101
|
Gu J, Rauniyar S, Wang Y, Zhan W, Ye C, Ji S, Liu G. Chrysophanol Induced Glioma Cells Apoptosis via Activation of Mitochondrial Apoptosis Pathway. Bioengineered 2021; 12:6855-6868. [PMID: 34519612 PMCID: PMC8806913 DOI: 10.1080/21655979.2021.1972079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glioma is a common intracranial tumor originated from neuroglia cell. Chrysophanol is an anthraquinone derivative proved to exert anticancer effects in various cancers. This paper investigated the effect and mechanism of chrysophanol in glioma. Glioma cell lines U251 and SHG-44 were adopted in the experiments. The cells were treated with chrysophanol at different concentrations (0, 10, 20 50, 100 and 200 μM) for 48 h in the study, and then processed with MitoTempo. Mitochondria and cytosol were isolated to investigate the role of mitochondria during chrysophanol functioning on glioma cells. Cell viability was detected through 3-(4,5-Dimethyl-2-Thiazolyl)-2,5-Diphenyl Tetrazolium Bromide (MTT) assay, and cell apoptosis, cell cycle as well as relative reactive oxygen species (ROS) were assessed by flow cytometry. Expressions of Cytosol Cyt C, cleaved caspase-3, cleaved caspase-9, Cyclin D1 and Cyclin E were evaluated by western blot. In U251 and SHG-44 cells, with chrysophanol concentration rising, cell viability, expressions of Cyclin D1 and Cyclin E were decreased while cell apoptosis, levels of cleaved caspase-3, cleaved caspase-9 and Cytosol Cyt C as well as ROS accumulation were increased with cell cycle arrested in G1 phase. Besides, chrysophanol promoted ROS accumulation, cell apoptosis and transfer of Cyt C from mitochondria to cytosol in cells while MitoTempo partly reversed the effect of chrysophanol. Chrysophanol promoted cell apoptosis via activating mitochondrial apoptosis pathway in glioma.
Collapse
Affiliation(s)
- Jia Gu
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, China.,Nanjing Medical University, Nanjing, China
| | - Sunil Rauniyar
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Yan Wang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, China
| | - Wenjian Zhan
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, China.,Nanjing Medical University, Nanjing, China
| | - Chengkun Ye
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, China.,The Graduate School, Xuzhou Medical University, Xuzhou, China
| | - Shaogan Ji
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou City, China
| | - Guanzheng Liu
- Department of Neurosurgery, Kaifeng Central Hospital, Kaifeng City, China
| |
Collapse
|
102
|
Cryo-EM structure and kinetics reveal electron transfer by 2D diffusion of cytochrome c in the yeast III-IV respiratory supercomplex. Proc Natl Acad Sci U S A 2021; 118:2021157118. [PMID: 33836592 DOI: 10.1073/pnas.2021157118] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Energy conversion in aerobic organisms involves an electron current from low-potential donors, such as NADH and succinate, to dioxygen through the membrane-bound respiratory chain. Electron transfer is coupled to transmembrane proton transport, which maintains the electrochemical proton gradient used to produce ATP and drive other cellular processes. Electrons are transferred from respiratory complexes III to IV (CIII and CIV) by water-soluble cytochrome (cyt.) c In Saccharomyces cerevisiae and some other organisms, these complexes assemble into larger CIII2CIV1/2 supercomplexes, the functional significance of which has remained enigmatic. In this work, we measured the kinetics of the S. cerevisiae supercomplex cyt. c-mediated QH2:O2 oxidoreductase activity under various conditions. The data indicate that the electronic link between CIII and CIV is confined to the surface of the supercomplex. Single-particle electron cryomicroscopy (cryo-EM) structures of the supercomplex with cyt. c show the positively charged cyt. c bound to either CIII or CIV or along a continuum of intermediate positions. Collectively, the structural and kinetic data indicate that cyt. c travels along a negatively charged patch on the supercomplex surface. Thus, rather than enhancing electron transfer rates by decreasing the distance that cyt. c must diffuse in three dimensions, formation of the CIII2CIV1/2 supercomplex facilitates electron transfer by two-dimensional (2D) diffusion of cyt. c This mechanism enables the CIII2CIV1/2 supercomplex to increase QH2:O2 oxidoreductase activity and suggests a possible regulatory role for supercomplex formation in the respiratory chain.
Collapse
|
103
|
Osman KA, Ezz El-Din EM, Ahmed NS, El-Seedy AS. Effect of N-acetylcysteine on attenuation of chlropyrifos and its methyl analogue toxicity in male rats. Toxicology 2021; 461:152904. [PMID: 34425170 DOI: 10.1016/j.tox.2021.152904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 02/01/2023]
Abstract
The attenuating effect of 150 mg/kg of N-acetylcysteine (NAC) against the oral administration of 7.88 and 202.07 mg/kg/day for 14 days of either chlropyrifos-ethyl (CPE-E) or chlropyrifos-methyl (CPF-M), respectively, in male rat was investigated using biochemical and genetic markers. Biomarkers such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), paraoxonase (PON), adenosine 5'-triphosphatase (ATP-ase), glutathione-S-transferase (GST), catalase (CAT), glutathione reduced (GSH) in serum showed a significant decline in their levels, while calcium (Ca+2), cytochrome C reduction (CYC-R), lipid peroxidation (LPO), nitric oxide (NO) levels showed a significant increase in serum of treated rats. Regarding the genotoxic parameters, when rats are treated either with CPE-E or CPF-M, liver DNA, chromosomal aberration (CA), and micronucleated polychromatic erythrocytes (MnPCE) significantly increased, while the mitotic index (MI) and polychromatic erythrocytes (PCE)/ normochromatic erythrocytes (NCE) ratio were significantly decreased. However, the administration of NAC following the intoxication of CPF-E or CPF-M attenuated the tested biochemical and genotoxic markers. It can be concluded that NAC can be used to ameliorate the toxicity of certain organophosphorus compounds such as CPF-E and CPF-M.
Collapse
Affiliation(s)
- Khaled A Osman
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt.
| | - Eslam M Ezz El-Din
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt
| | - Nabila S Ahmed
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt
| | - Ayman S El-Seedy
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Faculty of Agriculture, Alexandria University, P.O Box 21545, Alexandria, Egypt
| |
Collapse
|
104
|
How to Turn an Electron Transfer Protein into a Redox Enzyme for Biosensing. Molecules 2021; 26:molecules26164950. [PMID: 34443538 PMCID: PMC8398203 DOI: 10.3390/molecules26164950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 01/10/2023] Open
Abstract
Cytochrome c is a small globular protein whose main physiological role is to shuttle electrons within the mitochondrial electron transport chain. This protein has been widely investigated, especially as a paradigmatic system for understanding the fundamental aspects of biological electron transfer and protein folding. Nevertheless, cytochrome c can also be endowed with a non-native catalytic activity and be immobilized on an electrode surface for the development of third generation biosensors. Here, an overview is offered of the most significant examples of such a functional transformation, carried out by either point mutation(s) or controlled unfolding. The latter can be induced chemically or upon protein immobilization on hydrophobic self-assembled monolayers. We critically discuss the potential held by these systems as core constituents of amperometric biosensors, along with the issues that need to be addressed to optimize their applicability and response.
Collapse
|
105
|
Lee H, Gao Y, Ko E, Lee J, Lee HK, Lee S, Choi M, Shin S, Park YH, Moon HB, Uppal K, Kim KT. Nonmonotonic response of type 2 diabetes by low concentration organochlorine pesticide mixture: Findings from multi-omics in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125956. [PMID: 34492873 DOI: 10.1016/j.jhazmat.2021.125956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/03/2021] [Accepted: 04/21/2021] [Indexed: 06/13/2023]
Abstract
Exposure to a single organochlorine pesticide (OCP) at high concentration and over a short period of exposure constrain our understanding of the contribution of chemical exposure to type 2 diabetes (T2D). A total of 450 male and female zebrafish was exposed to mixtures of five OCPs at 0, 0.05, 0.25, 2.5, and 25 μg/L for 12 weeks. T2D-related hematological parameters (i.e., glucose, insulin, free fatty acid, and triglycerides) and mitochondrial complex I to IV activities were assessed. Metabolomics, proteomics, and transcriptomics were analyzed in female livers, and their data-driven integration was performed. High fasting glucose and low insulin levels were observed only at 0.05 μg/L of the OCP mixture in females, indicating a nonlinear and sexually dependent response. We found that exposure to the OCP mixture inhibited the activities of mitochondrial complexes, especially III and IV. Combining individual and integrated omics analysis, T2D-linked metabolic pathways that regulate mitochondrial function, insulin signaling, and energy homeostasis were altered by the OCP mixture, which explains the observed phenotypic hematological effects. We demonstrated the cause-and-effect relationship between exposures to OCP mixture and T2D using zebrafish model. This study gives an insight into mechanistic research of metabolic diseases caused by chemical exposure using zebrafish.
Collapse
Affiliation(s)
- Hyojin Lee
- Department of Environmental Energy Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Yan Gao
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eun Ko
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jihye Lee
- Metabolomics Laboratory, College of Pharmacy, Korea University, Sejong City 30019, Republic of Korea
| | - Hyun-Kyung Lee
- Department of Marine Science and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Sangkyu Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Moonsung Choi
- Department of Optometry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Sooim Shin
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Youngja Hwang Park
- Metabolomics Laboratory, College of Pharmacy, Korea University, Sejong City 30019, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Karan Uppal
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ki-Tae Kim
- Department of Environmental Energy Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
106
|
GNAi2/gip2-Regulated Transcriptome and Its Therapeutic Significance in Ovarian Cancer. Biomolecules 2021; 11:biom11081211. [PMID: 34439877 PMCID: PMC8393559 DOI: 10.3390/biom11081211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/20/2022] Open
Abstract
Increased expression of GNAi2, which encodes the α-subunit of G-protein i2, has been correlated with the late-stage progression of ovarian cancer. GNAi2, also referred to as the proto-oncogene gip2, transduces signals from lysophosphatidic acid (LPA)-activated LPA-receptors to oncogenic cellular responses in ovarian cancer cells. To identify the oncogenic program activated by gip2, we carried out micro-array-based transcriptomic and bioinformatic analyses using the ovarian cancer cell-line SKOV3, in which the expression of GNAi2/gip2 was silenced by specific shRNA. A cut-off value of 5-fold change in gene expression (p < 0.05) indicated that a total of 264 genes were dependent upon gip2-expression with 136 genes coding for functional proteins. Functional annotation of the transcriptome indicated the hitherto unknown role of gip2 in stimulating the expression of oncogenic/growth-promoting genes such as KDR/VEGFR2, CCL20, and VIP. The array results were further validated in a panel of High-Grade Serous Ovarian Carcinoma (HGSOC) cell lines that included Kuramochi, OVCAR3, and OVCAR8 cells. Gene set enrichment analyses using DAVID, STRING, and Cytoscape applications indicated the potential role of the gip2-stimulated transcriptomic network involved in the upregulation of cell proliferation, adhesion, migration, cellular metabolism, and therapy resistance. The results unravel a multi-modular network in which the hub and bottleneck nodes are defined by ACKR3/CXCR7, IL6, VEGFA, CYCS, COX5B, UQCRC1, UQCRFS1, and FYN. The identification of these genes as the critical nodes in GNAi2/gip2 orchestrated onco-transcriptome establishes their role in ovarian cancer pathophysiology. In addition, these results also point to these nodes as potential targets for novel therapeutic strategies.
Collapse
|
107
|
Brzezinski P, Moe A, Ädelroth P. Structure and Mechanism of Respiratory III-IV Supercomplexes in Bioenergetic Membranes. Chem Rev 2021; 121:9644-9673. [PMID: 34184881 PMCID: PMC8361435 DOI: 10.1021/acs.chemrev.1c00140] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 12/12/2022]
Abstract
In the final steps of energy conservation in aerobic organisms, free energy from electron transfer through the respiratory chain is transduced into a proton electrochemical gradient across a membrane. In mitochondria and many bacteria, reduction of the dioxygen electron acceptor is catalyzed by cytochrome c oxidase (complex IV), which receives electrons from cytochrome bc1 (complex III), via membrane-bound or water-soluble cytochrome c. These complexes function independently, but in many organisms they associate to form supercomplexes. Here, we review the structural features and the functional significance of the nonobligate III2IV1/2 Saccharomyces cerevisiae mitochondrial supercomplex as well as the obligate III2IV2 supercomplex from actinobacteria. The analysis is centered around the Q-cycle of complex III, proton uptake by CytcO, as well as mechanistic and structural solutions to the electronic link between complexes III and IV.
