101
|
Bu S, Singh KK. Epigenetic Regulation of Autophagy in Cardiovascular Pathobiology. Int J Mol Sci 2021; 22:ijms22126544. [PMID: 34207151 PMCID: PMC8235464 DOI: 10.3390/ijms22126544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the number one cause of debilitation and mortality worldwide, with a need for cost-effective therapeutics. Autophagy is a highly conserved catabolic recycling pathway triggered by various intra- or extracellular stimuli to play an essential role in development and pathologies, including CVDs. Accordingly, there is great interest in identifying mechanisms that govern autophagic regulation. Autophagic regulation is very complex and multifactorial that includes epigenetic pathways, such as histone modifications to regulate autophagy-related gene expression, decapping-associated mRNA degradation, microRNAs, and long non-coding RNAs; pathways are also known to play roles in CVDs. Molecular understanding of epigenetic-based pathways involved in autophagy and CVDs not only will enhance the understanding of CVDs, but may also provide novel therapeutic targets and biomarkers for CVDs.
Collapse
Affiliation(s)
| | - Krishna K. Singh
- Correspondence: ; Tel.: +1-519-661-2111 (ext. 80542) (Office) or (ext. 85683) (Lab)
| |
Collapse
|
102
|
Targeting Alternative Splicing for Reversal of Cellular Senescence in the Context of Aesthetic Aging. Plast Reconstr Surg 2021; 147:25S-32S. [PMID: 33347071 DOI: 10.1097/prs.0000000000007618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
SUMMARY Cellular senescence is a state of stable cell cycle arrest that has increasingly been linked with cellular, tissue, and organismal aging; targeted removal of senescent cells brings healthspan and lifespan benefits in animal models. Newly emerging approaches to specifically ablate or rejuvenate senescent cells are now the subject of intense study to explore their utility to provide novel treatments for the aesthetic signs and diseases of aging in humans. Here, we discuss different strategies that are being trialed in vitro, and more recently in vivo, for the targeted removal or reversal of senescent cells. Finally, we describe the evidence for a newly emerging molecular mechanism that may underpin senescence; dysregulation of alternative splicing. We will explore the potential of restoring splicing regulation as a novel "senotherapeutic" approach and discuss strategies by which this could be integrated into the established portfolio of skin aging therapeutics.
Collapse
|
103
|
Pawge G, Khatik GL. p53 regulated senescence mechanism and role of its modulators in age-related disorders. Biochem Pharmacol 2021; 190:114651. [PMID: 34118220 DOI: 10.1016/j.bcp.2021.114651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
Multiple co-morbidities are associated with age, and there is a need for the broad-spectrum drug to prevent multiple regimens that may cause an adverse effect in the geriatric population. Cellular senescence is a primary mechanism for ageing in various tissues. p53, a tumor suppressor protein, plays a significant role in forming DNA damage foci and post different stress responses. DNA damage foci can be transient or persistent that can progress to DNA-SCARS inducing senescence. p53 also plays a role in apoptosis and negative regulation of SASP. Few upstream targets like FOXO4, MDM2, MDM4, USP7 control the availability of p53 for apoptosis. Hence, the senolytic therapies, modulating p53 upstream targets, can be a good approach for preventing age-related disorders. This review discusses the insights on the role of p53 in the formation of DNA-SCARS, various upstream target proteins, and pathways involved in p53 regulation. Further, the review aimed to include recently discovered small molecules acting on these upstream targets, and those can be modified using medicinal chemistry approaches to give successful senotherapeutics.
Collapse
Affiliation(s)
- Girija Pawge
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh 226301, India
| | - Gopal L Khatik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh 226301, India.
| |
Collapse
|
104
|
Wan X, Garg NJ. Sirtuin Control of Mitochondrial Dysfunction, Oxidative Stress, and Inflammation in Chagas Disease Models. Front Cell Infect Microbiol 2021; 11:693051. [PMID: 34178728 PMCID: PMC8221535 DOI: 10.3389/fcimb.2021.693051] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Trypanosoma cruzi is a digenetic parasite that requires triatomines and mammalian host to complete its life cycle. T. cruzi replication in mammalian host induces immune-mediated cytotoxic proinflammatory reactions and cellular injuries, which are the common source of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during the acute parasitemic phase. Mitochondrial dysfunction of electron transport chain has been proposed as a major source of superoxide release in the chronic phase of infection, which renders myocardium exposed to sustained oxidative stress and contributes to Chagas disease pathology. Sirtuin 1 (SIRT1) is a class III histone deacetylase that acts as a sensor of redox changes and shapes the mitochondrial metabolism and inflammatory response in the host. In this review, we discuss the molecular mechanisms by which SIRT1 can potentially improve mitochondrial function and control oxidative and inflammatory stress in Chagas disease.
Collapse
Affiliation(s)
- Xianxiu Wan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
105
|
Qiang Q, Manalo JM, Sun H, Zhang Y, Song A, Wen AQ, Wen YE, Chen C, Liu H, Cui Y, Nemkov T, Reisz JA, Edwards III G, Perreira FA, Kellems RE, Soto C, D’Alessandro A, Xia Y. Erythrocyte adenosine A2B receptor prevents cognitive and auditory dysfunction by promoting hypoxic and metabolic reprogramming. PLoS Biol 2021; 19:e3001239. [PMID: 34138843 PMCID: PMC8211187 DOI: 10.1371/journal.pbio.3001239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
Hypoxia drives aging and promotes age-related cognition and hearing functional decline. Despite the role of erythrocytes in oxygen (O2) transport, their role in the onset of aging and age-related cognitive decline and hearing loss (HL) remains undetermined. Recent studies revealed that signaling through the erythrocyte adenosine A2B receptor (ADORA2B) promotes O2 release to counteract hypoxia at high altitude. However, nothing is known about a role for erythrocyte ADORA2B in age-related functional decline. Here, we report that loss of murine erythrocyte-specific ADORA2B (eAdora2b-/-) accelerates early onset of age-related impairments in spatial learning, memory, and hearing ability. eAdora2b-/- mice display the early aging-like cellular and molecular features including the proliferation and activation of microglia and macrophages, elevation of pro-inflammatory cytokines, and attenuation of hypoxia-induced glycolytic gene expression to counteract hypoxia in the hippocampus (HIP), cortex, or cochlea. Hypoxia sufficiently accelerates early onset of cognitive and cochlear functional decline and inflammatory response in eAdora2b-/- mice. Mechanistically, erythrocyte ADORA2B-mediated activation of AMP-activated protein kinase (AMPK) and bisphosphoglycerate mutase (BPGM) promotes hypoxic and metabolic reprogramming to enhance production of 2,3-bisphosphoglycerate (2,3-BPG), an erythrocyte-specific metabolite triggering O2 delivery. Significantly, this finding led us to further discover that murine erythroblast ADORA2B and BPGM mRNA levels and erythrocyte BPGM activity are reduced during normal aging. Overall, we determined that erythrocyte ADORA2B-BPGM axis is a key component for anti-aging and anti-age-related functional decline.
Collapse
Affiliation(s)
- Qingfen Qiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Jeanne M. Manalo
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Hong Sun
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yujin Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Anren Song
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Alexander Q. Wen
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- University of California at San Diego, La Jolla, California, United States of America
| | - Y. Edward Wen
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- University of Texas Southwestern Medical School, Dallas, Texas, United States of America
| | - Changhan Chen
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Hong Liu
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Cui
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - George Edwards III
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Fred A. Perreira
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rodney E. Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Claudio Soto
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| |
Collapse
|
106
|
Erlandson KM, Piggott DA. Frailty and HIV: Moving from Characterization to Intervention. Curr HIV/AIDS Rep 2021; 18:157-175. [PMID: 33817767 PMCID: PMC8193917 DOI: 10.1007/s11904-021-00554-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW While the characteristics associated with frailty in people with HIV (PWH) have been well described, little is known regarding interventions to slow or reverse frailty. Here we review interventions to prevent or treat frailty in the general population and in people with HIV (PWH). RECENT FINDINGS Frailty interventions have primarily relied on nonpharmacologic interventions (e.g., exercise and nutrition). Although few have addressed frailty, many of these therapies have shown benefit on components of frailty including gait speed, strength, and low activity among PWH. When nonpharmacologic interventions are insufficient, pharmacologic interventions may be necessary. Many interventions have been tested in preclinical models, but few have been tested or shown benefit among older adults with or without HIV. Ultimately, pharmacologic and nonpharmacologic interventions have the potential to improve vulnerability that underlies frailty in PWH, though clinical data is currently sparse.
Collapse
Affiliation(s)
- Kristine M Erlandson
- Department of Medicine, Division of Infectious Diseases, University of Colorado-Anschutz Medical Campus, 12700 E. 19th Avenue, Mail Stop B168, Aurora, CO, 80045, USA.
- Department of Epidemiology, Colorado School of Public Health, Anschutz Medical Campus, Aurora, CO, USA.
| | - Damani A Piggott
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, MD, USA
| |
Collapse
|
107
|
Difference of pain vulnerability in adult and juvenile rodents: the role of SIRT1-mediated ClC-3 trafficking in sensory neurons. Pain 2021; 162:1882-1896. [PMID: 33433144 DOI: 10.1097/j.pain.0000000000002176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022]
Abstract
ABSTRACT Adults are more likely to suffer from chronic pain than minors, and its underlying mechanism remains unclear. SIRT1 an important age-related protein with function of lifespan extension; whether SIRT1 plays a role in the different pain vulnerability of adult and juvenile remains unclear. Here, we found that the expression level of SIRT1 in dorsal root ganglia (DRG) was related to the pain vulnerability. After nerve injury, the expression of SIRT1 in DRG was decreased in adult rodents whereas increased in juvenile rodents. Differential manipulation of SIRT1 abolished the different pain vulnerability between adult and juvenile rodents. Furthermore, SIRT1 interacted with ClC-3 channel and mediated ClC-3 membrane trafficking and Cl- current in DRG neurons. Differential manipulation of ClC-3 also abolished the difference in pain vulnerability between adult and juvenile rodents. The different anti-inflammatory ability determined the different change trends of SIRT1 and ClC-3 trafficking contributed to the different pain vulnerability in adult and juvenile rodents. In addition, the serum SIRT1 level was negatively correlated with the pain score in patients with chronic pain. These findings revealed the mechanism of the difference in pain vulnerability between adult and juvenile rodents and provided evidence for age-specific treatment of chronic pain.
Collapse
|
108
|
Lio D, Scola L, Giarratana RM, Candore G, Colonna-Romano G, Caruso C, Balistreri CR. SARS CoV2 infection _The longevity study perspectives. Ageing Res Rev 2021; 67:101299. [PMID: 33607290 PMCID: PMC7885677 DOI: 10.1016/j.arr.2021.101299] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 01/08/2023]
Abstract
Like other infectious diseases, COVID-19 shows a clinical outcome enormously variable, ranging from asymptomatic to lethal. In Italy, like in other countries, old male individuals, with one or more comorbidity, are the most susceptible group, and show, consequently, the highest mortality, and morbidity, including lethal respiratory distress syndrome, as the most common complication. In addition, another extraordinary peculiarity, that is a surprising resistance to COVID-19, characterizes some Italian nonagenarians/centenarians. Despite having the typical COVID-19 signs and/or symptoms, such exceptional individuals show a surprising tendency to recover from illness and complications. On the other hand, long-lived people have an optimal performance of immune system related to an overexpression of anti-inflammatory variants in immune/inflammatory genes, as demonstrated by our and other groups. Consequently, we suggest long-lived people as an optimal model for detecting genetic profiles associated with the susceptibility and/or protection to COVID-19, to utilize as potential pharmacological targets for preventing or reducing viral infection in more vulnerable individuals.
