101
|
Mollakhalili Meybodi N, Mortazavian AM, Bahadori Monfared A, Sohrabvandi S, Aghaei Meybodi F. Phytochemicals in Cancer Prevention: A Review of the Evidence. IRANIAN JOURNAL OF CANCER PREVENTION 2017. [DOI: 10.17795/ijcp-7219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
102
|
León-González AJ, Jara-Palacios MJ, Abbas M, Heredia FJ, Schini-Kerth VB. Role of epigenetic regulation on the induction of apoptosis in Jurkat leukemia cells by white grape pomace rich in phenolic compounds. Food Funct 2017; 8:4062-4069. [DOI: 10.1039/c7fo00263g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Grape pomace is a rich source of phenolic compounds commonly employed for elaboration of dietary supplements.
Collapse
Affiliation(s)
- Antonio J. León-González
- UMR 7213 CNRS
- Laboratoire de Biophotonique et Pharmacologie
- Faculté de Pharmacie
- Université de Strasbourg
- Illkirch
| | - M. José Jara-Palacios
- Food Colour and Quality Laboratory
- Área de Nutrición y Bromatología
- Facultad de Farmacia
- Universidad de Sevilla
- Sevilla
| | - Malak Abbas
- UMR 7213 CNRS
- Laboratoire de Biophotonique et Pharmacologie
- Faculté de Pharmacie
- Université de Strasbourg
- Illkirch
| | - Francisco J. Heredia
- Food Colour and Quality Laboratory
- Área de Nutrición y Bromatología
- Facultad de Farmacia
- Universidad de Sevilla
- Sevilla
| | - Valérie B. Schini-Kerth
- UMR 7213 CNRS
- Laboratoire de Biophotonique et Pharmacologie
- Faculté de Pharmacie
- Université de Strasbourg
- Illkirch
| |
Collapse
|
103
|
Yang Y, Fuentes F, Shu L, Wang C, Pung D, Li W, Zhang C, Guo Y, Kong AN. Epigenetic CpG Methylation of the Promoter and Reactivation of the Expression of GSTP1 by Astaxanthin in Human Prostate LNCaP Cells. AAPS JOURNAL 2016; 19:421-430. [PMID: 27913949 DOI: 10.1208/s12248-016-0016-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022]
Abstract
Astaxanthin (AST), a red dietary carotenoid, has synergistic antioxidant effects with polyunsaturated fatty acids at low concentrations via Nuclear factor (erythroid-derived 2)-like 2 (NFE2L2 or Nrf2)/antioxidant response element (ARE) signaling. In addition, chromatin remodeling and DNA methylation-based gene silencing represent a common mechanism in prostate carcinogenesis and tumor progression from normal cells to pre-initiated cells and ultimately to invasive carcinoma. Therefore, the control of epigenetic modification and the transcriptional/translational control of the activation of Nrf2 and Nrf2-target genes, including glutathione S-transferases (GSTs), appear to be an important mechanism that protects cells against injuries from oxidative stress and cancer development. In this study, we aim to investigate the role of AST in reactivating the expression of Nrf2 and GSTP1 through epigenetic modification in human prostate LNCaP cells. Treatment with AST in human LNCaP cells reduced the methylation of 21 CpG sites of the GSTP1 CpG island but did not affect the three CpG sites of the Nrf2 promoter region. AST induced the mRNA expression and protein expression of both Nrf2 and GSTP1. It also increased the mRNA expression of NQO1 in sh-mock LNCaP cells but not in sh-SETD7 LNCaP cells. Furthermore, AST reduced the protein expression of DNMT3b and significantly inhibited DNMT and HDAC activities in vitro. Taken together, these results suggest that AST decreased the methylation status of the GSTP1, and these epigenetic modifying effects may originate from the decreasing activities of epigenetic modification enzymes, contributing to the overall beneficial health effects of AST.
Collapse
Affiliation(s)
- Yuqing Yang
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA.,Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Francisco Fuentes
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA
| | - Limin Shu
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA
| | - Chao Wang
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA
| | - Doug Pung
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA.,Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Wenji Li
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA
| | - Chengyue Zhang
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA.,Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Yue Guo
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA.,Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Ah-Ng Kong
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA. .,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA. .,Ernest Mario School of Pharmacy, Room 228, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
104
|
Kristo AS, Klimis-Zacas D, Sikalidis AK. Protective Role of Dietary Berries in Cancer. Antioxidants (Basel) 2016; 5:antiox5040037. [PMID: 27775562 PMCID: PMC5187535 DOI: 10.3390/antiox5040037] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/24/2016] [Accepted: 10/11/2016] [Indexed: 12/25/2022] Open
Abstract
Dietary patterns, including regular consumption of particular foods such as berries as well as bioactive compounds, may confer specific molecular and cellular protection in addition to the overall epidemiologically observed benefits of plant food consumption (lower rates of obesity and chronic disease risk), further enhancing health. Mounting evidence reports a variety of health benefits of berry fruits that are usually attributed to their non-nutritive bioactive compounds, mainly phenolic substances such as flavonoids or anthocyanins. Although it is still unclear which particular constituents are responsible for the extended health benefits, it appears that whole berry consumption generally confers some anti-oxidant and anti-inflammatory protection to humans and animals. With regards to cancer, studies have reported beneficial effects of berries or their constituents including attenuation of inflammation, inhibition of angiogenesis, protection from DNA damage, as well as effects on apoptosis or proliferation rates of malignant cells. Berries extend effects on the proliferation rates of both premalignant and malignant cells. Their effect on premalignant cells is important for their ability to cause premalignant lesions to regress both in animals and in humans. The present review focuses primarily on in vivo and human dietary studies of various berry fruits and discusses whether regular dietary intake of berries can prevent cancer initiation and delay progression in humans or ameliorate patients’ cancer status.
Collapse
Affiliation(s)
- Aleksandra S Kristo
- Department of Nutrition and Dietetics, Istanbul Yeni Yuzyil University, Yilanli Ayasma Caddesi No. 26, Istanbul 34010, Turkey.
| | | | - Angelos K Sikalidis
- Department of Nutrition and Dietetics, Istanbul Yeni Yuzyil University, Yilanli Ayasma Caddesi No. 26, Istanbul 34010, Turkey.
| |
Collapse
|
105
|
Jiang ZY, Lu MC, You QD. Discovery and Development of Kelch-like ECH-Associated Protein 1. Nuclear Factor Erythroid 2-Related Factor 2 (KEAP1:NRF2) Protein-Protein Interaction Inhibitors: Achievements, Challenges, and Future Directions. J Med Chem 2016; 59:10837-10858. [PMID: 27690435 DOI: 10.1021/acs.jmedchem.6b00586] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The transcription factor Nrf2 is the primary regulator of the cellular defense system, and enhancing Nrf2 activity has potential usages in various diseases, especially chronic age-related and inflammatory diseases. Recently, directly targeting Keap1-Nrf2 protein-protein interaction (PPI) has been an emerging strategy to selectively and effectively activate Nrf2. This Perspective summarizes the progress in the discovery and development of Keap1-Nrf2 PPI inhibitors, including the Keap1-Nrf2 regulatory mechanisms, biochemical techniques for inhibitor identification, and approaches for identifying peptide and small-molecule inhibitors, as well as discusses privileged structures and future directions for further development of Keap1-Nrf2 PPI inhibitors.
Collapse
Affiliation(s)
- Zheng-Yu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University , Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| | - Meng-Chen Lu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University , Nanjing 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University , Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| |
Collapse
|
106
|
Li H, Gao A, Jiang N, Liu Q, Liang B, Li R, Zhang E, Li Z, Zhu H. Protective Effect of Curcumin Against Acute Ultraviolet B Irradiation-induced Photo-damage. Photochem Photobiol 2016; 92:808-815. [DOI: 10.1111/php.12628] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/15/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Huaping Li
- Guangzhou Institute of Dermatology; Guangzhou China
| | - Aili Gao
- Guangzhou Institute of Dermatology; Guangzhou China
| | - Na Jiang
- Guangzhou Institute of Dermatology; Guangzhou China
| | - Qing Liu
- Guangzhou Institute of Dermatology; Guangzhou China
| | - Bihua Liang
- Guangzhou Institute of Dermatology; Guangzhou China
| | - Runxiang Li
- Guangzhou Institute of Dermatology; Guangzhou China
| | - Erting Zhang
- Guangzhou Institute of Dermatology; Guangzhou China
| | - Zhenjie Li
- Guangzhou Institute of Dermatology; Guangzhou China
| | - Huilan Zhu
- Guangzhou Institute of Dermatology; Guangzhou China
| |
Collapse
|
107
|
|
108
|
Genetic and epigenetic cancer chemoprevention on molecular targets during multistage carcinogenesis. Arch Toxicol 2016; 90:2389-404. [PMID: 27538406 DOI: 10.1007/s00204-016-1813-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/04/2016] [Indexed: 12/16/2022]
|
109
|
Corynoline Isolated from Corydalis bungeana Turcz. Exhibits Anti-Inflammatory Effects via Modulation of Nfr2 and MAPKs. Molecules 2016; 21:molecules21080975. [PMID: 27472313 PMCID: PMC6273489 DOI: 10.3390/molecules21080975] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/12/2016] [Accepted: 07/25/2016] [Indexed: 12/19/2022] Open
Abstract
Corydalis bungeana Turcz. is an anti-inflammatory medicinal herb used widely in traditional Chinese medicine for upper respiratory tract infections. It is demonstrated that corynoline is its active anti-inflammatory component. The nuclear factor-erythroid-2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway and the mitogen-activated protein kinase (MAPK) pathway play important roles in the regulation of inflammation. In this study, we investigated the potential anti-inflammatory mechanism of corynoline through modulation of Nfr2 and MAPKs. Lipopolysaccharide (LPS)-activated RAW264.7 cells were used to explore modulatory role of NO production and the activation of signaling proteins and transcription factors using nitrite assay, Western bloting and qPCR. Treatment with corynoline reduced production of nitric oxide (NO) and the protein and mRNA levels of inducible nitric oxide (iNOS) and cyclooxygenase-2 (COX-2) Treatment also significantly increased the expression of Nrf2, quinone oxidoreductase 1 (NQO1) and hemeoxygenase-1 (HO-1) at the mRNA and protein levels, which demonstrated that corynoline may protect cells from inflammation through the Nrf2/ARE pathway In addition, corynoline suppressed the expression of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), at the mRNA and protein levels. Furthermore, molecular data revealed that corynoline inhibited lipopolysaccharide-stimulated phosphorylation of c-jun NH2-terminal kinase (JNK) and p38. Taken together, these results suggest that corynoline reduces the levels of pro-inflammatory mediators, such as iNOS, COX-2, TNF-α and IL-1β, by suppressing extracellular signal-regulated kinase 1/2 (ERK) and p38 phosphorylation in RAW264.7 cells, which is regulated by the Nrf2/ARE pathway. These findings reveal part of the molecular basis for the anti-inflammatory properties of corynoline.
