101
|
Reardon AM, Hu XP, Li K, Langley J. Subtyping Autism Spectrum Disorder via Joint Modeling of Clinical and Connectomic Profiles. Brain Connect 2021; 12:193-205. [PMID: 34102874 DOI: 10.1089/brain.2020.0997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a highly heterogeneous developmental disorder with diverse clinical manifestations. Neuroimaging studies have explored functional connectivity (FC) of ASD through resting-state functional MRI studies, however the findings have remained inconsistent, thus reflecting the possibility of multiple subtypes. Identification of the relationship between clinical symptoms and FC measures may help clarify the inconsistencies in earlier findings and advance our understanding of ASD subtypes. METHODS Canonical correlation analysis was performed on two-hundred and ten ASD subjects from the Autism Brain Imaging Data Exchange to identify significant linear combinations of resting-state connectomic and clinical profiles of ASD. Then, hierarchical clustering defined ASD subtypes based on distinct brain-behavior relationships. Finally, a support vector machine classifier was used to verify that subtypes were comprised of subjects with distinct clinical and connectivity features. RESULTS Three ASD subtypes were identified. Subtype 1 exhibited increased intra-network FC, increased IQ scores and restricted and repetitive behaviors. Subtype 2 was characterized by decreased whole-brain FC and more severe ADI-R and SRS symptoms. Subtype 3 demonstrated mixed FC, low IQ scores, as well as social motivation and verbal deficits. To verify subtype assignment, a multi-class support vector machine using connectomic and clinical profiles yielded an average accuracy of 71.3% and 65.2% respectively for subtype classification, which is significantly higher than chance (33.3%). CONCLUSION The present study demonstrates that combining connectomic and behavioral measures is a powerful approach for disease subtyping and suggests that there are ASD subtypes with distinct connectomic and clinical profiles.
Collapse
Affiliation(s)
- Alexandra M Reardon
- University of California Riverside, 8790, Biomedical Engineering, Riverside, California, United States;
| | - Xiaoping P Hu
- University of California Riverside, 8790, Biomedical Engineering, Riverside, California, United States.,University of California Riverside, 8790, Center for Advanced NeuroImaging, Riverside, California, United States;
| | - Kaiming Li
- University of California Riverside, 8790, Center for Advanced NeuroImaging, Riverside, California, United States;
| | - Jason Langley
- University of California Riverside, 8790, Center for Advanced NeuroImaging, Riverside, California, United States;
| |
Collapse
|
102
|
Nassar MR, Troiani V. The stability flexibility tradeoff and the dark side of detail. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 21:607-623. [PMID: 33236296 PMCID: PMC8141540 DOI: 10.3758/s13415-020-00848-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 12/26/2022]
Abstract
Learning in dynamic environments requires integrating over stable fluctuations to minimize the impact of noise (stability) but rapidly responding in the face of fundamental changes (flexibility). Achieving one of these goals often requires sacrificing the other to some degree, producing a stability-flexibility tradeoff. Individuals navigate this tradeoff in different ways; some people learn rapidly (emphasizing flexibility) and others rely more heavily on historical information (emphasizing stability). Despite the prominence of such individual differences in learning tasks, the degree to which they relate to broader characteristics of real-world behavior or pathologies has not been well explored. We relate individual differences in learning behavior to self-report measures thought to capture collectively the characteristics of the Autism spectrum. We show that young adults who learn most slowly tend to integrate more effective samples into their beliefs about the world making them more robust to noise (more stability) but are more likely to integrate information from previous contexts (less flexibility). We show that individuals who report paying more attention to detail tend to use high flexibility and low stability information processing strategies. We demonstrate the robustness of this inverse relationship between attention to detail and formation of stable beliefs in a heterogeneous population of children that includes a high proportion of Autism diagnoses. Together, our results highlight that attention to detail reflects an information processing policy that comes with a substantial downside, namely the ability to integrate data to overcome environmental noise.
Collapse
Affiliation(s)
- Matthew R Nassar
- Department of Neuroscience; Carney Institute for Brain Science, Brown University, Providence, RI, 02912-1821, USA.
| | - Vanessa Troiani
- Geisinger-Bucknell Autism & Developmental Medicine Institute, Lewisburg, PA, USA
| |
Collapse
|
103
|
Jassim N, Baron-Cohen S, Suckling J. Meta-analytic evidence of differential prefrontal and early sensory cortex activity during non-social sensory perception in autism. Neurosci Biobehav Rev 2021; 127:146-157. [PMID: 33887326 DOI: 10.1016/j.neubiorev.2021.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 01/24/2023]
Abstract
To date, neuroimaging research has had a limited focus on non-social features of autism. As a result, neurobiological explanations for atypical sensory perception in autism are lacking. To address this, we quantitively condensed findings from the non-social autism fMRI literature in line with the current best practices for neuroimaging meta-analyses. Using activation likelihood estimation (ALE), we conducted a series of robust meta-analyses across 83 experiments from 52 fMRI studies investigating differences between autistic (n = 891) and typical (n = 967) participants. We found that typical controls, compared to autistic people, show greater activity in the prefrontal cortex (BA9, BA10) during perception tasks. More refined analyses revealed that, when compared to typical controls, autistic people show greater recruitment of the extrastriate V2 cortex (BA18) during visual processing. Taken together, these findings contribute to our understanding of current theories of autistic perception, and highlight some of the challenges of cognitive neuroscience research in autism.
Collapse
Affiliation(s)
- Nazia Jassim
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Douglas House, 18B Trumpington Road, Cambridge, CB2 8AH, United Kingdom.
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Douglas House, 18B Trumpington Road, Cambridge, CB2 8AH, United Kingdom
| | - John Suckling
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Douglas House, 18B Trumpington Road, Cambridge, CB2 8AH, United Kingdom; Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain and Mind Sciences, Forvie Site, Robinson Way, Cambridge, CB2 0SZ, United Kingdom
| |
Collapse
|
104
|
Amore G, Spoto G, Ieni A, Vetri L, Quatrosi G, Di Rosa G, Nicotera AG. A Focus on the Cerebellum: From Embryogenesis to an Age-Related Clinical Perspective. Front Syst Neurosci 2021; 15:646052. [PMID: 33897383 PMCID: PMC8062874 DOI: 10.3389/fnsys.2021.646052] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/22/2021] [Indexed: 11/17/2022] Open
Abstract
The cerebellum and its functional multiplicity and heterogeneity have been objects of curiosity and interest since ancient times, giving rise to the urge to reveal its complexity. Since the first hypothesis of cerebellar mere role in motor tuning and coordination, much more has been continuously discovered about the cerebellum’s circuitry and functioning throughout centuries, leading to the currently accepted knowledge of its prominent involvement in cognitive, social, and behavioral areas. Particularly in childhood, the cerebellum may subserve several age-dependent functions, which might be compromised in several Central Nervous System pathologies. Overall, cerebellar damage may produce numerous signs and symptoms and determine a wide variety of neuropsychiatric impairments already during the evolutive age. Therefore, an early assessment in children would be desirable to address a prompt diagnosis and a proper intervention since the first months of life. Here we provide an overview of the cerebellum, retracing its morphology, histogenesis, and physiological functions, and finally outlining its involvement in typical and atypical development and the age-dependent patterns of cerebellar dysfunctions.
Collapse
Affiliation(s)
- Greta Amore
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Antonio Ieni
- Unit of Pathology, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Luigi Vetri
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Giuseppe Quatrosi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| |
Collapse
|
105
|
Hashimoto T, Yokota S, Matsuzaki Y, Kawashima R. Intrinsic hippocampal functional connectivity underlying rigid memory in children and adolescents with autism spectrum disorder: A case-control study. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2021; 25:1901-1912. [PMID: 33779333 PMCID: PMC8419294 DOI: 10.1177/13623613211004058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Atypical learning and memory in early life can promote atypical behaviors in later life. Less relational learning and inflexible retrieval in childhood may enhance restricted and repeated behaviors in patients with autism spectrum disorder. The purpose of this study was to elucidate the mechanisms of atypical memory in children with autism spectrum disorder. We conducted picture–name pair learning and delayed-recognition tests with two groups: one group with high-functioning autism spectrum disorder children (aged 7–16, n = 41) and one group with typically developing children (n = 82) that matched the first group’s age, sex, and IQ. We assessed correlations between successful recognition scores and seed-to-whole-brain resting-state functional connectivity. Although both learning and retrieval performances were comparable between the two groups, we observed slightly lower category learning and significantly fewer memory gains in the autism spectrum disorder group than in the typically developing group. The right canonical anterior hippocampal network was involved in successful memory in youths with typically developing, while other memory systems may be involved in successful memory in youths with autism spectrum disorder. Context-independent and less relational memory processing may be associated with fewer memory gains in autism spectrum disorder. These atypical memory characteristics in autism spectrum disorder may accentuate their inflexible behaviors in some situations.
Collapse
|
106
|
Maximo JO, Nelson CM, Kana RK. "Unrest while Resting"? Brain entropy in autism spectrum disorder. Brain Res 2021; 1762:147435. [PMID: 33753068 DOI: 10.1016/j.brainres.2021.147435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/20/2021] [Accepted: 03/15/2021] [Indexed: 11/29/2022]
Abstract
Biological systems typically exhibit complex behavior with nonlinear dynamic properties. Nonlinear signal processing techniques such as sample entropy is a novel approach to characterize the temporal dynamics of brain connectivity. Estimating entropy is especially important in clinical populations such as autism spectrum disorder (ASD) as differences in entropy may signal functional alterations in the brain. Considering the models of disrupted brain network connectivity in ASD, sample entropy would provide a novel direction to understand brain organization. Resting state fMRI data from 45 high-functioning children with ASD and 45 age-and-IQ-matched typically developing (TD) children were obtained from the Autism Brain Imaging Data Exchange (ABIDE-II) database. Data were preprocessed using the CONN toolbox. Sample entropy was then calculated using the complexity toolbox, in a whole-brain voxelwise manner as well as in regions of interests (ROIs) based methods. ASD participants demonstrated significantly increased entropy in left angular gyrus, superior parietal lobule, and right inferior temporal gyrus; and reduced sample entropy in superior frontal gyrus compared to TD participants. Positive correlations of average entropy in clusters of significant group differences scores across all subjects were found. Finally, ROI analysis revealed a main effect of lobes. Differences in entropy between the ASD and TD groups suggests that entropy may provide another important index of brain dysfunction in clinical populations like ASD. Further, the relationship between increased entropy and ASD symptoms in our study underscores the role of optimal brain synchronization in cognitive and behavioral functions.
Collapse
Affiliation(s)
- Jose O Maximo
- Department of Psychiatry & Behavioral Neurobiology, University of Alabama at Birmingham, United States
| | - Cailee M Nelson
- Department of Educational Studies in Psychology, Research Methodology, & Counseling, University of Alabama, United States
| | - Rajesh K Kana
- Department of Psychology, University of Alabama, United States; Center for Innovative Research in Autism, University of Alabama, United States.
| |
Collapse
|
107
|
Idei H, Murata S, Yamashita Y, Ogata T. Paradoxical sensory reactivity induced by functional disconnection in a robot model of neurodevelopmental disorder. Neural Netw 2021; 138:150-163. [PMID: 33652371 DOI: 10.1016/j.neunet.2021.01.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/19/2020] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
Neurodevelopmental disorders are characterized by heterogeneous and non-specific nature of their clinical symptoms. In particular, hyper- and hypo-reactivity to sensory stimuli are diagnostic features of autism spectrum disorder and are reported across many neurodevelopmental disorders. However, computational mechanisms underlying the unusual paradoxical behaviors remain unclear. In this study, using a robot controlled by a hierarchical recurrent neural network model with predictive processing and learning mechanism, we simulated how functional disconnection altered the learning process and subsequent behavioral reactivity to environmental change. The results show that, through the learning process, long-range functional disconnection between distinct network levels could simultaneously lower the precision of sensory information and higher-level prediction. The alteration caused a robot to exhibit sensory-dominated and sensory-ignoring behaviors ascribed to sensory hyper- and hypo-reactivity, respectively. As long-range functional disconnection became more severe, a frequency shift from hyporeactivity to hyperreactivity was observed, paralleling an early sign of autism spectrum disorder. Furthermore, local functional disconnection at the level of sensory processing similarly induced hyporeactivity due to low sensory precision. These findings suggest a computational explanation for paradoxical sensory behaviors in neurodevelopmental disorders, such as coexisting hyper- and hypo-reactivity to sensory stimulus. A neurorobotics approach may be useful for bridging various levels of understanding in neurodevelopmental disorders and providing insights into mechanisms underlying complex clinical symptoms.