Collapse
Affiliation(s)
- Domenico Lio
- Immunosenescence Study Group, Department of Biomedicine, Neuroscience and Advanced, Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Letizia Scola
- Immunosenescence Study Group, Department of Biomedicine, Neuroscience and Advanced, Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy; Cellular/Molecular Biology and Clinical Pathology Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Rosa Maria Giarratana
- Cellular/Molecular Biology and Clinical Pathology Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Giuseppina Candore
- Immunosenescence Study Group, Department of Biomedicine, Neuroscience and Advanced, Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Giuseppina Colonna-Romano
- Immunosenescence Study Group, Department of Biomedicine, Neuroscience and Advanced, Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Calogero Caruso
- Immunosenescence Study Group, Department of Biomedicine, Neuroscience and Advanced, Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Carmela Rita Balistreri
- Immunosenescence Study Group, Department of Biomedicine, Neuroscience and Advanced, Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy; Cellular/Molecular Biology and Clinical Pathology Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy.
| |
Collapse
|
109
|
Griñán-Ferré C, Bellver-Sanchis A, Izquierdo V, Corpas R, Roig-Soriano J, Chillón M, Andres-Lacueva C, Somogyvári M, Sőti C, Sanfeliu C, Pallàs M. The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer's disease pathology: From antioxidant to epigenetic therapy. Ageing Res Rev 2021; 67:101271. [PMID: 33571701 DOI: 10.1016/j.arr.2021.101271] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
While the elderly segment of the population continues growing in importance, neurodegenerative diseases increase exponentially. Lifestyle factors such as nutrition, exercise, and education, among others, influence ageing progression, throughout life. Notably, the Central Nervous System (CNS) can benefit from nutritional strategies and dietary interventions that prevent signs of senescence, such as cognitive decline or neurodegenerative diseases such as Alzheimer's disease and Parkinson's Disease. The dietary polyphenol Resveratrol (RV) possesses antioxidant and cytoprotective effects, producing neuroprotection in several organisms. The oxidative stress (OS) occurs because of Reactive oxygen species (ROS) accumulation that has been proposed to explain the cause of the ageing. One of the most harmful effects of ROS in the cell is DNA damage. Nevertheless, there is also evidence demonstrating that OS can produce other molecular changes such as mitochondrial dysfunction, inflammation, apoptosis, and epigenetic modifications, among others. Interestingly, the dietary polyphenol RV is a potent antioxidant and possesses pleiotropic actions, exerting its activity through various molecular pathways. In addition, recent evidence has shown that RV mediates epigenetic changes involved in ageing and the function of the CNS that persists across generations. Furthermore, it has been demonstrated that RV interacts with gut microbiota, showing modifications in bacterial composition associated with beneficial effects. In this review, we give a comprehensive overview of the main mechanisms of action of RV in different experimental models, including clinical trials and discuss how the interconnection of these molecular events could explain the neuroprotective effects induced by RV.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028, Barcelona, Spain.
| | - Aina Bellver-Sanchis
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Vanessa Izquierdo
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Rubén Corpas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Joan Roig-Soriano
- Department of Biochemistry and Molecular Biology, Universitat Autònoma Barcelona, Institut de Neurociènces (INc), Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Miguel Chillón
- Department of Biochemistry and Molecular Biology, Universitat Autònoma Barcelona, Institut de Neurociènces (INc), Universitat Autònoma Barcelona, Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), Research Group on Gene Therapy at Nervous System, Passeig de la Vall d'Hebron, Barcelona, Spain; Unitat producció de Vectors (UPV), Universitat Autònoma Barcelona, Bellaterra, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Xarta, INSA, Faculty of Pharmacy and Food Sciences, Campus Torribera, University of Barcelona, Spain; CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salut Carlos III, Barcelona, Spain
| | - Milán Somogyvári
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Csaba Sőti
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028, Barcelona, Spain
| |
Collapse
|
110
|
Schönfeld P, Reiser G. How the brain fights fatty acids' toxicity. Neurochem Int 2021; 148:105050. [PMID: 33945834 DOI: 10.1016/j.neuint.2021.105050] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022]
Abstract
Neurons spurn hydrogen-rich fatty acids for energizing oxidative ATP synthesis, contrary to other cells. This feature has been mainly attributed to a lower yield of ATP per reduced oxygen, as compared to glucose. Moreover, the use of fatty acids as hydrogen donor is accompanied by severe β-oxidation-associated ROS generation. Neurons are especially susceptible to detrimental activities of ROS due to their poor antioxidative equipment. It is also important to note that free fatty acids (FFA) initiate multiple harmful activities inside the cells, particularly on phosphorylating mitochondria. Several processes enhance FFA-linked lipotoxicity in the cerebral tissue. Thus, an uptake of FFA from the circulation into the brain tissue takes place during an imbalance between energy intake and energy expenditure in the body, a situation similar to that during metabolic syndrome and fat-rich diet. Traumatic or hypoxic brain injuries increase hydrolytic degradation of membrane phospholipids and, thereby elevate the level of FFA in neural cells. Accumulation of FFA in brain tissue is markedly associated with some inherited neurological disorders, such as Refsum disease or X-linked adrenoleukodystrophy (X-ALD). What are strategies protecting neurons against FFA-linked lipotoxicity? Firstly, spurning the β-oxidation pathway in mitochondria of neurons. Secondly, based on a tight metabolic communication between neurons and astrocytes, astrocytes donate metabolites to neurons for synthesis of antioxidants. Further, neuronal autophagy of ROS-emitting mitochondria combined with the transfer of degradation-committed FFA for their disposal in astrocytes, is a potent protective strategy against ROS and harmful activities of FFA. Finally, estrogens and neurosteroids are protective as triggers of ERK and PKB signaling pathways, consequently initiating the expression of various neuronal survival genes via the formation of cAMP response element-binding protein (CREB).
Collapse
Affiliation(s)
- Peter Schönfeld
- Institut für Biochemie und Zellbiologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, D-39120, Magdeburg, Germany
| | - Georg Reiser
- Institut für Inflammation und Neurodegeneration (Neurobiochemie), Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, D-39120, Magdeburg, Germany.
| |
Collapse
|
111
|
Yin J, Zhang B, Yu Z, Hu Y, Lv H, Ji X, Wang J, Peng B, Wang S. Ameliorative Effect of Dietary Tryptophan on Neurodegeneration and Inflammation in d-Galactose-Induced Aging Mice with the Potential Mechanism Relying on AMPK/SIRT1/PGC-1α Pathway and Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4732-4744. [PMID: 33872003 DOI: 10.1021/acs.jafc.1c00706] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dietary tryptophan affects intestinal homeostasis and neurogenesis, whereas the underlying mechanism and the reciprocal interaction between tryptophan and gut microbiota in aging are unclear. This investigation was performed to determine the effect and mechanism of tryptophan on intestinal- and neuro- health in aging. In present study, the 0.4% tryptophan diet significantly ameliorated the oxidative stress and inflammation in the aging mice, potentially through the regulation of 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) and nuclear factor κB (NF-κB) pathways. The 0.4% tryptophan diet increased the levels of indoles in colon contents, which indicated the potential contribution of tryptophan metabolites. Microbiome analysis revealed that the 0.4% tryptophan diet raised the relative abundance of Akkermansia in aging. The ameliorated effect of 0.4% tryptophan on neurodegeneration and neuroinflammation was summarized to potentially rely on the brain-derived neurotrophic factor- (BDNF) and NF-κB-related pathways. These findings provide the research evidence for the beneficial effect of tryptophan on aging.
Collapse
Affiliation(s)
- Jia Yin
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhenting Yu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Bo Peng
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
112
|
Miller JJ, Fink A, Banagis JA, Nagashima H, Subramanian M, Lee CK, Melamed L, Tummala SS, Tateishi K, Wakimoto H, Cahill DP. Sirtuin activation targets IDH-mutant tumors. Neuro Oncol 2021; 23:53-62. [PMID: 32710757 DOI: 10.1093/neuonc/noaa180] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Isocitrate dehydrogenase (IDH)-mutant tumors exhibit an altered metabolic state and are critically dependent upon nicotinamide adenine dinucleotide (NAD+) for cellular survival. NAD+ steady-state levels can be influenced by both biosynthetic and consumptive processes. Here, we investigated activation of sirtuin (SIRT) enzymes, which consume NAD+ as a coenzyme, as a potential mechanism to reduce cellular NAD+ levels in these tumors. METHODS The effect of inhibition or activation of sirtuin activity, using (i) small molecules, (ii) clustered regularly interspaced short palindromic repeat/CRISPR associated protein 9 gene editing, and (iii) inducible overexpression, was investigated in IDH-mutant tumor lines, including patient-derived IDH-mutant glioma lines. RESULTS We found that Sirt1 activation led to marked augmentation of NAD+ depletion and accentuation of cytotoxicity when combined with inhibition of nicotinamide phosphoribosyltransferase (NAMPT), consistent with the enzymatic activity of SIRT1 as a primary cellular NAD+ consumer in IDH-mutant cells. Activation of Sirt1 through either genetic overexpression or pharmacologic Sirt1-activating compounds (STACs), an existing class of well-tolerated drugs, led to inhibition of IDH1-mutant tumor cell growth. CONCLUSIONS Activation of Sirt1 can selectively target IDH-mutant tumors. These findings indicate that relatively nontoxic STACs, administered either alone or in combination with NAMPT inhibition, could alter the growth trajectory of IDH-mutant gliomas while minimizing toxicity associated with cytotoxic chemotherapeutic regimens.
Collapse
Affiliation(s)
- Julie J Miller
- Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexandria Fink
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jack A Banagis
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hiroaki Nagashima
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Megha Subramanian
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christine K Lee
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lisa Melamed
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shilpa S Tummala
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kensuke Tateishi
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Division of Brain Tumor Translational Research, National Cancer Center Institute, Tokyo, Japan
| | - Hiroaki Wakimoto
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel P Cahill
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
113
|
Zhou Z, Deng Z, Liu Y, Zheng Y, Yang S, Lu W, Xiao D, Zhu W. Protective Effect of SIRT1 Activator on the Knee With Osteoarthritis. Front Physiol 2021; 12:661852. [PMID: 33927645 PMCID: PMC8076744 DOI: 10.3389/fphys.2021.661852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA), one of the most common chronic musculoskeletal disorders, is deemed to be correlated with aging. The SIRT1 activator, resveratrol, acts as a crucial regulator of aging and may have a potential therapeutic effect on OA. Rabbit OA models were established through destabilized medial meniscus surgery. A total of 40 healthy male New Zealand rabbits were divided into five groups: control group (sham operation), OA group, as well as low dose (LD), middle dose (MD), and high dose (HD) resveratrol-treated OA groups. 6 weeks after operation, 0.8 ml of normal saline was injected into the knee joints every other day in the control and OA groups, and 0.8 ml of 5, 10, and 15 μmol/L resveratrol was injected into the knee joints every other day in the LD, MD, and HD group, respectively. The rabbits were sacrificed 2 weeks after medication, and the articular cartilage of the knee joint was collected for Micro-CT, histology and Western blot analysis. Obvious articular cartilage lesion and joint space narrowing were detected in the OA group. Compared with the OA group, less osteoarthritic changes were observed in the MD and HD groups. The MD and HD groups had significantly lower bone volume fraction, trabecular number and Mankin scores than the LD and OA groups (p < 0.05). No significant difference was found between the OA and LD groups (p > 0.05). The expressions of SIRT1 and p53 detected by western blot were consistent with the aforementioned findings. Therefore, resveratrol can activate the SIRT1 gene to play a protective role in the OA process by inhibiting chondrocyte apoptosis, trabecular bone number increasing of the subchondral bone, as well as elevation of bone density. It demonstrated the importance of SIRT1 in maintaining articular cartilage health and provided a promising therapeutic intervention in the treatment of OA.
