101
|
Xie Y, Ding M, Zhang B, Yang J, Pei T, Ma P, Dong J. Genome-wide characterization and expression profiling of MAPK cascade genes in Salvia miltiorrhiza reveals the function of SmMAPK3 and SmMAPK1 in secondary metabolism. BMC Genomics 2020; 21:630. [PMID: 32928101 PMCID: PMC7488990 DOI: 10.1186/s12864-020-07023-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/25/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The contribution of mitogen-activated protein kinase (MAPK) cascades to plant growth and development has been widely studied, but this knowledge has not yet been extended to the medicinal plant Salvia miltiorrhiza, which produces a number of pharmacologically active secondary metabolites. RESULTS In this study, we performed a genome-wide survey and identified six MAPKKK kinases (MAPKKKKs), 83 MAPKK kinases (MAPKKKs), nine MAPK kinases (MAPKKs) and 18 MAPKs in the S. miltiorrhiza genome. Within each class of genes, a small number of subfamilies were recognized. A transcriptional analysis revealed differences in the genes' behaviour with respect to both their site of transcription and their inducibility by elicitors and phytohormones. Two genes were identified as strong candidates for playing roles in phytohormone signalling. A gene-to-metabolite network was constructed based on correlation analysis, highlighting the likely involvement of two of the cascades in the synthesis of two key groups of pharmacologically active secondary metabolites: phenolic acids and tanshinones. CONCLUSION The data provide insight into the functional diversification and conservation of MAPK cascades in S. miltiorrhiza.
Collapse
Affiliation(s)
- Yongfeng Xie
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Meiling Ding
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Bin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Jie Yang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Tianlin Pei
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Juane Dong
- College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
102
|
Zhou Y, Feng J, Li Q, Huang D, Chen X, Du Z, Lv Z, Xiao Y, Han Y, Chen J, Chen W. SmMYC2b Enhances Tanshinone Accumulation in Salvia miltiorrhiza by Activating Pathway Genes and Promoting Lateral Root Development. FRONTIERS IN PLANT SCIENCE 2020; 11:559438. [PMID: 33042182 PMCID: PMC7517298 DOI: 10.3389/fpls.2020.559438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Salvia miltiorrhiza Bunge (Lamiaceae) is an economically important medicinal plant as well as an emerging model plant. Our previous studies indicate that SmMYC2b is a positive transcription factor that can affect the biosynthesis of phenolic acids and tanshinones in S. miltiorrhiza. Moreover, MYC2s are well known to induce the development of lateral roots. As tanshinones are mainly distributed in the periderm, the promotion of lateral root development probably leads to increased accumulation of tanshinones. In this paper, we firstly discovered that SmMYC2b played a dual regulatory role in effectively enhancing the tanshinone accumulation by activating tanshinone biosynthetic pathway and promoting lateral root development. The expression levels of the previously studied pathway genes SmCPS1, SmKSL1, SmCYP76AH1, SmCYP76AH3, and SmCYP76AK1 dramatically increased. In addition, SmMYC2b was proved to exhibit a similar function as other homologs in promoting lateral root development, which increased the tanshinone produced tissue and further enhanced the biosynthesis of tanshinones. RNA-seq assays revealed that SmMYC2b-regulated genes comprised 30.6% (1,901 of 6,210) of JA-responsive genes, confirming that SmMYC2b played a crucial role in transcriptional regulation of JA-regulated genes. Overall, we concluded that SmMYC2b could enhance tanshinone accumulation by activating the tanshinone biosynthetic pathway and promoting lateral root development. Our study provides an effective approach to enhance the production of desired tanshinones and enriches our knowledge of the related regulatory network.
Collapse
Affiliation(s)
- Yangyun Zhou
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jingxian Feng
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Li
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Doudou Huang
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xiao Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zenan Du
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zongyou Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Xiao
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yonglong Han
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Junfeng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
103
|
Hamilton JP, Godden GT, Lanier E, Bhat WW, Kinser TJ, Vaillancourt B, Wang H, Wood JC, Jiang J, Soltis PS, Soltis DE, Hamberger B, Buell CR. Generation of a chromosome-scale genome assembly of the insect-repellent terpenoid-producing Lamiaceae species, Callicarpa americana. Gigascience 2020; 9:giaa093. [PMID: 32893861 PMCID: PMC7476102 DOI: 10.1093/gigascience/giaa093] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/03/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Plants exhibit wide chemical diversity due to the production of specialized metabolites that function as pollinator attractants, defensive compounds, and signaling molecules. Lamiaceae (mints) are known for their chemodiversity and have been cultivated for use as culinary herbs, as well as sources of insect repellents, health-promoting compounds, and fragrance. FINDINGS We report the chromosome-scale genome assembly of Callicarpa americana L. (American beautyberry), a species within the early-diverging Callicarpoideae clade of Lamiaceae, known for its metallic purple fruits and use as an insect repellent due to its production of terpenoids. Using long-read sequencing and Hi-C scaffolding, we generated a 506.1-Mb assembly spanning 17 pseudomolecules with N50 contig and N50 scaffold sizes of 7.5 and 29.0 Mb, respectively. In all, 32,164 genes were annotated, including 53 candidate terpene synthases and 47 putative clusters of specialized metabolite biosynthetic pathways. Our analyses revealed 3 putative whole-genome duplication events, which, together with local tandem duplications, contributed to gene family expansion of terpene synthases. Kolavenyl diphosphate is a gateway to many of the bioactive terpenoids in C. americana; experimental validation confirmed that CamTPS2 encodes kolavenyl diphosphate synthase. Syntenic analyses with Tectona grandis L. f. (teak), a member of the Tectonoideae clade of Lamiaceae known for exceptionally strong wood resistant to insects, revealed 963 collinear blocks and 21,297 C. americana syntelogs. CONCLUSIONS Access to the C. americana genome provides a road map for rapid discovery of genes encoding plant-derived agrichemicals and a key resource for understanding the evolution of chemical diversity in Lamiaceae.
Collapse
Affiliation(s)
- John P Hamilton
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
| | - Grant T Godden
- Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL 32611, USA
| | - Emily Lanier
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48824, USA
| | - Wajid Waheed Bhat
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48824, USA
| | - Taliesin J Kinser
- Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL 32611, USA
- Department of Biology, University of Florida, 876 Newell Dr, Gainesville, Florida, 32611 USA
| | - Brieanne Vaillancourt
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
| | - Haiyan Wang
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
| | - Joshua C Wood
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
- Department of Horticulture, Michigan State University, 1066 Bogue St, East Lansing, MI 48824, USA
- MSU AgBioResearch, Michigan State University, 446 W. Circle Drive, East Lansing, MI 48824, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL 32611, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL 32611, USA
- Department of Biology, University of Florida, 876 Newell Dr, Gainesville, Florida, 32611 USA
| | - Bjoern Hamberger
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48824, USA
- MSU AgBioResearch, Michigan State University, 446 W. Circle Drive, East Lansing, MI 48824, USA
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
- MSU AgBioResearch, Michigan State University, 446 W. Circle Drive, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
| |
Collapse
|
104
|
Liu YC, Ma W, Niu JF, Li B, Zhou W, Liu S, Yan YP, Ma J, Wang ZZ. Systematic analysis of SmWD40s, and responding of SmWD40-170 to drought stress by regulation of ABA- and H 2O 2-induced stomal movement in Salvia miltiorrhiza bunge. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 153:131-140. [PMID: 32502715 DOI: 10.1016/j.plaphy.2020.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/28/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
WD40 proteins play crucial roles in response to abiotic stress. By screening the genome sequences of Salvia miltiorrhiza Bunge, 225 SmWD40 genes were identified and divided into 9 subfamilies (I-IX). Physiological, biochemical, gene structure, conserved protein motif and GO annotation analyses were performed on SmWD40 family members. The SmWD40-170 was found in 110 SmWD40 genes that contain drought response elements, SmWD40-170 was one of these genes whose response in terms of expression under drought was significant. The expression of SmWD40-170 was also up-regulated by ABA and H2O2. Through observed the stomatal phenotype of SmWD40-170 transgenic lines, the stomatal closure was abolished under dehydration, ABA and H2O2 treatment in SmWD40-170 knockdown lines. Abscisic acid (ABA), as the key phytohormone, elevates reactive oxygen species (ROS) levels under drought stress. The ABA-ROS interaction mediated the generation of H2O2 and the activation of anion channel in guard cells. The osmolality alteration of guard cells further accelerated the stomatal closure. As a second messenger, nitric oxide (NO) regulated ABA signaling, the NO stimulated protein kinase activity inhibited the K+ influx which result in stomatal closure. These NO-relevant events were essential for ABA-induced stomatal closure. The reduction of NO production was also observed in the guard cells of SmWD40-170 knockdown lines. The abolished of stomatal closure attributed to the SmWD40-170 deficiency induced the reduction of NO content. In general, the SmWD40-170 is a critical drought response gene in SmWD40 gene family and regulates ABA- and H2O2-induced stomatal movement by affecting the synthesis of NO.
Collapse
Affiliation(s)
- Yuan-Chu Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Wen Ma
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Jun-Feng Niu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Bin Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Wen Zhou
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Shuai Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Ya-Ping Yan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Ji Ma
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Zhe-Zhi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| |
Collapse
|
105
|
Xu Z, Pu X, Gao R, Demurtas OC, Fleck SJ, Richter M, He C, Ji A, Sun W, Kong J, Hu K, Ren F, Song J, Wang Z, Gao T, Xiong C, Yu H, Xin T, Albert VA, Giuliano G, Chen S, Song J. Tandem gene duplications drive divergent evolution of caffeine and crocin biosynthetic pathways in plants. BMC Biol 2020; 18:63. [PMID: 32552824 PMCID: PMC7302004 DOI: 10.1186/s12915-020-00795-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Background Plants have evolved a panoply of specialized metabolites that increase their environmental fitness. Two examples are caffeine, a purine psychotropic alkaloid, and crocins, a group of glycosylated apocarotenoid pigments. Both classes of compounds are found in a handful of distantly related plant genera (Coffea, Camellia, Paullinia, and Ilex for caffeine; Crocus, Buddleja, and Gardenia for crocins) wherein they presumably evolved through convergent evolution. The closely related Coffea and Gardenia genera belong to the Rubiaceae family and synthesize, respectively, caffeine and crocins in their fruits. Results Here, we report a chromosomal-level genome assembly of Gardenia jasminoides, a crocin-producing species, obtained using Oxford Nanopore sequencing and Hi-C technology. Through genomic and functional assays, we completely deciphered for the first time in any plant the dedicated pathway of crocin biosynthesis. Through comparative analyses with Coffea canephora and other eudicot genomes, we show that Coffea caffeine synthases and the first dedicated gene in the Gardenia crocin pathway, GjCCD4a, evolved through recent tandem gene duplications in the two different genera, respectively. In contrast, genes encoding later steps of the Gardenia crocin pathway, ALDH and UGT, evolved through more ancient gene duplications and were presumably recruited into the crocin biosynthetic pathway only after the evolution of the GjCCD4a gene. Conclusions This study shows duplication-based divergent evolution within the coffee family (Rubiaceae) of two characteristic secondary metabolic pathways, caffeine and crocin biosynthesis, from a common ancestor that possessed neither complete pathway. These findings provide significant insights on the role of tandem duplications in the evolution of plant specialized metabolism.
Collapse
Affiliation(s)
- Zhichao Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.,Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Xiangdong Pu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Ranran Gao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Olivia Costantina Demurtas
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Res. Ctr, 00123, Rome, Italy
| | - Steven J Fleck
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Michaela Richter
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Chunnian He
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.,Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Aijia Ji
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jianqiang Kong
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Kaizhi Hu
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing, 408435, China
| | - Fengming Ren
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.,Chongqing Institute of Medicinal Plant Cultivation, Chongqing, 408435, China
| | - Jiejie Song
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhe Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Ting Gao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Xiong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haoying Yu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Tianyi Xin
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA.,School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Res. Ctr, 00123, Rome, Italy.
| | - Shilin Chen
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China. .,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China. .,Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China. .,Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Jinghong, 666100, China.
| |
Collapse
|
106
|
Wen W, Alseekh S, Fernie AR. Conservation and diversification of flavonoid metabolism in the plant kingdom. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:100-108. [PMID: 32422532 DOI: 10.1016/j.pbi.2020.04.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 05/05/2023]
Abstract
Flavonoids are by far the largest class of polyphenols with huge structural and functional diversity. However, the mystery regarding the exact evolutionary pressures which lead to the amazing diversity in plant flavonoids has yet to be completely uncovered. Here we review recent advances in understanding the conservation and diversification of flavonoid pathway from algae and early land plants to vascular plants including the model plant Arabidopsis and economically important species such as cereals, legumes, and medicinal plants. Studies on the origin and evolution of R2R3-MYB regulatory system demonstrated its highly conserved function of regulating flavonoid production in land plants and this innovation appears to have been crucial in boosting the overall levels of these compounds in land plants. Convergent evolution has occurred as different flavonoids independently which emerged in distant taxa resulting in similar defense and tolerance characteristics against environmental stresses. Future studies on an increasing number of plant species taking advantage of newly developed genomic and metabolite profiling technologies are envisaged to provide comprehensive insight into flavonoid biosynthesis as well as pathway diversification and the underlying evolutionary mechanisms.