Collapse
Affiliation(s)
- Hayato Idei
- Department of Intermedia Studies, Waseda University, Tokyo, 169-8555, Japan.
| | - Shingo Murata
- Department of Electronics and Electrical Engineering, Keio University, Kanagawa, 223-8522, Japan.
| | - Yuichi Yamashita
- Department of Information Medicine, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan.
| | - Tetsuya Ogata
- Department of Intermedia Art and Science, Waseda University, Tokyo, 169-8555, Japan.
| |
Collapse
|
108
|
Supernumerary neurons within the cerebral cortical subplate in autism spectrum disorders. Brain Res 2021; 1760:147350. [PMID: 33607045 DOI: 10.1016/j.brainres.2021.147350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorders (ASDs) involve alterations to cortical connectivity that manifest as reduced coordinated activity between cortical regions. The neurons of the cortical subplate are a major contributor to establishing thalamocortical, corticothalamic and corticocortical long-range connections and only a subset of this cell population survives into adulthood. Previous reports of an indistinct gray-white matter boundary in subjects with ASD suggest that the adjacent subplate may also show organizational abnormalities. Frozen human postmortem tissue samples from the parietal lobe (BA7) were used to evaluate white-matter neuron densities adjacent to layer VI with an antibody to NeuN. In addition, fixed postmortem tissue samples from frontal (BA9), parietal (BA7) and temporal lobe (BA21) locations, were stained with a Golgi-Kopsch procedure, and used to examine the morphology of these neuronal profiles. Relative to control cases, ASD subjects showed a large average density increase of NeuN-positive profiles of 44.7 percent. The morphologies of these neurons were consistent with subplate cells of the fusiform, polymorphic and pyramidal cell types. Lower ratios of fusiform to other cell types are found early in development and although adult ASD subjects showed consistently lower ratios, these differences were not significant. The increased number of retained subplate profiles, along with cell type ratios redolent of earlier developmental stages, suggests either an abnormal initial population or a partial failure of the apoptosis seen in neurotypical development. These results indicate abnormalities within a neuron population that plays multiple roles in the developing and mature cerebral cortex, including the establishment of long-range cortical connections.
Collapse
|
109
|
Bathelt J, Geurts HM. Difference in default mode network subsystems in autism across childhood and adolescence. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2021; 25:556-565. [PMID: 33246376 PMCID: PMC7874372 DOI: 10.1177/1362361320969258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
LAY ABSTRACT Neuroimaging research has identified a network of brain regions that are more active when we daydream compared to when we are engaged in a task. This network has been named the default mode network. Furthermore, differences in the default mode network are the most consistent findings in neuroimaging research in autism. Recent studies suggest that the default mode network is composed of subnetworks that are tied to different functions, namely memory and understanding others' minds. In this study, we investigated if default mode network differences in autism are related to specific subnetworks of the default mode network and if these differences change across childhood and adolescence. Our results suggest that the subnetworks of the default mode network are less differentiated in autism in middle childhood compared to neurotypicals. By late adolescence, the default mode network subnetwork organisation was similar in the autistic and neurotypical groups. These findings provide a foundation for future studies to investigate if this developmental pattern relates to improvements in the integration of memory and social understanding as autistic children grow up.
Collapse
|
110
|
Haendel AD, Barrington A, Magnus B, Arias AA, McVey A, Pleiss S, Carson A, Vogt EM, Van Hecke AV. Changes in Electroencephalogram Coherence in Adolescents With Autism Spectrum Disorder After a Social Skills Intervention. Autism Res 2021; 14:787-803. [PMID: 33398936 DOI: 10.1002/aur.2459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/11/2022]
Abstract
Autism spectrum disorder (ASD) is a developmental condition that affects social communication and behavior. There is consensus that neurological differences are present in ASD. Further, theories emphasize the mixture of hypo- and hyper-connectivity as a neuropathologies in ASD [O'Reilly, Lewis, & Elsabbagh, 2017]; however, there is a paucity of studies specifically testing neurological underpinnings as predictors of success on social skills interventions. This study examined functional neural connectivity (electroencephalogram [EEG], coherence) of adolescents with ASD before and after the Program for the Education and Enrichment of Relational Skills (PEERS®) intervention, using a randomized controlled trial of two groups: an Experimental ASD (EXP) Group and a Waitlist Control ASD (WL) Group. The study had two purposes. First, the study aimed to determine whether changes in EEG coherence differed for adolescents that received PEERS® versus those that did not receive PEERS®. Results revealed a significant increase in connectivity in the occipital left to temporal left pair for the EXP group after intervention. Second, the study aimed to determine if changes in EEG coherence related to changes in behavior, friendships, and social skills measured by questionnaires. At post-intervention, results indicated: (a) positive change in frontal right to parietal right coherence was linked to an increase in social skills scores; and (b) positive changes in occipital right to temporal right coherence and occipital left to parietal left coherence were linked to an increase in the total number of get-togethers. Results of this study support utilizing neurobehavioral domains as indicators of treatment outcome. Lay Summary: This study examined how well various areas of the brain communicate in adolescents with ASD before and after a social skills intervention. Results revealed increased connectivity in the adolescents that received the intervention. Secondly, the study aimed to determine if changes in connectivity of brain areas related to changes in behavior, friendships, and social skills. Results indicated that changes in connectivity were also linked to increased social skills. Autism Res 2021, 14: 787-803. © 2021 International Society for Autism Research and Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Angela D Haendel
- Department of Speech-Language Pathology, Concordia University Wisconsin, Grafton, Wisconsin, USA
| | - Alexander Barrington
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, USA
| | - Brooke Magnus
- Department of Psychology, Boston College, Boston, Massachusetts, USA
| | - Alexis A Arias
- Department of Psychology, Marquette University, Milwaukee, Wisconsin, USA
| | - Alana McVey
- Department of Psychology, Marquette University, Milwaukee, Wisconsin, USA.,Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California, Los Angeles, USA
| | - Sheryl Pleiss
- Great Lakes Neurobehavioral Center, Edina, Minnesota, USA
| | | | - Elisabeth M Vogt
- Medical College of Wisconsin, Neurology, Wauwatosa, Wisconsin, USA
| | | |
Collapse
|
111
|
Ranti D, Valliani AAA, Costa A, Oermann EK. Artificial intelligence as applied to clinical neurological conditions. Artif Intell Med 2021. [DOI: 10.1016/b978-0-12-821259-2.00020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
112
|
Bhat AN. Motor Impairment Increases in Children With Autism Spectrum Disorder as a Function of Social Communication, Cognitive and Functional Impairment, Repetitive Behavior Severity, and Comorbid Diagnoses: A SPARK Study Report. Autism Res 2021; 14:202-219. [PMID: 33300285 PMCID: PMC8176850 DOI: 10.1002/aur.2453] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022]
Abstract
Eighty-seven percent of a large sample of children with autism spectrum disorder (ASD) are at risk for motor impairment (Bhat, Physical Therapy, 2020, 100, 633-644). In spite of the high prevalence for motor impairment in children with ASD, it is not considered among the diagnostic criteria or specifiers within DSM-V. In this article, we analyzed the SPARK study dataset (n = 13,887) to examine associations between risk for motor impairment using the Developmental Coordination Disorder-Questionnaire (DCD-Q), social communication impairment using the Social Communication Questionnaire (SCQ), repetitive behavior severity using the Repetitive Behaviors Scale - Revised (RBS-R), and parent-reported categories of cognitive, functional, and language impairments. Upon including children with ASD with cognitive impairments, 88.2% of the SPARK sample was at risk for motor impairment. The relative risk ratio for motor impairment in children with ASD was 22.2 times greater compared to the general population and that risk further increased up to 6.2 with increasing social communication (5.7), functional (6.2), cognitive (3.8), and language (1.6) impairments as well as repetitive behavior severity (5.0). Additionally, the magnitude of risk for motor impairment (fine- and gross-motor) increased with increasing severity of all impairment types with medium to large effects. These findings highlight the multisystem nature of ASD, the need to recognize motor impairments as one of the diagnostic criteria or specifiers for ASD, and the need for appropriate motor screening and assessment of children with ASD. Interventions must address not only the social communication and cognitive/behavioral challenges of children with ASD but also their motor function and participation. LAY ABSTRACT: Eighty-eight percent of the SPARK sample of children with ASD were at risk for motor impairment. The relative risk for motor impairment was 22.2 times greater in children with ASD compared to the general population and the risk increased with more social communication, repetitive behavior, cognitive, and functional impairment. It is important to recognize motor impairments as one of the diagnostic criteria or specifiers for ASD and there is a need to administer appropriate motor screening, assessment, and interventions in children with ASD.
Collapse
Affiliation(s)
- Anjana N Bhat
- Department of Physical Therapy, University of Delaware, Newark, Delaware, USA
- Biomechanics & Movement Science Program, University of Delaware, Newark, Delaware, USA
- Department of Psychological & Brain Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
113
|
Dickinson A, Daniel M, Marin A, Gaonkar B, Dapretto M, McDonald NM, Jeste S. Multivariate Neural Connectivity Patterns in Early Infancy Predict Later Autism Symptoms. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:59-69. [PMID: 32798139 PMCID: PMC7736067 DOI: 10.1016/j.bpsc.2020.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Functional brain connectivity is altered in children and adults with autism spectrum disorder (ASD). Functional disruption during infancy could provide earlier markers of ASD, thus providing a crucial opportunity to improve developmental outcomes. Using a whole-brain multivariate approach, we asked whether electroencephalography measures of neural connectivity at 3 months of age predict autism symptoms at 18 months. METHODS Spontaneous electroencephalography data were collected from 65 infants with and without familial risk for ASD at 3 months of age. Neural connectivity patterns were quantified using phase coherence in the alpha range (6-12 Hz). Support vector regression analysis was used to predict ASD symptoms at age 18 months, with ASD symptoms quantified by the Toddler Module of the Autism Diagnostic Observation Schedule, Second Edition. RESULTS Autism Diagnostic Observation Schedule scores predicted by support vector regression algorithms trained on 3-month electroencephalography data correlated highly with Autism Diagnostic Observation Schedule scores measured at 18 months (r = .76, p = .02, root-mean-square error = 2.38). Specifically, lower frontal connectivity and higher right temporoparietal connectivity at 3 months predicted higher ASD symptoms at 18 months. The support vector regression model did not predict cognitive abilities at 18 months (r = .15, p = .36), suggesting specificity of these brain patterns to ASD. CONCLUSIONS Using a data-driven, unbiased analytic approach, neural connectivity across frontal and temporoparietal regions at 3 months predicted ASD symptoms at 18 months. Identifying early neural differences that precede an ASD diagnosis could promote closer monitoring of infants who show signs of neural risk and provide a crucial opportunity to mediate outcomes through early intervention.
Collapse
Affiliation(s)
- Abigail Dickinson
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California.
| | - Manjari Daniel
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Andrew Marin
- Department of Psychology, University of California, San Diego, San Diego, California
| | - Bilwaj Gaonkar
- Department of Neurosurgery, Ronald Reagan UCLA Medical Center, University of California, Los Angeles, California
| | - Mirella Dapretto
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, California
| | - Nicole M McDonald
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Shafali Jeste
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
114
|
Sarovic D. A Unifying Theory for Autism: The Pathogenetic Triad as a Theoretical Framework. Front Psychiatry 2021; 12:767075. [PMID: 34867553 PMCID: PMC8637925 DOI: 10.3389/fpsyt.2021.767075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/27/2021] [Indexed: 12/27/2022] Open
Abstract
This paper presents a unifying theory for autism by applying the framework of a pathogenetic triad to the scientific literature. It proposes a deconstruction of autism into three contributing features (an autistic personality dimension, cognitive compensation, and neuropathological risk factors), and delineates how they interact to cause a maladaptive behavioral phenotype that may require a clinical diagnosis. The autistic personality represents a common core condition, which induces a set of behavioral issues when pronounced. These issues are compensated for by cognitive mechanisms, allowing the individual to remain adaptive and functional. Risk factors, both exogenous and endogenous ones, show pathophysiological convergence through their negative effects on neurodevelopment. This secondarily affects cognitive compensation, which disinhibits a maladaptive behavioral phenotype. The triad is operationalized and methods for quantification are presented. With respect to the breadth of findings in the literature that it can incorporate, it is the most comprehensive model yet for autism. Its main implications are that (1) it presents the broader autism phenotype as a non-pathological core personality domain, which is shared across the population and uncoupled from associated features such as low cognitive ability and immune dysfunction, (2) it proposes that common genetic variants underly the personality domain, and that rare variants act as risk factors through negative effects on neurodevelopment, (3) it outlines a common pathophysiological mechanism, through inhibition of neurodevelopment and cognitive dysfunction, by which a wide range of endogenous and exogenous risk factors lead to autism, and (4) it suggests that contributing risk factors, and findings of immune and autonomic dysfunction are clinically ascertained rather than part of the core autism construct.
Collapse
Affiliation(s)
- Darko Sarovic
- Gillberg Neuropsychiatry Centre, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,MedTech West, Gothenburg, Sweden
| |
Collapse
|
115
|
Cárdenas-de-la-Parra A, Lewis JD, Fonov VS, Botteron KN, McKinstry RC, Gerig G, Pruett JR, Dager SR, Elison JT, Styner MA, Evans AC, Piven J, Collins DL. A voxel-wise assessment of growth differences in infants developing autism spectrum disorder. NEUROIMAGE-CLINICAL 2020; 29:102551. [PMID: 33421871 PMCID: PMC7806791 DOI: 10.1016/j.nicl.2020.102551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/25/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
Pediatric neuroimaging study of Autism Spectrum Disorder. Longitudinal Tensor Based Morphometry of the presymptomatic period of ASD. Differences in voxelwise growth trajectories of children with ASD. Regions with differences have been implicated in the core symptoms of ASD.