Collapse
Affiliation(s)
- Zhenquan Zhou
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Orthopaedics, Shenzhen Hospital of Southern Medical University, Shenzhen, China.,Clinical Medical College, Guangzhou Medical University, Guangzhou, China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Clinical Medical College, Guangzhou Medical University, Guangzhou, China.,Clinical Medical College, Shenzhen University, Shenzhen, China.,Clinical Medical College, Guangxi University of Chinese Medicine, Nanning, China.,Clinical Medical College, Anhui Medical University, Hefei, China
| | - Yuwei Liu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yizi Zheng
- Department of Thyroid and Breast Surgery, Shenzhen Breast Tumor Research Center for Diagnosis and Treatment, National Standardization Center for Breast Cancer Diagnosis and Treatment, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Shiwei Yang
- Clinical Medical College, Anhui Medical University, Hefei, China.,Teaching Office, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wei Lu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Deming Xiao
- Clinical Medical College, Guangzhou Medical University, Guangzhou, China
| | - Weimin Zhu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Clinical Medical College, Guangzhou Medical University, Guangzhou, China.,Clinical Medical College, Shenzhen University, Shenzhen, China.,Clinical Medical College, Guangxi University of Chinese Medicine, Nanning, China.,Clinical Medical College, Anhui Medical University, Hefei, China
| |
Collapse
|
114
|
Lima NCGC, Souza SARD, Vieira BDS, Rizzi JS, Andrade TAMD, Oliveira CAD, Corezola do Amaral ME. Short-term effects induced by nicotinamide in ovariectomized females. Can J Physiol Pharmacol 2021; 99:439-447. [PMID: 32853529 DOI: 10.1139/cjpp-2020-0195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD)+ precursors such as nicotinamide activate sirtuins and enhance energy metabolism. The aim of this study was to evaluate the metabolic effects of nicotinamide in ovariectomized (OVX) female rats to establish molecular targets against obesity, which support the safe therapeutic application of nicotinamide. The OVX animals were divided into groups: SHAM (simulated surgery), SHAMn (two weeks of 35 mg·kg-1 nicotinamide per day, by gavage), OVX, and OVXn (two weeks of 35 mg·kg-1 nicotinamide per day, by gavage). The results indicated that nicotinamide favored lipolysis, as evidenced by an increase in free fatty acid and hepatic triglyceride levels, which were not fully normalized during the treatment period. The lipolysis appeared to be due to increased SIRT1 and mitochondrial oxidative phosphorylation in muscle and adipose tissue. There were decreases in muscle and fat nicotinamide N-methyltransferase (NNMT), which were associated with decreases in mass and triglyceride, low-density lipoprotein cholesterol (LDLc), and total cholesterol content. Nicotinamide appeared to be beneficial for the glycemic profile, with normal hepatic glycogen storage and a tendency towards insulin sensitivity in the OVXn. In the SHAMn group, nicotinamide led to glucose intolerance, together with reduced muscle expressions of nicotinamide phosphoribosyltransferase (NAMPT) and SIRT3, suggesting that there were no short-term benefits. Supplementation with nicotinamide led to tissue-specific adaptive lipid and molecular changes in OVX rats.
Collapse
Affiliation(s)
| | | | | | - Joyce Santana Rizzi
- Biomedicine College, Hermínio Ometto Foundation University Center (FHO), Araras, SP, Brazil
| | | | - Camila Andrea de Oliveira
- Biomedical Sciences Graduate Program, Hermínio Ometto Foundation University Center (FHO), Araras, SP, Brazil
| | | |
Collapse
|
115
|
Wang Y, Wang Y, Cai N, Xu T, He F. Anti-inflammatory effects of curcumin in acute lung injury: In vivo and in vitro experimental model studies. Int Immunopharmacol 2021; 96:107600. [PMID: 33798807 DOI: 10.1016/j.intimp.2021.107600] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 11/29/2022]
Abstract
Inflammation plays a major role in the pathogenesis of acute lung injury (ALI), but the mechanism remains unclear. Current anti-inflammatory therapy has poor efficacy on ALI. The aim of this study was to investigate the protective mechanism of curcumin against ALI. In in vivo experiments, curcumin significantly alleviated lung inflammation, histopathological injury and MPO activity, serum concentrations of CCL7, IL-6 and TNF-α, and mortality in mice compared to the model group. RAW264.7 cells cultured in the presence of lipopolysaccharide and adenosine triphosphate showed significantly lower viability, higher pyroptotic percentage and inflammation, but supplement of curcumin increased the cell viability, reduced pyroptosis and inflammation. Additionally, the expressions of NF-κB and pyroptosis related proteins were notably increased, while Sirtuin 1 (SIRT1) was decreased in both in vivo and in vitro ALI models. The results suggested that curcumin remarkably inhibited the expression of NF-κB and pyroptosis related proteins and increased the expression of SIRT1. However, EX527, a SIRT1 inhibitor, blocked the protective effect of curcumin against ALI. In conclusion, curcumin has protective effect against ALI. It may inhibit inflammatory process by inhibiting the activation of NLRP3 inflammasome-dependent pyroptosis through the up-regulation of SIRT1.
Collapse
Affiliation(s)
- Yang Wang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Yujuan Wang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Nan Cai
- Department of Infectious Disease, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Tianshu Xu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China.
| | - Fei He
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China.
| |
Collapse
|
116
|
Ribeiro RFN, Cavadas C, Silva MMC. Small-molecule modulators of the circadian clock: Pharmacological potentials in circadian-related diseases. Drug Discov Today 2021; 26:1620-1641. [PMID: 33781946 DOI: 10.1016/j.drudis.2021.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/20/2021] [Accepted: 03/16/2021] [Indexed: 12/29/2022]
Abstract
Disruption of circadian oscillations has a wide-ranging impact on health, with the potential to induce the development of clock-related diseases. Small-molecule modulators of the circadian clock (SMMCC) target core or noncore clock proteins, modulating physiological effects as a consequence of agonist, inverse agonist, or antagonist interference. These pharmacological modulators are usually identified using chemical screening of large libraries of active compounds. However, target-based screens, chemical optimization, and circadian crystallography have recently assisted in the identification of these compounds. In this review, we focus on established and novel SMMCCs targeting both core and noncore clock proteins, identifying their circadian targets, detailed circadian effects, and specific physiological effects. In addition, we discuss their therapeutic potential for the treatment of diverse clock-related disorders (such as metabolic-associated disorders, autoimmune diseases, mood disorders, and cancer) and as chronotherapeutics. Future perspectives are also considered, such as clinical trials, and potential safety hazards, including those in the absence of clinical trials.
Collapse
Affiliation(s)
- Rodrigo F N Ribeiro
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Cláudia Cavadas
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| | - Maria Manuel C Silva
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
117
|
Chen J, Chen H, Pan L. SIRT1 and gynecological malignancies (Review). Oncol Rep 2021; 45:43. [PMID: 33649834 PMCID: PMC7934219 DOI: 10.3892/or.2021.7994] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Sirtuin 1 (SIRT1), a member of the sirtuin protein family, is a nicotinamide adenine dinucleotide (NAD+)-dependent type III histone deacetylase and mono-ADP-ribosyltransferase. SIRT1 can deacetylate histones (H1, H3, and H4) and non-histone proteins, and it is widely involved in various physiological and pathological processes in the body, including metabolism, aging, transcription, DNA damage and repair, apoptosis, cell cycle regulation, inflammation and cancer. Research has shown that SIRT1 is involved in tumorigenesis, tumor metastasis and chemotherapy resistance, but it exerts opposing effects and plays different roles in different pathogenic processes. Recent studies have demonstrated that SIRT1 may be implicated in the pathogenesis, development, treatment and prognosis of tumors; however, its role in gynecological tumors remains elusive. The aim of the present review was to summarize the pathogenic roles of SIRT1 in cancer, and to provide what is, to the best of our knowledge, the first review of recent advances involving SIRT1 in cervical cancer, endometrial cancer (EC) and ovarian cancer (OC). In addition, the critical research gaps regarding SIRT1, particularly its potential involvement in the concurrence of EC and cervical cancer and its antagonistic effect against poly(ADP-ribose) polymerase inhibitors in OC, were highlighted.
Collapse
Affiliation(s)
- Jiayu Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Houzao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Lingya Pan
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
118
|
Hu J, Pan LY, Li Y, Zou X, Liu BJ, Jiang B, Zhang CY. Deacetylation-activated construction of single quantum dot-based nanosensor for sirtuin 1 assay. Talanta 2021; 224:121918. [PMID: 33379119 DOI: 10.1016/j.talanta.2020.121918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022]
Abstract
Sirtuin 1 (SIRT1) is an important histone deacetylase that regulates biological functions ranging from DNA repair to metabolism. The alteration of SIRT1 is associated with a variety of diseases including diabetes, inflammation, aging-related diseases, and cancers. Consequently, the detection of SIRT1 activity is of great therapeutic importance. Herein, we demonstrate for the first time the deacetylation-activated construction of single quantum dot (QD)-based nanosensor for sensitive SIRT1 assay. This nanosensor is composed of a Cy5-labeled peptide substrate and a streptavidin-coated QD. The peptide with one lysine acetyl group acts as both the Cy5 fluorophore carrier and the substrate for sensing SIRT1. In the presence of SIRT1, it removes the acetyl group in the acetylated peptide, and the resultant deacetylated peptide can react with the NHS-activated biotin reagent (sulfo-NHS-biotin) to form the biotinylated peptide. The multiple biotinylated peptides can assemble on single QD surface via biotin-streptavidin interaction, inducing efficient fluorescence resonance energy transfer (FRET) from the QD to Cy5, generating distinct Cy5 signal which can be simply quantified by total internal reflection fluorescence-based single-molecule detection. This single QD-based nanosensor can sensitively detect SIRT1 with a detection limit of as low as 3.91 pM, and it can be applied for the measurement of enzyme kinetic parameters and the screening of SIRT1 inhibitors. Moreover, this nanosensor can be used to detect the SIRT1 activity in cancer cells, providing a powerful platform for epigenetic research and SIRT1-targeted drug discovery.
Collapse
Affiliation(s)
- Juan Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| | - Li-Yuan Pan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| | - Yueying Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| | - Bing-Jie Liu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - BingHua Jiang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China.
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
119
|
Martel J, Chang SH, Wu CY, Peng HH, Hwang TL, Ko YF, Young JD, Ojcius DM. Recent advances in the field of caloric restriction mimetics and anti-aging molecules. Ageing Res Rev 2021; 66:101240. [PMID: 33347992 DOI: 10.1016/j.arr.2020.101240] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/17/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023]
Abstract
Caloric restriction (CR) mimetics are molecules that produce beneficial effects on health and longevity in model organisms and humans, without the challenges of maintaining a CR diet. Conventional CR mimetics such as metformin, rapamycin and spermidine activate autophagy, leading to recycling of cellular components and improvement of physiological function. We review here novel CR mimetics and anti-aging compounds, such as 4,4'-dimethoxychalcone, fungal polysaccharides, inorganic nitrate, and trientine, highlighting their possible molecular targets and mechanisms of action. The activity of these compounds can be understood within the context of hormesis, a biphasic dose response that involves beneficial effects at low or moderate doses and toxic effects at high doses. The concept of hormesis has widespread implications for the identification of CR mimetics in experimental assays, testing in clinical trials, and use in healthy humans. We also discuss the promises and limitations of CR mimetics and anti-aging molecules for delaying aging and treating chronic diseases.
Collapse
|
120
|
Zhang M, Lu P, Terada T, Sui M, Furuta H, Iida K, Katayama Y, Lu Y, Okamoto K, Suzuki M, Asakura T, Shimizu K, Hakuno F, Takahashi SI, Shimada N, Yang J, Ishikawa T, Tatsuzaki J, Nagata K. Quercetin 3,5,7,3',4'-pentamethyl ether from Kaempferia parviflora directly and effectively activates human SIRT1. Commun Biol 2021; 4:209. [PMID: 33608631 PMCID: PMC7896056 DOI: 10.1038/s42003-021-01705-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/15/2021] [Indexed: 01/31/2023] Open
Abstract
Sirtuin 1 (SIRT1), an NAD+-dependent deacetylase, is a crucial regulator that produces multiple physiological benefits, such as the prevention of cancer and age-related diseases. SIRT1 is activated by sirtuin-activating compounds (STACs). Here, we report that quercetin 3,5,7,3',4'-pentamethyl ether (KPMF-8), a natural STAC from Thai black ginger Kaempferia parviflora, interacts with SIRT1 directly and stimulates SIRT1 activity by enhancing the binding affinity of SIRT1 with Ac-p53 peptide, a native substrate peptide without a fluorogenic moiety. The binding affinity between SIRT1 and Ac-p53 peptide was enhanced 8.2-fold by KPMF-8 but only 1.4-fold by resveratrol. The specific binding sites of KPMF-8 to SIRT1 were mainly localized to the helix2-turn-helix3 motif in the N-terminal domain of SIRT1. Intracellular deacetylase activity in MCF-7 cells was promoted 1.7-fold by KPMF-8 supplemented in the cell medium but only 1.2-fold by resveratrol. This work reveals that KPMF-8 activates SIRT1 more effectively than resveratrol does.