Collapse
Affiliation(s)
- Peter Brzezinski
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Agnes Moe
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
108
|
Li X, Hu L, Zhu X, Guo X, Deng X, Zhang J. The effect of caspase-3 in mitochondrial apoptosis activation on degradation of structure proteins of Esox lucius during postmortem storage. Food Chem 2021; 367:130767. [PMID: 34391996 DOI: 10.1016/j.foodchem.2021.130767] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/25/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023]
Abstract
This study aimed to investigate the effect of caspase-3 inhibitor in mitochondrial apoptosis activation on structure protein degradation during postmortem storage. Mitochondrial dysfunction, apoptotic factors, structure protein degradation and the myofibrillar rupture index between the control and caspase-3 inhibitor groups were determined. The results show caspase-3 inhibitor repressed the mitochondrial membrane permeability and mitochondrial swelling, as well as increased mitochondrial membrane potential, causing a decrease in the release of cytochrome c from mitochondria to cytoplasm and caspase-9/3 activities (P < 0.05). Subsequently, small myofibrillar proteins (desmin and troponin-T) were susceptible to degradation, initiating texture deterioration. By contrast, giant structure proteins (titin and nebulin) were degraded during later postmortem storage, predominantly contributing to fish softening. The results further suggest that caspase-3 is involved in degradation of structure proteins during postmortem through mitochondrial apoptosis pathways.
Collapse
Affiliation(s)
- Xue Li
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Ling Hu
- Changji Hui Autonomous Prefecture Institute for Drug Control, Changji Hui Autonomous, Xinjiang 831100, China
| | - Xinrong Zhu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xiaobing Guo
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xiaorong Deng
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
109
|
Gao LM, Fu S, Liu F, Wu HB, Li WJ. Astragalus Polysaccharide Regulates miR-182/Bcl-2 Axis to Relieve Metabolic Memory through Suppressing Mitochondrial Damage-Mediated Apoptosis in Retinal Pigment Epithelial Cells. Pharmacology 2021; 106:520-533. [PMID: 34352784 DOI: 10.1159/000515901] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 03/15/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Metabolic memory is one of the causes of diabetic retinopathy, and astragalus polysaccharide (APS) has great advantages in the treatment of diabetes. However, the effect of APS on metabolic memory remains to be investigated. METHODS Retinal pigment epithelial cell line ARPE-19 and primary retinal pigment epithelial cells were used to verify the effect of APS on mitochondria damage and apoptosis induced by high glucose-induced metabolic memory. The relationship between miR-182 and Bcl-2 was confirmed by a luciferase activity assay. Western blotting and quantitative reverse-transcriptase polymerase chain reaction were conducted to investigate the changes in mitochondrial damage- and apoptosis-associated markers. The cell mitochondrial membrane potential was assessed by JC-1 fluorescence. Terminal deoxynucleotidyl transferase dUTP nick end labelling staining and flow cytometry assays were performed to determine the occurrence of apoptosis. RESULTS Treatment with high glucose followed by normal glucose significantly upregulated the expression of miR-182 and downregulated the expression of its target Bcl-2, and APS treatment reversed the above effects. Additionally, APS treatment restored mitochondrial function and inhibited apoptosis in cells in a state of metabolic memory. The effects of APS against mitochondrial damage and apoptosis were partially inhibited after miR-182 overexpression. CONCLUSION APS alleviated mitochondrial damage and apoptosis induced by metabolic memory by regulating the miR-182/Bcl-2 axis, which might serve as a new strategy for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Li-Mo Gao
- Department of Ophthalmology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shun Fu
- Department of Ophthalmology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Fen Liu
- Department of Gynaecology and Obstetrics, The First Hospital of Changsha, Changsha, China
| | - Han-Bing Wu
- Tumor Center, Huaihua First People's Hospital, Huaihua, China
| | - Wen-Jie Li
- Department of Ophthalmology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
110
|
Dhami-Shah H, Vaidya R, Talwadekar M, Shaw E, Udipi S, Kolthur-Seetharam U, Vaidya ADB. Intervention by picroside II on FFAs induced lipid accumulation and lipotoxicity in HepG2 cells. J Ayurveda Integr Med 2021; 12:465-473. [PMID: 34353693 PMCID: PMC8377190 DOI: 10.1016/j.jaim.2021.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 03/10/2021] [Accepted: 04/10/2021] [Indexed: 12/13/2022] Open
Abstract
Background Accumulation of free fatty acids (FFAs) in hepatocytes is a hallmark of liver dysfunction and non-alcoholic fatty liver disease (NAFLD). Excessive deposition of FFAs alters lipid metabolism pathways increasing the oxidative stress and mitochondrial dysfunction. Attenuating hepatic lipid accumulation, oxidative stress, and improving mitochondrial function could provide potential targets in preventing progression of non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH). Earlier studies with Picrorhiza kurroa extract have shown reduction in hepatic damage and fatty acid infiltration in several experimental models and also clinically in viral hepatitis. Thus, the effect of P. kurroa's phytoactive, picroside II, needed mechanistic investigation in appropriate in vitro liver cell model. Objective(s) To study the effect of picroside II on FFAs accumulation, oxidative stress and mitochondrial function with silibinin as a positive control in in vitro NAFLD model. Materials and methods HepG2 cells were incubated with FFAs-1000μM in presence and absence of Picroside II-10 μM for 20 hours. Results HepG2 cells incubated with FFAs-1000μM lead to increased lipid accumulation. Picroside II-10μM attenuated FFAs-induced lipid accumulation (33%), loss of mitochondrial membrane potential (ΔΨm), ATP depletion, and production of reactive oxygen species (ROS). A concomitant increase in cytochrome C at transcription and protein levels was observed. An increase in expression of MnSOD, catalase, and higher levels of tGSH and GSH:GSSG ratios underlie the ROS salvaging activity of picroside II. Conclusion Picroside II significantly attenuated FFAs-induced-lipotoxicity. The reduction in ROS, increased antioxidant enzymes, and improvement in mitochondrial function underlie the mechanisms of action of picroside II. These findings suggest a need to develop an investigational drug profile of picroside II for NAFLD as a therapeutic strategy. This could be evaluated through the fast-track path of reverse pharmacology.
Collapse
Affiliation(s)
- Hiteshi Dhami-Shah
- Medical Research Centre of Kasturba Health Society, Division of Endocrine and Metabolic Disorders, 17 KD Road, Vile Parle West, Mumbai, 400056, Maharashtra, India; Tata Institute of Fundamental Research, Department of Biological Science, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai, 400005, Maharashtra, India; S.N.D.T University, Department of Food Science and Nutrition, Juhu Road, Santacruz (west), Mumbai, 400049, Maharashtra, India.
| | - Rama Vaidya
- Medical Research Centre of Kasturba Health Society, Division of Endocrine and Metabolic Disorders, 17 KD Road, Vile Parle West, Mumbai, 400056, Maharashtra, India
| | - Manasi Talwadekar
- Tata Institute of Fundamental Research, Department of Biological Science, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai, 400005, Maharashtra, India
| | - Eisha Shaw
- Tata Institute of Fundamental Research, Department of Biological Science, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai, 400005, Maharashtra, India
| | - Shobha Udipi
- Medical Research Centre of Kasturba Health Society, Division of Endocrine and Metabolic Disorders, 17 KD Road, Vile Parle West, Mumbai, 400056, Maharashtra, India
| | - Ullas Kolthur-Seetharam
- Tata Institute of Fundamental Research, Department of Biological Science, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai, 400005, Maharashtra, India
| | - Ashok D B Vaidya
- Medical Research Centre of Kasturba Health Society, Division of Endocrine and Metabolic Disorders, 17 KD Road, Vile Parle West, Mumbai, 400056, Maharashtra, India
| |
Collapse
|
111
|
Samsri S, Pornsuwan S. Influence of cysteine-directed mutations at the Ω-loops on peroxidase activity of human cytochrome c. Arch Biochem Biophys 2021; 709:108980. [PMID: 34224685 DOI: 10.1016/j.abb.2021.108980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 11/19/2022]
Abstract
Cytochrome c (Cytc) is a multifunctional protein associated with electron shuttling in the inner membrane of mitochondria and also involving in the apoptotic pathway. It has been identified that mutations located in the flexible central 40-57 Ω-loop including the naturally occurring G41S, Y48H, and A51V mutants, which are found in patients with thrombocytopenia 4, a platelet disorder, alter the structural properties of human Cytc (hCytc) that associated to enhanced peroxidase activity. In this work we compared the cysteine-directed mutants of hCytc located in three different parts of Ω-loops, i.e., T28C and G34C (proximal Ω-loop), and A50C (central Ω-loop), with respect to the wild-type (WT) hCytc. The mutants and WT hCytc were structurally characterized by circular dichroism, heating and chemical denaturations, and fluorescence spectroscopy. The flexibility at the cysteine mutated sites was directly determined by site-directed spin-labeling Electron Spin Resonance. Alkaline transitions were determined by pH titration and the alkaline conformers were related to peroxidase activity of all hCytc proteins. Structural and dynamic characterizations were rationally correlated to the modulation of peroxidase activity in these mutants in comparison to the WT hCytc. We found that the cysteine mutations at residues T28 and G34, both located in the same region of Ω-loop, developed different conformations and dynamical properties that lead to different effects on the rates of peroxidase activity (G34C was ~2.6 folds higher), whereas the rate of G34C was closer to that of A50C mutant. The results implied that the flexibility and local structures of the proximal Ω-loop could also play an important role in modulating the peroxidase activity which can be associated to apoptosis.
Collapse
Affiliation(s)
- Sasiprapa Samsri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Soraya Pornsuwan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
112
|
Chaves SR, Rego A, Martins VM, Santos-Pereira C, Sousa MJ, Côrte-Real M. Regulation of Cell Death Induced by Acetic Acid in Yeasts. Front Cell Dev Biol 2021; 9:642375. [PMID: 34249904 PMCID: PMC8264433 DOI: 10.3389/fcell.2021.642375] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/04/2021] [Indexed: 11/15/2022] Open
Abstract
Acetic acid has long been considered a molecule of great interest in the yeast research field. It is mostly recognized as a by-product of alcoholic fermentation or as a product of the metabolism of acetic and lactic acid bacteria, as well as of lignocellulosic biomass pretreatment. High acetic acid levels are commonly associated with arrested fermentations or with utilization as vinegar in the food industry. Due to its obvious interest to industrial processes, research on the mechanisms underlying the impact of acetic acid in yeast cells has been increasing. In the past twenty years, a plethora of studies have addressed the intricate cascade of molecular events involved in cell death induced by acetic acid, which is now considered a model in the yeast regulated cell death field. As such, understanding how acetic acid modulates cellular functions brought about important knowledge on modulable targets not only in biotechnology but also in biomedicine. Here, we performed a comprehensive literature review to compile information from published studies performed with lethal concentrations of acetic acid, which shed light on regulated cell death mechanisms. We present an historical retrospective of research on this topic, first providing an overview of the cell death process induced by acetic acid, including functional and structural alterations, followed by an in-depth description of its pharmacological and genetic regulation. As the mechanistic understanding of regulated cell death is crucial both to design improved biomedical strategies and to develop more robust and resilient yeast strains for industrial applications, acetic acid-induced cell death remains a fruitful and open field of study.
Collapse
Affiliation(s)
- Susana R Chaves
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - António Rego
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Vítor M Martins
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Cátia Santos-Pereira
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal.,Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Maria João Sousa
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Manuela Côrte-Real
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
113
|
Karunanidhi P, Verma N, Kumar DN, Agrawal AK, Singh S. Triphenylphosphonium functionalized Ficus religiosa L. extract loaded nanoparticles improve the mitochondrial function in oxidative stress induced diabetes. AAPS PharmSciTech 2021; 22:158. [PMID: 34009603 DOI: 10.1208/s12249-021-02016-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
The present study was aimed to enhance the mitochondrial function in oxidative stress-induced diabetes. To achieve this, Ficus religiosa L. extract loaded solid lipid nanoparticles (ETNPs) were prepared and functionalized by using triphenylphosphonium. Developed nanoparticles demonstrated desired quality attributes with sustained release for up to 24 h and excellent storage stability for up to 180 days at 40 ± 2°C and 75 ± 5% relative humidity. In vitro cytotoxicity assessment showed no toxicity of ETNPs. Interestingly, oral administration of ETNPs to diabetic rats demonstrated improved mitochondrial function by normalizing the mitochondrial morphology, intracellular calcium ion concentration, complexes I, II, IV, and V activity, mitochondrial membrane potential, and antioxidant levels. Further, reduction in apoptotic markers viz. cytochrome-C, caspase-3, and caspase-9 was observed following the ETNP treatment. Moreover, significant reduction in blood glucose and glycosylated hemoglobin while significant improvement in plasma insulin was observed as compared to the diabetic group following the treatment with developed formulation. Furthermore, histopathology studies confirmed the safety of the developed formulation and thus, data in hand collectively suggest that proposed strategy can be effectively used to improve the mitochondrial function in oxidative stress-induced diabetes along with better control over blood glucose and glycosylated hemoglobin.