Collapse
Affiliation(s)
- Weiwei Wen
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| |
Collapse
|
107
|
Lichman BR, Godden GT, Buell CR. Gene and genome duplications in the evolution of chemodiversity: perspectives from studies of Lamiaceae. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:74-83. [PMID: 32344371 DOI: 10.1016/j.pbi.2020.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/19/2020] [Accepted: 03/04/2020] [Indexed: 05/28/2023]
Abstract
Plants are reservoirs of extreme chemical diversity, yet biosynthetic pathways remain underexplored in the majority of taxa. Access to improved, inexpensive genomic and computational technologies has recently enhanced our understanding of plant specialized metabolism at the biochemical and evolutionary levels including the elucidation of pathways leading to key metabolites. Furthermore, these approaches have provided insights into the mechanisms of chemical evolution, including neofunctionalization and subfunctionalization, structural variation, and modulation of gene expression. The broader utilization of genomic tools across the plant tree of life, and an expansion of genomic resources from multiple accessions within species or populations, will improve our overall understanding of chemodiversity. These data and knowledge will also lead to greater insight into the selective pressures contributing to and maintaining this diversity, which in turn will enable the development of more accurate predictive models of specialized metabolism in plants.
Collapse
Affiliation(s)
- Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Grant T Godden
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Carol Robin Buell
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA; MSU AgBioResearch, Michigan State University, 446 West Circle Drive, East Lansing, MI 48824, USA.
| |
Collapse
|
108
|
Lau KH, Bhat WW, Hamilton JP, Wood JC, Vaillancourt B, Wiegert-Rininger K, Newton L, Hamberger B, Holmes D, Hamberger B, Buell CR. Genome assembly of Chiococca alba uncovers key enzymes involved in the biosynthesis of unusual terpenoids. DNA Res 2020; 27:dsaa013. [PMID: 32642754 PMCID: PMC7433921 DOI: 10.1093/dnares/dsaa013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/29/2020] [Indexed: 11/13/2022] Open
Abstract
Chiococca alba (L.) Hitchc. (snowberry), a member of the Rubiaceae, has been used as a folk remedy for a range of health issues including inflammation and rheumatism and produces a wealth of specialized metabolites including terpenes, alkaloids, and flavonoids. We generated a 558 Mb draft genome assembly for snowberry which encodes 28,707 high-confidence genes. Comparative analyses with other angiosperm genomes revealed enrichment in snowberry of lineage-specific genes involved in specialized metabolism. Synteny between snowberry and Coffea canephora Pierre ex A. Froehner (coffee) was evident, including the chromosomal region encoding caffeine biosynthesis in coffee, albeit syntelogs of N-methyltransferase were absent in snowberry. A total of 27 putative terpene synthase genes were identified, including 10 that encode diterpene synthases. Functional validation of a subset of putative terpene synthases revealed that combinations of diterpene synthases yielded access to products of both general and specialized metabolism. Specifically, we identified plausible intermediates in the biosynthesis of merilactone and ribenone, structurally unique antimicrobial diterpene natural products. Access to the C. alba genome will enable additional characterization of biosynthetic pathways responsible for health-promoting compounds in this medicinal species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bjoern Hamberger
- Department of Biochemistry and Molecular Biology
- MSU AgBioResearch
| | - C Robin Buell
- Department of Plant Biology
- MSU AgBioResearch
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
109
|
Wei T, Deng K, Gao Y, Chen L, Song W, Zhang Y, Wang C, Chen C. SmKSL overexpression combined with elicitor treatment enhances tanshinone production from Salvia miltiorrhiza hairy roots. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
110
|
Yu H, Jiang M, Xing B, Liang L, Zhang B, Liang Z. Systematic Analysis of Kelch Repeat F-box (KFB) Protein Gene Family and Identification of Phenolic Acid Regulation Members in Salvia miltiorrhiza Bunge. Genes (Basel) 2020; 11:E557. [PMID: 32429385 PMCID: PMC7288277 DOI: 10.3390/genes11050557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/25/2022] Open
Abstract
S. miltiorrhiza is a well-known Chinese herb for the clinical treatment of cardiovascular and cerebrovascular diseases. Tanshinones and phenolic acids are the major secondary metabolites and significant pharmacological constituents of this plant. Kelch repeat F-box (KFB) proteins play important roles in plant secondary metabolism, but their regulation mechanism in S. miltiorrhiza has not been characterized. In this study, we systematically characterized the S. miltiorrhiza KFB gene family. In total, 31 SmKFB genes were isolated from S. miltiorrhiza. Phylogenetic analysis of those SmKFBs indicated that 31 SmKFBs can be divided into four groups. Thereinto, five SmKFBs (SmKFB1, 2, 3, 5, and 28) shared high homology with other plant KFBs which have been described to be regulators of secondary metabolism. The expression profile of SmKFBs under methyl jasmonate (MeJA) treatment deciphered that six SmKFBs (SmKFB1, 2, 5, 6, 11, and 15) were significantly downregulated, and two SmKFBs (SmKFB22 and 31) were significantly upregulated. Tissue-specific expression analysis found that four SmKFBs (SmKFB4, 11, 16, and 17) were expressed preferentially in aerial tissues, while two SmKFBs (SmKFB5, 25) were predominantly expressed in roots. Through a systematic analysis, we speculated that SmKFB1, 2, and 5 are potentially involved in phenolic acids biosynthesis.
Collapse
Affiliation(s)
- Haizheng Yu
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling 712100, China; (H.Y.); (B.X.); (L.L.); (B.Z.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Mengdan Jiang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Bingcong Xing
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling 712100, China; (H.Y.); (B.X.); (L.L.); (B.Z.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lijun Liang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling 712100, China; (H.Y.); (B.X.); (L.L.); (B.Z.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bingxue Zhang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling 712100, China; (H.Y.); (B.X.); (L.L.); (B.Z.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zongsuo Liang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling 712100, China; (H.Y.); (B.X.); (L.L.); (B.Z.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| |
Collapse
|
111
|
Lichman BR, Godden GT, Hamilton JP, Palmer L, Kamileen MO, Zhao D, Vaillancourt B, Wood JC, Sun M, Kinser TJ, Henry LK, Rodriguez-Lopez C, Dudareva N, Soltis DE, Soltis PS, Buell CR, O’Connor SE. The evolutionary origins of the cat attractant nepetalactone in catnip. SCIENCE ADVANCES 2020; 6:eaba0721. [PMID: 32426505 PMCID: PMC7220310 DOI: 10.1126/sciadv.aba0721] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/02/2020] [Indexed: 05/07/2023]
Abstract
Catnip or catmint (Nepeta spp.) is a flowering plant in the mint family (Lamiaceae) famed for its ability to attract cats. This phenomenon is caused by the compound nepetalactone, a volatile iridoid that also repels insects. Iridoids are present in many Lamiaceae species but were lost in the ancestor of the Nepetoideae, the subfamily containing Nepeta. Using comparative genomics, ancestral sequence reconstructions, and phylogenetic analyses, we probed the re-emergence of iridoid biosynthesis in Nepeta. The results of these investigations revealed mechanisms for the loss and subsequent re-evolution of iridoid biosynthesis in the Nepeta lineage. We present evidence for a chronology of events that led to the formation of nepetalactone biosynthesis and its metabolic gene cluster. This study provides insights into the interplay between enzyme and genome evolution in the origins, loss, and re-emergence of plant chemical diversity.
Collapse
Affiliation(s)
- Benjamin R. Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
- Corresponding author. (B.R.L.); (C.R.B.); (S.E.O.)
| | - Grant T. Godden
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - John P. Hamilton
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
| | - Lira Palmer
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Mohamed O. Kamileen
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Dongyan Zhao
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
| | - Brieanne Vaillancourt
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
| | - Joshua C. Wood
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
| | - Miao Sun
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Taliesin J. Kinser
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Laura K. Henry
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Carlos Rodriguez-Lopez
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Douglas E. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Pamela S. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - C. Robin Buell
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
- MSU AgBioResearch, Michigan State University, 446 West Circle Drive, East Lansing, MI 48824, USA
- Corresponding author. (B.R.L.); (C.R.B.); (S.E.O.)
| | - Sarah E. O’Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
- Corresponding author. (B.R.L.); (C.R.B.); (S.E.O.)
| |
Collapse
|
112
|
Hao X, Pu Z, Cao G, You D, Zhou Y, Deng C, Shi M, Nile SH, Wang Y, Zhou W, Kai G. Tanshinone and salvianolic acid biosynthesis are regulated by SmMYB98 in Salvia miltiorrhiza hairy roots. J Adv Res 2020; 23:1-12. [PMID: 32071787 PMCID: PMC7016019 DOI: 10.1016/j.jare.2020.01.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/04/2020] [Accepted: 01/22/2020] [Indexed: 11/25/2022] Open
Abstract
Salvia miltiorrhiza Bunge is an herb rich in bioactive tanshinone and salvianolic acid compounds. It is primarily used as an effective medicine for treating cardiovascular and cerebrovascular diseases. Liposoluble tanshinones and water-soluble phenolic acids are a series of terpenoids and phenolic compounds, respectively. However, the regulation mechanism for the simultaneous promotion of tanshinone and salvianolic acid biosynthesis remains unclear. This study identified a R2R3-MYB subgroup 20 transcription factor (TF), SmMYB98, which was predominantly expressed in S. miltiorrhiza lateral roots. The accumulation of major bioactive metabolites, tanshinones, and salvianolic acids, was improved in SmMYB98 overexpression (OE) hairy root lines, but reduced in SmMYB98 knockout (KO) lines. The qRT-PCR analysis revealed that the transcriptional expression levels of tanshinone and salvianolic acid biosynthesis genes were upregulated by SmMYB98-OE and downregulated by SmMYB98-KO. Dual-Luciferase (Dual-LUC) assays demonstrated that SmMYB98 significantly activated the transcription of SmGGPPS1, SmPAL1, and SmRAS1. These results suggest that SmMYB98-OE can promote tanshinone and salvianolic acid production. The present findings illustrate the exploitation of R2R3-MYB in terpenoid and phenolic biosynthesis, as well as provide a feasible strategy for improving tanshinone and salvianolic acid contents by MYB proteins in S. miltiorrhiza.
Collapse
Key Words
- 4CL, 4-coumarate-CoA ligase
- AACT, acetoacetyl-CoA thiolase
- C4H, cinnamate 4-hydroxylase
- CDP-ME, 4-diphosphocytidyl-2-C-methyl-D-erythritol
- CDP-MEP, 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate
- CMK, 4-(cytidine5-diphospho)-2-C-methylerythritol kinase
- CPP, copalyldiphesphate
- DMAPP, dimethylallyl diphosphate
- DXP, 1-deoxy-D-xylulose-5-phosphate
- DXR, 1-deoxy-D-xylulose-5-phosphate reductoisomerase
- DXS, 1-deoxy-D-xylulose-5-phosphate synthase
- G3P, glyceraldehyde-3-phosphate
- GGPP, geranylgeranyl diphosphate
- HDR, 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase
- HDS, hydroxy-methybutenyl-4-diphosphate synthase
- HMB-PP, (E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate
- HMGR, 3-hydroxy-3-methylglutaryl-coenzyme A reductase
- HMGS, hydroxymethylglutaryl-CoA synthase
- HPPR, 4-hydroxyphenylpyruvate reductase
- IPP, isopentenyl diphosphate
- IPPI, isopentenyl diphosphate isomerase
- MCT, MEP cytidyl-transferase
- MDC, mevalonate diphosphate decarboxylase
- MDS, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase
- MEP, 2-C-methyl-D-erythritol 4-phosphate
- MEcPP, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate
- MK, mevalonate kinase
- MVA, mevalonate
- MVAP, mevalonate-5-phosphate
- MVAPP, mevalonate-5-pyrophosphate
- Metabolic engineering
- PAL, phenylalanine ammonia-lyase
- PMK, phosphomevalonate kinase
- Plant secondary metabolism
- R2R3-MYB transcription factor
- RAS, rosmarinic acid synthase
- TAT, tyrosine aminotransferase
- Traditional Chinese Medicine
- Transcriptional regulation
- ent-CPP, ent-Copalyldiphesphate
Collapse
Affiliation(s)
- Xiaolong Hao
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Zhongqiang Pu
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Gang Cao
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Dawei You
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Yang Zhou
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Changping Deng
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Min Shi
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Shivraj Hariram Nile
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Yao Wang
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Wei Zhou
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai 200234, PR China
| |
Collapse
|
113
|
Genome-wide identification and expression analysis of the superoxide dismutase (SOD) gene family in Salvia miltiorrhiza. Gene 2020; 742:144603. [PMID: 32198126 DOI: 10.1016/j.gene.2020.144603] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022]
Abstract
Adverse environmental conditions, such as salinity, cold, drought, heavy metals, and pathogens affect the yield and quality of Salvia miltiorrhiza, a well-known medicinal plant used for the treatment of cardiovascular and cerebrovascular diseases. Superoxide dismutase (SOD), a key enzyme of antioxidant system in plants, plays a vital role in protecting plants against various biotic and abiotic stresses via scavenging the reactive oxygen species produced by organisms. However, little is known about the SOD gene family in S. miltiorrhiza. In this study, eight SOD genes, including three Cu/Zn-SODs, two Fe-SODs and three Mn-SODs, were identified in the S. miltiorrhiza genome. Their gene structures, promoters, protein features, phylogenetic relationships, and expression profiles were comprehensively investigated. Gene structure analysis implied that most SmSODs have different introns/exons distrbution patterns. Many cis-elements related to different stress responses or plant hormones were found in the promoter of each SmSOD. Expression profile analysis indicated that SmSODs exhibited diverse responses to cold, salt, drought, heavy metal, and plant hormones. Additionally, 31 types of TFs regulating SmSODs were predicted and analyzed. These findings provided valuable information for further researches on the functions and applications of SmSODs in S. miltiorrhiza growth and adaptation to stress.