Collapse
Affiliation(s)
- Mimin Zhang
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Peng Lu
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Tohru Terada
- grid.26999.3d0000 0001 2151 536XDepartment of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XAgricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Miaomiao Sui
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Haruka Furuta
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Kilico Iida
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan ,grid.5290.e0000 0004 1936 9975Division of Food and Nutrition, Graduate School of Human Sciences, Kyoritsu Women’s University, Tokyo, Japan
| | - Yukie Katayama
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Yi Lu
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Ken Okamoto
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Michio Suzuki
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Tomiko Asakura
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Kentaro Shimizu
- grid.26999.3d0000 0001 2151 536XDepartment of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XAgricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Fumihiko Hakuno
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Shin-Ichiro Takahashi
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | | | - Jinwei Yang
- Tokiwa Phytochemical Co. Ltd., Sakura Chiba, Japan
| | | | | | - Koji Nagata
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XAgricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| |
Collapse
|
121
|
Sirtuin 1 and Sirtuin 3 in Granulosa Cell Tumors. Int J Mol Sci 2021; 22:ijms22042047. [PMID: 33669567 PMCID: PMC7923107 DOI: 10.3390/ijms22042047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Sirtuins (SIRTs) are NAD+-dependent deacetylases that regulate proliferation and cell death. In the human ovary, granulosa cells express sirtuin 1 (SIRT1), which has also been detected in human tumors derived from granulosa cells, i.e., granulosa cell tumors (GCTs), and in KGN cells. KGN cells are an established cellular model for the majority of GCTs and were used to explore the role of SIRT1. The SIRT1 activator SRT2104 increased cell proliferation. By contrast, the inhibitor EX527 reduced cell numbers, without inducing apoptosis. These results were supported by the outcome of siRNA-mediated silencing studies. A tissue microarray containing 92 GCTs revealed nuclear and/or cytoplasmic SIRT1 staining in the majority of the samples, and also, SIRT2-7 were detected in most samples. The expression of SIRT1-7 was not correlated with the survival of the patients; however, SIRT3 and SIRT7 expression was significantly correlated with the proliferation marker Ki-67, implying roles in tumor cell proliferation. SIRT3 was identified by a proteomic analysis as the most abundant SIRT in KGN. The results of the siRNA-silencing experiments indicate involvement of SIRT3 in proliferation. Thus, several SIRTs are expressed by GCTs, and SIRT1 and SIRT3 are involved in the growth regulation of KGN. If transferable to GCTs, these SIRTs may represent novel drug targets.
Collapse
|
122
|
Palliyaguru DL, Minor RK, Mitchell SJ, Palacios HH, Licata JJ, Ward TM, Abulwerdi G, Elliott P, Westphal C, Ellis JL, Sinclair DA, Price NL, Bernier M, de Cabo R. Combining a High Dose of Metformin With the SIRT1 Activator, SRT1720, Reduces Life Span in Aged Mice Fed a High-Fat Diet. J Gerontol A Biol Sci Med Sci 2021; 75:2037-2041. [PMID: 32556267 DOI: 10.1093/gerona/glaa148] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Indexed: 12/14/2022] Open
Abstract
SRT1720, a sirtuin1-activator, and metformin (MET), an antidiabetic drug, confer health and life-span benefits when administered individually. It is unclear whether combination of the two compounds could lead to additional benefits. Groups of 56-week-old C57BL/6J male mice were fed a high-fat diet (HFD) alone or supplemented with either SRT1720 (2 g/kg food), a high dose of MET (1% wt/wt food), or a combination of both. Animals were monitored for survival, body weight, food consumption, body composition, and rotarod performance. Mice treated with MET alone did not have improved longevity, and life span was dramatically reduced by combination of MET with SRT1720. Although all groups of animals were consuming similar amounts of food, mice on MET or MET + SRT1720 showed a sharp reduction in body weight. SRT1720 + MET mice also had lower percent body fat combined with better performance on the rotarod compared to controls. These data suggest that co-treatment of SRT1720 with MET is detrimental to survival at the doses used and, therefore, risk-benefits of combining life-span-extending drugs especially in older populations needs to be systematically evaluated.
Collapse
Affiliation(s)
- Dushani L Palliyaguru
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Robin K Minor
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Sarah J Mitchell
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Hector H Palacios
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Jordan J Licata
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Theresa M Ward
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Gelareh Abulwerdi
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Peter Elliott
- Sirtris Pharmaceuticals, a GSK Company, Cambridge, Massachusetts
| | | | - James L Ellis
- Sirtris Pharmaceuticals, a GSK Company, Cambridge, Massachusetts
| | - David A Sinclair
- Glenn Labs for the Biological Mechanisms of Aging, Harvard Medical School, Boston, Massachusetts
| | - Nathan L Price
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
123
|
Li S, Li J, Pan R, Cheng J, Cui Q, Chen J, Yuan Z. Sodium rutin extends lifespan and health span in mice including positive impacts on liver health. Br J Pharmacol 2021; 179:1825-1838. [PMID: 33555034 DOI: 10.1111/bph.15410] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Ageing is associated with progressive metabolic dysregulation. Rutin is a metabolic regulator with a poor solubility. Using soluble sodium rutin we investigating the effect and mechanisms of rutin in ageing process. EXPERIMENTAL APPROACH Wild type male mice were treated with or without sodium rutin ( 0.2 mg·ml-1 in drinking water from 8-month-old until end of life. Kaplan-Meier survival curve was used for lifespan assay, ageing-related histopathology analysis and metabolic analysis were performed to determine the effects of chronic sodium rutin on the longevity. Serological test, liver tissue metabolomics and transcriptomics were used for liver function assay. SiRNA knockdown Angptl8 and autophagy flux assay in HepG2 cell lines explored the mechanism through which sodium rutin might impact the function of hepatocyte. KEY RESULTS Sodium rutin treatment extends the lifespan of mice by 10%. Sodium rutin supplementation alleviates ageing-related pathological changes and promotes behaviour performance in ageing mice. Sodium rutin supplementation altered the whole-body metabolism in mice, which exhibited increased energy expenditure and lower respiratory quotient. Transcriptomics analysis showed that Sodium rutin affected the expression of metabolic genes. Metabolomics analysis showed that Sodium rutin reduced liver steatosis through increased lipid β-oxidation. Sodium rutin treatment increased the autophagy level both in vivo and in vitro. The inhibition of autophagy partially abolished the sodium rutin-mediated effect on lipolysis in HepG2 cells. CONCLUSION AND IMPLICATIONS Sodium rutin treatment extends the lifespan and health span of mice with beneficial effects on metabolism, which were achieved by enhancing the autophagy activity in hepatocytes.
Collapse
Affiliation(s)
- Shuoshuo Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jun Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Ruiyuan Pan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jinbo Cheng
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China.,Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, China
| | - Qinghua Cui
- Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jianxin Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, China
| |
Collapse
|
124
|
Li Q, Cheng JC, Jiang Q, Lee WY. Role of sirtuins in bone biology: Potential implications for novel therapeutic strategies for osteoporosis. Aging Cell 2021; 20:e13301. [PMID: 33393735 PMCID: PMC7884050 DOI: 10.1111/acel.13301] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022] Open
Abstract
The decline in bone mass and bone strength and musculoskeletal problems associated with aging constitute a major challenge for affected individuals and the healthcare system globally. Sirtuins 1-7 (SIRT1-SIRT7) are a family of nicotinamide adenine dinucleotide-dependent deacetylases with remarkable abilities to promote longevity and counteract age-related diseases. Sirtuin knockout and transgenic models have provided novel insights into the function and signaling of these proteins in bone homeostasis. Studies have revealed that sirtuins play a critical role in normal skeletal development and homeostasis through their direct action on bone cells and that their dysregulation might contribute to different bone diseases. Preclinical studies have demonstrated that mice treated with sirtuin agonists show protection against age-related, postmenopausal, and immobilization-induced osteoporosis. These findings suggest that sirtuins could be potential targets for the modulation of the imbalance in bone remodeling and treatment of osteoporosis and other bone disorders. The aim of this review was to provide a comprehensive updated review of the current knowledge on sirtuin biology, focusing specifically on their roles in bone homeostasis and osteoporosis, and potential pharmacological interventions targeting sirtuins for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Qiangqiang Li
- SH Ho Scoliosis Research LaboratoryDepartment of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing UniversityThe Chinese University of Hong KongHong Kong SARChina
- Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Jack Chun‐yiu Cheng
- SH Ho Scoliosis Research LaboratoryDepartment of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing UniversityThe Chinese University of Hong KongHong Kong SARChina
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive SurgeryDrum Tower Hospital affiliated to Medical School of Nanjing UniversityNanjingChina
| | - Wayne Yuk‐wai Lee
- SH Ho Scoliosis Research LaboratoryDepartment of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing UniversityThe Chinese University of Hong KongHong Kong SARChina
- Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
| |
Collapse
|
125
|
Sirt1 Activity in the Brain: Simultaneous Effects on Energy Homeostasis and Reproduction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031243. [PMID: 33573212 PMCID: PMC7908627 DOI: 10.3390/ijerph18031243] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022]
Abstract
Diet deeply impacts brain functions like synaptic plasticity and cognitive processes, neuroendocrine functions, reproduction and behaviour, with detrimental or protective effects on neuronal physiology and therefore consequences for health. In this respect, the activity of metabolic sensors within the brain is critical for the maintenance of health status and represents a possible therapeutic target for some diseases. This review summarizes the main activity of Sirtuin1 (Sirt1), a metabolic sensor within the brain with a focus on the link between the central control of energy homeostasis and reproduction. The possible modulation of Sirt1 by natural phytochemical compounds like polyphenols is also discussed.
Collapse
|
126
|
Lu J, Zhang C, Lv J, Zhu X, Jiang X, Lu W, Lu Y, Tang Z, Wang J, Shen X. Antiallergic drug desloratadine as a selective antagonist of 5HT 2A receptor ameliorates pathology of Alzheimer's disease model mice by improving microglial dysfunction. Aging Cell 2021; 20:e13286. [PMID: 33369003 PMCID: PMC7811850 DOI: 10.1111/acel.13286] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/19/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a progressively neurodegenerative disease characterized by cognitive deficits and alteration of personality and behavior. As yet, there is no efficient treatment for AD. 5HT2A receptor (5HT2A R) is a subtype of 5HT2 receptor belonging to the serotonin receptor family, and its antagonists have been clinically used as antipsychotics to relieve psychopathy. Here, we discovered that clinically first-line antiallergic drug desloratadine (DLT) functioned as a selective antagonist of 5HT2A R and efficiently ameliorated pathology of APP/PS1 mice. The underlying mechanism has been intensively investigated by assay against APP/PS1 mice with selective 5HT2A R knockdown in the brain treated by adeno-associated virus (AAV)-ePHP-si-5HT2A R. DLT reduced amyloid plaque deposition by promoting microglial Aβ phagocytosis and degradation, and ameliorated innate immune response by polarizing microglia to an anti-inflammatory phenotype. It stimulated autophagy process and repressed neuroinflammation through 5HT2A R/cAMP/PKA/CREB/Sirt1 pathway, and activated glucocorticoid receptor (GR) nuclear translocation to upregulate the transcriptions of phagocytic receptors TLR2 and TLR4 in response to microglial phagocytosis stimulation. Together, our work has highly supported that 5HT2A R antagonism might be a promising therapeutic strategy for AD and highlighted the potential of DLT in the treatment of this disease.
