101
|
Reitsma M, Bovee TFH, Peijnenburg AACM, Hendriksen PJM, Hoogenboom RLAP, Rijk JCW. Endocrine-disrupting effects of thioxanthone photoinitiators. Toxicol Sci 2012. [PMID: 23208609 DOI: 10.1093/toxsci/kfs332] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Photoinitiators used in food packaging ink, such as 2-isopropylthioxanthone (2-ITX), have been shown to migrate into food and beverages. Recently, several studies indicated that 2-ITX might be an endocrine-disrupting chemical. In this work, the effects of 2-ITX, 4-isopropylthioxanthone (4-ITX), 2,4-diethylthio xanthone (2,4-diethyl-TX), 2-chlorothioxanthone (2-chloro-TX), and 1-chloro-4-propoxythioxanthone (1-chloro-4-propoxy-TX) on steroidogenesis and androgen and estrogen receptor-mediated transcription activation have been studied using human H295R adrenocarcinoma cells and yeast hormone bioassays, respectively. None of the compounds showed androgenic or estrogenic activities, but clear antiandrogenic and antiestrogenic activities were observed for 2-ITX, 4-ITX, and 2,4-diethyl-TX, whereas 2-chloro-TX showed only antiandrogenic activity. In an adapted version of the H295R steroidogenesis assay, using gas chromatography-tandem mass spectrometry analysis of H295R media, all five compounds increased levels of 17ß-estradiol and estrone. H295R cells incubated with 2-ITX also showed significantly reduced androgen and increased pregnenolone and progesterone levels. Expression of particular steroidogenic genes, including the one encoding for aromatase (CYP19A1), was significantly upregulated after incubation of H295R cells with 2-ITX, 4-ITX, and 2,4-diethyl-TX. In line with the increased CYP19A1 mRNA expression, 2-ITX increased catalytic activity of aromatase in H295R cells as measured by cognate aromatase assays. The results indicate that thioxanthone derivatives can act as potential endocrine disruptors both at the level of nuclear receptor signaling and steroid hormone production.
Collapse
Affiliation(s)
- Marit Reitsma
- RIKILT-Institute of Food Safety, Wageningen UR, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
102
|
Zsippai A, Szabó DR, Tömböl Z, Szabó PM, Éder K, Pállinger É, Gaillard RC, Patócs A, Tóth S, Falus A, Rácz K, Igaz P. Effects of mitotane on gene expression in the adrenocortical cell line NCI-H295R: a microarray study. Pharmacogenomics 2012; 13:1351-61. [DOI: 10.2217/pgs.12.116] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The adrenolytic agent mitotane is widely used in the treatment of adrenocortical cancer; however, its mechanism of action is poorly elucidated. We have studied mitotane-induced mRNA expression changes in the NCI-H295R adrenocortical cancer cell line. Materials & methods: Cell viability and hormone assays were used to select the optimal mitotane concentration effectively inhibiting hormone secretion without affecting cell viability. RNA isolated from cultures treated for 48 and 72 h was subjected to Agilent 4×44K microarray platforms. Microarray results were validated by quantitative reverse-transcription PCR. Results: Altogether, 117 significantly differentially expressed genes were detected at 48 h and 72 h (p < 0.05) in mitotane-treated samples relative to controls. Three significantly underexpressed genes involved in steroid hormone biosynthesis (HSD3B1, HSD3B2 and CYP21A2) and four significantly overexpressed genes (GDF15, ALDH1L2, TRIB3 and SERPINE2) have been validated. Conclusion: Gene-expression changes might be involved in the adrenal action of mitotane and in the inhibition of hormone secretion. Original submitted 20 January 2012; Revision submitted 17 May 2012
Collapse
Affiliation(s)
- Adrienn Zsippai
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi street 46, H-1088 Budapest, Hungary
| | - Diana Rita Szabó
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi street 46, H-1088 Budapest, Hungary
| | - Zsófia Tömböl
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi street 46, H-1088 Budapest, Hungary
| | - Peter M Szabó
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi street 46, H-1088 Budapest, Hungary
| | - Katalin Éder
- Department of Genetics, Cell & Immunobiology, Faculty of Medicine, Semmelweis University, Nagyvárad square 4, H-1089 Budapest, Hungary
| | - Éva Pállinger
- Department of Genetics, Cell & Immunobiology, Faculty of Medicine, Semmelweis University, Nagyvárad square 4, H-1089 Budapest, Hungary
| | - Rolf C Gaillard
- Division of Endocrinology, Diabetology & Metabolism, University Hospital Lausanne, Rue du Bugnon 46., CH-1011 Lausanne, Switzerland
| | - Attila Patócs
- Molecular Medicine Research Group, Hungarian Academy of Sciences & Semmelweis University, Szentkirályi street 46, H-1088 Budapest, Hungary
| | - Sára Tóth
- Department of Genetics, Cell & Immunobiology, Faculty of Medicine, Semmelweis University, Nagyvárad square 4, H-1089 Budapest, Hungary
| | - András Falus
- Department of Genetics, Cell & Immunobiology, Faculty of Medicine, Semmelweis University, Nagyvárad square 4, H-1089 Budapest, Hungary
| | - Károly Rácz
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi street 46, H-1088 Budapest, Hungary
| | - Peter Igaz
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi street 46, H-1088 Budapest, Hungary
| |
Collapse
|
103
|
Hofland J, de Jong FH. Inhibins and activins: their roles in the adrenal gland and the development of adrenocortical tumors. Mol Cell Endocrinol 2012; 359:92-100. [PMID: 21722704 DOI: 10.1016/j.mce.2011.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 05/15/2011] [Accepted: 06/08/2011] [Indexed: 01/08/2023]
Abstract
The adrenal gland is composed of two separate endocrine tissues that control a multitude of bodily functions in their adaptation to external and internal stressors through hormone secretion. The functions of the adrenal gland are regulated by circulating, neural and local factors that ensure proper cell growth and hormone production. Activins and inhibins are among the locally expressed growth factors affecting adrenal cell function. They have been found to influence several aspects of adrenal cell development, adrenocortical steroidogenesis, adrenocortical tumor formation and adrenomedullary cell differentiation. Especially the finding that inhibin α-subunit knockout mice develop adrenocortical carcinomas after gonadectomy has prompted research on the physiological and pathophysiological roles of activin and inhibin in the adrenal cortex. It is now clear that both peptides control adrenocortical physiology and are involved in adrenocortical tumorigenesis at multiple levels, both in murine models as well as in human patients.
Collapse
Affiliation(s)
- Johannes Hofland
- Department of Internal Medicine, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | |
Collapse
|
104
|
Rijk JCW, Peijnenburg AACM, Blokland MH, Lommen A, Hoogenboom RLAP, Bovee TFH. Screening for Modulatory Effects on Steroidogenesis Using the Human H295R Adrenocortical Cell Line: A Metabolomics Approach. Chem Res Toxicol 2012; 25:1720-31. [DOI: 10.1021/tx3001779] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jeroen C. W. Rijk
- RIKILT, Institute of Food Safety, Wageningen UR, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Ad A. C. M. Peijnenburg
- RIKILT, Institute of Food Safety, Wageningen UR, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Marco H. Blokland
- RIKILT, Institute of Food Safety, Wageningen UR, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Arjen Lommen
- RIKILT, Institute of Food Safety, Wageningen UR, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Ron L. A. P. Hoogenboom
- RIKILT, Institute of Food Safety, Wageningen UR, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Toine F. H. Bovee
- RIKILT, Institute of Food Safety, Wageningen UR, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| |
Collapse
|
105
|
Kau MM, Wang JR, Tsai SC, Yu CH, Wang PS. Inhibitory effect of bufalin and cinobufagin on steroidogenesis via the activation of ERK in human adrenocortical cells. Br J Pharmacol 2012; 165:1868-1876. [PMID: 21913902 DOI: 10.1111/j.1476-5381.2011.01671.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Bufalin and cinobufagin exhibit cardiotonic and natriuretic activities. The aim of this study was to evaluate the effects of bufalin and cinobufagin on aldosterone and cortisol secretion and their mechanisms of action in human adrenocortical cells (NCI-H295). EXPERIMENTAL APPROACH H295 cells were incubated with bufalin or cinobufagin in the presence or absence of angiotensin II (Ang II), forskolin, 8-Br-cAMP, corticosterone or deoxycortisol. The role of ERK1/2 was studied by use of the inhibitor of MEK (U0126). The binding of transcription factor steroidogenic factor 1 (SF-1) to steroidogenic acute regulatory (StAR) gene promoter was analysed by EMSA. KEY RESULTS Bufalin and cinobufagin markedly inhibited basal, Ang II-, forskolin- or 8-Br-cAMP-stimulated aldosterone and cortisol secretion, and the conversions of corticosterone to aldosterone and deoxycortisol to cortisol. Bufalin and cinobufagin also inhibited StAR protein expression and SF-1 binding to StAR gene promoter. They both increased phosphorylation of ERK1/2, and U0126 fully abolished these effects on ERK1/2 in H295 cells. Furthermore, U0126 reversed the inhibitory effects of bufalin and cinobufagin on StAR protein expression and the binding of SF-1 to StAR gene promoter. However, U0126 did not completely reverse their inhibitory effects on aldosterone and cortisol release. CONCLUSIONS AND IMPLICATIONS The inhibitory effects of bufalin and cinobufagin on steroidogenesis of aldosterone and cortisol were associated with inhibition of aldosterone synthase and 11β-hydroxylase, as well as the suppression of StAR protein expression and SF-1 binding to StAR promoter via the phosphorylation of ERK1/2 in H295 cells.
Collapse
Affiliation(s)
- Mei-Mei Kau
- Center of General Education, National Taipei University of Nursing and Health Sciences, Taipei, TaiwanDepartment of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, TaiwanGraduate Institute of Transition and Leisure Education for Individuals with Disabilities, Taipei Physical Education College, Taipei, TaiwanDepartment of Physiology, School of Medicine, Chung Shan Medical University, Taichung, TaiwanDepartment of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jiing-Rong Wang
- Center of General Education, National Taipei University of Nursing and Health Sciences, Taipei, TaiwanDepartment of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, TaiwanGraduate Institute of Transition and Leisure Education for Individuals with Disabilities, Taipei Physical Education College, Taipei, TaiwanDepartment of Physiology, School of Medicine, Chung Shan Medical University, Taichung, TaiwanDepartment of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shiow-Chwen Tsai
- Center of General Education, National Taipei University of Nursing and Health Sciences, Taipei, TaiwanDepartment of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, TaiwanGraduate Institute of Transition and Leisure Education for Individuals with Disabilities, Taipei Physical Education College, Taipei, TaiwanDepartment of Physiology, School of Medicine, Chung Shan Medical University, Taichung, TaiwanDepartment of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Han Yu
- Center of General Education, National Taipei University of Nursing and Health Sciences, Taipei, TaiwanDepartment of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, TaiwanGraduate Institute of Transition and Leisure Education for Individuals with Disabilities, Taipei Physical Education College, Taipei, TaiwanDepartment of Physiology, School of Medicine, Chung Shan Medical University, Taichung, TaiwanDepartment of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Paulus S Wang
- Center of General Education, National Taipei University of Nursing and Health Sciences, Taipei, TaiwanDepartment of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, TaiwanGraduate Institute of Transition and Leisure Education for Individuals with Disabilities, Taipei Physical Education College, Taipei, TaiwanDepartment of Physiology, School of Medicine, Chung Shan Medical University, Taichung, TaiwanDepartment of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
106
|
Abstract
The human adrenal cortex secretes mineralocorticoids, glucocorticoids and adrenal androgens. These steroids are produced from unique cell types located within the three distinct zones of the adrenal cortex. Disruption of adrenal steroid production results in a variety of diseases that can lead to hypertension, metabolic syndrome, infertility and androgen excess. The adrenal cortex is also a common site for the development of adenomas, and rarely the site for the development of carcinomas. The adenomas can lead to diseases associated with adrenal steroid excess, while the carcinomas are particularly aggressive and have a poor prognosis. In vitro cell culture models provide important tools to examine molecular and cellular mechanisms controlling both the normal and pathologic function of the adrenal cortex. Herein, we discuss currently available human adrenocortical carcinoma cell lines and their use as model systems for adrenal studies.