Autism Spectrum Disorder (ASD) is a phenotypically and etiologically heterogeneous developmental disorder typically diagnosed around 4 years of age. The development of biomarkers to help in earlier, presymptomatic diagnosis could facilitate earlier identification and therefore earlier intervention and may lead to better outcomes, as well as providing information to help better understand the underlying mechanisms of ASD. In this study, magnetic resonance imaging (MRI) scans of infants at high familial risk, from the Infant Brain Imaging Study (IBIS), at 6, 12 and 24 months of age were included in a morphological analysis, fitting a mixed-effects model to Tensor Based Morphometry (TBM) results to obtain voxel-wise growth trajectories. Subjects were grouped by familial risk and clinical diagnosis at 2 years of age. Several regions, including the posterior cingulate gyrus, the cingulum, the fusiform gyrus, and the precentral gyrus, showed a significant effect for the interaction of group and age associated with ASD, either as an increased or a decreased growth rate of the cerebrum. In general, our results showed increased growth rate within white matter with decreased growth rate found mostly in grey matter. Overall, the regions showing increased growth rate were larger and more numerous than those with decreased growth rate. These results detail, at the voxel level, differences in brain growth trajectories in ASD during the first years of life, previously reported in terms of overall brain volume and surface area.
Collapse
Affiliation(s)
| | - J D Lewis
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - V S Fonov
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - K N Botteron
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110, USA
| | - R C McKinstry
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110, USA
| | - G Gerig
- Tandon School of Engineering, New York University, New York, New York 10003, USA
| | - J R Pruett
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - S R Dager
- Department of Radiology, University of Washington, Seattle, WA 98105, USA
| | - J T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - M A Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - A C Evans
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - J Piven
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - D L Collins
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | | |
Collapse
|
116
|
Della Rosa PA, Canini M, Marchetta E, Cirillo S, Pontesilli S, Scotti R, Natali Sora MG, Poloniato A, Barera G, Falini A, Scifo P, Baldoli C. The effects of the functional interplay between the Default Mode and Executive Control Resting State Networks on cognitive outcome in preterm born infants at 6 months of age. Brain Cogn 2020; 147:105669. [PMID: 33341657 DOI: 10.1016/j.bandc.2020.105669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022]
Abstract
Preterm birth can affect cognitive functions, such as attention or more generally executive control mechanisms, with severity in impairments proportional to prematurity. The functional cross-talk between the Default Mode (DMN) and Executive Control (ECN) networks mirrors the integrity of cognitive processing and is directly related to brain development. In this study, a cohort of 20 preterm-born infants was investigated using rs-fMRI. First, we addressed biological maturity of the DMN per se and its interplay with the ECN in terms of patterns of increased functional connectivity. Second, we assessed the impact of the degree of prematurity on the DMN-ECN functional interplay development in relation to cognitive outcome at six months. Our results highlighted the emergence of DMN in preterm neonates, with connectivity strength and synchronization between the anterior DMN hub and frontal areas increasing as a function of biological maturity. Further, cognitive scores at 6 months were predicted by mPFC-ECN connectivity strength with degree of prematurity impacting on mPFC-ECN connectivity and triggering differential patterns of functional maturation of the ECN for very early/early and moderate/late preterm neonates. Our findings suggest that the prematurity window allows to observe precursors of functional plasticity that may underlie different developmental trajectories in preterm children.
Collapse
Affiliation(s)
| | - Matteo Canini
- Department of Neuroradiology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Elisa Marchetta
- Department of Neuroradiology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Sara Cirillo
- Department of Neuroradiology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Silvia Pontesilli
- Department of Neuroradiology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Roberta Scotti
- Department of Neuroradiology, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Antonella Poloniato
- Unit of Neonatology, Department of Pediatrics, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Graziano Barera
- Unit of Neonatology, Department of Pediatrics, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Andrea Falini
- Department of Neuroradiology, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Scifo
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy.
| | - Cristina Baldoli
- Department of Neuroradiology, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
117
|
Yuk V, Dunkley BT, Anagnostou E, Taylor MJ. Alpha connectivity and inhibitory control in adults with autism spectrum disorder. Mol Autism 2020; 11:95. [PMID: 33287904 PMCID: PMC7722440 DOI: 10.1186/s13229-020-00400-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/18/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Individuals with autism spectrum disorder (ASD) often report difficulties with inhibition in everyday life. During inhibition tasks, adults with ASD show reduced activation of and connectivity between brain areas implicated in inhibition, suggesting impairments in inhibitory control at the neural level. Our study further investigated these differences by using magnetoencephalography (MEG) to examine the frequency band(s) in which functional connectivity underlying response inhibition occurs, as brain functions are frequency specific, and whether connectivity in certain frequency bands differs between adults with and without ASD. METHODS We analysed MEG data from 40 adults with ASD (27 males; 26.94 ± 6.08 years old) and 39 control adults (27 males; 27.29 ± 5.94 years old) who performed a Go/No-go task. The task involved two blocks with different proportions of No-go trials: Inhibition (25% No-go) and Vigilance (75% No-go). We compared whole-brain connectivity in the two groups during correct No-go trials in the Inhibition vs. Vigilance blocks between 0 and 400 ms. RESULTS Despite comparable performance on the Go/No-go task, adults with ASD showed reduced connectivity compared to controls in the alpha band (8-14 Hz) in a network with a main hub in the right inferior frontal gyrus. Decreased connectivity in this network predicted more self-reported difficulties on a measure of inhibition in everyday life. LIMITATIONS Measures of everyday inhibitory control were not available for all participants, so this relationship between reduced network connectivity and inhibitory control abilities may not be necessarily representative of all adults with ASD or the larger ASD population. Further research with independent samples of adults with ASD, including those with a wider range of cognitive abilities, would be valuable. CONCLUSIONS Our findings demonstrate reduced functional brain connectivity during response inhibition in adults with ASD. As alpha-band synchrony has been linked to top-down control mechanisms, we propose that the lack of alpha synchrony observed in our ASD group may reflect difficulties in suppressing task-irrelevant information, interfering with inhibition in real-life situations.
Collapse
Affiliation(s)
- Veronica Yuk
- Department of Diagnostic Imaging, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada. .,Neurosciences and Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada. .,Department of Psychology, University of Toronto, Toronto, ON, Canada.
| | - Benjamin T Dunkley
- Department of Diagnostic Imaging, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.,Neurosciences and Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Evdokia Anagnostou
- Department of Neurology, The Hospital for Sick Children, Toronto, ON, Canada.,Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.,Neurosciences and Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
118
|
Krishnamurthy K, Yeung MK, Chan AS, Han YMY. Effortful Control and Prefrontal Cortex Functioning in Children with Autism Spectrum Disorder: An fNIRS Study. Brain Sci 2020; 10:E880. [PMID: 33233632 PMCID: PMC7699801 DOI: 10.3390/brainsci10110880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022] Open
Abstract
Effortful control (EC) is an important dimension of temperament, but is impaired in autism spectrum disorder (ASD). While EC is associated with the prefrontal cortex (PFC) functioning in typically developing (TD) children, it is unclear whether EC deficits are associated with PFC dysfunction in ASD. This study examines the relationship between EC and PFC activation and connectivity in children with high-functioning ASD. Thirty-nine right-handed children (ASD: n = 20; TD: n = 19) aged 8-12 years were recruited. The EC level was assessed with the Early Adolescent Temperament Questionnaire-Revised (EATQ-R), and PFC functioning, in terms of activation and connectivity during a frontal-sensitive (n-back) task, was assessed using functional near-infrared spectroscopy (fNIRS). Children with ASD showed a significant deficit in EC and its related constructs (i.e., executive, and socioemotional functions) compared to TD controls. They also showed significantly increased overall PFC activation and reduced right frontal connectivity during the n-back task. Among children with ASD, the EC level correlated significantly with neither PFC activation nor connectivity; it significantly correlated with social functioning only. This study demonstrated EC deficits and altered PFC functioning in children with ASD, but the exact neural basis of EC deficits remains to be determined.
Collapse
Affiliation(s)
- Karthikeyan Krishnamurthy
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; (K.K.); (M.K.Y.)
| | - Michael K. Yeung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; (K.K.); (M.K.Y.)
| | - Agnes S. Chan
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China;
| | - Yvonne M. Y. Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; (K.K.); (M.K.Y.)
| |
Collapse
|
119
|
Cunniff MM, Markenscoff-Papadimitriou E, Ostrowski J, Rubenstein JLR, Sohal VS. Altered hippocampal-prefrontal communication during anxiety-related avoidance in mice deficient for the autism-associated gene Pogz. eLife 2020; 9:e54835. [PMID: 33155545 PMCID: PMC7682992 DOI: 10.7554/elife.54835] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 11/05/2020] [Indexed: 01/15/2023] Open
Abstract
Many genes have been linked to autism. However, it remains unclear what long-term changes in neural circuitry result from disruptions in these genes, and how these circuit changes might contribute to abnormal behaviors. To address these questions, we studied behavior and physiology in mice heterozygous for Pogz, a high confidence autism gene. Pogz+/- mice exhibit reduced anxiety-related avoidance in the elevated plus maze (EPM). Theta-frequency communication between the ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC) is known to be necessary for normal avoidance in the EPM. We found deficient theta-frequency synchronization between the vHPC and mPFC in vivo. When we examined vHPC-mPFC communication at higher resolution, vHPC input onto prefrontal GABAergic interneurons was specifically disrupted, whereas input onto pyramidal neurons remained intact. These findings illustrate how the loss of a high confidence autism gene can impair long-range communication by causing inhibitory circuit dysfunction within pathways important for specific behaviors.
Collapse
Affiliation(s)
- Margaret M Cunniff
- Department of Psychiatry, Weill Institute for Neurosciences, and Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - Eirene Markenscoff-Papadimitriou
- Department of Psychiatry, Weill Institute for Neurosciences, and Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - Julia Ostrowski
- Department of Psychiatry, Weill Institute for Neurosciences, and Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - John LR Rubenstein
- Department of Psychiatry, Weill Institute for Neurosciences, and Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - Vikaas Singh Sohal
- Department of Psychiatry, Weill Institute for Neurosciences, and Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
120
|
Ilzarbe D, Lukito S, Moessnang C, O'Daly OG, Lythgoe DJ, Murphy CM, Ashwood K, Stoencheva V, Rubia K, Simonoff E. Neural Correlates of Theory of Mind in Autism Spectrum Disorder, Attention-Deficit/Hyperactivity Disorder, and the Comorbid Condition. Front Psychiatry 2020; 11:544482. [PMID: 33240117 PMCID: PMC7677232 DOI: 10.3389/fpsyt.2020.544482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/25/2020] [Indexed: 11/18/2022] Open
Abstract
Theory of mind (ToM) or mentalizing difficulties is reported in attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD), but the mechanism underpinning these apparently shared deficits is relatively unknown. Eighty-three young adult males, 19 with ASD alone, 21 with ADHD alone, 18 with dual diagnosis of ASD and ADHD, and 25 typically developing (TD) controls completed the functional magnetic resonance imaging version of the Frith-Happé animated-triangle ToM task. We compared neural function during ToM with two non-ToM conditions, random and goal directed motions, using whole-brain and region-of-interest analysis of brain activation and functional connectivity analyses. The groups showed comparable ToM task performance. All three clinical groups lacked local connectivity increase shown by TD controls during ToM in the right temporoparietal cortex, a key mentalizing region, with a differentially increased activation pattern in both ASD and comorbid groups relative to ADHD. Both ASD groups also showed reduced connectivity between right inferior lateral prefrontal and posterior cingulate cortices that could reflect an atypical information transmission to the mentalizing network. In contrast, with mentalizing both ADHD groups showed decreasing connectivity between the medial prefrontal and left temporoparietal cortices when compared to TD controls. Therefore, despite the complex pattern of atypical brain function underpinning ToM across the three disorders, some neurofunctional abnormalities during ToM are associated with ASD and appeared differentiable from those associated with ADHD, with the comorbid group displaying combined abnormalities found in each condition.
Collapse
Affiliation(s)
- Daniel Ilzarbe
- Department of Child and Adolescent Psychiatry, King's College London (KCL), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), London, United Kingdom
- Department of Child and Adolescent Psychiatry and Psychology, Hospital Clínic de Barcelona, Institute of Neuroscience, Barcelona, Spain
- Child and Adolescent Psychiatry and Psychology, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Steve Lukito
- Department of Child and Adolescent Psychiatry, King's College London (KCL), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), London, United Kingdom
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Owen G. O'Daly
- Centre for Neuroimaging Sciences, King's College London, London, United Kingdom
| | - David J. Lythgoe
- Centre for Neuroimaging Sciences, King's College London, London, United Kingdom
| | - Clodagh M. Murphy
- Behavioural and Developmental Psychiatry Clinical Academic Group, Behavioural Genetics Clinic, Adult Autism and Attention Deficit Hyperactivity Disorder Service, South London and Maudsley NHS Foundation Trust, London, United Kingdom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Karen Ashwood
- Behavioural and Developmental Psychiatry Clinical Academic Group, Behavioural Genetics Clinic, Adult Autism and Attention Deficit Hyperactivity Disorder Service, South London and Maudsley NHS Foundation Trust, London, United Kingdom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Vladimira Stoencheva
- Behavioural and Developmental Psychiatry Clinical Academic Group, Behavioural Genetics Clinic, Adult Autism and Attention Deficit Hyperactivity Disorder Service, South London and Maudsley NHS Foundation Trust, London, United Kingdom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Katya Rubia
- Department of Child and Adolescent Psychiatry, King's College London (KCL), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), London, United Kingdom
| | - Emily Simonoff
- Department of Child and Adolescent Psychiatry, King's College London (KCL), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), London, United Kingdom
| |
Collapse
|
121
|
Mercado E, Chow K, Church BA, Lopata C. Perceptual category learning in autism spectrum disorder: Truth and consequences. Neurosci Biobehav Rev 2020; 118:689-703. [PMID: 32910926 PMCID: PMC7744437 DOI: 10.1016/j.neubiorev.2020.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 08/01/2020] [Accepted: 08/29/2020] [Indexed: 02/01/2023]
Abstract
The ability to categorize is fundamental to cognitive development. Some categories emerge effortlessly and rapidly while others can take years of experience to acquire. Children with autism spectrum disorder (ASD) are often able to name and sort objects, suggesting that their categorization abilities are largely intact. However, recent experimental work shows that the categories formed by individuals with ASD may diverge substantially from those that most people learn. This review considers how atypical perceptual category learning can affect cognitive development in children with ASD and how atypical categorization may contribute to many of the socially problematic symptoms associated with this disorder. Theoretical approaches to understanding perceptual processing and category learning at both the behavioral and neural levels are assessed in relation to known alterations in perceptual category learning associated with ASD. Mismatches between the ways in which children learn to organize perceived events relative to their peers and adults can accumulate over time, leading to difficulties in communication, social interactions, academic performance, and behavioral flexibility.