Collapse
|
114
|
Sun C, Liu W, Ma S, Zhang M, Geng Y, Wang X. Development of a high-coverage matrix-assisted laser desorption/ionization mass spectrometry imaging method for visualizing the spatial dynamics of functional metabolites in Salvia miltiorrhiza Bge. J Chromatogr A 2020; 1614:460704. [DOI: 10.1016/j.chroma.2019.460704] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
|
115
|
Wang R, Lu C, Shu Z, Yuan X, Jiang H, Guo H. iTRAQ-based proteomic analysis reveals several key metabolic pathways associated with male sterility in Salvia miltiorrhiza. RSC Adv 2020; 10:16959-16970. [PMID: 35496921 PMCID: PMC9053177 DOI: 10.1039/c9ra09240d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/20/2020] [Indexed: 02/02/2023] Open
Abstract
Male sterility is a common phenomenon in flowering plants, and it has been widely used in hybrid seed production in a number of economically important crops. In 2002, our team discovered a natural male sterile mutant of Salvia miltiorrhiza. It provided us with the possibility of obtaining stable and controllable quality. To study the molecular mechanism of male sterility in S. miltiorrhiza, we generated proteomic profiles comparing the male sterile mutant type (MT) and wild type (WT) using iTRAQ sequencing. We found a total of 639 differential abundant proteins (DAPs) between MT and WT buds. The DAPs associated with male sterility were mainly involved in (1) carbohydrate and energy metabolism, and (2) protein synthesis and degradation. Based on a comparison between the protein expression profiles of MT and WT, we elucidated a potential protein interaction network involved in male sterility. These results provide new potential biomarkers and insights into the molecular mechanism of male sterility in S. miltiorrhiza. Male sterility is a common phenomenon in flowering plants, and it has been widely used in hybrid seed production in a number of economically important crops.![]()
Collapse
Affiliation(s)
- Ruihong Wang
- College of Chemistry and Pharmacy
- Northwest A&F University
- Yangling 712100
- China
- College of Life Sciences
| | - Congyu Lu
- Centre for Bioinformatics & Computational Biology
- University of Delaware
- Newark
- USA
| | - Zhiming Shu
- College of Chemistry and Pharmacy
- Northwest A&F University
- Yangling 712100
- China
| | - Xinbo Yuan
- College of Chemistry and Pharmacy
- Northwest A&F University
- Yangling 712100
- China
| | - Han Jiang
- College of Life Sciences
- Northwest A&F University
- Yangling 712100
- China
| | - Hongbo Guo
- College of Chemistry and Pharmacy
- Northwest A&F University
- Yangling 712100
- China
| |
Collapse
|
116
|
Bai Z, Wu J, Huang W, Jiao J, Zhang C, Hou Z, Yan K, Zhang X, Han R, Liang Z, Zhang X. The ethylene response factor SmERF8 regulates the expression of SmKSL1 and is involved in tanshinone biosynthesis in Saliva miltiorrhiza hairy roots. JOURNAL OF PLANT PHYSIOLOGY 2020; 244:153006. [PMID: 31805420 DOI: 10.1016/j.jplph.2019.153006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 06/10/2023]
Abstract
Saliva miltiorrhiza ethylene response factor (SmERF), predicted to be expressed genome-wide, is the potential regulator of tanshinone biosynthesis. However, few studies have investigated its transcriptional regulation pathways in tanshinone biosynthesis. Here, we report an ethylene response factor (SmERF8), which was screened by the SmKSL1 (a key gene in tanshinone biosynthesis) promoter from the S. miltiorrhiza cDNA library. The SmERF8, highly expressed in S. miltiorrhiza root head, is sensitive to Eth stress, and its protein was enriched in the nucleus. The SmERF8 recognizes the GCC-box in the SmKSL1 promoter. Overexpression and RNAi of SmERF8 in S. miltiorrhiza transgenic hairy roots showed that the tanshinone contents were significantly increased in the overexpression transgenic lines and decreased in RNAi lines. These results suggest that the SmERF8 may be a central activator that regulates the expression of SmKSL1 by binding the GCC-box and then promoting tanshinone biosynthesis. Thus, the SmERF8 may functionally accelerate tanshinone biosynthesis by the transcriptional regulation of its key gene.
Collapse
Affiliation(s)
- Zhenqing Bai
- College of Life Science, Yan'an University, Yan'an, China; College of Life Science, Northwest A&F University, Yangling, China; Shaanxi Key Laboratory of Chinese Jujube (Yan'an, University), Yan'an, China; Inner Mongolia Autonomous Region Institute of Biotechnology, Hohhot, China
| | - Jiawen Wu
- College of Life Science, Yan'an University, Yan'an, China; Shaanxi Key Laboratory of Chinese Jujube (Yan'an, University), Yan'an, China
| | - Wenli Huang
- College of Life Science, Northwest A&F University, Yangling, China
| | - Jie Jiao
- College of Life Science, Northwest A&F University, Yangling, China
| | - Chenlu Zhang
- College of Life Science, Northwest A&F University, Yangling, China
| | - Zhuoni Hou
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Kaijing Yan
- Tasly R&D Institute, Tasly Holding Group Co., Ltd., Tianjin, China
| | - Xuemin Zhang
- Tasly R&D Institute, Tasly Holding Group Co., Ltd., Tianjin, China
| | - Ruilian Han
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zongsuo Liang
- College of Life Science, Northwest A&F University, Yangling, China; College of Life Science, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Xiujuan Zhang
- Inner Mongolia Autonomous Region Institute of Biotechnology, Hohhot, China
| |
Collapse
|
117
|
Liu M, Chen X, Wang M, Lu S. SmPPT, a 4-hydroxybenzoate polyprenyl diphosphate transferase gene involved in ubiquinone biosynthesis, confers salt tolerance in Salvia miltiorrhiza. PLANT CELL REPORTS 2019; 38:1527-1540. [PMID: 31471635 DOI: 10.1007/s00299-019-02463-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
SmPPT, which encodes 4-hydroxybenzoate polyprenyl diphosphate transferase involved in ubiquinone biosynthesis, confers salt tolerance to S. miltiorrhiza through enhancing the activities of POD and CAT to scavenge ROS. Ubiquinone (UQ), also known as coenzyme Q (CoQ), is a key electron transporter in the mitochondrial respiratory system. UQ is composed of a benzene quinone ring and a polyisoprenoid side chain. Attachment of polyisoprenoid side chain to the benzene quinone ring is a rate-limiting step catalyzed by 4-hydroxybenzoate polyprenyl diphosphate transferase (PPT). So far, only a few plant PPT-encoding genes have been functionally analyzed. Through genome-wide analysis and subsequent molecular cloning, a PPT-encoding gene, termed SmPPT, was identified from an economically and academically important medicinal model plant, Salvia miltiorrhiza. SmPPT contained many putative cis-elements associated with abiotic stresses in the promoter region and were responsive to PEG-6000 and methyl jasmonate treatments. The deduced SmPPT protein contains the PT_UbiA conserved domain of polyprenyl diphosphate transferase and an N-terminal mitochondria transit peptide. Transient expression assay of SmPPT-GFP fusion protein showed that SmPPT was mainly localized in the mitochondria. SmPPT could functionally complement coq2 mutation and catalyzed UQ6 production in yeast cells. Overexpression of SmPPT increased UQ production and enhanced salt tolerance in S. miltiorrhiza. Under salinity stress conditions, transgenic plants accumulated less H2O2 and malondialdehyde and exhibited higher peroxidase (POD) and catalase (CAT) activities compared with wild-type plants. It indicates that SmPPT confers salt tolerance to S. miltiorrhiza at least partially through enhancing the activities of POD and CAT to scavenge ROS.
Collapse
Affiliation(s)
- Miaomiao Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Xiang Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Meizhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
118
|
Ma X, Meng Y, Wang P, Tang Z, Wang H, Xie T. Bioinformatics-assisted, integrated omics studies on medicinal plants. Brief Bioinform 2019; 21:1857-1874. [PMID: 32706024 DOI: 10.1093/bib/bbz132] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/03/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
The immense therapeutic and economic values of medicinal plants have attracted increasing attention from the worldwide researchers. It has been recognized that production of the authentic and high-quality herbal drugs became the prerequisite for maintaining the healthy development of the traditional medicine industry. To this end, intensive research efforts have been devoted to the basic studies, in order to pave a way for standardized authentication of the plant materials, and bioengineering of the metabolic pathways in the medicinal plants. In this paper, the recent advances of omics studies on the medicinal plants were summarized from several aspects, including phenomics and taxonomics, genomics, transcriptomics, proteomics and metabolomics. We proposed a multi-omics data-based workflow for medicinal plant research. It was emphasized that integration of the omics data was important for plant authentication and mechanistic studies on plant metabolism. Additionally, the computational tools for proper storage, efficient processing and high-throughput analyses of the omics data have been introduced into the workflow. According to the workflow, authentication of the medicinal plant materials should not only be performed at the phenomics level but also be implemented by genomic and metabolomic marker-based examination. On the other hand, functional genomics studies, transcriptional regulatory networks and protein-protein interactions will contribute greatly for deciphering the secondary metabolic pathways. Finally, we hope that our work could inspire further efforts on the bioinformatics-assisted, integrated omics studies on the medicinal plants.
Collapse
Affiliation(s)
- Xiaoxia Ma
- Hangzhou Normal University, Hangzhou 311121, P.R. China.,Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, P.R. China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P.R. China.,College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Yijun Meng
- Hangzhou Normal University, Hangzhou 311121, P.R. China.,College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, P.R. China
| | - Pu Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Zhonghai Tang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, P.R. China
| | - Huizhong Wang
- Hangzhou Normal University, Hangzhou 311121, P.R. China.,College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, P.R. China
| | - Tian Xie
- Hangzhou Normal University, Hangzhou 311121, P.R. China.,Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, P.R. China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P.R. China
| |
Collapse
|
119
|
Tang CY, Li S, Wang YT, Wang X. Comparative genome/transcriptome analysis probes Boraginales' phylogenetic position, WGDs in Boraginales, and key enzyme genes in the alkannin/shikonin core pathway. Mol Ecol Resour 2019; 20:228-241. [PMID: 31625679 DOI: 10.1111/1755-0998.13104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 12/27/2022]
Abstract
Boraginales (the forget-me-not order) is a core group within the lamiids clade. However, until now, no genome from Boraginales has been reported, and published transcriptomes are also rare. Here, we report the first Boraginales species de novo genome (i.e. Echium plantagineum genome) and seven other Boraginales species transcriptomes to probe three issues: (i) Boraginales' phylogenetic position within the lamiids clade; (ii) potential whole genome duplications (WGDs) in Boraginales; and (iii) candidate key enzyme genes in the alkannin/shikonin core pathway. The results showed that: (i) Boraginales was most probably closer to the Solanales/Gentianales clade than the Lamiales clade, at least based on the single-copy orthologous genes from genome/transcriptome data; (ii) after the gamma (γ) event, Boraginaceae (classified into the Boraginales I clade) probably underwent at least two rounds of WGD, whereas Heliotropiaceae and Ehretiaceae (classified into the Boraginales II clade) probably underwent only one round of WGD; and (iii) several candidate key enzyme genes in the alkannin/shikonin core pathway were inferred, e.g. genes corresponding to geranyl cyclase, naphthol hydroxylase and O-acyl transferase.