Collapse
Affiliation(s)
- Tao Wang
- Department of Physiology, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | |
Collapse
|
107
|
Mao WJ, Chen L, Yang CX, Yao MH, Zhao ZQ, Shen YW, Zhou YQ, Xue AM, Xu HM, Zhang MC. [Effects of triptolide-medicated serum on secretion function of adrenocortical cells isolated from rats]. ACTA ACUST UNITED AC 2012; 8:562-7. [PMID: 20550879 DOI: 10.3736/jcim20100609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To study the effects of triptolide-medicated serum on secretory function of adrenocortical cells isolated from rats. METHODS Thirty SD rats were randomly divided into control group, prednisone group, and low-, medium- and high-dose triptolide groups. Rats were administered with normal saline, prednisone and low-, medium- and high-dose triptolide respectively by gastrogavage to prepare sera containing drugs. Primary adrenocortical cells were isolated from normal male rats and cultured with sera containing drug for 48 hours. Expression of proliferating cell nuclear antigen (PCNA) was observed by immunohistochemical method and number of PCNA-positive cells was counted. Ultrastructure of adrenocortical cells was observed under a transmission electron microscope. Content of corticosterone in supernatant of adrenocortical cell culture was detected by enzyme-linked immunosorbent assay, and real-time fluorescence quantitative polymerase chain reaction (PCR) was employed to investigate the expression of 3beta-hydroxysteroid dehydrogenase (3beta-HSD) mRNA. RESULTS As compared with the control group, content of corticosterone in supernatant of adrenocortical cell culture and expression of 3beta-HSD mRNA were significantly increased in the triptolide-treated groups, and the numbers of PCNA-positive cells were increased in the medium- and high-dose triptolide groups, however, they were decreased in the prednisone group. CONCLUSION Triptolide-medicated serum can increase the secretion of corticosterone in rat adrenocortical cells in vitro.
Collapse
Affiliation(s)
- Wen-Jie Mao
- Department of Forensic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Zhang D, Flint O, Wang L, Gupta A, Westhouse RA, Zhao W, Raghavan N, Caceres-Cortes J, Marathe P, Shen G, Zhang Y, Allentoff A, Josephs J, Gan J, Borzilleri R, Humphreys WG. Cytochrome P450 11A1 bioactivation of a kinase inhibitor in rats: use of radioprofiling, modulation of metabolism, and adrenocortical cell lines to evaluate adrenal toxicity. Chem Res Toxicol 2012; 25:556-71. [PMID: 22295996 DOI: 10.1021/tx200524d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A drug candidate, BMS-A ((N-(4-((1H-pyrrolo[2,3-b]pyridin-4-yl)oxy)-3-fluorophenyl)-1-(4-fluorophenyl) 2-oxo-1,2-dihydropyridine- 3-carboxamide)), was associated with dose- and time-dependent vacuolar degeneration and necrosis of the adrenal cortex following oral administration to rats. Pretreatment with 1-aminobenzotriazole (ABT), a nonspecific P450 inhibitor, ameliorated the toxicity. In vivo and in vitro systems, including adrenal cortex-derived cell lines, were used to study the mechanism responsible for the observed toxicity. Following an oral dose of the C-14 labeled compound, two hydroxylated metabolites of the parent (M2 and M3) were identified as prominent species found only in adrenal glands and testes, two steroidogenic organs. In addition, a high level of radioactivity was covalently bound to adrenal tissue proteins, 40% of which was localized in the mitochondrial fraction. ABT pretreatment reduced localization of radioactivity in the adrenal gland. Low levels of radioactivity bound to proteins were also observed in testes. Both M3 and covalent binding to proteins were found in incubations with mitochondrial fraction isolated from adrenal tissue in the presence of NADPH. In vitro formation of M3 and covalent binding to proteins were not affected by addition of GSH or a CYP11B1/2 inhibitor, metyrapone (MTY), but were inhibited by ketoconazole (KTZ) and a CYP11A1 inhibitor, R-(+)-aminoglutethimide (R-AGT). BMS-A induced apoptosis in a mouse adrenocortical cell line (Y-1) but not in a human cell line (H295R). Metabolite M3 and covalent binding to proteins were also produced in Y-1 and to a lesser extent in H295R cells. The cell toxicity, formation of M3, and covalent binding to proteins were all diminished by R-AGT but not by MTY. These results are consistent with a CYP11A1-mediated bioactivation to generate a reactive species, covalent binding to proteins, and subsequently rat adrenal toxicity. The thorough understanding of the metabolism-dependent adrenal toxicity was useful to evaluate cross-species adrenal toxicity potential of this compound and related analogues.
Collapse
Affiliation(s)
- Donglu Zhang
- Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research & Development, Princeton, New Jersey 08543, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Wang T, Rowland JG, Parmar J, Nesterova M, Seki T, Rainey WE. Comparison of aldosterone production among human adrenocortical cell lines. Horm Metab Res 2012; 44:245-50. [PMID: 22266826 PMCID: PMC4269336 DOI: 10.1055/s-0031-1298019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Several human adrenocortical cell lines have been used as model systems for aldosterone production. However, these cell lines have not been directly compared with each other. Human adrenal cell lines SW13, CAR47, the NCI-H295 and its sub-strains and sub-clones were compared with regard to aldosterone production and aldosterone synthase (CYP11B2) expression. Culture media was collected 48 h after incubation, aldosterone secretion was measured and the data were normalized to the amount of cell protein. RNA was isolated for microarray analysis and quantitative RT-PCR (qPCR). The cell lines with the highest aldosterone production were further tested with regard to angiotensin II (Ang II) stimulation. Neither aldosterone nor CYP11B2 transcript were detected in SW13 or CAR47 cells. The aldosterone production by the NCI-H295, H295A, H295R-S1, H295R-S2, H295R-S3, HAC13, HAC15 and HAC50 were 119, 1, 6, 826, 18, 139, 412, and 1 334 (pmol/mg protein/48 h), respectively. H295A and H295R-S1 expressed less CYP11B2 than the commonly used H295R-S3 cells; while NCI-H295, H295R-S2, HAC13, HAC15 and HAC50 expressed 24-, 14-, 3-, 10-, and 35-fold higher CYP11B2 compared with the H295R-S3 cells. When treated with Ang II, NCI-H295, H295R-S2, HAC13, HAC15 and HAC50 showed significantly higher aldosterone production than the basal level (p<0.05). A comparison of the available human adrenal cell lines indicates that the H295R-S2 and the clonal cell lines, HAC13, HAC15 and HAC50 produced the highest levels of aldosterone and responded well to Ang II.
Collapse
Affiliation(s)
- T Wang
- Department of Physiology, Georgia Health Sciences University, Augusta, GA, USA
| | | | | | | | | | | |
Collapse
|
110
|
Lucki NC, Li D, Sewer MB. Sphingosine-1-phosphate rapidly increases cortisol biosynthesis and the expression of genes involved in cholesterol uptake and transport in H295R adrenocortical cells. Mol Cell Endocrinol 2012; 348:165-75. [PMID: 21864647 PMCID: PMC3508734 DOI: 10.1016/j.mce.2011.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 07/26/2011] [Accepted: 08/03/2011] [Indexed: 12/22/2022]
Abstract
In the acute phase of adrenocortical steroidogenesis, adrenocorticotrophin (ACTH) activates a cAMP/PKA-signaling pathway that promotes the transport of free cholesterol to the inner mitochondrial membrane. We have previously shown that ACTH rapidly stimulates the metabolism of sphingolipids and the secretion of sphingosine-1-phosphate (S1P) in H295R cells. In this study, we examined the effect of S1P on genes involved in the acute phase of steroidogenesis. We show that S1P increases the expression of steroidogenic acute regulatory protein (StAR), 18-kDa translocator protein (TSPO), low-density lipoprotein receptor (LDLR), and scavenger receptor class B type I (SR-BI). S1P-induced StAR mRNA expression requires Gα(i) signaling, phospholipase C (PLC), Ca(2+)/calmodulin-dependent kinase II (CamKII), and ERK1/2 activation. S1P also increases intracellular Ca(2+), the phosphorylation of hormone sensitive lipase (HSL) at Ser(563), and cortisol secretion. Collectively, these findings identify multiple roles for S1P in the regulation of glucocorticoid biosynthesis.
Collapse
Affiliation(s)
- Natasha C. Lucki
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230
| | - Donghui Li
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093-0704
| | - Marion B. Sewer
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093-0704
| |
Collapse
|
111
|
Bates HE, Campbell JE, Ussher JR, Baggio LL, Maida A, Seino Y, Drucker DJ. Gipr is essential for adrenocortical steroidogenesis; however, corticosterone deficiency does not mediate the favorable metabolic phenotype of Gipr(-/-) mice. Diabetes 2012; 61:40-8. [PMID: 22043004 PMCID: PMC3237652 DOI: 10.2337/db11-1060] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) promotes glucose-dependent insulin secretion. However, GIP also enhances glucocorticoid secretion and promotes adiposity. Because obesity and diabetes are glucocorticoid dependent, we examined whether the effects of GIP on energy balance and glycemia are regulated by glucocorticoids using pharmacological activation of GIP receptor (GIPR) signaling with [d-Ala(2)]GIP in mice and in Y1 adrenocortical cells. Genetic elimination of GIPR activity was also studied in normal- and high-fat (HF)-fed Gipr-deficient (Gipr(-/-)) mice. [d-Ala(2)]GIP increased murine corticosterone levels in a GIPR-dependent manner. Conversely, basal corticosterone levels were reduced, whereas food deprivation resulted in significantly enhanced plasma corticosterone levels in Gipr(-/-) mice. [d-Ala(2)]GIP increased cAMP levels, activated extracellular signal\x{2013}related kinase (ERK)1/2, increased expression of steroidogenic genes, and increased neutral lipid storage in Y1GIPR cells. Gipr(-/-) adrenal glands demonstrated a twofold upregulation of the ACTH receptor mRNA and increased sensitivity to ACTH ex vivo. Although HF-fed Gipr(-/-) mice exhibited significantly lower plasma corticosterone, glucocorticoid-treated HF-fed Gipr(-/-) mice had similar energy balance and glycemia compared with Gipr(+)(/+) controls. Hence, although the Gipr is essential for adrenal steroidogenesis and links HF feeding to increased levels of corticosterone, reduced glucocorticoid levels do not significantly contribute to the enhanced metabolic phenotypes in HF-fed Gipr(-/-) mice.
