In addition, both ultraviolet light and pollution increase intracellular free iron that catalyzes reactive oxygen species generation via the Fenton reaction. This disruption of iron homeostasis within the cell further promotes oxidative stress and contributes to extrinsic skin aging. More recent studies have demonstrated that iron chelators can be used topically and can enhance the benefits of topically applied antioxidants. Thus, an updated, more comprehensive approach to environmental or atmospheric aging protection should include sun protective measures, broad spectrum sunscreens, antioxidants, chelating agents, and DNA repair enzymes.
Collapse
Affiliation(s)
- Patricia K. Farris
- Department of Dermatology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, I-44121 Ferrara, Italy
- Animal Science Department, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Food and Nutrition, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Korea
| |
Collapse
|
126
|
Bernerd F, Passeron T, Castiel I, Marionnet C. The Damaging Effects of Long UVA (UVA1) Rays: A Major Challenge to Preserve Skin Health and Integrity. Int J Mol Sci 2022; 23:ijms23158243. [PMID: 35897826 PMCID: PMC9368482 DOI: 10.3390/ijms23158243] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Within solar ultraviolet (UV) light, the longest UVA1 wavelengths, with significant and relatively constant levels all year round and large penetration properties, produce effects in all cutaneous layers. Their effects, mediated by numerous endogenous chromophores, primarily involve the generation of reactive oxygen species (ROS). The resulting oxidative stress is the major mode of action of UVA1, responsible for lipid peroxidation, protein carbonylation, DNA lesions and subsequent intracellular signaling cascades. These molecular changes lead to mutations, apoptosis, dermis remodeling, inflammatory reactions and abnormal immune responses. The altered biological functions contribute to clinical consequences such as hyperpigmentation, inflammation, photoimmunosuppression, sun allergies, photoaging and photocancers. Such harmful impacts have also been reported after the use of UVA1 phototherapy or tanning beds. Furthermore, other external aggressors, such as pollutants and visible light (Vis), were shown to induce independent, cumulative and synergistic effects with UVA1 rays. In this review, we synthetize the biological and clinical effects of UVA1 and the complementary effects of UVA1 with pollutants or Vis. The identified deleterious biological impact of UVA1 contributing to clinical consequences, combined with the predominance of UVA1 rays in solar UV radiation, constitute a solid rational for the need for a broad photoprotection, including UVA1 up to 400 nm.
Collapse
Affiliation(s)
- Françoise Bernerd
- L’Oréal Research and Innovation, 1 Avenue Eugène Schueller, 93600 Aulnay sous Bois, France;
- Correspondence: ; Tel.: +33-(0)1-48-68-95-95
| | - Thierry Passeron
- Department of Dermatology, CHU Nice, University Côte d’Azur, 151, Route de Ginestière, 06200 Nice, France;
- Research Center C3M, INSERM Unit 1065, University Côte d’Azur, 06200 Nice, France
| | - Isabelle Castiel
- L’Oréal Research and Innovation, 3 Rue Dora Maar, 93400 Saint-Ouen, France;
| | - Claire Marionnet
- L’Oréal Research and Innovation, 1 Avenue Eugène Schueller, 93600 Aulnay sous Bois, France;
| |
Collapse
|
127
|
Pająk J, Szepietowski JC, Nowicka D. Prevention of Ageing-The Role of Micro-Needling in Neck and Cleavage Rejuvenation: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159055. [PMID: 35897441 PMCID: PMC9332435 DOI: 10.3390/ijerph19159055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/18/2022]
Abstract
Although interest in aesthetic medicine is growing, the focus is often placed outside of the facial area, namely on the skin of the neck and cleavage. Exposure to the sun and muscle movements cause the prompt development of wrinkles that may appear there, even before they show up on the face. We conducted a literature review devoted to micro-needling to identify its role in anti-ageing treatments and to determine the gaps in current knowledge. A search in Medline identified 52 publications for neck and face micro-needling. Micro-needling is an anti-ageing procedure that involves making micro-punctures in the skin to induce skin remodelling by stimulating the fibroblasts responsible for collagen and elastin production. It can be applied to the skin of the face, neck, and cleavage. Two to four weeks should be allowed between repeated procedures to achieve an optimal effect. The increase in collagen and elastin in the skin can reach 400% after 6 months, with an increase in the thickness of the stratum granulosum occurring for up to 1 year. In conclusion, micro-needling can be considered an effective and safe aesthetic medicine procedure which is conducted at low costs due to its low invasiveness, low number of adverse reactions, and short recovery time. Little evidence identified in the literature suggests that this procedure requires further research.
Collapse
Affiliation(s)
- Justyna Pająk
- Department of Dermatology, Venereology and Allergology, Wrocław Medical University, 50-368 Wroclaw, Poland; (J.P.); (J.C.S.)
| | - Jacek C. Szepietowski
- Department of Dermatology, Venereology and Allergology, Wrocław Medical University, 50-368 Wroclaw, Poland; (J.P.); (J.C.S.)
| | - Danuta Nowicka
- Department of Dermatology, Venereology and Allergology, Wrocław Medical University, 50-368 Wroclaw, Poland; (J.P.); (J.C.S.)
- Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
- Correspondence:
| |
Collapse
|
128
|
Effects of Air Pollution on Cellular Senescence and Skin Aging. Cells 2022; 11:cells11142220. [PMID: 35883663 PMCID: PMC9320051 DOI: 10.3390/cells11142220] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022] Open
Abstract
The human skin is exposed daily to different environmental factors such as air pollutants and ultraviolet (UV) light. Air pollution is considered a harmful environmental risk to human skin and is known to promote aging and inflammation of this tissue, leading to the onset of skin disorders and to the appearance of wrinkles and pigmentation issues. Besides this, components of air pollution can interact synergistically with ultraviolet light and increase the impact of damage to the skin. However, little is known about the modulation of air pollution on cellular senescence in skin cells and how this can contribute to skin aging. In this review, we are summarizing the current state of knowledge about air pollution components, their involvement in the processes of cellular senescence and skin aging, as well as the current therapeutic and cosmetic interventions proposed to prevent or mitigate the effects of air pollution in the skin.