Collapse
Affiliation(s)
- Jian Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy Nanjing University of Chinese Medicine Nanjing China
| | - Chuzhao Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy Nanjing University of Chinese Medicine Nanjing China
| | - Jianlu Lv
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy Nanjing University of Chinese Medicine Nanjing China
| | - Xialin Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy Nanjing University of Chinese Medicine Nanjing China
| | - Xingwu Jiang
- Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences East China Normal University Shanghai China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences East China Normal University Shanghai China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy Nanjing University of Chinese Medicine Nanjing China
| | - Zongxiang Tang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy Nanjing University of Chinese Medicine Nanjing China
| | - Jiaying Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy Nanjing University of Chinese Medicine Nanjing China
| | - Xu Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy Nanjing University of Chinese Medicine Nanjing China
| |
Collapse
|
127
|
Barnes PJ. Targeting cellular senescence as a new approach to chronic obstructive pulmonary disease therapy. Curr Opin Pharmacol 2020; 56:68-73. [PMID: 33326912 DOI: 10.1016/j.coph.2020.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022]
Abstract
Increasing evidence suggests that there is acceleration of normal lung ageing in chronic obstructive pulmonary disease (COPD), with the accumulation of senescent cells in the lung, which release an array of inflammatory proteins, which drive further senescence and disease progression. This suggests that drugs that target cellular senescence (senotherapies) may treat the underlying disease process in COPD and reduce disease progression and mortality. Several existing or future drugs may inhibit the development of cellular senescence, which is driven by chronic oxidative stress (senostatics), whereas other drugs selectively remove senescent cells (senolytics). Clinical studies of senotherapies have commenced in several age-related diseases, and these approaches appear to be safe and feasible, although no clinical studies in COPD patients have yet been reported.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart & Lung Institute, Imperial College, London, UK.
| |
Collapse
|
128
|
Still Living Better through Chemistry: An Update on Caloric Restriction and Caloric Restriction Mimetics as Tools to Promote Health and Lifespan. Int J Mol Sci 2020; 21:ijms21239220. [PMID: 33287232 PMCID: PMC7729921 DOI: 10.3390/ijms21239220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Caloric restriction (CR), the reduction of caloric intake without inducing malnutrition, is the most reproducible method of extending health and lifespan across numerous organisms, including humans. However, with nearly one-third of the world’s population overweight, it is obvious that caloric restriction approaches are difficult for individuals to achieve. Therefore, identifying compounds that mimic CR is desirable to promote longer, healthier lifespans without the rigors of restricting diet. Many compounds, such as rapamycin (and its derivatives), metformin, or other naturally occurring products in our diets (nutraceuticals), induce CR-like states in laboratory models. An alternative to CR is the removal of specific elements (such as individual amino acids) from the diet. Despite our increasing knowledge of the multitude of CR approaches and CR mimetics, the extent to which these strategies overlap mechanistically remains unclear. Here we provide an update of CR and CR mimetic research, summarizing mechanisms by which these strategies influence genome function required to treat age-related pathologies and identify the molecular fountain of youth.
Collapse
|
129
|
A Theacrine-Based Supplement Increases Cellular NAD + Levels and Affects Biomarkers Related to Sirtuin Activity in C2C12 Muscle Cells In Vitro. Nutrients 2020; 12:nu12123727. [PMID: 33287129 PMCID: PMC7761648 DOI: 10.3390/nu12123727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/21/2022] Open
Abstract
There is evidence in rodents to suggest that theacrine-based supplements modulate tissue sirtuin activity as well as other biological processes associated with aging. Herein, we examined if a theacrine-based supplement (termed NAD3) altered sirtuin activity in vitro while also affecting markers of mitochondrial biogenesis. The murine C2C12 myoblast cell line was used for experimentation. Following 7 days of differentiation, myotubes were treated with 0.45 mg/mL of NAD3 (containing ~2 mM theacrine) for 3 and 24 h (n = 6 treatment wells per time point). Relative to control (CTL)-treated cells, NAD3 treatments increased (p < 0.05) Sirt1 mRNA levels at 3 h, as well as global sirtuin activity at 3 and 24 h. Follow-up experiments comparing 24 h NAD3 or CTL treatments indicated that NAD3 increased nicotinamide phosphoribosyltransferase (NAMPT) and SIRT1 protein levels (p < 0.05). Cellular nicotinamide adenine dinucleotide (NAD+) levels were also elevated nearly two-fold after 24 h of NAD3 versus CTL treatments (p < 0.001). Markers of mitochondrial biogenesis were minimally affected. Although these data are limited to select biomarkers in vitro, these preliminary findings suggest that a theacrine-based supplement can modulate select biomarkers related to NAD+ biogenesis and sirtuin activity. However, these changes did not drive increases in mitochondrial biogenesis. While promising, these data are limited to a rodent cell line and human muscle biopsy studies are needed to validate and elucidate the significance of these findings.
Collapse
|
130
|
Response surface statistical optimization of fermentation parameters for resveratrol production by the endophytic fungus Arcopilus aureus and its tyrosinase inhibitory activity. Biotechnol Lett 2020; 43:627-644. [PMID: 33159246 DOI: 10.1007/s10529-020-03032-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The present investigation primarily focusses on enhancement of resveratrol production by endophytic production from the endophytic fungus, Arcopilus aureus via one variable at a time approach (OVAT) followed by statistical approach using response surface methodology (RSM). The paper also highlights the characterization of fungal resveratrol using spectroscopic techniques. Further the tyrosinase inhibitory property was also explored in this communication for its possible use as a cosmeceutical ingredient. RESULTS Optimization of physicochemical and nutritional parameters using OVAT approach exhibited 1.23-fold enhancement in production of resveratrol when compared to initial yield, 89.1 ± 0.08 µg/mL. Further RSM resulted in 1.49-fold enhancement in resveratrol production i.e. 133.53 µg/ml. Further, 25 mg of fungal resveratrol in pure form was obtained from the spent broth of Arcopilus aureus by column chromatography using a mobile phase comprising of MeOH: DCM in a ratio of 1.75:98.25. Further its purity on TLC was checked using 5% MeOH: DCM as mobile phase. Symmetrical peak with Rt of 3.36 min using a C18 reverse phase column confirmed the homogeneity of the purified fungal resveratrol with standard resveratrol and further corroborated by 1H-NMR, 13C-NMR and HR-MS analysis. Fungal resveratrol exhibited a good tyrosinase inhibition with an IC50 of 2.654 ± 0.432 µg/mL as compared to Kojic acid (1.329 ± 0.333). CONCLUSIONS The present study has provided sufficient lead that process optimization techniques can complement each other for optimized production of bioactive compounds by microorganisms apart from strain improvement techniques which are generally adopted in the industry. The enhancement of resveratrol production by Arcopilus aureus by process optimization further opens up avenues for strain improvement for commercial resveratrol production through fermentation for nutraceutical and cosmeceutical applications.
Collapse
|
131
|
Bartke A, Brannan S, Hascup E, Hascup K, Darcy J. Energy Metabolism and Aging. World J Mens Health 2020; 39:222-232. [PMID: 33151044 PMCID: PMC7994661 DOI: 10.5534/wjmh.200112] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/04/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022] Open
Abstract
Aging is strongly related to energy metabolism, but the underlying processes and mechanisms are complex and incompletely understood. Restricting energy intake and reducing metabolic rate can slow the rate of aging and extend longevity, implying a reciprocal relationship between energy metabolism and life expectancy. However, increased energy expenditure has also been associated with improved health and longer life. In both experimental animals and humans, reduced body temperature has been related to extended longevity. However, recent findings on the function of thermogenic (brown or beige) adipose tissue produced intense interest in increasing the amount of energy expended for thermogenesis to prevent and/or treat obesity, improve metabolic health, and extend life. Evidence available to-date indicates that increasing adipose tissue thermogenesis by pharmacologic, environmental, or genetic interventions can indeed produce significant metabolic benefits, which are associated with improved chances for healthy aging and long life.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | - Savannah Brannan
- Department of Biology, University of Illinois Springfield, Springfield, IL, USA
| | - Erin Hascup
- Department of Neurology and Center for Alzheimer's Disease and Related Disorders, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kevin Hascup
- Department of Neurology and Center for Alzheimer's Disease and Related Disorders, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Justin Darcy
- Joslin Diabetes Center, Section on Integrative Physiology and Metabolism, Harvard Medical School One Joslin Place, Boston, MA, USA
| |
Collapse
|
132
|
6,4'-dihydroxy-7-methoxyflavanone protects against H 2O 2-induced cellular senescence by inducing SIRT1 and inhibiting phosphatidylinositol 3-kinase/Akt pathway activation. Mol Cell Biochem 2020; 476:863-872. [PMID: 33111210 DOI: 10.1007/s11010-020-03951-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
6, 4'-Dihydroxy-7-methoxyflavanone (DMF) has been shown to possess anti-inflammatory, anti-oxidative, and neuroprotective activities. However, its effect on oxidative stress-induced aging remains undemonstrated. This study aimed at investigating the anti-senescence effect of DMF on hydrogen peroxide (H2O2)-induced premature senescence, and associated molecular mechanisms in human dermal fibroblasts (HDFs). The cells were DMF pretreated with small interfering RNA (siRNAs) of control or sirtuin 1 (SIRT1) before H2O2 exposure, and western blot analysis, senescence-associated β-galactosidase (SA-β-gal) activity, cell counting, gene silencing, and SIRT1 activity assay were performed. Pretreatment with DMF inhibited H2O2-induced senescence phenotypes, which showed decreased SA-β-gal activity and increased cell growth in comparison with H2O2-treated HDFs. Meanwhile, the decreases in ac-p53, p21Cip1/WAF1, and p16Ink4a and the increases in pRb and cyclin D1 were observed. DMF was also found to induce SIRT1 expression and activity level concentration- and time-dependently. Moreover, SIRT1 inhibition abrogated DMF senescence prevention. Additionally, Akt and ERK were activated with different kinetics after H2O2 exposure, and Akt activity inhibition attenuated SA-β-gal activity augmentation. We also found that DMF inhibited H2O2-induced Akt phosphorylation. This study indicates that DMF effectively protects against oxidative stress-induced premature senescence through SIRT1 expression up-regulation and Akt pathway inhibition in HDFs. These results suggest that DMF can be a potential therapeutic molecule for age-related diseases, or a protective agent against the aging process.
Collapse
|
133
|
Sciarretta S, Forte M, Castoldi F, Frati G, Versaci F, Sadoshima J, Kroemer G, Maiuri MC. Caloric restriction mimetics for the treatment of cardiovascular diseases. Cardiovasc Res 2020; 117:1434-1449. [PMID: 33098415 DOI: 10.1093/cvr/cvaa297] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/09/2020] [Indexed: 12/25/2022] Open
Abstract
Caloric restriction mimetics (CRMs) are emerging as potential therapeutic agents for the treatment of cardiovascular diseases. CRMs include natural and synthetic compounds able to inhibit protein acetyltransferases, to interfere with acetyl coenzyme A biosynthesis, or to activate (de)acetyltransferase proteins. These modifications mimic the effects of caloric restriction, which is associated with the activation of autophagy. Previous evidence demonstrated the ability of CRMs to ameliorate cardiac function and reduce cardiac hypertrophy and maladaptive remodelling in animal models of ageing, mechanical overload, chronic myocardial ischaemia, and in genetic and metabolic cardiomyopathies. In addition, CRMs were found to reduce acute ischaemia-reperfusion injury. In many cases, these beneficial effects of CRMs appeared to be mediated by autophagy activation. In the present review, we discuss the relevant literature about the role of different CRMs in animal models of cardiac diseases, emphasizing the molecular mechanisms underlying the beneficial effects of these compounds and their potential future clinical application.