Collapse
|
114
|
Gideon DA, Nirusimhan V, E JC, Sudarsha K, Manoj KM. Mechanism of electron transfers mediated by cytochromes c and b5 in mitochondria and endoplasmic reticulum: classical and murburn perspectives. J Biomol Struct Dyn 2021; 40:9235-9252. [PMID: 33998974 DOI: 10.1080/07391102.2021.1925154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We explore the mechanism of electron transfers mediated by cytochrome c, a soluble protein involved in mitochondrial oxidative phosphorylation and cytochrome b5, a microsomal membrane protein acting as a redox aide in xenobiotic metabolism. We found minimal conservation in the sequence and surface amino acid residues of cytochrome c/b5 proteins among divergent species. Therefore, we question the evolutionary logic for electron transfer (ET) occurring through affinity binding via recognition of specific surface residues/topography. Also, analysis of putative protein-protein interactions in the crystal structures of these proteins and their redox partners did not point to any specific interaction logic. A comparison of the kinetic and thermodynamic constants of wildtype vs. mutants did not provide strong evidence to support the binding-based ET paradigm, but indicated support for diffusible reactive species (DRS)-mediated process. Topographically divergent cytochromes from one species have been substituted for reaction with proteins from other species, implying the involvement of non-specific interactions. We provide a viable alternative (murburn concept) to classical protein-protein binding-based long range ET mechanism. To account for the promiscuity of interactions and solvent-accessible hemes, we propose that the two proteins act as non- specific redox capacitors, mediating one-electron redox equilibriums involving DRS and unbound ions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Daniel Andrew Gideon
- Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala State, India.,Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Vijay Nirusimhan
- Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Jesu Castin E
- Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Karthik Sudarsha
- Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Kelath Murali Manoj
- Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala State, India
| |
Collapse
|
115
|
Mitochondrial abnormalities: a hub in metabolic syndrome-related cardiac dysfunction caused by oxidative stress. Heart Fail Rev 2021; 27:1387-1394. [PMID: 33950478 PMCID: PMC9197868 DOI: 10.1007/s10741-021-10109-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 12/11/2022]
Abstract
Metabolic syndrome (MetS) refers to a group of cardiovascular risk elements comprising insulin resistance, obesity, dyslipidemia, increased glucose intolerance, and increased blood pressure. Individually, all the MetS components can lead to cardiac dysfunction, while their combination generates additional risks of morbidity and mortality. Growing evidence suggests that oxidative stress, a dominant event in cellular damage and impairment, plays an indispensable role in cardiac dysfunction in MetS. Oxidative stress can not only disrupt mitochondrial activity through inducing oxidative damage to mitochondrial DNA, RNA, lipids, and proteins but can also impair cardiomyocyte contractile function via mitochondria-related oxidative modifications of proteins central to excitation-contraction coupling. Furthermore, excessive reactive oxygen species (ROS) generation can lead to the activation of several mitochondria apoptotic signaling pathways, release of cytochrome c, and eventual induction of myocardial apoptosis. This review will focus on such processes of mitochondrial abnormalities in oxidative stress induced cardiac dysfunction in MetS.
Collapse
|
116
|
Gallardi D, Xue X, Mercier E, Mills T, Lefebvre F, Rise ML, Murray HM. RNA-seq analysis of the mantle transcriptome from Mytilus edulis during a seasonal spawning event in deep and shallow water culture sites on the northeast coast of Newfoundland, Canada. Mar Genomics 2021; 60:100865. [PMID: 33933383 DOI: 10.1016/j.margen.2021.100865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 11/29/2022]
Abstract
The blue mussel (Mytilus edulis) has global commercial and ecological importance both in wild and cultured conditions. However there is a qualitative and quantitative lack of knowledge of the molecular mechanisms associated with its reproductive physiology, especially with reference to environmental interactions. Here we initiated a transcriptomic analysis (RNA-sequencing (RNA-seq)) of the mantle from both sexes sampled during a seasonal spawning event and from two culture depths (shallow-5 m; deep- 15 m). Mantle libraries were produced from 3 males and 3 females sampled from each of two shallow sites and two deep sites for a total of 12 replicate male and 12 replicate female libraries (24 total libraries). Overall a total of 2.3 billion raw 100 base reads with an average of 96.5 million reads/library were obtained and assembled into 296,118 transcripts with an average length of 568 bp. Overall, 315 transcripts from male libraries and 25 from female libraries were found to be upregulated in deep water as compared to shallow (edgeR adjusted p value ≤ 0.05). Conversely, 126 transcripts from male libraries and 135 from female libraries were found to be significantly downregulated at the same depth. Thirteen transcripts were selected for qPCR validation based on importance in reproduction, antimicrobial defense and metabolism. Of these, 9 RNA-seq identified transcripts were shown by qPCR to be differentially expressed between groups: 2 were upregulated in deep compared with shallow water (dhx38, mt-co1), 2 were upregulated for female compared with male mantle (pias2, mapkap1) and 6 genes (fndc3a, acbd3, klhl10, ccnb3, armc4, mt-co1) showed to be upregulated in males compared to females. The majority of qPCR studied transcripts were identified as involved in gamete development based on the UniProt database. This study further characterizes the importance of the mantle transcriptome during reproductive activities of M. edulis.
Collapse
Affiliation(s)
- Daria Gallardi
- Fisheries and Oceans Canada, 80 East White Hills Road, PO Box 5667, St. John's, NL A1C 5X1, Canada.
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Eloi Mercier
- Canadian Centre for Computational Genomics - Montreal Node, McGill University and Genome Quebec Innovation Center, 740 Dr. Penfield Avenue, Montréal, Québec H3A 0G1, Canada
| | - Terry Mills
- Norlantic Processors Limited, P.O. Box 381, Botwood, NL A0H 1E0, Canada
| | - Francois Lefebvre
- Canadian Centre for Computational Genomics - Montreal Node, McGill University and Genome Quebec Innovation Center, 740 Dr. Penfield Avenue, Montréal, Québec H3A 0G1, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Harry M Murray
- Fisheries and Oceans Canada, 80 East White Hills Road, PO Box 5667, St. John's, NL A1C 5X1, Canada
| |
Collapse
|
117
|
Gupta A, Bansal M, Liyanage R, Upadhyay A, Rath N, Donoghue A, Sun X. Sodium butyrate modulates chicken macrophage proteins essential for Salmonella Enteritidis invasion. PLoS One 2021; 16:e0250296. [PMID: 33909627 PMCID: PMC8081216 DOI: 10.1371/journal.pone.0250296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/02/2021] [Indexed: 12/28/2022] Open
Abstract
Salmonella Enteritidis is an intracellular foodborne pathogen that has developed multiple mechanisms to alter poultry intestinal physiology and infect the gut. Short chain fatty acid butyrate is derived from microbiota metabolic activities, and it maintains gut homeostasis. There is limited understanding on the interaction between S. Enteritidis infection, butyrate, and host intestinal response. To fill this knowledge gap, chicken macrophages (also known as HTC cells) were infected with S. Enteritidis, treated with sodium butyrate, and proteomic analysis was performed. A growth curve assay was conducted to determine sub-inhibitory concentration (SIC, concentration that do not affect bacterial growth compared to control) of sodium butyrate against S. Enteritidis. HTC cells were infected with S. Enteritidis in the presence and absence of SIC of sodium butyrate. The proteins were extracted and analyzed by tandem mass spectrometry. Our results showed that the SIC was 45 mM. Notably, S. Enteritidis-infected HTC cells upregulated macrophage proteins involved in ATP synthesis through oxidative phosphorylation such as ATP synthase subunit alpha (ATP5A1), ATP synthase subunit d, mitochondrial (ATP5PD) and cellular apoptosis such as Cytochrome-c (CYC). Furthermore, sodium butyrate influenced S. Enteritidis-infected HTC cells by reducing the expression of macrophage proteins mediating actin cytoskeletal rearrangements such as WD repeat-containing protein-1 (WDR1), Alpha actinin-1 (ACTN1), Vinculin (VCL) and Protein disulfide isomerase (P4HB) and intracellular S. Enteritidis growth and replication such as V-type proton ATPase catalytic subunit A (ATPV1A). Interestingly, sodium butyrate increased the expression of infected HTC cell protein involving in bacterial killing such as Vimentin (VIM). In conclusion, sodium butyrate modulates the expression of HTC cell proteins essential for S. Enteritidis invasion.
Collapse
Affiliation(s)
- Anamika Gupta
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Mohit Bansal
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Rohana Liyanage
- Department of Chemistry, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Abhinav Upadhyay
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, United States of America
| | - Narayan Rath
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture-Agriculture Research Station, Fayetteville, Arkansas, United States of America
| | - Annie Donoghue
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture-Agriculture Research Station, Fayetteville, Arkansas, United States of America
| | - Xiaolun Sun
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|
118
|
Wang X, Chen G, Zhang P, Jia Q. Advances in epitope molecularly imprinted polymers for protein detection: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1660-1671. [PMID: 33861232 DOI: 10.1039/d1ay00067e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Epitope molecularly imprinted polymers (EMIPs) are novel imprinted materials using short characteristic peptides as templates rather than entire proteins. To be specific, the amino acid sequence of the template peptide is the same as an exposed N- or C-terminus of a target protein, or its amino acid composition and sequence replicate a similar conformational arrangement as the same amino acid residues on the surface of the target protein. EMIPs have a good application prospect in protein research. Herein, we focus on classification of epitope imprinting techniques, methods of epitope immobilization on matrix materials including boronate affinity immobilization, covalent bonding immobilization, physical adsorption immobilization and metal ion chelation immobilization, and application of EMIPs in peptides, proteins, target imaging and target therapy fields. Finally, the main problems and future development are summarized.
Collapse
Affiliation(s)
- Xindi Wang
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | | | | | | |
Collapse
|
119
|
Sławski J, Białek R, Burdziński G, Gibasiewicz K, Worch R, Grzyb J. Competition between Photoinduced Electron Transfer and Resonance Energy Transfer in an Example of Substituted Cytochrome c-Quantum Dot Systems. J Phys Chem B 2021; 125:3307-3320. [PMID: 33760623 PMCID: PMC8041302 DOI: 10.1021/acs.jpcb.1c00325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Colloidal quantum
dots (QDs) are nanoparticles that are able to
photoreduce redox proteins by electron transfer (ET). QDs are also
able to transfer energy by resonance energy transfer (RET). Here,
we address the question of the competition between these two routes
of QDs’ excitation quenching, using cadmium telluride QDs and
cytochrome c (CytC) or its metal-substituted derivatives. We used
both oxidized and reduced versions of native CytC, as well as fluorescent,
nonreducible Zn(II)CytC, Sn(II)CytC, and metal-free porphyrin CytC.
We found that all of the CytC versions quench QD fluorescence, although
the interaction may be described differently in terms of static and
dynamic quenching. QDs may be quenchers of fluorescent CytC derivatives,
with significant differences in effectiveness depending on QD size.
SnCytC and porphyrin CytC increased the rate of Fe(III)CytC photoreduction,
and Fe(II)CytC slightly decreased the rate and ZnCytC presence significantly
decreased the rate and final level of reduced FeCytC. These might
be partially explained by the tendency to form a stable complex between
protein and QDs, which promoted RET and collisional quenching. Our
findings show that there is a net preference for photoinduced ET over
other ways of energy transfer, at least partially, due to a lack of
donors, regenerating a hole at QDs and leading to irreversibility
of ET events. There may also be a common part of pathways leading
to photoinduced ET and RET. The nature of synergistic action observed
in some cases allows the hypothesis that RET may be an additional
way to power up the ET.
Collapse
Affiliation(s)
- Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, ul. F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Rafał Białek
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Gotard Burdziński
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Krzysztof Gibasiewicz
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Remigiusz Worch
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Joanna Grzyb
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, ul. F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
120
|
Bazylianska V, Kalpage HA, Wan J, Vaishnav A, Mahapatra G, Turner AA, Chowdhury DD, Kim K, Morse PT, Lee I, Brunzelle JS, Polin L, Subedi P, Heath EI, Podgorski I, Marcus K, Edwards BF, Hüttemann M. Lysine 53 Acetylation of Cytochrome c in Prostate Cancer: Warburg Metabolism and Evasion of Apoptosis. Cells 2021; 10:802. [PMID: 33916826 PMCID: PMC8066186 DOI: 10.3390/cells10040802] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/28/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is the second leading cause of cancer-related death in men. Two classic cancer hallmarks are a metabolic switch from oxidative phosphorylation (OxPhos) to glycolysis, known as the Warburg effect, and resistance to cell death. Cytochrome c (Cytc) is at the intersection of both pathways, as it is essential for electron transport in mitochondrial respiration and a trigger of intrinsic apoptosis when released from the mitochondria. However, its functional role in cancer has never been studied. Our data show that Cytc is acetylated on lysine 53 in both androgen hormone-resistant and -sensitive human prostate cancer xenografts. To characterize the functional effects of K53 modification in vitro, K53 was mutated to acetylmimetic glutamine (K53Q), and to arginine (K53R) and isoleucine (K53I) as controls. Cytochrome c oxidase (COX) activity analyzed with purified Cytc variants showed reduced oxygen consumption with acetylmimetic Cytc compared to the non-acetylated Cytc (WT), supporting the Warburg effect. In contrast to WT, K53Q Cytc had significantly lower caspase-3 activity, suggesting that modification of Cytc K53 helps cancer cells evade apoptosis. Cardiolipin peroxidase activity, which is another proapoptotic function of the protein, was lower in acetylmimetic Cytc. Acetylmimetic Cytc also had a higher capacity to scavenge reactive oxygen species (ROS), another pro-survival feature. We discuss our experimental results in light of structural features of K53Q Cytc, which we crystallized at a resolution of 1.31 Å, together with molecular dynamics simulations. In conclusion, we propose that K53 acetylation of Cytc affects two hallmarks of cancer by regulating respiration and apoptosis in prostate cancer xenografts.