Collapse
|
129
|
Ye C, Flament F, Wang Y, Sun H, Yang G, Jiang Y, Delaunay C, Saint-Leger D. Structural and Functional age-related changes in some facial signs of Chinese men. A Pilot study. Int J Cosmet Sci 2022; 44:530-541. [PMID: 35841376 DOI: 10.1111/ics.12802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To associate, on the same Chinese male subjects, changes in facial aging signs with some biomechanical skin properties. METHODS The severities of 20 facial aging signs of 219 differently aged Chinese men (20-65y) were graded in blind by trained experts through standardized photographs, using a referential skin Atlas dedicated to Asian men. On each subject, the mechanical properties were assessed on the cheek area (left or right at random) by the validated suction technique Cutometer®. Finally, the skin color parameters were assessed on images from VISIA-CR device. RESULTS Clinically speaking, the severity of almost all facial aging signs increases from 30y to 65y, in a linear like progression, whereas the 20-30y shows weak increases. Skin color shows slight but progressive decreases in Luminance and ITA, whereas the yellow and red components slightly increased between 40y and 65y. At the exception of skin firmness, the skin mechanical properties show a clear decline during the 30-50y period and plateau beyond. CONCLUSION The present study suggests that the 20-30y period, albeit more clinically "silent" than the other periods of age, seems to be an age-range during which early alterations of some dermal elements' onset. Deeper in vivo investigating techniques (Echography, Multiphotonic microscopy) are needed to confirm such hypothesis.
Collapse
Affiliation(s)
- Chengda Ye
- L'Oréal Research and Innovation, Shanghai, China
| | | | - Yang Wang
- L'Oréal Research and Innovation, Shanghai, China
| | - Hua Sun
- China-norm Quality Technical Service, Shanghai, China
| | | | - Yanwen Jiang
- China-norm Quality Technical Service, Shanghai, China
| | | | | |
Collapse
|
130
|
Chao L, Lu M, Gao W, An Z, Li J, Liu Y, Wu W, Song J. Ambient temperature exposure and risk of outpatient visits for dermatologic diseases in Xinxiang, China: a time-series analysis. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:1487-1493. [PMID: 35522347 DOI: 10.1007/s00484-022-02297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/06/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
The effect of ambient temperature on dermatologic diseases has received widespread attention. Previous studies have shown that ambient temperature might affect specific dermatologic diseases, but results were inconsistent. This study aims to assess the short-term effect of ambient temperature on outpatient visits due to dermatologic diseases (DMs) in Xinxiang, China. Daily DMs outpatient visits, mean temperature, mean relative humidity, and air pollution data of Xinxiang were retrieved from January 1, 2015, to December 31, 2018. A distributed lag nonlinear model (DLNM) was applied to analyze the effect of ambient temperature on DMs outpatients. We controlled several potential confounding factors such as the long-term trend, public holiday, day of the week, humidity, and air pollutants (NO2, PM2.5). Finally, two more stratification analysis was conducted by age and gender. A total of 164,270 outpatients of DMs were enrolled during our study, and the daily mean visits were 113. The estimated effect of temperature on DMs was nonlinear. Heat temperature would exacerbate outpatients of dermatologic diseases. With a reference median temperature (17 °C), the effect of temperature on DMs was most pronounced at lag0-14; exposure to heat (32 °C, 99th) was associated with 1.565 (95% CI: 1.266-1.934) increased risk of outpatients for DMs. Stratification analysis showed that citizens of young ages were susceptive to heat; both genders had a similar relationship between temperature and DMs risk. This study highlights that ambient temperature was associated with DMs outpatients; heat temperature might aggravate DMs risk. The health hazards of heat temperature required more attention, and more effective prevention measurements should be designed and implemented to curb global warming.
Collapse
Affiliation(s)
- Ling Chao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Mengxue Lu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Wenshan Gao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Yue Liu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China.
| |
Collapse
|
131
|
Kim JY, Kim SH, Choi MH, Lee SH, Cha M, Park JU. Novel Chitosan Dermal Filler with Enhanced Moldability and Elasticity. Macromol Biosci 2022; 22:e2200081. [PMID: 35698278 DOI: 10.1002/mabi.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/31/2022] [Indexed: 11/09/2022]
Abstract
Currently, dermal fillers are largely based on commercialized cross-linked hyaluronic acid (HA) injections, which require a large injection force. Additionally, HA can be easily decomposed by enzymes, and HA-treated tissues present a risk of developing granuloma. In this study, a chitosan-based dermal filler is presented that operates on a liquid-to-gel transition and allows the injection force to be kept ≈4.7 times lower than that required for HA injections. Evaluation of the physical properties of the chitosan filler indicates high viscoelasticity and recovery rate after gelation at 37 °C. Furthermore, in an in vivo evaluation, the liquid injection-type chitosan filler transitions to a gel state within 5 min after injection into the body, and exhibits a compressive strength that is ≈2.4 times higher than that of cross-linked HA. The filler also exhibits higher moldability and maintains a constant volume in the skin for a longer time than the commercial HA filler. Therefore, it is expected that the chitosan filler will be clinically applicable as a novel material for dermal tissue restoration and supplementation.