Collapse
Affiliation(s)
- Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 40100 Latina, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Maurizio Forte
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Francesca Castoldi
- Centre de Recherche des Cordeliers, Team "Metabolism, Cancer & Immunity", INSERM UMRS1138, Université de Paris, Sorbonne Université, 75006 Paris, France.,Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 40100 Latina, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Francesco Versaci
- Division of Cardiology, S. Maria Goretti Hospital, 04100 Latina, Italy
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, G-609, Newark, NJ 07103, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Team "Metabolism, Cancer & Immunity", INSERM UMRS1138, Université de Paris, Sorbonne Université, 75006 Paris, France.,Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou Jiangsu 215163, China.,Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Team "Metabolism, Cancer & Immunity", INSERM UMRS1138, Université de Paris, Sorbonne Université, 75006 Paris, France.,Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| |
Collapse
|
134
|
Qian L, Miao L, Abba BSA, Lin Y, Jiang W, Chen S, Luo C, Liu B, Ge X. Molecular characterization and expression of sirtuin 2, sirtuin 3, and sirtuin 5 in the Wuchang bream (Megalobrama amblycephala) in response to acute temperature and ammonia nitrogen stress. Comp Biochem Physiol B Biochem Mol Biol 2020; 252:110520. [PMID: 33045325 DOI: 10.1016/j.cbpb.2020.110520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 01/16/2023]
Abstract
This study sought to characterize sirtuin 2 (sirt2), sirtuin 3 (sirt3), and sirtuin 5 (sirt5) in Megalobrama amblycephala (M. amblycephala) by cloning the open reading frame (ORF) of sirt2, sirt3, and sirt5. The full-lengths of the resulting M. amblycephala sirt2, sirt3, and sirt5 cDNA sequences were 1845, 1534, and 1920 bp, respectively, with 92%, 98%, and 91% similarities to Danio rerio sequences. Based on our bioinformatic analyses and predictions, the sirt2 and sirt3 genes of M. amblycephala were classified within the Sir2 I family, whereas sirt5 belonged to the Sir2 III family. Furthermore, sirt2, sirt3, and sirt5 were widely distributed in different M. amblycephala tissues. Particularly, sirt2 and sirt5 were highly expressed in gills, intestines, and liver (P < 0.05), whereas sirt3 was highly expressed in gills, kidney, liver, and spleen (P < 0.05). A 2 × 2 factorial experiment was also conducted to analyze sirt2, sirt3, and sirt5 expression patterns in response to acute temperature (25 and 32 °C) and ammonia nitrogen (0 and 20 mg/L) stress. Notably, these two stressors were found to interactively affect sirt2, sirt3, and sirt5 expression patterns in M. amblycephala liver. At the higher water temperature (32 °C) and ammonia nitrogen concentration (20 mg/L) tested herein, sirt2, sirt3, and sirt5 had similar expression levels and exhibited a down-regulation trend at 6 and 48 h post-stress but became up-regulated thereafter to counteract the stressors at 96 h post-stress.
Collapse
Affiliation(s)
- Linjie Qian
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Linghong Miao
- KeyLaboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China
| | | | - Yan Lin
- KeyLaboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China
| | - Wenqiang Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Shiyou Chen
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Chenhao Luo
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; KeyLaboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; KeyLaboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China.
| |
Collapse
|
135
|
Escalona-Garrido C, Vázquez P, Mera P, Zagmutt S, García-Casarrubios E, Montero-Pedrazuela A, Rey-Stolle F, Guadaño-Ferraz A, Rupérez FJ, Serra D, Herrero L, Obregon MJ, Valverde ÁM. Moderate SIRT1 overexpression protects against brown adipose tissue inflammation. Mol Metab 2020; 42:101097. [PMID: 33049408 PMCID: PMC7600394 DOI: 10.1016/j.molmet.2020.101097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Metainflammation is a chronic low-grade inflammatory state induced by obesity and associated comorbidities, including peripheral insulin resistance. Brown adipose tissue (BAT), a therapeutic target against obesity, is an insulin target tissue sensitive to inflammation. Therefore, it is necessary to find strategies to protect BAT against the effects of inflammation in energy balance. In this study, we explored the impact of moderate sirtuin 1 (SIRT1) overexpression on insulin sensitivity and β-adrenergic responses in BAT and brown adipocytes (BA) under pro-inflammatory conditions. METHODS The effect of inflammation on BAT functionality was studied in obese db/db mice and lean wild-type (WT) mice or mice with moderate overexpression of SIRT1 (SIRT1Tg+) injected with a low dose of bacterial lipopolysaccharide (LPS) to mimic endotoxemia. We also conducted studies on differentiated BA (BA-WT and BA-SIRT1Tg+) exposed to a macrophage-derived pro-inflammatory conditioned medium (CM) to evaluate the protection of SIRT1 overexpression in insulin signaling and glucose uptake, mitochondrial respiration, fatty acid oxidation (FAO), and norepinephrine (NE)-mediated-modulation of uncoupling protein-1 (UCP-1) expression. RESULTS BAT from the db/db mice was susceptible to metabolic inflammation manifested by the activation of pro-inflammatory signaling cascades, increased pro-inflammatory gene expression, tissue-specific insulin resistance, and reduced UCP-1 expression. Impairment of insulin and noradrenergic responses were also found in the lean WT mice upon LPS injection. In contrast, BAT from the mice with moderate overexpression of SIRT1 (SIRT1Tg+) was protected against LPS-induced activation of pro-inflammatory signaling, insulin resistance, and defective thermogenic-related responses upon cold exposure. Importantly, the decline in triiodothyronine (T3) levels in the circulation and intra-BAT after exposure of the WT mice to LPS and cold was markedly attenuated in the SIRT1Tg+ mice. In vitro BA experiments in the two genotypes revealed that upon differentiation with a T3-enriched medium and subsequent exposure to a macrophage-derived pro-inflammatory CM, only BA-SIRT1Tg+ fully recovered insulin and noradrenergic responses. CONCLUSIONS This study has ascertained the benefit of the moderate overexpression of SIRT1 to confer protection against defective insulin and β-adrenergic responses caused by BAT inflammation. Our results have potential therapeutic value in combinatorial therapies for BAT-specific thyromimetics and SIRT1 activators to combat metainflammation in this tissue.
Collapse
Affiliation(s)
- Carmen Escalona-Garrido
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029 Madrid, Spain
| | - Patricia Vázquez
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029 Madrid, Spain.
| | - Paula Mera
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Sebastián Zagmutt
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Ester García-Casarrubios
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain
| | - Ana Montero-Pedrazuela
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERer), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Fernanda Rey-Stolle
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universitiy, Urbanización Montepríncipe, Boadilla del Monte, 28660, Madrid, Spain
| | - Ana Guadaño-Ferraz
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERer), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Francisco J Rupérez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universitiy, Urbanización Montepríncipe, Boadilla del Monte, 28660, Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Maria Jesus Obregon
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029 Madrid, Spain.
| |
Collapse
|
136
|
Nguyen LT, Saad S, Chen H, Pollock CA. Parental SIRT1 Overexpression Attenuate Metabolic Disorders Due to Maternal High-Fat Feeding. Int J Mol Sci 2020; 21:ijms21197342. [PMID: 33027895 PMCID: PMC7582993 DOI: 10.3390/ijms21197342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 11/16/2022] Open
Abstract
Maternal obesity can contribute to the development of obesity and related metabolic disorders in progeny. Sirtuin (SIRT)1, an essential regulator of metabolism and stress responses, has recently emerged as an important modifying factor of developmental programming. In this study, to elucidate the effects of parental SIRT1 overexpression on offspring mechanism, four experimental groups were included: (1) Chow-fed wild-type (WT)-dam × Chow-fed WT-sire; (2) High-fat diet (HFD)-fed WT-dam × Chow-fed WT-sire; (3) HFD-fed hemizygous SIRT1-transgenic (Tg)-dam × Chow-fed WT-sire; and (4) HFD-fed WT dam × Chow-fed Tg-sire. Our results indicate that Tg breeders had lower body weight and fat mass compared to WT counterparts and gave birth to WT offspring with reductions in body weight, adiposity and hyperlipidaemia compared to those born of WT parents. Maternal SIRT1 overexpression also reversed glucose intolerance, and normalised abnormal fat morphology and the expression of dysregulated lipid metabolism markers, including SIRT1. Despite having persistent hepatic steatosis, offspring born to Tg parents showed an improved balance of hepatic glucose/lipid metabolic markers, as well as reduced levels of inflammatory markers and TGF-β/Smad3 fibrotic signalling. Collectively, the data suggest that parental SIRT1 overexpression can ameliorate adverse metabolic programming effects by maternal obesity.
Collapse
Affiliation(s)
- Long T. Nguyen
- Renal medicine, Kolling Institute, Royal North Shore Hospital, University of Sydney, Sydney, NSW 2065, Australia;
- Correspondence:
| | - Sonia Saad
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (S.S.); (H.C.)
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (S.S.); (H.C.)
| | - Carol A. Pollock
- Renal medicine, Kolling Institute, Royal North Shore Hospital, University of Sydney, Sydney, NSW 2065, Australia;
| |
Collapse
|
137
|
Impact of circadian disruption on health; SIRT1 and Telomeres. DNA Repair (Amst) 2020; 96:102993. [PMID: 33038659 DOI: 10.1016/j.dnarep.2020.102993] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022]
Abstract
Circadian clock is a biochemical oscillator in organisms that regulates the circadian rhythm of numerous genes over 24 h. The circadian clock is involved in telomere homeostasis by regulating the diurnal rhythms of telomerase activity, TERT mRNA level, TERRA expression, and telomeric heterochromatin formation. Particularly, CLOCK and BMAL1 deficiency contribute to telomere shortening by preventing rhythmic telomerase activity and TERRA expression, respectively. Telomere shortening increases the number of senescent cells with impaired circadian rhythms. In return, telomerase reconstitution improves impaired circadian rhythms of senescent cells. SIRT1 that is an NAD+-dependent deacetylase positively regulates circadian clock and telomere homeostasis. SIRT1 contributes to the circadian clock by mediating CLOCK/BMAL1 complex formation, BMAL1 transcription and PER2 disruption. On the other hand, SIRT1 ensures telomere homeostasis by inducing telomerase and shelterin protein expression and regulating telomere heterochromatin formation. SIRT1 inhibition leads to both circadian clock and telomeres dysfunction that inhibit its activity. In light of this current evidence, we could suggest that the BMAL1/CLOCK complex regulates the telomere homeostasis in SIRT1 dependent manner, and also telomere dysfunction inhibits circadian clock function by suppressing SIRT1 activity to induce age-related diseases. We consider that increasing SIRT1 activity can prevent age-related diseases and help healthy aging by protecting telomere integrity and circadian clock function for individuals subjected to circadian rhythm disruption such as shift works, individuals with sleep disorders, and in the elderly population.
Collapse
|
138
|
Zhang J, Ren D, Fedorova J, He Z, Li J. SIRT1/SIRT3 Modulates Redox Homeostasis during Ischemia/Reperfusion in the Aging Heart. Antioxidants (Basel) 2020; 9:antiox9090858. [PMID: 32933202 PMCID: PMC7556005 DOI: 10.3390/antiox9090858] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury is the central cause of global death in cardiovascular diseases, which is characterized by disorders such as angina, stroke, and peripheral vascular disease, finally causing severe debilitating diseases and death. The increased rates of morbidity and mortality caused by I/R are parallel with aging. Aging-associated cardiac physiological structural and functional deterioration were found to contribute to abnormal reactive oxygen species (ROS) production during I/R stress. Disturbed redox homeostasis could further trigger the related signaling pathways that lead to cardiac irreversible damages with mitochondria dysfunction and cell death. It is notable that sirtuin proteins are impaired in aged hearts and are critical to maintaining redox homeostasis via regulating substrate metabolism and inflammation and thus preserving cardiac function under stress. This review discussed the cellular and functional alterations upon I/R especially in aging hearts. We propose that mitochondria are the primary source of reactive oxygen species (ROS) that contribute to I/R injury in aged hearts. Then, we highlight the cardiomyocyte protection of the age-related proteins Sirtuin1 (SIRT1) and Sirtuin1 (SIRT3) in response to I/R injury, and we discuss their modulation of cardiac metabolism and the inflammatory reaction that is involved in ROS formation.
