101
|
Microbiota modulate sympathetic neurons via a gut-brain circuit. Nature 2020; 583:441-446. [PMID: 32641826 PMCID: PMC7367767 DOI: 10.1038/s41586-020-2474-7] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 04/02/2020] [Indexed: 01/12/2023]
Abstract
Connections between the gut and brain monitor the intestinal tissue and its microbial and dietary content1, regulating both physiological intestinal functions such as nutrient absorption and motility2,3, and brain-wired feeding behaviour2. It is therefore plausible that circuits exist to detect gut microorganisms and relay this information to areas of the central nervous system that, in turn, regulate gut physiology4. Here we characterize the influence of the microbiota on enteric-associated neurons by combining gnotobiotic mouse models with transcriptomics, circuit-tracing methods and functional manipulations. We find that the gut microbiome modulates gut-extrinsic sympathetic neurons: microbiota depletion leads to increased expression of the neuronal transcription factor cFos, and colonization of germ-free mice with bacteria that produce short-chain fatty acids suppresses cFos expression in the gut sympathetic ganglia. Chemogenetic manipulations, translational profiling and anterograde tracing identify a subset of distal intestine-projecting vagal neurons that are positioned to have an afferent role in microbiota-mediated modulation of gut sympathetic neurons. Retrograde polysynaptic neuronal tracing from the intestinal wall identifies brainstem sensory nuclei that are activated during microbial depletion, as well as efferent sympathetic premotor glutamatergic neurons that regulate gastrointestinal transit. These results reveal microbiota-dependent control of gut-extrinsic sympathetic activation through a gut-brain circuit.
Collapse
|
102
|
Kumar J, Rani K, Datt C. Molecular link between dietary fibre, gut microbiota and health. Mol Biol Rep 2020; 47:6229-6237. [PMID: 32623619 DOI: 10.1007/s11033-020-05611-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/20/2020] [Indexed: 12/17/2022]
Abstract
Natural polysaccharides cellulose, hemicelluloses, inulin etc., galactooligosaccharides (GOS), and fructooligosaccharides (FOS) play a significant role in the improvement of gut microbiota balance and human health. These polysaccharides prevent pathogen adhesion that stimulates the immune system and gut barrier function by servicing as fermentable substrates for the gut microbiota. The gut microbiota plays a key role in the fermentation of non-digestible carbohydrates (NDCs) fibres. Moreover, the gut microbiota is responsible for the production of short-chain fatty acids (SCFAs) like acetate, propionate and butyrate. Acetate is the most abundant and it is used by many gut commensals to produce propionate and butyrate in a growth-promoting cross-feeding process. The dietary fibres affect the gut microbiome and play vital roles in signaling pathways. The SCFAs, acetate, butyrate, and propionate have been reported to affect on metabolic activities at the molecular level. Acetate affects the metabolic pathway through the G protein-coupled receptor (GPCR) and free fatty acid receptor 2 (FFAR2/GPR43) while butyrate and propionate transactivate the peroxisome proliferator-activated receptorsγ (PPARγ/NR1C3) and regulate the PPARγ target gene Angptl4 in colonic cells of the gut. The FFAR2 signaling pathway regulates the insulin-stimulated lipid accumulation in adipocytes and inflammation, however peptide tyrosine-tyrosine (PPY) and glucagon-like peptide 1 regulates appetite. The NDCs via gut microbiota dependent pathway regulate glucose homeostasis, gut integrity and hormone by GPCR, NF-kB, and AMPK-dependent processes.
Collapse
Affiliation(s)
- Jitendra Kumar
- ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Kavita Rani
- ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Chander Datt
- Division of Animal Nutrition, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
103
|
Free Fatty Acid Receptors 2 and 3 as Microbial Metabolite Sensors to Shape Host Health: Pharmacophysiological View. Biomedicines 2020; 8:biomedicines8060154. [PMID: 32521775 PMCID: PMC7344995 DOI: 10.3390/biomedicines8060154] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
The role of the gut microbiome in human health is becoming apparent. The major functional impact of the gut microbiome is transmitted through the microbial metabolites that are produced in the gut and interact with host cells either in the local gut environment or are absorbed into circulation to impact distant cells/organs. Short-chain fatty acids (SCFAs) are the major microbial metabolites that are produced in the gut through the fermentation of non-digestible fibers. SCFAs are known to function through various mechanisms, however, their signaling through free fatty acid receptors 2 and 3 (FFAR2/3; type of G-coupled protein receptors) is a new therapeutic approach. FFAR2/3 are widely expressed in diverse cell types in human and mice, and function as sensors of SCFAs to change several physiological and cellular functions. FFAR2/3 modulate neurological signaling, energy metabolism, intestinal cellular homeostasis, immune response, and hormone synthesis. FFAR2/3 function through Gi and/or Gq signaling, that is mediated through specific structural features of SCFAs-FFAR2/3 bindings and modulating specific signaling pathway. In this review, we discuss the wide-spread expression and structural homologies between human and mice FFAR2/3, and their role in different human health conditions. This information can unlock opportunities to weigh the potential of FFAR2/3 as a drug target to prevent human diseases.
Collapse
|
104
|
The Role of Microbiome, Dietary Supplements, and Probiotics in Autism Spectrum Disorder. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082647. [PMID: 32290635 PMCID: PMC7215504 DOI: 10.3390/ijerph17082647] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorder (ASD) is a serious neurodevelopmental disorder characterized by the impairment of the cognitive function of a child. Studies suggested that the intestinal microbiota has a critical role in the function and regulation of the central nervous system, neuroimmune system and neuroendocrine system. Any adverse changes in the gut–brain axis may cause serious disease. Food preferences and dietary patterns are considered as key in influencing the factors of ASD development. Several recent reviews narrated the importance of dietary composition on controlling or reducing the ASD symptoms. It has been known that the consumption of probiotics confers several health benefits by positive amendment of gut microbiota. The influence of probiotic intervention in children with ASD has also been reported and it has been considered as an alternative and complementary therapeutic supplement for ASD. The present manuscript discusses the role of microbiota and diet in the development of ASD. It also summarizes the recent updates on the influence of dietary supplements and the beneficial effect of probiotics on ASD symptoms. An in-depth literature survey suggested that the maternal diet and lifestyle are greatly associated with the development of ASD and other neurodevelopmental disorders. Mounting evidences have confirmed the alteration in the gut microbial composition in children suffering from ASD. However, the unique profile of microbiome has not yet been fully characterized due to the heterogeneity of patients. The supplementation of probiotics amended the symptoms associated with ASD but the results are inconclusive. The current study recommends further detailed research considering the role of microbiome, diet and probiotics in the development and control of ASD.
Collapse
|
105
|
Esquerre N, Basso L, Defaye M, Vicentini FA, Cluny N, Bihan D, Hirota SA, Schick A, Jijon HB, Lewis IA, Geuking MB, Sharkey KA, Altier C, Nasser Y. Colitis-Induced Microbial Perturbation Promotes Postinflammatory Visceral Hypersensitivity. Cell Mol Gastroenterol Hepatol 2020; 10:225-244. [PMID: 32289500 PMCID: PMC7301239 DOI: 10.1016/j.jcmgh.2020.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Despite achieving endoscopic remission, more than 20% of inflammatory bowel disease patients experience chronic abdominal pain. These patients have increased rectal transient receptor potential vanilloid-1 receptor (TRPV1) expression, a key transducer of inflammatory pain. Because inflammatory bowel disease patients in remission exhibit dysbiosis and microbial manipulation alters TRPV1 function, our goal was to examine whether microbial perturbation modulated transient receptor potential function in a mouse model. METHODS Mice were given dextran sodium sulfate (DSS) to induce colitis and were allowed to recover. The microbiome was perturbed by using antibiotics as well as fecal microbial transplant (FMT). Visceral and somatic sensitivity were assessed by recording visceromotor responses to colorectal distention and using hot plate/automated Von Frey tests, respectively. Calcium imaging of isolated dorsal root ganglia neurons was used as an in vitro correlate of nociception. The microbiome composition was evaluated via 16S rRNA gene variable region V4 amplicon sequencing, whereas fecal short-chain fatty acids (SCFAs) were assessed by using targeted mass spectrometry. RESULTS Postinflammatory DSS mice developed visceral and somatic hyperalgesia. Antibiotic administration during DSS recovery induced visceral, but not somatic, hyperalgesia independent of inflammation. FMT of postinflammatory DSS stool into antibiotic-treated mice increased visceral hypersensitivity, whereas FMT of control stool reversed antibiotics' sensitizing effects. Postinflammatory mice exhibited both increased SCFA-producing species and fecal acetate/butyrate content compared with controls. Capsaicin-evoked calcium responses were increased in naive dorsal root ganglion neurons incubated with both sodium butyrate/propionate alone and with colonic supernatants derived from postinflammatory mice. CONCLUSIONS The microbiome plays a central role in postinflammatory visceral hypersensitivity. Microbial-derived SCFAs can sensitize nociceptive neurons and may contribute to the pathogenesis of postinflammatory visceral pain.
Collapse
Affiliation(s)
- Nicolas Esquerre
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary
| | - Lilian Basso
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary
| | - Manon Defaye
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary
| | - Fernando A Vicentini
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary
| | - Nina Cluny
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary
| | | | - Simon A Hirota
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary
| | - Alana Schick
- International Microbiome Centre, Cumming School of Medicine, University of Calgary
| | - Humberto B Jijon
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary
| | - Ian A Lewis
- Department of Biological Sciences, University of Calgary
| | - Markus B Geuking
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Department of Microbiology, Immunity and Infectious Diseases, Cumming School of Medicine, University of Calgary
| | - Keith A Sharkey
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary
| | - Christophe Altier
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yasmin Nasser
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary; Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary.
| |
Collapse
|
106
|
Ulven ER, Quon T, Sergeev E, Barki N, Brvar M, Hudson BD, Dutta P, Hansen AH, Bielefeldt LØ, Tobin AB, McKenzie CJ, Milligan G, Ulven T. Structure-Activity Relationship Studies of Tetrahydroquinolone Free Fatty Acid Receptor 3 Modulators. J Med Chem 2020; 63:3577-3595. [PMID: 32141297 PMCID: PMC7307922 DOI: 10.1021/acs.jmedchem.9b02036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Indexed: 12/27/2022]
Abstract
Free fatty acid receptor 3 (FFA3, previously GPR41) is activated by short-chain fatty acids, mediates health effects of the gut microbiota, and is a therapeutic target for metabolic and inflammatory diseases. The shortage of well-characterized tool compounds has however impeded progress. Herein, we report structure-activity relationship of an allosteric modulator series and characterization of physicochemical and pharmacokinetic properties of selected compounds, including previous and new tools. Two representatives, 57 (TUG-1907) and 63 (TUG-2015), showed improved solubility and preserved potency. Of these, 57, with EC50 = 145 nM and a solubility of 33 μM, showed high clearance in vivo but is a preferred tool in vitro. In contrast, 63, with EC50 = 162 nM and a solubility of 9 μM, showed lower clearance and seems better suited for in vivo studies. Using 57, we demonstrate for the first time that FFA3 activation leads to calcium mobilization in murine dorsal root ganglia.