Collapse
Affiliation(s)
- Eduardo Mercado
- University at Buffalo, The State University of New York, Dept. of Psychology, Buffalo, NY, 14260, USA.
| | - Karen Chow
- University at Buffalo, The State University of New York, Dept. of Psychology, Buffalo, NY, 14260, USA
| | - Barbara A Church
- Georgia State University, Language Research Center, 3401 Panthersville Rd., Decatur, GA, 30034, USA
| | - Christopher Lopata
- Canisius College, Institute for Autism Research, Science Hall, 2001 Main St., Buffalo, NY, 14208, USA
| |
Collapse
|
122
|
Su WC, Culotta M, Mueller J, Tsuzuki D, Pelphrey K, Bhat A. Differences in cortical activation patterns during action observation, action execution, and interpersonal synchrony between children with or without autism spectrum disorder (ASD): An fNIRS pilot study. PLoS One 2020; 15:e0240301. [PMID: 33119704 PMCID: PMC7595285 DOI: 10.1371/journal.pone.0240301] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
Engaging in socially embedded actions such as imitation and interpersonal synchrony facilitates relationships with peers and caregivers. Imitation and interpersonal synchrony impairments of children with Autism Spectrum Disorder (ASD) might contribute to their difficulties in connecting and learning from others. Previous fMRI studies investigated cortical activation in children with ASD during finger/hand movement imitation; however, we do not know whether these findings generalize to naturalistic face-to-face imitation/interpersonal synchrony tasks. Using functional near infrared spectroscopy (fNIRS), the current study assessed the cortical activation of children with and without ASD during a face-to-face interpersonal synchrony task. Fourteen children with ASD and 17 typically developing (TD) children completed three conditions: a) Watch-observed an adult clean up blocks; b) Do-cleaned up the blocks on their own; and c) Together-synchronized their block clean up actions to that of an adult. Children with ASD showed lower spatial and temporal synchrony accuracies but intact motor accuracy during the Together/interpersonal synchrony condition. In terms of cortical activation, children with ASD had hypoactivation in the middle and inferior frontal gyri (MIFG) as well as middle and superior temporal gyri (MSTG) while showing hyperactivation in the inferior parietal cortices/lobule (IPL) compared to the TD children. During the Together condition, the TD children showed bilaterally symmetrical activation whereas children with ASD showed more left-lateralized activation over MIFG and right-lateralized activation over MSTG. Additionally, using ADOS scores, in children with ASD greater social affect impairment was associated with lower activation in the left MIFG and more repetitive behavior impairment was associated with greater activation over bilateral MSTG. In children with ASD better communication performance on the VABS was associated with greater MIFG and/or MSTG activation. We identified objective neural biomarkers that could be utilized as outcome predictors or treatment response indicators in future intervention studies.
Collapse
Affiliation(s)
- Wan-Chun Su
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States of America
- Biomechanics & Movement Science Program, University of Delaware, Newark, Delaware, United States of America
| | - McKenzie Culotta
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States of America
- Biomechanics & Movement Science Program, University of Delaware, Newark, Delaware, United States of America
| | - Jessica Mueller
- Department of Behavioral Health, Swank Autism Center, A. I. du Pont Nemours Hospital for Children, Wilmington, Delaware, United States of America
| | - Daisuke Tsuzuki
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Kevin Pelphrey
- Department of Neurology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Anjana Bhat
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States of America
- Biomechanics & Movement Science Program, University of Delaware, Newark, Delaware, United States of America
- Department of Psychological & Brain Sciences, University of Delaware, Newark, Delaware, United States of America
- * E-mail:
| |
Collapse
|
123
|
Barbeau EB, Klein D, Soulières I, Petrides M, Bernhardt B, Mottron L. Age of Speech Onset in Autism Relates to Structural Connectivity in the Language Network. Cereb Cortex Commun 2020; 1:tgaa077. [PMID: 34296136 PMCID: PMC8152885 DOI: 10.1093/texcom/tgaa077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Speech onset delays (SOD) and language atypicalities are central aspects of the autism spectrum (AS), despite not being included in the categorical diagnosis of AS. Previous studies separating participants according to speech onset history have shown distinct patterns of brain organization and activation in perceptual tasks. One major white matter tract, the arcuate fasciculus (AF), connects the posterior temporal and left frontal language regions. Here, we used anatomical brain imaging to investigate the properties of the AF in adolescent and adult autistic individuals with typical levels of intelligence who differed by age of speech onset. The left AF of the AS group showed a significantly smaller volume than that of the nonautistic group. Such a reduction in volume was only present in the younger group. This result was driven by the autistic group without SOD (SOD−), despite their typical age of speech onset. The autistic group with SOD (SOD+) showed a more typical AF as adults relative to matched controls. This suggests that, along with multiple studies in AS-SOD+ individuals, atypical brain reorganization is observable in the 2 major AS subgroups and that such reorganization applies mostly to the language regions in SOD− and perceptual regions in SOD+ individuals.
Collapse
Affiliation(s)
- Elise B Barbeau
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Denise Klein
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Isabelle Soulières
- Department of Psychology, Université du Québec à Montreal, Montreal, QC H2X 3P2, Canada
| | - Michael Petrides
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Boris Bernhardt
- Neurology and Neurosurgery Department, McGill University, Montreal, QC H3A 2B4, Canada
| | - Laurent Mottron
- Département de Psychiatrie et d'addictologie, de l'Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
124
|
Chen B. A preliminary study of atypical cortical change ability of dynamic whole-brain functional connectivity in autism spectrum disorder. Int J Neurosci 2020; 132:213-225. [PMID: 32762276 DOI: 10.1080/00207454.2020.1806837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Designing new objectively diagnostic methods of autism spectrum disorder (ASD) are burning questions. Dynamic functional connectivity (DFC) methodology based on fMRI data are an effective lever to investigate changeability evolution of signal synchronization in macroscopic neural activity patterns. METHODS Embracing the network dynamics concepts, this paper introduces changeability index (C-score)which is focused on time-varying aspects of FCs, and develops a new framework for researching the roots of ASD brains at resting states in holism significance. The important process is to uncover noticeable regions and subsystems endowed with antagonistic stance in C-scores of between atypical and typical DFCs of 30 healthy controls (HCs) and 48 ASD patients. RESULTS The abnormities of edge C-scores are found across widespread brain cortex in ASD brains. For whole brain regional C-scores of ASD patients, orbitofrontal middle cortex L, inferior triangular frontal gyrus L, middle occipital gyrus L, postcentral gyrus L, supramarginal L, supramarginal R, cerebellum 8 L, and cerebellum 10 Rare endowed with significantly different C-scores.At brain subsystems level, C-scores in left hemisphere, right hemisphere, top hemisphere, bottom hemisphere, frontal lobe, parietal lobe, occipital lobe, cerebellum sub systems are abnormal in ASD patients. CONCLUSIONS The ASD brains have whole-brain abnormity on widespread regions. Through the strict evidence-based study, it was found that the changeability index (C-score) is a meaningful biological marker to explore cortical activity in ASD.
Collapse
Affiliation(s)
- Bo Chen
- School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
125
|
Bacterial Peptidoglycans from Microbiota in Neurodevelopment and Behavior. Trends Mol Med 2020; 26:729-743. [DOI: 10.1016/j.molmed.2020.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023]
|
126
|
Audrain SP, Urbain CM, Yuk V, Leung RC, Wong SM, Taylor MJ. Frequency-specific neural synchrony in autism during memory encoding, maintenance and recognition. Brain Commun 2020; 2:fcaa094. [PMID: 32954339 PMCID: PMC7472901 DOI: 10.1093/braincomms/fcaa094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 11/23/2022] Open
Abstract
Working memory impairment is associated with symptom severity and poor functional outcome in autistic individuals, and yet the neurobiology underlying such deficits is poorly understood. Neural oscillations are an area of investigation that can shed light on this issue. Theta and alpha oscillations have been found consistently to support working memory in typically developing individuals and have also been shown to be functionally altered in people with autism. While there is evidence, largely from functional magnetic resonance imaging studies, that neural processing underlying working memory is altered in autism, there remains a dearth of information concerning how sub-processes supporting working memory (namely encoding, maintenance and recognition) are impacted. In this study, we used magnetoencephalography to investigate inter-regional theta and alpha brain synchronization elicited during the widely used one-back task across encoding, maintenance and recognition in 24 adults with autism and 30 controls. While both groups performed comparably on the working-memory task, we found process- and frequency-specific differences in networks recruited between groups. In the theta frequency band, both groups used similar networks during encoding and recognition, but different networks specifically during maintenance. In comparison, the two groups recruited distinct networks across encoding, maintenance and recognition in alpha that showed little overlap. These differences may reflect a breakdown of coherent theta and alpha synchronization that supports mnemonic functioning, or in the case of alpha, impaired inhibition of task-irrelevant neural processing. Thus, these data provide evidence for specific theta and widespread alpha synchrony alterations in autism, and underscore that a detailed examination of the sub-processes that comprise working memory is warranted for a complete understanding of cognitive impairment in this population.
Collapse
Affiliation(s)
- Samantha P Audrain
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto M5G 1X8, Canada.,Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto M5T 0S8, Canada.,Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada
| | - Charline M Urbain
- UR2NF - Neuropsychology and Functional Neuroimaging Research Group at Center for Research in Cognition and Neurosciences (CRCN) and ULB Neurosciences Institute (UNI), Université Libre de Bruxelles (ULB), Brussels B-1050, Belgium.,2LCFC - Laboratoire de Cartographie Fonctionnelle du Cerveau at UNI, Erasme Hospital, ULB, Brussels B-1070, Belgium
| | - Veronica Yuk
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto M5G 1X8, Canada.,Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.,Neurosciences & Mental Health Programme, Research Institute, Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Rachel C Leung
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto M5G 1X8, Canada.,Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada
| | - Simeon M Wong
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto M5G 1X8, Canada.,Neurosciences & Mental Health Programme, Research Institute, Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto M5G 1X8, Canada.,Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.,Neurosciences & Mental Health Programme, Research Institute, Hospital for Sick Children, Toronto M5G 0A4, Canada.,Department of Medical Imaging, University of Toronto, Toronto M5T 1W7, Canada
| |
Collapse
|
127
|
Nunes AS, Vakorin VA, Kozhemiako N, Peatfield N, Ribary U, Doesburg SM. Atypical age-related changes in cortical thickness in autism spectrum disorder. Sci Rep 2020; 10:11067. [PMID: 32632150 PMCID: PMC7338512 DOI: 10.1038/s41598-020-67507-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 06/08/2020] [Indexed: 01/17/2023] Open
Abstract
Recent longitudinal neuroimaging and neurophysiological studies have shown that tracking relative age-related changes in neural signals, rather than a static snapshot of a neural measure, could offer higher sensitivity for discriminating typically developing (TD) individuals from those with autism spectrum disorder (ASD). It is not clear, however, which aspects of age-related changes (trajectories) would be optimal for identifying atypical brain development in ASD. Using a large cross-sectional data set (Autism Brain Imaging Data Exchange [ABIDE] repository; releases I and II), we aimed to explore age-related changes in cortical thickness (CT) in TD and ASD populations (age range 6–30 years old). Cortical thickness was estimated from T1-weighted MRI images at three scales of spatial coarseness (three parcellations with different numbers of regions of interest). For each parcellation, three polynomial models of age-related changes in CT were tested. Specifically, to characterize alterations in CT trajectories, we compared the linear slope, curvature, and aberrancy of CT trajectories across experimental groups, which was estimated using linear, quadratic, and cubic polynomial models, respectively. Also, we explored associations between age-related changes with ASD symptomatology quantified as the Autism Diagnostic Observation Schedule (ADOS) scores. While no overall group differences in cortical thickness were observed across the entire age range, ASD and TD populations were different in terms of age-related changes, which were located primarily in frontal and tempo-parietal areas. These atypical age-related changes were also associated with ADOS scores in the ASD group and used to predict ASD from TD development. These results indicate that the curvature is the most reliable feature for localizing brain areas developmentally atypical in ASD with a more pronounced effect with symptomatology and is the most sensitive in predicting ASD development.