Collapse
Affiliation(s)
- Viktoriia Bazylianska
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (V.B.); (H.A.K.); (J.W.); (G.M.); (A.A.T.); (K.K.); (P.T.M.); (I.L.)
- Department of Biochemistry, Microbiology, and Immunology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.V.); (D.D.C.); (B.F.P.E.)
| | - Hasini A. Kalpage
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (V.B.); (H.A.K.); (J.W.); (G.M.); (A.A.T.); (K.K.); (P.T.M.); (I.L.)
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (V.B.); (H.A.K.); (J.W.); (G.M.); (A.A.T.); (K.K.); (P.T.M.); (I.L.)
| | - Asmita Vaishnav
- Department of Biochemistry, Microbiology, and Immunology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.V.); (D.D.C.); (B.F.P.E.)
| | - Gargi Mahapatra
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (V.B.); (H.A.K.); (J.W.); (G.M.); (A.A.T.); (K.K.); (P.T.M.); (I.L.)
- Department of Biochemistry, Microbiology, and Immunology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.V.); (D.D.C.); (B.F.P.E.)
| | - Alice A. Turner
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (V.B.); (H.A.K.); (J.W.); (G.M.); (A.A.T.); (K.K.); (P.T.M.); (I.L.)
- Department of Biochemistry, Microbiology, and Immunology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.V.); (D.D.C.); (B.F.P.E.)
| | - Dipanwita Dutta Chowdhury
- Department of Biochemistry, Microbiology, and Immunology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.V.); (D.D.C.); (B.F.P.E.)
| | - Katherine Kim
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (V.B.); (H.A.K.); (J.W.); (G.M.); (A.A.T.); (K.K.); (P.T.M.); (I.L.)
| | - Paul T. Morse
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (V.B.); (H.A.K.); (J.W.); (G.M.); (A.A.T.); (K.K.); (P.T.M.); (I.L.)
| | - Icksoo Lee
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (V.B.); (H.A.K.); (J.W.); (G.M.); (A.A.T.); (K.K.); (P.T.M.); (I.L.)
- College of Medicine, Dankook University, Cheonan-si, Chungcheongnam-do 31116, Korea
| | - Joseph S. Brunzelle
- Life Sciences Collaborative Access Team, Center for Synchrotron Research, Northwestern University, Argonne, IL 60439, USA;
| | - Lisa Polin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; (L.P.); (E.I.H.)
| | - Prabal Subedi
- Medical Proteomics/Bioanalytics-Center, Ruhr-University Bochum, 44789 Bochum, Germany; (P.S.); (K.M.)
| | - Elisabeth I. Heath
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; (L.P.); (E.I.H.)
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA;
| | - Katrin Marcus
- Medical Proteomics/Bioanalytics-Center, Ruhr-University Bochum, 44789 Bochum, Germany; (P.S.); (K.M.)
| | - Brian F.P. Edwards
- Department of Biochemistry, Microbiology, and Immunology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.V.); (D.D.C.); (B.F.P.E.)
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (V.B.); (H.A.K.); (J.W.); (G.M.); (A.A.T.); (K.K.); (P.T.M.); (I.L.)
- Department of Biochemistry, Microbiology, and Immunology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.V.); (D.D.C.); (B.F.P.E.)
| |
Collapse
|
121
|
|
122
|
Yu W, Liao J, Yang F, Zhang H, Chang X, Yang Y, Bilal RM, Wei G, Liang W, Guo J, Tang Z. Chronic tribasic copper chloride exposure induces rat liver damage by disrupting the mitophagy and apoptosis pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111968. [PMID: 33550083 DOI: 10.1016/j.ecoenv.2021.111968] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Despite the fact that copper (Cu) is a vital micronutrient to maintain body function, high doses of Cu through environmental exposure damage various organs, especially the liver, which is the main metabolic organ. To investigate the influence of long-term Cu-induced toxicity on mitophagy and apoptosis in rat liver, 96 seven-month-old male Sprague-Dawley rats were fed TBCC for 24 weeks. The results revealed that exposure to high Cu concentrations could promote oxidative stress liver injury by increasing the hepatic function index (ALT, AST and ALP) and MDA content, while reducing the activity of antioxidant enzymes (T-SOD, GSH-Px and CAT) related to oxidative stress. Consistent with histopathological observations, proper dietary Cu (15-60 mg/kg) could improve antioxidant stress levels and induce a dose-dependent increase in the mRNA expression of mitophagy-related genes, whereas a high Cu concentration (120 mg/kg) could cause severe liver impairment and ultrastructural changes and a reduction in mitophagosomes, accompanied by downregulation of Atg5, Beclin1, Pink1, Parkin, NIX, P62 and LC3B. The expression of apoptosis-related genes (Bax, Bax/Bcl-2, Caspase3, Cytc and p53) and proteins (Caspase3 and p53) was upregulated with the addition of dietary Cu. The results demonstrated that an appropriate dose of TBCC could improve liver function by promoting mitophagy and Cu enzymes that play antioxidative roles, while the accumulation of excess Cu could induce liver lesions by enhancing apoptosis and inhibiting mitophagy pathways.
Collapse
Affiliation(s)
- Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Fan Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Xiaoyue Chang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Yanyang Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Rana Muhammad Bilal
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100 Pakistan
| | - Guimei Wei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Wenqing Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
123
|
Gautam S, Kumar U, Kumar M, Rana D, Dada R. Yoga improves mitochondrial health and reduces severity of autoimmune inflammatory arthritis: A randomized controlled trial. Mitochondrion 2021; 58:147-159. [PMID: 33741520 DOI: 10.1016/j.mito.2021.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/05/2021] [Accepted: 03/11/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Oxidative stress (OS) and mitochondrial alterations have been implicated in the pathogenesis of rheumatoid arthritis (RA). Various environmental triggers like air pollutants, smoking, unhealthy social habits and sedentary lifestyle induce OS, which may compromise mitochondrial integrity. This trial was designed to explore the effect of 8-weeks yoga practice on mitochondrial health and disease severity in an active RA group compared with a usual-care control group. METHODS A total of 70 subjects were randomized into two groups: yoga group and non-yoga group. Mitochondrial health was assessed by calculation of mitochondrial DNA copy number (mtDNA-CN), OS markers, mitochondrial activity, mitochondrial membrane potential (ΔΨm), circadian rhythm markers and transcripts associated with mitochondrial integrity: AMPK, TIMP-1, KLOTHO, SIRT-1, and TFAM. Parameters of disease activity and disability quotient were also assessed by disease activity score - erythrocyte sedimentation rate (DAS28-ESR) and health assessment questionnaire-disability index (HAQ-DI), respectively. RESULTS In yoga group, there was a significant upregulation of mtDNA-CN, mitochondrial activity markers, ΔΨm, and transcripts that maintain mitochondrial integrity after 8-weeks of yoga. There was optimization of OS markers, and circadian rhythm markers post 8-weeks practice of yoga. Yoga group participants showed significant improvements in DAS28-ESR (p < 0.05) and HAQ-DI (p < 0.05) over the non-yoga group. CONCLUSION Adoption of yoga by RA patients holds the key to enhance mitochondrial health, improve circadian rhythm markers, OS marker regulation, upregulation of transcripts that maintain mitochondrial integrity, reduce disease activity and its associated consequences on health outcome and hence can be beneficial as an adjunct therapy.
Collapse
Affiliation(s)
- Surabhi Gautam
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Uma Kumar
- Department of Rheumatology, All India Institute of Medical Sciences, New Delhi, India
| | - Manoj Kumar
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Deeksha Rana
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Rima Dada
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
124
|
Wilkinson JA, Silvera S, LeBlanc PJ. The effect of cardiolipin side chain composition on cytochrome c protein conformation and peroxidase activity. Physiol Rep 2021; 9:e14772. [PMID: 33667034 PMCID: PMC7934914 DOI: 10.14814/phy2.14772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/21/2021] [Accepted: 02/01/2021] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle, a highly active tissue, makes up 40% of the total body weight. This tissue relies on mitochondria for ATP production, calcium homeostasis, and programed cell death. Mitochondrial phospholipid composition, namely, cardiolipin (CL), influences the functional efficiency of mitochondrial proteins, specifically cytochrome c. The interaction of CL with cytochrome c in the presence of free radicals induces structural and functional changes promoting peroxidase activity and cytochrome c release, a key event in the initiation of apoptosis. The CL acyl chain degree of saturation has been implicated in the cytochrome c to cytochrome c peroxidase transition in liposomal models. However, mitochondrial membranes are composed of differing CL acyl chain composition. Currently, it is unclear how differing CL acyl chain composition utilizing liposomes will influence the cytochrome c form and function as a peroxidase. Thus, this study examined the role of CL acyl chain saturation within liposomes broadly reflecting the relative CL composition of mitochondrial membranes from healthy and dystrophic mouse muscle on cytochrome c conformation and function. Despite no differences in protein conformation or function between healthy and dystrophic liposomes, cytochrome c's affinity to CL increased with greater unsaturation. These findings suggest that increasing CL acyl chain saturation, as implicated in muscle wasting diseases, may not influence cytochrome c transformation and function as a peroxidase but may alter its interaction with CL, potentially impacting further downstream effects.
Collapse
Affiliation(s)
- Jennifer A Wilkinson
- Center for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Sebastian Silvera
- Center for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Paul J LeBlanc
- Center for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| |
Collapse
|
125
|
Araujo-Chaves JC, Miranda ÉGA, Lopes DM, Yokomizo CH, Carvalho-Jr WM, Nantes-Cardoso IL. Antioxidant cytochrome c-like activity of para-Mn (III)TMPyP. Biochimie 2021; 184:116-124. [PMID: 33662439 DOI: 10.1016/j.biochi.2021.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
Manganese porphyrins are well-known protectors against the deleterious effects of pro-oxidant species such as superoxide ions and hydrogen peroxide. The present study investigated the antioxidant cytochrome c-like activities of Mn(III)TMPyP [meso-tetrakis (4-N-methyl pyridinium) porphyrin] against superoxide ion and hydrogen peroxide that remained unexplored for this porphyrin. The association of TMPyP with a model of the inner mitochondrial membrane, cardiolipin (CL)-containing liposomes, shifted +30 mV vs. NHE (normal hydrogen electrode) redox potential of the Mn(II)/Mn(III) redox couple. In CL-containing liposomes, Mn(III)TMPyP was reduced by superoxide ions and recycled by Fe(III)cytochrome c to the oxidized form. Similarly, isolated rat liver mitoplasts added to a sample of Mn(II)TMPyP promoted immediate porphyrin reoxidation by electron transfer to the respiratory chain. These results show that Mn(III)TMPyP can act as an additional pool of Fe(III)cytochrome c capable of transferring electrons that escape from the IV complex back into the respiratory chain. Unlike Fe(II)cytochrome c, Mn(II)TMPyP was not efficient for hydrogen peroxide clearance. Therefore, by reducing cytochrome c, Mn(II)TMPyP can indirectly contribute to hydrogen peroxide elimination.