Collapse
|
110
|
Kumazaki M, Shinohara H, Taniguchi K, Ueda H, Nishi M, Ryo A, Akao Y. Understanding of tolerance in TRAIL-induced apoptosis and cancelation of its machinery by α-mangostin, a xanthone derivative. Oncotarget 2016; 6:25828-42. [PMID: 26304927 PMCID: PMC4694869 DOI: 10.18632/oncotarget.4558] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/03/2015] [Indexed: 01/01/2023] Open
Abstract
Tumor necrosis-factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF-superfamily that selectively induces apoptosis through death receptors (DRs) 4 and/or 5 in cancer cells. These receptors are expressed on the cancer cell surface, without affecting normal cells. Unfortunately, many clinical studies have shown that cancer cells acquire TRAIL-resistance and finally avoid TRAIL-induced apoptosis. The detailed mechanisms of this resistance are not well understood. In the current study, we established a TRAIL-resistant human colon cancer DLD-1 cell line to clarify the mechanisms of TRAIL-resistance and developed agents to cancel its machinery. Also, we found that cancer stem-like cells from breast epithelial proliferating MCF10A cells were also sensitive to TRAIL-induced apoptosis. The enforced expression of DR5 in both TRAIL-resistant cells partially recovered the sensitivity to the TRAIL ligand, which was judged by the activation of caspase-8. As a result, we newly found that the mechanisms of TRAIL-resistance comprised co-existence of a decrease in the expression level of DR5 along with malfunction of its recruitment to the cell surface, as evidenced by Western blot and immunocytological analysis, respectively. Interestingly, α-mangostin, which is a xanthone derivative, canceled the resistance by increasing the expression level of DR5 through down-regulation of miR-133b and effectively induced the translocation of DR5 to the cancer cell surface membrane in TRAIL-resistant DLD-1 cells. These findings indicate that α-mangostin functioned as a sensitizer of TRAIL-induced apoptosis and may thus serve as a possible adjuvant compound for cytokine therapy to conquer TRAIL-resistance.
Collapse
Affiliation(s)
- Minami Kumazaki
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Haruka Shinohara
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Kohei Taniguchi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Hiroshi Ueda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Mayuko Nishi
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama 236-0027, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama 236-0027, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
111
|
Bak MJ, Truong VL, Ko SY, Nguyen XNG, Jun M, Hong SG, Lee JW, Jeong WS. Induction of Nrf2/ARE-mediated cytoprotective genes by red ginseng oil through ASK1-MKK4/7-JNK and p38 MAPK signaling pathways in HepG2 cells. J Ginseng Res 2016; 40:423-430. [PMID: 27746696 PMCID: PMC5052443 DOI: 10.1016/j.jgr.2016.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/04/2016] [Accepted: 07/09/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The induction of cellular defensive genes such as phase II detoxifying and antioxidant enzymes is a highly effective strategy for protection against carcinogenesis as well as slowing cancer development. Transcription factor Nrf2 (nuclear factor E2-related factor 2) is responsible for activation of phase II enzymes induced by natural chemopreventive compounds. METHODS Red ginseng oil (RGO) was extracted using a supercritical CO2 extraction system and chemical profile of RGO was investigated by GC/MS. Effects of RGO on regulation of the Nrf2/antioxidant response element (ARE) pathway were determined by ARE-luciferase assay, western blotting, and confocal microscopy. RESULTS The predominant components of RGO were 9,12-octadecadienoic acid (31.48%), bicyclo[10.1.0]tridec-1-ene (22.54%), and 22,23-dihydrostigmasterol (16.90%). RGO treatment significantly increased nuclear translocation of Nrf2 as well as ARE reporter gene activity, leading to upregulation of heme oxygenase-1 and NAD(P)H:quinone oxidoreductase 1. Phosphorylation of the upstream kinases such as apoptosis signal-regulating kinase (ASK)1, mitogen-activated protein kinase (MAPK) kinase (MKK)4/7, c-Jun N-terminal kinase (JNK), and p38 MAPK were enhanced by treatment with RGO. In addition, RGO-mediated Nrf2 expression and nuclear translocation was attenuated by JNK inhibitor SP600125 and p38 MAPK inhibitor SB202190. CONCLUSION RGO could be used as a potential chemopreventive agent, possibly by induction of Nrf2/ARE-mediated phase II enzymes via ASK1-MKK4/7-JNK and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Min Ji Bak
- Department of Food and Life Sciences, College of Biomedical Science and Engineering, Inje University, Gimhae, Korea; Department of Chemical Biology, Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Van-Long Truong
- Department of Food and Life Sciences, College of Biomedical Science and Engineering, Inje University, Gimhae, Korea
| | - Se-Yeon Ko
- Department of Food and Life Sciences, College of Biomedical Science and Engineering, Inje University, Gimhae, Korea
| | - Xuan Ngan Giang Nguyen
- Department of Food and Life Sciences, College of Biomedical Science and Engineering, Inje University, Gimhae, Korea
| | - Mira Jun
- Department of Food Science and Nutrition, Dong-A University, Busan, Korea
| | - Soon-Gi Hong
- Ginseng Product Research Institute, R&D Headquarters, Korea Ginseng Corporation, Daejeon, Korea
| | - Jong-Won Lee
- Ginseng Product Research Institute, R&D Headquarters, Korea Ginseng Corporation, Daejeon, Korea
| | - Woo-Sik Jeong
- Department of Food and Life Sciences, College of Biomedical Science and Engineering, Inje University, Gimhae, Korea
| |
Collapse
|
112
|
Kim H, Ramirez CN, Su ZY, Kong ANT. Epigenetic modifications of triterpenoid ursolic acid in activating Nrf2 and blocking cellular transformation of mouse epidermal cells. J Nutr Biochem 2016; 33:54-62. [PMID: 27260468 PMCID: PMC4895202 DOI: 10.1016/j.jnutbio.2015.09.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 01/10/2023]
Abstract
Ursolic acid (UA), a well-known natural triterpenoid found in abundance in blueberries, cranberries and apple peels, has been reported to possess many beneficial health effects. These effects include anticancer activity in various cancers, such as skin cancer. Skin cancer is the most common cancer in the world. Nuclear factor E2-related factor 2 (Nrf2) is a master regulator of antioxidative stress response with anticarcinogenic activity against UV- and chemical-induced tumor formation in the skin. Recent studies show that epigenetic modifications of Nrf2 play an important role in cancer prevention. However, the epigenetic impact of UA on Nrf2 signaling remains poorly understood in skin cancer. In this study, we investigated the epigenetic effects of UA on mouse epidermal JB6 P+ cells. UA inhibited cellular transformation by 12-O-tetradecanoylphorbol-13-acetate at a concentration at which the cytotoxicity was no more than 25%. Under this condition, UA induced the expression of the Nrf2-mediated detoxifying/antioxidant enzymes heme oxygenase-1, NAD(P)H:quinone oxidoreductase 1 and UDP-glucuronosyltransferase 1A1. DNA methylation analysis revealed that UA demethylated the first 15 CpG sites of the Nrf2 promoter region, which correlated with the reexpression of Nrf2. Furthermore, UA reduced the expression of epigenetic modifying enzymes, including the DNA methyltransferases DNMT1 and DNMT3a and the histone deacetylases (HDACs) HDAC1, HDAC2, HDAC3 and HDAC8 (Class I) and HDAC6 and HDAC7 (Class II), and HDAC activity. Taken together, these results suggest that the epigenetic effects of the triterpenoid UA could potentially contribute to its beneficial effects, including the prevention of skin cancer.
Collapse
Affiliation(s)
- Hyuck Kim
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Christina N Ramirez
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Cellular and Molecular Pharmacology Program, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Zheng-Yuan Su
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, Taiwan (Republic of China) 32023
| | - Ah-Ng Tony Kong
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
113
|
Liu W, Xu Z, Yang T, Deng Y, Xu B, Feng S. Tea Polyphenols Protect Against Methylmercury-Induced Cell Injury in Rat Primary Cultured Astrocytes, Involvement of Oxidative Stress and Glutamate Uptake/Metabolism Disorders. Mol Neurobiol 2016; 53:2995-3009. [PMID: 25952541 DOI: 10.1007/s12035-015-9161-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/25/2015] [Indexed: 02/06/2023]
Abstract
Methylmercury (MeHg) is an extremely dangerous environmental contaminant, accumulating preferentially in CNS and causing a series of cytotoxic effects. However, the precise mechanisms are still incompletely understood. The current study explored the mechanisms that contribute to MeHg-induced cell injury focusing on the oxidative stress and Glu uptake/metabolism disorders in rat primary cultured astrocytes. Moreover, the neuroprotective effects of tea polyphenols (TP), a natural antioxidant, against MeHg cytotoxicity were also investigated. Astrocytes were exposed to 0, 2.5, 5, 10, and 20 μM MeHgCl for 6-30 h, or pretreated with 50, 100, 200, and 400 μM TP for 1-12 h; cell viability and LDH release were then determined. For further experiments, 50, 100, and 200 μM of TP pretreatment for 6 h followed by 10 μM MeHgCl for 24 h were performed for the examination of the responses of astrocytes, specifically addressing NPSH levels, ROS generation, ATPase activity, the expressions of Nrf2 pathway as well as Glu metabolism enzyme GS and Glu transporters (GLAST and GLT-1). Exposure of MeHg resulted in damages of astrocytes, which were shown by a loss of cell viability, and supported by high levels of LDH release, morphological changes, apoptosis rates, and NPSH depletion. In addition, astrocytes were sensitive to MeHg-mediated oxidative stress, a finding that is consistent with ROS overproduction; Nrf2 as well as its downstream genes HO-1 and γ-GCSh were markedly upregulated. Moreover, MeHg significantly inhibited GS activity, as well as expressions of GS, GLAST, and GLT-1. On the contrary, pretreatment with TP presented a concentration-dependent prevention against MeHg-mediated cytotoxic effects of astrocytes. In conclusion, the findings clearly indicated that MeHg aggravated oxidative stress and Glu uptake/metabolism dysfunction in astrocytes. TP possesses some abilities to prevent MeHg cytotoxicity through its antioxidative properties.
Collapse
Affiliation(s)
- Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning province, China
| | - Zhaofa Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning province, China.