Collapse
Affiliation(s)
- Jie Young Kim
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, 5 Gil 20, Boramae-Road, Dongjak-Gu, Seoul, 07061, Republic of Korea
| | - Su Hee Kim
- R&D Center, Medifab Co. Ltd., 70 Dusan-ro, Geumcheon-gu, Seoul, 08584, Republic of Korea
| | - Min-Ha Choi
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, 5 Gil 20, Boramae-Road, Dongjak-Gu, Seoul, 07061, Republic of Korea
| | - Soo Hee Lee
- R&D Center, Medifab Co. Ltd., 70 Dusan-ro, Geumcheon-gu, Seoul, 08584, Republic of Korea
| | - Misun Cha
- R&D Center, Medifab Co. Ltd., 70 Dusan-ro, Geumcheon-gu, Seoul, 08584, Republic of Korea
| | - Ji-Ung Park
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, 5 Gil 20, Boramae-Road, Dongjak-Gu, Seoul, 07061, Republic of Korea
| |
Collapse
|
132
|
Zhang Q, Qiao S, Yang C, Jiang G. Nuclear factor-kappa B and effector molecules in photoaging. Cutan Ocul Toxicol 2022; 41:187-193. [PMID: 35658705 DOI: 10.1080/15569527.2022.2081702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nuclear factor-kappa B (NF-κB) has important but complex functions in the photoaging of the human skin. This protein complex is activated upon UV irradiation and plays a key role in the signalling pathway of the inflammatory cascade. NF-κB induces the expression of various proinflammatory cytokines, such as tumour necrosis factor (TNF) and interleukin-1 (IL-1). These proinflammatory cytokines can in turn stimulate the activation of NF-κB, forming a vicious cycle. These processes cause chronic inflammation and contribute to skin ageing. In addition, the activation of NF-κB upregulates the expression of matrix metalloproteinases (MMPs) and leads to the degradation of structural proteins in the dermis. NF-κB disrupts the barrier function of the skin under prolonged and repeated UV stimulations in these ways. Such activity causes chronic skin damage, followed by the formation of wrinkles, dryness, roughness, laxity, and other photoaging manifestations. This study on the NF-κB signalling pathway and effector molecules provides a new perspective to understand and prevent photoaging.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| | - Shiyun Qiao
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| | - Chunsheng Yang
- Department of Dermatology, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, China
| | - Guan Jiang
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
133
|
Vitale S, Colanero S, Placidi M, Di Emidio G, Tatone C, Amicarelli F, D’Alessandro AM. Phytochemistry and Biological Activity of Medicinal Plants in Wound Healing: An Overview of Current Research. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113566. [PMID: 35684503 PMCID: PMC9182061 DOI: 10.3390/molecules27113566] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022]
Abstract
Wound healing is a complicated process, and the effective management of wounds is a major challenge. Natural herbal remedies have now become fundamental for the management of skin disorders and the treatment of skin infections due to the side effects of modern medicine and lower price for herbal products. The aim of the present study is to summarize the most recent in vitro, in vivo, and clinical studies on major herbal preparations, their phytochemical constituents, and new formulations for wound management. Research reveals that several herbal medicaments have marked activity in the management of wounds and that this activity is ascribed to flavonoids, alkaloids, saponins, and phenolic compounds. These phytochemicals can act at different stages of the process by means of various mechanisms, including anti-inflammatory, antimicrobial, antioxidant, collagen synthesis stimulating, cell proliferation, and angiogenic effects. The application of natural compounds using nanotechnology systems may provide significant improvement in the efficacy of wound treatments. Increasing the clinical use of these therapies would require safety assessment in clinical trials.
Collapse
Affiliation(s)
- Stefania Vitale
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Sara Colanero
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133 Milan, Italy;
| | - Martina Placidi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Anna Maria D’Alessandro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
- Correspondence:
| |
Collapse
|
134
|
Chandrashekar BS, Sarangi K, Mastim MA, Bhatia A, Shah M, Sharma V, Gupta M, Gutte R, Sharma A, Sakhalkar U. A Prospective Multicenter Study to Evaluate the Safety and Efficacy of the Topical Application of MYOWNN™, an Autologous Growth Factor Concentrate (AGFC) Serum, in Anti-Aging. Cureus 2022; 14:e25190. [PMID: 35747053 PMCID: PMC9208652 DOI: 10.7759/cureus.25190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2022] [Indexed: 11/26/2022] Open
Abstract
Background Growth factors from platelets have been emerging as a revolutionary treatment with the ability to induce cell growth in the skin, which results in retarding and reversing the aging process. Platelet-rich plasma (PRP) allows for greater release of growth factors and biologically active proteins, which in turn activates the cascade of stimulation of neoangiogenesis and collagen production. PRP is used in anti-aging and facial skin rejuvenation in the form of dermal injections and topical application during micro-needling. This study was conducted to assess the safety and efficacy of a topically applied face serum, MYOWNN™ (Wockhardt Ltd., Mumbai, India). MYOWNN™ is an autologous growth factor concentrate that has been made into a topical face serum. Methods Male and female subjects in the age group between 30 and 55 years (both inclusive) with Fitzpatrick skin type III-V who had not taken any oral or topical treatments for at least four weeks before and any platelet-rich plasma (PRP) based facial treatment (injections) at least six months before the study entry were included. MYOWNN™ serum was applied on the face once daily at night, approximately 30 minutes before sleeping preferably, for a total duration of five months. Six parameters, i.e. spots, pores, wrinkles, texture, moisture, and pigmentation, were evaluated at regular intervals with Visage-LS (dermaindia®, Tamil Nadu, India), a face analysis system that gives the live status of these six parameters and is an advanced live status skin detection equipment together with shooting, analyzing, and displaying functions, as well as the subjective analysis, was performed by subjects and physicians using different globally accepted scales like physician’s global aesthetic improvement scale (PGAIS), subject’s global aesthetic improvement scale (SGAIS), subject satisfaction score (SSS), and wrinkle severity rating scale (WSRS). For analysis, a mixed model for repeated measures was used. The model had change from baseline as the dependent variable visit as a factor and baseline assessment result as a covariate. All primary and secondary efficacy endpoints were analyzed using Modified Intent-to-Treat (mITT) populations. Results Improvement in an average of six anti-aging parameters was observed as early as three months while statistically significant improvement was observed by the end of five months of application. A statistically significant improvement in wrinkles was observed by the end of three months of the application itself. There were no product-related adverse events reported. Conclusions Five months of application of MYOWNN™ serum showed a statistically significant improvement in an average of six parameters of anti-aging and face rejuvenation with a p-value of 0.0150 (<5% level of significance (i.e. 0.05) and was also well-tolerated.
Collapse
|
135
|
Usage Patterns and Self-Esteem of Female Consumers of Antiaging Cosmetic Products. COSMETICS 2022. [DOI: 10.3390/cosmetics9030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Aging is an irreversible process of the human body, resulting from a progressive decrease in the biological functions of the organs, including the skin. This study analyzed the relationship between usage patterns of different types of anti-aging cosmetic products, sociodemographic variables, appearance schemes, psychological morbidity, perfectionism, and aging perception of aging with self-esteem. This cross-sectional study included a sample of 260 women, aged between 25 and 64 years, who are users of anti-aging cosmetics and/or aesthetic treatments. Participants were assessed on psychological morbidity (Hospital Anxiety and Depression Scale), appearance schemes (Appearance Schemas Inventory—Revised), perfectionism (Frost Multidimensional Perfectionism Scale), aging perceptions (Brief Aging Perceptions Questionnaire), and self-esteem (Rosenberg Self-Esteem Scale). The use of facial-firming cosmetics positively correlated with self-esteem. The results of regression analysis revealed that psychological morbidity and perfectionism contribute negatively to self-esteem, while marital status, professional status, and aging perceptions (positive consequences) contribute positively. According to the results, intervention programs to promote women’s self-esteem should focus on the reduction in psychological morbidity and the promotion of adaptive patterns of perfectionism and address aging perceptions. Longitudinal studies might help explain the complex relationship between the use of anti-aging cosmetic products and psychological variables, particularly self-esteem in women.