Collapse
Affiliation(s)
- Cheng-Yi Tang
- School of the Environment, Nanjing University, Nanjing, China
| | - Song Li
- School of the Environment, Nanjing University, Nanjing, China.,Biomarker Technologies Corporation, Beijing, China
| | | | - Xi Wang
- Biomarker Technologies Corporation, Beijing, China
| |
Collapse
|
120
|
Zhou H, Li C, Qiu X, Lu S. Systematic Analysis of Alkaline/Neutral Invertase Genes Reveals the Involvement of Smi-miR399 in Regulation of SmNINV3 and SmNINV4 in Salvia miltiorrhiza. PLANTS 2019; 8:plants8110490. [PMID: 31717988 PMCID: PMC6918228 DOI: 10.3390/plants8110490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 01/25/2023]
Abstract
Alkaline/neutral invertases (NINVs), which irreversibly catalyze the hydrolysis of sucrose into fructose and glucose, play crucial roles in carbohydrate metabolism and plant development. Comprehensive insights into NINV genes are lacking in Salvia miltiorrhiza, a well-known traditional Chinese medicinal (TCM) plant with significant medicinal and economic value. Through genome-wide prediction, nine putative SmNINV genes, termed SmNINV1-SmNINV9, were identified. Integrated analysis of gene structures, sequence features, conserved domains, conserved motifs and phylogenetic trees revealed the conservation and divergence of SmNINVs. The identified SmNINVs were differentially expressed in roots, stems, leaves, flowers, and different root tissues. They also responded to drought, salicylic acid, yeast extract, and methyl jasmonate treatments. More importantly, computational prediction and experimental validation showed that SmNINV3 and SmNINV4 were targets of Smi-miR399, a conserved miRNA previously shown to affect Pi uptake and translocation through the cleavage of PHOSPHATE2 (PHO2). Consistently, analysis of 43 NINV genes and 26 miR399 sequences from Arabidopsis thaliana, Populus trichocarpa, Manihot esculenta, and Solanum lycopersicum showed that various AtNINV, PtNINV, MeNINV, and SlNINV genes were regulated by miR399. It indicates that the miR399-NINV module exists widely in plants. Furthermore, Smi-miR399 also cleaved SmPHO2 transcripts in S. miltiorrhiza, suggesting the complexity of NINVs, PHO2, and miR399 networks.
Collapse
Affiliation(s)
| | | | | | - Shanfa Lu
- Correspondence: ; Tel./Fax: +86-10-57833366
| |
Collapse
|
121
|
Wang R, Jiang H, Zhou Z, Guo H, Dong J. Physiological and transcriptome analysis reveal molecular mechanism in Salvia miltiorrhiza leaves of near-isogenic male fertile lines and male sterile lines. BMC Genomics 2019; 20:780. [PMID: 31655539 PMCID: PMC6815445 DOI: 10.1186/s12864-019-6173-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/03/2019] [Indexed: 11/10/2022] Open
Abstract
Background Our previous study finds that male sterility in Salvia miltiorrhiza could result in stunted growth and reduced biomass, but their molecular mechanisms have not yet been revealed. In this article, we investigate the underlying mechanism of male sterility and its impact on plant growth and metabolic yield by using physiological analysis and mRNA sequencing (RNA-Seq). Results In this study, transcriptomic and physiological analysis were performed to identify the mechanism of male sterility in mutants and its impact on plant growth and metabolic yield. Through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, it is found that the pathways are mainly enriched in processes including organ development, primary metabolic process and secondary metabolic process. Physiological analysis show that the chloroplast structure of male sterile mutants of S. miltiorrhiza is abnormally developed, which could result in decrease in leaf gas exchange (A, E and gs), chlorophyll fluorescence (Fv, Fm and Fv/Fm), and the chlorophyll content. Expression level of 7 differentially expressed genes involved in photosynthesis-related pathways is downregulated in male sterile lines of S. miltiorrhiza, which could explain the corresponding phenotypic changes in chlorophyll fluorescence, chlorophyll content and leaf gas exchange. Transcriptomic analysis establishes the role of disproportionating enzyme 1 (DPE1) as catalyzing the degradation of starch, and the role of sucrose synthase 3 (SUS3) and cytosolic invertase 2 (CINV2) as catalyzing the degradation of sucrose in the S. miltiorrhiza mutants. The results also confirm that phenylalanine ammonialyase (PAL) is involved in the biosynthesis of rosmarinic acid and salvianolic acid B, and flavone synthase (FLS) is an important enzyme catalyzing steps of flavonoid biosynthesis. Conclusions Our results from the physiological and transcriptome analysis reveal underlying mechanism of plant growth and metabolic yield in male sterile mutants, and provide insight into the crop yield of S. miltiorrhiza.
Collapse
Affiliation(s)
- Ruihong Wang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Han Jiang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Ziyun Zhou
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Hongbo Guo
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China.
| | - Juane Dong
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
122
|
Zhang Y, Zheng L, Zheng Y, Zhou C, Huang P, Xiao X, Zhao Y, Hao X, Hu Z, Chen Q, Li H, Wang X, Fukushima K, Wang G, Li C. Assembly and Annotation of a Draft Genome of the Medicinal Plant Polygonum cuspidatum. FRONTIERS IN PLANT SCIENCE 2019; 10:1274. [PMID: 31681373 PMCID: PMC6813658 DOI: 10.3389/fpls.2019.01274] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 09/12/2019] [Indexed: 05/05/2023]
Abstract
Polygonum cuspidatum (Japanese knotweed, also known as Huzhang in Chinese), a plant that produces bioactive components such as stilbenes and quinones, has long been recognized as important in traditional Chinese herbal medicine. To better understand the biological features of this plant and to gain genetic insight into the biosynthesis of its natural products, we assembled a draft genome of P. cuspidatum using Illumina sequencing technology. The draft genome is ca. 2.56 Gb long, with 71.54% of the genome annotated as transposable elements. Integrated gene prediction suggested that the P. cuspidatum genome encodes 55,075 functional genes, including 6,776 gene families that are conserved in the five eudicot species examined and 2,386 that are unique to P. cuspidatum. Among the functional genes identified, 4,753 are predicted to encode transcription factors. We traced the gene duplication history of P. cuspidatum and determined that it has undergone two whole-genome duplication events about 65 and 6.6 million years ago. Roots are considered the primary medicinal tissue, and transcriptome analysis identified 2,173 genes that were expressed at higher levels in roots compared to aboveground tissues. Detailed phylogenetic analysis demonstrated expansion of the gene family encoding stilbene synthase and chalcone synthase enzymes in the phenylpropanoid metabolic pathway, which is associated with the biosynthesis of resveratrol, a pharmacologically important stilbene. Analysis of the draft genome identified 7 abscisic acid and water deficit stress-induced protein-coding genes and 14 cysteine-rich transmembrane module genes predicted to be involved in stress responses. The draft de novo genome assembly produced in this study represents a valuable resource for the molecular characterization of medicinal compounds in P. cuspidatum, the improvement of this important medicinal plant, and the exploration of its abiotic stress resistance.
Collapse
Affiliation(s)
- Yonghong Zhang
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Lanlan Zheng
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Yan Zheng
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Chao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, China
| | - Ping Huang
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Xiao Xiao
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Yongheng Zhao
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Xincai Hao
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Zhubing Hu
- Center for Multi-Omics Research Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Qinhua Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Hongliang Li
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Kenji Fukushima
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Guodong Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Chen Li
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
123
|
Chang Y, Wang M, Li J, Lu S. Transcriptomic analysis reveals potential genes involved in tanshinone biosynthesis in Salvia miltiorrhiza. Sci Rep 2019; 9:14929. [PMID: 31624328 PMCID: PMC6797793 DOI: 10.1038/s41598-019-51535-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/28/2019] [Indexed: 12/17/2022] Open
Abstract
Tanshinones are important bioactive components in Salvia miltiorrhiza and mainly accumulate in the periderms of mature roots. Tanshinone biosynthesis is a complicated process, and little is known about the third stage of the pathway. To investigate potential genes that are responsible for tanshinone biosynthesis, we conducted transcriptome profiling analysis of two S. miltiorrhiza cultivars. Differential expression analysis provided 2,149 differentially expressed genes (DEGs) for further analysis. GO and KEGG analysis showed that the DEGs were mainly associated with the biosynthesis of secondary metabolites. Weighted gene coexpression network analysis (WGCNA) was further performed to identify a “cyan” module associated with tanshinone biosynthesis. In this module, 25 cytochromes P450 (CYPs), three 2-oxoglutarate-dependent dioxygenases (2OGDs), one short-chain alcohol dehydrogenases (SDRs) and eight transcription factors were found to be likely involved in tanshinone biosynthesis. Among these CYPs, 14 CYPs have been reported previously, and 11 CYPs were identified in this study. Expression analysis showed that four newly identified CYPs were upregulated upon application of MeJA, suggesting their possible roles in tanshinone biosynthesis. Overall, this study not only identified candidate genes involved in tanshinone biosynthesis but also provided a basis for characterization of genes involved in important active ingredients of other traditional Chinese medicinal plants.
Collapse
Affiliation(s)
- Yujie Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.,Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Meizhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jiang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
124
|
Metabolome and transcriptome analyses reveal quality change in the orange-rooted Salvia miltiorrhiza (Danshen) from cultivated field. Chin Med 2019; 14:42. [PMID: 31592267 PMCID: PMC6775661 DOI: 10.1186/s13020-019-0265-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 01/10/2023] Open
Abstract
Background The dry root and rhizome of Salvia miltiorrhiza Bunge, or Danshen, is a well-known, traditional Chinese medicine. Tanshinones are active compounds that accumulate in the periderm, resulting in red-colored roots. However, lines with orange roots have been observed in cultivated fields. Here, we performed metabolome and transcriptome analyses to investigate the changes of orange-rooted Danshen. Methods Metabolome analysis was performed by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/Q-Tof–MS) to investigate the metabolites variation between orange Danshen and normal Danshen. RNA sequencing and KEGG enrichment analysis were performed to analyzing the differentially expressed genes between orange-rooted and normal Danshen. Results In total, 40 lipophilic components were detected in metabolome analysis, and seven compounds were significantly decreased in the orange Danshen, including the most abundant active compounds, tanshinone IIA and tanshinone I in normal Danshen. Systematic analysis of transcriptome profiles revealed that the down-regulated genes related to catalytic dehydrogenation was not detected. However, two genes related to stress resistance, and four genes related to endoplasmic reticulum (ER)-associated degradation of proteins were up-regulated in orange Danshen. Conclusions Decreases in the content of dehydrogenated furan ring tanshinones such as tanshinone IIA resulted in phenotypic changes and quality degradation of Danshen. Transcriptome analysis indicated that incorrect folding and ER-associated degradation of corresponding enzymes, which could catalyze C15-C16 dehydrogenase, might be contributed to the decrease in dehydrogenated furan ring tanshinones, rather than lower expression of the relative genes. This limited dehydrogenation of cryptotanshinone and dihydrotanshinone I into tanshinones IIA and I products, respectively, led to a reduced quality of Danshen in cultivated fields.
Collapse
|
125
|
Li C, Li D, Zhou H, Li J, Lu S. Analysis of the laccase gene family and miR397-/miR408-mediated posttranscriptional regulation in Salvia miltiorrhiza. PeerJ 2019; 7:e7605. [PMID: 31528508 PMCID: PMC6717658 DOI: 10.7717/peerj.7605] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/02/2019] [Indexed: 01/21/2023] Open
Abstract
Salvia miltiorrhiza is one of the most commonly used traditional Chinese medicine materials. It contains important bioactive phenolic compounds, such as salvianolic acids, flavonoids and anthocyanins. Elucidation of phenolic compound biosynthesis and its regulatory mechanism is of great significance for S. miltiorrhiza quality improvement. Laccases (LACs) are multicopper-containing enzymes potentially involved in the polymerization of phenolic compounds. So far, little has been known about LAC genes in S. miltiorrhiza. Through systematic investigation of the whole genome sequence and transcriptomes of S. miltiorrhiza, we identified 65 full-length SmLAC genes (SmLAC1–SmLAC65). Phylogenetic analysis showed that 62 of the identified SmLACs clustered with LACs from Arabidopsis and Populus trichocarpa in seven clades (C1–C7), whereas the other three fell into one S. miltiorrhiza-specific clade (C8). All of the deduced SmLAC proteins contain four conserved signature sequences and three typical Cu-oxidase domains, and gene structures of most LACs from S. miltiorrhiza, Arabidopsis and P. trichocarpa were highly conserved, however SmLACs encoding C8 proteins showed distinct intron-exon structures. It suggests the conservation and diversity of plant LACs in gene structures. The majority of SmLACs exhibited tissue-specific expression patterns, indicates manifold functions of SmLACs played in S. miltiorrhiza. Analysis of high-throughput small RNA sequences and degradome data and experimental validation using the 5′ RACE method showed that 23 SmLACs were targets of Smi-miR397. Among them, three were also targeted by Smi-miR408. It suggests the significance of miR397 and miR408 in posttranscriptional regulation of SmLAC genes. Our results provide a foundation for further demonstrating the functions of SmLACs in the production of bioactive phenolic compounds in S. miltiorrhiza.