Collapse
Affiliation(s)
- Juliana C Araujo-Chaves
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Av. dos Estados, 5001, Santo André, Zip Code 09210-580, Brazil
| | - Érica G A Miranda
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Av. dos Estados, 5001, Santo André, Zip Code 09210-580, Brazil
| | - David M Lopes
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Av. dos Estados, 5001, Santo André, Zip Code 09210-580, Brazil
| | - César H Yokomizo
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Av. dos Estados, 5001, Santo André, Zip Code 09210-580, Brazil
| | - Waldemir M Carvalho-Jr
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Av. dos Estados, 5001, Santo André, Zip Code 09210-580, Brazil
| | - Iseli L Nantes-Cardoso
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Av. dos Estados, 5001, Santo André, Zip Code 09210-580, Brazil.
| |
Collapse
|
126
|
Abstract
Barth syndrome (BTHS) is a rare, X-linked recessive, infantile-onset debilitating disorder characterized by early-onset cardiomyopathy, skeletal muscle myopathy, growth delay, and neutropenia, with a worldwide incidence of 1/300,000-400,000 live births. The high mortality rate throughout infancy in BTHS patients is related primarily to progressive cardiomyopathy and a weakened immune system. BTHS is caused by defects in the TAZ gene that encodes tafazzin, a transacylase responsible for the remodeling and maturation of the mitochondrial phospholipid cardiolipin (CL), which is critical to normal mitochondrial structure and function (i.e., ATP generation). A deficiency in tafazzin results in up to a 95% reduction in levels of structurally mature CL. Because the heart is the most metabolically active organ in the body, with the highest mitochondrial content of any tissue, mitochondrial dysfunction plays a key role in the development of heart failure in patients with BTHS. Changes in mitochondrial oxidative phosphorylation reduce the ability of mitochondria to meet the ATP demands of the human heart as well as skeletal muscle, namely ATP synthesis does not match the rate of ATP consumption. The presence of several cardiomyopathic phenotypes have been described in BTHS, including dilated cardiomyopathy, left ventricular noncompaction, either alone or in conjunction with other cardiomyopathic phenotypes, endocardial fibroelastosis, hypertrophic cardiomyopathy, and an apical form of hypertrophic cardiomyopathy, among others, all of which can be directly attributed to the lack of CL synthesis, remodeling, and maturation with subsequent mitochondrial dysfunction. Several mechanisms by which these cardiomyopathic phenotypes exist have been proposed, thereby identifying potential targets for treatment. Dysfunction of the sarcoplasmic reticulum Ca2+-ATPase pump and inflammation potentially triggered by circulating mitochondrial components have been identified. Currently, treatment modalities are aimed at addressing symptomatology of HF in BTHS, but do not address the underlying pathology. One novel therapeutic approach includes elamipretide, which crosses the mitochondrial outer membrane to localize to the inner membrane where it associates with cardiolipin to enhance ATP synthesis in several organs, including the heart. Encouraging clinical results of the use of elamipretide in treating patients with BTHS support the potential use of this drug for management of this rare disease.
Collapse
Affiliation(s)
- Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA.
| |
Collapse
|
127
|
Altered structure and dynamics of pathogenic cytochrome c variants correlate with increased apoptotic activity. Biochem J 2021; 478:669-684. [PMID: 33480393 DOI: 10.1042/bcj20200793] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 01/16/2023]
Abstract
Mutation of cytochrome c in humans causes mild autosomal dominant thrombocytopenia. The role of cytochrome c in platelet formation, and the molecular mechanism underlying the association of cytochrome c mutations with thrombocytopenia remains unknown, although a gain-of-function is most likely. Cytochrome c contributes to several cellular processes, with an exchange between conformational states proposed to regulate changes in function. Here, we use experimental and computational approaches to determine whether pathogenic variants share changes in structure and function, and to understand how these changes might occur. Three pathogenic variants (G41S, Y48H, A51V) cause an increase in apoptosome activation and peroxidase activity. Molecular dynamics simulations of these variants, and two non-naturally occurring variants (G41A, G41T), indicate that increased apoptosome activation correlates with the increased overall flexibility of cytochrome c, particularly movement of the Ω loops. Crystal structures of Y48H and G41T complement these studies which overall suggest that the binding of cytochrome c to apoptotic protease activating factor-1 (Apaf-1) may involve an 'induced fit' mechanism which is enhanced in the more conformationally mobile variants. In contrast, peroxidase activity did not significantly correlate with protein dynamics. Thus, the mechanism by which the variants increase peroxidase activity is not related to the conformational dynamics of the native hexacoordinate state of cytochrome c. Recent molecular dynamics data proposing conformational mobility of specific cytochrome c regions underpins changes in reduction potential and alkaline transition pK was not fully supported. These data highlight that conformational dynamics of cytochrome c drive some but not all of its properties and activities.
Collapse
|
128
|
Alamer A, Ali D, Alarifi S, Alkahtane A, Al-Zharani M, Abdel-Daim MM, Albasher G, Almeer R, Al-Sultan NK, Almalik A, Alhasan AH, Stournaras C, Hasnain S, Alkahtani S. Bismuth oxide nanoparticles induce oxidative stress and apoptosis in human breast cancer cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7379-7389. [PMID: 33030691 DOI: 10.1007/s11356-020-10913-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/17/2020] [Indexed: 05/27/2023]
Abstract
Metal nanomaterials such as bismuth oxide nanoparticles (Bi2O3NPs) have been extensively used in cosmetics, dental materials, pulp capping, and biomedical imaging. There is little knowledge about the health risk of Bi2O3NPs in humans, which warrants a thorough toxicity investigation of Bi2O3NPs at the cellular level. In this experiment, we investigated the cytotoxic effect of Bi2O3NPs on human breast cancer (MCF-7) cells over 24 and 48 h. MCF-7 cells were exposed to Bi2O3NPs at varying doses (0.1, 0.5, 1.0, 5, 10, 20, 40 μg/mL) for 24 and 48 h. We assessed the toxicity of Bi2O3NPs by measuring its effect on the viability and oxidative stress biomarkers, e.g., GSH, SOD, and catalase in MCF-7 cells. The pro-apoptotic effects of Bi2O3NPs on MCF-7 cells were determined via evaluating dysfunction of mitochondrial membrane potential (MMP), caspase-3 activity, externalization of phosphatidylserine, and chromosome condensation. Furthermore, apoptotic cells were evaluated using 7-AAD fluorescence stain and Annexin V-FITC. Bi2O3NPs induced oxidative stress in MCF-7 cells in a time- and dose-dependent manner. Bi2O3NPs increased the rate of both necrotic cells and apoptotic cells. In addition, the blue fluorescence of MCF-7 cells with condensed chromatin was increased in a time- and dose-dependent manner. In conclusion, the present study highlights the potential toxic effects of Bi2O3NPs at the cellular level and suggests further investigation of Bi2O3NPs before any medical purposes.
Collapse
Affiliation(s)
- Ali Alamer
- National Center for Pharmaceutical Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Alkahtane
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf K Al-Sultan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Almalik
- National Center for Pharmaceutical Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
- National Center for Pharmaceuticals, Life science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Ali H Alhasan
- National Center for Pharmaceutical Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
- National Center for Pharmaceuticals, Life science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Christos Stournaras
- Department of Biochemistry, University of Crete Medical School, Voutes, Greece
| | - Saquib Hasnain
- Department of Pharmacy, Shri Venkateshwara University, Gajraula, Amroha, UP, India
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
129
|
Kamli MR, Srivastava V, Hajrah NH, Sabir JSM, Ali A, Malik MA, Ahmad A. Phytogenic Fabrication of Ag-Fe Bimetallic Nanoparticles for Cell Cycle Arrest and Apoptosis Signaling Pathways in Candida auris by Generating Oxidative Stress. Antioxidants (Basel) 2021; 10:182. [PMID: 33513888 PMCID: PMC7910930 DOI: 10.3390/antiox10020182] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 02/05/2023] Open
Abstract
Novel green synthetic nanomedicines have been recognized as alternative therapies with the potential to be antifungal agents. Apoptosis induction, cell cycle arrest and activation of the antioxidant defense system in fungal cells have also gained attention as emerging drug targets. In this study, a facile and biodegradable synthetic route was developed to prepare Ag-Fe bimetallic nanoparticles using aqueous extract of Beta vulgaris L. Surface plasmon resonance of Beta vulgaris-assisted AgNPs nanoparticles was not observed in the UV-visible region of Ag-Fe bimetallic NPs, which confirms the formation of Ag-Fe nanoparticles. Beta vulgaris-assisted Ag-Fe NPs were characterized by FTIR spectroscopy, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction and TGA-DTG analysis for their structural and morphological properties. The as-prepared Ag-Fe NPs were well dispersed and spherical with the average particle size of 15 nm. The antifungal activity of these Ag-Fe NPs against clinical isolates of Candida auris was determined by broth microdilution and cell viability assays. For insights into mechanisms, induction of apoptosis and triggering cell cycle arrest were studied following standard protocols. Furthermore, analysis of antioxidant defense enzymes was determined spectrophotometrically. Antifungal susceptibility results revealed high antifungal activity with MIC values ranging from 0.19 to 0.39 µg/mL. Further studies showed that Ag-Fe NPs were able to induce apoptosis, cell cycle arrest in G2/M phase and disturbances in primary and secondary antioxidant enzymes. This study presents the potential of Ag-Fe NPs to inhibit and potentially eradicate C. auris by inducing apoptosis, cell cycle arrest and increased levels of oxidative stress.
Collapse
Affiliation(s)
- Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Vartika Srivastava
- Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Nahid H Hajrah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Jamal S M Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Arif Ali
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Maqsood Ahmad Malik
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg 2193, South Africa
- Infection Control Unit, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| |
Collapse
|
130
|
Fernández CC, Franke M, Steinrück HP, Lytken O, Williams FJ. Demetalation of Surface Porphyrins at the Solid-Liquid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:852-857. [PMID: 33400533 DOI: 10.1021/acs.langmuir.0c03197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding the factors that control the demetalation of surface porphyrins at the solid-liquid interface is important as the molecular properties of porphyrins are largely determined by their metal centers. In this work, we used X-ray photoelectron spectroscopy (XPS) to follow the demetalation of Zn and Cd tetraphenylporphyrin molecules (ZnTPP and CdTPP) adsorbed as three-monolayer-thin multilayer films on Au(111), by exposing the molecular layers to acidic aqueous solutions. We found that porphyrin molecules at the solid-liquid interface are less prone to lose their metal center than molecules in solution. We propose that this behavior is due to either the incoming protons provided by the solution or the outgoing metal ion having to pass through the hydrophobic porphyrin multilayers where they cannot be solvated. Our results are relevant for the design of molecular devices based on porphyrin molecules adsorbed on solid surfaces.
Collapse
Affiliation(s)
- Cynthia C Fernández
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía INQUIMAE, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Matthias Franke
- Lehrstuhl für Physikalische Chemie II, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Peter Steinrück
- Lehrstuhl für Physikalische Chemie II, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ole Lytken
- Lehrstuhl für Physikalische Chemie II, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Federico J Williams
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía INQUIMAE, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
131
|
Sanchez DJD, Vasconcelos FR, Teles-Filho ACA, Viana AGA, Martins AMA, Sousa MV, Castro MS, Ricart CA, Fontes W, Bertolini M, Bustamante-Filho IC, Moura AA. Proteomic profile of pre-implantational ovine embryos produced in vivo. Reprod Domest Anim 2021; 56:586-603. [PMID: 33460477 DOI: 10.1111/rda.13897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022]
Abstract
The present study was conducted to decipher the proteome of in vivo-produced pre-implantation ovine embryos. Ten locally adapted Morana Nova ewes received hormonal treatment and were inseminated 12 hr after ovulation. Six days later, 54 embryos (morula and blastocyst developmental state) were recovered from eight ewes and pooled to obtain sufficient protein for proteomic analysis. Extracted embryo proteins were analysed by LC-MS/MS, followed by identification based on four database searches (PEAKS, Proteome Discoverer software, SearchGUI software, PepExplorer). Identified proteins were analysed for gene ontology terms, protein clusters and interactions. Genes associated with the ovine embryo proteome were screened for miRNA targets using data sets of TargetScan (http://www.targetscan.org) and mIRBase (http://www.mirbase.org) servers. There were 667 proteins identified in the ovine embryos. Biological processes of such proteins were mainly related to cellular process and regulation, and molecular functions, to binding and catalytic activity. Analysis of the embryo proteins revealed 49 enriched functional clusters, linked to energy metabolism (TCA cycle, pyruvate and glycolysis metabolism), zona pellucida (ZP), MAPK signalling pathway, tight junction, binding of sperm to ZP, translation, proteasome, cell cycle and calcium/phospholipid binding. Sixteen miRNAs were related to 25 pre-implantation ovine embryo genes, all conserved in human, bovine and ovine species. The interaction network generated by miRNet showed four key miRNAs (hsa-mir-106b-5p; hsa-mir-30-5p; hsa-mir-103a-5p and hsa-mir-106a-5p) with potential interactions with embryo-expressed genes. Functional analysis of the network indicated that miRNAs modulate genes related to cell cycle, regulation of stem cell and embryonic cell differentiation, among others. Retrieved miRNAs also modulate the expression of genes involved in cell signalling pathways, such as MAPK, Wnt, TGF-beta, p53 and Toll-like receptor. The current study describes the first major proteomic profile of 6-day-old ovine embryos produced in vivo, setting a comprehensive foundation for our understanding of embryo physiology in the ovine species.