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning province, China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning province, China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning province, China
| | - Shu Feng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning province, China
| |
Collapse
|
114
|
Kim JK, Gallaher DD, Chen C, Gallaher CM, Yao D, Trudo SP. Phenethyl isothiocyanate and indole-3-carbinol from cruciferous vegetables, but not furanocoumarins from apiaceous vegetables, reduced PhIP-induced DNA adducts in Wistar rats. Mol Nutr Food Res 2016; 60:1956-66. [PMID: 27133590 DOI: 10.1002/mnfr.201500790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 02/03/2023]
Abstract
SCOPE We previously showed that apiaceous but not cruciferous vegetables reduced DNA adducts formed by 2-amino-1-methyl-6-phenylimidazo[4, 5-b]pyridine (PhIP) in rats. Here, we report the effects of the putative chemopreventive phytochemicals from these vegetables on PhIP metabolism and DNA adduct formation. METHODS AND RESULTS Rats received three supplemented diets: P + I (phenethyl isothiocyanate and indole-3-carbinol), furanocoumarins (FC, 5-methoxypsoralen, 8-methoxypsoralen, and isopimpinellin), and combination (P + I and FC). Phytochemical supplementation matched the levels in vegetables fed in our previous study. After 6 days, rats were injected with PhIP (10 mg/kg body wt) and killed after 24-h urine collection. Compared to the control, P + I increased activity of hepatic cytochrome P450 (CYP) 1A1 (10.1-fold), CYP1A2 (3.62-fold), and sulfotransferase 1A1 (2.70-fold). The combination diet also increased CYP1A1 and CYP1A2 activity. Urinary metabolomics revealed that PhIP metabolite profiles generally agreed with biotransformation enzyme activities. P + I and combination diets reduced PhIP-DNA adducts by 43.5 and 24.1%, respectively, whereas FC had no effect on adducts, compared to the control diet. CONCLUSION Effects of phytochemicals on metabolic outcomes and markers of carcinogenesis might differ from fresh vegetables, thus limiting the inferences that one can draw from the effects of purified phytochemicals on the health benefits of the vegetables from which they derive.
Collapse
Affiliation(s)
- Jae Kyeom Kim
- School of Human Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Daniel D Gallaher
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Cynthia M Gallaher
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Dan Yao
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Sabrina P Trudo
- School of Human Environmental Sciences, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
115
|
Qin S, Hou DX. Multiple regulations of Keap1/Nrf2 system by dietary phytochemicals. Mol Nutr Food Res 2016; 60:1731-55. [DOI: 10.1002/mnfr.201501017] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/27/2016] [Accepted: 03/30/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Si Qin
- Core Research Program 1515, Key Laboratory for Food Science and Biotechnology of Hunan Province; College of Food Science and Technology; Hunan Agricultural University; Changsha China
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients; Hunan Agricultural University; Changsha China
| | - De-Xing Hou
- Core Research Program 1515, Key Laboratory for Food Science and Biotechnology of Hunan Province; College of Food Science and Technology; Hunan Agricultural University; Changsha China
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients; Hunan Agricultural University; Changsha China
- The United Graduate School of Agricultural Sciences; Faculty of Agriculture; Kagoshima University; Kagoshima Japan
| |
Collapse
|
116
|
Prabhu B, Sivakumar A, Sundaresan S. Diindolylmethane and Lupeol Modulates Apoptosis and Cell Proliferation in N-Butyl-N-(4-Hydroxybutyl) Nitrosamine Initiated and Dimethylarsinic Acid Promoted rat Bladder Carcinogenesis. Pathol Oncol Res 2016; 22:747-54. [PMID: 27091758 DOI: 10.1007/s12253-016-0054-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 03/23/2016] [Indexed: 12/19/2022]
Abstract
Bladder cancer has been shown to resist programmed cell death with altered expression of both pro-apoptotic and anti-apoptotic proteins. To study is to investigate the apoptotic properties of Diindolylmethane (DIM) and Lupeol on N-Butyl-N-(4-hydroxybutyl) Nitrosamine (BBN) initiated and Dimethylarsinic Acid (DMA) promoted urinary bladder cancer. Sixty male Wistar rats were divided into 6 groups. Group I: Control. Group II: Rats were experimentally developed bladder carcinogenesis with BBN and DMA. Group III and IV: DIM and lupeol were administered after BBN treatment for 28 weeks. Group V and VI: DIM and lupeol alone treatment for 36 weeks. All the experimental rats were maintained and euthanized after 36 weeks protocol. Urinary bladder tissues were collected and processed for further investigations. Apoptotis and cell proliferative marker such as Bax, Bcl-2, caspase-3, caspase-9 and PCNA were quantified using immunohistochemical analysis. The Immunohistochemical expression of Bax, Bcl-2, caspase-3, caspase-9 and PCNA were aberrant in BBN + DMA treated tumor group. Administration of DIM and lupeol inhibited the progression of bladder cancer, induced the expression of apoptotic Bax, caspase-3, caspase-9 and inhibited the expression of anti-apoptotic Bcl-2, PCNA in the urinary bladder of rats. Administration of diindolylmethane and lupeol treatment induces apoptosis and cellular proliferation by its anti-carcinogenic properties. From our results DIM and lupeol would be the agent or adjunct for the treatment of bladder carcinogenesis.
Collapse
Affiliation(s)
- Bhoopathy Prabhu
- Department of Medical Research, SRM Medical College Hospital Research Centre, SRM University, Kattankulathur, 603203, Kanchipuram District, Tamilnadu, India
| | - Annamalai Sivakumar
- Department of Medical Research, SRM Medical College Hospital Research Centre, SRM University, Kattankulathur, 603203, Kanchipuram District, Tamilnadu, India
| | - Sivapatham Sundaresan
- Department of Medical Research, SRM Medical College Hospital Research Centre, SRM University, Kattankulathur, 603203, Kanchipuram District, Tamilnadu, India.
| |
Collapse
|
117
|
Hong B, Su Z, Zhang C, Yang Y, Guo Y, Li W, Kong ANT. Reserpine Inhibit the JB6 P+ Cell Transformation Through Epigenetic Reactivation of Nrf2-Mediated Anti-oxidative Stress Pathway. AAPS JOURNAL 2016; 18:659-69. [PMID: 26988984 DOI: 10.1208/s12248-016-9901-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/02/2016] [Indexed: 12/13/2022]
Abstract
UNLABELLED Nuclear factor erythroid-2 related factor 2 (Nrf2) is a crucial transcription factor that regulates the expression of defensive antioxidants and detoxification enzymes in cells. In a previous study, we showed that expression of the Nrf2 gene is regulated by an epigenetic modification. Rauvolfia verticillata, a traditional Chinese herbal medicine widely used in China, possesses anticancer and antioxidant effects. In this study, we investigated how Nrf2 is epigenetically regulated by reserpine, the main active component in R. verticillata, in mouse skin epidermal JB6 P+ cells. Reserpine induced ARE (antioxidant response element)-luciferase activity in HepG2-C8 cells. Accordingly, in JB6 P+ cells, it upregulated the mRNA and protein levels of Nrf2 and its downstream target genes heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1), while it only increased the protein level of UDP-glucuronosyltransferase 1A1 (UGT1A1). Furthermore, reserpine decreased the TPA (12-O-tetradecanoylphorbol-13-acetate)-induced colony formation of JB6 cells in a dose-dependent manner. DNA sequencing and methylated DNA immunoprecipitation further demonstrated the demethylation effect of reserpine on the first 15 CpGs of the Nrf2 promoter in JB6 P+ cells. Reserpine also reduced the mRNA and protein expression of DNMT1 (DNA methyltransferase 1), DNMT3a (DNA methyltransferases 3a), and DNMT3b (DNA methyltransferases 3b). Moreover, reserpine induced Nrf2 expression via an epigenetic pathway in skin epidermal JB6 P+ cells, enhancing the protective antioxidant activity and decreasing TPA-induced cell transformation. These results suggest that reserpine exhibits a cancer preventive effect by reactivating Nrf2 and inducing the expression of target genes involved in cellular protection, potentially providing new insight into the chemoprevention of skin cancer using reserpine.
Collapse
Affiliation(s)
- Bo Hong
- Department of Pharmacy, Qiqihar Medical University, 161006, Qiqihar, Heilongjiang, China.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Zhengyuan Su
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.,Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, 32023, Taiwan, Republic of China
| | - Chengyue Zhang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Yuqing Yang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Yue Guo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Wenjing Li
- Department of Pharmacy, Qiqihar Medical University, 161006, Qiqihar, Heilongjiang, China
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
118
|
Joo JH, Oh H, Kim M, An EJ, Kim RK, Lee SY, Kang DH, Kang SW, Keun Park C, Kim H, Lee SJ, Lee D, Seol JH, Bae YS. NADPH Oxidase 1 Activity and ROS Generation Are Regulated by Grb2/Cbl-Mediated Proteasomal Degradation of NoxO1 in Colon Cancer Cells. Cancer Res 2016; 76:855-65. [PMID: 26781991 DOI: 10.1158/0008-5472.can-15-1512] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/27/2015] [Indexed: 11/16/2022]
Abstract
The generation of reactive oxygen species (ROS) is required for proper cell signaling, but must be tightly regulated to minimize deleterious oxidizing effects. Activation of the NADPH oxidases (Nox) triggers ROS production and, thus, regulatory mechanisms exist to properly control Nox activity. In this study, we report a novel mechanism in which Nox1 activity is regulated through the proteasomal degradation of Nox organizer 1 (NoxO1). We found that through the interaction between NoxO1 and growth receptor-bound protein 2 (Grb2), the Casitas B-lineage lymphoma (Cbl) E3 ligase was recruited, leading to decreased NoxO1 stability and a subsequent reduction in ROS generation upon epidermal growth factor (EGF) stimulation. Additionally, we show that EGF-mediated phosphorylation of NoxO1 induced its release from Grb2 and facilitated its association with Nox activator 1 (NoxA1) to stimulate ROS production. Consistently, overexpression of Grb2 resulted in decreased Nox1 activity, whereas knockdown of Grb2 led to increased Nox1 activity in response to EGF. CRISPR/Cas9-mediated NoxO1 knockout in human colon cancer cells abrogated anchorage-independent growth on soft agar and tumor-forming ability in athymic nude mice. Moreover, the expression and stability of NoxO1 were significantly increased in human colon cancer tissues compared with normal colon. Taken together, these results support a model whereby Nox1 activity and ROS generation are regulated by Grb2/Cbl-mediated proteolysis of NoxO1 in response to EGF, providing new insight into the processes by which excessive ROS production may promote oncogenic signaling to drive colorectal tumorigenesis.