Collapse
Affiliation(s)
- Jingwen Zhang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China;
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (D.R.); (J.F.); (Z.H.)
| | - Di Ren
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (D.R.); (J.F.); (Z.H.)
| | - Julia Fedorova
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (D.R.); (J.F.); (Z.H.)
| | - Zhibin He
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (D.R.); (J.F.); (Z.H.)
| | - Ji Li
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (D.R.); (J.F.); (Z.H.)
- Correspondence: ; Tel.: +1-813-974-4917
| |
Collapse
|
139
|
Liang S, Dou S, Li W, Huang Y. Profiling of circular RNAs in age-related cataract reveals circZNF292 as an antioxidant by sponging miR-23b-3p. Aging (Albany NY) 2020; 12:17271-17287. [PMID: 32913142 PMCID: PMC7521481 DOI: 10.18632/aging.103683] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/29/2020] [Indexed: 01/24/2023]
Abstract
Age-related cataract (ARC) is one of the major causes of visual impairment and reversible blindness worldwide. Accumulating evidence has revealed that circular RNAs (circRNAs) are involved in multiple regulatory processes in various ocular diseases. However, the expression profile, regulatory roles, and underlying mechanisms of circRNAs in ARC remain largely unknown. Herein we deep-sequenced circRNAs of anterior lens capsules from normal and ARC lenses, and detected 23,787 candidate circRNAs. Of these, 466 were significantly differentially expressed, and a higher correlation in down-regulated circRNAs between ARC and diabetic cataract was observed compared with up-regulated ones. Subsequent bioinformatics analysis disclosed that certain differentially expressed circRNAs participated in oxidative stress and apoptosis-related signaling pathways in ARC. Notably, the level of circZNF292 was significantly decreased, while miR-23b-3p was significantly increased in ARC. The target region prediction and dual-luciferase reporter assays proved that circZNF292 acted as a competitive endogenous RNA to regulate the expression of anti-oxidative genes through competing with miR-23b-3p. Our results indicate that circZNF292, a down-regulated circRNA in the anterior lens capsule of ARC patients, may be involved in resistance to oxidative damage and apoptosis of lens epithelial cells by sponging miR-23b-3p, providing a potential target for prevention and treatment of ARC.
Collapse
Affiliation(s)
- Shuqi Liang
- Medical College of Qingdao University, Qingdao, China,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
| | - Shengqian Dou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Wenfeng Li
- Department of Medical Oncology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yusen Huang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| |
Collapse
|
140
|
Haws SA, Leech CM, Denu JM. Metabolism and the Epigenome: A Dynamic Relationship. Trends Biochem Sci 2020; 45:731-747. [DOI: 10.1016/j.tibs.2020.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/24/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022]
|
141
|
de Yébenes VG, Briones AM, Martos-Folgado I, Mur SM, Oller J, Bilal F, González-Amor M, Méndez-Barbero N, Silla-Castro JC, Were F, Jiménez-Borreguero LJ, Sánchez-Cabo F, Bueno H, Salaices M, Redondo JM, Ramiro AR. Aging-Associated miR-217 Aggravates Atherosclerosis and Promotes Cardiovascular Dysfunction. Arterioscler Thromb Vasc Biol 2020; 40:2408-2424. [PMID: 32847388 PMCID: PMC7505150 DOI: 10.1161/atvbaha.120.314333] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Supplemental Digital Content is available in the text. Objective: microRNAs are master regulators of gene expression with essential roles in virtually all biological processes. miR-217 has been associated with aging and cellular senescence, but its role in vascular disease is not understood. Approach and Results: We have used an inducible endothelium-specific knock-in mouse model to address the role of miR-217 in vascular function and atherosclerosis. miR-217 reduced NO production and promoted endothelial dysfunction, increased blood pressure, and exacerbated atherosclerosis in proatherogenic apoE−/− mice. Moreover, increased endothelial miR-217 expression led to the development of coronary artery disease and altered left ventricular heart function, inducing diastolic and systolic dysfunction. Conversely, inhibition of endogenous vascular miR-217 in apoE−/− mice improved vascular contractility and diminished atherosclerosis. Transcriptome analysis revealed that miR-217 regulates an endothelial signaling hub and downregulates a network of eNOS (endothelial NO synthase) activators, including VEGF (vascular endothelial growth factor) and apelin receptor pathways, resulting in diminished eNOS expression. Further analysis revealed that human plasma miR-217 is a biomarker of vascular aging and cardiovascular risk. Conclusions: Our results highlight the therapeutic potential of miR-217 inhibitors in aging-related cardiovascular disease.
Collapse
Affiliation(s)
- Virginia G de Yébenes
- Department of Vascular Physiopathology, B Lymphocyte Biology Lab (V.G.d.Y., I.M.-F., S.M.M., F.B., A.R.R.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 12 de Octubre Health Research Institute, Madrid, Spain (V.G.d.Y.)
| | - Ana M Briones
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz, Spain (A.M.B., M.G.-A., M.S.).,CIBER de Enfermedades Cardiovasculares, Spain (A.M.B., M.G.-A., M.S., J.M.R.)
| | - Inmaculada Martos-Folgado
- Department of Vascular Physiopathology, B Lymphocyte Biology Lab (V.G.d.Y., I.M.-F., S.M.M., F.B., A.R.R.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Sonia M Mur
- Department of Vascular Physiopathology, B Lymphocyte Biology Lab (V.G.d.Y., I.M.-F., S.M.M., F.B., A.R.R.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Jorge Oller
- Gene Regulation in Cardiovascular Remodelling and Inflammation Lab (J.O., N.M.-B., J.M.R.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Faiz Bilal
- Department of Vascular Physiopathology, B Lymphocyte Biology Lab (V.G.d.Y., I.M.-F., S.M.M., F.B., A.R.R.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - María González-Amor
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz, Spain (A.M.B., M.G.-A., M.S.).,CIBER de Enfermedades Cardiovasculares, Spain (A.M.B., M.G.-A., M.S., J.M.R.)
| | - Nerea Méndez-Barbero
- Gene Regulation in Cardiovascular Remodelling and Inflammation Lab (J.O., N.M.-B., J.M.R.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Juan Carlos Silla-Castro
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (J.C.S.-C., F.W., F.S.-C.)
| | - Felipe Were
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (J.C.S.-C., F.W., F.S.-C.)
| | | | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (J.C.S.-C., F.W., F.S.-C.)
| | - Héctor Bueno
- Department of Cell & Developmental Biology, Multidisciplinary Translational Cardiovascular Research (H.B.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Mercedes Salaices
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz, Spain (A.M.B., M.G.-A., M.S.).,CIBER de Enfermedades Cardiovasculares, Spain (A.M.B., M.G.-A., M.S., J.M.R.)
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodelling and Inflammation Lab (J.O., N.M.-B., J.M.R.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz, Spain (A.M.B., M.G.-A., M.S.).,CIBER de Enfermedades Cardiovasculares, Spain (A.M.B., M.G.-A., M.S., J.M.R.)
| | - Almudena R Ramiro
- Department of Vascular Physiopathology, B Lymphocyte Biology Lab (V.G.d.Y., I.M.-F., S.M.M., F.B., A.R.R.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
142
|
Said Hassane C, Fouillaud M, Le Goff G, Sklirou AD, Boyer JB, Trougakos IP, Jerabek M, Bignon J, de Voogd NJ, Ouazzani J, Gauvin-Bialecki A, Dufossé L. Microorganisms Associated with the Marine Sponge Scopalina hapalia: A Reservoir of Bioactive Molecules to Slow Down the Aging Process. Microorganisms 2020; 8:E1262. [PMID: 32825344 PMCID: PMC7570120 DOI: 10.3390/microorganisms8091262] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/09/2020] [Accepted: 08/17/2020] [Indexed: 01/14/2023] Open
Abstract
Aging research aims at developing therapies that delay normal aging processes and some related pathologies. Recently, many compounds and extracts from natural products have been shown to slow aging and/or extend lifespan. Marine sponges and their associated microorganisms have been found to produce a wide variety of bioactive secondary metabolites; however, those from the Southwest of the Indian Ocean are much less studied, especially regarding anti-aging activities. In this study, the microbial diversity of the marine sponge Scopalina hapalia was investigated by metagenomic analysis. Twenty-six bacterial and two archaeal phyla were recovered from the sponge, of which the Proteobacteria phylum was the most abundant. In addition, 30 isolates from S. hapalia were selected and cultivated for identification and secondary metabolites production. The selected isolates were affiliated to the genera Bacillus, Micromonospora, Rhodoccocus, Salinispora, Aspergillus, Chaetomium, Nigrospora and unidentified genera related to the family Thermoactinomycetaceae. Crude extracts from selected microbial cultures were found to be active against seven clinically relevant targets (elastase, tyrosinase, catalase, sirtuin 1, Cyclin-dependent kinase 7 (CDK7), Fyn kinase and proteasome). These results highlight the potential of microorganisms associated with a marine sponge from Mayotte to produce anti-aging compounds. Future work will focus on the isolation and the characterization of bioactive compounds.
Collapse
Affiliation(s)
- Charifat Said Hassane
- Laboratoire de Chimie et Biotechnologie des Produits Naturels, Faculté des Sciences et Technologies, Université de La Réunion, 15 Avenue René Cassin, CS 92003, 97744 Saint-Denis CEDEX 9, La Réunion, France; (C.S.H.); (M.F.); (J.B.B.)
| | - Mireille Fouillaud
- Laboratoire de Chimie et Biotechnologie des Produits Naturels, Faculté des Sciences et Technologies, Université de La Réunion, 15 Avenue René Cassin, CS 92003, 97744 Saint-Denis CEDEX 9, La Réunion, France; (C.S.H.); (M.F.); (J.B.B.)
| | - Géraldine Le Goff
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France; (G.L.G.); (J.B.); (J.O.)
| | - Aimilia D. Sklirou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (A.D.S.); (I.P.T.)
| | - Jean Bernard Boyer
- Laboratoire de Chimie et Biotechnologie des Produits Naturels, Faculté des Sciences et Technologies, Université de La Réunion, 15 Avenue René Cassin, CS 92003, 97744 Saint-Denis CEDEX 9, La Réunion, France; (C.S.H.); (M.F.); (J.B.B.)
