101
|
Larson TA. Sex Steroids, Adult Neurogenesis, and Inflammation in CNS Homeostasis, Degeneration, and Repair. Front Endocrinol (Lausanne) 2018; 9:205. [PMID: 29760681 PMCID: PMC5936772 DOI: 10.3389/fendo.2018.00205] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/12/2018] [Indexed: 01/16/2023] Open
Abstract
Sex steroidal hormones coordinate the development and maintenance of tissue architecture in many organs, including the central nervous systems (CNS). Within the CNS, sex steroids regulate the morphology, physiology, and behavior of a wide variety of neural cells including, but not limited to, neurons, glia, endothelial cells, and immune cells. Sex steroids spatially and temporally control distinct molecular networks, that, in turn modulate neural activity, synaptic plasticity, growth factor expression and function, nutrient exchange, cellular proliferation, and apoptosis. Over the last several decades, it has become increasingly evident that sex steroids, often in conjunction with neuroinflammation, have profound impact on the occurrence and severity of neuropsychiatric and neurodegenerative disorders. Here, I review the foundational discoveries that established the regulatory role of sex steroids in the CNS and highlight recent advances toward elucidating the complex interaction between sex steroids, neuroinflammation, and CNS regeneration through adult neurogenesis. The majority of recent work has focused on neuroinflammatory responses following acute physical damage, chronic degeneration, or pharmacological insult. Few studies directly assess the role of immune cells in regulating adult neurogenesis under healthy, homeostatic conditions. As such, I also introduce tractable, non-traditional models for examining the role of neuroimmune cells in natural neuronal turnover, seasonal plasticity of neural circuits, and extreme CNS regeneration.
Collapse
Affiliation(s)
- Tracy A. Larson
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
102
|
Lenz KM, Nelson LH. Microglia and Beyond: Innate Immune Cells As Regulators of Brain Development and Behavioral Function. Front Immunol 2018; 9:698. [PMID: 29706957 PMCID: PMC5908908 DOI: 10.3389/fimmu.2018.00698] [Citation(s) in RCA: 347] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/21/2018] [Indexed: 01/10/2023] Open
Abstract
Innate immune cells play a well-documented role in the etiology and disease course of many brain-based conditions, including multiple sclerosis, Alzheimer's disease, traumatic brain and spinal cord injury, and brain cancers. In contrast, it is only recently becoming clear that innate immune cells, primarily brain resident macrophages called microglia, are also key regulators of brain development. This review summarizes the current state of knowledge regarding microglia in brain development, with particular emphasis on how microglia during development are distinct from microglia later in life. We also summarize the effects of early life perturbations on microglia function in the developing brain, the role that biological sex plays in microglia function, and the potential role that microglia may play in developmental brain disorders. Finally, given how new the field of developmental neuroimmunology is, we highlight what has yet to be learned about how innate immune cells shape the development of brain and behavior.
Collapse
Affiliation(s)
- Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, United States.,Department of Neuroscience, The Ohio State University, Columbus, OH, United States.,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
| | - Lars H Nelson
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
103
|
Macht VA, Reagan LP. Chronic stress from adolescence to aging in the prefrontal cortex: A neuroimmune perspective. Front Neuroendocrinol 2018; 49:31-42. [PMID: 29258741 DOI: 10.1016/j.yfrne.2017.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/22/2017] [Accepted: 12/15/2017] [Indexed: 12/21/2022]
Abstract
The development of the organism is a critical variable which influences the magnitude, duration, and reversibility of the effects of chronic stress. Such factors are relevant to the prefrontal cortex (PFC), as this brain region is the last to mature, the first to decline, and is highly stress-sensitive. Therefore, this review will examine the intersection between the nervous system and immune system at glutamatergic synapses in the PFC across three developmental periods: adolescence, adulthood, and aging. Glutamatergic synapses are tightly juxtaposed with microglia and astrocytes, and each of these cell types exhibits their own developmental trajectory. Not only does chronic stress differentially impact each of these cell types across development, but chronic stress also alters intercellular communication within this quad-partite synapse. These observations suggest that developmental shifts in both neural and immune function across neurons, microglia, and astrocytes mediate shifting effects of chronic stress on glutamatergic transmission.
Collapse
Affiliation(s)
- Victoria A Macht
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, United States; University of South Carolina, Department of Psychology, Columbia, SC, United States.
| | - Lawrence P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, United States; Wm. Jennings Bryan Dorn VA Medical Center, Columbia, SC, United States
| |
Collapse
|
104
|
Abstract
Microglia are the principle immune cells of the brain. Once activated, microglial cells may exhibit a wide repertoire of the context-dependent profiles ranging from highly neurotoxic to more protective and pro-regenerative cellular phenotypes. While to date the mechanisms involved in the molecular regulation of the microglia polarization phenotypes remain elusive, growing evidence suggests that gender may markedly affect the inflammatory and/or glial responses following brain injuries. In the recent years, special attention has been given to the role of microglia in sexual dimorphism, both in healthy brain and diseased brain. Here, we review recent advances revealing microglia as an important determinant of gender differences under physiological conditions and in injured brain. We also discuss how microglia-driven innate immunity and signaling pathways might be involved in the sex-dependent responses following brain ischemic injury. Finally we describe how advanced methods such as live imaging techniques may help elucidate the role of microglia in the modulation of immune responses and gender difference after stroke.
Collapse
Affiliation(s)
- Reza Rahimian
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec G1J 2G3, Canada
| | - Pierre Cordeau
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec G1J 2G3, Canada
| | - Jasna Kriz
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec G1J 2G3, Canada.
| |
Collapse
|
105
|
Neuroimmune-Driven Neuropathic Pain Establishment: A Focus on Gender Differences. Int J Mol Sci 2018; 19:ijms19010281. [PMID: 29342105 PMCID: PMC5796227 DOI: 10.3390/ijms19010281] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 12/20/2022] Open
Abstract
The role of neuroinflammatory cells in the establishment of neuropathic pain has been investigated in depth in the last few years. In particular, microglia have been shown to be key players in the induction of tactile allodynia, as they release proinflammatory molecules that, in turn, sensitize nociceptive neurons within the spinal cord. However, the role of peripheral immune cells such as macrophages, infiltrating monocytes, mast cells, and T-cells has been highlighted in the last few studies, even though the data are still conflicting and need to be clarified. Intriguingly, the central (microglia) and peripheral (T-cell)-adaptive immune cells that orchestrate maladaptive process-driven neuropathic pain seem to be involved in a gender-dependent manner. In this review, we highlight the role of the microglia and peripheral immune cells in chronic degenerative disease associated with neuro-immune-inflammatory processes.
Collapse
|
106
|
Walker DJ, Spencer KA. Glucocorticoid programming of neuroimmune function. Gen Comp Endocrinol 2018; 256:80-88. [PMID: 28728884 DOI: 10.1016/j.ygcen.2017.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 07/13/2017] [Accepted: 07/16/2017] [Indexed: 01/15/2023]
Abstract
Throughout life physiological systems strive to maintain homeostasis and these systems are susceptible to exposure to maternal or environmental perturbations, particularly during embryonic development. In some cases, these perturbations may influence genetic and physiological processes that permanently alter the functioning of these physiological systems; a process known as developmental programming. In recent years, the neuroimmune system has garnered attention for its fundamental interactions with key hormonal systems, such as the hypothalamic pituitary adrenal (HPA) axis. The ultimate product of this axis, the glucocorticoid hormones, play a key role in modulating immune responses within the periphery and the CNS as part of the physiological stress response. It is well-established that elevated glucocorticoids induced by developmental stress exert profound short and long-term physiological effects, yet there is relatively little information of how these effects are manifested within the neuroimmune system. Pre and post-natal periods are prime candidates for manipulation in order to uncover the physiological mechanisms that underlie glucocorticoid programming of neuroimmune responses. Understanding the potential programming role of glucocorticoids may be key in uncovering vulnerable windows of CNS susceptibility to stressful experiences during embryonic development and improve our use of glucocorticoids as therapeutics in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- David J Walker
- School of Psychology & Neuroscience, University of St Andrews, Fife KY16 9JP, United Kingdom.
| | - Karen A Spencer
- School of Psychology & Neuroscience, University of St Andrews, Fife KY16 9JP, United Kingdom
| |
Collapse
|
107
|
Bekhbat M, Neigh GN. Sex differences in the neuro-immune consequences of stress: Focus on depression and anxiety. Brain Behav Immun 2018; 67:1-12. [PMID: 28216088 PMCID: PMC5559342 DOI: 10.1016/j.bbi.2017.02.006] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/04/2017] [Accepted: 02/07/2017] [Indexed: 12/17/2022] Open
Abstract
Women appear to be more vulnerable to the depressogenic effects of inflammation than men. Chronic stress, one of the most pertinent risk factors of depression and anxiety, is known to induce behavioral and affective-like deficits via neuroimmune alterations including activation of the brain's immune cells, pro-inflammatory cytokine expression, and subsequent changes in neurotransmission and synaptic plasticity within stress-related neural circuitry. Despite well-established sexual dimorphisms in the stress response, immunity, and prevalence of stress-linked psychiatric illnesses, much of current research investigating the neuroimmune impact of stress remains exclusively focused on male subjects. We summarize and evaluate here the available data regarding sex differences in the neuro-immune consequences of stress, and some of the physiological factors contributing to these differences. Furthermore, we discuss the extent to which sex differences in stress-related neuroinflammation can account for the overall female bias in stress-linked psychiatric disorders including major depressive disorder and anxiety disorders. The currently available evidence from rodent studies does not unequivocally support the peripheral inflammatory changes seen in women following stress. Replication of many recent findings in stress-related neuroinflammation in female subjects is necessary in order to build a framework in which we can assess the extent to which sex differences in stress-related inflammation contribute to the overall female bias in stress-related affective disorders.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Department of Physiology, Emory University, Atlanta, GA 30322, USA
| | - Gretchen N Neigh
- Department of Physiology, Emory University, Atlanta, GA 30322, USA; Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
108
|
The microbiota influences cell death and microglial colonization in the perinatal mouse brain. Brain Behav Immun 2018; 67:218-229. [PMID: 28890156 PMCID: PMC5696094 DOI: 10.1016/j.bbi.2017.08.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 12/21/2022] Open
Abstract
The mammalian fetus develops in a largely sterile environment, and direct exposure to a complex microbiota does not occur until birth. We took advantage of this to examine the effect of the microbiota on brain development during the first few days of life. The expression of anti- and pro-inflammatory cytokines, developmental cell death, and microglial colonization in the brain were compared between newborn conventionally colonized mice and mice born in sterile, germ-free (GF) conditions. Expression of the pro-inflammatory cytokines interleukin 1β and tumor necrosis factor α was markedly suppressed in GF newborns. GF mice also had altered cell death, with some regions exhibiting higher rates (paraventricular nucleus of the hypothalamus and the CA1 oriens layer of the hippocampus) and other regions exhibiting no change or lower rates (arcuate nucleus of the hypothalamus) of cell death. Microglial labeling was elevated in GF mice, due to an increase in both microglial cell size and number. The changes in cytokine expression, cell death and microglial labeling were evident on the day of birth, but were absent on embryonic day 18.5, approximately one-half day prior to expected delivery. Taken together, our results suggest that direct exposure to the microbiota at birth influences key neurodevelopmental events and does so within hours. These findings may help to explain some of the behavioral and neurochemical alterations previously seen in adult GF mice.