Collapse
Affiliation(s)
- Jung Hee Joo
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Hyunjin Oh
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Myungjin Kim
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Eun Jung An
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Rae-Kwon Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - So-Young Lee
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Dong Hoon Kang
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Sang Won Kang
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Cheol Keun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Hoguen Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Su-Jae Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Daekee Lee
- Department of Life Science, Ewha Womans University, Seoul, Korea.
| | - Jae Hong Seol
- School of Biological Sciences, Seoul National University, Seoul, Korea.
| | - Yun Soo Bae
- Department of Life Science, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
119
|
Review: In vivo and postmortem effects of feed antioxidants in livestock: a review of the implications on authorization of antioxidant feed additives. Animal 2016; 10:1375-90. [PMID: 26763743 DOI: 10.1017/s1751731115002967] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The pivotal roles of regulatory jurisdictions in the feed additive sector cannot be over-emphasized. In the European Union (EU), antioxidant substances are authorized as feed additives for prolonging the shelf life of feedstuffs based on their effect for preventing lipid peroxidation. However, the efficacy of antioxidants transcends their functional use as technological additives in animal feeds. Promising research results have revealed the in vivo efficacy of dietary antioxidants for combating oxidative stress in production animals. The in vivo effect of antioxidants is significant for enhancing animal health and welfare. Similarly, postmortem effect of dietary antioxidants has been demonstrated to improve the nutritional, organoleptic and shelf-life qualities of animal products. In practice, dietary antioxidants have been traditionally used by farmers for these benefits in livestock production. However, some antioxidants particularly when supplemented in excess could act as prooxidants and exert detrimental effects on animal well-being and product quality. Presently, there is no exclusive legislation in the EU to justify the authorization of antioxidant products for these in vivo and postmortem efficacy claims. To indicate these efficacy claims and appropriate dosage on product labels, it is important to broaden the authorization status of antioxidants through the appraisal of existing EU legislations on feed additives. Such regulatory review will have major impact on the legislative categorization of antioxidants and the efficacy assessment in the technical dossier application. The present review harnesses the scientific investigations of these efficacy claims in production animals and, proposes potential categorization and appraisal of in vivo methodologies for efficacy assessment of antioxidants. This review further elucidates the implication of such regulatory review on the practical application of antioxidants as feed additives in livestock production. Effecting these regulatory changes will stimulate the innovation of more potent antioxidant products and create potential new markets that will have profound economic impacts on the feed additive industry. Based on the in vivo efficacy claims, antioxidants may have to contend with the legislative controversy of either to be considered as veterinary drugs or feed additives. In this scenario, antioxidants are not intended to diagnose or cure diseases as ascribed to veterinary products. This twisted distinction can be logically debated with reference to the stipulated status of feed additives in Commission Regulation (EC) No 1831/2003. Nonetheless, it is imperative for relevant stakeholders in the feed additive industry to lobby for the review of existing EU legislations for authorization of antioxidants for these efficacy claims.
Collapse
|
120
|
Chen X, Li R, Geng Z. Cold stress initiates the Nrf2/UGT1A1/L-FABP signaling pathway in chickens. Poult Sci 2015; 94:2597-603. [DOI: 10.3382/ps/pev253] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2015] [Indexed: 12/15/2022] Open
|
121
|
Fetoni AR, Paciello F, Mezzogori D, Rolesi R, Eramo SLM, Paludetti G, Troiani D. Molecular targets for anticancer redox chemotherapy and cisplatin-induced ototoxicity: the role of curcumin on pSTAT3 and Nrf-2 signalling. Br J Cancer 2015; 113:1434-44. [PMID: 26469832 PMCID: PMC4815880 DOI: 10.1038/bjc.2015.359] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/01/2015] [Accepted: 09/16/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND In oncology, an emerging paradigm emphasises molecularly targeted approaches for cancer prevention and therapy and the use of adjuvant chemotherapeutics to overcome cisplatin limitations. Owing to their safe use, some polyphenols, such as curcumin, modulate important pathways or molecular targets in cancers. This paper focuses on curcumin as an adjuvant molecule to cisplatin by analysing its potential implications on the molecular targets, signal transducer and activator of transcription 3 (STAT3) and NF-E2 p45-related factor 2 (Nrf-2), in tumour progression and cisplatin resistance in vitro and the adverse effect ototoxicity in vivo. METHODS The effects of curcumin and/or cisplatin treatment have been evaluated in head and neck squamous cell carcinoma as well as in a rat model of cisplatin-induced ototoxicity by using immunofluorescence, western blot, and functional and morphological analysis. RESULTS This study demonstrates that curcumin attenuates all stages of tumour progression (survival, proliferation) and, by targeting pSTAT3 and Nrf-2 signalling pathways, provides chemosensitisation to cisplatin in vitro and protection from its ototoxic adverse effects in vivo. CONCLUSIONS These results indicate that curcumin can be used as an efficient adjuvant to cisplatin cancer therapy. This treatment strategy in head and neck cancer could mediate cisplatin chemoresistance by modulating therapeutic targets (STAT3 and Nrf2) and, at the same time, reduce cisplatin-related ototoxic adverse effects.
Collapse
Affiliation(s)
- A R Fetoni
- Department of Head and Neck Surgery, Università Cattolica, School of Medicine, Largo F Vito 1, Rome 00168, Italy
| | - F Paciello
- Department of Head and Neck Surgery, Università Cattolica, School of Medicine, Largo F Vito 1, Rome 00168, Italy
| | - D Mezzogori
- Institute of Human Physiology, Università Cattolica, School of Medicine, Largo F Vito 1, Rome 00168, Italy
| | - R Rolesi
- Department of Head and Neck Surgery, Università Cattolica, School of Medicine, Largo F Vito 1, Rome 00168, Italy
| | - S L M Eramo
- Institute of Human Physiology, Università Cattolica, School of Medicine, Largo F Vito 1, Rome 00168, Italy
| | - G Paludetti
- Department of Head and Neck Surgery, Università Cattolica, School of Medicine, Largo F Vito 1, Rome 00168, Italy
| | - D Troiani
- Institute of Human Physiology, Università Cattolica, School of Medicine, Largo F Vito 1, Rome 00168, Italy
| |
Collapse
|
122
|
|
123
|
Abstract
With the properties of efficacy, safety, tolerability, practicability and low cost, foods containing bioactive phytochemicals are gaining significant attention as elements of chemoprevention strategies against cancer. Sulforaphane [1-isothiocyanato-4-(methylsulfinyl)butane], a naturally occurring isothiocyanate produced by cruciferous vegetables such as broccoli, is found to be a highly promising chemoprevention agent against not only a variety of cancers such as breast, prostate, colon, skin, lung, stomach or bladder, but also cardiovascular disease, neurodegenerative diseases, and diabetes. For reasons of experimental exigency, preclinical studies have focused principally on sulforaphane itself, while clinical studies have relied on broccoli sprout preparations rich in either sulforaphane or its biogenic precursor, glucoraphanin. Substantive subsequent evaluation of sulforaphane pharmacokinetics and pharmacodynamics has been undertaken using either pure compound or food matrices. Sulforaphane affects multiple targets in cells. One key molecular mechanism of action for sulforaphane entails activation of the Nrf2-Keap1 signaling pathway although other actions contribute to the broad spectrum of efficacy in different animal models. This review summarizes the current status of pre-clinical chemoprevention studies with sulforaphane and highlights the progress and challenges for the application of foods rich in sulforaphane and/or glucoraphanin in the arena of clinical chemoprevention.
Collapse
Affiliation(s)
- Li Yang
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dushani L Palliyaguru
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261
| | - Thomas W Kensler
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261.
| |
Collapse
|
124
|
Huang Y, Li W, Su ZY, Kong ANT. The complexity of the Nrf2 pathway: beyond the antioxidant response. J Nutr Biochem 2015; 26:1401-13. [PMID: 26419687 DOI: 10.1016/j.jnutbio.2015.08.001] [Citation(s) in RCA: 306] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/03/2015] [Indexed: 12/11/2022]
Abstract
The NF-E2-related factor 2 (Nrf2)-mediated signalling pathway provides living organisms an efficient and pivotal line of defensive to counteract environmental insults and endogenous stressors. Nrf2 coordinates the basal and inducible expression of antioxidant and Phase II detoxification enzymes to adapt to different stress conditions. The stability and cellular distribution of Nrf2 is tightly controlled by its inhibitory binding protein Kelch-like ECH-associated protein 1. Nrf2 signalling is also regulated by posttranslational, transcriptional, translational and epigenetic mechanisms, as well as by other protein partners, including p62, p21 and IQ motif-containing GTPase activating protein 1. Many studies have demonstrated that Nrf2 is a promising target for preventing carcinogenesis and other chronic diseases, including cardiovascular diseases, neurodegenerative diseases and pulmonary injury. However, constitutive activation of Nrf2 in advanced cancer cells may confer drug resistance. Here, we review the molecular mechanisms of Nrf2 signalling, the diverse classes of Nrf2 activators, including bioactive nutrients and other chemicals, and the cellular functions and disease relevance of Nrf2 and discuss the dual role of Nrf2 in different contexts.
Collapse
Affiliation(s)
- Ying Huang
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Wenji Li
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zheng-yuan Su
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
125
|
Chesser AS, Ganeshan V, Yang J, Johnson GVW. Epigallocatechin-3-gallate enhances clearance of phosphorylated tau in primary neurons. Nutr Neurosci 2015. [PMID: 26207957 DOI: 10.1179/1476830515y.0000000038] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Alzheimer's disease (AD) is a neurodegenerative disorder characterized by intracellular accumulations of phosphorylated forms of the microtubule binding protein tau. This study aimed to explore a novel mechanism for enhancing the clearance of these pathological tau species using the green tea flavonoid epigallocatechin-3-gallate (EGCG). EGCG is a potent antioxidant and an activator of the Nrf2 transcriptional pathway. Nrf2 activators including EGCG have shown promise in mitigating amyloid pathology in vitro and in vivo. This study assessed whether EGCG could also alter tau clearance. METHODS Rat primary cortical neuron cultures were treated on day in vitro 8 with EGCG and analyzed for changes in gene and protein expression using luciferase assay, q-PCR, and western blotting. RESULTS EGCG treatment led to a significant decrease in the protein levels of three AD-relevant phospho-tau epitopes. Unexpectedly, EGCG does not appear to be facilitating this effect through the Nrf2 pathway or by increasing autophagy in general. However, EGCG did significantly increase mRNA expression of the key autophagy adaptor proteins NDP52 and p62. DISCUSSION In this study, we show that EGCG enhances the clearance of AD-relevant phosphorylated tau species in primary neurons. Interestingly, this result appears to be independent of both Nrf2 activation and enhanced autophagy - two previously reported mechanisms of phytochemical-induced tau clearance. EGCG did significantly increase expression of two autophagy adaptor proteins. Taken together, these results demonstrate that EGCG has the ability to increase the clearance of phosphorylated tau species in a highly specific manner, likely through increasing adaptor protein expression.