Collapse
Affiliation(s)
- Elisabeth Rexen Ulven
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Tezz Quon
- Centre
for Translational Pharmacology, Institute of Molecular, Cell and Systems
Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ Glasgow, Scotland, U.K.
| | - Eugenia Sergeev
- Centre
for Translational Pharmacology, Institute of Molecular, Cell and Systems
Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ Glasgow, Scotland, U.K.
| | - Natasja Barki
- Centre
for Translational Pharmacology, Institute of Molecular, Cell and Systems
Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ Glasgow, Scotland, U.K.
| | - Matjaz Brvar
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Brian D. Hudson
- Centre
for Translational Pharmacology, Institute of Molecular, Cell and Systems
Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ Glasgow, Scotland, U.K.
| | - Palash Dutta
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Anders Højgaard Hansen
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Line Ø. Bielefeldt
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Andrew B. Tobin
- Centre
for Translational Pharmacology, Institute of Molecular, Cell and Systems
Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ Glasgow, Scotland, U.K.
| | - Christine J. McKenzie
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Graeme Milligan
- Centre
for Translational Pharmacology, Institute of Molecular, Cell and Systems
Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ Glasgow, Scotland, U.K.
| | - Trond Ulven
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
107
|
Madan S, Mehra MR. Gut dysbiosis and heart failure: navigating the universe within. Eur J Heart Fail 2020; 22:629-637. [DOI: 10.1002/ejhf.1792] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/09/2020] [Accepted: 02/23/2020] [Indexed: 01/03/2023] Open
Affiliation(s)
- Shivank Madan
- Brigham and Women's Hospital Heart and Vascular Center and Harvard Medical School Boston MA USA
| | - Mandeep R. Mehra
- Brigham and Women's Hospital Heart and Vascular Center and Harvard Medical School Boston MA USA
| |
Collapse
|
108
|
Ho LKH, Tong VJW, Syn N, Nagarajan N, Tham EH, Tay SK, Shorey S, Tambyah PA, Law ECN. Gut microbiota changes in children with autism spectrum disorder: a systematic review. Gut Pathog 2020; 12:6. [PMID: 32025243 PMCID: PMC6996179 DOI: 10.1186/s13099-020-0346-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND As more animal studies start to disentangle pathways linking the gut microbial ecosystem and neurobehavioral traits, human studies have grown rapidly. Many have since investigated the bidirectional communication between the gastrointestinal tract and the central nervous system, specifically on the effects of microbial composition on the brain and development. METHODS Our review at the initial stage aimed to evaluate literature on gut microbial alterations in pediatric neurobehavioral conditions. We searched five literature databases (Embase, PubMed, PsychInfo, Scopus, and Medline) and found 4489 published work. As the mechanisms linking gut microbiota to these conditions are divergent, the scope of this review was narrowed to focus on describing gut dysbiosis in children with autism spectrum disorder (ASD). RESULTS Among the final 26 articles, there was a lack of consistency in the reported gut microbiome changes across ASD studies, except for distinguishable patterns, within limits, for Prevotella, Firmicutes at the phylum level, Clostridiales clusters including Clostridium perfringens, and Bifidobacterium species. CONCLUSIONS These results were inadequate to confirm a global microbiome change in children with ASD and causality could not be inferred to explain the etiology of the behaviors associated with ASD. Mechanistic studies are needed to elucidate the specific role of the gut microbiome in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Lucius Kang Hua Ho
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Valerie Jia Wei Tong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nicholas Syn
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Niranjan Nagarajan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore (GIS), Singapore, Singapore
| | - Elizabeth Huiwen Tham
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| | - Stacey K. Tay
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| | - Shefaly Shorey
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Paul Anantharajah Tambyah
- Division of Infectious Diseases, University Medicine Cluster, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Evelyn Chung Ning Law
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| |
Collapse
|
109
|
Abstract
Preclinical evidence strongly suggests a role for the gut microbiome in modulating the host central nervous system function and behavior. Several communication channels have been identified that enable microbial signals to reach the brain and that enable the brain to influence gut microbial composition and function. In rodent models, endocrine, neural, and inflammatory signals generated by gut microbes can alter brain structure and function, while autonomic nervous system activity can affect the microbiome by modulating the intestinal environment and by directly regulating microbial behavior. The amount of information that reaches the brain is dynamically regulated by the blood-brain barrier and the intestinal barrier. In humans, associations between gut microbial composition and function and several brain disorders have been reported, and fecal microbial transplants from patient populations into gnotobiotic mice have resulted in the reproduction of homologous features in the recipient mice. However, in contrast to preclinical findings, there is little information about a causal role of the gut microbiome in modulating human central nervous system function and behavior. Longitudinal studies in large patient populations with therapeutic interventions are required to demonstrate such causality, which will provide the basis for future clinical trials. © 2020 American Physiological Society. Compr Physiol 10:57-72, 2020.
Collapse
Affiliation(s)
- Vadim Osadchiy
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, and UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Clair R Martin
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, and UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, and UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
110
|
Torres-Fuentes C, Golubeva AV, Zhdanov AV, Wallace S, Arboleya S, Papkovsky DB, El Aidy S, Ross P, Roy BL, Stanton C, Dinan TG, Cryan JF, Schellekens H. Short-chain fatty acids and microbiota metabolites attenuate ghrelin receptor signaling. FASEB J 2019; 33:13546-13559. [DOI: 10.1096/fj.201901433r] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Cristina Torres-Fuentes
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Shauna Wallace
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | - Silvia Arboleya
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Cork, Ireland
| | | | - Sahar El Aidy
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul Ross
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Catherine Stanton
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Cork, Ireland
| | - Timothy G. Dinan
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F. Cryan
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Harriet Schellekens
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
111
|
van Thiel IAM, Botschuijver S, de Jonge WJ, Seppen J. Painful interactions: Microbial compounds and visceral pain. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165534. [PMID: 31634534 DOI: 10.1016/j.bbadis.2019.165534] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022]
Abstract
Visceral pain, characterized by abdominal discomfort, originates from organs in the abdominal cavity and is a characteristic symptom in patients suffering from irritable bowel syndrome, vulvodynia or interstitial cystitis. Most organs in which visceral pain originates are in contact with the external milieu and continuously exposed to microbes. In order to maintain homeostasis and prevent infections, the immune- and nervous system in these organs cooperate to sense and eliminate (harmful) microbes. Recognition of microbial components or products by receptors expressed on cells from the immune and nervous system can activate immune responses but may also cause pain. We review the microbial compounds and their receptors that could be involved in visceral pain development.
Collapse
Affiliation(s)
- I A M van Thiel
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands
| | - S Botschuijver
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands
| | - W J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands
| | - J Seppen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands.
| |
Collapse
|
112
|
Mashaqi S, Gozal D. Obstructive Sleep Apnea and Systemic Hypertension: Gut Dysbiosis as the Mediator? J Clin Sleep Med 2019; 15:1517-1527. [PMID: 31596218 PMCID: PMC6778338 DOI: 10.5664/jcsm.7990] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Obstructive sleep apnea (OSA) and systemic hypertension (SH) are common and interrelated diseases. It is estimated that approximately 75% of treatment-resistant hypertension cases have an underlying OSA. Exploration of the gut microbiome is a new advance in medicine that has been linked to many comorbid illnesses, including SH and OSA. Here, we will review the literature in SH and gut dysbiosis, OSA and gut dysbiosis, and whether gut dysbiosis is common in both conditions. METHODS We reviewed the National Center for Biotechnology Information database, including PubMed and PubMed Central. We identified a total of 230 articles. The literature search was conducted using the phrase "obstructive sleep apnea and gut dysbiosis." Only original research articles were included. This yielded a total of 12 articles. RESULTS Most of the research conducted in this field was on animal models, and almost all trials confirmed that intermittent hypoxia models resulted in gut dysbiosis. Gut dysbiosis, however, can cause a state of low-grade inflammation through damage to the gut wall barrier resulting in "leaky gut." Neuroinflammation is a hallmark of the pathophysiology of OSA-induced SH. CONCLUSIONS Gut dysbiosis seems to be an important factor in the pathophysiology of OSA-induced hypertension. Reversing gut dysbiosis at an early stage through prebiotics and probiotics and fecal microbiota transplantation combined with positive airway pressure therapy may open new horizons of treatment to prevent SH. More studies are needed in humans to elicit the effect of positive airway pressure therapy on gut dysbiosis.
Collapse
Affiliation(s)
- Saif Mashaqi
- Division of Sleep Medicine, University of North Dakota School of Medicine – Sanford Health, Fargo, North Dakota
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, Missouri
| |
Collapse
|
113
|
Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The Microbiota-Gut-Brain Axis. Physiol Rev 2019; 99:1877-2013. [DOI: 10.1152/physrev.00018.2018] [Citation(s) in RCA: 1243] [Impact Index Per Article: 248.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kenneth J. O'Riordan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitlin S. M. Cowan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kiran V. Sandhu
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Martin G. Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Christine Fulling
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitriona M. Long-Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Jason A. Martin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Alicia Molinero-Perez
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emanuela Morelli
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Enrique Morillas
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Rory O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joana S. Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emily M. Teichman
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Shauna E. Wallace-Fitzsimons
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Niall Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
114
|
Caspani G, Kennedy S, Foster JA, Swann J. Gut microbial metabolites in depression: understanding the biochemical mechanisms. MICROBIAL CELL 2019; 6:454-481. [PMID: 31646148 PMCID: PMC6780009 DOI: 10.15698/mic2019.10.693] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gastrointestinal and central function are intrinsically connected by the gut microbiota, an ecosystem that has co-evolved with the host to expand its biotransformational capabilities and interact with host physiological processes by means of its metabolic products. Abnormalities in this microbiota-gut-brain axis have emerged as a key component in the pathophysiology of depression, leading to more research attempting to understand the neuroactive potential of the products of gut microbial metabolism. This review explores the potential for the gut microbiota to contribute to depression and focuses on the role that microbially-derived molecules – neurotransmitters, short-chain fatty acids, indoles, bile acids, choline metabolites, lactate and vitamins – play in the context of emotional behavior. The future of gut-brain axis research lies is moving away from association, towards the mechanisms underlying the relationship between the gut bacteria and depressive behavior. We propose that direct and indirect mechanisms exist through which gut microbial metabolites affect depressive behavior: these include (i) direct stimulation of central receptors, (ii) peripheral stimulation of neural, endocrine, and immune mediators, and (iii) epigenetic regulation of histone acetylation and DNA methylation. Elucidating these mechanisms is essential to expand our understanding of the etiology of depression, and to develop new strategies to harness the beneficial psychotropic effects of these molecules. Overall, the review highlights the potential for dietary interventions to represent such novel therapeutic strategies for major depressive disorder.