Collapse
Affiliation(s)
- Caili Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dongqiao Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
126
|
Liu X, Jin M, Zhang M, Li T, Sun S, Zhang J, Dai J, Wang Y. The application of combined 1H NMR-based metabolomics and transcriptomics techniques to explore phenolic acid biosynthesis in Salvia miltiorrhiza Bunge. J Pharm Biomed Anal 2019; 172:126-138. [PMID: 31035094 DOI: 10.1016/j.jpba.2019.04.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022]
Abstract
Salvia miltiorrhiza Bunge is a traditional Chinese medicine, and its water-soluble phenolic acid active compounds have very important medicinal value; however, the synthesis pathways of the main active ingredients remain unknown. Here, we employed nuclear magnetic resonance (NMR)-based metabolomics and transcriptomics techniques to study the biosynthesis mechanism of salvianolic acids. High-performance liquid chromatography (HPLC) combined with NMR showed an improvement over traditional techniques, and 54 metabolites were detected. The results of the multivariate statistical analysis showed that salvianolic acid B (SAB), rosmarinic acid (RA), caffeic acid, succinate, and citrate were among the multiple compounds that were increased in the methyl jasmonate (MeJA)-elicited group; the levels of sucrose, fructose, glutamine, and tyrosine were decreased. Combined with the differentially expressed genes (DEGs) found by transcriptome sequencing, we speculate that the synthesis of RA after MeJA treatment mostly occurred through caffeic acid and bypassed 4-hydroxyphenyllactic acid. This provides useful information for the study of salvianolic acids synthesis.
Collapse
Affiliation(s)
- Xia Liu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, Beijing, BJ, China
| | - Mengxia Jin
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, Beijing, BJ, China
| | - Min Zhang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, Beijing, BJ, China
| | - Tianqi Li
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, Beijing, BJ, China
| | - Shanshan Sun
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, Beijing, BJ, China
| | - Jinyue Zhang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, Beijing, BJ, China
| | - Jungui Dai
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, Beijing, BJ, China
| | - Yinghong Wang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, Beijing, BJ, China.
| |
Collapse
|
127
|
Zhao D, Hamilton JP, Bhat WW, Johnson SR, Godden GT, Kinser TJ, Boachon B, Dudareva N, Soltis DE, Soltis PS, Hamberger B, Buell CR. A chromosomal-scale genome assembly of Tectona grandis reveals the importance of tandem gene duplication and enables discovery of genes in natural product biosynthetic pathways. Gigascience 2019; 8:5304368. [PMID: 30698701 PMCID: PMC6394206 DOI: 10.1093/gigascience/giz005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/23/2018] [Accepted: 01/10/2019] [Indexed: 01/20/2023] Open
Abstract
Background Teak, a member of the Lamiaceae family, produces one of the most expensive hardwoods in the world. High demand coupled with deforestation have caused a decrease in natural teak forests, and future supplies will be reliant on teak plantations. Hence, selection of teak tree varieties for clonal propagation with superior growth performance is of great importance, and access to high-quality genetic and genomic resources can accelerate the selection process by identifying genes underlying desired traits. Findings To facilitate teak research and variety improvement, we generated a highly contiguous, chromosomal-scale genome assembly using high-coverage Pacific Biosciences long reads coupled with high-throughput chromatin conformation capture. Of the 18 teak chromosomes, we generated 17 near-complete pseudomolecules with one chromosome present as two chromosome arm scaffolds. Genome annotation yielded 31,168 genes encoding 46,826 gene models, of which, 39,930 and 41,155 had Pfam domain and expression evidence, respectively. We identified 14 clusters of tandem-duplicated terpene synthases (TPSs), genes central to the biosynthesis of terpenes, which are involved in plant defense and pollinator attraction. Transcriptome analysis revealed 10 TPSs highly expressed in woody tissues, of which, 8 were in tandem, revealing the importance of resolving tandemly duplicated genes and the quality of the assembly and annotation. We also validated the enzymatic activity of four TPSs to demonstrate the function of key TPSs. Conclusions In summary, this high-quality chromosomal-scale assembly and functional annotation of the teak genome will facilitate the discovery of candidate genes related to traits critical for sustainable production of teak and for anti-insecticidal natural products.
Collapse
Affiliation(s)
- Dongyan Zhao
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
| | - John P Hamilton
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
| | - Wajid Waheed Bhat
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824, USA.,Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI 48824, USA
| | - Sean R Johnson
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824, USA
| | - Grant T Godden
- Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, FL 32611, USA
| | - Taliesin J Kinser
- Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, FL 32611, USA.,Department of Biology, University of Florida, 876 Newell Drive, Gainesville, FL 32611, USA
| | - Benoît Boachon
- Department of Biochemistry, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907, USA
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, FL 32611, USA.,Department of Biology, University of Florida, 876 Newell Drive, Gainesville, FL 32611, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, FL 32611, USA
| | - Bjoern Hamberger
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824, USA
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA.,Plant Resilience Institute, Michigan State University, 612 Wilson Road, East Lansing, MI 48872, USA.,MSU AgBioResearch, Michigan State University, 446 West Circle Drive, East Lansing, MI 48872, USA
| |
Collapse
|
128
|
Szymczyk P, Szymańska G, Lipert A, Weremczuk-Jeżyna I, Kochan E. Computer-Aided Saturation Mutagenesis of Arabidopsis thaliana Ent-Copalyl Diphosphate Synthase. Interdiscip Sci 2019; 12:32-43. [PMID: 31309397 PMCID: PMC7007437 DOI: 10.1007/s12539-019-00342-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 01/12/2023]
Abstract
Ent-copalyl diphosphate synthase controls the biosynthesis of gibberellin plant hormones, which in turn coordinate the expression of numerous enzymes. Some gibberellin-dependent genes encode enzymes coordinating the biosynthesis of tanshinones: diterpene derivatives with broad medical applications. New biotechnological approaches, such as metabolic engineering using naturally occurring or mutated enzymes, have been proposed to meet the growing demand for tanshinones which is currently met by the Chinese medicinal plant Salvia miltiorrhiza Bunge. These mutants may be prepared by directed evolution, saturation mutagenesis or rational enzyme design. In the presented paper, 15,257 non-synonymous variants of Arabidopsis thaliana ent-copalyl diphosphate synthase were obtained using the SNAP2 tool. The obtained forms were screened to isolate variants with potentially improved biological functions. A group of 455 mutants with potentially improved stability was isolated and subjected to further screening on the basis of ligand–substrate affinity, and both secondary structure and active site structure stability. Finally, a group of six single mutants was obtained, which were used to construct double mutants with potentially improved stability and ligand affinity. The potential influence of single mutations on protein stability and ligand affinity was evaluated by double mutant cycle analysis. Finally, the procedure was validated by in silico assessment of the experimentally verified enzyme mutants with reduced enzymatic activity.
Collapse
Affiliation(s)
- Piotr Szymczyk
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Łódź, 90-151, Lodz, Poland.
| | - Grażyna Szymańska
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Łódź, 90-151, Lodz, Poland
| | - Anna Lipert
- Department of Sports Medicine, Medical University of Łódź, 92-213, Lodz, Poland
| | - Izabela Weremczuk-Jeżyna
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Łódź, 90-151, Lodz, Poland
| | - Ewa Kochan
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Łódź, 90-151, Lodz, Poland
| |
Collapse
|
129
|
Liu M, Ma Y, Du Q, Hou X, Wang M, Lu S. Functional Analysis of Polyprenyl Diphosphate Synthase Genes Involved in Plastoquinone and Ubiquinone Biosynthesis in Salvia miltiorrhiza. FRONTIERS IN PLANT SCIENCE 2019; 10:893. [PMID: 31354766 PMCID: PMC6629958 DOI: 10.3389/fpls.2019.00893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Polyprenyl diphosphate synthase (PPS) plays important roles in the biosynthesis of functionally important plastoquinone (PQ) and ubiquinone (UQ). However, only few plant PPS genes have been functionally characterized. Through genome-wide analysis, two PPS genes, termed SmPPS1 and SmPPS2, were identified from Salvia miltiorrhiza, an economically significant Traditional Chinese Medicine material and an emerging model medicinal plant. SmPPS1 and SmPPS2 belonged to different phylogenetic subgroups of plant trans-long-chain prenyltransferases and exhibited differential tissue expression and light-induced expression patterns. Computational prediction and transient expression assays showed that SmPPS1 was localized in the chloroplasts, whereas SmPPS2 was mainly localized in the mitochondria. SmPPS2, but not SmPPS1, could functionally complement the coq1 mutation in yeast cells and catalyzed the production of UQ-9 and UQ-10. Consistently, both UQ-9 and UQ-10 were detected in S. miltiorrhiza plants. Overexpression of SmPPS2 caused significant UQ accumulation in S. miltiorrhiza transgenics, whereas down-regulation resulted in decreased UQ content. Differently, SmPPS1 overexpression significantly elevated PQ-9 content in S. miltiorrhiza. Transgenic lines showing a down-regulation of SmPPS1 expression exhibited decreased PQ-9 level, abnormal chloroplast and trichome development, and varied leaf bleaching phenotypes. These results suggest that SmPPS1 is involved in PQ-9 biosynthesis, whereas SmPPS2 is involved in UQ-9 and UQ-10 biosynthesis.
Collapse
Affiliation(s)
- Miaomiao Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yimian Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qing Du
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining, China
| | - Xuemin Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meizhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
130
|
Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, Xu W, Su Z. agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res 2019; 45:W122-W129. [PMID: 28472432 PMCID: PMC5793732 DOI: 10.1093/nar/gkx382] [Citation(s) in RCA: 1383] [Impact Index Per Article: 276.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/25/2017] [Indexed: 01/30/2023] Open
Abstract
The agriGO platform, which has been serving the scientific community for >10 years, specifically focuses on gene ontology (GO) enrichment analyses of plant and agricultural species. We continuously maintain and update the databases and accommodate the various requests of our global users. Here, we present our updated agriGO that has a largely expanded number of supporting species (394) and datatypes (865). In addition, a larger number of species have been classified into groups covering crops, vegetables, fish, birds and insects closely related to the agricultural community. We further improved the computational efficiency, including the batch analysis and P-value distribution (PVD), and the user-friendliness of the web pages. More visualization features were added to the platform, including SEACOMPARE (cross comparison of singular enrichment analysis), direct acyclic graph (DAG) and Scatter Plots, which can be merged by choosing any significant GO term. The updated platform agriGO v2.0 is now publicly accessible at http://systemsbiology.cau.edu.cn/agriGOv2/.
Collapse
Affiliation(s)
- Tian Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yue Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hengyu Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qi You
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xin Yi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhou Du
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
131
|
Deng C, Hao X, Shi M, Fu R, Wang Y, Zhang Y, Zhou W, Feng Y, Makunga NP, Kai G. Tanshinone production could be increased by the expression of SmWRKY2 in Salvia miltiorrhiza hairy roots. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 284:1-8. [PMID: 31084862 DOI: 10.1016/j.plantsci.2019.03.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 05/20/2023]
Abstract
Tanshinones are the main bioactive diterpenes in Salvia miltiorrhiza Bunge, are widely used for treating cardiovascular and cerebrovascular diseases. However, the biosynthetic mechanisms of these compounds have not yet been fully explained. In this study, a transcription factor named SmWRKY2 was isolated and functionally characterized. Multiple sequence analysis indicated it was classified into subgroup I of the WRKY family. Expression pattern showed that SmWRKY2 was mainly expressed in the stem and leaf and was inducible by methyl jasmonate (MeJA) treatment. Subcellular localization showed that SmWRKY2 was localized in the nucleus. Overexpression of SmWRKY2 in S. miltiorrhiza hairy roots significantly increased the expression of SmDXS2 and SmCPS, resulting in increased accumulation of tanshinones and the highest total tanshinone content was detected in OE-SmWRKY2-1 line, which was 1.83 times of the control. Meanwhile, tanshinone production was slightly reduced in the antisense-SmWRKY2 line. Dual-Luciferase assay showed that SmWRKY2 can positively regulate SmDXS2 and SmCPS expression, However, Y1H and EMSA experiments indicate that SmWRKY2 only binds to the W-box of the SmCPS promoter. Our study shows that SmWRKY2 is a positive regulator of tanshinone biosynthesis by mainly activating SmCPS. This study thus sheds new light on the regulatory role of SmWRKY2 in tanshinone biosynthesis.
Collapse
Affiliation(s)
- Changping Deng
- Laboratory of Medicinal Plant Biotechnology, College of pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China; Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, 200234, PR China
| | - Xiaolong Hao
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, 200234, PR China
| | - Min Shi
- Laboratory of Medicinal Plant Biotechnology, College of pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Rong Fu
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, 200234, PR China
| | - Yao Wang
- Laboratory of Medicinal Plant Biotechnology, College of pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Yi Zhang
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, 200234, PR China
| | - Wei Zhou
- Laboratory of Medicinal Plant Biotechnology, College of pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Yue Feng
- Laboratory of Medicinal Plant Biotechnology, College of pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Nokwanda P Makunga
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7600, South Africa.