Collapse
|
126
|
Sun CC, Li SJ, Yang CL, Xue RL, Xi YY, Wang L, Zhao QL, Li DJ. Sulforaphane Attenuates Muscle Inflammation in Dystrophin-deficient mdx Mice via NF-E2-related Factor 2 (Nrf2)-mediated Inhibition of NF-κB Signaling Pathway. J Biol Chem 2015; 290:17784-17795. [PMID: 26013831 PMCID: PMC4505027 DOI: 10.1074/jbc.m115.655019] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/11/2015] [Indexed: 12/22/2022] Open
Abstract
Inflammation is widely distributed in patients with Duchenne muscular dystrophy and ultimately leads to progressive deterioration of muscle function with chronic muscle damage, oxidative stress, and reduced oxidative capacity. NF-E2-related factor 2 (Nrf2) plays a critical role in defending against inflammation in different tissues via activation of phase II enzyme heme oxygenase-1 and inhibition of the NF-κB signaling pathway. However, the role of Nrf2 in the inflammation of dystrophic muscle remains unknown. To determine whether Nrf2 may counteract inflammation in dystrophic muscle, we treated 4-week-old male mdx mice with the Nrf2 activator sulforaphane (SFN) by gavage (2 mg/kg of body weight/day) for 4 weeks. The experimental results demonstrated that SFN treatment increased the expression of muscle phase II enzyme heme oxygenase-1 in an Nrf2-dependent manner. Inflammation in mice was reduced by SFN treatment as indicated by decreased infiltration of immune cells and expression of the inflammatory cytokine CD45 and proinflammatory cytokines tumor necrosis factor-α, interleukin-1β, and interleukin-6 in the skeletal muscles of mdx mice. In addition, SFN treatment also decreased the expression of NF-κB(p65) and phosphorylated IκB kinase-α as well as increased inhibitor of κB-α expression in mdx mice in an Nrf2-dependent manner. Collectively, these results show that SFN-induced Nrf2 can alleviate muscle inflammation in mdx mice by inhibiting the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Cheng-Cao Sun
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, 430071 Wuhan, China
| | - Shu-Jun Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, 430071 Wuhan, China
| | - Cui-Li Yang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, 430071 Wuhan, China
| | - Rui-Lin Xue
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, 430071 Wuhan, China
| | - Yong-Yong Xi
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, 430071 Wuhan, China
| | - Liang Wang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, 430071 Wuhan, China
| | - Qian-Long Zhao
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, 730000 Lanzhou, China
| | - De-Jia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, 430071 Wuhan, China.
| |
Collapse
|
127
|
Paredes-Gonzalez X, Fuentes F, Jeffery S, Saw CLL, Shu L, Su ZY, Kong ANT. Induction of NRF2-mediated gene expression by dietary phytochemical flavones apigenin and luteolin. Biopharm Drug Dispos 2015; 36:440-51. [DOI: 10.1002/bdd.1956] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/28/2015] [Accepted: 04/14/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Ximena Paredes-Gonzalez
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers; The State University of New Jersey; Piscataway NJ USA
| | - Francisco Fuentes
- Facultad de Agronomía e Ingeniería Forestal, Facultad de Ingeniería y Facultad de Medicina; Pontificia Universidad Católica de Chile; Macul Santiago Chile
| | - Sundrina Jeffery
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers; The State University of New Jersey; Piscataway NJ USA
| | - Constance Lay-Lay Saw
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers; The State University of New Jersey; Piscataway NJ USA
| | - Limin Shu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers; The State University of New Jersey; Piscataway NJ USA
| | - Zheng-Yuan Su
- Department of Bioscience Technology; Chung Yuan Christian University; Chung Li District Taoyuan City Taiwan
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers; The State University of New Jersey; Piscataway NJ USA
| |
Collapse
|
128
|
Prasad KN. Simultaneous Activation of Nrf2 and Elevation of Dietary and Endogenous Antioxidant Chemicals for Cancer Prevention in Humans. J Am Coll Nutr 2015; 35:175-84. [PMID: 26151600 DOI: 10.1080/07315724.2014.1003419] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite extensive studies in cancer prevention, the incidence of cancer is increasing. We review studies that have identified several biochemical and genetic defects as well as potential carcinogens in the diet, environmental factors, and lifestyle-related habits. Two of the biochemical abnormalities increased oxidative stress and chronic inflammation, and chronic exposure to carcinogens and mutagens play a significant role in the initiation of multistage carcinogenesis. Therefore, attenuation of these biochemical defects may be useful in reducing the incidence of cancer. Activation of the transcriptional factor called nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which enhances the levels of antioxidant enzymes and phase-2-detoxifying enzymes by complex mechanisms, may be one of the ways to reduce oxidative stress and chronic inflammation. Antioxidant enzymes destroy free radicals by catalysis, whereas phase-2-detoxifying enzymes remove potential carcinogens by converting them to harmless compounds for elimination from the body. However, increasing the levels of antioxidant enzymes by activating Nrf2 may not be sufficient to decrease oxidative stress and chronic inflammation optimally, because antioxidant chemicals, which are decreased in a high oxidative environment, must also be elevated. This review discusses the regulation of activation of Nrf2 and proposes a hypothesis that an elevation of the levels of antioxidant enzymes and dietary and endogenous antioxidant chemicals simultaneously may reduce the incidence of cancer by decreasing oxidative stress and chronic inflammation. The levels of antioxidant chemicals can be increased by supplementation, but increasing the levels of antioxidant enzymes requires activation of Nrf2 by reactive oxygen species (ROS)-dependent and-independent mechanisms. Several phytochemicals and antioxidant chemicals that activate Nrf2 have been identified. This review also describes clinical studies on antioxidants in cancer prevention that have produced inconsistent results. It discusses the possible reasons for the inconsistent results and proposes criteria that should be included in the experimental designs of future clinical studies to obtain consistent results. KEY TEACHING POINTS: • Reducing oxidative stress and chronic inflammation optimally requires an elevation of the levels of antioxidant enzymes and phase-2-detoxifying enzymes as well as dietary and endogenous antioxidant chemicals. • How the levels of antioxidant enzymes and phase-2-detoxifying enzymes are regulated by a nuclear transcriptional factor Nrf2. • How the activation and transcription of Nrf2 is regulated. • Identification of antioxidants that activate Nrf2 by ROS-dependent and-independent mechanisms, those that destroy free radicals by scavenging, and those that exhibit both functions. • Possible reasons for the inconsistent results produced by the previous clinical studies on antioxidants in cancer prevention. • The criteria that should be included in the experimental designs of future clinical studies on antioxidants in cancer prevention in high-risk populations to obtain consistent results.
Collapse
Affiliation(s)
- Kedar N Prasad
- a Antioxidant Research Institute, Premier Micronutrient Corporation , Novato , California
| |
Collapse
|
129
|
Role of Polyphenols and Other Phytochemicals on Molecular Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:504253. [PMID: 26180591 PMCID: PMC4477245 DOI: 10.1155/2015/504253] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/30/2014] [Accepted: 12/31/2014] [Indexed: 01/11/2023]
Abstract
Optimized nutrition through supplementation of diet with plant derived phytochemicals has attracted significant attention to prevent the onset of many chronic diseases including cardiovascular impairments, cancer, and metabolic disorder. These phytonutrients alone or in combination with others are believed to impart beneficial effects and play pivotal role in metabolic abnormalities such as dyslipidemia, insulin resistance, hypertension, glucose intolerance, systemic inflammation, and oxidative stress. Epidemiological and preclinical studies demonstrated that fruits, vegetables, and beverages rich in carotenoids, isoflavones, phytoestrogens, and phytosterols delay the onset of atherosclerosis or act as a chemoprotective agent by interacting with the underlying pathomechanisms. Phytochemicals exert their beneficial effects either by reducing the circulating levels of cholesterol or by inhibiting lipid oxidation, while others exhibit anti-inflammatory and antiplatelet activities. Additionally, they reduce neointimal thickening by inhibiting proliferation of smooth muscle cells and also improve endothelium dependent vasorelaxation by modulating bioavailability of nitric-oxide and voltage-gated ion channels. However, detailed and profound knowledge on specific molecular targets of each phytochemical is very important to ensure safe use of these active compounds as a therapeutic agent. Thus, this paper reviews the active antioxidative, antiproliferative, anti-inflammatory, or antiangiogenesis role of various phytochemicals for prevention of chronic diseases.
Collapse
|
130
|
Longevity extension by phytochemicals. Molecules 2015; 20:6544-72. [PMID: 25871373 PMCID: PMC6272139 DOI: 10.3390/molecules20046544] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 12/31/2022] Open
Abstract
Phytochemicals are structurally diverse secondary metabolites synthesized by plants and also by non-pathogenic endophytic microorganisms living within plants. Phytochemicals help plants to survive environmental stresses, protect plants from microbial infections and environmental pollutants, provide them with a defense from herbivorous organisms and attract natural predators of such organisms, as well as lure pollinators and other symbiotes of these plants. In addition, many phytochemicals can extend longevity in heterotrophic organisms across phyla via evolutionarily conserved mechanisms. In this review, we discuss such mechanisms. We outline how structurally diverse phytochemicals modulate a complex network of signaling pathways that orchestrate a distinct set of longevity-defining cellular processes. This review also reflects on how the release of phytochemicals by plants into a natural ecosystem may create selective forces that drive the evolution of longevity regulation mechanisms in heterotrophic organisms inhabiting this ecosystem. We outline the most important unanswered questions and directions for future research in this vibrant and rapidly evolving field.
Collapse
|
131
|
Abdel-Hafiz HA, Horwitz KB. Role of epigenetic modifications in luminal breast cancer. Epigenomics 2015; 7:847-62. [PMID: 25689414 DOI: 10.2217/epi.15.10] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Luminal breast cancers represent approximately 75% of cases. Explanations into the causes of endocrine resistance are complex and are generally ascribed to genomic mechanisms. Recently, attention has been drawn to the role of epigenetic modifications in hormone resistance. We review these here. Epigenetic modifications are reversible, heritable and include changes in DNA methylation patterns, modification of histones and altered microRNA expression levels that target the receptors or their signaling pathways. Large-scale analyses indicate distinct epigenomic profiles that distinguish breast cancers from normal and benign tissues. Taking advantage of the reversibility of epigenetic modifications, drugs that target epigenetic modifiers, given in combination with chemotherapies or endocrine therapies, may represent promising approaches to restoration of therapy responsiveness in these cases.
Collapse
Affiliation(s)
- Hany A Abdel-Hafiz
- Division of Endocrinology, Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kathryn B Horwitz
- Division of Endocrinology, Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Pathology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
132
|
Royston KJ, Tollefsbol TO. The Epigenetic Impact of Cruciferous Vegetables on Cancer Prevention. CURRENT PHARMACOLOGY REPORTS 2015; 1:46-51. [PMID: 25774338 PMCID: PMC4354933 DOI: 10.1007/s40495-014-0003-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The answer to chemoprevention has perhaps been available to the general public since the dawn of time. The epigenetic diet is of extreme interest, for research suggests that cruciferous vegetables are not only an important source of nutrients, but perhaps a key to eliminating cancer as life threatening disease. Cruciferous vegetables such as kale, cabbage, Brussels sprouts, and broccoli sprouts contain chemical components, such as sulforaphane (SFN) and indole-3-carbinol (I3C), which have been revealed to be regulators of microRNAs (miRNAs) and inhibitors of histone deacetylases (HDACs) and DNA methyltransferases (DNMTs). The mis-regulation and overexpression of these genes are responsible for the uncontrolled cellular proliferation and viability of various types of cancer cells. The field of epigenetics and its incorporation into modern medicinal investigation is an exponentially growing field of interest and it is becoming increasingly apparent that the incorporation of an epigenetic diet may in fact be the key to chemoprevention.