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (A.D.S.); (I.P.T.)
| | - Moran Jerabek
- Crelux GmbH, Am Klopferspitz 19a, 82152 Martinsried, Germany;
| | - Jérôme Bignon
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France; (G.L.G.); (J.B.); (J.O.)
| | - Nicole J. de Voogd
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands;
- Institute of Environmental Sciences, Leiden University, Einsteinweg 2, 2333 CC Leiden, The Netherlands
| | - Jamal Ouazzani
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France; (G.L.G.); (J.B.); (J.O.)
| | - Anne Gauvin-Bialecki
- Laboratoire de Chimie et Biotechnologie des Produits Naturels, Faculté des Sciences et Technologies, Université de La Réunion, 15 Avenue René Cassin, CS 92003, 97744 Saint-Denis CEDEX 9, La Réunion, France; (C.S.H.); (M.F.); (J.B.B.)
| | - Laurent Dufossé
- Laboratoire de Chimie et Biotechnologie des Produits Naturels, Faculté des Sciences et Technologies, Université de La Réunion, 15 Avenue René Cassin, CS 92003, 97744 Saint-Denis CEDEX 9, La Réunion, France; (C.S.H.); (M.F.); (J.B.B.)
| |
Collapse
|
143
|
Wang F, Yao S, Xia H. SIRT1 is a key regulatory target for the treatment of the endoplasmic reticulum stress-related organ damage. Biomed Pharmacother 2020; 130:110601. [PMID: 32784049 DOI: 10.1016/j.biopha.2020.110601] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 02/08/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is an evolutionarily conserved adaptive response that contributes to deal with the misfolded or unfolded protein in the lumen of the ER and restore the ER homeostasis. However, excessive and prolonged ER stress can trigger the cell-death signaling pathway which causes cell death, usually in the form of apoptosis. It is generally accepted that inappropriate cellular apoptosis and a series of the subsequent inflammatory response and oxidative stress can cause disturbance of normal physiological functions and organ damage. A lot of evidence shows that the excessive activation of the ER stress contributes to the pathogenesis of many kinds of diseases and inhibiting the inappropriate stress is of great significance for maintaining the normal physiological function. In recent years, Sirtuin1 (SIRT1) has become a research hotspot on ER stress. As a master regulator of ER stress, increasing evidence suggests that SIRT1 plays a positive role in a variety of ER stress-induced organ damage via multiple mechanisms, including inhibiting cellular apoptosis and promoting autophagy. Furthermore, a lot of factors have shown effective regulation of SIRT1, which indicates the feasibility of treating SIRT1 as a target for the treatment of ER stress-related diseases. We summarize and reveal the molecular mechanisms underlying the protective effect of SIRT1 in multiple ER stress-mediated organ damage in this review. We also summed up the possible adjustment mechanism of SIRT1, which provides a theoretical basis for the treatment of ER stress-related diseases.
Collapse
Affiliation(s)
- Fuquan Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science Technology, Wuhan, 430022, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science Technology, Wuhan, 430022, China.
| | - Haifa Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science Technology, Wuhan, 430022, China.
| |
Collapse
|
144
|
|
145
|
Zhao L, Cao J, Hu K, He X, Yun D, Tong T, Han L. Sirtuins and their Biological Relevance in Aging and Age-Related Diseases. Aging Dis 2020; 11:927-945. [PMID: 32765955 PMCID: PMC7390530 DOI: 10.14336/ad.2019.0820] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022] Open
Abstract
Sirtuins, initially described as histone deacetylases and gene silencers in yeast, are now known to have many more functions and to be much more abundant in living organisms. The increasing evidence of sirtuins in the field of ageing and age-related diseases indicates that they may provide novel targets for treating diseases associated with aging and perhaps extend human lifespan. Here, we summarize some of the recent discoveries in sirtuin biology that clearly implicate the functions of sirtuins in the regulation of aging and age-related diseases. Furthermore, human sirtuins are considered promising therapeutic targets for anti-aging and ageing-related diseases and have attracted interest in scientific communities to develop small molecule activators or drugs to ameliorate a wide range of ageing disorders. In this review, we also summarize the discovery and development status of sirtuin-targeted drug and further discuss the potential medical strategies of sirtuins in delaying aging and treating age-related diseases.
Collapse
Affiliation(s)
- Lijun Zhao
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Jianzhong Cao
- 2Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kexin Hu
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Xiaodong He
- 2Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dou Yun
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Tanjun Tong
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Limin Han
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| |
Collapse
|
146
|
Transcriptional and epigenetic effects of Vitis vinifera L. leaf extract on UV-stressed human dermal fibroblasts. Mol Biol Rep 2020; 47:5763-5772. [PMID: 32666439 DOI: 10.1007/s11033-020-05645-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022]
Abstract
Adverse environmental conditions such as UV radiation induce oxidative and aging events leading to severe damage to human skin cells. Natural products such as plant extracts have been implicated in the skin anti-oxidant and anti-aging cellular protection against environmental stress. Moreover, environmental factors have been shown to impact chromatin structure leading to altered gene expression programs with profound changes in cellular functions. In this study, we assessed the in vitro effect of a leaf extract from Vitis vinifera L. on UV-stressed primary human dermal fibroblasts, focusing on gene expression and DNA methylation as an epigenetic factor. Expression analysis of two genes known to be implicated in skin anti-aging, SIRT1and HSP4, demonstrated significant induction in the presence of the extract under normal or UVA conditions. In addition, DNA methylation profiling of SIRT1 and HSP47 promoters showed that the V. vinifera L. extract induced changes in the DNA methylation pattern of both genes that may be associated with SIRT1 and HSP47 gene expression. Our study shows for the first time transcriptional and DNA methylation alterations on human skin fibroblasts exposed to UV stress and suggest a protective effect of a V. vinifera extract possibly through transcriptional regulation of critical skin anti-aging genes.
Collapse
|
147
|
Fan L, Cacicedo JM, Ido Y. Impaired nicotinamide adenine dinucleotide (NAD + ) metabolism in diabetes and diabetic tissues: Implications for nicotinamide-related compound treatment. J Diabetes Investig 2020; 11:1403-1419. [PMID: 32428995 PMCID: PMC7610120 DOI: 10.1111/jdi.13303] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023] Open
Abstract
One of the biochemical abnormalities found in diabetic tissues is a decrease in the cytosolic oxidized to reduced forms of the nicotinamide adenine dinucleotide ratio (NAD+/NADH also known as pseudohypoxia) caused by oxidation of excessive substrates (glucose through the polyol pathway, free fatty acids and lactate). Subsequently, a decline in NAD+ levels as a result of the activation of poly adenine nucleotide diphosphate‐ribose polymerase (mainly in type 1 diabetes) or the inhibition of adenine nucleotide monophosphate‐activated protein kinase (in type 2 diabetes). Thus, replenishment of NAD+ levels by nicotinamide‐related compounds could be beneficial. However, these compounds also increase nicotinamide catabolites that cause oxidative stress. This is particularly troublesome for patients with diabetes, because they have impaired nicotinamide salvage pathway reactions at the level of nicotinamide phosphoribosyl transferase and phosphoribosyl pyrophosphate, which occurs by the following mechanisms. First, phosphoribosyl pyrophosphate synthesis from pentose phosphate pathway is compromised by a decrease in plasma thiamine and transketolase activity. Second, nicotinamide phosphoribosyl transferase expression is decreased because of reduced adenosine monophosphate‐activated protein kinase activity, which occurs in type 2 diabetes. The adenosine monophosphate‐activated protein kinase inhibition is caused by an activation of protein kinase C and D1 as a result of enhanced diacylglycerol synthesis caused by pseudohypoxia and increased fatty acids levels. In this regard, nicotinamide‐related compounds should be given with caution to treat diabetes. To minimize the risk and maximize the benefit, nicotinamide‐related compounds should be taken with insulin sensitizers (for type 2 diabetes), polyphenols, benfotiamine, acetyl‐L‐carnitine and aldose reductase inhibitors. The efficacy of these regimens can be monitored by measuring serum NAD+ and urinary nicotinamide catabolites.
Collapse
Affiliation(s)
- Lan Fan
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jose M Cacicedo
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Yasuo Ido
- Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
148
|
Lim SH, Li BS, Zhu RZ, Seo JH, Choi BM. Latifolin Inhibits Oxidative Stress-Induced Senescence via Upregulation of SIRT1 in Human Dermal Fibroblasts. Biol Pharm Bull 2020; 43:1104-1110. [DOI: 10.1248/bpb.b20-00094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Seok-Hee Lim
- Department of Biochemistry, Wonkwang University School of Medicine
| | - Bing Si Li
- Department of Biochemistry, Wonkwang University School of Medicine
| | - Ri Zhe Zhu
- Department of Biochemistry, Wonkwang University School of Medicine
| | - Jae-Ho Seo
- Department of Biochemistry, Wonkwang University School of Medicine
| | - Byung-Min Choi
- Department of Biochemistry, Wonkwang University School of Medicine
| |
Collapse
|
149
|
Song J, Liu L, Hao K, Mao S, Tang Y, Tong X, Dai F. Resveratrol elongates the lifespan and improves antioxidant activity in the silkworm Bombyx mori. J Pharm Anal 2020; 11:374-382. [PMID: 34277125 PMCID: PMC8264380 DOI: 10.1016/j.jpha.2020.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/13/2022] Open
Abstract
A number of research has shown that the plant polyphenol resveratrol, one of the most prominent small molecules, has beneficial protective effects in multiple organisms, including worms, flies, and killifish. To understand the effects of resveratrol on lifespan, we evaluated its effects in the silkworm Bombyx mori. In this study, we found that lifespan was significantly prolonged in both female and male silkworms treated with resveratrol. Silkworm larval weight was significantly increased from day 3 of the 5th larval instar (L5D3) to day 7 of the 5th larval instar (L5D7). However, the weight of the pupa, cocoon, and total cocoon was not significantly different in female silkworms with resveratrol treatment than that in controls. Meanwhile, resveratrol significantly improved the thermotolerance of the silkworms, which enhanced their survival rate. Moreover, antioxidant activity was increased by resveratrol in both female and male silkworms. Furthermore, an antioxidant-related signalling pathway, SIRT7-FoxO-GST, was activated in silkworms with resveratrol treatment. Collectively, these results help us to understand the molecular pathways underlying resveratrol induced pro-longevity effects and indicate that silkworm is a promising animal model for evaluating the effects of lifespan-extending drugs.
Collapse
Affiliation(s)
- Jiangbo Song
- State Key Laboratory of Silkworm Genome Biology; Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs; College of Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Lian Liu
- State Key Laboratory of Silkworm Genome Biology; Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs; College of Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Kaige Hao
- State Key Laboratory of Silkworm Genome Biology; Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs; College of Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Shuang Mao
- State Key Laboratory of Silkworm Genome Biology; Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs; College of Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Yongxi Tang
- State Key Laboratory of Silkworm Genome Biology; Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs; College of Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology; Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs; College of Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology; Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs; College of Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| |
Collapse
|
150
|
Lossi L, Merighi A, Novello V, Ferrandino A. Protective Effects of Some Grapevine Polyphenols against Naturally Occurring Neuronal Death. Molecules 2020; 25:E2925. [PMID: 32630488 PMCID: PMC7356852 DOI: 10.3390/molecules25122925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
The interest in the biological properties of grapevine polyphenols (PPs) in neuroprotection is continuously growing in the hope of finding translational applications. However, there are several concerns about the specificity of action of these molecules that appear to act non-specifically on the permeability of cellular membranes. Naturally occurring neuronal death (NOND) during cerebellar maturation is a well characterized postnatal event that is very useful to investigate the death and rescue of neurons. We here aimed to establish a baseline comparative study of the potential to counteract NOND of certain grapevine PPs of interest for the oenology. To do so, we tested ex vivo the neuroprotective activity of peonidin- and malvidin-3-O-glucosides, resveratrol, polydatin, quercetin-3-O-glucoside, (+)-taxifolin, and (+)-catechin. The addition of these molecules (50 μM) to organotypic cultures of mouse cerebellum explanted at postnatal day 7, when NOND reaches a physiological peak, resulted in statistically significant (two-tailed Mann-Whitney test-p < 0.001) reductions of the density of dead cells (propidium iodide+ cells/mm2) except for malvidin-3-O-glucoside. The stilbenes were less effective in reducing cell death (to 51-60%) in comparison to flavanols, (+)-taxifolin and quercetin 3-O-glucoside (to 69-72%). Thus, molecules with a -OH group in ortho position (taxifolin, quercetin 3-O-glucoside, (+)-catechin, and peonidin 3-O-glucoside) have a higher capability to limit death of cerebellar neurons. As NOND is apoptotic, we speculate that PPs act by inhibiting executioner caspase 3.
Collapse
Affiliation(s)
- Laura Lossi
- Department of Veterinary Sciences (DSV), University of Turin, 10095 Grugliasco (TO), Italy
| | - Adalberto Merighi
- Department of Veterinary Sciences (DSV), University of Turin, 10095 Grugliasco (TO), Italy
| | - Vittorino Novello
- Department of Agricultural, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco (TO), Italy
| | - Alessandra Ferrandino
- Department of Agricultural, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco (TO), Italy
| |
Collapse
|