Collapse
Affiliation(s)
- Holly E. Bates
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan E. Campbell
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - John R. Ussher
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Laurie L. Baggio
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Adriano Maida
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | - Daniel J. Drucker
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
- Corresponding author: Daniel J. Drucker,
| |
Collapse
|
112
|
Speaker Abstracts. Drug Metab Rev 2011. [DOI: 10.3109/03602532.2011.629830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
113
|
Thiel G, Rössler OG. Immediate-early transcriptional response to angiotensin II in human adrenocortical cells. Endocrinology 2011; 152:4211-23. [PMID: 21914770 DOI: 10.1210/en.2011-1243] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Angiotensin II binds to the angiotensin II receptors type 1 (AT1 receptors) in adrenocortical cells and triggers an intracellular signaling cascade leading to changes in the gene expression pattern. Here, we show that stimulation with angiotensin II induces the expression of biologically active early growth response (Egr)-1, a zinc finger transcription factor, in human H295R adrenocortical cells. Expression of a dominant-negative mutant of the ternary complex factor Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, prevented Egr-1 expression in angiotensin II-stimulated H295R cells, indicating that Ets-like protein-1 (Elk-1) or related ternary complex factors connect the intracellular signaling cascade elicited by activation of AT1 receptors with transcription of the Egr-1 gene. These data were corroborated by the fact that angiotensin II stimulation increased the transcription activation potential of Elk-1. In addition, activator protein-1 transcriptional activity was significantly elevated in angiotensin II-treated H295R cells. Expression of c-Jun and c-Fos was increased as well as the transcription activation potential of c-Fos. Expression of a dominant-negative mutant of Elk-1 reduced c-Fos expression in angiotensin II-stimulated adrenocortical cells, suggesting that the serum response element within the c-Fos promoter functions as an angiotensin II-response element. Expression of a dominant-negative mutant of c-Jun reduced activator protein-1 activity in angiotensin II-stimulated adrenocortical cells and reduced the up-regulation of c-Jun after angiotensin II stimulation. Thus, c-Jun regulates its own expression in adrenocortical cells. Together, the data show that angiotensin II stimulation activates the transcription factors Egr-1, Elk-1, c-Jun, and c-Fos in adrenocortical cells, leading to stimulus-dependent changes in the gene expression pattern.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Building 44, University of Saarland Medical Center, D-66421 Homburg, Germany.
| | | |
Collapse
|
114
|
Mechanistic profiling of the cAMP-dependent steroidogenic pathway in the H295R endocrine disrupter screening system: new endpoints for toxicity testing. Toxicol Lett 2011; 208:174-84. [PMID: 22079614 DOI: 10.1016/j.toxlet.2011.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 01/26/2023]
Abstract
The need for implementation of effects on steroid synthesis and hormone processing in screening batteries of endocrine disruptive compounds is widely acknowledged. In this perspective, hormone profiling in the H295R adrenocortical cell system is extensively examined and recently OECD validated (TG 456) as a replacement of the minced testis assay. To further elucidate the complete mechanisms and endocrine responsiveness of this cell system, microarray-based gene expression profiling of the cAMP response pathway, one of the major pathways in steroidogenesis regulation, was examined in H295R cells. Next to the steroid synthesis pathway, a broader lipid metabolic pathway, including cholesterol uptake/biosynthesis, hormone metabolization and many hormone and nuclear receptors, are sensitive towards cAMP stimulation in this cell system. Moreover, these pathways were clearly dose and time responsive, indicating early regulation (10 h) of cholesterol uptake and mobilization genes and later expression (24-48 h) of cholesterol biosynthesis and steroid synthesis. Transcription network analysis suggested several important transcription factors that could be involved in regulation of the steroid hormone pathway, of which HNF4α, a broader lipid metabolism related transcription factor, might indicate some new transcription regulation patterns in this cell line. Overall we can conclude that the time dependent gene expression patterns of the strongly coordinated cholesterol supply and steroidogenesis pathways in the H295R cell system seem to reflect well the in vivo ACTH/cAMP signalling cascade in adrenal cells. Moreover, the completeness of the steroidogenic related pathways in terms of gene expression sensitivity, indicates the H295R cell line as a promising cell line in omics-based endocrine disruption screening.
Collapse
|
115
|
Mazilu JK, McCabe ERB. Moving toward personalized cell-based interventions for adrenal cortical disorders: part 2--Human diseases and tissue engineering. Mol Genet Metab 2011; 104:80-8. [PMID: 21764617 DOI: 10.1016/j.ymgme.2011.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 06/16/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
Abstract
Transdifferentiation of an individual's own cells into functional differentiated cells to replace an organ's lost function would be a personalized approach to therapeutics. In this two part series, we will describe the progress toward establishing functional transdifferentiated adrenal cortical cells. In this article (Part 2), we describe the disorders of the adrenal cortex, therefore establishing why there is the need for personalized cell-based therapy for individuals with these disorders. We then present our pilot studies of cell transdifferentiation toward an adrenal cortical fate using genes described in the first article of this pair (Part 1).
Collapse
Affiliation(s)
- Jaime K Mazilu
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
116
|
Quantitative and selective polymerase chain reaction analysis of highly similar human alpha-class glutathione transferases. Anal Biochem 2011; 412:96-101. [DOI: 10.1016/j.ab.2011.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/11/2011] [Accepted: 01/19/2011] [Indexed: 11/20/2022]
|
117
|
Zimmer KE, Montaño M, Olsaker I, Dahl E, Berg V, Karlsson C, Murk AJ, Skaare JU, Ropstad E, Verhaegen S. In vitro steroidogenic effects of mixtures of persistent organic pollutants (POPs) extracted from burbot (Lota lota) caught in two Norwegian lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:2040-2048. [PMID: 21420147 DOI: 10.1016/j.scitotenv.2011.01.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 01/24/2011] [Accepted: 01/27/2011] [Indexed: 05/30/2023]
Abstract
This study investigated the effects of two mixtures of persistent organic pollutants (POPs) on steroidogenesis in the H295R cell line. The two mixtures were obtained from the livers of burbot (Lota lota) caught in two Norwegian lakes (Mjøsa and Losna) with different contaminant profiles. Steroid hormone levels in the cell culture medium and mRNA levels of 16 genes involved in steroidogenesis were investigated. The crude Lake Mjøsa extract had to be diluted ten times more than the Lake Losna extract in order to prevent cytotoxicity. The ten times diluted Lake Mjøsa mixture had higher levels of DDT and derivates (∑DDTs, 1.7 times) and brominated flame retardants (∑BDEs and HBCD, 15-25 times) than the Lake Losna mixture, which, on the other hand, had higher concentrations of ∑PCBs (1.5 times higher) and also of HCB, ∑HCH isomers and ∑chlordane isomers (5-20 times higher). In the cell culture media, only cortisol levels were increased at the highest exposure concentration to the Lake Mjøsa mixture, while both cortisol and estradiol levels were increased following exposure to the two highest Lake Losna mixture exposure concentrations. Testosterone levels decreased only at the highest exposure concentration of the Lake Losna mixture. Multivariate models suggested that ∑PCBs, and to a lesser extent ∑DDTs, were responsible for the cortisol responses, while estradiol and testosterone alterations were best explained by HCB and ∑PCBs, respectively. Exposure to the mixtures generally increased mRNA levels, with smaller effects exerted by the Lake Mjøsa mixture than the Lake Losna mixture. It was concluded that both mixtures affected steroidogenesis in the H295R cells. Small differences in mixture composition, rather than the high content of brominated flame retardants in the Lake Mjøsa mixture, were suggested to be the most probable reason for the apparent differences in potencies of the two mixtures.
Collapse
Affiliation(s)
- Karin E Zimmer
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, Oslo, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Kanczkowski W, Tymoszuk P, Chavakis T, Janitzky V, Weirich T, Zacharowski K, Ehrhart-Bornstein M, Bornstein SR. Upregulation of TLR2 and TLR4 in the human adrenocortical cells differentially modulates adrenal steroidogenesis. Mol Cell Endocrinol 2011; 336:41-6. [PMID: 21167252 DOI: 10.1016/j.mce.2010.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 12/03/2010] [Accepted: 12/07/2010] [Indexed: 11/27/2022]
Abstract
Rapid activation of adrenal steroid release plays a pivotal role in an organism's first line of defense during sepsis. Adrenal gland function is often suppressed in critically ill patients and negatively impacts the overall survival rate. Increasingly, experimental and clinical evidence suggests that Toll-like receptors (TLRs), components of the innate immune system, play a key role in the mediation of systemic responses to invading pathogens during sepsis. In the present study, we aimed to elucidate the effect of TLR2, TLR4 and CD14 upregulation on adrenocortical cell steroidogenesis. We found that TLR4 and CD14 but not TLR2 overexpression in NCI-H295R cells inhibited basal and acute cortisol and aldosterone production. This effect could be partially explained by reduced expression of enzymes involved in the synthesis of latter steroids--CYP11B1 and CYP11B2. Together, these data suggest that TLR upregulation in the steroid producing cells may be involved in the adrenal gland dysfunction during sepsis.
Collapse
Affiliation(s)
- Waldemar Kanczkowski
- Department of Medicine III, Technical University Dresden, University of Technology, Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Schimmer BP, Tsao J, Cordova M, Mostafavi S, Morris Q, Scheys JO. Contributions of steroidogenic factor 1 to the transcription landscape of Y1 mouse adrenocortical tumor cells. Mol Cell Endocrinol 2011; 336:85-91. [PMID: 21111771 PMCID: PMC3057232 DOI: 10.1016/j.mce.2010.11.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/10/2010] [Accepted: 11/18/2010] [Indexed: 11/25/2022]
Abstract
The contribution of steroidogenic factor 1 (SF-1) to the gene expression profile of Y1 mouse adrenocortical cells was evaluated using short hairpin RNAs to knockdown SF-1. The reduced level of SF-1 RNA was associated with global changes that affected the accumulation of more than 2000 transcripts. Among the down-regulated transcripts were several with functions in steroidogenesis that were affected to different degrees--i.e., Mc2r>Scarb1>Star≥Hsd3b1>Cyp11b1. For Star and Cyp11b1, the different levels of expression correlated with the amount of residual SF-1 bound to the proximal promoter regions. The knockdown of SF-1 did not affect the accumulation of Cyp11a1 transcripts even though the amount of SF-1 bound to the proximal promoter of the gene was reduced to background levels. Our results indicate that transcripts with functions in steroidogenesis vary in their dependence on SF-1 for constitutive expression. On a more global scale, SF-1 knockdown affects the accumulation of a large number of transcripts, most of which are not recognizably involved in steroid hormone biosynthesis.
Collapse
Affiliation(s)
- Bernard P Schimmer
- Banting and Best Department of Medical Research, University of Toronto, 112 College St., Toronto, ON, Canada M5G 1L6.
| | | | | | | | | | | |
Collapse
|
120
|
Al-Dujaili EAS, Kenyon CJ, Nicol MR, Mason JI. Liquorice and glycyrrhetinic acid increase DHEA and deoxycorticosterone levels in vivo and in vitro by inhibiting adrenal SULT2A1 activity. Mol Cell Endocrinol 2011; 336:102-9. [PMID: 21184804 DOI: 10.1016/j.mce.2010.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/01/2010] [Accepted: 12/06/2010] [Indexed: 11/17/2022]
Abstract
The mineralocorticoid effects of liquorice are mediated by the inhibitory effects of one of its active components glycyrrhetinic acid on 11β-hydroxysteroid dehydrogenase type 2. However, liquorice is reputed to have many medicinal properties and also contains a number of other potentially biologically active compounds. Here we have investigated the wider effects of oral liquorice on steroidogenesis focussing particularly on possible inhibitory effects of glycyrrhetinic acid on adrenal sulfotransferase activity. Salivary steroids were profiled by ELISA in groups of normal male and female volunteers after consuming either liquorice-containing or non-liquorice-containing confectionary for one week. Cortisol and cortisone levels reflected expected inhibition of 11β-hydroxysteroid dehydrogenase type 2 by glycyrrhetinic acid. Salivary aldosterone was decreased but deoxycorticosterone, dehydroepiandrosterone and testosterone were increased. To assess whether glycyrrhetinic acid directly affected steroidogenesis, free and conjugated steroids were measured in incubates of adrenocortical H295 cells, firstly, in the presence or absence of forskolin and secondly, with radiolabeled deoxycorticosterone or dehydroepiandrosterone. Glycyrrhetinic acid inhibited cortisone and enhanced cortisol synthesis consistent with 11β-hydroxysteroid dehydrogenase type 2 inhibition. Basal and forskolin-stimulated syntheses of deoxycorticosterone and dehydroepiandrosterone conjugates were also inhibited in a dose-dependent manner; glycyrrhetinic acid inhibited the conjugation of deoxycorticosterone and dehydroepiandrosterone with IC50 values of 7 μM. Inhibition of deoxycorticosterone and dehydroepiandrosterone conjugation was apparent within 4 h of starting glycyrrhetinic acid treatment and was not associated with changes in the expression of SULT 2A1 mRNA. SULT2A1 encodes the enzyme sulfotransferase 2A1 which is responsible for the sulfonation of deoxycorticosterone and dehydroepiandrosterone as well as pregnenolone and 17-hydroxypregnenolone in human adrenal glands. We suggest that the glycyrrhetinic acid constituent of liquorice increases circulating and thereby, salivary levels of unconjugated deoxycorticosterone and dehydroepiandrosterone by inhibiting their conjugation at source within the adrenal cortex. This effect may contribute to the mineralocorticoid actions of glycyrrhetinic acid and gives substance to claims that liquorice also has androgenic properties.