Collapse
|
109
|
Charriaut-Marlangue C, Besson VC, Baud O. Sexually Dimorphic Outcomes after Neonatal Stroke and Hypoxia-Ischemia. Int J Mol Sci 2017; 19:ijms19010061. [PMID: 29278365 PMCID: PMC5796011 DOI: 10.3390/ijms19010061] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/19/2017] [Accepted: 12/24/2017] [Indexed: 01/21/2023] Open
Abstract
Cohort studies have demonstrated a higher vulnerability in males towards ischemic and/or hypoxic-ischemic injury in infants born near- or full-term. Male sex was also associated with limited brain repair following neonatal stroke and hypoxia-ischemia, leading to increased incidence of long-term cognitive deficits compared to females with similar brain injury. As a result, the design of pre-clinical experiments considering sex as an important variable was supported and investigated because neuroprotective strategies to reduce brain injury demonstrated sexual dimorphism. While the mechanisms underlining these differences between boys and girls remain unclear, several biological processes are recognized to play a key role in long-term neurodevelopmental outcomes: gonadal hormones across developmental stages, vulnerability to oxidative stress, modulation of cell death, and regulation of microglial activation. This review summarizes the current evidence for sex differences in neonatal hypoxic-ischemic and/or ischemic brain injury, considering the major pathways known to be involved in cognitive and behavioral deficits associated with damages of the developing brain.
Collapse
Affiliation(s)
- Christiane Charriaut-Marlangue
- U1141 PROTECT, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France.
| | - Valérie C Besson
- U1141 PROTECT, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France.
- EA4475-Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l'Observatoire, 75006 Paris, France.
| | - Olivier Baud
- U1141 PROTECT, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France.
- Division of Neonatology and Pediatric Intensive Care, Children's University Hospital of Geneva and University of Geneva, 1205 Geneva, Switzerland.
| |
Collapse
|
110
|
Caplan HW, Cox CS, Bedi SS. Do microglia play a role in sex differences in TBI? J Neurosci Res 2017; 95:509-517. [PMID: 27870453 DOI: 10.1002/jnr.23854] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/15/2016] [Accepted: 07/06/2016] [Indexed: 12/23/2022]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality for both males and females and is, thus, a major focus of current study. Although the overall death rate of TBI for males is roughly three times higher than that for females, males have been disproportionately represented in clinical and preclinical studies. Gender differences are known to exist in many neurologic disorders, such as multiple sclerosis and stroke, and differences appear to exist in TBI. Furthermore, it is known that microglia have sexually dimorphic roles in CNS development and other neurologic conditions; however, most animal studies of microglia and TBI have focused on male subjects. Microglia are a current target of many preclinical and clinical therapeutic trials for TBI. Understanding the relationship among sex, sex hormones, and microglia is critical to truly understanding the pathophysiology of TBI. However, the evidence for sex differences in TBI centers mainly on sex hormones, and evidenced-based conclusions are often contradictory. In an attempt to review the current literature, it is apparent that sex differences likely exist, but the contradictory nature and magnitude of such differences in the existing literature does not allow definite conclusions to be drawn, except that more investigation of this issue is necessary. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Henry W Caplan
- Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, Texas
| | - Charles S Cox
- Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, Texas
| | - Supinder S Bedi
- Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, Texas
| |
Collapse
|
111
|
Doyle HH, Murphy AZ. Sex differences in innate immunity and its impact on opioid pharmacology. J Neurosci Res 2017; 95:487-499. [PMID: 27870418 DOI: 10.1002/jnr.23852] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/22/2016] [Accepted: 07/06/2016] [Indexed: 12/30/2022]
Abstract
Morphine has been and continues to be one of the most potent and widely used drugs for the treatment of pain. Clinical and animal models investigating sex differences in pain and analgesia demonstrate that morphine is a more potent analgesic in males than in females. In addition to binding to the neuronal μ-opioid receptor, morphine binds to the innate immune receptor toll-like receptor 4 (TLR4), located on glial cells. Activation of glial TLR4 initiates a neuroinflammatory response that directly opposes morphine analgesia. Females of many species have a more active immune system than males; however, few studies have investigated glial cells as a potential mechanism driving sexually dimorphic responses to morphine. This Mini-Review illustrates the involvement of glial cells in key processes underlying observed sex differences in morphine analgesia and suggests that targeting glia may improve current treatment strategies for pain. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hillary H Doyle
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
112
|
Thion MS, Garel S. On place and time: microglia in embryonic and perinatal brain development. Curr Opin Neurobiol 2017; 47:121-130. [PMID: 29080445 DOI: 10.1016/j.conb.2017.10.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/27/2017] [Accepted: 10/07/2017] [Indexed: 12/26/2022]
Abstract
Microglia, the brain-resident macrophages, play key roles in regulating synapse density and homeostasis in the postnatal and adult brain. However, microglia enter the brain during embryogenesis and recent studies have revealed additional early functions of these immune cells in prenatal and perinatal cerebral development. Such findings are of importance since prenatal inflammation and microglia dysfunction have been associated with several neurodevelopmental disorders. This review provides a selective overview of the early roles of microglia, their link with a specific spatiotemporal distribution and how they can be modulated by intrinsic factors or environmental signals.
Collapse
Affiliation(s)
- Morgane Sonia Thion
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| | - Sonia Garel
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| |
Collapse
|
113
|
Turano A, Lawrence JH, Schwarz JM. Activation of neonatal microglia can be influenced by other neural cells. Neurosci Lett 2017; 657:32-37. [PMID: 28774571 DOI: 10.1016/j.neulet.2017.07.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
Abstract
During development, microglial progenitor cells migrate into the brain from the periphery, a process critical to the maturation of the developing brain. Although they perform functions similar to mature, adult microglia, immature microglia are distinct from mature microglia. Activation of immature microglia, via an early-life immune challenge, can lead to persistent changes in microglial function, resulting in long-term neuronal and cognitive dysfunction. Early-life immune activation is associated with multiple neurodevelopmental disorders, including autism, ADHD, schizophrenia, and cerebral palsy - disorders with known or suspected immune etiologies, and strong sex biases for males. Activation of immature microglia requires further examination to determine its potential role in these neurodevelopmental disorders. More work is also necessary to better understand the relationship between developing microglia and other developing neural cells during this critical period of development. Thus, we treated freshly isolated, sex-specific microglia from the rat hippocampus with lipopolysaccharide (LPS) on P4, in either the presence or absence of other neural cells. Mixed and microglial-specific cultures were analyzed for inflammatory gene expression to determine whether immature microglia exhibited a sex-specific response to immune activation, and if the presence of all other neural cells influenced that response. We found that the microglial response to an LPS-induced immune activation differed depending on the presence of other neural cells in the culture. We found very few sex differences in the cytokine response, except that the microglial expression of IL-6 following immune activation was more robust in male microglia that were in the presence of other neural cells than female microglia in the same condition.
Collapse
Affiliation(s)
- Alexandra Turano
- University of Delaware, Department of Psychological and Brain Sciences, 108 Wolf Hall, Newark, DE, 19716, USA.
| | - Jennifer H Lawrence
- University of Delaware, Department of Psychological and Brain Sciences, 108 Wolf Hall, Newark, DE, 19716, USA.
| | - Jaclyn M Schwarz
- University of Delaware, Department of Psychological and Brain Sciences, 108 Wolf Hall, Newark, DE, 19716, USA.
| |
Collapse
|
114
|
Nissen JC. Microglial Function across the Spectrum of Age and Gender. Int J Mol Sci 2017; 18:ijms18030561. [PMID: 28273860 PMCID: PMC5372577 DOI: 10.3390/ijms18030561] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 02/26/2017] [Accepted: 03/01/2017] [Indexed: 12/19/2022] Open
Abstract
Microglia constitute the resident immunocompetent cells of the central nervous system. Although much work has focused on their ability to mount an inflammatory response in reaction to pathology, recent studies have delved into their role in maintaining homeostasis in the healthy brain. It is important to note that the function of these cells is more complex than originally conceived, as there is increasing evidence that microglial responses can vary greatly among individuals. Here, this review will describe the changing behavior of microglia from development and birth through to the aged brain. Further, it is not only age that impacts the state of the neuroimmune milieu, as microglia have been shown to play a central role in the sexual differentiation of the brain. Finally, this review will discuss the implications this has for the differences in the incidence of neurodegenerative disorders between males and females, and between the young and old.