Collapse
Affiliation(s)
- Giorgia Caspani
- Computational Systems Medicine, Department of Surgery and Cancer, Imperial College London, UK
| | - Sidney Kennedy
- Centre for Mental Health and Krembil Research Centre, University Health Network, University of Toronto, Toronto, ON, CA.,Mental Health Services, St. Michael's Hospital, University of Toronto, Toronto, ON, CA.,Department of Psychiatry, University of Toronto, Toronto, ON, CA.,Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, CA
| | - Jane A Foster
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan Swann
- Computational Systems Medicine, Department of Surgery and Cancer, Imperial College London, UK
| |
Collapse
|
115
|
Microbiota: a novel regulator of pain. J Neural Transm (Vienna) 2019; 127:445-465. [PMID: 31552496 DOI: 10.1007/s00702-019-02083-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023]
Abstract
Among the various regulators of the nervous system, the gut microbiota has been recently described to have the potential to modulate neuronal cells activation. While bacteria-derived products can induce aversive responses and influence pain perception, recent work suggests that "abnormal" microbiota is associated with neurological diseases such as Alzheimer's, Parkinson's disease or autism spectrum disorder (ASD). Here we review how the gut microbiota modulates afferent sensory neurons function and pain, highlighting the role of the microbiota/gut/brain axis in the control of behaviors and neurological diseases. We outline the changes in gut microbiota, known as dysbiosis, and their influence on painful gastrointestinal disorders. Furthermore, both direct host/microbiota interaction that implicates activation of "pain-sensing" neurons by metabolites, or indirect communication via immune activation is discussed. Finally, treatment options targeting the gut microbiota, including pre- or probiotics, will be proposed. Further studies on microbiota/nervous system interaction should lead to the identification of novel microbial ligands and host receptor-targeted drugs, which could ultimately improve chronic pain management and well-being.
Collapse
|
116
|
Caspani G, Swann J. Small talk: microbial metabolites involved in the signaling from microbiota to brain. Curr Opin Pharmacol 2019; 48:99-106. [PMID: 31525562 DOI: 10.1016/j.coph.2019.08.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/07/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022]
Abstract
The wealth of biotransformational capabilities encoded in the microbiome expose the host to an array of bioactive xenobiotic products. Several of these metabolites participate in the communication between the gastrointestinal tract and the central nervous system and have potential to modulate central physiological and pathological processes. This biochemical interplay can occur through various direct and indirect mechanisms. These include binding to host receptors in the brain, stimulation of the vagus nerve in the gut, alteration of central neurotransmission, and modulation of neuroinflammation. Here, the potential for short chain fatty acids, bile acids, neurotransmitters and other bioactive products of the microbiome to participate in the gut-brain axis will be reviewed.
Collapse
Affiliation(s)
- Giorgia Caspani
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, UK
| | - Jonathan Swann
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, UK.
| |
Collapse
|
117
|
Kimura I, Ichimura A, Ohue-Kitano R, Igarashi M. Free Fatty Acid Receptors in Health and Disease. Physiol Rev 2019; 100:171-210. [PMID: 31487233 DOI: 10.1152/physrev.00041.2018] [Citation(s) in RCA: 488] [Impact Index Per Article: 97.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fatty acids are metabolized and synthesized as energy substrates during biological responses. Long- and medium-chain fatty acids derived mainly from dietary triglycerides, and short-chain fatty acids (SCFAs) produced by gut microbial fermentation of the otherwise indigestible dietary fiber, constitute the major sources of free fatty acids (FFAs) in the metabolic network. Recently, increasing evidence indicates that FFAs serve not only as energy sources but also as natural ligands for a group of orphan G protein-coupled receptors (GPCRs) termed free fatty acid receptors (FFARs), essentially intertwining metabolism and immunity in multiple ways, such as via inflammation regulation and secretion of peptide hormones. To date, several FFARs that are activated by the FFAs of various chain lengths have been identified and characterized. In particular, FFAR1 (GPR40) and FFAR4 (GPR120) are activated by long-chain saturated and unsaturated fatty acids, while FFAR3 (GPR41) and FFAR2 (GPR43) are activated by SCFAs, mainly acetate, butyrate, and propionate. In this review, we discuss the recent reports on the key physiological functions of the FFAR-mediated signaling transduction pathways in the regulation of metabolism and immune responses. We also attempt to reveal future research opportunities for developing therapeutics for metabolic and immune disorders.
Collapse
Affiliation(s)
- Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| | - Atsuhiko Ichimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| | - Ryuji Ohue-Kitano
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| | - Miki Igarashi
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| |
Collapse
|
118
|
Zhan J, Liang Y, Liu D, Ma X, Li P, Zhai W, Zhou Z, Wang P. Pectin reduces environmental pollutant-induced obesity in mice through regulating gut microbiota: A case study of p,p'-DDE. ENVIRONMENT INTERNATIONAL 2019; 130:104861. [PMID: 31195221 DOI: 10.1016/j.envint.2019.05.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/18/2019] [Accepted: 05/21/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND The prevalence of obesity has raised global concerns. Environmental pollutants are one of the main causes of obesity. Many studies have demonstrated that dietary fiber could reduce obesity induced by high-fat diets, but whether environmental pollutant-induced obesity can be reversed is still unknown. OBJECTIVES This study aimed to investigate the effects of pectin on obesity induced by a typical environmental pollutant p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and explore the underlying mechanism by which pectin reversed p,p'-DDE-induced obesity. METHODS p,p'-DDE was used to induce obesity in C57BL/6J mice and pectin was supplied during and after cessation of p,p'-DDE exposure. Body and fat weight gain, plasma lipid profile and insulin resistance of mice were assessed. Gut microbiota composition and the levels of short-chain fatty acids (SCFAs) as well as the receptor proteins and hormones in the SCFAs-related signaling pathway were analyzed. Moreover, p,p'-DDE levels in various tissues of mice were detected. RESULTS Pectin supplementation reversed body and fat weight gain, dyslipidemia, hyperglycemia and insulin resistance in p,p'-DDE-exposed mice. Furthermore, pectin apparently altered the p,p'-DDE-induced microbial composition and then promoted the levels of SCFAs in colonic feces as well as the expression of G-protein coupled receptors and the concentration of hormone peptide YY (PYY) and glucagon like peptide-1 (GLP-1). Pectin treatment also significantly reduced p,p'-DDE accumulation in mice tissues during p,p'-DDE exposure but did not change p,p'-DDE metabolism after termination of p,p'-DDE exposure. CONCLUSIONS Pectin had a good effect on reducing p,p'-DDE-induced obesity through regulating gut microbiota and provided a potential strategy for the treatment of environmental pollutant-caused health problems.
Collapse
Affiliation(s)
- Jing Zhan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China
| | - Yiran Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China
| | - Xiaoran Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China
| | - Peize Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China
| | - Wangjing Zhai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China.
| |
Collapse
|
119
|
Holota Y, Dovbynchuk T, Kaji I, Vareniuk I, Dzyubenko N, Chervinska T, Zakordonets L, Stetska V, Ostapchenko L, Serhiychuk T, Tolstanova G. The long-term consequences of antibiotic therapy: Role of colonic short-chain fatty acids (SCFA) system and intestinal barrier integrity. PLoS One 2019; 14:e0220642. [PMID: 31437166 PMCID: PMC6705842 DOI: 10.1371/journal.pone.0220642] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022] Open
Abstract
Epidemiological studies revealed that antibiotics exposure increases a risk of inflammatory bowel diseases (IBD) development. It remained largely unknown how antibiotic-induced dysbiosis confers the risk for enhanced inflammatory response. The aim of the present study was to test the hypothesis that SCFAs, their receptors and transporters mediate the antibiotic long-term effects on the functional state of colonic mucosa and susceptibility to the experimental colitis. Male Wistar rats were treated daily for 14 days with antibiotic ceftriaxone (300 mg/kg, i.m.) or vehicle; euthanized by CO2 inhalation followed by cervical dislocation in 1, 14 or 56 days after antibiotic withdrawal. We found increased cecum weight and sustained changes in microbiota composition after ceftriaxone treatment with increased number of conditionally pathogenic enterobacteria, E. coli, Clostridium, Staphylococcus spp. and hemolytic bacteria even at 56 days after antibiotic withdrawal. The concentration of SCFAs was decreased after ceftriaxone withdrawal. We found decreased immunoreactivity of the FFA2, FFA3 receptors, SMCT1 and increased MCT1 & MCT4 transporters of SCFAs in colon mucosa. These changes evoked a significant shift in colonic mucosal homeostasis: the disturbance of oxidant-antioxidant balance; activation of redox-sensitive transcription factor HIF1α and ERK1/2 MAP kinase; increased colonic epithelial permeability and bacterial translocation to blood; morphological remodeling of the colonic tissue. Ceftriaxone pretreatment significantly reinforced inflammation during experimental colitis 56 days after ceftriaxone withdrawal, which was confirmed by increased histopathology of colitis, Goblet cell dysfunction, colonic dilatation and wall thickening, and increased serum levels of inflammatory cytokines (TNF-α and IL-10). Since the recognition of the importance of microbiota metabolic activity rather than their composition in the development of inflammatory disorders, e.g. IBD, the present study is the first report on the role of the SCFA system in the long lasting side effects of antibiotic treatment and its implication in IBD development.
Collapse
Affiliation(s)
- Yuliia Holota
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | - Izumi Kaji
- UCLA/CURE West LA VA Medical Center, Los Angeles, California, United States of America
| | - Igor Vareniuk
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | | | | | | | | | | | - Ganna Tolstanova
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- * E-mail: ,
| |
Collapse
|
120
|
Egerod KL, Schwartz TW, Gautron L. The Molecular Diversity of Vagal Afferents Revealed. Trends Neurosci 2019; 42:663-666. [PMID: 31421944 DOI: 10.1016/j.tins.2019.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/01/2019] [Indexed: 12/22/2022]
Abstract
Using single-cell RNA sequencing (RNA-seq), Kupari and coworkers (Cell Rep., 2019) have generated a long sought-after molecular atlas of vagal afferents in the mouse. Vagal afferents were found to be organized into 24 subtypes, revealing a level of diversity that was not previously recognized.