Collapse
Affiliation(s)
- Adonay S Nunes
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Dr, Burnaby, BC, V5A 1S6, Canada.
| | - Vasily A Vakorin
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Dr, Burnaby, BC, V5A 1S6, Canada.,Behavioral & Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, Canada
| | - Nataliia Kozhemiako
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Dr, Burnaby, BC, V5A 1S6, Canada
| | - Nicholas Peatfield
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Dr, Burnaby, BC, V5A 1S6, Canada
| | - Urs Ribary
- Behavioral & Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, Canada.,Department Pediatrics and Psychiatry, University of British Columbia, Vancouver, Canada.,B.C. Children's Hospital Research Institute, Vancouver, Canada.,Department Psychology, Simon Fraser University, Burnaby, Canada
| | - Sam M Doesburg
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Dr, Burnaby, BC, V5A 1S6, Canada.,Behavioral & Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
128
|
Kayarian FB, Jannati A, Rotenberg A, Santarnecchi E. Targeting Gamma-Related Pathophysiology in Autism Spectrum Disorder Using Transcranial Electrical Stimulation: Opportunities and Challenges. Autism Res 2020; 13:1051-1071. [PMID: 32468731 PMCID: PMC7387209 DOI: 10.1002/aur.2312] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
A range of scalp electroencephalogram (EEG) abnormalities correlates with the core symptoms of autism spectrum disorder (ASD). Among these are alterations of brain oscillations in the gamma-frequency EEG band in adults and children with ASD, whose origin has been linked to dysfunctions of inhibitory interneuron signaling. While therapeutic interventions aimed to modulate gamma oscillations are being tested for neuropsychiatric disorders such as schizophrenia, Alzheimer's disease, and frontotemporal dementia, the prospects for therapeutic gamma modulation in ASD have not been extensively studied. Accordingly, we discuss gamma-related alterations in the setting of ASD pathophysiology, as well as potential interventions that can enhance gamma oscillations in patients with ASD. Ultimately, we argue that transcranial electrical stimulation modalities capable of entraining gamma oscillations, and thereby potentially modulating inhibitory interneuron circuitry, are promising methods to study and mitigate gamma alterations in ASD. Autism Res 2020, 13: 1051-1071. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Brain functions are mediated by various oscillatory waves of neuronal activity, ranging in amplitude and frequency. In certain neuropsychiatric disorders, such as schizophrenia and Alzheimer's disease, reduced high-frequency oscillations in the "gamma" band have been observed, and therapeutic interventions to enhance such activity are being explored. Here, we review and comment on evidence of reduced gamma activity in ASD, arguing that modalities used in other disorders may benefit individuals with ASD as well.
Collapse
Affiliation(s)
- Fae B. Kayarian
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ali Jannati
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Rotenberg
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
129
|
Carroll L, Braeutigam S, Dawes JM, Krsnik Z, Kostovic I, Coutinho E, Dewing JM, Horton CA, Gomez-Nicola D, Menassa DA. Autism Spectrum Disorders: Multiple Routes to, and Multiple Consequences of, Abnormal Synaptic Function and Connectivity. Neuroscientist 2020; 27:10-29. [PMID: 32441222 PMCID: PMC7804368 DOI: 10.1177/1073858420921378] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorders (ASDs) are a heterogeneous group of
neurodevelopmental disorders of genetic and environmental etiologies.
Some ASD cases are syndromic: associated with clinically defined
patterns of somatic abnormalities and a neurobehavioral phenotype
(e.g., Fragile X syndrome). Many cases, however, are idiopathic or
non-syndromic. Such disorders present themselves during the early
postnatal period when language, speech, and personality start to
develop. ASDs manifest by deficits in social communication and
interaction, restricted and repetitive patterns of behavior across
multiple contexts, sensory abnormalities across multiple modalities
and comorbidities, such as epilepsy among many others. ASDs are
disorders of connectivity, as synaptic dysfunction is common to both
syndromic and idiopathic forms. While multiple theories have been
proposed, particularly in idiopathic ASDs, none address why certain
brain areas (e.g., frontotemporal) appear more vulnerable than others
or identify factors that may affect phenotypic specificity. In this
hypothesis article, we identify possible routes leading to, and the
consequences of, altered connectivity and review the evidence of
central and peripheral synaptic dysfunction in ASDs. We postulate that
phenotypic specificity could arise from aberrant experience-dependent
plasticity mechanisms in frontal brain areas and peripheral sensory
networks and propose why the vulnerability of these areas could be
part of a model to unify preexisting pathophysiological theories.
Collapse
Affiliation(s)
- Liam Carroll
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Sven Braeutigam
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, Oxfordshire, UK
| | - John M Dawes
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Zeljka Krsnik
- Croatian Institute for Brain Research, Centre of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivica Kostovic
- Croatian Institute for Brain Research, Centre of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ester Coutinho
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Jennifer M Dewing
- Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - Christopher A Horton
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, UK
| | - Diego Gomez-Nicola
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - David A Menassa
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK.,Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
130
|
Should Autism Spectrum Conditions Be Characterised in a More Positive Way in Our Modern World? ACTA ACUST UNITED AC 2020; 56:medicina56050233. [PMID: 32413984 PMCID: PMC7279498 DOI: 10.3390/medicina56050233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 01/18/2023]
Abstract
In a special issue that focuses on complex presentations related to Autism, we ask the question in this editorial whether an Autism Spectrum Condition without complexity is a disorder, or whether it represents human diversity? Much research into Autism Spectrum Conditions (ASCs) over the years has focused on comparisons between neuro-typical people and people with Autism Spectrum Conditions. These comparisons have tended to draw attention to ‘deficits’ in cognitive abilities and descriptions of behaviours that are characterised as unwanted. Not surprisingly, this is reflected in the classification systems from the World Health Organisation and the American Psychiatric Association. Public opinion about ASC may be influenced by presentations in the media of those with ASC who also have intellectual disability. Given that diagnostic systems are intended to help us better understand conditions in order to seek improved outcomes, we propose a more constructive approach to descriptions that uses more positive language, and balances descriptions of deficits with research finding of strengths and differences. We propose that this will be more helpful to individuals on the Autism Spectrum, both in terms of individual self-view, but also in terms of how society views Autism Spectrum Conditions more positively. Commentary has also been made on guidance that has been adjusted for people with ASC in relation to the current COVID-19 pandemic.
Collapse
|
131
|
Bhat AN. Is Motor Impairment in Autism Spectrum Disorder Distinct From Developmental Coordination Disorder? A Report From the SPARK Study. Phys Ther 2020; 100:633-644. [PMID: 32154876 PMCID: PMC7297441 DOI: 10.1093/ptj/pzz190] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 04/23/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Motor impairments are pervasive in Autism Spectrum Disorder (ASD); however, children with ASD rarely receive a dual diagnosis of Developmental Coordination Disorder (DCD). The Simons Foundation SPARK study engaged families affected by ASD through an online study. OBJECTIVES The DCD parent questionnaire (DCDQ) was used to assess the prevalence of a risk for motor impairment or DCD in children with ASD between 5 and 15 years of age. DESIGN This study utilizes parent reports from a large database of children with ASD. METHODS A total of 16,705 parents of children with ASD completed the DCDQ. We obtained our final SPARK dataset (n = 11,814) after filtering out invalid data, using stronger cut-offs to confirm ASD traits, and excluding children with general neuromotor impairments/intellectual delays. We compared DCDQ total and subscale scores from the SPARK dataset with published norms for each age between 5 and 15 years. RESULTS The proportion of children with ASD at risk for a motor impairment was very high at 86.9%. Children with ASD did not outgrow their motor impairments and continued to present with a risk for DCD even into adolescence. Yet, only 31.6% of children were receiving physical therapy services. LIMITATIONS Our analysis of a large database of parent-reported outcomes using the DCDQ did not involve follow-up clinical assessments. CONCLUSIONS Using a large sample of children with ASD, this study shows that a risk for motor impairment or DCD was present in most children with ASD and persists into adolescence; however, only a small proportion of children with ASD were receiving physical therapist interventions. A diagnosis of ASD must trigger motor screening, evaluations, and appropriate interventions by physical and occupational therapists to address the functional impairments of children with ASD while also positively impacting their social communication, cognition, and behavior. Using valid motor measures, future research must determine if motor impairment is a fundamental feature of ASD.
Collapse
Affiliation(s)
- Anjana Narayan Bhat
- A.N. Bhat, PT, PhD, Department of Physical Therapy, University of Delaware, 540 South College Avenue, Newark, DE 19713 (USA); and Biomechanics & Movement Science Program, University of Delaware; and Department of Psychological & Brain Sciences, University of Delaware
| |
Collapse
|
132
|
Canini M, Cavoretto P, Scifo P, Pozzoni M, Petrini A, Iadanza A, Pontesilli S, Scotti R, Candiani M, Falini A, Baldoli C, Della Rosa PA. Subcortico-Cortical Functional Connectivity in the Fetal Brain: A Cognitive Development Blueprint. Cereb Cortex Commun 2020; 1:tgaa008. [PMID: 34296089 PMCID: PMC8152909 DOI: 10.1093/texcom/tgaa008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 02/24/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022] Open
Abstract
Recent evidence has shown that patterns of cortico-cortical functional synchronization are consistently traceable by the end of the third trimester of pregnancy. The involvement of subcortical structures in early functional and cognitive development has never been explicitly investigated, notwithstanding their pivotal role in different cognitive processes. We address this issue by exploring subcortico-cortical functional connectivity at rest in a group of normally developing fetuses between the 25th and 32nd weeks of gestation. Results show significant functional coupling between subcortical nuclei and cortical networks related to: (i) sensorimotor processing, (ii) decision making, and (iii) learning capabilities. This functional maturation framework unearths a Cognitive Development Blueprint, according to which grounding cognitive skills are planned to develop with higher ontogenetic priority. Specifically, our evidence suggests that a newborn already possesses the ability to: (i) perceive the world and interact with it, (ii) create salient representations for the selection of adaptive behaviors, and (iii) store, retrieve, and evaluate the outcomes of interactions, in order to gradually improve adaptation to the extrauterine environment.
Collapse
Affiliation(s)
- Matteo Canini
- Department of Neuroradiology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Paolo Cavoretto
- Department of Gynecology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Paola Scifo
- Department of Nuclear Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Mirko Pozzoni
- Department of Gynecology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandro Petrini
- Department of Computer Science, Università degli Studi Milano, 20122 Milan, Italy
| | - Antonella Iadanza
- Department of Neuroradiology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Pontesilli
- Department of Neuroradiology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Roberta Scotti
- Department of Neuroradiology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Massimo Candiani
- Department of Gynecology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Andrea Falini
- Department of Neuroradiology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Cristina Baldoli
- Department of Neuroradiology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | |
Collapse
|
133
|
Webster PJ, Frum C, Kurowski-Burt A, Bauer CE, Wen S, Ramadan JH, Baker KA, Lewis JW. Processing of Real-World, Dynamic Natural Stimuli in Autism is Linked to Corticobasal Function. Autism Res 2020; 13:539-549. [PMID: 31944557 PMCID: PMC7418054 DOI: 10.1002/aur.2250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/14/2019] [Accepted: 11/24/2019] [Indexed: 11/06/2022]
Abstract
Many individuals with autism spectrum disorder (ASD) have been shown to perceive everyday sensory information differently compared to peers without autism. Research examining these sensory differences has primarily utilized nonnatural stimuli or natural stimuli using static photos with few having utilized dynamic, real-world nonverbal stimuli. Therefore, in this study, we used functional magnetic resonance imaging to characterize brain activation of individuals with high-functioning autism when viewing and listening to a video of a real-world scene (a person bouncing a ball) and anticipating the bounce. We investigated both multisensory and unisensory processing and hypothesized that individuals with ASD would show differential activation in (a) primary auditory and visual sensory cortical and association areas, and in (b) cortical and subcortical regions where auditory and visual information is integrated (e.g. temporal-parietal junction, pulvinar, superior colliculus). Contrary to our hypotheses, the whole-brain analysis revealed similar activation between the groups in these brain regions. However, compared to controls the ASD group showed significant hypoactivation in the left intraparietal sulcus and left putamen/globus pallidus. We theorize that this hypoactivation reflected underconnectivity for mediating spatiotemporal processing of the visual biological motion stimuli with the task demands of anticipating the timing of the bounce event. The paradigm thus may have tapped into a specific left-lateralized aberrant corticobasal circuit or loop involved in initiating or inhibiting motor responses. This was consistent with a dual "when versus where" psychophysical model of corticobasal function, which may reflect core differences in sensory processing of real-world, nonverbal natural stimuli in ASD. Autism Res 2020, 13: 539-549. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: To understand how individuals with autism perceive the real-world, using magnetic resonance imaging we examined brain activation in individuals with autism while watching a video of someone bouncing a basketball. Those with autism had similar activation to controls in auditory and visual sensory brain regions, but less activation in an area that processes information about body movements and in a region involved in modulating movements. These areas are important for understanding the actions of others and developing social skills.
Collapse
Affiliation(s)
- Paula J Webster
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| | - Chris Frum
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| | - Amy Kurowski-Burt
- Division of Occupational Therapy, Department of Human Performance, West Virginia University, Morgantown, West Virginia
| | - Christopher E Bauer
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| | - Sijin Wen
- Department of Biostatistics, West Virginia University, Morgantown, West Virginia
| | - Jad H Ramadan
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| | - Kathryn A Baker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| | - James W Lewis
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
134
|
Abstract
Synaesthesia is highly prevalent in autism spectrum disorder. We assessed the relation between the degree of autistic traits (Autism Spectrum Quotient, AQ) and the degree of synaesthesia in a neurotypical population, and hypothesized both are related to a local bias in visual perception. A positive correlation between total AQ scores and the degree of synaesthesia was found, extending previous studies in clinical populations. Consistent with our hypothesis, AQ-attention to detail scores were related to increased performance on an Embedded Figures Task and reduced susceptibility to visual illusions. We found no relation between autistic traits and performance on a motion coherence task, and no relation between synaesthesia and local visual perception. Possibly, this relation is reserved for supra-threshold synaesthetes.