Collapse
Affiliation(s)
- Jillian C Nissen
- Department of Pharmacological Sciences, Stony Brook University, NY 11794-8651, USA.
| |
Collapse
|
115
|
Dorfman MD, Krull JE, Douglass JD, Fasnacht R, Lara-Lince F, Meek TH, Shi X, Damian V, Nguyen HT, Matsen ME, Morton GJ, Thaler JP. Sex differences in microglial CX3CR1 signalling determine obesity susceptibility in mice. Nat Commun 2017; 8:14556. [PMID: 28223698 PMCID: PMC5322503 DOI: 10.1038/ncomms14556] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 01/12/2017] [Indexed: 02/06/2023] Open
Abstract
Female mice are less susceptible to the negative metabolic consequences of high-fat diet feeding than male mice, for reasons that are incompletely understood. Here we identify sex-specific differences in hypothalamic microglial activation via the CX3CL1-CX3CR1 pathway that mediate the resistance of female mice to diet-induced obesity. Female mice fed a high-fat diet maintain CX3CL1-CX3CR1 levels while male mice show reductions in both ligand and receptor expression. Female Cx3cr1 knockout mice develop 'male-like' hypothalamic microglial accumulation and activation, accompanied by a marked increase in their susceptibility to diet-induced obesity. Conversely, increasing brain CX3CL1 levels in male mice through central pharmacological administration or virally mediated hypothalamic overexpression converts them to a 'female-like' metabolic phenotype with reduced microglial activation and body-weight gain. These data implicate sex differences in microglial activation in the modulation of energy homeostasis and identify CX3CR1 signalling as a potential therapeutic target for the treatment of obesity.
Collapse
Affiliation(s)
- Mauricio D. Dorfman
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Jordan E. Krull
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - John D. Douglass
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Rachael Fasnacht
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Fernando Lara-Lince
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Thomas H. Meek
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Xiaogang Shi
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Vincent Damian
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Hong T. Nguyen
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Miles E. Matsen
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Gregory J. Morton
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Joshua P. Thaler
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| |
Collapse
|
116
|
Sex Differences in Microglia Activity within the Periaqueductal Gray of the Rat: A Potential Mechanism Driving the Dimorphic Effects of Morphine. J Neurosci 2017; 37:3202-3214. [PMID: 28219988 DOI: 10.1523/jneurosci.2906-16.2017] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/30/2017] [Accepted: 02/06/2017] [Indexed: 11/21/2022] Open
Abstract
Although morphine remains the primary drug prescribed for alleviation of severe or persistent pain, both preclinical and clinical studies have shown that females require two to three times more morphine than males to produce comparable levels of analgesia. In addition to binding to the neuronal μ-opioid receptor, morphine binds to the innate immune receptor toll-like receptor 4 (TLR4) localized primarily on microglia. Morphine action at TLR4 initiates a neuroinflammatory response that directly opposes the analgesic effects of morphine. Here, we test the hypothesis that the attenuated response to morphine observed in females is the result of increased microglia activation in the periaqueductal gray (PAG), a central locus mediating the antinociceptive effects of morphine. We report that, whereas no overall sex differences in the density of microglia were noted within the PAG of male or female rats, microglia exhibited a more "activated" phenotype in females at baseline, with the degree of activation a significant predictor of morphine half-maximal antinociceptive dose (ED50) values. Priming microglia with LPS induced greater microglia activation in the PAG of females compared with males and was accompanied by increased transcription levels of IL-1β and a significant rightward shift in the morphine dose-response curve. Blockade of morphine binding to PAG TLR4 with (+)-naloxone potentiated morphine antinociception significantly in females such that no sex differences in ED50 were observed. These results demonstrate that PAG microglia are sexually dimorphic in both basal and LPS-induced activation and contribute to the sexually dimorphic effects of morphine in the rat.SIGNIFICANCE STATEMENT We demonstrate that periaqueductal gray (PAG) microglia contribute to the sexually dimorphic effects of morphine. Specifically, we report that increased activation of microglia in the PAG contributes to the attenuated response to morphine observed in females. Our data further implicate the innate immune receptor toll-like receptor 4 (TLR4) as an underlying mechanism mediating these effects and establish that TLR4 inhibition in the PAG of females reverses the sex differences in morphine responsiveness. These data suggest novel methods to improve current opioid-based pain management via inhibition of glial TLR4 and illustrate the necessity for sex-specific research and individualized treatment strategies for the management of pain in men and women.
Collapse
|
117
|
Nelson LH, Lenz KM. The immune system as a novel regulator of sex differences in brain and behavioral development. J Neurosci Res 2017; 95:447-461. [PMID: 27870450 PMCID: PMC8008603 DOI: 10.1002/jnr.23821] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 01/02/2023]
Abstract
Sexual differentiation of the brain occurs early in life as a result of sex-typical hormone action and sex chromosome effects. Immunocompetent cells are being recognized as underappreciated regulators of sex differences in brain and behavioral development, including microglia, astrocytes, and possibly other less well studied cell types, including T cells and mast cells. Immunocompetent cells in the brain are responsive to steroid hormones, but their role in sex-specific brain development is an emerging field of interest. This Review presents a summary of what is currently known about sex differences in the number, morphology, and signaling profile of immune cells in the developing brain and their role in the early-life programming of sex differences in brain and behavior. We review what is currently known about sex differences in the response to early-life perturbations, including stress, inflammation, diet, and environmental pollutants. We also discuss how and why understanding sex differences in the developing neuroimmune environment may provide insight into understanding the etiology of several neurodevelopmental disorders. This Review also highlights what remains to be discovered in this emerging field of developmental neuroimmunology and underscores the importance of filling in these knowledge gaps. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lars H Nelson
- Program in Neuroscience, The Ohio State University, Columbus, Ohio
- Group in Behavioral Neuroendocrinology, The Ohio State University, Columbus, Ohio
| | - Kathryn M Lenz
- Group in Behavioral Neuroendocrinology, The Ohio State University, Columbus, Ohio
- Department of Psychology, The Ohio State University, Columbus, Ohio
- Department of Neuroscience, The Ohio State University, Columbus, Ohio
| |
Collapse
|
118
|
Tronson NC, Collette KM. (Putative) sex differences in neuroimmune modulation of memory. J Neurosci Res 2017; 95:472-486. [PMID: 27870428 PMCID: PMC5120654 DOI: 10.1002/jnr.23921] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/11/2016] [Accepted: 08/22/2016] [Indexed: 12/11/2022]
Abstract
The neuroimmune system is significantly sexually dimorphic, with sex differences evident in the number and activation states of microglia, in the activation of astrocytes, and in cytokine release and function. Neuroimmune cells and signaling are now recognized as critical for many neural functions throughout the life span, including synaptic plasticity and memory function. Here we address the question of how cytokines, astrocytes, and microglia contribute to memory, and specifically how neuroimmune modulation of memory differentially affects males and females. Understanding sex differences in both normal memory processes and dysregulation of memory in psychiatric and neurological disorders is critical for developing treatment and preventive strategies for memory disorders that are effective for both men and women. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Natalie C Tronson
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
| | - Katie M Collette
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
119
|
Pierre WC, Smith PLP, Londono I, Chemtob S, Mallard C, Lodygensky GA. Neonatal microglia: The cornerstone of brain fate. Brain Behav Immun 2017; 59:333-345. [PMID: 27596692 DOI: 10.1016/j.bbi.2016.08.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/30/2016] [Accepted: 08/29/2016] [Indexed: 12/16/2022] Open
Abstract
Microglia, mainly known for their role in innate immunity and modulation of neuroinflammation, play an active role in central nervous system development and homeostasis. Depending on the context and environmental stimuli, microglia adopt a broad spectrum of activation status from pro-inflammatory, associated with neurotoxicity, to anti-inflammatory linked to neuroprotection. Pro-inflammatory microglial activation is a key hallmark of white matter injury in preterm infants and is involved in developmental origin of adult neurological diseases. Characterization of neonatal microglia function in brain development and inflammation has allowed the investigation of promising therapeutic targets with potential long-lasting neuroprotective effects. True prevention of neuro-degenerative diseases might eventually occur as early as the perinatal period.
Collapse
Affiliation(s)
- Wyston C Pierre
- Sainte-Justine Hospital and Research Center, Department of Pediatrics, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, Canada
| | - Peter L P Smith
- Perinatal Center, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Irène Londono
- Sainte-Justine Hospital and Research Center, Department of Pediatrics, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, Canada
| | - Sylvain Chemtob
- Sainte-Justine Hospital and Research Center, Department of Pediatrics, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, Canada; Departments of Ophtalmology, Université de Montréal, Montreal, Quebec, Canada; Departments of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
| | - Carina Mallard
- Perinatal Center, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Gregory A Lodygensky
- Sainte-Justine Hospital and Research Center, Department of Pediatrics, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, Canada; Montreal Heart Institute, 5000 Rue Bélanger, Montreal, Quebec, Canada; Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada; Departments of Pharmacology, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
120
|
Borges BC, Elias CF, Elias LLK. PI3K signaling: A molecular pathway associated with acute hypophagic response during inflammatory challenges. Mol Cell Endocrinol 2016; 438:36-41. [PMID: 27389879 PMCID: PMC5116261 DOI: 10.1016/j.mce.2016.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/30/2016] [Accepted: 07/03/2016] [Indexed: 12/13/2022]
Abstract
Energy balance has in the hypothalamus a central component of integration of food intake and energy expenditure. An accumulating body of evidence indicates that energy homeostasis is largely affected by inflammatory challenges. Severe undernutrition caused by exacerbated inflammatory response may lead to cachexia. On the other hand, prolonged low-grade inflammation such as that observed in obesity and metabolic syndrome, raises the risk for the development of diabetes and heart diseases. Changes in circulating insulin and cytokines such as leptin, interleukins and tumor necrosis factor, as well as changes in their action in the hypothalamus drive the inhibition of food consumption during inflammation. The molecular pathways associated with these responses have only started to be unraveled. One potential candidate is the PI3K signaling, an important player in distinct hypothalamic neurons that control food intake. This study presents an overview of the current knowledge about PI3K role on cytokines and insulin signaling in the hypothalamic regulation of feeding during inflammation.