Collapse
Affiliation(s)
- Kristoffer L Egerod
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thue W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laurent Gautron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.
| |
Collapse
|
121
|
Parker A, Fonseca S, Carding SR. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes 2019; 11:135-157. [PMID: 31368397 PMCID: PMC7053956 DOI: 10.1080/19490976.2019.1638722] [Citation(s) in RCA: 331] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/22/2019] [Accepted: 06/26/2019] [Indexed: 02/03/2023] Open
Abstract
The human gastrointestinal (gut) microbiota comprises diverse and dynamic populations of bacteria, archaea, viruses, fungi, and protozoa, coexisting in a mutualistic relationship with the host. When intestinal homeostasis is perturbed, the function of the gastrointestinal tract and other organ systems, including the brain, can be compromised. The gut microbiota is proposed to contribute to blood-brain barrier disruption and the pathogenesis of neurodegenerative diseases. While progress is being made, a better understanding of interactions between gut microbes and host cells, and the impact these have on signaling from gut to brain is now required. In this review, we summarise current evidence of the impact gut microbes and their metabolites have on blood-brain barrier integrity and brain function, and the communication networks between the gastrointestinal tract and brain, which they may modulate. We also discuss the potential of microbiota modulation strategies as therapeutic tools for promoting and restoring brain health.
Collapse
Affiliation(s)
- Aimée Parker
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - Sonia Fonseca
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - Simon R. Carding
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
122
|
Abstract
Short-chain fatty acids (SCFAs), the main metabolites produced by bacterial fermentation of dietary fibre in the gastrointestinal tract, are speculated to have a key role in microbiota-gut-brain crosstalk. However, the pathways through which SCFAs might influence psychological functioning, including affective and cognitive processes and their neural basis, have not been fully elucidated. Furthermore, research directly exploring the role of SCFAs as potential mediators of the effects of microbiota-targeted interventions on affective and cognitive functioning is sparse, especially in humans. This Review summarizes existing knowledge on the potential of SCFAs to directly or indirectly mediate microbiota-gut-brain interactions. The effects of SCFAs on cellular systems and their interaction with gut-brain signalling pathways including immune, endocrine, neural and humoral routes are described. The effects of microbiota-targeted interventions such as prebiotics, probiotics and diet on psychological functioning and the putative mediating role of SCFA signalling will also be discussed, as well as the relationship between SCFAs and psychobiological processes. Finally, future directions to facilitate direct investigation of the effect of SCFAs on psychological functioning are outlined.
Collapse
|
123
|
|
124
|
Yang T, Magee KL, Colon-Perez LM, Larkin R, Liao YS, Balazic E, Cowart JR, Arocha R, Redler T, Febo M, Vickroy T, Martyniuk CJ, Reznikov LR, Zubcevic J. Impaired butyrate absorption in the proximal colon, low serum butyrate and diminished central effects of butyrate on blood pressure in spontaneously hypertensive rats. Acta Physiol (Oxf) 2019; 226:e13256. [PMID: 30656835 DOI: 10.1111/apha.13256] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/03/2018] [Accepted: 01/11/2019] [Indexed: 12/21/2022]
Abstract
AIM Butyrate is a major gut microbiota-derived metabolite. Reduced butyrate-producing bacteria has been reported in the spontaneously hypertensive rat (SHR), a model of hypertension characterized by dysfunctional autonomic nervous system and gut dysbiosis. Here, we demonstrate a potential mechanism for butyrate in blood pressure regulation. METHODS High-performance liquid chromatography and liquid chromatography-mass spectrometry were performed to measure butyrate levels in feces and serum. Ussing chamber determined butyrate transport in colon ex vivo. Real-time PCR and immunohistochemistry evaluated expression of butyrate transporter, Slc5a8, in the colon. Mean arterial blood pressure was measured in catheterized anesthetized rats before and after a single butyrate intracerebroventricular injection. Activity of cardioregulatory brain regions was determined by functional magnetic resonance imaging to derive neural effects of butyrate. RESULTS In the SHR, we demonstrated elevated butyrate levels in cecal content, but diminished butyrate levels in circulation, possibly due to reduced expression of Slc5a8 transporter in the colon. In addition, we observed lower expression levels of butyrate-sensing receptors in the hypothalamus of SHR, likely leading to the reduced effects of centrally administered butyrate on blood pressure in the SHR. Functional magnetic resonance imaging revealed reduced activation of cardioregulatory brain regions following central administration of butyrate in the SHR compared to control. CONCLUSION We demonstrated a reduced availability of serum butyrate in the SHR, possibly due to diminished colonic absorption. Reduced expression of butyrate-sensing receptors in the SHR hypothalamus may explain the reduced central responsiveness to butyrate, indicating microbial butyrate may play a role in blood pressure regulation.
Collapse
Affiliation(s)
- Tao Yang
- Physiological Sciences, College of Veterinary Medicine; University of Florida; Gainesville Florida
| | - Kacy L. Magee
- Physiological Sciences, College of Veterinary Medicine; University of Florida; Gainesville Florida
| | - Luis M. Colon-Perez
- Department of Psychiatry, College of Medicine; University of Florida; Gainesville Florida
| | - Riley Larkin
- Physiological Sciences, College of Veterinary Medicine; University of Florida; Gainesville Florida
| | - Yan-Shin Liao
- Physiological Sciences, College of Veterinary Medicine; University of Florida; Gainesville Florida
| | - Eliza Balazic
- Physiological Sciences, College of Veterinary Medicine; University of Florida; Gainesville Florida
| | - Jonathan R. Cowart
- Physiological Sciences, College of Veterinary Medicine; University of Florida; Gainesville Florida
| | - Rebeca Arocha
- Physiological Sciences, College of Veterinary Medicine; University of Florida; Gainesville Florida
| | - Ty Redler
- Physiological Sciences, College of Veterinary Medicine; University of Florida; Gainesville Florida
| | - Marcelo Febo
- Department of Psychiatry, College of Medicine; University of Florida; Gainesville Florida
| | - Thomas Vickroy
- Physiological Sciences, College of Veterinary Medicine; University of Florida; Gainesville Florida
| | - Christopher J. Martyniuk
- Physiological Sciences, College of Veterinary Medicine; University of Florida; Gainesville Florida
| | - Leah R. Reznikov
- Physiological Sciences, College of Veterinary Medicine; University of Florida; Gainesville Florida
| | - Jasenka Zubcevic
- Physiological Sciences, College of Veterinary Medicine; University of Florida; Gainesville Florida
| |
Collapse
|
125
|
Torres-Velázquez M, Sawin EA, Anderson JM, Yu JPJ. Refractory diet-dependent changes in neural microstructure: Implications for microstructural endophenotypes of neurologic and psychiatric disease. Magn Reson Imaging 2019; 58:148-155. [PMID: 30776455 PMCID: PMC6477923 DOI: 10.1016/j.mri.2019.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/23/2019] [Accepted: 02/14/2019] [Indexed: 12/29/2022]
Abstract
Alterations in gut microbiome populations via dietary manipulation have been shown to induce diet-dependent changes in white matter microstructure. The purpose of this study is to examine the durability of these diet-induced microstructural alterations. We implemented a crossover experimental design where post-weaned male rats were assigned to one of four experimental diets. Following the administration of experimental diets and again following crossover and resumption of a normal diet, brains were imaged ex-vivo with diffusion tensor imaging. Following standard image preprocessing, tract-based spatial statistics and region-of-interest measurements were then calculated for all diffusion tensor indices. Voxel-wise differences in FA were identified in the high fat diet group when compared to animals receiving a control diet. Following crossover, there were new voxel-wise changes in both FA and TR that do not correspond to the regions previously identified. Animals crossed over from the high fiber diet demonstrate widespread and global changes in the diffusion tensor that stand in stark contrast to the minimal changes identified before crossover. While no significant differences between any of the diffusion metrics were identified in the high protein group before crossover, statistically significant decreased RD values were observed following resumption of a normal diet. Diet-induced changes in neural microstructure are durable changes that are unrecoverable following the resumption of a normal diet. We further show that in certain experimental diets, resumption of a normal diet can lead to further marked and unanticipated changes in white matter microstructure.
Collapse
Affiliation(s)
- Maribel Torres-Velázquez
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Emily A Sawin
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Jacqueline M Anderson
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - John-Paul J Yu
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
126
|
Toral M, Robles-Vera I, de la Visitación N, Romero M, Yang T, Sánchez M, Gómez-Guzmán M, Jiménez R, Raizada MK, Duarte J. Critical Role of the Interaction Gut Microbiota - Sympathetic Nervous System in the Regulation of Blood Pressure. Front Physiol 2019; 10:231. [PMID: 30930793 PMCID: PMC6423906 DOI: 10.3389/fphys.2019.00231] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/21/2019] [Indexed: 12/11/2022] Open
Abstract
Association between gut dysbiosis and neurogenic diseases, such as hypertension, has been described. The aim of this study was to investigate whether changes in the gut microbiota alter gut-brain interactions inducing changes in blood pressure (BP). Recipient normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) were orally gavaged with donor fecal contents from SHR and WKY. We divided the animals into four groups: WKY transplanted with WKY microbiota (W-W), SHR with SHR (S-S), WKY with SHR (W-S) and SHR with WKY (S-W). Basal systolic BP (SBP) and diastolic BP (DBP) were reduced with no change in heart rate as a result of fecal microbiota transplantation (FMT) from WKY rats to SHR. Similarly, FMT from SHR to WKY increased basal SBP and DBP. Increases in both NADPH oxidase-driven reactive oxygen species production and proinflammatory cytokines in brain paraventricular nucleus linked to higher BP drop with pentolinium and plasmatic noradrenaline (NA) levels were found in the S-S group as compared to the W-W group. These parameters were reduced by FMT from WKY to SHR. Increased levels of pro-inflammatory cytokines, tyrosine hydroxylase mRNA levels and NA content in the proximal colon, whereas reduced mRNA levels of gap junction proteins, were found in the S-S group as compared to the W-W group. These changes were inhibited by FMT from WKY to SHR. According to our correlation analyses, the abundance of Blautia and Odoribacter showed a negative correlation with high SBP. In conclusion, in SHR gut microbiota is an important factor involved in BP control, at least in part, as consequence of its effect on neuroinflammation and the sympathetic nervous system activity.