Collapse
|
135
|
Martínez K, Martínez-García M, Marcos-Vidal L, Janssen J, Castellanos FX, Pretus C, Villarroya Ó, Pina-Camacho L, Díaz-Caneja CM, Parellada M, Arango C, Desco M, Sepulcre J, Carmona S. Sensory-to-Cognitive Systems Integration Is Associated With Clinical Severity in Autism Spectrum Disorder. J Am Acad Child Adolesc Psychiatry 2020; 59:422-433. [PMID: 31260788 DOI: 10.1016/j.jaac.2019.05.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 05/16/2019] [Accepted: 06/25/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Impaired multisensory integration in autism spectrum disorder (ASD) may arise from functional dysconnectivity among brain systems. Our study examines the functional connectivity integration between primary modal sensory regions and heteromodal processing cortex in ASD, and whether abnormalities in network integration relate to clinical severity. METHOD We studied a sample of 55 high-functioning ASD and 64 healthy control (HC) male children and adolescents (total n = 119, age range 7-18 years). Stepwise functional connectivity analysis (SFC) was applied to resting state functional magnetic resonance images (rsfMRI) to characterize the connectivity paths that link primary sensory cortices to higher-order brain cognitive functional circuits and to relate alterations in functional connectivity integration with three clinical scales: Social Communication Questionnaire, Social Responsiveness Scale, and Vineland Adaptive Behavior Scales. RESULTS HC displayed typical functional connectivity transitions from primary sensory systems to association areas, but the ASD group showed altered patterns of multimodal sensory integration to heteromodal systems. Specifically, compared to the HC group, the ASD group showed the following: (1) hyperconnectivity in the visual cortex at initial link step distances; (2) hyperconnectivity between sensory unimodal regions and regions of the default mode network; and (3) hypoconnectivity between sensory unimodal regions and areas of the fronto-parietal and attentional networks. These patterns of hyper- and hypoconnectivity were associated with increased clinical severity in ASD. CONCLUSION Networkwise reorganization in high-functioning ASD individuals affects strategic regions of unimodal-to-heteromodal cortical integration predicting clinical severity. In addition, SFC analysis appears to be a promising approach for studying the neural pathophysiology of multisensory integration deficits in ASD.
Collapse
Affiliation(s)
- Kenia Martínez
- Centro De Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| | - Magdalena Martínez-García
- Centro De Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Luis Marcos-Vidal
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Joost Janssen
- Centro De Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Francisco X Castellanos
- Hassenfeld Children's Hospital at NYU Langone, New York, NY and the Division of Clinical Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Clara Pretus
- Unitat de Recerca en Neurociència Cognitiva, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Barcelona, Spain, and Fundació IMIM (Institut Mar d'Investigacions Mèdiques), Barcelona, Spain
| | - Óscar Villarroya
- Unitat de Recerca en Neurociència Cognitiva, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Barcelona, Spain, and Fundació IMIM (Institut Mar d'Investigacions Mèdiques), Barcelona, Spain
| | - Laura Pina-Camacho
- Centro De Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Hospital General Universitario Gregorio Marañón, Madrid, Spain; School of Medicine, Universidad Complutense, Madrid, Spain; Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Covadonga M Díaz-Caneja
- Centro De Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Hospital General Universitario Gregorio Marañón, Madrid, Spain; School of Medicine, Universidad Complutense, Madrid, Spain
| | - Mara Parellada
- Centro De Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Hospital General Universitario Gregorio Marañón, Madrid, Spain; School of Medicine, Universidad Complutense, Madrid, Spain
| | - Celso Arango
- Centro De Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Hospital General Universitario Gregorio Marañón, Madrid, Spain; School of Medicine, Universidad Complutense, Madrid, Spain
| | - Manuel Desco
- Centro De Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jorge Sepulcre
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Susanna Carmona
- Centro De Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Universidad Carlos III, Madrid, Spain
| |
Collapse
|
136
|
Seghatol-Eslami VC, Maximo JO, Ammons CJ, Libero LE, Kana RK. Hyperconnectivity of social brain networks in autism during action-intention judgment. Neuropsychologia 2020; 137:107303. [PMID: 31837376 DOI: 10.1016/j.neuropsychologia.2019.107303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022]
Abstract
Deficits in social communication in autism spectrum disorder (ASD) have been documented using neuroimaging techniques such as functional MRI over the past decade. More recently, functional connectivity MRI has revealed altered connectivity in face processing, mentalizing, and mirroring brain networks, networks involved in the social brain in ASD. However, to our knowledge, previous studies have not examined these three networks concurrently. The purpose of the current study was to investigate the functional connectivity of the face processing, mentalizing, and mirroring networks (within each network and across networks) in ASD during an action-intention task in which participants were asked to determine the means and intention of a model's actions. We examined: a) within-network connectivity of each network using an ROI-to-ROI analysis; b) connectivity of each network hub to the rest of the brain using a seed-to-voxel analysis; c) the between-network connectivity of each network hub using ROI-to-ROI analysis; and d) brain-behavior relationships by correlating autism symptoms with brain connectivity. Task-fMRI data were used from 21 participants with ASD and 20 typically developing participants. The ASD group consistently showed significantly greater connectivity between networks and between hub regions to the rest of the brain. Hyperconnectivity in ASD may entail more and widespread resource utilization for accomplishing action-intention judgment.
Collapse
Affiliation(s)
- Victoria C Seghatol-Eslami
- Department of Psychology, University of Alabama at Birmingham (UAB), CIRC 235G, 1719 6th Ave South, Birmingham, AL, 35294-0021, USA
| | - Jose O Maximo
- Department of Psychology, University of Alabama at Birmingham (UAB), CIRC 235G, 1719 6th Ave South, Birmingham, AL, 35294-0021, USA
| | - Carla J Ammons
- Department of Psychology, University of Alabama at Birmingham (UAB), CIRC 235G, 1719 6th Ave South, Birmingham, AL, 35294-0021, USA
| | - Lauren E Libero
- Department of Psychology, University of Alabama at Birmingham (UAB), CIRC 235G, 1719 6th Ave South, Birmingham, AL, 35294-0021, USA
| | - Rajesh K Kana
- Department of Psychology, University of Alabama at Birmingham (UAB), CIRC 235G, 1719 6th Ave South, Birmingham, AL, 35294-0021, USA; Department of Psychology, University of Alabama, Box 870348, Tuscaloosa, AL, 35294-0021, USA.
| |
Collapse
|
137
|
Bolton TAW, Freitas LGA, Jochaut D, Giraud AL, Van De Ville D. Neural responses in autism during movie watching: Inter-individual response variability co-varies with symptomatology. Neuroimage 2020; 216:116571. [PMID: 31987996 DOI: 10.1016/j.neuroimage.2020.116571] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/13/2019] [Accepted: 01/17/2020] [Indexed: 12/22/2022] Open
Abstract
Naturalistic movie paradigms are exquisitely dynamic by nature, yet dedicated analytical methods typically remain static. Here, we deployed a dynamic inter-subject functional correlation (ISFC) analysis to study movie-driven functional brain changes in a population of male young adults diagnosed with autism spectrum disorder (ASD). We took inspiration from the resting-state research field in generating a set of whole-brain ISFC states expressed by the analysed ASD and typically developing (TD) subjects along time. Change points of state expression often involved transitions between different scenes of the movie, resulting in the reorganisation of whole-brain ISFC patterns to recruit different functional networks. Both subject populations showed idiosyncratic state expression at dedicated time points, but only TD subjects were also characterised by episodes of homogeneous recruitment. The temporal fluctuations in both quantities, as well as in cross-population dissimilarity, were tied to contextual movie cues. The prominent idiosyncrasy seen in ASD subjects was linked to individual symptomatology by partial least squares analysis, as different temporal sequences of ISFC states were expressed by subjects suffering from social and verbal communication impairments, as opposed to nonverbal communication deficits and stereotypic behaviours. Furthermore, the temporal expression of several of these states was correlated with the movie context, the presence of faces on screen, or overall luminosity. Overall, our results support the use of dynamic analytical frameworks to fully exploit the information obtained by naturalistic stimulation paradigms. They also show that autism should be understood as a multi-faceted disorder, in which the functional brain alterations seen in a given subject will vary as a function of the extent and balance of expressed symptoms.
Collapse
Affiliation(s)
- Thomas A W Bolton
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland.
| | - Lorena G A Freitas
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| | - Delphine Jochaut
- Department of Neuroscience, University of Geneva (UNIGE), Geneva, Switzerland
| | - Anne-Lise Giraud
- Department of Neuroscience, University of Geneva (UNIGE), Geneva, Switzerland
| | - Dimitri Van De Ville
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| |
Collapse
|
138
|
Yuk V, Urbain C, Anagnostou E, Taylor MJ. Frontoparietal Network Connectivity During an N-Back Task in Adults With Autism Spectrum Disorder. Front Psychiatry 2020; 11:551808. [PMID: 33033481 PMCID: PMC7509600 DOI: 10.3389/fpsyt.2020.551808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/13/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Short-term and working memory (STM and WM) deficits have been demonstrated in individuals with autism spectrum disorder (ASD) and may emerge through atypical functional activity and connectivity of the frontoparietal network, which exerts top-down control necessary for successful STM and WM processes. Little is known regarding the spectral properties of the frontoparietal network during STM or WM processes in ASD, although certain neural frequencies have been linked to specific neural mechanisms. METHODS We analysed magnetoencephalographic data from 39 control adults (26 males; 27.15 ± 5.91 years old) and 40 adults with ASD (26 males; 27.17 ± 6.27 years old) during a 1-back condition (STM) of an n-back task, and from a subset of this sample during a 2-back condition (WM). We performed seed-based connectivity analyses using regions of the frontoparietal network. Interregional synchrony in theta, alpha, and beta bands was assessed with the phase difference derivative and compared between groups during periods of maintenance and recognition. RESULTS During maintenance of newly presented vs. repeated stimuli, the two groups did not differ significantly in theta, alpha, or beta phase synchrony for either condition. Adults with ASD showed alpha-band synchrony in a network containing the right dorsolateral prefrontal cortex, bilateral inferior parietal lobules (IPL), and precuneus in both 1- and 2-back tasks, whereas controls demonstrated alpha-band synchrony in a sparser set of regions, including the left insula and IPL, in only the 1-back task. During recognition of repeated vs. newly presented stimuli, adults with ASD exhibited decreased theta-band connectivity compared to controls in a network with hubs in the right inferior frontal gyrus and left IPL in the 1-back condition. Whilst there were no group differences in connectivity in the 2-back condition, adults with ASD showed no frontoparietal network recruitment during recognition, whilst controls activated networks in the theta and beta bands. CONCLUSIONS Our findings suggest that since adults with ASD performed well on the n-back task, their appropriate, but effortful recruitment of alpha-band mechanisms in the frontoparietal network to maintain items in STM and WM may compensate for atypical modulation of this network in the theta band to recognise previously presented items in STM.
Collapse
Affiliation(s)
- Veronica Yuk
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada.,Neurosciences & Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Charline Urbain
- Neuropsychology and Functional Neuroimaging Research Group, Center for Research in Cognition & Neurosciences and ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Laboratoire de Cartographie Fonctionnelle du Cerveau, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Department of Neurology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada.,Neurosciences & Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
139
|
Andrews DS, Lee JK, Solomon M, Rogers SJ, Amaral DG, Nordahl CW. A diffusion-weighted imaging tract-based spatial statistics study of autism spectrum disorder in preschool-aged children. J Neurodev Disord 2019; 11:32. [PMID: 31839001 PMCID: PMC6913008 DOI: 10.1186/s11689-019-9291-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 11/11/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The core symptoms of autism spectrum disorder (ASD) are widely theorized to result from altered brain connectivity. Diffusion-weighted magnetic resonance imaging (DWI) has been a versatile method for investigating underlying microstructural properties of white matter (WM) in ASD. Despite phenotypic and etiological heterogeneity, DWI studies in majority male samples of older children, adolescents, and adults with ASD have largely reported findings of decreased fractional anisotropy (FA) across several commissural, projection, and association fiber tracts. However, studies in preschool-aged children (i.e., < 30-40 months) suggest individuals with ASD have increased measures of WM FA earlier in development. METHODS We analyzed 127 individuals with ASD (85♂, 42♀) and 54 typically developing (TD) controls (42♂, 26♀), aged 25.1-49.6 months. Voxel-wise effects of ASD diagnosis, sex, age, and their interaction on DWI measures of FA, mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) were investigated using tract-based spatial statistics (TBSS) while controlling mean absolute and relative motion. RESULTS Compared to TD controls, males and females with ASD had significantly increased measures of FA in eight clusters (threshold-free cluster enhancement p < 0.05) that incorporated several WM tracts including regions of the genu, body, and splenium of the corpus callosum, inferior frontal-occipital fasciculi, inferior and superior longitudinal fasciculi, middle and superior cerebellar peduncles, and corticospinal tract. A diagnosis by sex interaction was observed in measures of AD across six significant clusters incorporating areas of the body, genu, and splenium of the corpus collosum. In these tracts, females with ASD showed increased AD compared to TD females, while males with ASD showed decreased AD compared to TD males. CONCLUSIONS The current findings support growing evidence that preschool-aged children with ASD have atypical measures of WM microstructure that appear to differ in directionality from alterations observed in older individuals with the condition. To our knowledge, this study represents the largest sample of preschool-aged females with ASD to be evaluated using DWI. Microstructural differences associated with ASD largely overlapped between sexes. However, differential relationships of AD measures indicate that sex likely modulates ASD neuroanatomical phenotypes. Further longitudinal study is needed to confirm and quantify the developmental relationship of WM structure in ASD.