Collapse
Affiliation(s)
- Beatriz C Borges
- Department of Molecular and Integrative Physiology, University of Michigan, United States; Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil.
| | - Carol F Elias
- Department of Molecular and Integrative Physiology, University of Michigan, United States; Department of Obstetrics and Gynecology, University of Michigan, United States.
| | - Lucila L K Elias
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil.
| |
Collapse
|
121
|
Heitzer M, Kaiser S, Kanagaratnam M, Zendedel A, Hartmann P, Beyer C, Johann S. Administration of 17β-Estradiol Improves Motoneuron Survival and Down-regulates Inflammasome Activation in Male SOD1(G93A) ALS Mice. Mol Neurobiol 2016; 54:8429-8443. [PMID: 27957680 DOI: 10.1007/s12035-016-0322-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease manifested by the progressive loss of upper and lower motoneurons. The pathomechanism of ALS is complex and not yet fully understood. Neuroinflammation is believed to significantly contribute to disease progression. Inflammasome activation was recently shown in the spinal cord of human sporadic ALS patients and in the SOD1(G93A) mouse model for ALS. In the present study, we investigated the neuroprotective and anti-inflammatory effects of 17β-estradiol (E2) treatment in pre-symptomatic and symptomatic male SOD1(G93A) mice. Symptomatic mice with E2 substitution exhibited improved motor performance correlating with an increased survival of motoneurons in the lumbar spinal cord. Expression of NLRP3 inflammasome proteins and levels of activated caspase 1 and mature interleukin 1 beta were significantly reduced in SOD1(G93A) mice supplemented with E2.
Collapse
Affiliation(s)
- Marius Heitzer
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Sarah Kaiser
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Mithila Kanagaratnam
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.,Department of Anatomical Sciences, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Philipp Hartmann
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.,JARA-BRAIN, 52074, Aachen, Germany
| | - Sonja Johann
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| |
Collapse
|
122
|
Dodds KN, Beckett EAH, Evans SF, Grace PM, Watkins LR, Hutchinson MR. Glial contributions to visceral pain: implications for disease etiology and the female predominance of persistent pain. Transl Psychiatry 2016; 6:e888. [PMID: 27622932 PMCID: PMC5048206 DOI: 10.1038/tp.2016.168] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/14/2016] [Accepted: 07/22/2016] [Indexed: 12/27/2022] Open
Abstract
In the central nervous system, bidirectional signaling between glial cells and neurons ('neuroimmune communication') facilitates the development of persistent pain. Spinal glia can contribute to heightened pain states by a prolonged release of neurokine signals that sensitize adjacent centrally projecting neurons. Although many persistent pain conditions are disproportionately common in females, whether specific neuroimmune mechanisms lead to this increased susceptibility remains unclear. This review summarizes the major known contributions of glia and neuroimmune interactions in pain, which has been determined principally in male rodents and in the context of somatic pain conditions. It is then postulated that studying neuroimmune interactions involved in pain attributed to visceral diseases common to females may offer a more suitable avenue for investigating unique mechanisms involved in female pain. Further, we discuss the potential for primed spinal glia and subsequent neurogenic inflammation as a contributing factor in the development of peripheral inflammation, therefore, representing a predisposing factor for females in developing a high percentage of such persistent pain conditions.
Collapse
Affiliation(s)
- K N Dodds
- Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - E A H Beckett
- Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - S F Evans
- Discipline of Pharmacology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Pelvic Pain SA, Norwood, SA, Australia
| | - P M Grace
- Discipline of Pharmacology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - L R Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - M R Hutchinson
- Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
123
|
Macht VA. Neuro-immune interactions across development: A look at glutamate in the prefrontal cortex. Neurosci Biobehav Rev 2016; 71:267-280. [PMID: 27593444 DOI: 10.1016/j.neubiorev.2016.08.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 07/26/2016] [Accepted: 08/31/2016] [Indexed: 02/07/2023]
Abstract
Although the primary role for the immune system is to respond to pathogens, more recently, the immune system has been demonstrated to have a critical role in signaling developmental events. Of particular interest for this review is how immunocompetent microglia and astrocytes interact with glutamatergic systems to influence the development of neural circuits in the prefrontal cortex (PFC). Microglia are the resident macrophages of the brain, and astrocytes mediate both glutamatergic uptake and coordinate with microglia to respond to the general excitatory state of the brain. Cross-talk between microglia, astrocytes, and glutamatergic neurons forms a quad-partite synapse, and this review argues that interactions within this synapse have critical implications for the maturation of PFC-dependent cognitive function. Similarly, understanding developmental shifts in immune signaling may help elucidate variations in sensitivities to developmental disruptions.
Collapse
Affiliation(s)
- Victoria A Macht
- University of South Carolina, 1512 Pendleton St., Department of Psychology, Columbia, SC 29208, United States.
| |
Collapse
|
124
|
Acaz-Fonseca E, Avila-Rodriguez M, Garcia-Segura LM, Barreto GE. Regulation of astroglia by gonadal steroid hormones under physiological and pathological conditions. Prog Neurobiol 2016; 144:5-26. [DOI: 10.1016/j.pneurobio.2016.06.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 06/05/2016] [Indexed: 01/07/2023]
|
125
|
Woller SA, Ravula SB, Tucci FC, Beaton G, Corr M, Isseroff RR, Soulika AM, Chigbrow M, Eddinger KA, Yaksh TL. Systemic TAK-242 prevents intrathecal LPS evoked hyperalgesia in male, but not female mice and prevents delayed allodynia following intraplantar formalin in both male and female mice: The role of TLR4 in the evolution of a persistent pain state. Brain Behav Immun 2016; 56:271-80. [PMID: 27044335 PMCID: PMC4917460 DOI: 10.1016/j.bbi.2016.03.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/22/2016] [Accepted: 03/31/2016] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Pain resulting from local tissue injury or inflammation typically resolves with time. Frequently, however, this pain may unexpectedly persist, becoming a pathological chronic state. Increasingly, the innate and adaptive immune systems are being implicated in the initiation and maintenance of these persistent conditions. In particular, Toll-like receptor 4 (TLR4) signaling has been shown to mediate the transition to a persistent pain state in a sex-dependent manner. In the present work, we explored this contribution using the TLR4 antagonist, TAK-242. METHODS Male and female C57Bl/6 mice were given intravenous (IV), intrathecal (IT), or intraperitoneal (IP) TAK-242 prior to IT delivery of lipopolysaccharide (LPS), and tactile reactivity was assessed at regular intervals over 72-h. Additional groups of mice were treated with IP TAK-242 prior to intraplantar formalin, and flinching was monitored for 1-h. Tactile reactivity was assessed at 7-days after formalin delivery. RESULTS LPS evoked TNF release from male and female macrophages and RAW267.4 cells, which was blocked in a concentration dependent fashion by TAK-242. In vivo, IT LPS evoked tactile allodynia to a greater degree in male than female mice. TAK-242, given by all routes, prevented development of IT LPS-induced tactile allodynia in male animals, but did not reverse their established allodynia. TLR4 deficiency and TAK-242 treatment attenuated IT LPS-induced allodynia in male, but not female mice. In the formalin model, pre-treatment with TAK-242 did not affect Phase 1 or Phase 2 flinching, but prevented the delayed tactile allodynia in both male and unexpectedly in female mice (Phase 3). CONCLUSIONS Together, these results suggest that TAK-242 is a TLR4 antagonist that has efficacy after systemic and intrathecal delivery and confirms the role of endogenous TLR4 signaling in triggering the development of a delayed allodynia in both male and female mice.
Collapse
Affiliation(s)
- Sarah A Woller
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA; Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of California San Diego, La Jolla, CA, USA.
| | - Satheesh B Ravula
- Epigen Biosciences Inc., 10225 Barnes Canyon Road, Suite A104, San Diego, CA 92121, USA.
| | - Fabio C Tucci
- Epigen Biosciences Inc., 10225 Barnes Canyon Road, Suite A104, San Diego, CA 92121, USA.
| | - Graham Beaton
- Epigen Biosciences Inc., 10225 Barnes Canyon Road, Suite A104, San Diego, CA 92121, USA.
| | - Maripat Corr
- Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of California San Diego, La Jolla, CA, USA.
| | - R Rivkah Isseroff
- Department of Dermatology, School of Medicine, University of California, Davis, CA, USA.
| | - Athena M Soulika
- Department of Dermatology, School of Medicine, University of California, Davis, CA, USA; Shriners Hospital for Children, Northern California, Sacramento, CA, USA.
| | - Marianne Chigbrow
- Department of Dermatology, School of Medicine, University of California, Davis, CA, USA.
| | - Kelly A Eddinger
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA.