Collapse
Affiliation(s)
- Marta Toral
- Department of Pharmacology, School of Pharmacy, Centro de Investigación Biomédica, University of Granada, Granada, Spain
| | - Iñaki Robles-Vera
- Department of Pharmacology, School of Pharmacy, Centro de Investigación Biomédica, University of Granada, Granada, Spain
| | - Néstor de la Visitación
- Department of Pharmacology, School of Pharmacy, Centro de Investigación Biomédica, University of Granada, Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, Centro de Investigación Biomédica, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Tao Yang
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Manuel Sánchez
- Department of Pharmacology, School of Pharmacy, Centro de Investigación Biomédica, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Manuel Gómez-Guzmán
- Department of Pharmacology, School of Pharmacy, Centro de Investigación Biomédica, University of Granada, Granada, Spain
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy, Centro de Investigación Biomédica, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain.,CIBERCV, University of Granada, Granada, Spain
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, Centro de Investigación Biomédica, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain.,CIBERCV, University of Granada, Granada, Spain
| |
Collapse
|
127
|
Tough IR, Forbes S, Cox HM. Signaling of free fatty acid receptors 2 and 3 differs in colonic mucosa following selective agonism or coagonism by luminal propionate. Neurogastroenterol Motil 2018; 30:e13454. [PMID: 30136343 PMCID: PMC6282569 DOI: 10.1111/nmo.13454] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/20/2018] [Accepted: 07/25/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Propionate exhibits affinity for free fatty acid receptor 2 (FFA2, formerly GPR43) and FFA3 (GPR41). These two G protein-coupled receptors (GPCRs) are expressed by enteroendocrine L cells that contain anorectic peptide YY (PYY) and glucagon-like peptide 1 (GLP-1), while FFA3 is also expressed by enteric neurons. Few studies have investigated the individual roles of FFA2 and FFA3 in propionate's gastrointestinal (GI) effects. Here, we compared FFA2, FFA3, and propionate mucosal responses utilizing selective ligands including an FFA3 antagonist, in mouse and human colonic mucosa. METHODS Vectorial ion transport was measured in native colonic preparations from normal mouse and human colon with intact submucosal innervation. Endogenous fecal pellet propulsion was monitored in colons isolated from wild-type (WT) and PYY-/- mice. KEY RESULTS FFA2 and FFA3 signaling differed significantly. FFA2 agonism involved endogenous L cell-derived PYY and was glucose dependent, while FFA3 agonism was independent of PYY and glucose, but required submucosal enteric neurons for activity. Tonic FFA3 activity was observed in mouse and human colon mucosa. Apical propionate responses were a combination of FFA2-PYY mediation and FFA3 neuronal GLP-1- and CGRP-dependent signaling in mouse ascending colon mucosa. Propionate also slowed WT and PYY-/- colonic transit, and this effect was blocked by a GLP-1 receptor antagonist. CONCLUSIONS & INFERENCES We conclude that luminal propionate costimulates FFA2 and FFA3 pathways, reducing anion secretion and slowing colonic motility; FFA2 via PYY mediation and FFA3 signaling by activation of enteric sensory neurons.
Collapse
Affiliation(s)
- Iain R. Tough
- King's College LondonWolfson Centre for Age‐Related Diseases, Institute of Psychiatry, Psychology & NeuroscienceLondonUK
| | - Sarah Forbes
- King's College LondonWolfson Centre for Age‐Related Diseases, Institute of Psychiatry, Psychology & NeuroscienceLondonUK
| | - Helen M. Cox
- King's College LondonWolfson Centre for Age‐Related Diseases, Institute of Psychiatry, Psychology & NeuroscienceLondonUK
| |
Collapse
|
128
|
The role of fatty acids and their endocannabinoid-like derivatives in the molecular regulation of appetite. Mol Aspects Med 2018; 64:45-67. [DOI: 10.1016/j.mam.2018.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 02/07/2023]
|
129
|
Selective tracking of FFAR3-expressing neurons supports receptor coupling to N-type calcium channels in mouse sympathetic neurons. Sci Rep 2018; 8:17379. [PMID: 30478340 PMCID: PMC6255804 DOI: 10.1038/s41598-018-35690-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022] Open
Abstract
Activation of short-chain free fatty acid receptors 3 (FFAR3) has been suggested to promote sympathetic outflow in postganglionic sympathetic neurons or hamper it by a negative coupling to N-type calcium (CaV2.2) channels. Heterogeneity of FFAR3 expression in sympathetic neurons, however, renders single neurons studies extremely time-consuming in wild-type mice. Previous studies demonstrated large variability of the degree of CaV2.2 channel inhibition by FFAR3 in a global population of rat sympathetic neurons. Therefore, we focused on a small subpopulation of mouse sympathetic neurons using an FFAR3 antibody and an Ffar3 reporter mouse to perform immunofluorescent and electrophysiological studies. Whole-cell patch-clamp recordings of identified FFAR3-expressing neurons from reporter mice revealed a 2.5-fold decrease in the CaV2.2-FFAR3 inhibitory coupling variability and 1.5-fold increase in the mean ICa2+ inhibition, when compared with unlabeled neurons from wild-type mice. Further, we found that the ablation of Ffar3 gene expression in two knockout mouse models led to a complete loss-of-function. Subpopulations of sympathetic neurons are associated with discrete functional pathways. However, little is known about the neural pathways of the FFAR3-expressing subpopulation. Our data indicate that FFAR3 is expressed primarily in neurons with a vasoconstrictor phenotype. Thus, fine-tuning of chemically-coded neurotransmitters may accomplish an adequate outcome.
Collapse
|
130
|
Cork SC. The role of the vagus nerve in appetite control: Implications for the pathogenesis of obesity. J Neuroendocrinol 2018; 30:e12643. [PMID: 30203877 DOI: 10.1111/jne.12643] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022]
Abstract
The communication between the gut and the brain is important for the control of energy homeostasis. In response to food intake, enteroendocrine cells secrete gut hormones, which ultimately suppress appetite through centrally-mediated processes. Increasing evidence implicates the vagus nerve as an important conduit in transmitting these signals from the gastrointestinal tract to the brain. Studies have demonstrated that many of the gut hormones secreted from enteroendocrine cells signal through the vagus nerve, and the sensitivity of the vagus to these signals is regulated by feeding status. Furthermore, evidence suggests that a reduction in the ability of the vagus nerve to respond to the switch between a "fasted" and "fed" state, retaining sensitivity to orexigenic signals when fed or a reduced ability to respond to satiety hormones, may contribute to obesity. This review draws together the evidence that the vagus nerve is a crucial component of appetite regulation via the gut-brain axis, with a particular emphasis on experimental techniques and future developments.
Collapse
Affiliation(s)
- Simon C Cork
- Section of Endocrinology and Investigative Medicine, Division of Endocrinology, Diabetes and Metabolism, Imperial College London, London, UK
| |
Collapse
|
131
|
Hoque M, Ali S, Hoda M. Current status of G-protein coupled receptors as potential targets against type 2 diabetes mellitus. Int J Biol Macromol 2018; 118:2237-2244. [DOI: 10.1016/j.ijbiomac.2018.07.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/09/2018] [Accepted: 07/14/2018] [Indexed: 12/15/2022]
|
132
|
van de Wouw M, Boehme M, Lyte JM, Wiley N, Strain C, O'Sullivan O, Clarke G, Stanton C, Dinan TG, Cryan JF. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations. J Physiol 2018; 596:4923-4944. [PMID: 30066368 DOI: 10.1113/jp276431] [Citation(s) in RCA: 439] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS Chronic (psychosocial) stress changes gut microbiota composition, as well as inducing behavioural and physiological deficits. The microbial metabolites short-chain fatty acids (SCFAs) have been implicated in gastrointestinal functional, (neuro)immune regulation and host metabolism, but their role in stress-induced behavioural and physiological alterations is poorly understood. Administration of SCFAs to mice undergoing psychosocial stress alleviates enduring alterations in anhedonia and heightened stress-responsiveness, as well as stress-induced increases in intestinal permeability. In contrast, chronic stress-induced alterations in body weight gain, faecal SCFAs and the gene expression of the SCFA receptors FFAR2 and FFAR3 remained unaffected by SCFA supplementation. These results present novel insights into mechanisms underpinning the influence of the gut microbiota on brain homeostasis, behaviour and host metabolism, informing the development of microbiota-targeted therapies for stress-related disorders. ABSTRACT There is a growing recognition of the involvement of the gastrointestinal microbiota in the regulation of physiology and behaviour. Microbiota-derived metabolites play a central role in the communication between microbes and their host, with short-chain fatty acids (SCFAs) being perhaps the most studied. SCFAs are primarily derived from fermentation of dietary fibres and play a pivotal role in host gut, metabolic and immune function. All these factors have previously been demonstrated to be adversely affected by stress. Therefore, we sought to assess whether SCFA supplementation could counteract the enduring effects of chronic psychosocial stress. C57BL/6J male mice received oral supplementation of a mixture of the three principle SCFAs (acetate, propionate and butyrate). One week later, mice underwent 3 weeks of repeated psychosocial stress, followed by a comprehensive behavioural analysis. Finally, plasma corticosterone, faecal SCFAs and caecal microbiota composition were assessed. SCFA treatment alleviated psychosocial stress-induced alterations in reward-seeking behaviour, and increased responsiveness to an acute stressor and in vivo intestinal permeability. In addition, SCFAs exhibited behavioural test-specific antidepressant and anxiolytic effects, which were not present when mice had also undergone psychosocial stress. Stress-induced increases in body weight gain, faecal SCFAs and the colonic gene expression of the SCFA receptors free fatty acid receptors 2 and 3 remained unaffected by SCFA supplementation. Moreover, there were no collateral effects on caecal microbiota composition. Taken together, these data show that SCFA supplementation alleviates selective and enduring alterations induced by repeated psychosocial stress and these data may inform future research into microbiota-targeted therapies for stress-related disorders.
Collapse
Affiliation(s)
- Marcel van de Wouw
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Joshua M Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Niamh Wiley
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Conall Strain
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Orla O'Sullivan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| |
Collapse
|
133
|
Spielman LJ, Gibson DL, Klegeris A. Unhealthy gut, unhealthy brain: The role of the intestinal microbiota in neurodegenerative diseases. Neurochem Int 2018; 120:149-163. [PMID: 30114473 DOI: 10.1016/j.neuint.2018.08.005] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 02/08/2023]
Abstract
The number of bacterial cells living within the human body is approximately equal to, or greater than, the total number of human cells. This dynamic population of microorganisms, termed the human microbiota, resides mainly within the gastrointestinal tract. It is widely accepted that highly diverse and stable microbiota promote overall human health. Colonization of the gut with maladaptive and pathogenic microbiota, a state also known as dysbiosis, is associated with a variety of peripheral diseases ranging from type 2 diabetes mellitus to cardiovascular and inflammatory bowel disease. More recently, microbial dysbiosis has been associated with a number of brain pathologies, including autism spectrum disorder, Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), suggesting a direct or indirect communication between intestinal bacteria and the central nervous system (CNS). In this review, we illustrate two pathways implicated in the crosstalk between gut microbiota and CNS involving 1) the vagus nerve and 2) transmission of signaling molecules through the circulatory system and across the blood-brain barrier (BBB). We summarize the available evidence of the specific changes in the intestinal microbiota, as well as microorganism-induced modifications to intestinal and BBB permeability, which have been linked to several neurodegenerative disorders including ALS, AD, and PD. Even though each of these diseases arises from unique pathogenetic mechanisms, all are characterized, at least in part, by chronic neuroinflammation. We provide an interpretation for the substantial evidence that healthy intestinal microbiota have the ability to positively regulate the neuroimmune responses in the CNS. Even though the evidence is mainly associative, it has been suggested that bacterial dysbiosis could contribute to an adverse neuroinflammatory state leading to increased risk of neurodegenerative diseases. Thus, developing strategies for regulating and maintaining healthy intestinal microbiota could be a valid approach for lowering individual risk and prevalence of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Deanna Lynn Gibson
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, Canada
| |
Collapse
|
134
|
Abstract
PURPOSE OF REVIEW The goal of the present paper is to review current literature supporting the occurrence of fundamental changes in brain energy metabolism during the transition from wakefulness to sleep. RECENT FINDINGS Latest research in the field indicates that glucose utilization and the concentrations of several brain metabolites consistently change across the sleep-wake cycle. Lactate, a product of glycolysis that is involved in synaptic plasticity, has emerged as a good biomarker of brain state. Sleep-induced changes in cerebral metabolite levels result from a shift in oxidative metabolism, which alters the reliance of brain metabolism upon carbohydrates. We found wide support for the notion that brain energetics is state dependent. In particular, fatty acids and ketone bodies partly replace glucose as cerebral energy source during sleep. This mechanism plausibly accounts for increases in biosynthetic pathways and functional alterations in neuronal activity associated with sleep. A better account of brain energy metabolism during sleep might help elucidate the long mysterious restorative effects of sleep for the whole organism.