Collapse
Affiliation(s)
- E A S Al-Dujaili
- Department of Dietetics, Nutrition and Biological Sciences, Queen Margaret University Edinburgh, Queen Margaret University Drive, Musselburgh, East Lothian EH21 6UU, UK.
| | | | | | | |
Collapse
|
121
|
Kagerer SM, Eichholz C, Jöhren O. Orexins/hypocretins increase the promoter activity of selective steroidogenic enzymes. Peptides 2011; 32:839-43. [PMID: 21256172 DOI: 10.1016/j.peptides.2011.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 01/05/2011] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
Abstract
Orexins (hypocretins) regulate multiple physiological functions, including central regulation of energy homeostasis and sleep-wake behavior but also peripheral hormonal actions. Recent data suggest specific effects of orexins at adrenal glands. To further assess the mechanism by which orexins regulate steroidogenesis we analyzed the effect of orexin A and B on the transcriptional activity of the luciferase reporter gene driven by the human steroid 21-hydroxylase (CYP21), 3β-hydroxysteroid dehydrogenase (HSD3B2), 11β-hydroxylase (CYP11B1), and aldosterone synthase (CYP11B2) gene promoter regions. After transient transfection of the reporter gene constructs into human NCI H295R cells, treatment with orexin A and B for 6 and 12h increased the promoter activity of the CYP11B2, HSD3B2 and, to a lesser extend, CYP21 genes. The activity of the CYP11B1 was increased by both orexins after 3h of treatment. Compared to the effects of forskolin or angiotensin II, however, the effect of orexins on the transcriptional activity of the steroidogenic enzyme genes was moderate. Our results suggest that orexins increase the expression of steroidogenic enzymes at the transcriptional level and that orexins play a role in the long term regulation of adrenal steroid production.
Collapse
Affiliation(s)
- Sonja M Kagerer
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | | | | |
Collapse
|
122
|
Topor LS, Asai M, Dunn J, Majzoub JA. Cortisol stimulates secretion of dehydroepiandrosterone in human adrenocortical cells through inhibition of 3betaHSD2. J Clin Endocrinol Metab 2011; 96:E31-9. [PMID: 20943790 PMCID: PMC3038480 DOI: 10.1210/jc.2010-0692] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Initiating factors leading to production of adrenal androgens are poorly defined. Cortisol is present in high concentrations within the adrenal gland, and its production rises with growth during childhood. OBJECTIVE Our aim was to characterize the effect of cortisol and other glucocorticoids on androgen secretion from a human adrenocortical cell line and from nonadrenal cells transfected with CYP17A1 or HSD3B2. DESIGN/SETTING This study was performed in cultured cells, at an academic medical center. METHODS The effects of cortisol upon steroid production in human adrenal NCI-H295R cells were measured by immunoassay, tandem mass spectrometry, and thin-layer chromatography. The effects of cortisol upon the activities of 17, 20 lyase and 3βHSD2 were measured in NCI-H295R cells and in transfected COS-7 cells. RESULTS Cortisol markedly and rapidly stimulated dehydroepiandrosterone (DHEA) in a dose-dependent manner at cortisol concentrations ≥50 μM. Cortisone and 11-deoxycortisol were also potent stimulators of DHEA secretion, whereas prednisolone and dexamethasone were not. Treatment with cortisol did not affect expression of CYP17A1 or HSD3B2 mRNAs. Stimulation of DHEA secretion by cortisol was associated with competitive inhibition of 3βHSD2 activity. CONCLUSIONS Cortisol inhibits 3βHSD2 activity in adrenal cells and in COS-7 cells transfected with HSD3B2. Thus, it is possible that intraadrenal cortisol may participate in the regulation of adrenal DHEA secretion through inhibition of 3βHSD2. We hypothesize that a rise in intraadrenal cortisol during childhood growth may lead to inhibition of 3βHSD2 activity and contribute to the initiation of adrenarche.
Collapse
Affiliation(s)
- Lisa Swartz Topor
- Division of Endocrinology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
123
|
Aritomi S, Wagatsuma H, Numata T, Uriu Y, Nogi Y, Mitsui A, Konda T, Mori Y, Yoshimura M. Expression of N-type calcium channels in human adrenocortical cells and their contribution to corticosteroid synthesis. Hypertens Res 2010; 34:193-201. [DOI: 10.1038/hr.2010.191] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
124
|
van der Zee M, van den Berg JW, van Holten-Neelen C, Dik WA. The beta-human chorionic gonadotropin-related peptide LQGV exerts anti-inflammatory effects through activation of the adrenal gland and glucocorticoid receptor in C57BL/6 mice. THE JOURNAL OF IMMUNOLOGY 2010; 185:5066-73. [PMID: 20926791 DOI: 10.4049/jimmunol.1001414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The systemic inflammatory response syndrome is a complex host response to a variety of clinical insults, generally leading to severe pathology. The human chorionic gonadotropin β-chain-related tetrapeptide leucine-glutamine-glycine-valine (LQGV) reduces hemorrhagic and LPS-induced systemic inflammatory response syndrome, but its mechanisms of action are not yet fully understood. Through the combination of in vivo, in vitro, and ex vivo approaches, we demonstrate that LQGV actively stimulates corticosterone production in mice and thereby suppresses in vivo TLR4-directed inflammation upon LPS administration. Blocking in vivo glucocorticosteroid receptor signaling reduced the prosurvival effect of LQGV. Also, upon multiple TLR activation by heat-killed Listeria monocytogenes, splenocytes from LQGV-treated mice produced significantly less TNF-α and IL-6, which was absent after in vitro blockage of the glucocorticosteroid receptor. Using adrenal gland and adrenal cell line cultures, we show that LQGV stimulates corticosterone production. Moreover, by using specific pharmacological inhibitors of the adrenocorticotropic hormone (ACTH) and luteinizing hormone receptors as well as of cAMP signaling, we demonstrate that LQGV stimulates the ACTH receptor. These data show that the β-human chorionic gonadotropin-related tetrapeptide LQGV stimulates adrenal glucocorticosteroid production through activation of the ACTH receptor with consequent glucocorticoid receptor activation and immunosuppression in C57BL/6 mice.
Collapse
Affiliation(s)
- Marten van der Zee
- Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
125
|
Romero DG, Gomez-Sanchez EP, Gomez-Sanchez CE. Angiotensin II-regulated transcription regulatory genes in adrenal steroidogenesis. Physiol Genomics 2010; 42A:259-66. [PMID: 20876845 DOI: 10.1152/physiolgenomics.00098.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcription regulatory genes are crucial modulators of cell physiology and metabolism whose intracellular levels are tightly controlled in response to extracellular stimuli. We previously reported a set of 29 transcription regulatory genes modulated by angiotensin II in H295R human adrenocortical cells and their roles in regulating the expression of the last and unique enzymes of the glucocorticoid and mineralocorticoid biosynthetic pathways, 11β-hydroxylase and aldosterone synthase, respectively, using gene expression reporter assays. To study the effect of this set of transcription regulatory genes on adrenal steroidogenesis, H295R cells were transfected by high-efficiency nucleofection and aldosterone and cortisol were measured in cell culture supernatants under basal and angiotensin II-stimulated conditions. BCL11B, BHLHB2, CITED2, ELL2, HMGA1, MAFF, NFIL3, PER1, SERTAD1, and VDR significantly stimulated aldosterone secretion, while EGR1, FOSB, and ZFP295 decreased aldosterone secretion. BTG2, HMGA1, MITF, NR4A1, and ZFP295 significantly increased cortisol secretion, while BCL11B, NFIL3, PER1, and SIX2 decreased cortisol secretion. We also report the effect of some of these regulators on the expression of endogenous aldosterone synthase and 11β-hydroxylase under basal and angiotensin II-stimulated conditions. In summary, this study reports for the first time the effects of a set of angiotensin II-modulated transcription regulatory genes on aldosterone and cortisol secretion and the expression levels of the last and unique enzymes of the mineralocorticoid and glucocorticoid biosynthetic pathways. Abnormal regulation of mineralocorticoid or glucocorticoid secretion is involved in several pathophysiological conditions. These transcription regulatory genes may be involved in adrenal steroidogenesis pathologies; thus they merit additional study as potential candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Damian G Romero
- Endocrinology, G. V. (Sonny) Montgomery Department of Veterans Affairs Medical Center, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA.
| | | | | |
Collapse
|
126
|
Dawson PA, Hubbert ML, Rao A. Getting the mOST from OST: Role of organic solute transporter, OSTalpha-OSTbeta, in bile acid and steroid metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1801:994-1004. [PMID: 20538072 PMCID: PMC2911127 DOI: 10.1016/j.bbalip.2010.06.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/29/2010] [Accepted: 06/02/2010] [Indexed: 01/10/2023]
Abstract
The organic solute transporter (OST)(alpha)-OST(beta) is an unusual heteromeric carrier expressed in a variety of tissues including the small intestine, colon, liver, biliary tract, kidney, and adrenal gland. In polarized epithelial cells, OSTalpha-OSTbeta protein is localized on the basolateral membrane and functions in the export or uptake of bile acids and steroids. This article reviews recent results including studies of knockout mouse models that provide new insights to the role of OSTalpha-OSTbeta in the compartmentalization and metabolism of these important lipids.