| | - Tony L Yaksh
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
126
|
Sorge RE, Totsch SK. Sex Differences in Pain. J Neurosci Res 2016; 95:1271-1281. [PMID: 27452349 DOI: 10.1002/jnr.23841] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/23/2016] [Accepted: 06/29/2016] [Indexed: 12/17/2022]
Abstract
Females greatly outnumber males as sufferers of chronic pain. Although social and psychological factors certainly play a role in the differences in prevalence and incidence, biological differences in the functioning of the immune system likely underlie these observed effects. This Review examines the current literature on biological sex differences in the functioning of the innate and adaptive immune systems as they relate to pain experience. With rodent models, we and others have observed that male mice utilize microglia in the spinal cord to mediate pain, whereas females preferentially use T cells in a similar manner. The difference can be traced to differences in cell populations, differences in suppression by hormones, and disparate cellular responses in males and females. These sex differences also translate into human cellular responses and may be the mechanism by which the disproportionate chronic pain experience is based. Recognition of the evidence underlying sex differences in pain will guide development of treatments and provide better options for patients that are tailored to their physiology. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Robert E Sorge
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stacie K Totsch
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
127
|
Taves S, Berta T, Liu DL, Gan S, Chen G, Kim YH, Van de Ven T, Laufer S, Ji RR. Spinal inhibition of p38 MAP kinase reduces inflammatory and neuropathic pain in male but not female mice: Sex-dependent microglial signaling in the spinal cord. Brain Behav Immun 2016; 55:70-81. [PMID: 26472019 PMCID: PMC5502100 DOI: 10.1016/j.bbi.2015.10.006] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/04/2015] [Accepted: 10/10/2015] [Indexed: 12/23/2022] Open
Abstract
Previous studies have shown that activation of p38 mitogen-activating kinase (MAPK) in spinal microglia participates in the generation of inflammatory and neuropathic pain in various rodent models. However, these studies focused on male mice to avoid confounding effects of the estrous cycle of females. Recent studies have shown that some spinal pro-inflammatory signaling such as Toll-like receptor 4-mediated signaling contributes to pain hypersensitivity only in male mice. In this study we investigated the distinct role of spinal p38 in inflammatory and neuropathic pain using a highly selective p38 inhibitor skepinone. Intrathecal injection of skepinone prevented formalin induced inflammatory pain in male but not female mice. Furthermore, intrathecal skepinone reduced chronic constriction injury (CCI) induced neuropathic pain (mechanical allodynia) in male mice on CCI-day 7 but not CCI-day 21. This male-dependent inhibition of neuropathic pain also occurred in rats following intrathecal skepinone. Nerve injury induced spinal p38 activation (phosphorylation) in CX3CR1-GFP(+) microglia on CCI-day 7, and this activation was more prominent in male mice. In contrast, CCI induced comparable microgliosis and expression of the microglial markers CX3CR1 and IBA-1 in both sexes. Notably, intraperitoneal or local perineural administration of skepinone inhibited CCI-induced mechanical allodynia in both sexes of mice. Finally, skepinone only reduced the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in lamina IIo neurons of spinal cord slices of males 7days post CCI. Therefore, the sex-specific p38 activation and signaling is confined to the spinal cord in inflammatory and neuropathic pain conditions.
Collapse
Affiliation(s)
- Sarah Taves
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle Street, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, 595 LaSalle Street, Durham, NC 27710, USA.
| | - Temugin Berta
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle Street, Durham, NC 27710, USA
| | - Da-Lu Liu
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle Street, Durham, NC 27710, USA
| | - Sophie Gan
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle Street, Durham, NC 27710, USA
| | - Gang Chen
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle Street, Durham, NC 27710, USA
| | - Yong Ho Kim
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle Street, Durham, NC 27710, USA
| | - Thomas Van de Ven
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle Street, Durham, NC 27710, USA
| | - Stefan Laufer
- Departments Pharmacy and Biochemistry, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Ru-Rong Ji
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle Street, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, 595 LaSalle Street, Durham, NC 27710, USA.
| |
Collapse
|
128
|
Wang X, Zhang Y, Peng Y, Hutchinson MR, Rice KC, Yin H, Watkins LR. Pharmacological characterization of the opioid inactive isomers (+)-naltrexone and (+)-naloxone as antagonists of toll-like receptor 4. Br J Pharmacol 2016; 173:856-69. [PMID: 26603732 DOI: 10.1111/bph.13394] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 11/11/2015] [Accepted: 11/11/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE The toll-like receptor TLR4 is involved in neuropathic pain and in drug reward and reinforcement. The opioid inactive isomers (+)-naltrexone and (+)-naloxone act as TLR4 antagonists, reversing neuropathic pain and reducing opioid and cocaine reward and reinforcement. However, how these agents modulate TLR4 signalling is not clear. Here, we have elucidated the molecular mechanism of (+)-naltrexone and (+)-naloxone on TLR4 signalling. EXPERIMENTAL APPROACH BV-2 mouse microglial cell line, primary rat microglia and primary rat peritoneal macrophages were treated with LPS and TLR4 signalling inhibitors. Effects were measured using Western blotting, luciferase reporter assays, fluorescence microscopy and ELISA KEY RESULTS: (+)-Naltrexone and (+)-naloxone were equi-potent inhibitors of the LPS-induced TLR4 downstream signalling and induction of the pro-inflammatory factors NO and TNF-α. Similarly, (+)-naltrexone or (+)-naloxone inhibited production of reactive oxygen species and increased microglial phagocytosis, induced by LPS. However, (+)-naltrexone and (+)-naloxone did not directly inhibit the increased production of IL-1β, induced by LPS. The drug interaction of (+)-naloxone and (+)-naltrexone was additive. (+)-Naltrexone or (+)-naloxone inhibited LPS-induced activation of IFN regulatory factor 3 and production of IFN-β. However, they did not inhibit TLR4 signalling via the activation of either NF-κB, p38 or JNK in these cellular models. CONCLUSIONS AND IMPLICATIONS (+)-Naltrexone and (+)-naloxone were TRIF-IFN regulatory factor 3 axis-biased TLR4 antagonists. They blocked TLR4 downstream signalling leading to NO, TNF-α and reactive oxygen species. This pattern may explain, at least in part, the in vivo therapeutic effects of (+)-naltrexone and (+)-naloxone.
Collapse
Affiliation(s)
- X Wang
- Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Y Zhang
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Y Peng
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - M R Hutchinson
- Discipline of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - K C Rice
- Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20892, USA
| | - H Yin
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - L R Watkins
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
129
|
Chisholm NC, Sohrabji F. Astrocytic response to cerebral ischemia is influenced by sex differences and impaired by aging. Neurobiol Dis 2016; 85:245-253. [PMID: 25843666 PMCID: PMC5636213 DOI: 10.1016/j.nbd.2015.03.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/16/2015] [Accepted: 03/26/2015] [Indexed: 12/21/2022] Open
Abstract
Ischemic stroke occurs more often among the elderly, and within this demographic, women are at an increased risk for stroke and have poorer functional recovery than men. This is also well replicated in animal studies where aging females are shown to have more extensive brain tissue loss as compared to adult females. Astrocytes provide nutrients for neurons, regulate glutamate levels, and release neurotrophins and thus play a key role in the events that occur following ischemia. In addition, astrocytes express receptors for gonadal hormones and synthesize several neurosteroids suggesting that the sex differences in stroke outcome may be mediated through astrocytes. This review discusses key astrocytic responses to ischemia including, reactive gliosis, excitotoxicity, and neuroinflammation. In light of the age and sex differences in stroke outcomes, this review highlights how aging and gonadal hormones influence these responses. Lastly, astrocyte specific changes in gene expression and epigenetic modifications during aging and following ischemia are discussed as possible molecular mechanisms for impaired astrocytic functioning.
Collapse
Affiliation(s)
- Nioka C Chisholm
- Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College of Medicine, Bryan, TX 77807, USA.
| |
Collapse
|
130
|
Forger NG, Strahan JA, Castillo-Ruiz A. Cellular and molecular mechanisms of sexual differentiation in the mammalian nervous system. Front Neuroendocrinol 2016; 40:67-86. [PMID: 26790970 PMCID: PMC4897775 DOI: 10.1016/j.yfrne.2016.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/31/2015] [Accepted: 01/09/2016] [Indexed: 01/16/2023]
Abstract
Neuroscientists are likely to discover new sex differences in the coming years, spurred by the National Institutes of Health initiative to include both sexes in preclinical studies. This review summarizes the current state of knowledge of the cellular and molecular mechanisms underlying sex differences in the mammalian nervous system, based primarily on work in rodents. Cellular mechanisms examined include neurogenesis, migration, the differentiation of neurochemical and morphological cell phenotype, and cell death. At the molecular level we discuss evolving roles for epigenetics, sex chromosome complement, the immune system, and newly identified cell signaling pathways. We review recent findings on the role of the environment, as well as genome-wide studies with some surprising results, causing us to re-think often-used models of sexual differentiation. We end by pointing to future directions, including an increased awareness of the important contributions of tissues outside of the nervous system to sexual differentiation of the brain.
Collapse
Affiliation(s)
- Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States.
| | - J Alex Strahan
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States.
| | | |
Collapse
|
131
|
Zhu J, Jiang L, Liu Y, Qian W, Liu J, Zhou J, Gao R, Xiao H, Wang J. MAPK and NF-κB pathways are involved in bisphenol A-induced TNF-α and IL-6 production in BV2 microglial cells. Inflammation 2015; 38:637-48. [PMID: 25047101 DOI: 10.1007/s10753-014-9971-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microglial activation has been reported to play an important role in neurodegenerative diseases by producing pro-inflammatory cytokines. Bisphenol A (BPA, 2,2-bis (4-hydroxyphenyl) propane), known as a ubiquitous endocrine-disrupting chemical, is reported to perform both mimic- and anti-estrogen properties; however, whether it affects cytokine production or immune response in central nervous system remains unclear. The present study was aimed to explore whether BPA was involved in inflammatory action and to investigate the potential mechanisms in microglial cells. BV2, the murine microglial cell line, was used in the present work as the cell model. BPA-associated morphologic changes, cytokine responses, and signaling events were examined using immunofluorescence analysis, real-time PCR, enzyme-linked immunosorbent assay, and western blot. Our results indicated that BPA increased BV2 cells activation and simultaneously elevated tumor necrosis factor-α and interleukin 6 expression, which could be partially reversed by estrogen receptor antagonist, ICI182780. In addition, the c-Jun N-terminal protein kinase (JNK) inhibitor (SP600125), rather than ERK1/2 blocker (PD98059), displayed anti-inflammatory properties on BPA-elicited cytokine responses. Moreover, the inflammatory transcription factor NF-κB was specifically activated by BPA as well. These results, taken together, suggested that BPA may have functional effects on the response of microglial cell activation via, in part, the estrogen receptor, JNK, ERK mitogen-activated protein kinase, and NF-κB signaling pathways with its subsequent influence on pro-inflammatory action.