Collapse
Affiliation(s)
- Deisy J D Sanchez
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Fabio R Vasconcelos
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | | | - Arabela G A Viana
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Aline M A Martins
- Laboratory of Protein Chemistry and Biochemistry, University of Brasília, Brasília, Brazil
| | - Marcelo V Sousa
- Laboratory of Protein Chemistry and Biochemistry, University of Brasília, Brasília, Brazil
| | - Mariana S Castro
- Laboratory of Protein Chemistry and Biochemistry, University of Brasília, Brasília, Brazil
| | - Carlos A Ricart
- Laboratory of Protein Chemistry and Biochemistry, University of Brasília, Brasília, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, University of Brasília, Brasília, Brazil
| | - Marcelo Bertolini
- The School of Veterinay Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Arlindo A Moura
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
132
|
Kamli MR, Srivastava V, Hajrah NH, Sabir JSM, Hakeem KR, Ahmad A, Malik MA. Facile Bio-Fabrication of Ag-Cu-Co Trimetallic Nanoparticles and Its Fungicidal Activity against Candida auris. J Fungi (Basel) 2021; 7:jof7010062. [PMID: 33477480 PMCID: PMC7831063 DOI: 10.3390/jof7010062] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/21/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
Candida auris is an emergent multidrug-resistant pathogen that can lead to severe bloodstream infections associated with high mortality rates, especially in hospitalized individuals suffering from serious medical problems. As Candida auris is often multidrug-resistant, there is a persistent demand for new antimycotic drugs with novel antifungal action mechanisms. Here, we reported the facile, one-pot, one-step biosynthesis of biologically active Ag-Cu-Co trimetallic nanoparticles using the aqueous extract of Salvia officinalis rich in polyphenols and flavonoids. These medicinally important phytochemicals act as a reducing agent and stabilize/capping in the nanoparticles' fabrication process. Fourier Transform-Infrared, Scanning electron microscopy, Transmission Electron Microscopy, Energy dispersive X-Ray, X-ray powder diffraction and Thermogravimetric analysis (TGA) measurements were used to classify the as-synthesized nanoparticles. Moreover, we evaluated the antifungal mechanism of as-synthesized nanoparticles against different clinical isolates of C. auris. The minimum inhibitory concentrations and minimum fungicidal concentrations ranged from 0.39-0.78 μg/mL and 0.78-1.56 μg/mL. Cell count and viability assay further validated the fungicidal potential of Ag-Cu-Co trimetallic nanoparticles. The comprehensive analysis showed that these trimetallic nanoparticles could induce apoptosis and G2/M phase cell cycle arrest in C. auris. Furthermore, Ag-Cu-Co trimetallic nanoparticles exhibit enhanced antimicrobial properties compared to their monometallic counterparts attributed to the synergistic effect of Ag, Cu and Co present in the as-synthesized nanoparticles. Therefore, the present study suggests that the Ag-Cu-Co trimetallic nanoparticles hold the capacity to be a lead for antifungal drug development against C. auris infections.
Collapse
Affiliation(s)
- Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.R.K.); (N.H.H.); (J.S.M.S.); (K.R.H.)
- Center of excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Vartika Srivastava
- Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg 2193, South Africa; (V.S.); (A.A.)
| | - Nahid H. Hajrah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.R.K.); (N.H.H.); (J.S.M.S.); (K.R.H.)
| | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.R.K.); (N.H.H.); (J.S.M.S.); (K.R.H.)
- Center of excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.R.K.); (N.H.H.); (J.S.M.S.); (K.R.H.)
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg 2193, South Africa; (V.S.); (A.A.)
- Infection Control Unit, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Maqsood Ahmad Malik
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Correspondence:
| |
Collapse
|
133
|
Ferreira MKM, Aragão WAB, Bittencourt LO, Puty B, Dionizio A, Souza MPCD, Buzalaf MAR, de Oliveira EH, Crespo-Lopez ME, Lima RR. Fluoride exposure during pregnancy and lactation triggers oxidative stress and molecular changes in hippocampus of offspring rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111437. [PMID: 33096359 DOI: 10.1016/j.ecoenv.2020.111437] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 05/28/2023]
Abstract
Long-term exposure to high concentrations of fluoride (F) can damage mineralized and soft tissues such as bones, liver, kidney, intestine, and nervous system of adult rats. The high permeability of the blood-brain barrier and placenta to F during pregnancy and lactation may be critical to neurological development. Therefore, this study aimed to investigate the effects of F exposure during pregnancy and lactation on molecular processes and oxidative biochemistry of offspring rats' hippocampus. Pregnant Wistar rats were randomly assigned into 3 groups in accordance with the drinking water received: G1 - deionized water (control); G2 - 10 mg/L of F and G3 - 50 mg/L of F. The exposure to fluoridated water began on the first day of pregnancy and lasted until the 21st day of breastfeeding (when the offspring rats were weaned). Blood plasma samples of the offspring rats were collected to determine F levels. Hippocampi samples were collected for oxidative biochemistry analyses through antioxidant capacity against peroxyl (ACAP), lipid peroxidation (LPO), and nitrite (NO2-) levels. Also, brain-derived neurotrophic factor (BDNF) gene expression (RT-qPCR) and proteomic profile analyses were performed. The results showed that exposure to both F concentrations during pregnancy and lactation increased the F bioavailability, triggered redox imbalance featured by a decrease of ACAP, increase of LPO and NO2- levels, BDNF overexpression and changes in the hippocampus proteome. These findings raise novel questions regarding potential repercussions on the hippocampus structure and functioning in the different cognitive domains.
Collapse
Affiliation(s)
- Maria Karolina Martins Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Bruna Puty
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, São Paulo, Brazil
| | | | | | | | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.
| |
Collapse
|
134
|
A review of the methods used to determine the target site or the mechanism of action of essential oils and their components against fungi. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-020-04102-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AbstractEssential oils (EOs) are complex mixtures of compounds derived from plants that exhibit antimicrobial activity. Several studies have demonstrated their antifungal activity in food matrices or in vitro via vapor phase or direct addition. Recently, researchers are focusing on elucidating the target site or the mechanism of action of various EOs. Past research has suggested evidence of how EOs act in the fungal cells via assays assessed from cell wall alterations or gene expression modifications. However, no previous reports have summarized most methods for finding the target site of the mechanism of action for EOs. Therefore, this review presents the methods and assays used to discover the target site or the mechanism of action of EOs against fungal cells. Researchers commonly analyze the plasma membrane integrity using various techniques as well as the changes in cell morphology. Meanwhile, the quantification of the activity of the mitochondrial enzymes, ROS species, and gene expression are less assayed.
Collapse
|
135
|
Zhao T, Wan Z, Sambath K, Yu S, Uddin MN, Zhang Y, Belfield KD. Regulating Mitochondrial pH with Light and Implications for Chemoresistance. Chemistry 2021; 27:247-251. [PMID: 33048412 DOI: 10.1002/chem.202004278] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/09/2020] [Indexed: 12/13/2022]
Abstract
Chemoresistance is one of the major challenges for cancer treatment, more recently ascribed to defective mitochondrial outer membrane permeabilization (MOMP), significantly diminishing chemotherapeutic agent-induced apoptosis. A boron-dipyrromethene (BODIPY) chromophore-based triarylsulfonium photoacid generator (BD-PAG) was used to target mitochondria with the aim to regulate mitochondrial pH and further depolarize the mitochondrial membrane. Cell viability assays demonstrated the relative biocompatibility of BD-PAG in the dark while live cell imaging suggested high accumulation in mitochondria. Specific assays indicated that BD-PAG is capable of regulating mitochondrial pH with significant effects on mitochondrial membrane depolarization. Therapeutic tests using chlorambucil in combination with BD-PAG revealed a new strategy in chemoresistance suppression.
Collapse
Affiliation(s)
- Tinghan Zhao
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey, 07102, USA
| | - Zhaoxiong Wan
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey, 07102, USA
| | - Karthik Sambath
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey, 07102, USA
| | - Shupei Yu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey, 07102, USA
| | - Mehrun Nahar Uddin
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey, 07102, USA
| | - Yuanwei Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey, 07102, USA
| | - Kevin D Belfield
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey, 07102, USA
| |
Collapse
|
136
|
Burgess L, Wilson H, Jones AR, Hay S, Natrajan LS. Assessing the Covalent Attachment and Energy Transfer Capabilities of Upconverting Phosphors With Cofactor Containing Bioactive Enzymes. Front Chem 2020; 8:613334. [PMID: 33409268 PMCID: PMC7779683 DOI: 10.3389/fchem.2020.613334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/30/2020] [Indexed: 11/21/2022] Open
Abstract
Upconverting phosphors (UCPs) convert multiple low energy photons into higher energy emission via the process of photon upconversion and offer an attractive alternative to organic fluorophores for use as luminescent probes. Examples of biosensors utilizing the apparent energy transfer of UCPs and nanophosphors (UCNPs) with biomolecules have started to appear in the literature but very few exploit the covalent anchoring of the biomolecule to the surface of the UCP to improve the sensitivity of the systems. Here, we demonstrate a robust and versatile method for the covalent attachment of biomolecules to the surface of a variety of UCPs and UCNPs in which the UCPs were capped with functionalized silica in order to provide a surface to covalently conjugate biomolecules with surface-accessible cysteines. Variants of BM3Heme, cytochrome C, glucose oxidase, and glutathione reductase were then attached via maleimide-thiol coupling. BM3Heme, glucose oxidase, and glutathione reductase were shown to retain their activity when coupled to the UCPs potentially opening up opportunities for biosensing applications.
Collapse
Affiliation(s)
- Letitia Burgess
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, United Kingdom
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Hannah Wilson
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, United Kingdom
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
- Photon Science Institute, The University of Manchester, Manchester, United Kingdom
| | - Alex R Jones
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, United Kingdom
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
- Photon Science Institute, The University of Manchester, Manchester, United Kingdom
| | - Sam Hay
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, United Kingdom
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Louise S Natrajan
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, United Kingdom
- Photon Science Institute, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
137
|
Rani S, Dasgupta B, Bhati GK, Tomar K, Rakshit S, Maiti S. Superior Proton-Transfer Catalytic Promiscuity of Cytochrome c in Self-Organized Media. Chembiochem 2020; 22:1285-1291. [PMID: 33175409 DOI: 10.1002/cbic.202000768] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 12/30/2022]
Abstract
Evolutionarily elderly proteins commonly feature greater catalytic promiscuity. Cytochrome c is among the first set of proteins in evolution to have known prospects in electron transport and peroxidative properties. Here, we report that cyt c is also a proficient proton-transfer catalyst and enhances the Kemp elimination (KE; model reaction to show proton transfer catalytic property) by ∼750-fold on self-organized systems like micelles and vesicles. The self-organized systems mimic the mitochondrial environment in vitro for cyt c. Using an array of biophysical and biochemical mutational assays, both acid-base and redox mechanistic pathways have been explored. The histidine moiety close to hemin group (His18) is mainly responsible for proton abstraction to promote the concerted E2 pathway for KE catalysis when cyt c is in its oxidized form; this has also been confirmed by a H18A mutant of cyt c. However, the redox pathway is predominant under reducing conditions in the presence of dithiothreitol over the pH range 6-7.4. Interestingly, we found almost 750-fold enhanced KE catalysis by cyt c compared to aqueous buffer. Overall, in addition to providing mechanistic insights, the data reveal an unprecedented catalytic property of cyt c that could be of high importance in an evolutionary perspective considering its role in delineating the phylogenic tree and also towards generating programmable designer biocatalysts.
Collapse
Affiliation(s)
- Sheetal Rani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli, 140306, India
| | - Basundhara Dasgupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli, 140306, India
| | - Gaurav Kumar Bhati
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli, 140306, India
| | - Kalpana Tomar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli, 140306, India
| | - Sabyasachi Rakshit
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli, 140306, India
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli, 140306, India
| |
Collapse
|
138
|
Jain A, Trindade GF, Hicks JM, Potts JC, Rahman R, Hague RJM, Amabilino DB, Pérez-García L, Rawson FJ. Modulating the biological function of protein by tailoring the adsorption orientation on nanoparticles. J Colloid Interface Sci 2020; 587:150-161. [PMID: 33360888 DOI: 10.1016/j.jcis.2020.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/27/2020] [Accepted: 12/09/2020] [Indexed: 11/25/2022]
Abstract
Protein orientation in nanoparticle-protein conjugates plays a crucial role in binding to cell receptors and ultimately, defines their targeting efficiency. Therefore, understanding fundamental aspects of the role of protein orientation upon adsorption on the surface of nanoparticles (NPs) is vital for the development of clinically important protein-based nanomedicines. In this work, new insights on the effect of the different orientation of cytochrome c (cyt c) bound to gold nanoparticles (GNPs) using various ligands on its apoptotic activity is reported. Time-of-Flight Secondary-Ion Mass Spectrometry (ToF-SIMS), electrochemical and circular dichroism (CD) analyses are used to investigate the characteristics of cyt c orientation and structure on functionalized GNPs. These studies indicate that the orientation and position of the heme ring inside the cyt c structure can be altered by changing the surface chemistry on the GNPs. A difference in the apoptosis inducing capability because of different orientation of cyt c bound to the GNPs is observed. These findings indicate that the biological activity of a protein can be modulated on the surface of NPs by varying its adsorption orientation. This study will impact on the rational design of new nanoscale biosensors, bioelectronics, and nanoparticle-protein based drugs.