Collapse
Affiliation(s)
- Kendra J. Royston
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
- Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3 Avenue South, Birmingham, AL 35294, USA
- Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6 Avenue South, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| |
Collapse
|
133
|
Lau JK, Brown KC, Dom AM, Witte TR, Thornhill BA, Crabtree CM, Perry HE, Brown JM, Ball JG, Creel RG, Damron CL, Rollyson WD, Stevenson CD, Hardman WE, Valentovic MA, Carpenter AB, Dasgupta P. Capsaicin induces apoptosis in human small cell lung cancer via the TRPV6 receptor and the calpain pathway. Apoptosis 2015; 19:1190-201. [PMID: 24878626 DOI: 10.1007/s10495-014-1007-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Capsaicin, the pungent ingredient of chili peppers, displays potent anti-neoplastic activity in a wide array of human cancer cells. The present manuscript examines the signaling pathways underlying the apoptotic activity of capsaicin in human small cell lung cancer (SCLC) in vitro and in vivo. Studies in neuronal cells show that capsaicin exerts its biological activity via the transient receptor potential vanilloid (TRPV) superfamily of cation-channel receptors. The TRPV family is comprised of six members (TRPV1-6). Capsaicin is a known agonist of the TRPV1 receptor. We observed that capsaicin-induced apoptosis in human SCLC cells was mediated via the TRPV receptor family; however it was independent of TRPV1. Surprisingly, the apoptotic activity of capsaicin required the TRPV6 receptor. Depletion of TRPV6 receptor by siRNA methodology abolished the apoptotic activity of capsaicin in SCLC cells. Immunostaining and ELISA showed that TRPV6 receptor was robustly expressed on human SCLC tissues (from patients) and SCLC cell lines but almost absent in normal lung tissues. This correlates with our results that capsaicin induced very little apoptosis in normal lung epithelial cells. The pro-apoptotic activity of capsaicin was mediated by the intracellular calcium and calpain pathway. The treatment of human SCLC cells with capsaicin increased the activity of calpain 1 and 2 by threefold relative to untreated SCLC cells. Such calpain activation, in response to capsaicin, was downstream of the TRPV6 receptor. Taken together, our data provide insights into the mechanism underlying the apoptotic activity of capsaicin in human SCLCs.
Collapse
Affiliation(s)
- Jamie K Lau
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Dietary Glucosinolates Sulforaphane, Phenethyl Isothiocyanate, Indole-3-Carbinol/3,3'-Diindolylmethane: Anti-Oxidative Stress/Inflammation, Nrf2, Epigenetics/Epigenomics and In Vivo Cancer Chemopreventive Efficacy. ACTA ACUST UNITED AC 2015; 1:179-196. [PMID: 26457242 DOI: 10.1007/s40495-015-0017-y] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucosinolates are a group of sulfur-containing glycosides found in many plant species, including cruciferous vegetables such as broccoli, cabbage, brussels sprouts, and cauliflower. Accumulating evidence increasingly supports the beneficial effects of dietary glucosinolates on overall health, including as potential anti-cancer agents, because of their role in the prevention of the initiation of carcinogenesis via the induction of cellular defense detoxifying/antioxidant enzymes and their epigenetic mechanisms, including modification of the CpG methylation of cancer-related genes, histone modification regulation and changes in the expression of miRNAs. In this context, the defense mechanism mediated by Nrf2-antioxidative stress and anti-inflammatory signaling pathways can contribute to cellular protection against oxidative stress and reactive metabolites of carcinogens. In this review, we summarize the cancer chemopreventive role of naturally occurring glucosinolate derivatives as inhibitors of carcinogenesis, with particular emphasis on specific molecular targets and epigenetic alterations in in vitro and in vivo human cancer animal models.
Collapse
|
135
|
Xie Z, Sintara M, Chang T, Ou B. Functional beverage of Garcinia mangostana (mangosteen) enhances plasma antioxidant capacity in healthy adults. Food Sci Nutr 2015; 3:32-8. [PMID: 25649891 PMCID: PMC4304560 DOI: 10.1002/fsn3.187] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/22/2014] [Accepted: 11/08/2014] [Indexed: 12/20/2022] Open
Abstract
This study was to investigate the absorption and antioxidant effect of a mangosteen-based functional beverage in humans. The beverage contained mangosteen, aloe vera, green tea, and multivitamins. A randomized, double-blind, placebo-controlled clinical trial was conducted with generally healthy male and female subjects between 18 and 60 years of age. Ten men and 10 women participated in this study. Participants were randomly divided into two groups, treatment and placebo group. Participants received either a daily single dose (245 mL) of the beverage or a placebo. Blood samples were collected from each participant at time points 0, 1, 2, 4, and 6 h. The plasma samples were analyzed by LC/MS for α-mangostin and vitamins B2 and B5. Results indicated that the three analytes were bioavailable, with observed C max at around 1 h. The antioxidant capacity measured with the oxygen radical absorbance capacity (ORAC) assay was increased with a maximum effect of 60% after 1 h, and the elevated antioxidant level lasted at least 6 h. This study demonstrated the bioavailability of α-mangostin and B vitamins from a xanthone-rich beverage and the mechanisms of the increase in plasma antioxidant may be direct effects from antioxidants, enhancement of endogenous antioxidant activity through activation of Nrf2 pathway, and synergism of the antioxidants.
Collapse
Affiliation(s)
- Zhuohong Xie
- International Chemistry Testing258 Main Street, Suite 202, Milford, Massachusetts
| | - Marsha Sintara
- International Chemistry Testing258 Main Street, Suite 202, Milford, Massachusetts
| | - Tony Chang
- International Chemistry Testing258 Main Street, Suite 202, Milford, Massachusetts
| | - Boxin Ou
- International Chemistry Testing258 Main Street, Suite 202, Milford, Massachusetts
| |
Collapse
|
136
|
Chung YK, Chi-Hung Or R, Lu CH, Ouyang WT, Yang SY, Chang CC. Sulforaphane down-regulates SKP2 to stabilize p27KIP1 for inducing antiproliferation in human colon adenocarcinoma cells. J Biosci Bioeng 2015; 119:35-42. [DOI: 10.1016/j.jbiosc.2014.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 06/12/2014] [Accepted: 06/17/2014] [Indexed: 12/18/2022]
|
137
|
Choi SW, Yeung VTF, Collins AR, Benzie IFF. Redox-linked effects of green tea on DNA damage and repair, and influence of microsatellite polymorphism in HMOX-1: results of a human intervention trial. Mutagenesis 2014; 30:129-37. [DOI: 10.1093/mutage/geu022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
138
|
Albert J, D'Andrea L, Granell J, Pla-Vilanova P, Quirante J, Khosa MK, Calvis C, Messeguer R, Badía J, Baldomà L, Font-Bardia M, Calvet T. Cyclopalladated and cycloplatinated benzophenone imines: Antitumor, antibacterial and antioxidant activities, DNA interaction and cathepsin B inhibition. J Inorg Biochem 2014; 140:80-8. [DOI: 10.1016/j.jinorgbio.2014.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
|
139
|
Borrelli F, Pagano E, Romano B, Panzera S, Maiello F, Coppola D, De Petrocellis L, Buono L, Orlando P, Izzo AA. Colon carcinogenesis is inhibited by the TRPM8 antagonist cannabigerol, a Cannabis-derived non-psychotropic cannabinoid. Carcinogenesis 2014; 35:2787-97. [PMID: 25269802 DOI: 10.1093/carcin/bgu205] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cannabigerol (CBG) is a safe non-psychotropic Cannabis-derived cannabinoid (CB), which interacts with specific targets involved in carcinogenesis. Specifically, CBG potently blocks transient receptor potential (TRP) M8 (TRPM8), activates TRPA1, TRPV1 and TRPV2 channels, blocks 5-hydroxytryptamine receptor 1A (5-HT1A) receptors and inhibits the reuptake of endocannabinoids. Here, we investigated whether CBG protects against colon tumourigenesis. Cell growth was evaluated in colorectal cancer (CRC) cells using the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide and 3-amino-7-dimethylamino-2-methylphenazine hydrochloride assays; apoptosis was examined by histology and by assessing caspase 3/7 activity; reactive oxygen species (ROS) production by a fluorescent probe; CB receptors, TRP and CCAAT/enhancer-binding protein homologous protein (CHOP) messenger RNA (mRNA) expression were quantified by reverse transcription-polymerase chain reaction; small hairpin RNA-vector silencing of TRPM8 was performed by electroporation. The in vivo antineoplastic effect of CBG was assessed using mouse models of colon cancer. CRC cells expressed TRPM8, CB1, CB2, 5-HT1A receptors, TRPA1, TRPV1 and TRPV2 mRNA. CBG promoted apoptosis, stimulated ROS production, upregulated CHOP mRNA and reduced cell growth in CRC cells. CBG effect on cell growth was independent from TRPA1, TRPV1 and TRPV2 channels activation, was further increased by a CB2 receptor antagonist, and mimicked by other TRPM8 channel blockers but not by a 5-HT1A antagonist. Furthermore, the effect of CBG on cell growth and on CHOP mRNA expression was reduced in TRPM8 silenced cells. In vivo, CBG inhibited the growth of xenograft tumours as well as chemically induced colon carcinogenesis. CBG hampers colon cancer progression in vivo and selectively inhibits the growth of CRC cells, an effect shared by other TRPM8 antagonists. CBG should be considered translationally in CRC prevention and cure.