Collapse
Affiliation(s)
- Jingying Zhu
- Key Lab of Modern Toxicology (NJMU), Ministry of Education. Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Posillico CK, Terasaki LS, Bilbo SD, Schwarz JM. Examination of sex and minocycline treatment on acute morphine-induced analgesia and inflammatory gene expression along the pain pathway in Sprague-Dawley rats. Biol Sex Differ 2015; 6:33. [PMID: 26693004 PMCID: PMC4676821 DOI: 10.1186/s13293-015-0049-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In addition to its classical effects on opioid receptors, morphine can activate glia and stimulate the production of pro-inflammatory immune molecules which in turn counteract the analgesic properties of morphine. We hypothesized that decreased morphine analgesia in females may be the result of exaggerated microglial activation in brain regions critical for analgesia. METHODS Male and female rats were treated with morphine and/or minocycline and morphine analgesia was examined using the hot plate. We also examined the expression of microglial and astrocyte markers in the pain pathway. RESULTS Males treated with minocycline, a microglial inhibitor, exhibited a significant increase in acute morphine analgesia as previously shown; however, morphine analgesia was not affected by minocycline pretreatment in female rats. Minocycline decreased the expression of glial activation markers in the male spinal cord and periaqueductal gray as expected; however, these same molecules were upregulated in the female. CONCLUSIONS These data describe a significant difference between males and females in the behavioral effects following co-administration of morphine and minocycline.
Collapse
Affiliation(s)
- Caitlin K Posillico
- Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, DE 19716 USA
| | - Laurne S Terasaki
- Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, DE 19716 USA
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, 572 Research Dr., Durham, NC 27708 USA
| | - Jaclyn M Schwarz
- Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, DE 19716 USA
| |
Collapse
|
133
|
Bodhankar S, Lapato A, Chen Y, Vandenbark AA, Saugstad JA, Offner H. Role for microglia in sex differences after ischemic stroke: importance of M2. Metab Brain Dis 2015; 30:1515-29. [PMID: 26246072 PMCID: PMC4644102 DOI: 10.1007/s11011-015-9714-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 07/20/2015] [Indexed: 01/17/2023]
Abstract
Inflammation plays a critical role in the pathogenesis of ischemic stroke. This process depends, in part, upon proinflammatory factors released by activated resident central nervous system (CNS) microglia (MG). Previous studies demonstrated that transfer of IL-10(+) B-cells reduced infarct volumes in male C57BL/6 J recipient mice when given 24 h prior to or therapeutically at 4 or 24 h after experimental stroke induced by 60 min middle cerebral artery occlusion (MCAO). The present study assesses possible sex differences in immunoregulation by IL-10(+) B-cells on primary male vs. female MG cultured from naïve and ischemic stroke-induced mice. Thus, MG cultures were treated with recombinant (r)IL-10, rIL-4 or IL-10(+) B-cells after lipopolysaccharide (LPS) activation and evaluated by flow cytometry for production of proinflammatory and anti-inflammatory factors. We found that IL-10(+) B-cells significantly reduced MG production of TNF-α, IL-1β and CCL3 post-MCAO and increased their expression of the anti-inflammatory M2 marker, CD206, by cell-cell interactions. Moreover, MG from female vs. male mice had higher expression of IL-4 and IL-10 receptors and increased production of IL-4, especially after treatment with IL-10(+) B-cells. These findings indicate that IL-10-producing B-cells play a crucial role in regulating MG activation, proinflammatory cytokine release and M2 phenotype induction, post-MCAO, with heightened sensitivity of female MG to IL-4 and IL-10. This study, coupled with our previous demonstration of increased numbers of transferred IL-10(+) B-cells in the ischemic hemisphere, provide a mechanistic basis for local regulation by secreted IL-10 and IL-4 as well as direct B-cell/MG interactions that promote M2-MG.
Collapse
Affiliation(s)
- Sheetal Bodhankar
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA
| | - Andrew Lapato
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA
| | - Yingxin Chen
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA
| | - Arthur A Vandenbark
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA
| | - Julie A Saugstad
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA
- Department of Medical and Molecular Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA
| | - Halina Offner
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA.
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA.
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA.
| |
Collapse
|
134
|
Franco R, Fernández-Suárez D. Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol 2015; 131:65-86. [PMID: 26067058 DOI: 10.1016/j.pneurobio.2015.05.003] [Citation(s) in RCA: 495] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/22/2015] [Accepted: 05/30/2015] [Indexed: 12/20/2022]
Abstract
Macrophages are important players in the fight against viral, bacterial, fungal and parasitic infections. From a resting state they may undertake two activation pathways, the classical known as M1, or the alternative known as M2. M1 markers are mostly mediators of pro-inflammatory responses whereas M2 markers emerge for resolution and cleanup. Microglia exerts in the central nervous system (CNS) a function similar to that of macrophages in the periphery. Microglia activation and proliferation occurs in almost any single pathology affecting the CNS. Often microglia activation has been considered detrimental and drugs able to stop microglia activation were considered for the treatment of a variety of diseases. Cumulative evidence shows that microglia may undergo the alternative activation pathway, express M2-type markers and contribute to neuroprotection. This review focuses on details about the role of M2 microglia and in the approaches available for its identification. Approaches to drive the M2 phenotype and data on its potential in CNS diseases are also reviewed.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain; Centro Investigación Biomédica en Red: Enfermedades Neurodegenerativas (CIBERNED), Spain.
| | - Diana Fernández-Suárez
- Division of Molecular Neurobiology, Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden.
| |
Collapse
|
135
|
Acaz-Fonseca E, Duran JC, Carrero P, Garcia-Segura LM, Arevalo MA. Sex differences in glia reactivity after cortical brain injury. Glia 2015; 63:1966-1981. [DOI: 10.1002/glia.22867] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 12/11/2022]
Affiliation(s)
| | - Juan C. Duran
- Consejo Superior De Investigaciones Cientificas (CSIC); Instituto Cajal; Madrid Spain
| | - Paloma Carrero
- Consejo Superior De Investigaciones Cientificas (CSIC); Instituto Cajal; Madrid Spain
| | - Luis M. Garcia-Segura
- Consejo Superior De Investigaciones Cientificas (CSIC); Instituto Cajal; Madrid Spain
| | - M. Angeles Arevalo
- Consejo Superior De Investigaciones Cientificas (CSIC); Instituto Cajal; Madrid Spain
| |
Collapse
|
136
|
Karshikoff B, Lekander M, Soop A, Lindstedt F, Ingvar M, Kosek E, Olgart Höglund C, Axelsson J. Modality and sex differences in pain sensitivity during human endotoxemia. Brain Behav Immun 2015; 46:35-43. [PMID: 25486090 DOI: 10.1016/j.bbi.2014.11.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 11/27/2022] Open
Abstract
Systemic inflammation can induce pain hypersensitivity in animal and human experimental models, and has been proposed to be central in clinical pain conditions. Women are overrepresented in many chronic pain conditions, but experimental studies on sex differences in pain regulation during systemic inflammation are still scarce. In two randomized and double blind placebo controlled experiments, we used low doses of lipopolysaccharide (LPS) as an experimental model of systemic inflammation. The first study employed 0.8ng/kg LPS in a within-subject design of 8 individuals (1 woman), and the second study 0.6ng/kg LPS in a between-subject design of 52 participants (29 women). We investigated the effect on (a) pressure, heat, and cold pain thresholds, (b) suprathreshold noxious heat and cold sensitivity, and (c) conditioned pain modulation (CPM), and differences between men and women. LPS induced significantly lower pressure pain thresholds as compared to placebo (mean change with the 0.8ng/kg dose being -64±30kPa P=.04; with the 0.6ng/kg dose -58±55kPa, P<.01, compared to before injection), whereas heat and cold pain thresholds remained unaffected (P's>.70). Suprathreshold noxious pain was not affected by LPS in men (P's⩾.15). However, LPS made women rated suprathreshold noxious heat stimuli as more painful (P=.01), and showed a tendency to rate noxious cold pain as more painful (P=.06) as compared to placebo. Furthermore, LPS impaired conditioned pain modulation, a measure of endogenous pain inhibition, but this effect was also restricted to women (P<.01, for men P=.27). Pain sensitivity correlated positively with plasma IL-6 and IL-8 levels. The results show that inflammation more strongly affects deep pain, rather than cutaneous pain, and suggest that women's pain perception and modulation is more sensitive to immune activation than men's.
Collapse
Affiliation(s)
- B Karshikoff
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - M Lekander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden; Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - A Soop
- Department of Anesthesiology and Intensive Care, Karolinska University Hospital Huddinge, Stockholm, Sweden; Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - F Lindstedt
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - M Ingvar
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - E Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - C Olgart Höglund
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - J Axelsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden; Stress Research Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
137
|
Younger JW. Being female is a risk factor for chronic pain. Are inflammatory processes to blame? Brain Behav Immun 2015; 46:33-4. [PMID: 25596175 DOI: 10.1016/j.bbi.2015.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/07/2015] [Indexed: 12/01/2022] Open
Affiliation(s)
- Jarred W Younger
- The University of Alabama at Birmingham, Department of Psychology, United States; The University of Alabama at Birmingham, Department of Anesthesiology, United States; The University of Alabama at Birmingham, Department of Rheumatology, United States
| |
Collapse
|
138
|
Grace PM, Maier SF, Watkins LR. Opioid-induced central immune signaling: implications for opioid analgesia. Headache 2015; 55:475-89. [PMID: 25833219 DOI: 10.1111/head.12552] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2015] [Indexed: 12/30/2022]
Abstract
Despite being the mainstay of pain management, opioids are limited in their clinical utility by adverse effects, such as tolerance and paradoxical hyperalgesia. Research of the past 15 years has extended beyond neurons, to implicate central nervous system immune signaling in these adverse effects. This article will provide an overview of these central immune mechanisms in opioid tolerance and paradoxical hyperalgesia, including those mediated by Toll-like receptor 4, purinergic, ceramide, and chemokine signaling. Challenges for the future, as well as new lines of investigation will be highlighted.