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China; Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, 200234, PR China.
| |
Collapse
|
132
|
Zhao Q, Yang J, Cui MY, Liu J, Fang Y, Yan M, Qiu W, Shang H, Xu Z, Yidiresi R, Weng JK, Pluskal T, Vigouroux M, Steuernagel B, Wei Y, Yang L, Hu Y, Chen XY, Martin C. The Reference Genome Sequence of Scutellaria baicalensis Provides Insights into the Evolution of Wogonin Biosynthesis. MOLECULAR PLANT 2019; 12:935-950. [PMID: 30999079 DOI: 10.1016/j.molp.2019.04.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/20/2019] [Accepted: 04/07/2019] [Indexed: 05/19/2023]
Abstract
Scutellaria baicalensis Georgi is important in Chinese traditional medicine where preparations of dried roots, "Huang Qin," are used for liver and lung complaints and as complementary cancer treatments. We report a high-quality reference genome sequence for S. baicalensis where 93% of the 408.14-Mb genome has been assembled into nine pseudochromosomes with a super-N50 of 33.2 Mb. Comparison of this sequence with those of closely related species in the order Lamiales, Sesamum indicum and Salvia splendens, revealed that a specialized metabolic pathway for the synthesis of 4'-deoxyflavone bioactives evolved in the genus Scutellaria. We found that the gene encoding a specific cinnamate coenzyme A ligase likely obtained its new function following recent mutations, and that four genes encoding enzymes in the 4'-deoxyflavone pathway are present as tandem repeats in the genome of S. baicalensis. Further analyses revealed that gene duplications, segmental duplication, gene amplification, and point mutations coupled to gene neo- and subfunctionalizations were involved in the evolution of 4'-deoxyflavone synthesis in the genus Scutellaria. Our study not only provides significant insight into the evolution of specific flavone biosynthetic pathways in the mint family, Lamiaceae, but also will facilitate the development of tools for enhancing bioactive productivity by metabolic engineering in microbes or by molecular breeding in plants. The reference genome of S. baicalensis is also useful for improving the genome assemblies for other members of the mint family and offers an important foundation for decoding the synthetic pathways of bioactive compounds in medicinal plants.
Collapse
Affiliation(s)
- Qing Zhao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Meng-Ying Cui
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Jie Liu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Yumin Fang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Mengxiao Yan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wenqing Qiu
- Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Huiwen Shang
- Novogene Bioinformatics Institute, Beijing, China
| | - Zhicheng Xu
- Novogene Bioinformatics Institute, Beijing, China
| | | | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tomáš Pluskal
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | | | | | - Yukun Wei
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Lei Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Yonghong Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Ya Chen
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Cathie Martin
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China; John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
133
|
Zhang Y, Ji A, Xu Z, Luo H, Song J. The AP2/ERF transcription factor SmERF128 positively regulates diterpenoid biosynthesis in Salvia miltiorrhiza. PLANT MOLECULAR BIOLOGY 2019; 100:83-93. [PMID: 30847712 DOI: 10.1007/s11103-019-00845-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 02/18/2019] [Indexed: 05/02/2023]
Abstract
The novel AP2/ERF transcription factor SmERF128 positively regulates diterpenoid tanshinone biosynthesis by activating the expression of SmCPS1, SmKSL1, and SmCYP76AH1 in Salvia miltiorrhiza. Certain members of the APETALA2/ethylene-responsive factor (AP2/ERF) family regulate plant secondary metabolism. Although it is clearly documented that AP2/ERF transcription factors (TFs) are involved in sesquiterpenoid biosynthesis, the regulation of diterpenoid biosynthesis by AP2/ERF TFs remains elusive. Here, we report that the novel AP2/ERF TF SmERF128 positively regulates diterpenoid tanshinone biosynthesis in Salvia miltiorrhiza. Overexpression of SmERF128 increased the expression levels of copalyl diphosphate synthase 1 (SmCPS1), kaurene synthase-like 1 (SmKSL1) and cytochrome P450 monooxygenase 76AH1 (SmCYP76AH1), whereas their expression levels were decreased when SmERF128 was silenced. Accordingly, the content of tanshinone was reduced in SmERF128 RNA interference (RNAi) hairy roots and dramatically increased in SmERF128 overexpression hairy roots, as demonstrated through Ultra Performance Liquid Chromatography (UPLC) and Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) analysis. Furthermore, SmERF128 activated the expression of SmCPS1, SmKSL1, and SmCYP76AH1 by binding to the GCC box, and to the CRTDREHVCBF2 (CBF2) and RAV1AAT (RAA) motifs within their promoters during in vivo and in vitro assays. Our findings not only reveal the molecular basis of how the AP2/ERF transcription factor SmERF128 regulates diterpenoid biosynthesis, but also provide useful information for improving tanshinone production through genetic engineering.
Collapse
Affiliation(s)
- Yu Zhang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
- College of Chinese Materia Medica, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Aijia Ji
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhichao Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Hongmei Luo
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, 666100, China.
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China.
| |
Collapse
|
134
|
Qi P, Li Y, Liu X, Jafari FA, Zhang X, Sun Q, Ma Z. Cryptotanshinone Suppresses Non-Small Cell Lung Cancer via microRNA-146a-5p/EGFR Axis. Int J Biol Sci 2019; 15:1072-1079. [PMID: 31182926 PMCID: PMC6535795 DOI: 10.7150/ijbs.31277] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/28/2019] [Indexed: 12/25/2022] Open
Abstract
Epidermal growth factor receptor (EGFR), a cancer-driven gene, plays an important role in tumorigenesis of lung cancer. Cryptotanshinone (CT) is the main constituent of salia miltiorrhiza and has been found to affect tumor progression. However, the mechanism of CT on lung cancer is still not clear. Here we found that CT could suppress the proliferation of non-small cell lung cancer (NSCLC) by inhibiting EGFR. We further confirmed that knockdown of EGFR also suppressed cell proliferation and arrested cell cycle progression. Furthermore, we evaluated EGFR was a direct target gene of miR-146a-5p which was upregulated by CT. In general, our results proved that CT could restrain NSCLC via miR-146a-5p/EGFR axis. CT and miR-146a-5p have the potential to be positive candidates in drug development of NSCLC.
Collapse
Affiliation(s)
- Pengfei Qi
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yanli Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiaomin Liu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Fatemeh A Jafari
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xinju Zhang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qiangling Sun
- Department of Thoracic Surgery, Shanghai Chest Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
135
|
Contreras A, Leroy B, Mariage PA, Wattiez R. Proteomic analysis reveals novel insights into tanshinones biosynthesis in Salvia miltiorrhiza hairy roots. Sci Rep 2019; 9:5768. [PMID: 30962498 PMCID: PMC6453882 DOI: 10.1038/s41598-019-42164-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 03/26/2019] [Indexed: 12/29/2022] Open
Abstract
Salvia miltiorrhiza is a medicinal plant highly appreciated by its content of tanshinones and salvianolic acids. Tanshinones are of particular relevance for their anti-oxidant, anti-tumoral and anti-inflammatory properties. Abiotic and biotic agents as silver nitrate and yeast extract have shown efficiently to stimulate tanshinone accumulation, but the underlying molecular mechanism remains essentially unknown. By using hairy roots as experimental material and the elicitors mentioned, were obtained up to 22 mg of tanshinones per gram of dry weight. Differential label-free quantitative proteomic analysis was applied to study the proteins involved in tanshinone biosynthesis. A total of 2650 proteins were identified in roots extracts, of which 893 showed statistically (p < 0.05) significant change in relative abundance compared to control roots, 251 proteins were upregulated and 642 downregulated. Among the upregulated proteins the predominant functional categories were metabolism (47%), stress defense (18%) and redox homeostasis (10%). Within the metabolism category, isoprenoid metabolism enzymes, cytochromes P450 and FAD-binding berberine proteins showed abundance profile linked to tanshinone concentration. The results presented here allowed to propose 5 new cytochromes P450 and 5 berberine enzymes as candidates to be involved into tanshinone biosynthesis, a novel finding that opens new avenues to improve tanshinone production through biotechnological approaches.
Collapse
Affiliation(s)
- Angela Contreras
- Proteomics and Microbiology department, Research center for Biosciences, University of Mons, 20 place du Parc, Mons, 7000, Belgium
| | - Baptiste Leroy
- Proteomics and Microbiology department, Research center for Biosciences, University of Mons, 20 place du Parc, Mons, 7000, Belgium
| | | | - Ruddy Wattiez
- Proteomics and Microbiology department, Research center for Biosciences, University of Mons, 20 place du Parc, Mons, 7000, Belgium.
| |
Collapse
|
136
|
Li Q, Feng J, Chen L, Xu Z, Zhu Y, Wang Y, Xiao Y, Chen J, Zhou Y, Tan H, Zhang L, Chen W. Genome-Wide Identification and Characterization of Salvia miltiorrhiza Laccases Reveal Potential Targets for Salvianolic Acid B Biosynthesis. FRONTIERS IN PLANT SCIENCE 2019; 10:435. [PMID: 31024599 PMCID: PMC6463009 DOI: 10.3389/fpls.2019.00435] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 03/22/2019] [Indexed: 05/29/2023]
Abstract
Laccases are widely distributed in plant kingdom catalyzing the polymerization of lignin monolignols. Rosmarinic acid (RA) has a lignin monolignol-like structure and is converted into salvianolic acid B (SAB), which is a representatively effective hydrophilic compound of a well-known medicinal plant Salvia miltiorrhiza and also the final compound of phenolic acids metabolism pathway in the plant. But the roles of laccases in the biosynthesis of SAB are poorly understood. This work systematically characterizes S. miltiorrhiza laccase (SmLAC) gene family and identifies the SAB-specific candidates. Totally, 29 laccase candidates (SmLAC1-SmLAC29) are found to contain three signature Cu-oxidase domains. They present relatively low sequence identity and diverse intron-exon patterns. The phylogenetic clustering of laccases from S. miltiorrhiza and other ten plants indicates that the 29 SmLACs can be divided into seven groups, revealing potential distinct functions. Existence of diverse cis regulatory elements in the SmLACs promoters suggests putative interactions with transcription factors. Seven SmLACs are found to be potential targets of miR397. Putative glycosylation sites and phosphorylation sites are identified in SmLAC amino acid sequences. Moreover, the expression profile of SmLACs in different organs and tissues deciphers that 5 SmLACs (SmLAC7/8/20/27/28) are expressed preferentially in roots, adding the evidence that they may be involved in the phenylpropanoid metabolic pathway. Besides, silencing of SmLAC7, SmLAC20 and SmLAC28, and overexpression of SmLAC7 and SmLAC20 in the hairy roots of S. miltiorrhiza result in diversification of SAB, signifying that SmLAC7 and SmLAC20 take roles in SAB biosynthesis. The results of this study lay a foundation for further elucidation of laccase functions in S. miltiorrhiza, and add to the knowledge for SAB biosynthesis in S. miltiorrhiza.
Collapse
Affiliation(s)
- Qing Li
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jingxian Feng
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Liang Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhichao Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yingjie Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yun Wang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ying Xiao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Junfeng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yangyun Zhou
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hexin Tan
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
137
|
Lu S. De novo origination of MIRNAs through generation of short inverted repeats in target genes. RNA Biol 2019; 16:846-859. [PMID: 30870071 DOI: 10.1080/15476286.2019.1593744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
MIRNA (MIR) gene origin and early evolutionary processes, such as hairpin precursor sequence origination, promoter activity acquirement and the sequence of these two processes, are fundamental and fascinating subjects. Three models, including inverted gene duplication, spontaneous evolution and transposon transposition, have been proposed for de novo origination of hairpin precursor sequence. However, these models still open to discussion. In addition, de novo origination of MIR gene promoters has not been well investigated. Here, I systematically investigated the origin of evolutionarily young polyphenol oxidase gene (PPO)-targeting MIRs, including MIR1444, MIR058 and MIR12112, and a genomic region termed AasPPO-as-hp, which contained a hairpin-forming sequence. I found that MIR058 precursors and the hairpin-forming sequence of AasPPO-as-hp originated in an ancient PPO gene through forming short inverted repeats. Palindromic-like sequences and imperfect inverted repeats in the ancient PPO gene contributed to initiate the generation of short inverted repeats probably by causing errors during DNA duplication. Analysis of MIR058 and AasPPO-as-hp promoters showed that they originated in the 3'-flanking region of the ancient PPO gene. Promoter activities were gained by insertion of a CAAT-box and multiple-copper-response element (CuRE)-containing miniature inverted-repeat transposable element (MITE) in the upstream of AT-rich TATA-box-like sequence. Gain of promoter activities occurred before hairpin-forming sequence origination. Sequence comparison of MIR1444, MIR058 and MIR12112 promoters showed frequent birth and death of CuREs, indicating copper could be vital for the origination and evolution of PPO-targeting MIRs. Based on the evidence obtained, a novel model for plant MIR origination and evolution is proposed.