Collapse
Affiliation(s)
- Paul A Dawson
- Department of Internal Medicine, Section on Gastroenterology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | | | | |
Collapse
|
127
|
Kempná P, Hirsch A, Hofer G, Mullis PE, Flück CE. Impact of differential P450c17 phosphorylation by cAMP stimulation and by starvation conditions on enzyme activities and androgen production in NCI-H295R cells. Endocrinology 2010; 151:3686-96. [PMID: 20534731 DOI: 10.1210/en.2010-0093] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CYP17A1 plays a pivotal role in the biosynthesis of androgens in the adrenals and the gonads. Although this enzyme catalyzes two different reactions on one single active site, its specific activities are regulated independently. Although the 17alpha-hydroxylase activity is rather constant and regulated by gene expression, the 17,20-lyase activity varies significantly with the amount of cofactors or by protein phosphorylation. cAMP increases CYP17A1 expression, P450c17 phosphorylation, and androgen production. However, the exact mechanism(s) and the specific regulators of CYP17A1 remain unknown. Therefore, we studied the regulation of adrenal androgen biosynthesis in human adrenal H295R cells focusing on CYP17A1. We analyzed androgen production and P450c17 activities in H295R cells grown under normal and serum-free conditions and/or after stimulation with 8-bromoadenosine-cAMP. H295R cells grown in starvation medium produced more androgens and had decreased HSD3B2 expression and activity but increased P450c17-17,20-lyase activity and serine phosphorylation. Although starvation increased serine phosphorylation of P450c17 specifically, cAMP stimulation enhanced threonine phosphorylation exclusively. Time-course experiments revealed that a short cAMP stimulation augmented threonine phosphorylation of P450c17 but did not increase 17,20-lyase activity. By contrast, long cAMP stimulation increased androgen production through increased P450c17 activities by enhancing CYP17A1 gene expression. We conclude that serum withdrawal shifts steroidogenesis of H295R cells towards androgen production, providing a suitable model for detailed studies of androgen regulation. In addition, our study shows that starvation and cAMP stimulation regulate P450c17 phosphorylation differentially and that an increase in P450c17 phosphorylation does not necessarily lead to enhanced enzyme activity and androgen production.
Collapse
Affiliation(s)
- Petra Kempná
- Department of Pediatrics, Division of Pediatric Endocrinology, Diabetology and Metabolism, University of Bern, 3010 Bern, Switzerland
| | | | | | | | | |
Collapse
|
128
|
Williams TA, Monticone S, Morello F, Liew CC, Mengozzi G, Pilon C, Asioli S, Sapino A, Veglio F, Mulatero P. Teratocarcinoma-Derived Growth Factor-1 Is Upregulated in Aldosterone-Producing Adenomas and Increases Aldosterone Secretion and Inhibits Apoptosis In Vitro. Hypertension 2010; 55:1468-75. [DOI: 10.1161/hypertensionaha.110.150318] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Tracy A. Williams
- From the Division of Internal Medicine and Hypertension Unit, Department of Medicine and Experimental Oncology (T.A.W., S.M., F.M., F.V., P.M.) and Department of Biomedical Sciences and Human Oncology (S.A., A.S.), University of Torino, Torino, Italy; GeneNews Ltd (C.-C.L.), Richmond Hill, Ontario, Canada; Clinical Chemistry Laboratory (G.M.), AOU San Giovanni Battista, Torino, Italy; Department of Medical and Surgical Sciences (C.P.), University of Padova, Padova, Italy
| | - Silvia Monticone
- From the Division of Internal Medicine and Hypertension Unit, Department of Medicine and Experimental Oncology (T.A.W., S.M., F.M., F.V., P.M.) and Department of Biomedical Sciences and Human Oncology (S.A., A.S.), University of Torino, Torino, Italy; GeneNews Ltd (C.-C.L.), Richmond Hill, Ontario, Canada; Clinical Chemistry Laboratory (G.M.), AOU San Giovanni Battista, Torino, Italy; Department of Medical and Surgical Sciences (C.P.), University of Padova, Padova, Italy
| | - Fulvio Morello
- From the Division of Internal Medicine and Hypertension Unit, Department of Medicine and Experimental Oncology (T.A.W., S.M., F.M., F.V., P.M.) and Department of Biomedical Sciences and Human Oncology (S.A., A.S.), University of Torino, Torino, Italy; GeneNews Ltd (C.-C.L.), Richmond Hill, Ontario, Canada; Clinical Chemistry Laboratory (G.M.), AOU San Giovanni Battista, Torino, Italy; Department of Medical and Surgical Sciences (C.P.), University of Padova, Padova, Italy
| | - Choong-Chin Liew
- From the Division of Internal Medicine and Hypertension Unit, Department of Medicine and Experimental Oncology (T.A.W., S.M., F.M., F.V., P.M.) and Department of Biomedical Sciences and Human Oncology (S.A., A.S.), University of Torino, Torino, Italy; GeneNews Ltd (C.-C.L.), Richmond Hill, Ontario, Canada; Clinical Chemistry Laboratory (G.M.), AOU San Giovanni Battista, Torino, Italy; Department of Medical and Surgical Sciences (C.P.), University of Padova, Padova, Italy
| | - Giulio Mengozzi
- From the Division of Internal Medicine and Hypertension Unit, Department of Medicine and Experimental Oncology (T.A.W., S.M., F.M., F.V., P.M.) and Department of Biomedical Sciences and Human Oncology (S.A., A.S.), University of Torino, Torino, Italy; GeneNews Ltd (C.-C.L.), Richmond Hill, Ontario, Canada; Clinical Chemistry Laboratory (G.M.), AOU San Giovanni Battista, Torino, Italy; Department of Medical and Surgical Sciences (C.P.), University of Padova, Padova, Italy
| | - Catia Pilon
- From the Division of Internal Medicine and Hypertension Unit, Department of Medicine and Experimental Oncology (T.A.W., S.M., F.M., F.V., P.M.) and Department of Biomedical Sciences and Human Oncology (S.A., A.S.), University of Torino, Torino, Italy; GeneNews Ltd (C.-C.L.), Richmond Hill, Ontario, Canada; Clinical Chemistry Laboratory (G.M.), AOU San Giovanni Battista, Torino, Italy; Department of Medical and Surgical Sciences (C.P.), University of Padova, Padova, Italy
| | - Sofia Asioli
- From the Division of Internal Medicine and Hypertension Unit, Department of Medicine and Experimental Oncology (T.A.W., S.M., F.M., F.V., P.M.) and Department of Biomedical Sciences and Human Oncology (S.A., A.S.), University of Torino, Torino, Italy; GeneNews Ltd (C.-C.L.), Richmond Hill, Ontario, Canada; Clinical Chemistry Laboratory (G.M.), AOU San Giovanni Battista, Torino, Italy; Department of Medical and Surgical Sciences (C.P.), University of Padova, Padova, Italy
| | - Anna Sapino
- From the Division of Internal Medicine and Hypertension Unit, Department of Medicine and Experimental Oncology (T.A.W., S.M., F.M., F.V., P.M.) and Department of Biomedical Sciences and Human Oncology (S.A., A.S.), University of Torino, Torino, Italy; GeneNews Ltd (C.-C.L.), Richmond Hill, Ontario, Canada; Clinical Chemistry Laboratory (G.M.), AOU San Giovanni Battista, Torino, Italy; Department of Medical and Surgical Sciences (C.P.), University of Padova, Padova, Italy
| | - Franco Veglio
- From the Division of Internal Medicine and Hypertension Unit, Department of Medicine and Experimental Oncology (T.A.W., S.M., F.M., F.V., P.M.) and Department of Biomedical Sciences and Human Oncology (S.A., A.S.), University of Torino, Torino, Italy; GeneNews Ltd (C.-C.L.), Richmond Hill, Ontario, Canada; Clinical Chemistry Laboratory (G.M.), AOU San Giovanni Battista, Torino, Italy; Department of Medical and Surgical Sciences (C.P.), University of Padova, Padova, Italy
| | - Paolo Mulatero
- From the Division of Internal Medicine and Hypertension Unit, Department of Medicine and Experimental Oncology (T.A.W., S.M., F.M., F.V., P.M.) and Department of Biomedical Sciences and Human Oncology (S.A., A.S.), University of Torino, Torino, Italy; GeneNews Ltd (C.-C.L.), Richmond Hill, Ontario, Canada; Clinical Chemistry Laboratory (G.M.), AOU San Giovanni Battista, Torino, Italy; Department of Medical and Surgical Sciences (C.P.), University of Padova, Padova, Italy
| |
Collapse
|
129
|
Aumo L, Rusten M, Mellgren G, Bakke M, Lewis AE. Functional roles of protein kinase A (PKA) and exchange protein directly activated by 3',5'-cyclic adenosine 5'-monophosphate (cAMP) 2 (EPAC2) in cAMP-mediated actions in adrenocortical cells. Endocrinology 2010; 151:2151-61. [PMID: 20233795 DOI: 10.1210/en.2009-1139] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the adrenal cortex, the biosynthesis of steroid hormones is controlled by the pituitary-derived hormone ACTH. The functions of ACTH are principally relayed by activating cAMP-dependent signaling pathways leading to the induction of genes encoding enzymes involved in the conversion of cholesterol to steroid hormones. Previously, protein kinase A (PKA) was thought to be the only direct effector of cAMP. However, the discovery of the cAMP sensors, exchange proteins directly activated by cAMP (EPAC1 and 2), has led to a reevaluation of this assumption. In the present study, we demonstrate the occurrence of the EPAC2 splicing variant EPAC2B in adrenocortical cancer cells. Immunocytochemistry demonstrated that EPAC2B is localized predominantly in the nucleus. EPAC2B is functional because it activates Rap1 in these cells. Using the cAMP analogs 8-p-chlorophenylthio-2'-O-methyl-cAMP and N6-benzoyl-cAMP, which specifically activate EPAC1/2 and PKA, respectively, we evaluated the contribution of these factors in steroid hormone production, cell morphology, actin reorganization, and migration. We demonstrate that the expression of cAMP-inducible factors involved in steroidogenesis (steroidogenic acute regulatory protein, cytochrome P450 11A1 and 17, and nerve growth factor-induced clone B) and the cAMP-induced biosynthesis of steroid hormones (cortisol and aldosterone) are mediated by PKA and not by EPAC2B. In contrast, both PKA- and EPAC-specific cAMP analogs induced cell rounding, loss of stress fibers, and blocked migration. Taken together, the presented data confirm PKA as the central cAMP mediator in steroid hormone production and reveal the involvement of EPAC2B in cAMP-induced effects on cytoskeleton integrity and cell migration.
Collapse
Affiliation(s)
- Linda Aumo
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | | | | | | |
Collapse
|
130
|
Lundqvist J, Norlin M, Wikvall K. 1alpha,25-Dihydroxyvitamin D3 affects hormone production and expression of steroidogenic enzymes in human adrenocortical NCI-H295R cells. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:1056-62. [PMID: 20420936 DOI: 10.1016/j.bbalip.2010.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/05/2010] [Accepted: 04/12/2010] [Indexed: 01/09/2023]
Abstract
The current study presents data indicating that 1alpha,25-dihydroxyvitamin D(3) affects the production of hormones and expression of crucial steroidogenic enzymes in the human adrenocortical cell line NCI-H295R. This cell line is widely used as a model for adrenal steroidogenesis. Treatment of the cells with 1alpha,25-dihydroxyvitamin D(3) suppressed the levels of corticosterone, aldosterone, DHEA, DHEA-sulfate and androstenedione in the culture medium. In order to study the mechanisms behind this suppression of hormone production, we investigated the effects of 1alpha,25-dihydroxyvitamin D(3) on important genes and enzymes controlling the biosynthesis of adrenal hormones. The mRNA levels were decreased for CYP21A2 while they were increased for CYP11A1 and CYP17A1. No significant changes were observed in mRNA for CYP11B1, CYP11B2 or 3beta-hydroxysteroid dehydrogenase (3betaHSD). In similarity with the effects on mRNA levels, also the endogenous enzyme activity of CYP21A2 decreased after treatment with 1alpha,25-dihydroxyvitamin D(3). Interestingly, the two CYP17A1-mediated activities were influenced reciprocally - the 17alpha-hydroxylase activity increased whereas the 17,20-lyase activity decreased. The current data indicate that the 1alpha,25-dihydroxyvitamin D(3)-mediated decrease in corticosterone and androgen production is due to suppression of the 21-hydroxylase activity by CYP21A2 and the 17,20-lyase activity by CYP17A1, respectively. In conclusion, the current study reports novel findings on 1alpha,25-dihydroxyvitamin D(3)-mediated effects on hormone production and regulation of genes and enzymes involved in steroidogenesis in the adrenocortical NCI-H295R cell line, a model for human adrenal cortex.