Collapse
Affiliation(s)
- Akhil Jain
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Gustavo F Trindade
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jacqueline M Hicks
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jordan C Potts
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Richard J M Hague
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham NG8 1BB, UK
| | - David B Amabilino
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry, University of Nottingham, Nottingham NG7 2TU, UK
| | - Lluïsa Pérez-García
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Frankie J Rawson
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
139
|
Kumar Sahoo D, Devi Tulsiyan K, Jena S, Biswal HS. Implication of Threonine-Based Ionic Liquids on the Structural Stability, Binding and Activity of Cytochrome c. Chemphyschem 2020; 21:2525-2535. [PMID: 33022820 DOI: 10.1002/cphc.202000761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/04/2020] [Indexed: 12/28/2022]
Abstract
Ionic liquids (ILs) are useful in pharmaceutical industries and biotechnology as alternative solvents or sources for protein extraction and purification, preservation of biomolecules and for regulating the catalytic activity of enzymes. However, the binding mechanism, the non-covalent forces responsible for protein-IL interactions and dynamics of proteins in IL need to be investigated in depth for the effective use of ILs as alternatives. Herein, we disclose the molecular level understanding of the structural intactness and reactivity of a model protein cytochrome c (Cyt c) in biocompatible threonine-based ILs with the help of experimental techniques such as isothermal titration calorimetry (ITC), fluorescence spectroscopy, transmission electron microscopy (TEM) as well as molecular docking. Hydrophobic and electrostatic forces are responsible for the structural and conformational integrity of Cyt c in IL. The ITC experiments revealed the Cyt c-IL binding free energies are in the range of 10-14 kJ/mol and the molecular docking studies demonstrated that ILs interact at the surfaces of Cyt c. The results look promising as the ILs used here are non-toxic and biocompatible, and thus may find potential applications in structural biology and biotechnology.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN-752050, Bhubaneswar, India.,Homi Bhaba National Institute Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Kiran Devi Tulsiyan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN-752050, Bhubaneswar, India.,Homi Bhaba National Institute Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Subhrakant Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN-752050, Bhubaneswar, India.,Homi Bhaba National Institute Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN-752050, Bhubaneswar, India.,Homi Bhaba National Institute Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
140
|
Guerra-Castellano A, Márquez I, Pérez-Mejías G, Díaz-Quintana A, De la Rosa MA, Díaz-Moreno I. Post-Translational Modifications of Cytochrome c in Cell Life and Disease. Int J Mol Sci 2020; 21:E8483. [PMID: 33187249 PMCID: PMC7697256 DOI: 10.3390/ijms21228483] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are the powerhouses of the cell, whilst their malfunction is related to several human pathologies, including neurodegenerative diseases, cardiovascular diseases, and various types of cancer. In mitochondrial metabolism, cytochrome c is a small soluble heme protein that acts as an essential redox carrier in the respiratory electron transport chain. However, cytochrome c is likewise an essential protein in the cytoplasm acting as an activator of programmed cell death. Such a dual role of cytochrome c in cell life and death is indeed fine-regulated by a wide variety of protein post-translational modifications. In this work, we show how these modifications can alter cytochrome c structure and functionality, thus emerging as a control mechanism of cell metabolism but also as a key element in development and prevention of pathologies.
Collapse
Affiliation(s)
| | | | | | | | | | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain; (A.G.-C.); (I.M.); (G.P.-M.); (A.D.-Q.); (M.A.D.l.R.)
| |
Collapse
|
141
|
Srivastava V, Wani MY, Al-Bogami AS, Ahmad A. Piperidine based 1,2,3-triazolylacetamide derivatives induce cell cycle arrest and apoptotic cell death in Candida auris. J Adv Res 2020; 29:121-135. [PMID: 33842010 PMCID: PMC8020347 DOI: 10.1016/j.jare.2020.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/18/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022] Open
Abstract
Introduction: The fungal pathogen Candida auris, is a serious threat to public health and is associated with bloodstream infections causing high mortality particularly in patients with serious medical problems. As this pathogen is generally resistant to all the available classes of antifungals, there is a constant demand for novel antifungal drugs with new mechanisms of antifungal action. Objective: Therefore, in this study we synthesised six novel piperidine based 1,2,3-triazolylacetamide derivatives (pta1-pta6) and tested their antifungal activity and mechanism of action against clinical C. auris isolates. Methods: Antifungal susceptibility testing was done to estimate MIC values of piperidine derivatives following CLSI recommended guidelines. MUSE Cell Analyzer was used to check cell viability and cell cycle arrest in C. auris after exposure to piperidine derivatives using different kits. Additionally, fluorescence microscopy was done to check the effect of test compound on C. auris membrane integrity and related apoptotic assays were performed to confirm cellular apoptosis using different apoptosis markers. Results: Out of the six derivatives; pta1, pta2 and pta3 showed highest active with MIC values from 0.24 to 0.97 μg/mL and MFC ranging from 0.97 to 3.9 μg/mL. Fungicidal behaviour of these compounds was confirmed by cell count and viability assay. Exposure to test compounds at sub-inhibitory and inhibitory concentrations resulted in disruption of C. auris plasma membrane. Further in-depth studies showed that these derivatives were able to induce apoptosis and cell cycle arrest in S-phase. Furthermore, the compounds demonstrated lower toxicity profile. Conclusion: Present study suggests that the novel derivatives (pta1-pta3) induce apoptotic cell death and cell cycle arrest in C. auris and could be potential candidates against C. auris infections.
Collapse
Affiliation(s)
- Vartika Srivastava
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Mohmmad Younus Wani
- University of Jeddah, College of Science, Department of Chemistry, Jeddah 21589, Saudi Arabia
| | - Abdullah Saad Al-Bogami
- University of Jeddah, College of Science, Department of Chemistry, Jeddah 21589, Saudi Arabia
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa.,Infection Control Unit, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| |
Collapse
|
142
|
Bell RT, Wolf YI, Koonin EV. Modified base-binding EVE and DCD domains: striking diversity of genomic contexts in prokaryotes and predicted involvement in a variety of cellular processes. BMC Biol 2020; 18:159. [PMID: 33148243 PMCID: PMC7641849 DOI: 10.1186/s12915-020-00885-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND DNA and RNA of all cellular life forms and many viruses contain an expansive repertoire of modified bases. The modified bases play diverse biological roles that include both regulation of transcription and translation, and protection against restriction endonucleases and antibiotics. Modified bases are often recognized by dedicated protein domains. However, the elaborate networks of interactions and processes mediated by modified bases are far from being completely understood. RESULTS We present a comprehensive census and classification of EVE domains that belong to the PUA/ASCH domain superfamily and bind various modified bases in DNA and RNA. We employ the "guilt by association" approach to make functional inferences from comparative analysis of bacterial and archaeal genomes, based on the distribution and associations of EVE domains in (predicted) operons and functional networks of genes. Prokaryotes encode two classes of EVE domain proteins, slow-evolving and fast-evolving ones. Slow-evolving EVE domains in α-proteobacteria are embedded in conserved operons, potentially involved in coupling between translation and respiration, cytochrome c biogenesis in particular, via binding 5-methylcytosine in tRNAs. In β- and γ-proteobacteria, the conserved associations implicate the EVE domains in the coordination of cell division, biofilm formation, and global transcriptional regulation by non-coding 6S small RNAs, which are potentially modified and bound by the EVE domains. In eukaryotes, the EVE domain-containing THYN1-like proteins have been reported to inhibit PCD and regulate the cell cycle, potentially, via binding 5-methylcytosine and its derivatives in DNA and/or RNA. We hypothesize that the link between PCD and cytochrome c was inherited from the α-proteobacterial and proto-mitochondrial endosymbiont and, unexpectedly, could involve modified base recognition by EVE domains. Fast-evolving EVE domains are typically embedded in defense contexts, including toxin-antitoxin modules and type IV restriction systems, suggesting roles in the recognition of modified bases in invading DNA molecules and targeting them for restriction. We additionally identified EVE-like prokaryotic Development and Cell Death (DCD) domains that are also implicated in defense functions including PCD. This function was inherited by eukaryotes, but in animals, the DCD proteins apparently were displaced by the extended Tudor family proteins, whose partnership with Piwi-related Argonautes became the centerpiece of the Piwi-interacting RNA (piRNA) system. CONCLUSIONS Recognition of modified bases in DNA and RNA by EVE-like domains appears to be an important, but until now, under-appreciated, common denominator in a variety of processes including PCD, cell cycle control, antivirus immunity, stress response, and germline development in animals.
Collapse
Affiliation(s)
- Ryan T Bell
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
143
|
Lopes GO, Martins Ferreira MK, Davis L, Bittencourt LO, Bragança Aragão WA, Dionizio A, Rabelo Buzalaf MA, Crespo-Lopez ME, Maia CSF, Lima RR. Effects of Fluoride Long-Term Exposure over the Cerebellum: Global Proteomic Profile, Oxidative Biochemistry, Cell Density, and Motor Behavior Evaluation. Int J Mol Sci 2020; 21:E7297. [PMID: 33023249 PMCID: PMC7582550 DOI: 10.3390/ijms21197297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022] Open
Abstract
Although the literature does not provide evidence of health risks from exposure to fluoride (F) in therapeutic doses, questions remain about the effects of long-term and high-dose use on the function of the central nervous system. The objective of this study was to investigate the effect of long-term exposure to F at levels similar to those found in areas of artificial water fluoridation and in areas of endemic fluorosis on biochemical, proteomic, cell density, and functional parameters associated with the cerebellum. For this, mice were exposed to water containing 10 mg F/L or 50 mg F/L (as sodium fluoride) for 60 days. After the exposure period, the animals were submitted to motor tests and the cerebellum was evaluated for fluoride levels, antioxidant capacity against peroxyl radicals (ACAP), lipid peroxidation (MDA), and nitrite levels (NO). The proteomic profile and morphological integrity were also evaluated. The results showed that the 10 mg F/L dose was able to decrease the ACAP levels, and the animals exposed to 50 mg F/L presented lower levels of ACAP and higher levels of MDA and NO. The cerebellar proteomic profile in both groups was modulated, highlighting proteins related to the antioxidant system, energy production, and cell death, however no neuronal density change in cerebellum was observed. Functionally, the horizontal exploratory activity of both exposed groups was impaired, while only the 50 mg F/L group showed significant changes in postural stability. No motor coordination and balance impairments were observed in both groups. Our results suggest that fluoride may impair the cerebellar oxidative biochemistry, which is associated with the proteomic modulation and, although no morphological impairment was observed, only the highest concentration of fluoride was able to impair some cerebellar motor functions.
Collapse
Affiliation(s)
- Géssica Oliveira Lopes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil; (G.O.L.); (M.K.M.F.); (L.D.); (L.O.B.); (W.A.B.A.)
| | - Maria Karolina Martins Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil; (G.O.L.); (M.K.M.F.); (L.D.); (L.O.B.); (W.A.B.A.)
| | - Lodinikki Davis
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil; (G.O.L.); (M.K.M.F.); (L.D.); (L.O.B.); (W.A.B.A.)
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil; (G.O.L.); (M.K.M.F.); (L.D.); (L.O.B.); (W.A.B.A.)
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil; (G.O.L.); (M.K.M.F.); (L.D.); (L.O.B.); (W.A.B.A.)
| | - Aline Dionizio
- Bauru School of Dentistry, Department of Biological Sciences, University of São Paulo, Bauru, SP 17012-90, Brazil; (A.D.); (M.A.R.B.)
| | - Marília Afonso Rabelo Buzalaf
- Bauru School of Dentistry, Department of Biological Sciences, University of São Paulo, Bauru, SP 17012-90, Brazil; (A.D.); (M.A.R.B.)