Collapse
Affiliation(s)
- Shanfa Lu
- a Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing , China
| |
Collapse
|
138
|
Sun W, Leng L, Yin Q, Xu M, Huang M, Xu Z, Zhang Y, Yao H, Wang C, Xiong C, Chen S, Jiang C, Xie N, Zheng X, Wang Y, Song C, Peters RJ, Chen S. The genome of the medicinal plant Andrographis paniculata provides insight into the biosynthesis of the bioactive diterpenoid neoandrographolide. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:841-857. [PMID: 30444296 PMCID: PMC7252214 DOI: 10.1111/tpj.14162] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 05/09/2023]
Abstract
Andrographis paniculata is a herbaceous dicot plant widely used for its anti-inflammatory and anti-viral properties across its distribution in China, India and other Southeast Asian countries. A. paniculata was used as a crucial therapeutic treatment during the influenza epidemic of 1919 in India, and is still used for the treatment of infectious disease in China. A. paniculata produces large quantities of the anti-inflammatory diterpenoid lactones andrographolide and neoandrographolide, and their analogs, which are touted to be the next generation of natural anti-inflammatory medicines for lung diseases, hepatitis, neurodegenerative disorders, autoimmune disorders and inflammatory skin diseases. Here, we report a chromosome-scale A. paniculata genome sequence of 269 Mb that was assembled by Illumina short reads, PacBio long reads and high-confidence (Hi-C) data. Gene annotation predicted 25 428 protein-coding genes. In order to decipher the genetic underpinning of diterpenoid biosynthesis, transcriptome data from seedlings elicited with methyl jasmonate were also obtained, which enabled the identification of genes encoding diterpenoid synthases, cytochrome P450 monooxygenases, 2-oxoglutarate-dependent dioxygenases and UDP-dependent glycosyltransferases potentially involved in diterpenoid lactone biosynthesis. We further carried out functional characterization of pairs of class-I and -II diterpene synthases, revealing the ability to produce diversified labdane-related diterpene scaffolds. In addition, a glycosyltransferase able to catalyze O-linked glucosylation of andrograpanin, yielding the major active product neoandrographolide, was also identified. Thus, our results demonstrate the utility of the combined genomic and transcriptomic data set generated here for the investigation of the production of the bioactive diterpenoid lactone constituents of the important medicinal herb A. paniculata.
Collapse
Affiliation(s)
- Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Liang Leng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Qinggang Yin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - MeiMei Xu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011-1079, USA
| | - Mingkun Huang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Zhichao Xu
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 100193, Beijing, China
| | - Yujun Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Hui Yao
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 100193, Beijing, China
| | - Caixia Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Chao Xiong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Sha Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Chunhong Jiang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., 341008, Ganzhou, China
| | - Ning Xie
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., 341008, Ganzhou, China
| | - Xilong Zheng
- Hainan Branch, Institute of Medicinal Plant Development, 570311, Wanning, China
| | - Ying Wang
- Wuhan Benagen Tech Solutions Company Limited, 430070, Wuhan, China
| | - Chi Song
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011-1079, USA
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| |
Collapse
|
139
|
Herbgenomics: A stepping stone for research into herbal medicine. SCIENCE CHINA-LIFE SCIENCES 2019; 62:913-920. [DOI: 10.1007/s11427-018-9472-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022]
|
140
|
Wei T, Gao Y, Deng K, Zhang L, Yang M, Liu X, Qi C, Wang C, Song W, Zhang Y, Chen C. Enhancement of tanshinone production in Salvia miltiorrhiza hairy root cultures by metabolic engineering. PLANT METHODS 2019; 15:53. [PMID: 31143241 PMCID: PMC6532201 DOI: 10.1186/s13007-019-0439-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/15/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Tanshinones are diterpenoid compounds that are used to treat cardiovascular diseases. As current extraction methods for tanshinones are inefficient, there is a pressing need to improve the production of these bioactive compounds to meet increasing demand. RESULTS Overexpression of SmMDS (2-c-methyl-d-erythritol 2,4-cyclodiphosphate synthase, a tanshinone biosynthesis gene) in transgenic Salvia miltiorrhiza hairy roots significantly increased the tanshinone yield compared to the control, and total tanshinone content in SmMDS-overexpressing lines increased after elicitor treatment. Total tanshinones increased to 2.5, 2.3, and 3.2 mg/g DW (dry weight) following treatment with Ag+, YE (yeast extract), and MJ (methyl jasmonate), respectively, compared with the non-induced transgenic line (1.7 mg/g DW). Also, qRT-PCR analysis showed that the expression levels of two pathway genes was positively correlated with increased accumulation of tanshinone. CONCLUSIONS Our study provides an effective strategy for increasing the content of tanshinones and other natural compounds using a combination of genetic engineering and elicitor treatment.
Collapse
Affiliation(s)
- Tao Wei
- National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin, 300071 People’s Republic of China
- College of Life Sciences, Nankai University, Tianjin, 300071 People’s Republic of China
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
| | - Yonghong Gao
- College of Life Sciences, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Kejun Deng
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
| | - Lipeng Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Meiling Yang
- College of Life Sciences, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Xiaopei Liu
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
| | - Caiyan Qi
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
| | - Chunguo Wang
- College of Life Sciences, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Wenqin Song
- College of Life Sciences, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yong Zhang
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
| | - Chengbin Chen
- College of Life Sciences, Nankai University, Tianjin, 300071 People’s Republic of China
| |
Collapse
|
141
|
Sun M, Shi M, Wang Y, Huang Q, Yuan T, Wang Q, Wang C, Zhou W, Kai G. The biosynthesis of phenolic acids is positively regulated by the JA-responsive transcription factor ERF115 in Salvia miltiorrhiza. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:243-254. [PMID: 30299490 DOI: 10.1093/jxb/ery349] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/29/2018] [Indexed: 05/20/2023]
Abstract
Phenolic acids are important secondary metabolites produced in the Chinese medicinal plant Salvia miltiorrhiza, but little is known about the transcription factors involved in the regulation of tanshinone and phenolic acid biosynthesis. Here, a novel AP2/ERF transcription factor SmERF115 was isolated and functionally characterized. SmERF115 was most responsive to methyl jasmonate (MeJA) treatment and was localized in the nucleus. The phenolic acid production was increased in SmERF115-overexpressing hairy roots, but with a decrease in tanshinone content. In contrast, silencing of SmERF115 reduced the phenolic acid level, but increased tanshinone content. The expression of the key biosynthetic gene SmRAS1 was up-regulated in SmERF115 overexpression lines but was down-regulated in SmERF115-RNAi lines. Yeast one-hybrid (Y1H) assay and EMSA showed that SmERF115 directly binds to the promoter of SmRAS1, while dual-luciferase assays showed that SmERF115 could activate expression of SmRAS1 in vivo. Furthermore, global transcriptomic analysis by RNA sequencing revealed that expression of other genes such as PAL3, 4CL5, TAT3, and RAS4 was also increased in the overexpression line, implying that they were potentially involved in the SmERF115-mediated pathway. Our data show that SmERF115 is a positive regulator of phenolic acid biosynthesis, and may be a potential target for further metabolic engineering of phenolic acid biosynthesis in S. miltiorrhiza.
Collapse
Affiliation(s)
- Meihong Sun
- Institute of Plant Biotechnology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, PR China
| | - Min Shi
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Yao Wang
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Qiang Huang
- Institute of Plant Biotechnology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, PR China
| | - Tingpan Yuan
- Institute of Plant Biotechnology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, PR China
| | - Qiang Wang
- Institute of Plant Biotechnology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, PR China
| | - Can Wang
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Wei Zhou
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
142
|
Wang B, Niu J, Li B, Huang Y, Han L, Liu Y, Zhou W, Hu S, Li L, Wang D, Wang S, Cao X, Wang Z. Molecular Characterization and Overexpression of SmJMT Increases the Production of Phenolic Acids in Salvia miltiorrhiza. Int J Mol Sci 2018; 19:E3788. [PMID: 30487420 PMCID: PMC6321555 DOI: 10.3390/ijms19123788] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/20/2018] [Accepted: 11/25/2018] [Indexed: 12/27/2022] Open
Abstract
Jasmonic acid (JA) carboxyl methyltransferase (JMT), a key enzyme in jasmonate-regulated plant responses, may be involved in plant defense and development by methylating JA to MeJA, thus influencing the concentrations of MeJA in plant. In this study, we isolated the JMT gene from Salvia miltiorrhiza, an important medicinal plant widely used to treat cardiovascular disease. We present a genetic manipulation strategy to enhance the production of phenolic acids by overexpresion SmJMT in S. miltiorrhiza. Global transcriptomic analysis using RNA sequencing showed that the expression levels of genes involved in the biosynthesis pathway of phenolic acids and MeJA were upregulated in the overexpression lines. In addition, the levels of endogenous MeJA, and the accumulation of rosmarinic acid (RA) and salvianolic acid (Sal B), as well as the concentrations of total phenolics and total flavonoids in transgenic lines, were significantly elevated compared with the untransformed control. Our results demonstrate that overexpression of SmJMT promotes the production of phenolic acids through simultaneously activating genes encoding key enzymes involved in the biosynthesis pathway of phenolic acids and enhancing the endogenous MeJA levels in S. miltiorrhiza.
Collapse
Affiliation(s)
- Bin Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
- College of Chemistry, Biology and Materials Science, East China University of Technology, NanChang 330013, China.
| | - Junfeng Niu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Bin Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Yaya Huang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Limin Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Yuanchu Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Wen Zhou
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Suying Hu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Lin Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Donghao Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Shiqiang Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Xiaoyan Cao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Zhezhi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
143
|
Zhang H, Jin B, Bu J, Guo J, Chen T, Ma Y, Tang J, Cui G, Huang L. Transcriptomic Insight into Terpenoid Biosynthesis and Functional Characterization of Three Diterpene Synthases in Scutellaria barbata. Molecules 2018; 23:molecules23112952. [PMID: 30424547 PMCID: PMC6278268 DOI: 10.3390/molecules23112952] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 11/30/2022] Open
Abstract
Scutellaria barbata (Lamiaceae) is an important medicinal herb widely used in China, Korea, India, and other Asian countries. Neo-clerodane diterpenoids are the largest known group of Scutellaria diterpenoids and show promising cytotoxic activity against several cancer cell lines. Here, Illumina-based deep transcriptome analysis of flowers, the aerial parts (leaf and stem), and roots of S. barbata was used to explore terpenoid-related genes. In total, 121,958,564 clean RNA-sequence reads were assembled into 88,980 transcripts, with an average length of 1370 nt and N50 length of 2144 nt, indicating high assembly quality. We identified nearly all known terpenoid-related genes (33 genes) involved in biosynthesis of the terpenoid backbone and 14 terpene synthase genes which generate skeletons for different terpenoids. Three full length diterpene synthase genes were functionally identified using an in vitro assay. SbTPS8 and SbTPS9 were identified as normal-CPP and ent-CPP synthase, respectively. SbTPS12 reacts with SbTPS8 to produce miltiradiene. Furthermore, SbTPS12 was proven to be a less promiscuous class I diterpene synthase. These results give a comprehensive understanding of the terpenoid biosynthesis in S. barbata and provide useful information for enhancing the production of bioactive neo-clerodane diterpenoids through genetic engineering.
Collapse
Affiliation(s)
- Huabei Zhang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Baolong Jin
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Junling Bu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Juan Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Tong Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Ying Ma
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Jinfu Tang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Guanghong Cui
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
144
|
Zheng SG, Hu YD, Zhao RX, Yan S, Zhang XQ, Zhao TM, Chun Z. Genome-wide researches and applications on Dendrobium. PLANTA 2018; 248:769-784. [PMID: 30066218 DOI: 10.1007/s00425-018-2960-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/21/2018] [Indexed: 05/10/2023]
Abstract
This review summarizes current knowledge of chromosome characterization, genetic mapping, genomic sequencing, quality formation, floral transition, propagation, and identification in Dendrobium. The widely distributed Dendrobium has been studied for a long history, due to its important economic values in both medicine and ornamental. In recent years, some species of Dendrobium and other orchids had been reported on genomic sequences, using the next-generation sequencing technology. And the chloroplast genomes of many Dendrobium species were also revealed. The chromosomes of most Dendrobium species belong to mini-chromosomes, and showed 2n = 38. Only a few of genetic studies were reported in Dendrobium. After revealing of genomic sequences, the techniques of transcriptomics, proteomics and metabolomics could be employed on Dendrobium easily. Some other molecular biological techniques, such as gene cloning, gene editing, genetic transformation and molecular marker developing, had also been applied on the basic research of Dendrobium, successively. As medicinal plants, insights into the biosynthesis of some medicinal components were the most important. As ornamental plants, regulation of flower related characteristics was the most important. More, knowledge of growth and development, environmental interaction, evolutionary analysis, breeding of new cultivars, propagation, and identification of species and herbs were also required for commercial usage. All of these studies were improved using genomic sequences and related technologies. To answer some key scientific issues in Dendrobium, quality formation, flowering, self-incompatibility and seed germination would be the focus of future research. And genome related technologies and studies would be helpful.