Collapse
Affiliation(s)
- Francesca Borrelli
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy, Department of Diagnostic Services (Anatomy and Pathologic Histology Service), Ospedale dei Pellegrini, ASL 1, 80135 Naples, Italy, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy and Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, 80131 Naples, Italy
| | - Ester Pagano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy, Department of Diagnostic Services (Anatomy and Pathologic Histology Service), Ospedale dei Pellegrini, ASL 1, 80135 Naples, Italy, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy and Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, 80131 Naples, Italy
| | - Barbara Romano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy, Department of Diagnostic Services (Anatomy and Pathologic Histology Service), Ospedale dei Pellegrini, ASL 1, 80135 Naples, Italy, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy and Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, 80131 Naples, Italy
| | - Stefania Panzera
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy, Department of Diagnostic Services (Anatomy and Pathologic Histology Service), Ospedale dei Pellegrini, ASL 1, 80135 Naples, Italy, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy and Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, 80131 Naples, Italy
| | - Francesco Maiello
- Department of Diagnostic Services (Anatomy and Pathologic Histology Service), Ospedale dei Pellegrini, ASL 1, 80135 Naples, Italy
| | - Diana Coppola
- Department of Diagnostic Services (Anatomy and Pathologic Histology Service), Ospedale dei Pellegrini, ASL 1, 80135 Naples, Italy
| | - Luciano De Petrocellis
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy and
| | - Lorena Buono
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy and
| | - Pierangelo Orlando
- Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, 80131 Naples, Italy
| | - Angelo A Izzo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy, Department of Diagnostic Services (Anatomy and Pathologic Histology Service), Ospedale dei Pellegrini, ASL 1, 80135 Naples, Italy, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy and Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, 80131 Naples, Italy
| |
Collapse
|
140
|
Khor TO, Fuentes F, Shu L, Paredes-Gonzalez X, Yang AY, Liu Y, Smiraglia DJ, Yegnasubramanian S, Nelson WG, Kong ANT. Epigenetic DNA methylation of antioxidative stress regulator NRF2 in human prostate cancer. Cancer Prev Res (Phila) 2014; 7:1186-97. [PMID: 25266896 DOI: 10.1158/1940-6207.capr-14-0127] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epigenetic control of NRF2, a master regulator of many critical antioxidative stress defense genes in human prostate cancer (CaP), is unknown. Our previous animal study found decreased Nrf2 expression through promoter CpG methylation/histone modifications during prostate cancer progression in TRAMP mice. In this study, we evaluated CpG methylation of human NRF2 promoter in 27 clinical prostate cancer samples and in LNCaP cells using MAQMA analysis and bisulfite genomic DNA sequencing. Prostate cancer tissue microarray (TMA) containing normal and prostate cancer tissues was studied by immunohistochemistry. Luciferase reporter assay using specific human NRF2 DNA promoter segments and chromatin immunoprecipitation (ChIP) assay against histone modifying proteins were performed in LNCaP cells. Three specific CpG sites in the NRF2 promoter were found to be hypermethylated in clinical prostate cancer samples (BPH<ADT-RCaP<AS-CaP). NRF2 staining in human prostate cancer TMA showed a decreasing trend for both intensity and percentage of positive cells from normal tissues to advanced-stage prostate cancer (Gleason score from 3-9). Reporter assays in the LNCaP cells containing these three CpG sites showed methylation-inhibited transcriptional activity of the NRF2 promoter. LNCaP cells treated with 5-aza/TSA restored the expression of NRF2 and NRF2 downstream target genes, decreased expression levels of DNMT and HDAC proteins, and ChIP assays showed increased RNA Pol II and H3Ac with a concomitant decrease in H3K9me3, MBD2, and MeCP2 at CpG sites of human NRF2 promoter. Taken together, these findings suggest that epigenetic modification may contribute to the regulation of transcription activity of NRF2, which could be used as prevention and treatment target of human prostate cancer.
Collapse
Affiliation(s)
- Tin Oo Khor
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Francisco Fuentes
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Limin Shu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Ximena Paredes-Gonzalez
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Anne Yuqing Yang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Yue Liu
- Department of Chemical Biology, Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Dominic J Smiraglia
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York
| | | | - William G Nelson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.
| |
Collapse
|
141
|
Elhalem E, Recio R, Werner S, Lieder F, Calderón-Montaño JM, López-Lázaro M, Fernández I, Khiar N. Sulforaphane homologues: Enantiodivergent synthesis of both enantiomers, activation of the Nrf2 transcription factor and selective cytotoxic activity. Eur J Med Chem 2014; 87:552-63. [PMID: 25299679 DOI: 10.1016/j.ejmech.2014.09.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/08/2014] [Accepted: 09/15/2014] [Indexed: 12/21/2022]
Abstract
Reported is an enantiodivergent approach for the synthesis of both enantiomers of sulforaphane (SFN) homologues with different chain lengths between the sulfinyl sulfur and the isothiocyanate groups and different substituents on the sulfinyl sulfur. The homologues were designed in order to unravel the effect of all the diversity elements included in sulforaphane's structure. The key step of the approach is the diastereoselective synthesis of both sulfinate ester epimers at sulfur, using as single chiral auxiliary the sugar derived diacetone-d-glucose. The approach allows the first synthesis of both enantiomers of 5-methylsulfinylpentyl isothiocyanate, and the biologically important 6-methylsulfinylhexyl isothiocyanate (6-HITC) found in Japanese horseradish, wasabi (Wasabia japonica). The ability of the synthesized compounds as inductors of phase II detoxifying enzymes has been studied by determining their ability to activate the cytoprotective transcription factor Nrf2. The cytotoxic activity of all the synthesized compounds against human lung adenocarcinoma (A549) and foetal lung fibroblasts (MRC-5) is also reported.
Collapse
Affiliation(s)
- Eleonora Elhalem
- Instituto de Investigaciones Químicas, C.S.I.C-Universidad de Sevilla, C/. Américo Vespucio, 49, Isla de la Cartuja, 41092 Sevilla, Spain
| | - Rocío Recio
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Franziska Lieder
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Miguel López-Lázaro
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Inmaculada Fernández
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Noureddine Khiar
- Instituto de Investigaciones Químicas, C.S.I.C-Universidad de Sevilla, C/. Américo Vespucio, 49, Isla de la Cartuja, 41092 Sevilla, Spain.
| |
Collapse
|
142
|
Saw CLL, Guo Y, Yang AY, Paredes-Gonzalez X, Ramirez C, Pung D, Kong ANT. The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: involvement of the Nrf2-ARE signaling pathway. Food Chem Toxicol 2014; 72:303-11. [PMID: 25111660 DOI: 10.1016/j.fct.2014.07.038] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/22/2014] [Accepted: 07/30/2014] [Indexed: 12/21/2022]
Abstract
Quercetin, kaempferol, and pterostilbene are abundant in berries. The anti-oxidative properties of these constituents may contribute to cancer chemoprevention. However, their precise mechanisms of action and their combinatorial effects are not completely understood. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) regulates anti-oxidative stress enzymes and Phase II drug metabolizing/detoxifying enzymes by binding to antioxidant response element (ARE). This study aimed to investigate the anti-oxidative stress activities of quercetin, kaempferol, and pterostilbene individually and in combination, as well as the involvement of the Nrf2-ARE signaling pathway. Quercetin, kaempferol, and pterostilbene all exhibited strong free-radical scavenging activity in the DPPH assay. The MTS assay revealed that low concentration combinations we tested were relatively non-toxic to HepG2-C8 cells. The results of the DCFH-DA assay and combination index (CI) indicated that quercetin, kaempferol, and pterostilbene attenuated intracellular reactive oxygen species (ROS) levels when pretreated individually and had synergistic effects when used in combination. In addition, the combination treatment significantly induced ARE and increased the mRNA and protein expression of Nrf2-regulated genes. Collectively, our study demonstrated that the berry constituents quercetin, kaempferol, and pterostilbene activated the Nrf2-ARE signaling pathway and exhibited synergistic anti-oxidative stress activity at appropriate concentrations.
Collapse
Affiliation(s)
- Constance Lay Lay Saw
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yue Guo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Anne Yuqing Yang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ximena Paredes-Gonzalez
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Christina Ramirez
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Graduate Program in Cellular and Molecular Pharmacology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Douglas Pung
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Tony Kong
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
143
|
Vasin MV. Comments on the mechanisms of action of radiation protective agents: basis components and their polyvalence. SPRINGERPLUS 2014; 3:414. [PMID: 25133093 PMCID: PMC4132458 DOI: 10.1186/2193-1801-3-414] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/31/2014] [Indexed: 12/18/2022]
Abstract
Purpose These comments suggest a division of radiation protective agents on the grounds of their mechanism of action that increase the radio resistance of an organism. Conclusion Given below is the division of radiation protective agents on the basis of their mechanism of action into 3 groups: 1) Radiation protective agents, with the implementation of radiation protective action taking place at the cellular level in the course of rapidly proceeding radiation-chemical reactions. At the same time, when the ionizing radiation energy is absorbed, these agents partially neutralize the “oxygen effect” as a radiobiological phenomenon, especially in the radiolysis of DNA; 2) Radiation protective agents that exert their effect at the system level by accelerating the post-radiation recovery of radiosensitive tissues through activation of a number of pro-inflammatory signaling pathways and an increase in the secretion of hematopoietic growth factors, including their use as mitigators in the early period after irradiation prior to the clinical development of acute radiation syndrome (ARS). 3) Radiomodulators including drugs and nutritional supplements that can elevate the resistance of the organism to adverse environmental factors, including exposure to ionization by means of modulating the gene expression through a hormetic effect of small doses of stressors and a “substrate” maintenance of adaptive changes, resulting in an increased antioxidant protection of the organism. Radiation protective agents having polyvalence in implementation of their action may simultaneously induce radioprotective effect by various routes with a prevalence of basis mechanisms of the action.
Collapse
Affiliation(s)
- Mikhail V Vasin
- Department of Medicine of Catastrophe, Russian Medical Academy of Post-Graduate Education, St. Polikarpova 10, 125284 Moscow, Russia
| |
Collapse
|
144
|
Saw CLL, Yang AY, Huang MT, Liu Y, Lee JH, Khor TO, Su ZY, Shu L, Lu Y, Conney AH, Kong ANT. Nrf2 null enhances UVB-induced skin inflammation and extracellular matrix damages. Cell Biosci 2014; 4:39. [PMID: 25228981 PMCID: PMC4164960 DOI: 10.1186/2045-3701-4-39] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/17/2014] [Indexed: 02/03/2023] Open
Abstract
Nrf2 plays a critical role in defending against oxidative stress and inflammation. We previously reported that Nrf2 confers protection against ultraviolet-B (UVB)-induced inflammation, sunburn reaction, and is involved in sulforaphane-mediated photo-protective effects in the skin. In this study, we aimed to demonstrate the protective role of Nrf2 against inflammation-mediated extracellular matrix (ECM) damage induced by UVB irradiation. Ear biopsy weights were significantly increased in both Nrf2 wild-type (Nrf2 WT) and knockout (Nrf2 KO) mice one week after UVB irradiation. However, these weights increased more significantly in KO mice compared to WT mice, suggesting a greater inflammatory response in KO mice. In addition, we analyzed the protein expression of numerous markers, including macrophage inflammatory protein-2 (MIP-2), pro-matrix metalloproteinase-9 (MMP-9), and p53. p53, a regulator of DNA repair, was overexpressed in Nrf2 KO mice, indicating that the absence of Nrf2 led to more sustained DNA damage. There was also more substantial ECM degradation and increased inflammation in UVB-irradiated Nrf2 KO mice compared to UVB-irradiated WT mice. Furthermore, the protective effects of Nrf2 in response to UVB irradiation were mediated by increased HO-1 protein expression. Collectively, our results show that Nrf2 plays a key role in protecting against UVB irradiation and that the photo-protective effect of Nrf2 is closely related to the inhibition of ECM degradation and inflammation.