Collapse
|
136
|
Campiche R, Le Riche A, Edelkamp J, Botello AF, Martin E, Gempeler M, Bertolini M. An extract of Leontopodium alpinum inhibits catagen development ex vivo and increases hair density in vivo. Int J Cosmet Sci 2022; 44:363-376. [PMID: 35514231 PMCID: PMC9328135 DOI: 10.1111/ics.12783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/05/2022]
Abstract
Objectives Hair loss and reduction in hair volume are hallmarks of hair disorders, such as telogen effluvium, or male or female pattern hair loss, and hair ageing, which can cause severe distress in both men and women. Common anti‐hair loss drugs carry some side effects; therefore, novel, safer approaches targeting milder phenotypes are highly advocated. In this context, we investigated an extract of the alpine plant Edelweiss, Leontopodium alpinum var. Helvetia, for its ability to modulate hair follicle (HF) growth ex vivo and inhibit hair loss while increasing hair regeneration in vivo. Methods Human amputated HFs were microdissected from three donors, two women and one man, and cultured ex vivo for 6 days. After treatment with 0.001% Edelweiss extract (EWDE), we investigated hair shaft production and anagen/catagen conversion, and measured known parameters associated with hair growth, that is hair matrix keratinocyte proliferation and apoptosis, dermal papilla inductivity, and growth factors, by quantitative (immuno)histomorphometry. To assess the anti‐hair loss potential of the alpine plant compound, we performed a randomized, placebo‐controlled human study enrolling Caucasian women and men, aged 18 to 65 years, with normal hair loss. After 5 months’ daily use of an extract containing leave‐on serum, we analysed hair density and anagen‐to‐catagen/telogen ratio by the Trichogram analysis. Results Our results revealed a significant prolongation in the anagen phase in HFs treated with 0.001% Edelweiss, as indicated by an increase in HFs remaining in anagen and a significant decrease in hair cycle score. In line with this effect, EWDE significantly stimulated hair matrix (HM) keratinocyte proliferation, and dermal papilla inductivity, as shown by a significant up‐regulation of versican expression and alkaline phosphatase activity, and a tendential increase in FGF7 immunoreactivity in the dermal papilla of all HFs or only anagen VI HFs. Corroborating the ex vivo results, we observed a significant increase in growing hair shaft numbers (hair density) after treatment with Edelweiss extract formulation, and a tendential up‐regulation in the anagen‐to‐catagen/telogen ratio. Conclusions We show here, through several lines of evidence, that the selected extract of the alpine plant Leontopodium alpinum var Helvetia (Edelweiss) inhibits premature catagen induction, possibly by stimulating dermal papilla inductivity. It is therefore worth exploiting this extract clinically as an anti‐hair loss agent, both for preventing ageing‐associated hair shedding and as an adjuvant therapy for hair loss disorders.
Collapse
Affiliation(s)
- Remo Campiche
- DSM Nutritional Products, Personal Care & Aroma, Kaiseraugst, Switzerland
| | | | | | | | - Emmanuel Martin
- DSM Nutritional Products, Personal Care & Aroma, Kaiseraugst, Switzerland
| | - Mathias Gempeler
- DSM Nutritional Products, Personal Care & Aroma, Kaiseraugst, Switzerland
| | | |
Collapse
|
137
|
Flament F, Zhang Y, Jiang R, Trehin C, Cassier M, Delaunay C, Balooch G, Kroely C. Objective and automatic grading system of facial signs from selfie pictures of South African women: Characterization of changes with age and sun‐exposures. Skin Res Technol 2022; 28:596-603. [PMID: 35490368 PMCID: PMC9907676 DOI: 10.1111/srt.13153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/09/2022] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To evaluate the capacity of the automatic detection system to accurately grade, from smartphones' selfie pictures, the severity of fifteen facial signs in South African women and their changes related to age and sun-exposure habits. METHODS A two-steps approach was conducted based on self-taken selfie images. At first, to assess on 306 South African women (20-69 years) enrolled in Pretoria area (25.74°S, 28.22°E), age changes on fifteen facial signs measured by an artificial intelligence (AI)-based automatic grading system previously validated by experts/dermatologists. Second, as these South African panelists were recruited according to their usual behavior toward sun-exposure, that is, nonsun-phobic (NSP, N = 151) and sun-phobic (SP, N = 155) and through their regular and early use of a photo-protective product, to characterize the facial photo-damages. RESULTS (1) The automatic scores showed significant changes with age, by decade, of sagging and wrinkles/texture (p < 0.05) after 20 and 30 years, respectively. Pigmentation cluster scores presented no significant changes with age whereas cheek skin pores enlarged at a low extent with two plateaus at thirties and fifties. (2) After 60 years, a significantly increased severity of wrinkles/texture and sagging was observed in NSP versus SP women (p < 0.05). A trend of an increased pigmentation of the eye contour (p = 0.06) was observed after 50 years. CONCLUSION This work illustrates specific impacts of aging and sun-exposures on facial signs of South African women, when compared to previous experiments conducted in Europe or East Asia. Results significantly confirm the importance of sun-avoidance coupled with photo-protective measures to avoid long-term skin damages. In inclusive epidemiological studies that aim at investigating large human panels in very different contexts, the AI-based system offers a fast, affordable and confidential approach in the detection and quantification of facial signs and their dependency with ages, environments, and lifestyles.