Collapse
Affiliation(s)
- Nadia Nielsen Aalling
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen N, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen N, Denmark.,Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY, 14640, USA
| | - Mauro DiNuzzo
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen N, Denmark.
| |
Collapse
|
135
|
Bliss ES, Whiteside E. The Gut-Brain Axis, the Human Gut Microbiota and Their Integration in the Development of Obesity. Front Physiol 2018; 9:900. [PMID: 30050464 PMCID: PMC6052131 DOI: 10.3389/fphys.2018.00900] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022] Open
Abstract
Obesity is a global epidemic, placing socioeconomic strain on public healthcare systems, especially within the so-called Western countries, such as Australia, United States, United Kingdom, and Canada. Obesity results from an imbalance between energy intake and energy expenditure, where energy intake exceeds expenditure. Current non-invasive treatments lack efficacy in combating obesity, suggesting that obesity is a multi-faceted and more complex disease than previously thought. This has led to an increase in research exploring energy homeostasis and the discovery of a complex bidirectional communication axis referred to as the gut-brain axis. The gut-brain axis is comprised of various neurohumoral components that allow the gut and brain to communicate with each other. Communication occurs within the axis via local, paracrine and/or endocrine mechanisms involving a variety of gut-derived peptides produced from enteroendocrine cells (EECs), including glucagon-like peptide 1 (GLP1), cholecystokinin (CCK), peptide YY3-36 (PYY), pancreatic polypeptide (PP), and oxyntomodulin. Neural networks, such as the enteric nervous system (ENS) and vagus nerve also convey information within the gut-brain axis. Emerging evidence suggests the human gut microbiota, a complex ecosystem residing in the gastrointestinal tract (GIT), may influence weight-gain through several inter-dependent pathways including energy harvesting, short-chain fatty-acids (SCFA) signalling, behaviour modifications, controlling satiety and modulating inflammatory responses within the host. Hence, the gut-brain axis, the microbiota and the link between these elements and the role each plays in either promoting or regulating energy and thereby contributing to obesity will be explored in this review.
Collapse
Affiliation(s)
- Edward S. Bliss
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | | |
Collapse
|
136
|
Gill PA, van Zelm MC, Muir JG, Gibson PR. Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment Pharmacol Ther 2018; 48:15-34. [PMID: 29722430 DOI: 10.1111/apt.14689] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/09/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Butyrate, propionate and acetate are short chain fatty acids (SCFA), important for maintaining a healthy colon and are considered as protective in colorectal carcinogenesis. However, they may also regulate immune responses and the composition of the intestinal microbiota. Consequently, their importance in a variety of chronic inflammatory diseases is emerging. AIMS To review the physiology and metabolism of SCFA in humans, cellular and molecular mechanisms by which SCFA may act in health and disease, and approaches for therapeutic delivery of SCFA. METHODS A PubMed literature search was conducted for clinical and pre-clinical studies using search terms: 'dietary fibre', short-chain fatty acids', 'acetate', 'propionate', 'butyrate', 'inflammation', 'immune', 'gastrointestinal', 'metabolism'. RESULTS A wide range of pre-clinical evidence supports roles for SCFA as modulators of not only colonic function, but also multiple inflammatory and metabolic processes. SCFA are implicated in many autoimmune, allergic and metabolic diseases. However, translating effects of SCFA from animal studies to human disease is limited by physiological and dietary differences and by the challenge of delivering sufficient amounts of SCFA to the target sites that include the colon and the systemic circulation. Development of novel targeted approaches for colonic delivery, combined with postbiotic supplementation, may represent desirable strategies to achieve adequate targeted SCFA delivery. CONCLUSIONS There is a large array of potential disease-modulating effects of SCFA. Adequate targeted delivery to the sites of action is the main limitation of such application. The ongoing development and evaluation of novel delivery techniques offer potential for translating promise to therapeutic benefit.
Collapse
Affiliation(s)
- P A Gill
- Department of Gastroenterology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Vic., Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Vic, Australia
| | - M C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Vic, Australia
| | - J G Muir
- Department of Gastroenterology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Vic., Australia
| | - P R Gibson
- Department of Gastroenterology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Vic., Australia
| |
Collapse
|
137
|
Priyadarshini M, Kotlo KU, Dudeja PK, Layden BT. Role of Short Chain Fatty Acid Receptors in Intestinal Physiology and Pathophysiology. Compr Physiol 2018; 8:1091-1115. [PMID: 29978895 DOI: 10.1002/cphy.c170050] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nutrient sensing is a mechanism for organisms to sense their environment. In larger animals, including humans, the intestinal tract is a major site of nutrient sensing for the body, not surprisingly, as this is the central location where nutrients are absorbed. In the gut, bacterial fermentation results in generation of short chain fatty acids (SCFAs), a class of nutrients, which are sensed by specific membrane bound receptors, FFA2, FFA3, GPR109a, and Olfr78. These receptors are expressed uniquely throughout the gut and signal through distinct mechanisms. To date, the emerging data suggests a role of these receptors in normal and pathological conditions. The overall function of these receptors is to regulate aspects of intestinal motility, hormone secretion, maintenance of the epithelial barrier, and immune cell function. Besides in intestinal health, a prominent role of these receptors has emerged in modulation of inflammatory and immune responses during pathological conditions. Moreover, these receptors are being revealed to interact with the gut microbiota. This review article updates the current body of knowledge on SCFA sensing receptors in the gut and their roles in intestinal health and disease as well as in whole body energy homeostasis. © 2017 American Physiological Society. Compr Physiol 8:1091-1115, 2018.
Collapse
Affiliation(s)
- Medha Priyadarshini
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Illinois, USA
| | - Kumar U Kotlo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Illinois, USA
| | - Pradeep K Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Illinois, USA.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Brian T Layden
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Illinois, USA.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| |
Collapse
|
138
|
Egerod KL, Petersen N, Timshel PN, Rekling JC, Wang Y, Liu Q, Schwartz TW, Gautron L. Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms. Mol Metab 2018; 12:62-75. [PMID: 29673577 PMCID: PMC6001940 DOI: 10.1016/j.molmet.2018.03.016] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/24/2018] [Accepted: 03/29/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES G protein-coupled receptors (GPCRs) act as transmembrane molecular sensors of neurotransmitters, hormones, nutrients, and metabolites. Because unmyelinated vagal afferents richly innervate the gastrointestinal mucosa, gut-derived molecules may directly modulate the activity of vagal afferents through GPCRs. However, the types of GPCRs expressed in vagal afferents are largely unknown. Here, we determined the expression profile of all GPCRs expressed in vagal afferents of the mouse, with a special emphasis on those innervating the gastrointestinal tract. METHODS Using a combination of high-throughput quantitative PCR, RNA sequencing, and in situ hybridization, we systematically quantified GPCRs expressed in vagal unmyelinated Nav1.8-expressing afferents. RESULTS GPCRs for gut hormones that were the most enriched in Nav1.8-expressing vagal unmyelinated afferents included NTSR1, NPY2R, CCK1R, and to a lesser extent, GLP1R, but not GHSR and GIPR. Interestingly, both GLP1R and NPY2R were coexpressed with CCK1R. In contrast, NTSR1 was coexpressed with GPR65, a marker preferentially enriched in intestinal mucosal afferents. Only few microbiome-derived metabolite sensors such as GPR35 and, to a lesser extent, GPR119 and CaSR were identified in the Nav1.8-expressing vagal afferents. GPCRs involved in lipid sensing and inflammation (e.g. CB1R, CYSLTR2, PTGER4), and neurotransmitters signaling (CHRM4, DRD2, CRHR2) were also highly enriched in Nav1.8-expressing neurons. Finally, we identified 21 orphan GPCRs with unknown functions in vagal afferents. CONCLUSION Overall, this study provides a comprehensive description of GPCR-dependent sensing mechanisms in vagal afferents, including novel coexpression patterns, and conceivably coaction of key receptors for gut-derived molecules involved in gut-brain communication.
Collapse
Affiliation(s)
- Kristoffer L Egerod
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, and Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen, Denmark.
| | - Natalia Petersen
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, and Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen, Denmark
| | - Pascal N Timshel
- Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genomics, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen, Denmark
| | - Jens C Rekling
- Department of Neuroscience, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen, Denmark
| | - Yibing Wang
- Department of Biochemistry, UT Southwestern Medical Center at Dallas, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Qinghua Liu
- Department of Biochemistry, UT Southwestern Medical Center at Dallas, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Thue W Schwartz
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, and Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen, Denmark
| | - Laurent Gautron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| |
Collapse
|
139
|
Rastelli M, Knauf C, Cani PD. Gut Microbes and Health: A Focus on the Mechanisms Linking Microbes, Obesity, and Related Disorders. Obesity (Silver Spring) 2018; 26:792-800. [PMID: 29687645 PMCID: PMC5947576 DOI: 10.1002/oby.22175] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 12/12/2022]
Abstract
The past decade has been characterized by tremendous progress in the field of the gut microbiota and its impact on host metabolism. Although numerous studies show a strong relationship between the composition of gut microbiota and specific metabolic disorders associated with obesity, the key mechanisms are still being studied. The present review focuses on specific complex pathways as well as key interactions. For instance, the nervous routes are explored by examining the enteric nervous system, the vagus nerve, and the brain, as well as the endocrine routes (i.e., glucagon-like peptide-1, peptide YY, endocannabinoids) by which gut microbes communicate with the host. Moreover, the key metabolites involved in such specific interactions (e.g., short chain fatty acids, bile acids, neurotransmitters) as well as their targets (i.e., receptors, cell types, and organs) are briefly discussed. Finally, the review highlights the role of metabolic endotoxemia in the onset of metabolic disorders and the implications for alterations in gut microbiota-host interactions and ultimately the onset of diseases.