Collapse
|
139
|
Habib P, Beyer C. Regulation of brain microglia by female gonadal steroids. J Steroid Biochem Mol Biol 2015; 146:3-14. [PMID: 24607811 DOI: 10.1016/j.jsbmb.2014.02.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 02/24/2014] [Indexed: 12/31/2022]
Abstract
Microglial cells are the primary mediators of the CNS immune defense system and crucial for shaping inflammatory responses. They represent a highly dynamic cell population which is constantly moving and surveying their environment. Acute brain damage causes a local attraction and activation of this immune cell type which involves neuron-to-glia and glia-to-glia interactions. The prevailing view attributes microglia a "negative" role such as defense and debris elimination. More topical studies also suggest a protective and "positive" regulatory function. Estrogens and progestins exert anti-inflammatory and neuroprotective effects in the CNS in acute and chronic brain diseases. Recent work revealed that microglial cells express subsets of classical and non-classical estrogen and progesterone receptors in a highly dynamic way. In this review article, we would like to stress the importance of microglia for the spreading of neural damage during hypoxia, their susceptibility to functional modulation by sex steroids, the potency of sex hormones to switch microglia from a pro-inflammatory M1 to neuroprotective M2 phenotype, and the regulation of pro- and anti-inflammatory properties including the inflammasome. We will further discuss the possibility that the neuroprotective action of sex steroids in the brain involves an early and direct modulation of local microglia cell function. This article is part of a Special Issue entitled 'Sex steroids and brain disorders'.
Collapse
Affiliation(s)
- Pardes Habib
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
140
|
Lewis SS, Hutchinson MR, Frick MM, Zhang Y, Maier SF, Sammakia T, Rice KC, Watkins LR. Select steroid hormone glucuronide metabolites can cause toll-like receptor 4 activation and enhanced pain. Brain Behav Immun 2015; 44:128-36. [PMID: 25218902 PMCID: PMC4275344 DOI: 10.1016/j.bbi.2014.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 08/01/2014] [Accepted: 09/02/2014] [Indexed: 12/18/2022] Open
Abstract
We have recently shown that several classes of glucuronide metabolites, including the morphine metabolite morphine-3-glucuronide and the ethanol metabolite ethyl glucuronide, cause toll like receptor 4 (TLR4)-dependent signaling in vitro and enhanced pain in vivo. Steroid hormones, including estrogens and corticosterone, are also metabolized through glucuronidation. Here we demonstrate that in silico docking predicts that corticosterone, corticosterone-21-glucuronide, estradiol, estradiol-3-glucuronide and estradiol-17-glucuronide all dock with the MD-2 component of the TLR4 receptor complex. In addition to each docking with MD-2, the docking of each was altered by pre-docking with (+)-naloxone, a TLR4 signaling inhibitor. As agonist versus antagonist activity cannot be determined from these in silico interactions, an in vitro study was undertaken to clarify which of these compounds can act in an agonist fashion. Studies using a cell line transfected with TLR4, necessary co-signaling molecules, and a reporter gene revealed that only estradiol-3-glucuronide and estradiol-17-glucuronide increased reporter gene product, indicative of TLR4 agonism. Finally, in in vivo studies, each of the 5 drugs was injected intrathecally at equimolar doses. In keeping with the in vitro results, only estradiol-3-glucuronide and estradiol-17-glucuronide caused enhanced pain. For both compounds, pain enhancement was blocked by the TLR4 antagonist lipopolysaccharide from Rhodobacter sphaeroides, evidence for the involvement in TLR4 in the resultant pain enhancement. These findings have implications for several chronic pain conditions, including migraine and temporomandibular joint disorder, in which pain episodes are more likely in cycling females when estradiol is decreasing and estradiol metabolites are at their highest.
Collapse
Affiliation(s)
- Susannah S. Lewis
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA,Corresponding author: Susannah S. Lewis, Department of Psychology, Campus Box 345, University of Colorado at Boulder, Boulder, Colorado, USA 80309-0345, , Fax: (303) 492-2967, Phone: (303) 492-3288
| | - Mark R. Hutchinson
- Discipline of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Morin M. Frick
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Yingning Zhang
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Steven F. Maier
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Tarek Sammakia
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Kenner C. Rice
- Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Rockville, Maryland, USA
| | - Linda R. Watkins
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| |
Collapse
|
141
|
Shattuck EC, Muehlenbein MP. Human sickness behavior: Ultimate and proximate explanations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 157:1-18. [DOI: 10.1002/ajpa.22698] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/27/2014] [Accepted: 12/28/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Eric C. Shattuck
- Evolutionary Physiology and Ecology Laboratory; Department of Anthropology; Indiana University; Bloomington IN
| | - Michael P. Muehlenbein
- Evolutionary Physiology and Ecology Laboratory; Department of Anthropology; Indiana University; Bloomington IN
| |
Collapse
|
142
|
Kight KE, McCarthy MM. Using sex differences in the developing brain to identify nodes of influence for seizure susceptibility and epileptogenesis. Neurobiol Dis 2014; 72 Pt B:136-43. [PMID: 24892888 PMCID: PMC5322568 DOI: 10.1016/j.nbd.2014.05.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/12/2014] [Accepted: 05/22/2014] [Indexed: 12/12/2022] Open
Abstract
Sexual differentiation of the developing brain organizes the neural architecture differently between males and females, and the main influence on this process is exposure to gonadal steroids during sensitive periods of prenatal and early postnatal development. Many molecular and cellular processes are influenced by steroid hormones in the developing brain, including gene expression, cell birth and death, neurite outgrowth and synaptogenesis, and synaptic activity. Perturbations in these processes can alter neuronal excitability and circuit activity, leading to increased seizure susceptibility and the promotion of pathological processes that constitute epileptogenesis. In this review, we will provide a general overview of sex differences in the early developing brain that may be relevant for altered seizure susceptibility in early life, focusing on limbic areas of the brain. Sex differences that have the potential to alter the progress of epileptogenesis are evident at molecular and cellular levels in the developing brain, and include differences in neuronal excitability, response to environmental insult, and epigenetic control of gene expression. Knowing how these processes differ between the sexes can help us understand fundamental mechanisms underlying gender differences in seizure susceptibility and epileptogenesis.
Collapse
Affiliation(s)
- Katherine E Kight
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Margaret M McCarthy
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Pharmacology and Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
143
|
Abstract
Microglia, the resident innate immune cells in the brain, have long been understood to be crucial to maintenance in the nervous system, by clearing debris, monitoring for infiltration of infectious agents, and mediating the brain's inflammatory and repair response to traumatic injury, stroke, or neurodegeneration. A wave of new research has shown that microglia are also active players in many basic processes in the healthy brain, including cell proliferation, synaptic connectivity, and physiology. Microglia, both in their capacity as phagocytic cells and via secretion of many neuroactive molecules, including cytokines and growth factors, play a central role in early brain development, including sexual differentiation of the brain. In this review, we present the vast roles microglia play in normal brain development and how perturbations in the normal neuroimmune environment during development may contribute to the etiology of brain-based disorders. There are notable differences between microglia and neuroimmune signaling in the male and female brain throughout the life span, and these differences may contribute to the vast differences in the incidence of neuropsychiatric and neurological disorders between males and females.
Collapse
Affiliation(s)
- Kathryn M Lenz
- Department of Psychology and Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Margaret M McCarthy
- Department of Pharmacology and Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
144
|
Mouihate A. TLR4-mediated brain inflammation halts neurogenesis: impact of hormonal replacement therapy. Front Cell Neurosci 2014; 8:146. [PMID: 24904290 PMCID: PMC4034512 DOI: 10.3389/fncel.2014.00146] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 05/07/2014] [Indexed: 12/27/2022] Open
Abstract
Experimental and epidemiological data show that the severity and the duration of brain inflammation are attenuated in females compared to males. This attenuated brain inflammation is ascribed to 17β-estradiol. However, several studies suggest that 17β-estradiol is also endowed with proinflammatory properties. The aim of the present study is to assess the effect of hormonal replacement therapies on lipopolysaccharide (LPS)-induced brain inflammation and its consequent effect on newly born neurons. Bilaterally ovariectomized rats received intrastriatal injection of LPS (250 ng/μl) and were subsequently given daily subcutaneous injections of either vehicle, 17β-estradiol (25 μg/kg) or 17β-estradiol and progesterone (5 mg/kg). Microglial activation and newly born neurons in the rostral migratory stream were monitored using double immunofluorescence. Nuclear factor κB (NFκB) signaling pathway and its target inflammatory proteins were assessed by either western blot [cyclooxygenase-2 (COX-2) and interleukin-6 (IL-6)] or enzyme-linked immunosorbent assay [tumor necrosis factor-α (TNF-α)]. LPS-induced activation of microglia, promoted NFκB signaling pathway and enhanced the production of proinflammatory proteins (TNF-α and COX-2). These proinflammatory responses were not attenuated by 17β-estradiol injection. Supplementation of 17β-estradiol with progesterone significantly dampened these proinflammatory processes. Interestingly, LPS-induced brain inflammation dampened the number of newly born neurons in the rostral migratory stream. Administration of combined 17β-estradiol and progesterone resulted in a significantly higher number of newly born neurons when compared to those seen in rats given either vehicle or 17β-estradiol alone. These data strongly suggest that combined 17β-estradiol and progesterone, and not 17β-estradiol alone, rescues neurogenesis from the deleterious effect of brain inflammation likely via the inhibition of the signaling pathways leading to the activation of proinflammatory genes.