Collapse
Affiliation(s)
| | - Yuze Zhang
- ModiFace–A L'Oréal Group Company Toronto Ontario Canada
| | - Ruowei Jiang
- ModiFace–A L'Oréal Group Company Toronto Ontario Canada
| | | | | | | | | | | |
Collapse
|
138
|
Snell JA, Jandova J, Wondrak GT. Hypochlorous Acid: From Innate Immune Factor and Environmental Toxicant to Chemopreventive Agent Targeting Solar UV-Induced Skin Cancer. Front Oncol 2022; 12:887220. [PMID: 35574306 PMCID: PMC9106365 DOI: 10.3389/fonc.2022.887220] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
A multitude of extrinsic environmental factors (referred to in their entirety as the 'skin exposome') impact structure and function of skin and its corresponding cellular components. The complex (i.e. additive, antagonistic, or synergistic) interactions between multiple extrinsic (exposome) and intrinsic (biological) factors are important determinants of skin health outcomes. Here, we review the role of hypochlorous acid (HOCl) as an emerging component of the skin exposome serving molecular functions as an innate immune factor, environmental toxicant, and topical chemopreventive agent targeting solar UV-induced skin cancer. HOCl [and its corresponding anion (OCl-; hypochlorite)], a weak halogen-based acid and powerful oxidant, serves two seemingly unrelated molecular roles: (i) as an innate immune factor [acting as a myeloperoxidase (MPO)-derived microbicidal factor] and (ii) as a chemical disinfectant used in freshwater processing on a global scale, both in the context of drinking water safety and recreational freshwater use. Physicochemical properties (including redox potential and photon absorptivity) determine chemical reactivity of HOCl towards select biochemical targets [i.e. proteins (e.g. IKK, GRP78, HSA, Keap1/NRF2), lipids, and nucleic acids], essential to its role in innate immunity, antimicrobial disinfection, and therapeutic anti-inflammatory use. Recent studies have explored the interaction between solar UV and HOCl-related environmental co-exposures identifying a heretofore unrecognized photo-chemopreventive activity of topical HOCl and chlorination stress that blocks tumorigenic inflammatory progression in UV-induced high-risk SKH-1 mouse skin, a finding with potential implications for the prevention of human nonmelanoma skin photocarcinogenesis.
Collapse
Affiliation(s)
| | | | - Georg T. Wondrak
- Department of Pharmacology and Toxicology, R.K. Coit College of Pharmacy & UA Cancer Center, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
139
|
Oesch S, Vingan NR, Li X, Hoopman J, Akgul Y, Kenkel JM. A Correlation of the Glogau Scale With VISIA-CR Complexion Analysis Measurements in Assessing Facial Photoaging for Clinical Research. Aesthet Surg J 2022; 42:1175-1184. [PMID: 35468182 DOI: 10.1093/asj/sjac108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Historically, common evaluations for photoaging have been subjective analysis; however, recently, investigators have turned to non-invasive devices for more objective evaluation of facial aging. OBJECTIVES This study aimed to establish a clinical correlation between the Glogau Photoaging Scale and VISIA-CR Complexion Analysis System. In doing so, decreasing intra- and inter-observer variability when assessing photodamage. METHODS One-hundred seventeen subjects between ages 18 and 89 were included. 2D facial photographs were analyzed by three independent reviewers and were assigned Glogau scores. Images were also captured and analyzed using VISIA software. Data was grouped by median Glogau score and compared between groups. RESULTS All groups were statistically different (p < 0.05) for Spots, Wrinkles and Remasked Wrinkles, except for Glogau 1 and 2 for Spots and Remasked Wrinkles. Wrinkles scores were plotted against age, and an exponential regression model was noted to be a better fit (R 2 = 0.5) compared to a linear model (R 2 = 0.47). The same was true for Spots with an exponential (R 2 = 0.36) compared to linear model (R 2 = 0.33). Scores were also evaluated based on sun exposure history, of which there were no significant differences. CONCLUSIONS The results illustrate that an imaging system can be used to reliably determine objective scores correlating to Glogau photoaging evaluations. Results also supported that aging more closely resembles an exponential process. Collectively, these findings will prove useful to those hoping to further investigate facial aging and therapeutic options available for facial skin rejuvenation and objectively assessing their outcomes.
Collapse
Affiliation(s)
- Sydney Oesch
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center , Dallas, TX , USA
| | - Nicole R Vingan
- Department of Plastic Surgery, University of Texas Southwestern Medical Center , Dallas, TX , USA
| | - Xingchen Li
- Division of Plastic Surgery, Penn State Health Milton S. Hershey Medical Center , Hershey, PA , USA
| | - John Hoopman
- Department of Plastic Surgery, University of Texas Southwestern Medical Center , Dallas, TX , USA
| | - Yucel Akgul
- Department of Plastic Surgery, University of Texas Southwestern Medical Center , Dallas, TX , USA
| | - Jeffrey M Kenkel
- Department of Plastic Surgery, University of Texas Southwestern Medical Center , Dallas, TX , USA
| |
Collapse
|
140
|
Zhang Y, Liu X, Wang J, Du L, Ma Y, Liu W, Ye R, Yang Y, Xu H. Analysis of Multi-Part Phenotypic Changes in Skin to Characterize the Trajectory of Skin Aging in Chinese Women. Clin Cosmet Investig Dermatol 2022; 15:631-642. [PMID: 35444440 PMCID: PMC9013710 DOI: 10.2147/ccid.s349401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/27/2022] [Indexed: 11/30/2022]
Abstract
Purpose As the human body’s largest organ exposed to the external environment, the skin suffers from internal and external aging factors, leading to wrinkles, loss of elasticity, sagging, and rough appearance. However, little is known of the characteristics of skin aging of different body parts in Chinese women. Here, we study the signs of extrinsic skin aging in different body parts to identify the knowledge map of manifestations of aging in Chinese women. Patients and Methods Wrinkle and texture phenotypes and collagen samples from the face, neck, hands, and arms of 326 Chinese women were collected. The correlations between phenotypes and ages and the differences in phenotypes by age were evaluated. Results The wrinkle and texture phenotypes around the eyes and mouth and of the hands were strongly correlated with age. Ages 32 and 58 showed the largest number of differentially changed aging phenotypes. The number of aging phenotypes increased sharply between the ages of 24 and 30, suggesting that the skin was undergoing rapid aging. Eye aging was the most rapidly changing phenotype between 19 and 30 years old. Wrinkles at the corner of the eyes showed a significant difference in the older group, suggesting an early onset and long-term effects. Conclusion This is the first study to be performed on the characteristics of skin aging among Chinese women that takes account of multiple areas of the body. It was found that 24 years old was the time point at which the skin begins to age in Chinese women. This provides important clues for aging-related research and personalized skin care.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Dermatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoyu Liu
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Inertiabiotech Co., LTD, Shanghai, People's Republic of China
| | - Jingpu Wang
- Inertiabiotech Co., LTD, Shanghai, People's Republic of China
| | - Le Du
- Inertiabiotech Co., LTD, Shanghai, People's Republic of China
| | - Yanyun Ma
- Human Phenome Institute, Fudan University, Shanghai, People's Republic of China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, People's Republic of China.,Institute for Six-Sector Economy, Fudan University, Shanghai, People's Republic of China
| | - Wei Liu
- Department of Dermatology, The Medical Center of Air Force PLA, Beijing, People's Republic of China