Collapse
Affiliation(s)
- Marialetizia Rastelli
- Metabolism and Nutrition Research Group, Walloon Excellence in Life Sciences and Biotechnology Institute and Louvain Drug Research InstituteUniversité catholique de LouvainBrusselsBelgium
- European Associated Laboratory NeuroMicrobiotaInstitut National de la Santé et de la Recherche MédicaleToulouseFrance
- European Associated Laboratory NeuroMicrobiotaUniversité catholique de LouvainBrusselsBelgium
| | - Claude Knauf
- European Associated Laboratory NeuroMicrobiotaInstitut National de la Santé et de la Recherche MédicaleToulouseFrance
- European Associated Laboratory NeuroMicrobiotaUniversité catholique de LouvainBrusselsBelgium
- Paul Sabatier UniversityToulouseFrance
- Institut de Recherche en Santé Digestive, Institut National de la Santé et de la Recherche Médicale U1220, Institut national de la recherche agronomique, École nationale vétérinaire de ToulouseToulouseFrance
| | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Walloon Excellence in Life Sciences and Biotechnology Institute and Louvain Drug Research InstituteUniversité catholique de LouvainBrusselsBelgium
- European Associated Laboratory NeuroMicrobiotaInstitut National de la Santé et de la Recherche MédicaleToulouseFrance
- European Associated Laboratory NeuroMicrobiotaUniversité catholique de LouvainBrusselsBelgium
| |
Collapse
|
140
|
Martin CR, Osadchiy V, Kalani A, Mayer EA. The Brain-Gut-Microbiome Axis. Cell Mol Gastroenterol Hepatol 2018; 6:133-148. [PMID: 30023410 PMCID: PMC6047317 DOI: 10.1016/j.jcmgh.2018.04.003] [Citation(s) in RCA: 689] [Impact Index Per Article: 114.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/04/2018] [Indexed: 12/12/2022]
Abstract
Preclinical and clinical studies have shown bidirectional interactions within the brain-gut-microbiome axis. Gut microbes communicate to the central nervous system through at least 3 parallel and interacting channels involving nervous, endocrine, and immune signaling mechanisms. The brain can affect the community structure and function of the gut microbiota through the autonomic nervous system, by modulating regional gut motility, intestinal transit and secretion, and gut permeability, and potentially through the luminal secretion of hormones that directly modulate microbial gene expression. A systems biological model is proposed that posits circular communication loops amid the brain, gut, and gut microbiome, and in which perturbation at any level can propagate dysregulation throughout the circuit. A series of largely preclinical observations implicates alterations in brain-gut-microbiome communication in the pathogenesis and pathophysiology of irritable bowel syndrome, obesity, and several psychiatric and neurologic disorders. Continued research holds the promise of identifying novel therapeutic targets and developing treatment strategies to address some of the most debilitating, costly, and poorly understood diseases.
Collapse
Key Words
- 2BA, secondary bile acid
- 5-HT, serotonin
- ANS, autonomic nervous system
- ASD, autism spectrum disorder
- BBB, blood-brain barrier
- BGM, brain-gut-microbiome
- CNS, central nervous system
- ECC, enterochromaffin cell
- EEC, enteroendocrine cell
- FFAR, free fatty acid receptor
- FGF, fibroblast growth factor
- FXR, farnesoid X receptor
- GF, germ-free
- GI, gastrointestinal
- GLP-1, glucagon-like peptide-1
- GPR, G-protein–coupled receptor
- IBS, irritable bowel syndrome
- Intestinal Permeability
- Irritable Bowel Syndrome
- LPS, lipopolysaccharide
- SCFA, short-chain fatty acid
- SPF, specific-pathogen-free
- Serotonin
- Stress
- TGR5, G protein-coupled bile acid receptor
- Trp, tryptophan
Collapse
Affiliation(s)
| | | | | | - Emeran A. Mayer
- Correspondence Address correspondence to: Emeran A. Mayer, MD, G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California at Los Angeles, MC737818-10833 Le Conte Avenue, Los Angeles, California 90095-7378. fax: (310) 825-1919.
| |
Collapse
|
141
|
Hoyles L, Snelling T, Umlai UK, Nicholson JK, Carding SR, Glen RC, McArthur S. Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier. MICROBIOME 2018; 6:55. [PMID: 29562936 PMCID: PMC5863458 DOI: 10.1186/s40168-018-0439-y] [Citation(s) in RCA: 321] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 03/09/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Gut microbiota composition and function are symbiotically linked with host health and altered in metabolic, inflammatory and neurodegenerative disorders. Three recognised mechanisms exist by which the microbiome influences the gut-brain axis: modification of autonomic/sensorimotor connections, immune activation, and neuroendocrine pathway regulation. We hypothesised interactions between circulating gut-derived microbial metabolites, and the blood-brain barrier (BBB) also contribute to the gut-brain axis. Propionate, produced from dietary substrates by colonic bacteria, stimulates intestinal gluconeogenesis and is associated with reduced stress behaviours, but its potential endocrine role has not been addressed. RESULTS After demonstrating expression of the propionate receptor FFAR3 on human brain endothelium, we examined the impact of a physiologically relevant propionate concentration (1 μM) on BBB properties in vitro. Propionate inhibited pathways associated with non-specific microbial infections via a CD14-dependent mechanism, suppressed expression of LRP-1 and protected the BBB from oxidative stress via NRF2 (NFE2L2) signalling. CONCLUSIONS Together, these results suggest gut-derived microbial metabolites interact with the BBB, representing a fourth facet of the gut-brain axis that warrants further attention.
Collapse
Affiliation(s)
- Lesley Hoyles
- Division of Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Imperial College London, London, UK.
| | - Tom Snelling
- Division of Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Umm-Kulthum Umlai
- Division of Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Jeremy K Nicholson
- Division of Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Simon R Carding
- Norwich Medical School, University of East Anglia, Norwich, UK
- The Gut Health and Food Safety Research Programme, The Quadram Institute, Norwich Research Park, Norwich, UK
| | - Robert C Glen
- Division of Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Imperial College London, London, UK
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Simon McArthur
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
142
|
Goswami C, Iwasaki Y, Yada T. Short-chain fatty acids suppress food intake by activating vagal afferent neurons. J Nutr Biochem 2018; 57:130-135. [PMID: 29702431 DOI: 10.1016/j.jnutbio.2018.03.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/09/2018] [Accepted: 03/07/2018] [Indexed: 02/08/2023]
Abstract
Fermentable carbohydrates including dietary fibers and resistant starch produce short-chain fatty acids (SCFAs), including acetate, propionate and butyrate, through microbial fermentation in the intestine of rodents and humans. Consumption of fermentable carbohydrate and SCFAs suppress food intake, an effect involving the brain. However, their signaling pathway to the brain remains unclear. Vagal afferents serve to link intestinal information to the brain. In the present study, we explored possible role of vagal afferents in the anorexigenic effect of SCFAs. Intraperitoneal (ip) injection of three SCFA molecules (6 mmol/kg) suppressed food intake in fasted mice with the rank order of butyrate > propionate > acetate. The suppressions of feeding by butyrate, propionate and acetate were attenuated by vagotomy of hepatic branch and blunted by systemic treatment with capsaicin that denervates capsaicin-sensitive sensory nerves including vagal afferents. Ip injection of butyrate induced significant phosphorylation of extracellular-signal-regulated kinase 1/2, cellular activation markers, in nodose ganglia and their projection site, medial nucleus tractus solitaries. Moreover, butyrate directly interacted with single neurons isolated from nodose ganglia and induced intracellular Ca2+ signaling. The present results identify the vagal afferent as the novel pathway through which exogenous SCFAs execute the remote control of feeding behavior and possibly other brain functions. Vagal afferents might participate in suppression of feeding by intestine-born SCFAs.
Collapse
Affiliation(s)
- Chayon Goswami
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 320-0498, Japan; Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; Kansai Electric Power Medical Research Institute, 1-5-6 Minatojimaminamimachi, Chuou-ku, Kobe 650-0047, Japan
| | - Yusaku Iwasaki
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 320-0498, Japan; Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Toshihiko Yada
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 320-0498, Japan; Kansai Electric Power Medical Research Institute, 1-5-6 Minatojimaminamimachi, Chuou-ku, Kobe 650-0047, Japan.
| |
Collapse
|
143
|
Kuwahara A, Kuwahara Y, Inui T, Marunaka Y. Regulation of Ion Transport in the Intestine by Free Fatty Acid Receptor 2 and 3: Possible Involvement of the Diffuse Chemosensory System. Int J Mol Sci 2018; 19:ijms19030735. [PMID: 29510573 PMCID: PMC5877596 DOI: 10.3390/ijms19030735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/10/2018] [Accepted: 03/02/2018] [Indexed: 12/20/2022] Open
Abstract
The diffuse chemosensory system (DCS) is well developed in the apparatuses of endodermal origin like gastrointestinal (GI) tract. The primary function of the GI tract is the extraction of nutrients from the diet. Therefore, the GI tract must possess an efficient surveillance system that continuously monitors the luminal contents for beneficial or harmful compounds. Recent studies have shown that specialized cells in the intestinal lining can sense changes in the luminal content. The chemosensory cells in the GI tract belong to the DCS which consists of enteroendocrine and related cells. These cells initiate various important local and remote reflexes. Although neural and hormonal involvements in ion transport in the GI tract are well documented, involvement of the DCS in the regulation of intestinal ion transport is much less understood. Since activation of luminal chemosensory receptors is a primary signal that elicits changes in intestinal ion transport and motility and failure of the system causes dysfunctions in host homeostasis, as well as functional GI disorders, study of the regulation of GI function by the DCS has become increasingly important. This review discusses the role of the DCS in epithelial ion transport, with particular emphasis on the involvement of free fatty acid receptor 2 (FFA2) and free fatty acid receptor 3 (FFA3).