Collapse
Affiliation(s)
- Derek Sayre Andrews
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA USA
| | - Joshua K. Lee
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA USA
| | - Marjorie Solomon
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA USA
| | - Sally J. Rogers
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA USA
| | - David G. Amaral
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA USA
| | - Christine Wu Nordahl
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA USA
| |
Collapse
|
140
|
Guo X, Simas T, Lai M, Lombardo MV, Chakrabarti B, Ruigrok ANV, Bullmore ET, Baron‐Cohen S, Chen H, Suckling J. Enhancement of indirect functional connections with shortest path length in the adult autistic brain. Hum Brain Mapp 2019; 40:5354-5369. [PMID: 31464062 PMCID: PMC6864892 DOI: 10.1002/hbm.24777] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/23/2019] [Accepted: 08/18/2019] [Indexed: 12/30/2022] Open
Abstract
Autism is a neurodevelopmental condition characterized by atypical brain functional organization. Here we investigated the intrinsic indirect (semi-metric) connectivity of the functional connectome associated with autism. Resting-state functional magnetic resonance imaging scans were acquired from 65 neurotypical adults (33 males/32 females) and 61 autistic adults (30 males/31 females). From functional connectivity networks, semi-metric percentages (SMPs) were calculated to assess the proportion of indirect shortest functional pathways at global, hemisphere, network, and node levels. Group comparisons were then conducted to ascertain differences between autism and neurotypical control groups. Finally, the strength and length of edges were examined to explore the patterns of semi-metric connections associated with autism. Compared with neurotypical controls, autistic adults displayed significantly higher SMP at all spatial scales, similar to prior observations in adolescents. Differences were primarily in weaker, longer-distance edges in the majority between networks. However, no significant diagnosis-by-sex interaction effects were observed on global SMP. These findings suggest increased indirect functional connectivity in the autistic brain is persistent from adolescence to adulthood and is indicative of reduced functional network integration.
Collapse
Affiliation(s)
- Xiaonan Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation; School of Life Science and Technology, Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Tiago Simas
- Brain Mapping Unit, Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - Meng‐Chuan Lai
- Centre for Addiction and Mental Health and the Hospital for Sick Children, Department of PsychiatryUniversity of TorontoTorontoCanada
- Autism Research Centre, Department of PsychiatryUniversity of CambridgeCambridgeUK
- Department of PsychiatryNational Taiwan University Hospital and College of MedicineTaipeiTaiwan
| | - Michael V. Lombardo
- Autism Research Centre, Department of PsychiatryUniversity of CambridgeCambridgeUK
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Italian Institute of TechnologyRoveretoItaly
| | - Bhismadev Chakrabarti
- Autism Research Centre, Department of PsychiatryUniversity of CambridgeCambridgeUK
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language SciencesUniversity of ReadingReadingUK
| | - Amber N. V. Ruigrok
- Autism Research Centre, Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - Edward T. Bullmore
- Brain Mapping Unit, Department of PsychiatryUniversity of CambridgeCambridgeUK
- Cambridgeshire and Peterborough NHS Foundation TrustCambridgeUK
| | - Simon Baron‐Cohen
- Autism Research Centre, Department of PsychiatryUniversity of CambridgeCambridgeUK
- Cambridgeshire and Peterborough NHS Foundation TrustCambridgeUK
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation; School of Life Science and Technology, Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - John Suckling
- Brain Mapping Unit, Department of PsychiatryUniversity of CambridgeCambridgeUK
- Cambridgeshire and Peterborough NHS Foundation TrustCambridgeUK
| | | |
Collapse
|
141
|
van Leeuwen TM, van Petersen E, Burghoorn F, Dingemanse M, van Lier R. Autistic traits in synaesthesia: atypical sensory sensitivity and enhanced perception of details. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190024. [PMID: 31630653 PMCID: PMC6834020 DOI: 10.1098/rstb.2019.0024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2019] [Indexed: 01/16/2023] Open
Abstract
In synaesthetes, specific sensory stimuli (e.g. black letters) elicit additional experiences (e.g. colour). Synaesthesia is highly prevalent among individuals with autism spectrum disorder (ASD), but the mechanisms of this co-occurrence are not clear. We hypothesized autism and synaesthesia share atypical sensory sensitivity and perception. We assessed autistic traits, sensory sensitivity and visual perception in two synaesthete populations. In Study 1, synaesthetes (N = 79, of different types) scored higher than non-synaesthetes (N = 76) on the Attention-to-detail and Social skills subscales of the autism spectrum quotient indexing autistic traits, and on the Glasgow Sensory Questionnaire indexing sensory hypersensitivity and hyposensitivity which frequently occur in autism. Synaesthetes performed two local/global visual tasks because individuals with autism typically show a bias towards detail processing. In synaesthetes, elevated motion coherence thresholds (MCTs) suggested reduced global motion perception, and higher accuracy on an embedded figures task suggested enhanced local perception. In Study 2, sequence-space synaesthetes (N = 18) completed the same tasks. Questionnaire and embedded figures results qualitatively resembled Study 1 results, but no significant group differences with non-synaesthetes (N = 20) were obtained. Unexpectedly, sequence-space synaesthetes had reduced MCTs. Altogether, our studies suggest atypical sensory sensitivity and a bias towards detail processing are shared features of synaesthesia and ASD. This article is part of the discussion meeting issue 'Bridging senses: novel insights from synaesthesia'.
Collapse
Affiliation(s)
- Tessa M. van Leeuwen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Eline van Petersen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Floor Burghoorn
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Mark Dingemanse
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Centre for Language Studies, Radboud University, Nijmegen, The Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Rob van Lier
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
142
|
Bruckert L, Shpanskaya K, McKenna ES, Borchers LR, Yablonski M, Blecher T, Ben-Shachar M, Travis KE, Feldman HM, Yeom KW. Age-Dependent White Matter Characteristics of the Cerebellar Peduncles from Infancy Through Adolescence. THE CEREBELLUM 2019; 18:372-387. [PMID: 30637673 DOI: 10.1007/s12311-018-1003-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cerebellum-cerebrum connections are essential for many motor and cognitive functions and cerebellar disorders are prevalent in childhood. The middle (MCP), inferior (ICP), and superior cerebellar peduncles (SCP) are the major white matter pathways that permit communication between the cerebellum and the cerebrum. Knowledge about the microstructural properties of these cerebellar peduncles across childhood is limited. Here, we report on a diffusion magnetic resonance imaging tractography study to describe age-dependent characteristics of the cerebellar peduncles in a cross-sectional sample of infants, children, and adolescents from newborn to 17 years of age (N = 113). Scans were collected as part of clinical care; participants were restricted to those whose scans showed no abnormal findings and whose history and exam had no risk factors for cerebellar abnormalities. A novel automated tractography protocol was applied. Results showed that mean tract-FA increased, while mean tract-MD decreased from infancy to adolescence in all peduncles. Rapid changes were observed in both diffusion measures in the first 24 months of life, followed by gradual change at older ages. The shape of the tract profiles was similar across ages for all peduncles. These data are the first to characterize the variability of diffusion properties both across and within cerebellar white matter pathways that occur from birth through later adolescence. The data represent a rich normative data set against which white matter alterations seen in children with posterior fossa conditions can be compared. Ultimately, the data will facilitate the identification of sensitive biomarkers of cerebellar abnormalities.
Collapse
Affiliation(s)
- Lisa Bruckert
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Katie Shpanskaya
- Department of Radiology, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Emily S McKenna
- Department of Radiology, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lauren R Borchers
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Maya Yablonski
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Tal Blecher
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Michal Ben-Shachar
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, 5290002, Ramat Gan, Israel.,Department of English Literature and Linguistics, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Katherine E Travis
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Heidi M Feldman
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Kristen W Yeom
- Department of Radiology, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
143
|
Patterns of Cerebellar Connectivity with Intrinsic Connectivity Networks in Autism Spectrum Disorders. J Autism Dev Disord 2019; 49:4498-4514. [DOI: 10.1007/s10803-019-04168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
144
|
Raatikainen V, Korhonen V, Borchardt V, Huotari N, Helakari H, Kananen J, Raitamaa L, Joskitt L, Loukusa S, Hurtig T, Ebeling H, Uddin LQ, Kiviniemi V. Dynamic lag analysis reveals atypical brain information flow in autism spectrum disorder. Autism Res 2019; 13:244-258. [PMID: 31637863 PMCID: PMC7027814 DOI: 10.1002/aur.2218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/28/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
This study investigated whole‐brain dynamic lag pattern variations between neurotypical (NT) individuals and individuals with autism spectrum disorder (ASD) by applying a novel technique called dynamic lag analysis (DLA). The use of 3D magnetic resonance encephalography data with repetition time = 100 msec enables highly accurate analysis of the spread of activity between brain networks. Sixteen resting‐state networks (RSNs) with the highest spatial correlation between NT individuals (n = 20) and individuals with ASD (n = 20) were analyzed. The dynamic lag pattern variation between each RSN pair was investigated using DLA, which measures time lag variation between each RSN pair combination and statistically defines how these lag patterns are altered between ASD and NT groups. DLA analyses indicated that 10.8% of the 120 RSN pairs had statistically significant (P‐value <0.003) dynamic lag pattern differences that survived correction with surrogate data thresholding. Alterations in lag patterns were concentrated in salience, executive, visual, and default‐mode networks, supporting earlier findings of impaired brain connectivity in these regions in ASD. 92.3% and 84.6% of the significant RSN pairs revealed shorter mean and median temporal lags in ASD versus NT, respectively. Taken together, these results suggest that altered lag patterns indicating atypical spread of activity between large‐scale functional brain networks may contribute to the ASD phenotype. Autism Res 2020, 13: 244–258. © 2019 The Authors. Autism Research published by International Society for Autism Research published by Wiley Periodicals, Inc. Lay Summary Autism spectrum disorder (ASD) is characterized by atypical neurodevelopment. Using an ultra‐fast neuroimaging procedure, we investigated communication across brain regions in adults with ASD compared with neurotypical (NT) individuals. We found that ASD individuals had altered information flow patterns across brain regions. Atypical patterns were concentrated in salience, executive, visual, and default‐mode network areas of the brain that have previously been implicated in the pathophysiology of the disorder.
Collapse
Affiliation(s)
- Ville Raatikainen
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland.,Research Unit of Medical Imaging, Physics, and Technology, The Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Vesa Korhonen
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland.,Research Unit of Medical Imaging, Physics, and Technology, The Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Viola Borchardt
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland.,Research Unit of Medical Imaging, Physics, and Technology, The Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Niko Huotari
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland.,Research Unit of Medical Imaging, Physics, and Technology, The Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Heta Helakari
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland.,Research Unit of Medical Imaging, Physics, and Technology, The Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Janne Kananen
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland.,Research Unit of Medical Imaging, Physics, and Technology, The Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Lauri Raitamaa
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland.,Research Unit of Medical Imaging, Physics, and Technology, The Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Leena Joskitt
- Clinic of Child Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Soile Loukusa
- Research Unit of Logopedics, Faculty of Humanities, University of Oulu, Oulu, Finland
| | - Tuula Hurtig
- Clinic of Child Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Hanna Ebeling
- Clinic of Child Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, Florida
| | - Vesa Kiviniemi
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland.,Research Unit of Medical Imaging, Physics, and Technology, The Faculty of Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
145
|
Guo X, Duan X, Chen H, He C, Xiao J, Han S, Fan YS, Guo J, Chen H. Altered inter- and intrahemispheric functional connectivity dynamics in autistic children. Hum Brain Mapp 2019; 41:419-428. [PMID: 31600014 PMCID: PMC7268059 DOI: 10.1002/hbm.24812] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/11/2019] [Accepted: 09/19/2019] [Indexed: 12/21/2022] Open
Abstract
Emerging evidence has associated autism spectrum disorder (ASD) with static functional connectivity abnormalities between multiple brain regions. However, the temporal dynamics of intra‐ and interhemispheric functional connectivity patterns remain unknown in ASD. Resting‐state functional magnetic resonance imaging data were analyzed for 105 ASD and 102 demographically matched typically developing control (TC) children (age range: 7–12 years) available from the Autism Brain Imaging Data Exchange database. Whole‐brain functional connectivity was decomposed into ipsilateral and contralateral functional connectivity, and sliding‐window analysis was utilized to capture the intra‐ and interhemispheric dynamic functional connectivity density (dFCD) patterns. The temporal variability of the functional connectivity dynamics was further quantified using the standard deviation (SD) of intra‐ and interhemispheric dFCD across time. Finally, a support vector regression model was constructed to assess the relationship between abnormal dFCD variance and autism symptom severity. Both intra‐ and interhemispheric comparisons showed increased dFCD variability in the anterior cingulate cortex/medial prefrontal cortex and decreased variability in the fusiform gyrus/inferior temporal gyrus in autistic children compared with TC children. Autistic children additionally showed lower intrahemispheric dFCD variability in sensorimotor regions including the precentral/postcentral gyrus. Moreover, aberrant temporal variability of the contralateral dFCD predicted the severity of social communication impairments in autistic children. These findings demonstrate altered temporal dynamics of the intra‐ and interhemispheric functional connectivity in brain regions incorporating social brain network of ASD, and highlight the potential role of abnormal interhemispheric communication dynamics in neural substrates underlying impaired social processing in ASD.