Collapse
Affiliation(s)
- Johan Lundqvist
- Department of Pharmaceutical Biosciences, Division of Biochemistry, Box 578, University of Uppsala, SE-75123 Uppsala, Sweden
| | | | | |
Collapse
|
131
|
Valego NK, Rose JC. A specific CRH antagonist attenuates ACTH-stimulated cortisol secretion in ovine adrenocortical cells. Reprod Sci 2010; 17:477-86. [PMID: 20220106 DOI: 10.1177/1933719110361959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Corticotropin releasing hormone (CRH) has been detected in the adrenal gland of many species and may be involved in regulation of glucocorticoid secretion. In cultured human fetal adrenal definitive/transitional zone cells, CRH upregulates the adrenocorticotropic hormone (ACTH) receptor and steroidogenic enzymes and is blocked by the selective CRH type 1 receptor (CRH(1)) antagonist, antalarmin. Based on these findings and evidence that antalarmin infusion into sheep suppressed prepartum increases in cortisol, we hypothesized that antalarmin would influence adrenal cortisol secretion. Antalarmin strongly attenuated ACTH and forskolin (FSK)-stimulated cortisol and cyclic adenosine monophosphate (cAMP) release from cultured ovine adrenocortical cells but did not prevent ACTH binding to cells or ACTH-induced proliferation in adult cells. Corticotropin releasing hormone was minimally effective as a secretagogue but increased the cortisol response to subsequent ACTH. These results suggest that antalarmin attenuates ACTH-induced cortisol secretion from cultured ovine adrenal cortical cells at a site distal to the ACTH receptor. Although CRH may modulate the secretory response to ACTH, it is probably not a direct cortisol secretagogue in the sheep.
Collapse
Affiliation(s)
- Nancy K Valego
- Center of Research for Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | |
Collapse
|
132
|
Ingram MC, Fraser R. Plasma corticosteroid profiling: brief opinion of its current status in clinical diagnosis and research. Expert Rev Endocrinol Metab 2010; 5:181-188. [PMID: 30764044 DOI: 10.1586/eem.09.76] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adrenal steroid biosynthesis comprises a series of dynamically interrelated, enzyme-catalyzed reactions in two separate compartments, the zona glomerulosa and the zona fasciculata/reticularis. End products (cortisol, aldosterone and androgens), together with a proportion of the intermediate compounds, appear in the circulation as a characteristic profile. Rare deficiencies of individual enzymes modify this profile in a recognizable way. Previous exhaustive profiling suggests that their diagnosis can now often be made on the basis of single-compound analyses with concomitant genetic tests. However, high-capacity liquid chromatography coupled with tandem mass spectrometry-based methods are facilitating profiling of large population samples, revealing that smaller differences in enzyme efficiency, indicated by potentially more complex corticosteroid patterns, may be related to clinical wellbeing in a much larger proportion of the population.
Collapse
Affiliation(s)
- Mary C Ingram
- a MRC Blood Pressure Group, BHF Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK
| | - Robert Fraser
- a MRC Blood Pressure Group, BHF Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
133
|
Kim J, Yamamoto F, Gondo S, Yanase T, Mukai T, Maeda M. 6-Deoxy-6-[131I]iodo-L-ascorbic acid for the in vivo study of ascorbate: autoradiography, biodistribution in normal and hypolipidemic rats, and in tumor-bearing nude mice. Biol Pharm Bull 2010; 32:1906-11. [PMID: 19881306 DOI: 10.1248/bpb.32.1906] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Normal female rat distribution studies showed high and specific uptake of 6-deoxy-6-[(131)I]iodo-L-ascorbic acid (6-(131)IAsA) into the adrenal glands, known to highly express the ascorbate sodium-dependent vitamin C transporter-2 (SVCT-2), and the adrenal gland was clearly visualized by whole-body autoradiography. Preinjection of sulfinpyrazone, a known blocker of ascorbate transport, with 6-(131)IAsA resulted in decreased uptake of radioactivity in rat adrenal glands compared to the control group, seemingly illustrating the participation of the SVCT transporter (probably the SVCT-2 subtype) in the uptake process in vivo. 4-Aminopyrazolo[3,4-d]pyrimidine-induced hypolipidemic rats showed a 1.7-fold increase in adrenal uptake of radioactivity at 30 min postinjection of 6-(131)IAsA, compared to the control, with increased adrenal-to-liver and adrenal-to-kidney ratios. To further characterize 6-(131)IAsA for its tumor uptake properties, biodistribution studies were also performed using male nude mice implanted with either Y-1 adrenocortical tumor cells or adrenal medulla-derived PC12 cells. None of these tumors exhibited relevant uptake of 6-(131)IAsA while normal adrenal glands showed high uptake of radioactivity, suggesting that these tumors in this model have only a poor transport capacity for this agent. The present study demonstrates that the use of radioiodinated 6-IAsA may help to obtain information about functional alterations in diseased adrenal glands, but it does not exhibit desirable properties as a tumor-seeking agent for ascorbic acid bioactivity.
Collapse
Affiliation(s)
- Jintaek Kim
- Graduate School of Pharmaceutical Sciences, 3-1-1 Maidashi,Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
134
|
Kim BG, Adams JM, Jackson BA, Lindemann MD. Effects of chromium(III) picolinate on cortisol and DHEAs secretion in H295R human adrenocortical cells. Biol Trace Elem Res 2010; 133:171-80. [PMID: 19554276 DOI: 10.1007/s12011-009-8433-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 06/07/2009] [Indexed: 11/29/2022]
Abstract
Dietary chromium(III) picolinate (CrPic) effects on circulating steroid hormones have been reported in various experimental animals. However, direct effects of CrPic on adrenocortical steroidogenesis are uncertain. Therefore, the objective was to determine the effects of CrPic on cortisol and dehydroepiandrosterone sulfate (DHEAs) secretion from H295R cells. In experiment 1, a 24-h exposure to CrPic (0 to 200 microM) had both linear (p < 0.001) and quadratic (p < 0.001) effects on cortisol secretion from forskolin-stimulated cells with the highest cortisol secretion at 0.1 microM of CrPic and the lowest at 200 microM of CrPic. In experiment 2, a 48-h exposure to CrPic (200 microM) decreased cortisol (p < 0.07) release from forskolin-stimulated cells during a 24-h collection period. In experiment 3, a 48-h exposure to CrPic (100 microM) decreased cortisol (p < 0.05) and DHEAs (p < 0.01) from forskolin-stimulated cells during a 24-h sampling period. In experiment 4, a 24-h exposure to forskolin followed by a 24-h exposure to both forskolin and CrPic (100 and 200 microM) decreased both cortisol and DHEAs secretion (p < 0.01). This study suggests that at high concentrations, CrPic inhibits aspects of steroidogenesis in agonist-stimulated adrenocortical cells.
Collapse
Affiliation(s)
- Beob G Kim
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | |
Collapse
|
135
|
Wenzel J, Grabinski N, Knopp CA, Dendorfer A, Ramanjaneya M, Randeva HS, Ehrhart-Bornstein M, Dominiak P, Jöhren O. Hypocretin/orexin increases the expression of steroidogenic enzymes in human adrenocortical NCI H295R cells. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1601-9. [PMID: 19793950 DOI: 10.1152/ajpregu.91034.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypocretins/orexins act through two receptor subtypes: OX(1) and OX(2). Outside the brain, orexin receptors are expressed in adrenal glands, where orexins stimulate the release of glucocorticoids. To further address the regulation of steroidogenesis, we analyzed the effect of orexins on the expression of steroidogenic enzymes in human adrenocortical National Cancer Institute (NCI) H295R cells by qPCR. In NCI H295R cells, OX(2) receptors were highly expressed, as they were in human adrenal glands. After treatment of NCI H295R cells with orexin A for 12-24 h, the cortisol synthesis rate was significantly increased, whereas 30 min of treatment showed no effect. While CYP11B1 and CYP11B2 mRNA levels were increased already at earlier time points, the expression of HSD3B2 and CYP21 mRNA was significantly up-regulated after treatment with orexin A for 12 h. Likewise, orexin B increased CYP21 and HSD3B2 mRNA levels showing, however, a lower potency compared with orexin A. The mRNA levels of CYP11A and CYP17 were unaffected by orexin A. OX(2) receptor mRNA levels were down-regulated after 12 and 24 h of orexin A treatment. Orexin A increased intracellular Ca(2+) but not cAMP concentrations in NCI H295R cells. Furthermore, inhibition of PKC and MAPK kinase/ERK kinase (MEK1/2) prevented the increase of HSD3B2 expression by orexin A. Accordingly, orexin A treatment of NCI H295R cells markedly enhanced ERK1/2 phosphorylation that was prevented by PKC and, in part, PKA inhibition. In conclusion, orexins may influence adrenal steroidogenesis by differential regulation of the expression of steroidogenic enzymes involving Ca(2+), as well as PKC-ERK1/2 signaling.
Collapse
Affiliation(s)
- Jan Wenzel
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Trevisan M, Matkovic U, Cusinato R, Toppo S, Palù G, Barzon L. Human cytomegalovirus productively infects adrenocortical cells and induces an early cortisol response. J Cell Physiol 2009; 221:629-41. [DOI: 10.1002/jcp.21896] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
137
|
Matkovic U, Pacenti M, Trevisan M, Palù G, Barzon L. Investigation on human adrenocortical cell response to adenovirus and adenoviral vector infection. J Cell Physiol 2009; 220:45-57. [PMID: 19202555 DOI: 10.1002/jcp.21727] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
After systemic administration, adenoviral vectors (AdVs) are sequestered in the liver and adrenal glands. Adenoviral vector transduction has been shown to cause cytopathic effects on human hepatocytes and to induce an inflammatory response, whereas the effect of AdVs on human adrenocortical cells has never been investigated. In this study, human adrenocortical carcinoma cell lines and primary cell cultures were used to assess the effects of wild-type adenovirus (Ad5WT) and E1/E3-deleted AdVs on cell proliferation and steroidogenesis. Ad5WT could efficiently replicate in adrenocortical cells, leading to S phase induction, followed by cell death, whereas high titer AdVs transduction had only mild effects on adrenocortical cell proliferation, with accumulation of cells in G2/M. Both AdVs and Ad5WT induced expression of inflammatory cytokines, such as interleukin-6 and tumor necrosis factor-alpha, but, most importantly, they led to a marked and dose-dependent increase of cortisol and other steroid hormone production and consistently modulated expression of key steroidogenic enzymes and regulators of steroidogenesis. This effect, which was already apparent at 6 h post-infection, probably represented a response to adenoviral entry and/or early phases of infection. The result of this study contribute to the understanding of host response to adenoviral vector administration.