Collapse
Affiliation(s)
- Constance Lay Lay Saw
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA ; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Anne Yuqing Yang
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA ; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Mou-Tuan Huang
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA ; Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yue Liu
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA ; Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jong Hun Lee
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA ; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Tin Oo Khor
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA ; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zheng-Yuan Su
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA ; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Limin Shu
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA ; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yaoping Lu
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA ; Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Allan H Conney
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA ; Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Tony Kong
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA ; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA ; Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
145
|
Kumazaki M, Shinohara H, Taniguchi K, Yamada N, Ohta S, Ichihara K, Akao Y. Propolis cinnamic acid derivatives induce apoptosis through both extrinsic and intrinsic apoptosis signaling pathways and modulate of miRNA expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1070-1077. [PMID: 24854570 DOI: 10.1016/j.phymed.2014.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/04/2014] [Accepted: 04/02/2014] [Indexed: 06/03/2023]
Abstract
Propolis cinnamic acid derivatives have a number of biological activities including anti-oxidant and anti-cancer ones. In this study, we aimed to elucidate the mechanism of the anti-cancer activity of 3 representative propolis cinnamic acid derivatives, i.e., Artepilin C, Baccharin and Drupanin in human colon cancer cell lines. Our study demonstrated that these compounds had a potent apoptosis-inductive effect even on drug-resistant colon cancer cells. Combination treatment of human colon cancer DLD-1 cells with 2 of these compounds, each at its IC20 concentration, induced apoptosis by stimulating both intrinsic and extrinsic apoptosis signaling pathways. Especially, Baccharin plus Drupanin exhibited a synergistic growth-inhibitory effect by strengthening both intrinsic and extrinsic apoptotic signaling transduction through TRAIL/DR4/5 and/or FasL/Fas death-signaling loops and by increasing the expression level of miR-143, resulting in decreased expression levels of the target gene MAPK/Erk5 and its downstream target c-Myc. These data suggest that the supplemental intake of these compounds found in propolis has enormous significance with respect to cancer prevention.
Collapse
Affiliation(s)
- Minami Kumazaki
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Haruka Shinohara
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kohei Taniguchi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Nami Yamada
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Shozo Ohta
- Nagaragawa Research Center, API Co., Ltd., Nagara, Gifu, Japan
| | - Kenji Ichihara
- Nagaragawa Research Center, API Co., Ltd., Nagara, Gifu, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
146
|
Hun Lee J, Shu L, Fuentes F, Su ZY, Tony Kong AN. Cancer chemoprevention by traditional chinese herbal medicine and dietary phytochemicals: targeting nrf2-mediated oxidative stress/anti-inflammatory responses, epigenetics, and cancer stem cells. J Tradit Complement Med 2014; 3:69-79. [PMID: 24716158 PMCID: PMC3924975 DOI: 10.4103/2225-4110.107700] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Excessive oxidative stress induced by reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive metabolites of carcinogens alters cellular homeostasis, leading to genetic/epigenetic changes, genomic instability, neoplastic transformation, and cancer initiation/progression. As a protective mechanism against oxidative stress, antioxidant/detoxifying enzymes reduce these reactive species and protect normal cells from endo-/exogenous oxidative damage. The transcription factor nuclear factor-erythroid 2 p45 (NF-E2)-related factor 2 (Nrf2), a master regulator of the antioxidative stress response, plays a critical role in the expression of many cytoprotective enzymes, including NAD(P)H:quinine oxidoreductase (NQO1), heme oxygenase-1 (HO-1), UDP-glucuronosyltransferase (UGT), and glutathione S-transferase (GST). Recent studies demonstrated that many dietary phytochemicals derived from various vegetables, fruits, spices, and herbal medicines induce Nrf2-mediated antioxidant/detoxifying enzymes, restore aberrant epigenetic alterations, and eliminate cancer stem cells (CSCs). The Nrf2-mediated antioxidant response prevents many age-related diseases, including cancer. Owing to their fundamental contribution to carcinogenesis, epigenetic modifications and CSCs are novel targets of dietary phytochemicals and traditional Chinese herbal medicine (TCHM). In this review, we summarize cancer chemoprevention by dietary phytochemicals, including TCHM, which have great potential as a safer and more effective strategy for preventing cancer.
Collapse
Affiliation(s)
- Jong Hun Lee
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Limin Shu
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Francisco Fuentes
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA ; Department of Desert Agriculture and Biotechnology, Arturo Prat University, PO box 121, Iquique, Chile
| | - Zheng-Yuan Su
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Ah-Ng Tony Kong
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| |
Collapse
|
147
|
Paredes-Gonzalez X, Fuentes F, Su ZY, Kong ANT. Apigenin reactivates Nrf2 anti-oxidative stress signaling in mouse skin epidermal JB6 P + cells through epigenetics modifications. AAPS JOURNAL 2014; 16:727-35. [PMID: 24830944 DOI: 10.1208/s12248-014-9613-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/25/2014] [Indexed: 12/31/2022]
Abstract
Nrf2 is a crucial transcription factor that controls a critical anti-oxidative stress defense system and is implicated in skin homeostasis. Apigenin (API), a potent cancer chemopreventive agent, protects against skin carcinogenesis and elicits multiple molecular signaling pathways. However, the potential epigenetic effect of API in skin cancer chemoprotection is not known. In this study, bisulfite genomic DNA sequencing and methylated DNA immunoprecipitation were utilized to investigate the demethylation effect of API at 15 CpG sites in the Nrf2 promoter in mouse skin epidermal JB6 P + cells. In addition, qPCR and Western blot analyses were performed to evaluate the mRNA and protein expression of Nrf2 and the Nrf2 ARE downstream gene, NQO1. Finally, the protein expression levels of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) were evaluated using API and the DNMT/HDAC inhibitor 5-aza/ trichostatin A. Our results showed that API effectively reversed the hypermethylated status of the 15 CpG sites in the Nrf2 promoter in a dose-dependent manner. API enhanced the nuclear translocation of Nrf2 and increased the mRNA and protein expression of Nrf2 and the Nrf2 downstream target gene, NQO1. Furthermore, API reduced the expression of the DNMT1, DNMT3a, and DNMT3b epigenetic proteins as well as the expression of some HDACs (1-8). Taken together, our results showed that API can restore the silenced status of Nrf2 in skin epidermal JB6 P + cells by CpG demethylation coupled with attenuated DNMT and HDAC activity. These results may provide new therapeutic insights into the prevention of skin cancer by dietary phytochemicals.
Collapse
Affiliation(s)
- Ximena Paredes-Gonzalez
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | | | | | | |
Collapse
|
148
|
Antioxidants in food: content, measurement, significance, action, cautions, caveats, and research needs. ADVANCES IN FOOD AND NUTRITION RESEARCH 2014; 71:1-53. [PMID: 24484938 DOI: 10.1016/b978-0-12-800270-4.00001-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There are a multitude of antioxidants in foods, especially in foods of plant origin. Higher intake of antioxidant-rich foods is clearly associated with better health and functional longevity. The specific agents and mechanisms responsible are not yet clear, but there is convincing evidence that including more plant-based, antioxidant-rich foods, herbs, and beverages in the diet is effective in promoting health and lowering risk of various age-related diseases. The content of some individual antioxidants, such as vitamin C, in food can be measured, but it is not feasible to attempt to measure each antioxidant separately, and methods have been developed to assess the "total antioxidant content" of foods. One of the most widely used methods is the ferric reducing/antioxidant power (FRAP) assay, which is relatively simple, quick, sensitive, and inexpensive to perform. There are many published studies that have used the FRAP assay, and these have generated a very large database of total antioxidant content of foods that can help guide food choices for increased antioxidant intake. The FRAP assay has also been used to assess the bioavailability of antioxidants in foods and to investigate the effects of growing conditions, storage, processing, and cooking method on the total antioxidant content of food. The test can be employed as a quality control check device, and to detect adulteration of food. Furthermore, in a modified form (FRASC), the assay can measure ascorbic acid content almost simultaneously with the total antioxidant content of the sample. In this chapter, basic concepts of oxidation and the role of antioxidants, as well as the types and action of different antioxidants in foods will be reviewed briefly, and the underpinning concepts and evidence for health benefits of increased intake of dietary antioxidants will be discussed, with some focus on vitamin C, and also in the context of our evolutionary development. The basic concepts and limitations of measuring "total antioxidant content" of food will be presented. The FRAP assay and the modified version FRASC will be described, and the total antioxidant content (as the FRAP value) of a range of foods will be presented. Finally, issues of bioavailability and redox balance will be discussed in relation to the biological significance and molecular action of antioxidants in foods, some caution and caveats are presented about overcoming biological barriers to absorption of antioxidant phytochemicals, and research needs to further our understanding in the important area of food, antioxidants, and health will be highlighted.
Collapse
|
149
|
Taya S, Punvittayagul C, Inboot W, Fukushima S, Wongpoomchai R. Cleistocalyx nervosum Extract Ameliorates Chemical-Induced Oxidative Stress in Early Stages of Rat Hepatocarcinogenesis. Asian Pac J Cancer Prev 2014; 15:2825-30. [DOI: 10.7314/apjcp.2014.15.6.2825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
150
|
N(6)-isopentenyladenosine and analogs activate the NRF2-mediated antioxidant response. Redox Biol 2014; 2:580-9. [PMID: 24688894 PMCID: PMC3969604 DOI: 10.1016/j.redox.2014.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 02/27/2014] [Accepted: 03/02/2014] [Indexed: 01/21/2023] Open
Abstract
N6-isopentenyladenosine (i6A), a naturally occurring modified nucleoside, inhibits the proliferation of human tumor cell lines in vitro, but its mechanism of action remains unclear. Treatment of MCF7 human breast adenocarcinoma cells with i6A or with three synthetic analogs (allyl6A, benzyl6A, and butyl6A) inhibited growth and altered gene expression. About 60% of the genes that were differentially expressed in response to i6A treatment were also modulated by the analogs, and pathway enrichment analysis identified the NRF2-mediated oxidative stress response as being significantly modulated by all four compounds. Luciferase reporter gene assays in transfected MCF7 cells confirmed that i6A activates the transcription factor NRF2. Assays for cellular production of reactive oxygen species indicated that i6A and analogs had antioxidant effects, reducing basal levels and inhibiting the H2O2- or 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced production in MCF7 or dHL-60 (HL-60 cells induced to differentiate along the neutrophilic lineage) cell lines, respectively. In vivo, topical application of i6A or benzyl6A to mouse ears prior to TPA stimulation lessened the inflammatory response and significantly reduced the number of infiltrating neutrophils. These results suggest that i6A and analogs trigger a cellular response against oxidative stress and open the possibility of i6A and benzyl6A being used as topical anti-inflammatory drugs. i6A and analogs (allyl6A, benzyl6A and butyl6A) inhibit growth of MCF7 cells. They activate NRF2-mediated oxidative stress response. They inhibit ROS production in MCF7 or dHL-60 cells treated with H2O2 or TPA. In vivo topical application of i6A or benzyl6A reduces TPA-induced inflammation. i6A and benzyl6A have potential as topical antioxidant and anti-inflammatory drugs.
Collapse
|