Collapse
Affiliation(s)
- Xiaonan Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Heng Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China.,School of Medicine, Guizhou University, Guiyang, China
| | - Changchun He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinming Xiao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shaoqiang Han
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yun-Shuang Fan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
146
|
Tosoni G, Conti M, Diaz Heijtz R. Bacterial peptidoglycans as novel signaling molecules from microbiota to brain. Curr Opin Pharmacol 2019; 48:107-113. [PMID: 31557694 DOI: 10.1016/j.coph.2019.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022]
Abstract
Mounting evidence indicates that gut microbiota exerts a broad range of effects on host physiology and development beyond the gastrointestinal tract, including the modulation of brain development. However, the mechanisms mediating the interactions between the microbiota and the developing brain are still poorly understood. Pattern recognition receptors of the innate immune system that recognize microbial products, such as peptidoglycans have emerged as potential key regulators of gut microbiome-brain interactions. Peptidoglycan-sensing molecules are expressed in the placenta and brain during specific time windows of development. Moreover, peptidoglycans are ubiquitously present in circulation and can cross the blood brain barrier. This review brings together the current evidence supporting a broad function of peptidoglycans well beyond host's immunity, extending to neurodevelopment and behavior.
Collapse
Affiliation(s)
- Giorgia Tosoni
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mirko Conti
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Rochellys Diaz Heijtz
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; INSERM U1239, University of Rouen Normandy 76130 Mont-Saint-Aignan, France.
| |
Collapse
|
147
|
Green RR, Bigler ED, Froehlich A, Prigge MBD, Zielinski BA, Travers BG, Anderson JS, Alexander A, Lange N, Lainhart JE. Beery VMI and Brain Volumetric Relations in Autism Spectrum Disorder. JOURNAL OF PEDIATRIC NEUROPSYCHOLOGY 2019; 5:77-84. [PMID: 32953403 PMCID: PMC7497806 DOI: 10.1007/s40817-019-00069-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/20/2019] [Accepted: 08/02/2019] [Indexed: 11/29/2022]
Abstract
Although diminished proficiency on tasks that require visual-motor integration (VMI) has been reported in individuals with autism spectrum disorder (ASD), very few studies have examined the association between VMI performance and neuroanatomical regions of interest (ROI) involved in motor and perceptual functioning. To address these issues, the current study included an all-male sample of 41 ASD (ages 3-23 years) and 27 typically developing (TD) participants (ages 5-26 years) who completed the Beery-Buktenica Developmental Test of Visual-Motor Integration (Beery VMI) as part of a comprehensive neuropsychological battery. All participants underwent 3.0 T magnetic resonance imaging (MRI) with image quantification (FreeSurfer software v5.3). The groups were statistically matched on age, handedness, and intracranial volume (ICV). ASD participants performed significantly lower on VMI and IQ measures compared with the TD group. VMI performance was significantly correlated with FSIQ and PIQ in the TD group only. No pre-defined neuroanatomical ROIs were significantly different between groups. Significant correlations were observed in the TD group between VMI and total precentral gyrus gray matter volume (r = .51, p = .006) and total frontal lobe gray matter volume (r = .46, p = .017). There were no significant ROI correlations with Beery VMI performance in ASD participants. At the group level, despite ASD participants exhibiting reduced visuomotor abilities, no systematic relation with motor or sensory-perceptual ROIs was observed. In the TD group, results were consistent with the putative role of the precentral gyrus in motor control along with frontal involvement in planning, organization, and execution monitoring, all essential for VMI performance. Given that similar associations between VMI and ROIs were not observed in those with ASD, neurodevelopment in ASD group participants may not follow homogenous patterns making correlations in these brain regions unlikely to be observed.
Collapse
Affiliation(s)
- Ryan R. Green
- Department of Psychology, Brigham Young University, 1001 SWKT, Provo, UT 84602, USA
| | - Erin D. Bigler
- Department of Psychology, Brigham Young University, 1001 SWKT, Provo, UT 84602, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Alyson Froehlich
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | | | - Brandon A. Zielinski
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Brittany G. Travers
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, USA
- Occupational Therapy Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Andrew Alexander
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicholas Lange
- Departments of Psychiatry and Biostatistics, Harvard University, Boston, MA, USA
- Neurostatistics Laboratory, McLean Hospital, Belmont, MA, USA
| | - Janet E. Lainhart
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
148
|
Saaybi S, AlArab N, Hannoun S, Saade M, Tutunji R, Zeeni C, Shbarou R, Hourani R, Boustany RM. Pre- and Post-therapy Assessment of Clinical Outcomes and White Matter Integrity in Autism Spectrum Disorder: Pilot Study. Front Neurol 2019; 10:877. [PMID: 31456741 PMCID: PMC6701406 DOI: 10.3389/fneur.2019.00877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/29/2019] [Indexed: 11/13/2022] Open
Abstract
Objective: This pilot study aims to identify white matter (WM) tract abnormalities in Autism Spectrum Disorders (ASD) toddlers and pre-schoolers by Diffusion Tensor Imaging (DTI), and to correlate imaging findings with clinical improvement after early interventional and Applied Behavior Analysis (ABA) therapies by Verbal Behavior Milestones Assessment and Placement Program (VB-MAPP). Methods: DTI scans were performed on 17 ASD toddlers/pre-schoolers and seven age-matched controls. Nine ASD patients had follow-up MRI 12 months following early intervention and ABA therapy. VB-MAPP was assessed and compared at diagnosis, 6 and 12 months after therapies. Tract-Based Spatial Statistics (TBSS) was used to measure fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial (RD) diffusivity. Results: VB-MAPP scores improved at 6 and 12 months after early intervention and ABA therapy compared to scores at baseline. TBSS analysis showed significant FA decrease and/or RD increase in ASD patients before therapy vs. controls in inferior fronto-occipital fasciculi, uncinate fasciculi, left superior fronto-occipital fasciculus, forceps minor, left superior fronto-occipital fasciculus, right superior longitudinal fasciculus, corona radiate bilaterally, and left external capsule. A significantly FA increase in 21 tracts and ROIs is reported in post- vs. pre-therapy DTI analysis. Conclusion: DTI findings highlighted ASD patient WM abnormalities at diagnosis and confirmed the benefits of 12 months of early intervention and ABA therapy on clinical and neuro imaging outcomes.
Collapse
Affiliation(s)
- Stephanie Saaybi
- Division of Pediatric Neurology, Departments of Pediatrics and Adolescent Medicine/Biochemistry and Molecular Genetics, American University of Beirut Medical Center, Beirut, Lebanon
- Department of Pediatrics and Adolescent Medicine, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Natally AlArab
- Division of Neuroradiology, Department of Diagnostic Radiology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Salem Hannoun
- Faculty of Medicine, Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
- Faculty of Medicine, Abu-Haidar Neuroscience Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Maritherese Saade
- AUBMC Special Kids Clinic (ASKC), American University of Beirut Medical Center, Beirut, Lebanon
| | - Rayyan Tutunji
- Division of Neuroradiology, Department of Diagnostic Radiology, American University of Beirut Medical Center, Beirut, Lebanon
- Cognition and Behaviour, Department of Cognitive Neuroscience, Donders Institute for Brain, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Carine Zeeni
- Division of Neuro-Anesthesia, Department of Anesthesia, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rolla Shbarou
- Division of Pediatric Neurology, Departments of Pediatrics and Adolescent Medicine/Biochemistry and Molecular Genetics, American University of Beirut Medical Center, Beirut, Lebanon
| | - Roula Hourani
- Division of Neuroradiology, Department of Diagnostic Radiology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rose-Mary Boustany
- Division of Pediatric Neurology, Departments of Pediatrics and Adolescent Medicine/Biochemistry and Molecular Genetics, American University of Beirut Medical Center, Beirut, Lebanon
- AUBMC Special Kids Clinic (ASKC), American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
149
|
Jao Keehn RJ, Nair S, Pueschel EB, Linke AC, Fishman I, Müller RA. Atypical Local and Distal Patterns of Occipito-frontal Functional Connectivity are Related to Symptom Severity in Autism. Cereb Cortex 2019; 29:3319-3330. [PMID: 30137241 PMCID: PMC7342606 DOI: 10.1093/cercor/bhy201] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/03/2018] [Accepted: 07/30/2018] [Indexed: 01/15/2023] Open
Abstract
Autism spectrum disorders (ASDs) are increasingly prevalent neurodevelopmental disorders characterized by sociocommunicative impairments. Growing consensus indicates that neurobehavioral abnormalities require explanation in terms of interconnected networks. Despite theoretical speculations about increased local and reduced distal connectivity, links between local and distal functional connectivity have not been systematically investigated in ASDs. Specifically, it remains open whether hypothesized local overconnectivity may reflect isolated versus overly integrative processing. Resting state functional MRI data from 57 children and adolescents with ASDs and 51 typically developing (TD) participants were included. In regional homogeneity (ReHo) analyses, pericalcarine visual cortex was found be locally overconnected (ASD > TD). Using this region as seed in whole-brain analyses, we observed overconnectivity in distal regions, specifically middle frontal gyri, for an ASD subgroup identified through k-means clustering. While in this subgroup local occipital to distal frontal overconnectivity was associated with greater symptom severity, a second subgroup showed the opposite pattern of connectivity and symptom severity correlations. Our findings suggest that increased local connectivity in ASDs is region-specific and may be partially associated with more integrative long-distance connectivity. Results also highlight the need to test for subtypes, as differential patterns of brain-behavior links were observed in two distinct subgroups of our ASD cohort.
Collapse
Affiliation(s)
- R Joanne Jao Keehn
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Sangeeta Nair
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
- Department of Psychology, University of Alabama, at Birmingham, Birmingham, AL, USA
| | - Ellyn B Pueschel
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Annika C Linke
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Inna Fishman
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
- Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, San Diego, CA, USA
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
- Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
150
|
Walsh MJM, Baxter LC, Smith CJ, Braden BB. Age Group Differences in Executive Network Functional Connectivity and Relationships with Social Behavior in Men with Autism Spectrum Disorder. RESEARCH IN AUTISM SPECTRUM DISORDERS 2019; 63:63-77. [PMID: 32405319 PMCID: PMC7220036 DOI: 10.1016/j.rasd.2019.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Research suggests adults with autism spectrum disorder (ASD) may use executive functions to compensate for social difficulties. Given hallmark age-related declines in executive functioning and the executive brain network in normal aging, there is concern that older adults with ASD may experience further declines in social functioning as they age. In a male-only sample, we hypothesized: 1) older adults with ASD would demonstrate greater ASD-related social behavior than young adults with ASD, 2) adults with ASD would demonstrate a greater age group reduction in connectivity of the executive brain network than neurotypical (NT) adults, and 3) that behavioral and neural mechanisms of executive functioning would predict ASD-related social difficulties in adults with ASD. METHODS Participants were a cross-sectional sample of non-intellectually disabled young (ages 18-25) and middle-aged (ages 40-70) adult men with ASD and NT development (young adult ASD: n=24; middle-age ASD: n=25; young adult NT: n=15; middle-age NT: n=21). We assessed ASD-related social behavior via the self-report Social Responsiveness Scale-2 (SRS-2) Total Score, with exploratory analyses of the Social Cognition Subscale. We assessed neural executive function via connectivity of the resting-state executive network (EN) as measured by independent component analysis. Correlations were investigated between SRS-2 Total Scores (with exploratory analyses of the Social Cognition Subscale), EN functional connectivity of the dorsolateral prefrontal cortex (dlPFC), and a behavioral measure of executive function, Tower of London (ToL) Total Moves. RESULTS We did not confirm a significant age group difference for adults with ASD on the SRS-2 Total Score; however, exploratory analysis revealed middle-age men with ASD had higher scores on the SRS-2 Social Cognition Subscale than young adult men with ASD. Exacerbated age group reductions in EN functional connectivity were confirmed (left dlPFC) in men with ASD compared to NT, such that older adults with ASD demonstrated the greatest levels of hypoconnectivity. A significant correlation was confirmed between dlPFC connectivity and the SRS-2 Total Score in middle-age men with ASD, but not young adult men with ASD. Furthermore, exploratory analysis revealed a significant correlation with the SRS-2 Social Cognition Subscale for young and middle-aged ASD groups and ToL Total Moves. CONCLUSIONS Our findings suggest that ASD-related difficulties in social cognition and EN hypoconnectivity may get worse with age in men with ASD and is related to executive functioning. Further, exacerbated EN hypoconnectivity associated with older age in ASD may be a mechanism of increased ASD-related social cognition difficulties in older adults with ASD. Given the cross-sectional nature of this sample, longitudinal replication is needed.
Collapse
Affiliation(s)
- Melissa J. M. Walsh
- Department of Speech and Hearing Science, Arizona State University, 976 S Forest Mall, Tempe, AZ 85281
| | - Leslie C. Baxter
- Department of Neuroimaging Research, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, 350 W Thomas Rd, Phoenix, AZ 85013
| | - Christopher J. Smith
- Southwest Autism Research & Resource Center, 2225 N 16th Street, Phoenix, AZ 85006
| | - B. Blair Braden
- Department of Speech and Hearing Science, Arizona State University, 976 S Forest Mall, Tempe, AZ 85281
| |
Collapse
|