Collapse
Affiliation(s)
- Urska Matkovic
- Department of Histology, Microbiology, and Medical Biotechnologies, University of Padova, Padova, Italy
| | | | | | | | | |
Collapse
|
138
|
Yanes LL, Romero DG. Dihydrotestosterone stimulates aldosterone secretion by H295R human adrenocortical cells. Mol Cell Endocrinol 2009; 303:50-6. [PMID: 19428991 PMCID: PMC2681414 DOI: 10.1016/j.mce.2008.12.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/08/2008] [Accepted: 12/19/2008] [Indexed: 11/22/2022]
Abstract
Men exhibit a higher incidence of cardiovascular diseases than do women. The cardiovascular actions of sex steroids have been suggested as primary factors in mediating this sex difference. The mechanisms by which sex steroids, androgens and estrogens, mediate cardiovascular actions remain unclear. Excess aldosterone secretion has been associated with cardiovascular diseases. The hypothesis tested in this study was that at physiological concentrations, androgens stimulate and estradiol inhibits aldosterone secretion by human adrenal cells. In contrast to our hypothesis, physiological concentrations of sex steroids did not modify aldosterone secretion by H295R human adrenocortical cells. However, supraphysiological concentrations (300-1000 nM) of dihydrotestosterone (DHT) significantly stimulated basal and Angiotensin II-mediated aldosterone secretion. The stimulatory effect of DHT on aldosterone secretion was not blocked by the classical androgen receptor blocker flutamide. The stimulatory effect of DHT on aldosterone secretion was also independent of the intra-adrenal renin-angiotensin system since it was neither modified by treatment with the Angiotensin II receptor type 1 blocker losartan or the angiotensin converting enzyme inhibitor captopril. Inhibitors of the calmodulin/calmodulin-dependent protein kinase (CaMK) and protein kinase C intracellular signaling pathways abolished the DHT stimulatory effect on aldosterone secretion by H295R cells. In conclusion, physiological concentrations of sex steroids did not modify aldosterone secretion by human adrenal cells. However, supraphysiological concentrations of DHT-stimulated aldosterone secretion by human adrenal cells by the calmodulin/CaMK and protein kinase C intracellular signaling pathways but independently of the classical androgen receptor. Supraphysiological doses of androgen may promote cardiovascular diseases via stimulation of aldosterone secretion.
Collapse
Affiliation(s)
- Licy L Yanes
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | | |
Collapse
|
139
|
Szekeres M, Turu G, Orient A, Szalai B, Süpeki K, Cserzo M, Várnai P, Hunyady L. Mechanisms of angiotensin II-mediated regulation of aldosterone synthase expression in H295R human adrenocortical and rat adrenal glomerulosa cells. Mol Cell Endocrinol 2009; 302:244-53. [PMID: 19418629 DOI: 10.1016/j.mce.2008.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In adrenal zona glomerulosa cells angiotensin II (Ang II) is a key regulator of steroidogenesis. Our purpose was to compare the mechanisms of Ang II-induced changes in the expression level of early transcription factors NR4A1 (NGFIB) and NR4A2 (Nurr1) genes, and the CYP11B2 gene encoding aldosterone synthase in H295R human adrenocortical tumor cells and in primary rat adrenal glomerulosa cells. Real-time PCR studies have demonstrated that Ang II increased the expression levels of NR4A1 and NR4A2 in H295R cells within 1 h after stimulation, which persisted up to 6 h; whereas in rat adrenal glomerulosa cells the kinetics of the expression of these genes were more rapid and transient. Ang II also induced prolonged nuclear translocation of Nurr1 and NGFIB proteins in both cell types. Studies using MEK inhibitor (PD98059, 20 microM), protein kinase C inhibitor (BIM1, 3 microM) and calmodulin kinase (CAMK) inhibitor (KN93, 10 microM) revealed that in rat adrenal glomerulosa cells CAMK-mediated mechanisms play a predominant role in the regulation of CYP11B2. In accordance with earlier findings, in H295R cells MEK inhibition increased the expression of NR4A1, NR4A2 and CYP11B2 genes, however, it decreased the Ang II-induced gene expression levels, suggesting that ERK activation has a role in control of expression of these genes. No such mechanism was detected in rat glomerulosa cells. Sar1-Ile4-Ile8-AngII, which can cause G protein-independent ERK activation, also stimulated the expression of CYP11B2 in H295R cells. These data suggest that the previously reported CAMK-mediated stimulation of early transcription factors NGFIB and Nurr1 has a predominant role in Ang II-induced CYP11B2 activation in rat adrenal glomerulosa cells, whereas in H295R cells ERK activation and G protein-independent mechanisms also contribute to this process.
Collapse
Affiliation(s)
- Mária Szekeres
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
140
|
An adrenal beta-arrestin 1-mediated signaling pathway underlies angiotensin II-induced aldosterone production in vitro and in vivo. Proc Natl Acad Sci U S A 2009; 106:5825-30. [PMID: 19289825 DOI: 10.1073/pnas.0811706106] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aldosterone produces a multitude of effects in vivo, including promotion of postmyocardial infarction adverse cardiac remodeling and heart failure progression. It is produced and secreted by the adrenocortical zona glomerulosa (AZG) cells after angiotensin II (AngII) activation of AngII type 1 receptors (AT(1)Rs). Until now, the general consensus for AngII signaling to aldosterone production has been that it proceeds via activation of G(q/11)-proteins, to which the AT(1)R normally couples. Here, we describe a novel signaling pathway underlying this AT(1)R-dependent aldosterone production mediated by beta-arrestin-1 (betaarr1), a universal heptahelical receptor adapter/scaffolding protein. This pathway results in sustained ERK activation and subsequent up-regulation of steroidogenic acute regulatory protein, a steroid transport protein regulating aldosterone biosynthesis in AZG cells. Also, this betaarr1-mediated pathway appears capable of promoting aldosterone turnover independently of G protein activation, because treatment of AZG cells with SII, an AngII analog that induces betaarr, but not G protein coupling to the AT(1)R, recapitulates the effects of AngII on aldosterone production and secretion. In vivo, increased adrenal betaarr1 activity, by means of adrenal-targeted adenoviral-mediated gene delivery of a betaarr1 transgene, resulted in a marked elevation of circulating aldosterone levels in otherwise normal animals, suggesting that this adrenocortical betaarr1-mediated signaling pathway is operative, and promotes aldosterone production and secretion in vivo, as well. Thus, inhibition of adrenal betaarr1 activity on AT(1)Rs might be of therapeutic value in pathological conditions characterized and aggravated by hyperaldosteronism.
Collapse
|
141
|
Nicol MR, Papacleovoulou G, Evans DB, Penning TM, Strachan MW, Advani A, Johnson SJ, Quinton R, Mason JI. Estrogen biosynthesis in human H295 adrenocortical carcinoma cells. Mol Cell Endocrinol 2009; 300:115-20. [PMID: 19026713 PMCID: PMC2673546 DOI: 10.1016/j.mce.2008.10.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 10/20/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
Abstract
Adrenocortical carcinoma is an uncommon malignancy and feminizing symptoms secondary to adrenal estrogen-secretion are extremely rare. The direct secretion of estradiol by adrenocortical tumors requires, in addition to the expression of aromatase (CYP19), the expression of one or more of the reductive 17beta-hydroxysteroid dehydrogenases. The expression of CYP19 transcripts and protein were markedly induced in the H295 adrenocortical carcinoma cell line after treatment with either forskolin or vasoactive intestinal peptide (VIP). Western immunoblotting demonstrated a marked induction of the CYP19 protein of characteristic size after only a short (6h) treatment period with VIP or forskolin. The CYP19 mRNA transcripts were derived from both promoters PII (Ic) and I.3 (Id) after treatment with both agents. The reductive type 5 17beta-hydroxysteroid dehydrogenase (AKR1C3) was also constitutively expressed in the H295 cells but neither its mRNA transcript nor protein levels were altered after forskolin or VIP treatment. Western immunoblotting of an estrogen-secreting adrenal carcinoma revealed notable levels of both aromatase and AKR1C3 expression while an aldosterone-producing adrenal adenoma lacked aromatase expression and showed a reduced level of AKR1C3 expression. Immunohistochemistry of the carcinoma-bearing adrenal revealed localization of AKR1C3 not only in the tumor but also principally in the zona reticularis of the normal adrenal tissue. Adrenal aromatase and AKR1C3 expression therefore appear to be features of adrenocortical malignancies that are associated with biosynthesis of active estrogen.
Collapse
Affiliation(s)
- Moira R. Nicol
- Reproductive and Developmental Sciences, Centre for Reproductive Biology, University of Edinburgh, The Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Georgia Papacleovoulou
- Reproductive and Developmental Sciences, Centre for Reproductive Biology, University of Edinburgh, The Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Dean B. Evans
- Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Trevor M. Penning
- Department of Pharmacology, Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark W. Strachan
- Metabolic Unit, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Andrew Advani
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, St Michael’s Hospital and University of Toronto, Toronto, Ontario, Canada
- Endocrine Research Group, Institute of Human Genetics, University of Newcastle, Newcastle-upon-Tyne, UK
| | - Sarah J. Johnson
- Department of Cellular Pathology, The Newcastle University Hospitals Foundation Trust, Newcastle-upon-Tyne, UK
| | - Richard Quinton
- Endocrine Research Group, Institute of Human Genetics, University of Newcastle, Newcastle-upon-Tyne, UK
| | - J. Ian Mason
- Corresponding Author: Professor J. Ian Mason, Reproductive and Developmental Sciences, Centre for Reproductive Biology, University of Edinburgh, The Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK. Tel: +44-131-242-6442; Fax: +44-131-242-6441,
| |
Collapse
|
142
|
Ye P, Nakamura Y, Lalli E, Rainey WE. Differential effects of high and low steroidogenic factor-1 expression on CYP11B2 expression and aldosterone production in adrenocortical cells. Endocrinology 2009; 150:1303-9. [PMID: 18974272 PMCID: PMC2654740 DOI: 10.1210/en.2008-0667] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Steroidogenic factor-1 (SF-1/Ad4BP/NR5A1) plays a major role in regulating steroidogenic enzymes. We have previously shown that SF-1 inhibits aldosterone synthase (CYP11B2) reporter gene activity. Herein, we used the H295R/TR/SF-1 adrenal cells that increase SF-1 in a doxycycline-dependent fashion. Cells were incubated with or without doxycycline to induce SF-1 and then treated with angiotensin II (Ang II). Aldosterone was measured by immunoassay. SF-1 mRNA was silenced by small interfering RNA (siRNA) by Nucleofector technology. mRNA levels were measured by real-time RT-PCR. Ang II treatment without doxycycline increased aldosterone production by 11.3-fold and CYP11B2 mRNA by 116-fold. Doxycycline treatment increased SF-1 mRNA levels by 3.7-fold and inhibited Ang II-induced aldosterone by 84%. Doxycycline treatment inhibited Ang II-stimulated CYP11B2 mRNA levels by 86%. Doxycycline decreased basal CYP11B2 promoter activity by 68%. Doxycycline inhibited Ang II stimulation by 85%. Ang II increased CYP21 mRNA expression by 4.6-fold, whereas doxycycline inhibited induction by 69%. In contrast, doxycycline treatment increased CYP11B1 mRNA by 1.7-fold in basal cells and increased Ang II induction by 3.6-fold. SF-1-specific siRNA significantly reduced SF-1 mRNA expression as compared with cells treated with control siRNA. SF-1 siRNA reversed doxycycline stimulation of CYP B1 and its inhibition of CYP11B2. However, in H295R/TR/SF-1 cells without doxycycline treatment, both CYP11B1 and CYP11B2 mRNAs were significantly decreased, suggesting that both enzymes require a minimal level of SF-1 for basal expression. In summary, SF-1 overexpression dramatically inhibited CYP11B2 expression and decreased aldosterone production. The opposing effects of SF-1 on CYP11B1 and CYP11B2 suggest that the regulation of SF-1 activity may play a role that determines the relative ability to produce mineralocorticoid and glucocorticoid.