Collapse
Affiliation(s)
- Shi-Gang Zheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Ya-Dong Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Ruo-Xi Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Shou Yan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100041, China
| | - Xue-Qin Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100041, China
| | - Ting-Mei Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100041, China
| | - Ze Chun
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
145
|
Yasodha R, Vasudeva R, Balakrishnan S, Sakthi AR, Abel N, Binai N, Rajashekar B, Bachpai VKW, Pillai C, Dev SA. Draft genome of a high value tropical timber tree, Teak (Tectona grandis L. f): insights into SSR diversity, phylogeny and conservation. DNA Res 2018; 25:409-419. [PMID: 29800113 PMCID: PMC6105116 DOI: 10.1093/dnares/dsy013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/19/2018] [Indexed: 12/31/2022] Open
Abstract
Teak (Tectona grandis L. f.) is one of the precious bench mark tropical hardwood having qualities of durability, strength and visual pleasantries. Natural teak populations harbour a variety of characteristics that determine their economic, ecological and environmental importance. Sequencing of whole nuclear genome of teak provides a platform for functional analyses and development of genomic tools in applied tree improvement. A draft genome of 317 Mb was assembled at 151× coverage and annotated 36, 172 protein-coding genes. Approximately about 11.18% of the genome was repetitive. Microsatellites or simple sequence repeats (SSRs) are undoubtedly the most informative markers in genotyping, genetics and applied breeding applications. We generated 182,712 SSRs at the whole genome level, of which, 170,574 perfect SSRs were found; 16,252 perfect SSRs showed in silico polymorphisms across six genotypes suggesting their promising use in genetic conservation and tree improvement programmes. Genomic SSR markers developed in this study have high potential in advancing conservation and management of teak genetic resources. Phylogenetic studies confirmed the taxonomic position of the genus Tectona within the family Lamiaceae. Interestingly, estimation of divergence time inferred that the Miocene origin of the Tectona genus to be around 21.4508 million years ago.
Collapse
Affiliation(s)
- Ramasamy Yasodha
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, Tamil Nadu, India
| | - Ramesh Vasudeva
- Forest Genetics and Biotechnology Division, Kerala Forest Research Institute, Peechi, Thrissur, Kerala, India
| | - Swathi Balakrishnan
- Department of Forest Biology and Tree Improvement, University of Agricultural Sciences, College of Forestry, Sirsi, Uttara Kannada, Karnataka, India
| | - Ambothi Rathnasamy Sakthi
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, Tamil Nadu, India
| | - Nicodemus Abel
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, Tamil Nadu, India
| | - Nagarajan Binai
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, Tamil Nadu, India
| | - Balaji Rajashekar
- Genotypic Technology Private Limited, Bengaluru, Karnataka, India.,Institute of Computer Science, University of Tartu, Estonia
| | - Vijay Kumar Waman Bachpai
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, Tamil Nadu, India
| | - Chandrasekhara Pillai
- Department of Forest Biology and Tree Improvement, University of Agricultural Sciences, College of Forestry, Sirsi, Uttara Kannada, Karnataka, India
| | - Suma Arun Dev
- Department of Forest Biology and Tree Improvement, University of Agricultural Sciences, College of Forestry, Sirsi, Uttara Kannada, Karnataka, India
| |
Collapse
|
146
|
Trends in herbgenomics. SCIENCE CHINA-LIFE SCIENCES 2018; 62:288-308. [PMID: 30128965 DOI: 10.1007/s11427-018-9352-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/03/2018] [Indexed: 02/06/2023]
Abstract
From Shen Nong's Herbal Classic (Shennong Bencao Jing) to the Compendium of Materia Medica (Bencao Gangmu) and the first scientific Nobel Prize for the mainland of China, each milestone in the historical process of the development of traditional Chinese medicine (TCM) involves screening, testing and integrating. After thousands of years of inheritance and development, herbgenomics (bencaogenomics) has bridged the gap between TCM and international advanced omics studies, promoting the application of frontier technologies in TCM. It is a discipline that uncovers the genetic information and regulatory networks of herbs to clarify their molecular mechanism in the prevention and treatment of human diseases. The main theoretical system includes genomics, functional genomics, proteomics, transcriptomics, metabolomics, epigenomics, metagenomics, synthetic biology, pharmacogenomics of TCM, and bioinformatics, among other fields. Herbgenomics is mainly applicable to the study of medicinal model plants, genomic-assisted breeding, herbal synthetic biology, protection and utilization of gene resources, TCM quality evaluation and control, and TCM drug development. Such studies will accelerate the application of cutting-edge technologies, revitalize herbal research, and strongly promote the development and modernization of TCM.
Collapse
|
147
|
Boachon B, Buell CR, Crisovan E, Dudareva N, Garcia N, Godden G, Henry L, Kamileen MO, Kates HR, Kilgore MB, Lichman BR, Mavrodiev EV, Newton L, Rodriguez-Lopez C, O'Connor SE, Soltis D, Soltis P, Vaillancourt B, Wiegert-Rininger K, Zhao D. Phylogenomic Mining of the Mints Reveals Multiple Mechanisms Contributing to the Evolution of Chemical Diversity in Lamiaceae. MOLECULAR PLANT 2018; 11:1084-1096. [PMID: 29920355 DOI: 10.1016/j.molp.2018.06.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/05/2018] [Accepted: 06/10/2018] [Indexed: 05/24/2023]
Abstract
The evolution of chemical complexity has been a major driver of plant diversification, with novel compounds serving as key innovations. The species-rich mint family (Lamiaceae) produces an enormous variety of compounds that act as attractants and defense molecules in nature and are used widely by humans as flavor additives, fragrances, and anti-herbivory agents. To elucidate the mechanisms by which such diversity evolved, we combined leaf transcriptome data from 48 Lamiaceae species and four outgroups with a robust phylogeny and chemical analyses of three terpenoid classes (monoterpenes, sesquiterpenes, and iridoids) that share and compete for precursors. Our integrated chemical-genomic-phylogenetic approach revealed that: (1) gene family expansion rather than increased enzyme promiscuity of terpene synthases is correlated with mono- and sesquiterpene diversity; (2) differential expression of core genes within the iridoid biosynthetic pathway is associated with iridoid presence/absence; (3) generally, production of iridoids and canonical monoterpenes appears to be inversely correlated; and (4) iridoid biosynthesis is significantly associated with expression of geraniol synthase, which diverts metabolic flux away from canonical monoterpenes, suggesting that competition for common precursors can be a central control point in specialized metabolism. These results suggest that multiple mechanisms contributed to the evolution of chemodiversity in this economically important family.
Collapse
|
148
|
Sun MY, Li JY, Li D, Huang FJ, Wang D, Li H, Xing Q, Zhu HB, Shi L. Full-Length Transcriptome Sequencing and Modular Organization Analysis of the Naringin/Neoeriocitrin-Related Gene Expression Pattern in Drynaria roosii. PLANT & CELL PHYSIOLOGY 2018; 59:1398-1414. [PMID: 29660070 DOI: 10.1093/pcp/pcy072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/31/2018] [Indexed: 05/28/2023]
Abstract
Drynaria roosii (Nakaike) is a traditional Chinese medicinal fern, known as 'GuSuiBu'. The effective components, naringin and neoeriocitrin, share a highly similar chemical structure and medicinal function. Our HPLC-tandem mass spectrometry (MS/MS) results showed that the accumulation of naringin/neoeriocitrin depended on specific tissues or ages. However, little was known about the expression patterns of naringin/neoeriocitrin-related genes involved in their regulatory pathways. Due to a lack of basic genetic information, we applied a combination of single molecule real-time (SMRT) sequencing and second-generation sequencing (SGS) to generate the complete and full-length transcriptome of D. roosii. According to the SGS data, the differentially expressed gene (DEG)-based heat map analysis revealed that naringin/neoeriocitrin-related gene expression exhibited obvious tissue- and time-specific transcriptomic differences. Using the systems biology method of modular organization analysis, we clustered 16,472 DEGs into 17 gene modules and studied the relationships between modules and tissue/time point samples, as well as modules and naringin/neoeriocitrin contents. We found that naringin/neoeriocitrin-related DEGs distributed in nine distinct modules, and DEGs in these modules showed significantly different patterns of transcript abundance to be linked to specific tissues or ages. Moreover, weighted gene co-expression network analysis (WGCNA) results further identified that PAL, 4CL and C4H, and C3H and HCT acted as the major hub genes involved in naringin and neoeriocitrin synthesis, respectively, and exhibited high co-expression with MYB- and basic helix-leucine-helix (bHLH)-regulated genes. In this work, modular organization and co-expression networks elucidated the tissue and time specificity of the gene expression pattern, as well as hub genes associated with naringin/neoeriocitrin synthesis in D. roosii. Simultaneously, the comprehensive transcriptome data set provided important genetic information for further research on D. roosii.
Collapse
Affiliation(s)
- Mei-Yu Sun
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jing-Yi Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dong Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Feng-Jie Huang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Di Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hui Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Quan Xing
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hui-Bin Zhu
- Hangzhou1gene Technology Co., Ltd., HangZhou, China
| | - Lei Shi
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
149
|
Dong AX, Xin HB, Li ZJ, Liu H, Sun YQ, Nie S, Zhao ZN, Cui RF, Zhang RG, Yun QZ, Wang XN, Maghuly F, Porth I, Cong RC, Mao JF. High-quality assembly of the reference genome for scarlet sage, Salvia splendens, an economically important ornamental plant. Gigascience 2018; 7:5040257. [PMID: 29931210 PMCID: PMC6030905 DOI: 10.1093/gigascience/giy068] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 05/06/2018] [Accepted: 06/15/2018] [Indexed: 12/03/2022] Open
Abstract
Background Salvia splendens Ker-Gawler, scarlet or tropical sage, is a tender herbaceous perennial widely introduced and seen in public gardens all over the world. With few molecular resources, breeding is still restricted to traditional phenotypic selection, and the genetic mechanisms underlying phenotypic variation remain unknown. Hence, a high-quality reference genome will be very valuable for marker-assisted breeding, genome editing, and molecular genetics. Findings We generated 66 Gb and 37 Gb of raw DNA sequences, respectively, from whole-genome sequencing of a largely homozygous scarlet sage inbred line using Pacific Biosciences (PacBio) single-molecule real-time and Illumina HiSeq sequencing platforms. The PacBio de novo assembly yielded a final genome with a scaffold N50 size of 3.12 Mb and a total length of 808 Mb. The repetitive sequences identified accounted for 57.52% of the genome sequence, and 54,008 protein-coding genes were predicted collectively with ab initio and homology-based gene prediction from the masked genome. The divergence time between S. splendens and Salvia miltiorrhiza was estimated at 28.21 million years ago (Mya). Moreover, 3,797 species-specific genes and 1,187 expanded gene families were identified for the scarlet sage genome. Conclusions We provide the first genome sequence and gene annotation for the scarlet sage. The availability of these resources will be of great importance for further breeding strategies, genome editing, and comparative genomics among related species.
Collapse
Affiliation(s)
- Ai-Xiang Dong
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Institute of Landscape Architecture, Beijing, 100102, China
| | - Hai-Bo Xin
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Institute of Landscape Architecture, Beijing, 100102, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zi-Jing Li
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Institute of Landscape Architecture, Beijing, 100102, China
| | - Hui Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yan-Qiang Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shuai Nie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zheng-Nan Zhao
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Institute of Landscape Architecture, Beijing, 100102, China
| | - Rong-Feng Cui
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Institute of Landscape Architecture, Beijing, 100102, China
| | - Ren-Gang Zhang
- Beijing Ori-Gene Science and Technology Co. Ltd, Beijing, 102206, China
| | - Quan-Zheng Yun
- Beijing Ori-Gene Science and Technology Co. Ltd, Beijing, 102206, China
| | - Xin-Ning Wang
- Beijing Ori-Gene Science and Technology Co. Ltd, Beijing, 102206, China
| | - Fatemeh Maghuly
- Plant Biotechnology Unit, Department of Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Ilga Porth
- Département des sciences du bois et de la forêt, Pavillon Charles-Eugène-Marchand, 1030, Avenue de la Médecine, Université Laval, Québec (Québec) G1V 0A6, Canada
| | - Ri-Chen Cong
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Institute of Landscape Architecture, Beijing, 100102, China
| | - Jian-Feng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
150
|
Transcriptional activity and subcellular location of SmWRKY42-like and its response to gibberellin and ethylene treatments in Salvia miltiorrhiza hairy roots. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|