Collapse
Affiliation(s)
- Abdeslam Mouihate
- Department of Physiology, Faculty of Medicine, Health Sciences Centre, Kuwait University Safat, Kuwait
| |
Collapse
|
145
|
Acaz-Fonseca E, Sanchez-Gonzalez R, Azcoitia I, Arevalo MA, Garcia-Segura LM. Role of astrocytes in the neuroprotective actions of 17β-estradiol and selective estrogen receptor modulators. Mol Cell Endocrinol 2014; 389:48-57. [PMID: 24444786 DOI: 10.1016/j.mce.2014.01.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 01/04/2023]
Abstract
Neuroprotective actions of 17β-estradiol (estradiol) are in part mediated by direct actions on neurons. Astrocytes, which play an essential role in the maintenance of the homeostasis of neural tissue, express estrogen receptors and are also involved in the neuroprotective actions of estradiol in the brain. Estradiol controls gliosis and regulates neuroinflammation, edema and glutamate transport acting on astrocytes. In addition, the hormone regulates the release of neurotrophic factors and other neuroprotective molecules by astrocytes. In addition, reactive astrocytes are a local source of neuroprotective estradiol for the injured brain. Since estradiol therapy is not free from peripheral risks, alternatives for the hormone have been explored. Some selective estrogen receptor modulators (SERMs), which are already in use in clinical practice for the treatment of breast cancer, osteoporosis or menopausal symptoms, exert similar actions to estradiol on astrocytes. Therefore, SERMs represent therapeutic alternatives to estradiol for the activation of astroglia-mediated neuroprotective mechanisms.
Collapse
Affiliation(s)
| | | | - Iñigo Azcoitia
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | | | | |
Collapse
|
146
|
Sasaki A, de Vega W, Sivanathan S, St-Cyr S, McGowan PO. Maternal high-fat diet alters anxiety behavior and glucocorticoid signaling in adolescent offspring. Neuroscience 2014; 272:92-101. [PMID: 24791714 DOI: 10.1016/j.neuroscience.2014.04.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 03/11/2014] [Accepted: 04/08/2014] [Indexed: 01/09/2023]
Abstract
Maternal obesity and overconsumption of saturated fats during pregnancy have profound effects on offspring health, ranging from metabolic to behavioral disorders in later life. The influence of high-fat diet (HFD) exposure on the development of brain regions implicated in anxiety behavior is not well understood. We previously found that maternal HFD exposure is associated with an increase in anxiety behavior and alterations in the expression of several genes involved in inflammation via the glucocorticoid signaling pathway in adult rat offspring. During adolescence, the maturation of feedback systems mediating corticosteroid sensitivity is incomplete, and therefore distinct from adulthood. In this study, we examined the influence of maternal HFD on several measures of anxiety behavior and gene expression in adolescent offspring. We examined the expression of corticosteroid receptors and related inflammatory processes, as corticosteroid receptors are known to regulate circulating corticosterone levels during basal and stress conditions in addition to influencing inflammatory processes in the hippocampus and amygdala. We found that adolescent animals perinatally exposed to HFD generally showed decreased anxiety behavior accompanied by a selective alteration in the expression of the glucocorticoid receptor and several downstream inflammatory genes in the hippocampus and amygdala. These data suggest that adolescence constitutes an additional period when the effects of developmental programming may modify mental health trajectories.
Collapse
Affiliation(s)
- A Sasaki
- Centre for Environmental Epigenetics and Development, Department of Biological Sciences, University of Toronto, Room SW548, Scarborough Campus, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; Department of Cell and Systems Biology, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - W de Vega
- Centre for Environmental Epigenetics and Development, Department of Biological Sciences, University of Toronto, Room SW548, Scarborough Campus, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; Department of Cell and Systems Biology, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - S Sivanathan
- Centre for Environmental Epigenetics and Development, Department of Biological Sciences, University of Toronto, Room SW548, Scarborough Campus, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; Department of Cell and Systems Biology, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - S St-Cyr
- Centre for Environmental Epigenetics and Development, Department of Biological Sciences, University of Toronto, Room SW548, Scarborough Campus, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; Department of Cell and Systems Biology, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - P O McGowan
- Centre for Environmental Epigenetics and Development, Department of Biological Sciences, University of Toronto, Room SW548, Scarborough Campus, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; Department of Cell and Systems Biology, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| |
Collapse
|
147
|
Lipopolysaccharide differentially modulates expression of cytokines and cyclooxygenases in dorsal root ganglion cells via Toll-like receptor-4 dependent pathways. Neuroscience 2014; 267:241-51. [DOI: 10.1016/j.neuroscience.2014.02.041] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 11/19/2022]
|
148
|
Ovariectomy and subsequent treatment with estrogen receptor agonists tune the innate immune system of the hippocampus in middle-aged female rats. PLoS One 2014; 9:e88540. [PMID: 24551115 PMCID: PMC3923802 DOI: 10.1371/journal.pone.0088540] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/07/2014] [Indexed: 01/23/2023] Open
Abstract
The innate immune system including microglia has a major contribution to maintenance of the physiological functions of the hippocampus by permanent monitoring of the neural milieu and elimination of tissue-damaging threats. The hippocampus is vulnerable to age-related changes ranging from gene expression to network connectivity. The risk of hippocampal deterioration increases with the decline of gonadal hormone supply. To explore the impact of hormone milieu on the function of the innate immune system in middle-aged female rats, we compared mRNA expression in the hippocampus after gonadal hormone withdrawal, with or without subsequent estrogen replacement using estradiol and isotype-selective estrogen receptor (ER) agonists. Targeted profiling assessed the status of the innate immune system (macrophage-associated receptors, complement, inhibitory neuronal ligands), local estradiol synthesis (P450 aromatase) and estrogen reception (ER). Results established upregulation of macrophage-associated (Cd45, Iba1, Cd68, Cd11b, Cd18, Fcgr1a, Fcgr2b) and complement (C3, factor B, properdin) genes in response to ovariectomy. Ovariectomy upregulated Cd22 and downregulated semaphorin3A (Sema3a) expression, indicating altered neuronal regulation of microglia. Ovariectomy also led to downregulation of aromatase and upregulation of ERα gene. Of note, analogous changes were observed in the hippocampus of postmenopausal women. In ovariectomized rats, estradiol replacement attenuated Iba1, Cd11b, Fcgr1a, C3, increased mannose receptor Mrc1, Cd163 and reversed Sema3a expression. In contrast, reduced expression of aromatase was not reversed by estradiol. While the effects of ERα agonist closely resembled those of estradiol, ERβ agonist was also capable of attenuating the expression of several macrophage-associated and complement genes. These data together indicate that the innate immune system of the aging hippocampus is highly responsive to the gonadal hormone milieu. In ovariectomized female rats, estradiol replacement exerts potent immunomodulatory effects including attenuation of microglia sensitization, initiation of M2-like activation and modulation of complement expression by targeting hippocampal neurons and glial cells through ERα and ERβ.
Collapse
|
149
|
Habib P, Slowik A, Zendedel A, Johann S, Dang J, Beyer C. Regulation of hypoxia-induced inflammatory responses and M1-M2 phenotype switch of primary rat microglia by sex steroids. J Mol Neurosci 2013; 52:277-85. [PMID: 24163150 DOI: 10.1007/s12031-013-0137-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/03/2013] [Indexed: 01/17/2023]
Abstract
Microglia cells are the primary mediators of the CNS immune defense system and crucial for the outcome of shaping inflammatory responses. They are highly dynamic, moving constantly, and become activated by neuronal signaling under pathological conditions. They fulfill a dual role by not only regulating local neuroinflammation but also conferring neuronal protection. Gonadal steroids are known to exert anti-inflammatory effects in the CNS. Recently, we have shown that the microglial-like cell line BV-2 is hypoxia-sensitive and regulated by gonadal steroids. The present study used primary rat cerebral cortex-derived microglia to analyze whether this cell type directly perceive and respond to acute hypoxia. Second, we investigated whether 17β-estradiol (E2) and progesterone (P) interfere with hypoxia-induced changes. Short-term hypoxia increased the expression of a subset of pro-inflammatory (TNFa, IL1b) and oxidative stress-related (Hif1a) genes. The induction of TNFa and IL1b was counteracted by P. Hypoxia shifted the primary microglia to the pro-inflammatory M1 phenotype. The administration of E2 and P favored the neuroprotective M2 phenotype. Our findings extend previous data obtained with BV-2 cells and show that the primary microglia directly perceive hypoxia which increase their inflammatory activity. Both steroid hormones directly and indirectly interact with the microglia cells by reducing the inflammatory scenario and stimulating neuroprotection.
Collapse
Affiliation(s)
- Pardes Habib
- Institute of Neuroanatomy, RWTH Aachen University, 52074, Aachen, Germany
| | | | | | | | | | | |
Collapse
|
150
|
Intrathecal injection of adenosine 2A receptor agonists reversed neuropathic allodynia through protein kinase (PK)A/PKC signaling. Brain Behav Immun 2013; 33:112-22. [PMID: 23811314 PMCID: PMC4447865 DOI: 10.1016/j.bbi.2013.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 06/03/2013] [Accepted: 06/21/2013] [Indexed: 01/05/2023] Open
Abstract
A single intrathecal dose of adenosine 2A receptor (A2AR) agonist was previously reported to produce a multi-week reversal of allodynia in a chronic constriction injury (CCI) model of neuropathic pain. We aimed to determine if this long-term reversal was induced by A2AR agonism versus more generalized across adenosine receptor subtypes, and begin to explore the intracellular signaling cascades involved. In addition, we sought to identify whether the enduring effect could be extended to other models of neuropathic pain. We tested an A1R and A2BR agonist in CCI and found the same long duration effect with A2BR but not A1R agonism. An A2AR agonist (ATL313) produced a significant long-duration reversal of mechanical allodynia induced by long established CCI (administered 6 weeks after surgery), spinal nerve ligation and sciatic inflammatory neuropathy. To determine if ATL313 had a direct effect on glia, ATL313 was coadministered with lipopolysaccharide to neonatal microglia and astrocytes in vitro. ATL313 significantly attenuated TNFα production in both microglia and astrocytes but had no effect on LPS induced IL-10. Protein kinase C significantly reversed the ATL313 effects on TNFα in vitro in microglia and astrocytes, while a protein kinase A inhibitor only effected microglia. Both intrathecal PKA and PKC inhibitors significantly reversed the effect of the A2AR agonist on neuropathic allodynia. Therefore, A2AR agonists administered IT remain an exciting novel target for the treatment of neuropathic pain.
Collapse
|