Collapse
Affiliation(s)
- Ping Ye
- Department of Physiology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | |
Collapse
|
143
|
Nakamura Y, Morris CV, Sasano H, Rainey WE. DAX-1A (NR0B1A) expression levels are extremely low compared to DAX-1 (NR0B1) in human steroidogenic tissues. Horm Metab Res 2009; 41:30-4. [PMID: 18819054 PMCID: PMC3712853 DOI: 10.1055/s-0028-1087174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The orphan nuclear receptor DAX-1 (dosage-sensitive sex reversal-AHC critical region on the X chromosome gene 1; NR0B1) is known for its role in human development, specifically sex determination and steroidogenesis. Several recent publications have described an alternatively spliced form of DAX-1 called DAX-1A ( NR0B1A). DAX-1A is encoded by exons 1 and 2A of DAX-1, with exon 2A located within the DAX-1 intron 1. DAX-1A expression has been observed in several tissues, including adrenal gland, ovary, and testis. Transfection studies have further shown that DAX-1A has an inhibitory effect on DAX-1, suggesting a role for DAX-1A in the regulation of adrenal and gonadal differentiation/function. However, the relative level of DAX-1 versus DAX-1A transcripts still remains unclear. Herein, we developed and performed quantitative real-time RT-PCR to measure DAX-1 and DAX-1A mRNA expression levels in H295R human adrenal carcinoma cell lines, human adult and fetal adrenal glands, corpus luteum, testis, whole pre- and postmenopausal ovaries, ovarian follicles, placenta, liver, and kidney. These mRNA expression levels were quantified using DAX-1 and DAX-1A standard curves. In addition, Western blotting analysis was performed to examine both DAX-1 and DAX-1A protein levels in H295R cells, adrenal glands, corpus luteum, and liver. Both DAX-1 and DAX-1A mRNA were detected in all samples of H295R cells, human fetal and adult adrenals, testis, ovary, ovarian follicles, and corpus luteum. However, DAX-1 mRNA levels were significantly higher (> 37-fold) than that seen for DAX-1A (p<0.01). DAX-1A mRNA expression levels were undetectable in human liver, placenta, and kidney. Western blotting analysis results demonstrated that DAX-1 protein was predominantly expressed in H295R cells, human adult adrenal, and corpus luteum. These results suggest that in comparison to DAX-1A, DAX-1 is, by far, the predominant mRNA isoform found in human adrenal glands and gonads.
Collapse
Affiliation(s)
- Yasuhiro Nakamura
- Department of Physiology, Medical College of Georgia, Augusta, Georgia 30912
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan 980-8575
| | | | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan 980-8575
| | - William E Rainey
- Department of Physiology, Medical College of Georgia, Augusta, Georgia 30912
| |
Collapse
|
144
|
Ullerås E, Ohlsson Å, Oskarsson A. Secretion of cortisol and aldosterone as a vulnerable target for adrenal endocrine disruption - screening of 30 selected chemicals in the human H295R cell model. J Appl Toxicol 2008; 28:1045-53. [DOI: 10.1002/jat.1371] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
145
|
Parmar J, Key RE, Rainey WE. Development of an adrenocorticotropin-responsive human adrenocortical carcinoma cell line. J Clin Endocrinol Metab 2008; 93:4542-6. [PMID: 18713819 PMCID: PMC2582572 DOI: 10.1210/jc.2008-0903] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT The molecular mechanisms regulating adrenal steroidogenesis continue to be defined. The only current human adrenocortical cell line is the NCI-H295 and its substrains. One of the strains, H295R, has retained the ability to respond to angiotensin II (Ang II); however, it lacks ACTH responsiveness. An ACTH-responsive human adrenocortical model would add significantly to studies directed at defining the molecular control of corticosteroid biosynthesis. OBJECTIVE The objective of the study was to develop a human adrenal cell line that retained both Ang II- and ACTH-regulated corticosteroid production. DESIGN Human adrenocortical carcinoma (HAC) cells were isolated from an adrenal tumor removed from a girl presenting with virilization and hypertension. Clonal populations of cells were established and characterized. HAC cells were treated with ACTH, Ang II, and forskolin, followed by examination of steroidogenic enzyme mRNA expression using quantitative real-time PCR and steroid production. RESULTS HAC clone 15 (HAC15) cells responded to treatment with ACTH, Ang II, and forskolin, with increased cortisol and aldosterone production. ACTH, Ang II, and forskolin also increased expression of mRNA, encoding all enzymes needed for cortisol and aldosterone biosynthesis, namely steroidogenic acute regulatory protein, cholesterol side-chain cleavage, cytochrome P450 17alpha-hydroxylase-17, 20-lyase, 3beta-hydroxysteroid dehydrogenase type II, 21-hydroxylase, 11beta-hydroxylase, and 11beta-aldosterone synthase. In addition, the cells expressed mRNA for ACTH receptor (MC2R) and Ang II receptor. MC2R protein was also expressed in HAC15 cells. CONCLUSION The current study describes the development and characterization of an ACTH- and Ang II-responsive human adrenal cell line. The HAC15 cell line should provide an important model system for defining the molecular mechanisms regulating aldosterone and cortisol production.
Collapse
Affiliation(s)
- Jeniel Parmar
- Department of Physiology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | |
Collapse
|
146
|
Rizk-Rabin M, Assie G, Rene-Corail F, Perlemoine K, Hamzaoui H, Tissier F, Lieberherr M, Bertagna X, Bertherat J, Bouizar Z. Differential Expression of Parathyroid Hormone–Related Protein in Adrenocortical Tumors: Autocrine/Paracrine Effects on the Growth and Signaling Pathways in H295R Cells. Cancer Epidemiol Biomarkers Prev 2008; 17:2275-85. [DOI: 10.1158/1055-9965.epi-07-2924] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
147
|
Kumar A, Magoffin D, Munir I, Azziz R. Effect of insulin and testosterone on androgen production and transcription of SULT2A1 in the NCI-H295R adrenocortical cell line. Fertil Steril 2008; 92:793-7. [PMID: 18684447 DOI: 10.1016/j.fertnstert.2008.05.076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 05/21/2008] [Accepted: 05/21/2008] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine changes in adrenal androgen (AA) production, and transcription of dehydroepiandrosterone (DHEA) sulfotransferase (SULT2A1) in the NCI-H295R human adrenocortical cell line in response to insulin and testosterone, an environment mimicking the polycystic ovary syndrome state. DESIGN In vitro experiment using NCI-H295R adrenocortical cell lines. SETTING Academic medical center. PATIENT(S) NCI-H295R human adrenocortical cell line. INTERVENTION(S) The transcriptional activity of SULT2A1 and adrenal steroid production was quantified after exposure to various treatments (e.g., forskolin, insulin, testosterone, and combinations thereof). MAIN OUTCOME MEASURE(S) Quantification of mRNA for DHEA sulfotransferase (SULT2A1) by real-time reverse transcription-polymerase chain reaction and measurement of steroid production by radioimmunoassay. RESULT(S) Testosterone decreased DHEAS and cortisol, and increased DHEA secretion by H295R cells; the inhibitory effects of testosterone on DHEAS and cortisol production were augmented by insulin. There was a trend toward an increase in the transcription of SULT2A1 by insulin and testosterone. CONCLUSION(S) Testosterone and insulin appear to be modulators of adrenal androgen production in this human adrenocortical cell model. These results suggest that testosterone may augment DHEA secretion in the human adrenal, although they do not support the role of this sex steroid or insulin on the elevated DHEAS levels frequently observed in polycystic ovary syndrome.
Collapse
Affiliation(s)
- Ashim Kumar
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | | | | |
Collapse
|
148
|
Targeting human glutathione transferase A3-3 attenuates progesterone production in human steroidogenic cells. Biochem J 2008; 414:103-9. [DOI: 10.1042/bj20080397] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
hGSTA3-3 (human Alpha-class glutathione transferase 3-3) efficiently catalyses steroid Δ5–Δ4 double-bond isomerization in vitro, using glutathione as a cofactor. This chemical transformation is an obligatory reaction in the biosynthesis of steroid hormones and follows the oxidation of 3β-hydroxysteroids catalysed by 3β-HSD (3β-hydroxysteroid dehydrogenase). The isomerization has commonly been ascribed to a supplementary function of 3β-HSD. The present study is the first to provide evidence that hGSTA3-3 contributes to this step in steroid hormone biosynthesis in complex cellular systems. First, we find glutathione-dependent Δ5–Δ4 isomerase activity in whole-cell extracts prepared from human steroidogenic cells. Secondly, effective inhibitors of hGSTA3-3 dramatically decrease the conversion of Δ5-androstene-3,17-dione into Δ4-androstene-3,17-dione in cell lysates. Thirdly, we show that RNAi (RNA interference) targeting hGSTA3-3 expression decreases by 30% the forskolin-stimulated production of the steroid hormone progesterone in a human placental cell line. This effect is achieved at low concentrations of two small interfering RNAs directed against distinct regions of hGSTA3-3 mRNA, and is weaker in unstimulated cells, in which hGSTA3-3 expression is low. The results concordantly show that hGSTA3-3 makes a significant contribution to the double-bond isomerization necessary for steroid hormone biosynthesis and thereby complements the indispensable 3β-hydroxysteroid oxidoreductase activity of 3β-HSD. The results indicate that the lower isomerase activity of 3β-HSD is insufficient for maximal rate of cellular sex hormone production and identify hGSTA3-3 as a possible target for pharmaceutical intervention in steroid hormone-dependent diseases.
Collapse
|
149
|
Asp V, Lindström V, Olsson JA, Bergström U, Brandt I. Cytotoxicity and decreased corticosterone production in adrenocortical Y-1 cells by 3-methylsulfonyl-DDE and structurally related molecules. Arch Toxicol 2008; 83:389-96. [DOI: 10.1007/s00204-008-0342-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 07/03/2008] [Indexed: 11/29/2022]
|
150
|
Rui X, Tsao J, Scheys JO, Hammer GD, Schimmer BP. Contributions of specificity protein-1 and steroidogenic factor 1 to Adcy4 expression in Y1 mouse adrenal cells. Endocrinology 2008; 149:3668-78. [PMID: 18388192 PMCID: PMC2453098 DOI: 10.1210/en.2008-0203] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The type 4 adenylyl cyclase, Adcy4, is the least abundant of five different adenylyl cyclase isoforms expressed in the Y1 mouse adrenocortical cell line and is deficient in a Y1 mutant with impaired steroidogenic factor 1 (SF1) activity. This study examines the contributions of SF1 and other DNA promoter/regulatory elements to Adcy4 expression in the Y1 cell line and its derivative Adcy4-deficient mutant. Primer extension and in silico analyses indicate that Adcy4 transcription initiates from multiple sites just downstream of a GC-rich sequence. Luciferase reporter gene assays identify a 124-bp sequence, situated 19 bp upstream of the major transcription start site and highly conserved among several mammalian species, as the major determinant of Adcy4 expression in Y1 cells and as a site of compromised activity in the Adcy4-deficient mutant. EMSAs using competitor nucleotides and specific antibodies indicate that this conserved region contains three specificity protein (Sp)-1/Sp3-binding sites and one SF1-binding site. As determined by site-specific mutagenesis, the 5'-most Sp1/Sp3-site enhances promoter activity, whereas the middle Sp1/Sp3 and SF1 sites each repress Adcy4 promoter activity. In the Adcy4-deficient mutant, mutating the SF1 site restores Adcy4 promoter activity and knocking down SF1 with small interfering RNAs increases Adcy4 expression, confirming the contribution of SF1 to the mutant phenotype. These studies demonstrate roles for Sp1/Sp3 and SF1 in Adcy4 expression in Y1 cells and establish a repressor function for SF1 in certain promoter contexts.
Collapse
Affiliation(s)
- Xianliang Rui
- Banting and Best Department of Medical Research, University of Toronto, 112 College Street, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|