| | - Rui Ye
- Inertiabiotech Co., LTD, Shanghai, People's Republic of China
| | - Yali Yang
- Department of Dermatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hui Xu
- Department of Dermatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
141
|
Coriander (Coriandrum sativum L.) essential oil and oil-loaded nano-formulations as an anti-aging potentiality via TGFβ/SMAD pathway. Sci Rep 2022; 12:6578. [PMID: 35449437 PMCID: PMC9023561 DOI: 10.1038/s41598-022-10494-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Aging has become a concern for many people, especially women. Given that high-quality anti-aging products are of high cost; it has imperative to search for other economical sources. Essential oils are frequently used in cosmetics products due to a wide range of biological activities as well as their pleasant odor. The current study aimed to investigate the biochemical effect of the cosmetic potential of selected Apiaceous essential oils, traditionally used for skincare, by evaluating their anti-wrinkle activity. It is worth noting that, coriander essential oil showed the highest collagenase, elastase, tyrosinase, and hyaluronidase inhibitory activities compared to other Apiaceous oils (fennel, anise, and cumin). GC–MS proved that coriander essential oil showed a very high level of oxygenated monoterpenes, with linalool (81.29%) as the most abundant constituent. Intriguingly, coriander oil cream and Coriander Essential Oil-loaded Lipid Nanoparticles (CEOLNs) formulations attenuated in vivo UV-induced skin photoaging that was manifested by significantly decreased MDA, COX-2, PGE-2, MMP-1, JNK, and AP-1 levels. Moreover, these pharmaceutical dosage forms significantly increased skin collagen content compared to UV-injured group. Also, coriander essential oil significantly increased TGFβ, TGFβII, and SMAD3 protein expression levels compared to UV-injured group. In conclusion, the pharmaceutical dosage forms of coriander oil possess anti-wrinkle activities that could have an auspicious role in amending extrinsic aging.
Collapse
|
142
|
Mavreas D, Athanasiou AE. Rejuvenation of the ageing face and the role of orthodontics: Guidelines for management. J Orthod 2022; 49:463-471. [PMID: 35437070 DOI: 10.1177/14653125221093390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The article reviews the ageing changes of the midfacial and maxillary bones, the mandible, the overlaying soft tissues and the smile, and presents clinical guidelines aiming to rejuvenate older faces by means of orthodontic therapy. With regard to the ageing changes, the maxillary skeleton appears to rotate clockwise inferior to the orbit and becomes retrusive, and as a general pattern the midface contracts and deteriorates with age. Resorption below the mental foramen, reduction in alveolar height, loss of bone at the chin region, and relative increase in size and shape are signs of an aged mandible. Epidermal thinning and decrease in collagen in combination with the effect of gravity and various external factors contribute to the ageing of the skin. Atrophy of the superficial and deep fat, changes in ligamentous tissues and changes in muscle structure, position and tone, all contribute to the stigmata of the aged face. In the article, two late adulthood orthodontic cases are discussed as examples, and general guidelines for orthodontic management of the older face aiming at reversing the 'shrinkage' of the tissues by restoring the facial shape and tightening the soft tissue mask are described. The possible mechanisms explaining the changes observed on the faces of the clinical cases are also discussed. A properly planned and executed orthodontic intervention reversing changes from the inside-out before embarking on cosmetic surgery might have a synergistic effect multiplying the benefits for adult patients.
Collapse
Affiliation(s)
| | - Athanasios E Athanasiou
- Department of Dentistry, School of Medicine, European University Cyprus, Nicosia, Cyprus.,Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
143
|
Kassab A, Rizk N, Prakash S. The Role of Systemic Filtrating Organs in Aging and Their Potential in Rejuvenation Strategies. Int J Mol Sci 2022; 23:ijms23084338. [PMID: 35457154 PMCID: PMC9025381 DOI: 10.3390/ijms23084338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/26/2022] Open
Abstract
Advances in aging studies brought about by heterochronic parabiosis suggest that aging might be a reversable process that is affected by changes in the systemic milieu of organs and cells. Given the broadness of such a systemic approach, research to date has mainly questioned the involvement of “shared organs” versus “circulating factors”. However, in the absence of a clear understanding of the chronological development of aging and a unified platform to evaluate the successes claimed by specific rejuvenation methods, current literature on this topic remains scattered. Herein, aging is assessed from an engineering standpoint to isolate possible aging potentiators via a juxtaposition between biological and mechanical systems. Such a simplification provides a general framework for future research in the field and examines the involvement of various factors in aging. Based on this simplified overview, the kidney as a filtration organ is clearly implicated, for the first time, with the aging phenomenon, necessitating a re-evaluation of current rejuvenation studies to untangle the extent of its involvement and its possible role as a potentiator in aging. Based on these findings, the review concludes with potential translatable and long-term therapeutics for aging while offering a critical view of rejuvenation methods proposed to date.
Collapse
Affiliation(s)
- Amal Kassab
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2BA, Canada
| | - Nasser Rizk
- Department of Biomedical Sciences, College of Health Sciences-QU-Health, Qatar University, Doha 2713, Qatar
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2BA, Canada
| |
Collapse
|
144
|
Infante VHP, Melo MO, Maia Campos PMBG. The impacts of sun protection and skin care habits in the biophysical and morphological properties of young men skin. J Cosmet Dermatol 2022; 21:5073-5080. [PMID: 35377516 DOI: 10.1111/jocd.14965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/28/2022] [Accepted: 03/29/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Previous studies have demonstrated that UVB radiation may cause changes in the epidermal permeability barrier and in the stratum corneum hydration. It is also well known that sun exposure causes erythema, skin cancer and other physiologic alterations. Furthermore, because of the cultural barrier, men usually apply less sunscreen. AIMS The objective of this study was to evaluate the cosmetic use and sun protection habits of young men, correlating their lifestyle with the biophysical and morphological skin characteristics, as well as to study how skin unprotected sun exposure can affect these features even in young people. PATIENTS/METHODS 60 participants between 18 and 28 years old were divided into two groups: with photoprotection habits (PP habits) and without photoprotection habits (No PP habits). They were questioned about their sunscreen and cosmetic products use. The skin parameters were evaluated using biophysical and skin imaging techniques. RESULTS AND CONCLUSION 60% of the participants did not apply sunscreen often and 80% did not consume other skin care products. No PP habits group presented an increase in the transepidermal water loss - TEWL and sebum level, as well as a reduction in the stratum corneum water content and dermis echogenicity. The skin characteristics evaluated in this study were correlated with the sun protection habits and skin care behavior showing that men face some sociocultural barrier to start the use of cosmetic products. Thus, it is important to consider this information for the dermatological clinical and development of cosmetic products for men's skin.