Collapse
Affiliation(s)
- Atsukazu Kuwahara
- Division of Molecular Cell Physiology, Kyoto prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Yuko Kuwahara
- Division of Molecular Cell Physiology, Kyoto prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Toshio Inui
- Saisei Mirai medical corporation, 6-14-17 Kinda, Moriguchi, Osaka 570-0011, Japan.
| | - Yoshinori Marunaka
- Division of Molecular Cell Physiology, Kyoto prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602-8566, Japan.
| |
Collapse
|
144
|
Shi H, Chang Y, Gao Y, Wang X, Chen X, Wang Y, Xue C, Tang Q. Dietary fucoidan of Acaudina molpadioides alters gut microbiota and mitigates intestinal mucosal injury induced by cyclophosphamide. Food Funct 2018; 8:3383-3393. [PMID: 28861559 DOI: 10.1039/c7fo00932a] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cyclophosphamide (cy) is a widely used cancer drug. Many researchers have focused on the prevention and alleviation of its side effects, particularly damage to the intestinal mucosal barrier. In this study, we examined the effects of fucoidan, isolated from Acaudina molpadioides, on mice with intestinal mucosal damage induced by cyclophosphamide. Our results showed that fucoidan intervention could relieve injury such as decreasing inflammation and increasing the expression of tight junction proteins, and 50 kDa fucoidan significantly increased the abundance of short chain fatty acid (SCFA) producer Coprococcus, Rikenella, and Butyricicoccus (p < 0.05, p < 0.001, and p < 0.05, respectively) species within the intestinal mucosa compared with the cyclophosphamide group, as determined by 16S rDNA gene high-throughput sequencing. In addition, SCFAs, particularly propionate, butyrate, and total SCFAs, were increased in the feces, and SCFA receptors were upregulated in the small intestine. The protective effects of fucoidan on cyclophosphamide treatment may be associated with gut microflora, and 50 kDa fucoidan had superior effects. Therefore, fucoidan may have applications as an effective supplement to protect against intestinal mucosal barrier damage during chemotherapy.
Collapse
Affiliation(s)
- Hongjie Shi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Gut microbiome populations are associated with structure-specific changes in white matter architecture. Transl Psychiatry 2018; 8:6. [PMID: 29317592 PMCID: PMC5802560 DOI: 10.1038/s41398-017-0022-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 12/13/2022] Open
Abstract
Altered gut microbiome populations are associated with a broad range of neurodevelopmental disorders including autism spectrum disorder and mood disorders. In animal models, modulation of gut microbiome populations via dietary manipulation influences brain function and behavior and has been shown to ameliorate behavioral symptoms. With striking differences in microbiome-driven behavior, we explored whether these behavioral changes are also accompanied by corresponding changes in neural tissue microstructure. Utilizing diffusion tensor imaging, we identified global changes in white matter structural integrity occurring in a diet-dependent manner. Analysis of 16S ribosomal RNA sequencing of gut bacteria also showed changes in bacterial populations as a function of diet. Changes in brain structure were found to be associated with diet-dependent changes in gut microbiome populations using a machine learning classifier for quantitative assessment of the strength of microbiome-brain region associations. These associations allow us to further test our understanding of the gut-brain-microbiota axis by revealing possible links between altered and dysbiotic gut microbiome populations and changes in brain structure, highlighting the potential impact of diet and metagenomic effects in neuroimaging.
Collapse
|
146
|
Liu H, Wang J, He T, Becker S, Zhang G, Li D, Ma X. Butyrate: A Double-Edged Sword for Health? Adv Nutr 2018; 9:21-29. [PMID: 29438462 PMCID: PMC6333934 DOI: 10.1093/advances/nmx009] [Citation(s) in RCA: 605] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/11/2017] [Indexed: 02/06/2023] Open
Abstract
Butyrate, a four-carbon short-chain fatty acid, is produced through microbial fermentation of dietary fibers in the lower intestinal tract. Endogenous butyrate production, delivery, and absorption by colonocytes have been well documented. Butyrate exerts its functions by acting as a histone deacetylase (HDAC) inhibitor or signaling through several G protein-coupled receptors (GPCRs). Recently, butyrate has received particular attention for its beneficial effects on intestinal homeostasis and energy metabolism. With anti-inflammatory properties, butyrate enhances intestinal barrier function and mucosal immunity. However, the role of butyrate in obesity remains controversial. Growing evidence has highlighted the impact of butyrate on the gut-brain axis. In this review, we summarize the present knowledge on the properties of butyrate, especially its potential effects and mechanisms involved in intestinal health and obesity.
Collapse
Affiliation(s)
- Hu Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Ji Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Ting He
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Sage Becker
- Department of Animal Science, Oklahoma State University, Stillwater, OK; Departments of Internal Medicine and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Guolong Zhang
- Department of Animal Science, Oklahoma State University, Stillwater, OK; Departments of Internal Medicine and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Defa Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China,Internal Medicine and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX,Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX,Address correspondence to XM (e-mail: )
| |
Collapse
|
147
|
Cooper A, Singh S, Hook S, Tyndall JDA, Vernall AJ. Chemical Tools for Studying Lipid-Binding Class A G Protein-Coupled Receptors. Pharmacol Rev 2017; 69:316-353. [PMID: 28655732 DOI: 10.1124/pr.116.013243] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/15/2017] [Indexed: 12/16/2022] Open
Abstract
Cannabinoid, free fatty acid, lysophosphatidic acid, sphingosine 1-phosphate, prostanoid, leukotriene, bile acid, and platelet-activating factor receptor families are class A G protein-coupled receptors with endogenous lipid ligands. Pharmacological tools are crucial for studying these receptors and addressing the many unanswered questions surrounding expression of these receptors in normal and diseased tissues. An inherent challenge for developing tools for these lipid receptors is balancing the often lipophilic requirements of the receptor-binding pharmacophore with favorable physicochemical properties to optimize highly specific binding. In this study, we review the radioligands, fluorescent ligands, covalent ligands, and antibodies that have been used to study these lipid-binding receptors. For each tool type, the characteristics and design rationale along with in vitro and in vivo applications are detailed.
Collapse
Affiliation(s)
- Anna Cooper
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Sameek Singh
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Sarah Hook
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
148
|
Iván J, Major E, Sipos A, Kovács K, Horváth D, Tamás I, Bay P, Dombrádi V, Lontay B. The Short-Chain Fatty Acid Propionate Inhibits Adipogenic Differentiation of Human Chorion-Derived Mesenchymal Stem Cells Through the Free Fatty Acid Receptor 2. Stem Cells Dev 2017; 26:1724-1733. [PMID: 28992793 PMCID: PMC5706617 DOI: 10.1089/scd.2017.0035] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Free fatty acid receptor 2 (FFAR2, also known as GPR43) is a G-protein-coupled receptor activated by short-chain fatty acids that are produced by gut microbiota through fermentation of nondigestible carbohydrates. FFAR2 functions as a metabolic sensor and is expressed in metabolically active tissues, such as adipose tissue. Earlier studies proved the connection between FFAR2 and adipocyte differentiation in mice. The aim of this study was to investigate the implication of FFAR2 receptor in adipogenesis in human chorion-derived mesenchymal stem cells (cMSCs). The short-chain fatty acid, propionate, and phenylacetamide a selective FFAR2 agonist resulted in a marked suppression of lipid droplet accumulation during the adipogenic differentiation of cMSCs. Western blot studies revealed that FFAR2 was detectable at any time point of the differentiation period. The direct involvement of FFAR2 in the differentiation into adipocytes was proven by the downregulation of its gene expression in cMSCs by lentiviral messenger RNA (mRNA) silencing transduction particles. Our results showed that a significant suppression in lipid accumulation upon FFAR2 agonist treatments was elicited by FFAR2-silencing. Based on these results we suggest that propionate inhibits the formation of adipocytes from MSCs and acts on adipogenesis predominantly via FFAR2.
Collapse
Affiliation(s)
- Judit Iván
- 1 Department of Medical Chemistry, Faculty of Medicine, University of Debrecen , Debrecen, Hungary .,2 MTA-DE Cell Biology and Signaling Research Group , Debrecen, Hungary
| | - Evelin Major
- 1 Department of Medical Chemistry, Faculty of Medicine, University of Debrecen , Debrecen, Hungary
| | - Adrienn Sipos
- 1 Department of Medical Chemistry, Faculty of Medicine, University of Debrecen , Debrecen, Hungary
| | - Katalin Kovács
- 1 Department of Medical Chemistry, Faculty of Medicine, University of Debrecen , Debrecen, Hungary .,2 MTA-DE Cell Biology and Signaling Research Group , Debrecen, Hungary
| | - Dániel Horváth
- 1 Department of Medical Chemistry, Faculty of Medicine, University of Debrecen , Debrecen, Hungary
| | - István Tamás
- 1 Department of Medical Chemistry, Faculty of Medicine, University of Debrecen , Debrecen, Hungary
| | - Péter Bay
- 1 Department of Medical Chemistry, Faculty of Medicine, University of Debrecen , Debrecen, Hungary .,3 MTA-DE Lendület Laboratory of Cellular Metabolism , Debrecen, Hungary .,4 Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen , Debrecen, Hungary
| | - Viktor Dombrádi
- 1 Department of Medical Chemistry, Faculty of Medicine, University of Debrecen , Debrecen, Hungary
| | - Beáta Lontay
- 1 Department of Medical Chemistry, Faculty of Medicine, University of Debrecen , Debrecen, Hungary
| |
Collapse
|
149
|
Abstract
PURPOSE OF REVIEW We report recently published knowledge regarding gut chemosensory mechanisms focusing on nutrient-sensing G protein-coupled receptors (GPCRs) expressed on gut enteroendocrine cells (EECs), tuft cells, and in afferent nerves in the gastroduodenal mucosa and submucosa. RECENT FINDINGS Gene profiling of EECs and tuft cells have revealed expression of a variety of nutrient-sensing GPCRs. The density of EEC and tuft cells is altered by luminal environmental changes that may occur following bypass surgery or in the presence of mucosal inflammation. Some EECs and tuft cells are directly linked to sensory nerves in the subepithelial space. Vagal afferent neurons that innervate the intestinal villi express nutrient receptors, contributing to the regulation of duodenal anion secretion in response to luminal nutrients. Nutrients are also absorbed via specific epithelial transporters. SUMMARY Gastric and duodenal epithelial cells are continually exposed to submolar concentrations of nutrients that activate GPCRs expressed on EECs, tuft cells, and submucosal afferent nerves and are also absorbed through specific transporters, regulating epithelial cell proliferation, gastrointestinal physiological function, and metabolism. The chemical coding and distribution of EECs and tuft cells are keys to the development of GPCR-targeted therapies.
Collapse
|
150
|
Yang T, Zubcevic J. Gut-Brain Axis in Regulation of Blood Pressure. Front Physiol 2017; 8:845. [PMID: 29118721 PMCID: PMC5661004 DOI: 10.3389/fphys.2017.00845] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/10/2017] [Indexed: 01/04/2023] Open
Abstract
Hypertension (HTN) is an escalating health issue worldwide. It is estimated that 1.56 billion people will suffer from high blood pressure (BP) by 2025. Recent studies reported an association between gut dysbiosis and HTN, thus proposing interesting avenues for novel treatments of this condition. The sympathetic nervous system (SNS) and the immune system (IS) play a recognized role in the onset and progression of HTN, while reciprocal communication between gut microbiota and the brain can regulate BP by modulating the interplay between the IS and SNS. This review presents the current state of the science implicating brain-gut connection in HTN, highlighting potential pathways of their interaction in control of BP.
Collapse
Affiliation(s)
| | - Jasenka Zubcevic
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|