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil;
| | - Cristiane Socorro Ferraz Maia
- Laboratory of Inflammation and Behavior Pharmacology, Pharmacy Faculty, Institute of Health Science, Federal University of Pará, Belém, PA 66075-110, Brazil;
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil; (G.O.L.); (M.K.M.F.); (L.D.); (L.O.B.); (W.A.B.A.)
| |
Collapse
|
144
|
Cytochrome c modification and oligomerization induced by cardiolipin hydroperoxides in a membrane mimetic model. Arch Biochem Biophys 2020; 693:108568. [DOI: 10.1016/j.abb.2020.108568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/10/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022]
|
145
|
Hedayati S, Nachvak SM, Samadi M, Motamedi-Motlagh A, Moradi S. Malnutrition and nutritional status in critically ill patients with enteral nutrition. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2020. [DOI: 10.3233/mnm-200421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND & OBJECTIVE: The prevention of malnutrition is an important factor in the survival of critically ill patients with enteral nutrition. The present study aims to assess the nutritional status and its association with some blood-related markers in critically ill patients with enteral nutrition during hospitalization in the intensive care units (ICUs). METHODS: Totally, 110 patients participated in this study from the time of admission to discharge at five ICUs. The patients’ nutritional status was assessed by subjective global assessment (SGA), Acute Physiology and Chronic Health Evaluation and Albumin, Total Iron Binding Capacity (TIBC), Hemoglobin (Hb), Hematocrit (HCT), Ferritin, and Feas biochemical indices and anthropometric parameters. RESULTS: Malnutrition prevalence increased significantly on the day of discharge (83.6%) compared to the day of admission (41.8%), according to SGA (P < 0.001). Hb, HCT, serum Fe decreased and ferritin, also TIBC were increased during hospitalization in ICU. The malnutrition risk predictors based on the logistic regression were low levels of Hb (OR = 0.6), HCT (OR = 0.9), Fe (OR = 0.9), Albumin (OR = 0.3) and High Ferritin level (OR = 1.006) on the admission day. Anemia of inflammation (AI) was observed during ICU stay. CONCLUSION: This study demonstrated that malnutrition is an increasing phenomenon in the ICU patients and the delay in patient’s enteral feeding had a direct influence in the prevalence of malnutrition on discharge day.
Collapse
Affiliation(s)
- Safoora Hedayati
- Department of Nutrition, School of Nutrition Science and Food Technology, Committee of the Deputy of Research and Technology of Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyyed Mostafa Nachvak
- Department of Nutritional Sciences, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehnoosh Samadi
- Department of Nutritional Sciences, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Shima Moradi
- Department of Nutritional Sciences, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
146
|
Li Y, Duan JZ, He Q, Wang CQ. miR‑155 modulates high glucose‑induced cardiac fibrosis via the Nrf2/HO‑1 signaling pathway. Mol Med Rep 2020; 22:4003-4016. [PMID: 32901848 DOI: 10.3892/mmr.2020.11495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 01/29/2020] [Indexed: 11/05/2022] Open
Abstract
Cardiac fibrosis is a major pathological manifestation of diabetic cardiomyopathy, which is a leading cause of mortality in patients with diabetes. MicroRNA (miR)‑155 is upregulated in cardiomyocytes in cardiac fibrosis, and the aim of the present study was to investigate if the inhibition of miR‑155 was able to ameliorate cardiac fibrosis by targeting the nuclear factor erythroid‑2‑related factor 2 (Nrf2)/heme oxygenase‑1 (HO‑1) signaling pathway. H9C2 rat cardiomyocytes were cultured with high glucose (HG; 30 mM) to establish an in vitro cardiac fibrosis model that mimicked diabetic conditions; a miR‑155 inhibitor and a miR‑155 mimic were transfected into H9C2 cells. Following HG treatment, H9C2 cells exhibited increased expression levels of miR‑155 and the fibrosis markers collagen I and α‑smooth muscle actin (α‑SMA). In addition, the expression levels of endonuclear Nrf2 and HO‑1 were decreased, but the expression level of cytoplasmic Nrf2 was increased. Moreover, oxidative stress, mitochondrial damage and cell apoptosis were significantly increased, as indicated by elevated reactive oxygen species, malonaldehyde and monomeric JC‑1 expression levels. In addition, superoxide dismutase expression was attenuated and there was an increased expression level of released cytochrome‑c following HG treatment. Furthermore, it was demonstrated that expression levels of Bcl‑2 and uncleaved Poly (ADP‑ribose) polymerase were downregulated, whereas Bax, cleaved caspase‑3 and caspase‑9 were upregulated after HG treatment. However, the miR‑155 inhibitor significantly restored Nrf2 and HO‑1 expression levels, and reduced oxidative stress levels, the extent of mitochondrial damage and the number of cells undergoing apoptosis. Additionally, the miR‑155 inhibitor significantly reversed the expression levels of collagen I and α‑SMA, thus ameliorating fibrosis. Furthermore, the knockdown of Nrf2 reversed the above effects induced by the miR‑155 inhibitor. In conclusion, the miR‑155 inhibitor may ameliorate diabetic cardiac fibrosis by reducing the accumulation of oxidative stress‑related molecules, and preventing mitochondrial damage and cardiomyocyte apoptosis by enhancing the Nrf2/HO‑1 signaling pathway. This mechanism may facilitate the development of novel targets to prevent cardiac fibrosis in patients with diabetes.
Collapse
Affiliation(s)
- Yu Li
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jing-Zhu Duan
- Department of Respiratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Qian He
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Chong-Quan Wang
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
147
|
Toth A, Aufschnaiter A, Fedotovskaya O, Dawitz H, Ädelroth P, Büttner S, Ott M. Membrane-tethering of cytochrome c accelerates regulated cell death in yeast. Cell Death Dis 2020; 11:722. [PMID: 32892209 PMCID: PMC7474732 DOI: 10.1038/s41419-020-02920-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
Abstract
Intrinsic apoptosis as a modality of regulated cell death is intimately linked to permeabilization of the outer mitochondrial membrane and subsequent release of the protein cytochrome c into the cytosol, where it can participate in caspase activation via apoptosome formation. Interestingly, cytochrome c release is an ancient feature of regulated cell death even in unicellular eukaryotes that do not contain an apoptosome. Therefore, it was speculated that cytochrome c release might have an additional, more fundamental role for cell death signalling, because its absence from mitochondria disrupts oxidative phosphorylation. Here, we permanently anchored cytochrome c with a transmembrane segment to the inner mitochondrial membrane of the yeast Saccharomyces cerevisiae, thereby inhibiting its release from mitochondria during regulated cell death. This cytochrome c retains respiratory growth and correct assembly of mitochondrial respiratory chain supercomplexes. However, membrane anchoring leads to a sensitisation to acetic acid-induced cell death and increased oxidative stress, a compensatory elevation of cellular oxygen-consumption in aged cells and a decreased chronological lifespan. We therefore conclude that loss of cytochrome c from mitochondria during regulated cell death and the subsequent disruption of oxidative phosphorylation is not required for efficient execution of cell death in yeast, and that mobility of cytochrome c within the mitochondrial intermembrane space confers a fitness advantage that overcomes a potential role in regulated cell death signalling in the absence of an apoptosome.
Collapse
Affiliation(s)
- Alexandra Toth
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Svante Arrheniusväg 16, 106 91, Stockholm, Sweden
| | - Andreas Aufschnaiter
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Svante Arrheniusväg 16, 106 91, Stockholm, Sweden
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
| | - Olga Fedotovskaya
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Svante Arrheniusväg 16, 106 91, Stockholm, Sweden
| | - Hannah Dawitz
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Svante Arrheniusväg 16, 106 91, Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Svante Arrheniusväg 16, 106 91, Stockholm, Sweden
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria.
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden.
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Svante Arrheniusväg 16, 106 91, Stockholm, Sweden.
| |
Collapse
|
148
|
Adsorbing surface strongly influences the pseudoperoxidase and nitrite reductase activity of electrode-bound yeast cytochrome c. The effect of hydrophobic immobilization. Bioelectrochemistry 2020; 136:107628. [PMID: 32795942 DOI: 10.1016/j.bioelechem.2020.107628] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 02/02/2023]
Abstract
The Met80Ala and Met80Ala/Tyr67Ala variants of S. cerevisiae iso-1 cytochrome c (ycc) and their adducts with cardiolipin immobilized onto a gold electrode coated with a hydrophobic self-assembled monolayer (SAM) of decane-1-thiol were studied through cyclic voltammetry and surface-enhanced resonance Raman spectroscopy (SERRS). The electroactive species - containing a six-coordinate His/His axially ligated heme and a five-coordinate His/- heme stable in the oxidized and reduced state, respectively - and the pseudoperoxidase activity match those found previously for the wt species and are only slightly affected by CL binding. Most importantly, the reduced His/- ligated form of these variants is able to catalytically reduce the nitrite ion, while electrode-immobilized wt ycc and other His/Met heme ligated variants under a variety of conditions are not. Besides the pseudoperoxidase and nitrite reductase functions, which are the most physiologically relevant abilities of these constructs, also axial heme ligation and the equilibria between conformers are strongly affected by the nature - hydrophobic vs. electrostatic - of the non-covalent interactions determining protein immobilization. Also affected are the catalytic activity changes induced by a given mutation as well as those due to partial unfolding due to CL binding. It follows that under the same solution conditions the structural and functional properties of immobilized ycc are surface-specific and therefore cannot be transferred from an immobilized system to another involving different interfacial protein-SAM interactions.
Collapse
|
149
|
Kalpage HA, Wan J, Morse PT, Lee I, Hüttemann M. Brain-Specific Serine-47 Modification of Cytochrome c Regulates Cytochrome c Oxidase Activity Attenuating ROS Production and Cell Death: Implications for Ischemia/Reperfusion Injury and Akt Signaling. Cells 2020; 9:E1843. [PMID: 32781572 PMCID: PMC7465522 DOI: 10.3390/cells9081843] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
We previously reported that serine-47 (S47) phosphorylation of cytochrome c (Cytc) in the brain results in lower cytochrome c oxidase (COX) activity and caspase-3 activity in vitro. We here analyze the effect of S47 modification in fibroblast cell lines stably expressing S47E phosphomimetic Cytc, unphosphorylated WT, or S47A Cytc. Our results show that S47E Cytc results in partial inhibition of mitochondrial respiration corresponding with lower mitochondrial membrane potentials (ΔΨm) and reduced reactive oxygen species (ROS) production. When exposed to an oxygen-glucose deprivation/reoxygenation (OGD/R) model simulating ischemia/reperfusion injury, the Cytc S47E phosphomimetic cell line showed minimal ROS generation compared to the unphosphorylated WT Cytc cell line that generated high levels of ROS upon reoxygenation. Consequently, the S47E Cytc cell line also resulted in significantly lower cell death upon exposure to OGD/R, confirming the cytoprotective role of S47 phosphorylation of Cytc. S47E Cytc also resulted in lower cell death upon H2O2 treatment. Finally, we propose that pro-survival kinase Akt (protein kinase B) is a likely mediator of the S47 phosphorylation of Cytc in the brain. Akt inhibitor wortmannin abolished S47 phosphorylation of Cytc, while the Akt activator SC79 maintained S47 phosphorylation of Cytc. Overall, our results suggest that loss of S47 phosphorylation of Cytc during brain ischemia drives reperfusion injury through maximal electron transport chain flux, ΔΨm hyperpolarization, and ROS-triggered cell death.
Collapse
Affiliation(s)
- Hasini A. Kalpage
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (H.A.K.); (J.W.); (P.T.M.)
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (H.A.K.); (J.W.); (P.T.M.)
| | - Paul T. Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (H.A.K.); (J.W.); (P.T.M.)
| | - Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si, Chungcheongnam-do 31116, Korea;
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (H.A.K.); (J.W.); (P.T.M.)
- Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
150
|
Zhang L, Ma Q, Zhou Y. Strawberry Leaf Extract Treatment Alleviates Cognitive Impairment by Activating Nrf2/HO-1 Signaling in Rats With Streptozotocin-Induced Diabetes. Front Aging Neurosci 2020; 12:201. [PMID: 32792939 PMCID: PMC7390916 DOI: 10.3389/fnagi.2020.00201] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/10/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes-associated cognitive impairment (DACI) is a common complication of diabetes mellitus (DM) that affects the central nervous system. Cognitive impairment, such as learning and memory impairment, and even dementia, is the main clinical manifestation of DACI. Unfortunately, there is no effective means by which to delay the cognitive symptoms of DM. Evidence has shown that strawberry leaf extract could alleviate cognitive decline, suppress oxidative stress, and reduce inflammatory responses in rats. In the present study, we evaluated the effect of strawberry leaf extract on cognitive function in a rat model of streptozotocin (STZ)-induced diabetes. After the continuous administration of strawberry leaf extract for 4 weeks, the Morris Water Maze (MWM) test results showed that the cognitive impairment of the rats was alleviated. Moreover, strawberry leaf extract significantly reduced the level of reactive oxygen species (ROS), decreased the level of malondialdehyde (MDA), improved the activity of superoxide dismutase (SOD) and catalase (CAT), decreased the mRNA expression of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) and decreased the protein expression of caspase-3 and caspase-9 in the hippocampus of DM rats. Also, transcription factor nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2)/hemeoxygenase-1(HO-1) signaling was activated by the administration of strawberry leaf extract. Our findings indicate that strawberry leaf extract may be a potential drug candidate for the treatment of DACI and may be used as a basis for further research on the development of drugs for cognitive impairment in diabetes.
Collapse
Affiliation(s)
- Li Zhang
- Department of Nursing, The People's Hospital of Suzhou New District, Suzhou, China
| | - Qinghua Ma
- Department of Prevention and Health Protection, The 3rd People's Hospital of Xiangcheng District, Suzhou, China
| | - Yanling Zhou
- Department of Operation, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|