Collapse
Affiliation(s)
| | - Maisa O Melo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo
| | | |
Collapse
|
145
|
Wu P, Iwahashi H, Xie HH, Wang Y, Zhou YY, Kiso A, Kawashima Y, Wei XY. Star fruit extract and C-glycosylated flavonoid components have potential to prevent air pollutant-induced skin inflammation and premature aging. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:13. [PMID: 35359233 PMCID: PMC8971273 DOI: 10.1007/s13659-022-00336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Air pollution adversely affects skin, leading to skin inflammation and premature skin aging. Plant derived antioxidant compounds have been considered to be promising in discovery of effective agents for the protection of skin from the damage by air pollutants. Our previous studies demonstrated that Averrhoa carambola fruit (known as star fruit) is rich in flavonoid C-glycosides with unique structures and potent antioxidant activity. Thus, the star fruit extract (SFE) and main flavonoid C-glycoside components, carambolasides I, J, and P (1-3), carambolaflavone B (4), and isovitexin 2″-O-α-L-rhamnoside (5), were investigated for the activity against air pollutant stress in human epidermis. As a result, SFE and compounds 1-5 exhibited significant inhibitory activity against protein carbonylation in oxidative-stressed stratum corneum with the best activity being shown by compound 3. SFE and compounds 2-5 were also active against engine exhaust-induced protein carbonylation in stratum corneum. When further evaluated, SFE and compound 3 significantly inhibited gene expression of the key inflammation mediators IL-1α and COX-2 in PM-stressed keratinocytes. The results indicated that SFE and the flavonoid C-glycosides are potentially effective against air pollutant-induced skin inflammation and premature aging.
Collapse
Affiliation(s)
- Ping Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, People's Republic of China
| | - Hiroyasu Iwahashi
- Research Center, Maruzen Pharmaceuticals Co. Ltd., 1089-8 Sagata, Shin-ichi-Cho, Fukuyama-City, Hiroshima, 729-3102, Japan.
| | - Hai-Hui Xie
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, People's Republic of China
| | - Ying Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, People's Republic of China
| | - Yan-Yang Zhou
- Research Center, Maruzen Pharmaceuticals Co. Ltd., 1089-8 Sagata, Shin-ichi-Cho, Fukuyama-City, Hiroshima, 729-3102, Japan
| | - Akinori Kiso
- Research Center, Maruzen Pharmaceuticals Co. Ltd., 1089-8 Sagata, Shin-ichi-Cho, Fukuyama-City, Hiroshima, 729-3102, Japan
| | - Yoshihito Kawashima
- Research Center, Maruzen Pharmaceuticals Co. Ltd., 1089-8 Sagata, Shin-ichi-Cho, Fukuyama-City, Hiroshima, 729-3102, Japan
| | - Xiao-Yi Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, People's Republic of China.
| |
Collapse
|
146
|
Charitakis A, Assi S, Yousaf S, Khan I. Overcoming Skin Damage from Pollution via Novel Skincare Strategies. Curr Pharm Des 2022; 28:1250-1257. [PMID: 35362380 DOI: 10.2174/1381612828666220331124025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/15/2022] [Indexed: 11/22/2022]
Abstract
Urban pollution is one of the main problems encountered worldwide with major impact on public health as well as the environment. Health impact of urban pollution is not limited to respiratory conditions but also encompasses major skin problems including irritation, skin ageing, and skin cancer. Toxic gases and particulate matter are the main pollutants and exhibit extensive local variability. The aforementioned pollutants are small particles that attach to the skin or penetrate into it, enhancing free radicals' production inside the inner skin layers. This urges the need to propose cosmetic products that help prevent and/or minimise pollutants' effects on the skin whether irritation, ageing and cancer. Furthermore, intrinsic and extrinsic factors contributed to skin irritation and ageing. Intrinsic factors are within skin factors and include genetic and physiological characteristics of individuals. Moreover, extrinsic factors comprise environmental factors such as humidity, temperature, and smoke. Subsequently active ingredients with antipollutant properties addressed the intrinsic and extrinsic factors by four mechanisms being: free radical neutralisation, film-forming ability, skin barrier enhancement and fortification. Such ingredients include vitamin A derivatives, vitamin C derivatives, carbohydrates, and plant-based products. Yet, very limited studies have evaluated the effectiveness of the aforementioned active ingredients against irritation or ageing and this should be considered in future work.
Collapse
Affiliation(s)
- Alexandros Charitakis
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Sulaf Assi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Sakib Yousaf
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Iftikhar Khan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom.,School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| |
Collapse
|
147
|
Vogeley C, Rolfes KM, Krutmann J, Haarmann-Stemmann T. The Aryl Hydrocarbon Receptor in the Pathogenesis of Environmentally-Induced Squamous Cell Carcinomas of the Skin. Front Oncol 2022; 12:841721. [PMID: 35311158 PMCID: PMC8927079 DOI: 10.3389/fonc.2022.841721] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 01/05/2023] Open
Abstract
Cutaneous squamous cell carcinoma (SCC) is one of the most frequent malignancies in humans and academia as well as public authorities expect a further increase of its incidence in the next years. The major risk factor for the development of SCC of the general population is the repeated and unprotected exposure to ultraviolet (UV) radiation. Another important risk factor, in particular with regards to occupational settings, is the chronic exposure to polycyclic aromatic hydrocarbons (PAH) which are formed during incomplete combustion of organic material and thus can be found in coal tar, creosote, bitumen and related working materials. Importantly, both exposomal factors unleash their carcinogenic potential, at least to some extent, by activating the aryl hydrocarbon receptor (AHR). The AHR is a ligand-dependent transcription factor and key regulator in xenobiotic metabolism and immunity. The AHR is expressed in all cutaneous cell-types investigated so far and maintains skin integrity. We and others have reported that in response to a chronic exposure to environmental stressors, in particular UV radiation and PAHs, an activation of AHR and downstream signaling pathways critically contributes to the development of SCC. Here, we summarize the current knowledge about AHR's role in skin carcinogenesis and focus on its impact on defense mechanisms, such as DNA repair, apoptosis and anti-tumor immune responses. In addition, we discuss the possible consequences of a simultaneous exposure to different AHR-stimulating environmental factors for the development of cutaneous SCC.
Collapse
Affiliation(s)
- Christian Vogeley
- IUF - Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Katharina M Rolfes
- IUF - Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Jean Krutmann
- IUF - Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | |
Collapse
|
148
|
Shah S, Manry S, Makino E, Mehta R. Clinical Assessment of a Circadian-based Antioxidant System Combined with a Comprehensive Brightening Serum in Diverse Subjects with Moderate to Severe Facial Hyperpigmentation. J Cosmet Dermatol 2022; 21:2082-2088. [PMID: 35287252 DOI: 10.1111/jocd.14915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Hyperpigmentation conditions can affect all skin types but occur more frequently in darker skin. Because many factors have been implicated in the etiologies of these disorders, multi-targeted approaches may be required to achieve a better overall outcome in a diverse patient population. AIMS The purpose of this study was to investigate the safety and efficacy of a combination regimen of a comprehensive cosmetic brightening agent (LYT2) with a broad blend of antioxidants (LVS) to reduce hyperpigmentation and improve overall skin appearance. METHODS The combination of LYT2 and LVS, in addition to a basic skincare routine, was evaluated in subjects of either Caucasian or Asian (a majority of whom were Indian) descent, presenting with moderate to severe hyperpigmentation. Efficacy evaluations consisted of investigator clinical grading of overall hyperpigmentation, skin-tone evenness, and radiance, as well as subject self-assessment questionnaires. RESULTS Immediate and progressive improvement was noted by the investigators for all assessed parameters. At the end of the 12-week study, investigators observed a 45% mean decrease from baseline for overall hyperpigmentation. In addition, a 50% improvement in skin tone evenness and a 58% increase in radiance was observed. These investigator assessments were matched by good patient scores for self-perceived efficacy parameters and high overall satisfaction. One patient (7%) showed a treatment-related adverse event. CONCLUSION A combination skincare regimen that combines the pigmentation control of LYT2 with the broad antioxidant defense of LVS is a well-tolerated and effective treatment option to improve the appearance of facial hyperpigmentation and make skin more radiant.
Collapse
Affiliation(s)
| | | | | | - Rahul Mehta
- Allergan Aesthetics, an AbbVie Company, Irvine
| |
Collapse
|
149
|
Flament F, Jacquet L, Ye C, Amar D, Kerob D, Jiang R, Zhang Y, Kroely C, Delaunay C, Passeron T. Artificial Intelligence analysis of over half a million European and Chinese women reveals striking differences in the facial skin aging process. J Eur Acad Dermatol Venereol 2022; 36:1136-1142. [DOI: 10.1111/jdv.18073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/28/2022] [Accepted: 02/23/2022] [Indexed: 12/01/2022]
Affiliation(s)
- F. Flament
- L’Oréal Research and Innovation Clichy France
| | - L. Jacquet
- Vichy International Levallois‐Perret France
| | - C. Ye
- L’Oréal Research and Innovation Shanghai China
| | - D. Amar
- L’Oréal Research and Innovation Shanghai China
| | - D. Kerob
- Vichy International Levallois‐Perret France
| | - R. Jiang
- ModiFace – A L'Oréal Group Company Toronto Canada
| | - Y. Zhang
- ModiFace – A L'Oréal Group Company Toronto Canada
| | - C. Kroely
- L’Oréal CDO – Digital Service Factory Clichy France
| | - C. Delaunay
- L’Oréal Research and Innovation Clichy France
| | - T. Passeron
- Université Côte d’Azur CHU Nice Department of Dermatology Nice France
- Université Côte d’Azur INSERM U1065, C3M Nice France
| |
Collapse
|
150
|
Coppola S, Avagliano C, Sacchi A, Laneri S, Calignano A, Voto L, Luzzetti A, Berni Canani R. Potential Clinical Applications of the Postbiotic Butyrate in Human Skin Diseases. Molecules 2022; 27:1849. [PMID: 35335213 PMCID: PMC8949901 DOI: 10.3390/molecules27061849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Human skin is the largest organ and the most external interface between the environment and the body. Vast communities of viruses, bacteria, archaea, fungi, and mites, collectively named the skin microbiome (SM), cover the skin surface and connected structures. Skin-resident microorganisms contribute to the establishment of cutaneous homeostasis and can modulate host inflammatory responses. Imbalances in the SM structure and function (dysbiosis) are associated with several skin conditions. Therefore, novel target for the skincare field could be represented by strategies, which restore or preserve the SM natural/individual balance. Several of the beneficial effects exerted by the SM are aroused by the microbial metabolite butyrate. Since butyrate exerts a pivotal role in preserving skin health, it could be used as a postbiotic strategy for preventing or treating skin diseases. Herein, we describe and share perspectives of the potential clinical applications of therapeutic strategies using the postbiotic butyrate against human skin diseases.
Collapse
Affiliation(s)
- Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy; (S.C.); (L.V.); (A.L.)
- ImmunoNutritionLab at the CEINGE-Biotecnologie Avanzate s.c.ar.l Research Center, University of Naples Federico II, 80131 Naples, Italy
| | - Carmen Avagliano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (C.A.); (A.S.); (S.L.); (A.C.)
| | - Antonia Sacchi
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (C.A.); (A.S.); (S.L.); (A.C.)
| | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (C.A.); (A.S.); (S.L.); (A.C.)
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (C.A.); (A.S.); (S.L.); (A.C.)
| | - Luana Voto
- Department of Translational Medical Science, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy; (S.C.); (L.V.); (A.L.)
- ImmunoNutritionLab at the CEINGE-Biotecnologie Avanzate s.c.ar.l Research Center, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Luzzetti
- Department of Translational Medical Science, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy; (S.C.); (L.V.); (A.L.)
- ImmunoNutritionLab at the CEINGE-Biotecnologie Avanzate s.c.ar.l Research Center, University of Naples Federico II, 80131 Naples, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy; (S.C.); (L.V.); (A.L.)
- ImmunoNutritionLab at the CEINGE-Biotecnologie Avanzate s.c.ar.l Research Center, University of Naples Federico II, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, 80131 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|