101
|
Ruprecht C, Vaid N, Proost S, Persson S, Mutwil M. Beyond Genomics: Studying Evolution with Gene Coexpression Networks. TRENDS IN PLANT SCIENCE 2017; 22:298-307. [PMID: 28126286 DOI: 10.1016/j.tplants.2016.12.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/06/2016] [Accepted: 12/22/2016] [Indexed: 05/08/2023]
Abstract
Understanding how genomes change as organisms become more complex is a central question in evolution. Molecular evolutionary studies typically correlate the appearance of genes and gene families with the emergence of biological pathways and morphological features. While such approaches are of great importance to understand how organisms evolve, they are also limited, as functionally related genes work together in contexts of dynamic gene networks. Since functionally related genes are often transcriptionally coregulated, gene coexpression networks present a resource to study the evolution of biological pathways. In this opinion article, we discuss recent developments in this field and how coexpression analyses can be merged with existing genomic approaches to transfer functional knowledge between species to study the appearance or extension of pathways.
Collapse
Affiliation(s)
- Colin Ruprecht
- Max-Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Neha Vaid
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Sebastian Proost
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Staffan Persson
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; ARC Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne,Parkville, VIC 3010, Australia
| | - Marek Mutwil
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
102
|
Liu Y, Wei M, Hou C, Lu T, Liu L, Wei H, Cheng Y, Wei Z. Functional Characterization of Populus PsnSHN2 in Coordinated Regulation of Secondary Wall Components in Tobacco. Sci Rep 2017; 7:42. [PMID: 28246387 PMCID: PMC5428377 DOI: 10.1038/s41598-017-00093-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/03/2017] [Indexed: 11/13/2022] Open
Abstract
Wood formation is a biological process during which the most abundant lignocellulosic biomass on earth is produced. Although a number of transcription factors have been linked to the regulation of wood formation process, none of them has been demonstrated to be a higher hierarchical regulator that coordinately regulates secondary wall biosynthesis genes. Here, we identified a Populus gene, PsnSHN2, a counterpart of the Arabidopsis AP2/ERF type transcription factor, SHINE2. PsnSHN2 is predominantly expressed in xylem tissues and acted evidently as a high hierarchical transcriptional activator. Overexpression of PsnSHN2 in tobacco significantly altered the expression of both transcription factors and biosynthesis genes involved in secondary wall formation, leading to the thickened secondary walls and the changed cell wall composition. The most significant changes occurred in the contents of cellulose and hemicellulose that increased 37% and 28%, respectively, whereas the content of lignin that decreased 34%. Furthermore, PsnSHN2 activated or repressed the promoter activities of transcription factors involved in secondary wall biosynthesis and bound to five cis-acting elements enriched in the promoter regions of these transcription factors. Taken together, our results suggest PsnSHN2 coordinately regulate secondary wall formation through selective up/down-regulation of its downstream transcription factors that control secondary wall formation.
Collapse
Affiliation(s)
- Yingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang Harbin, 150040, P.R. China
| | - Minjing Wei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang Harbin, 150040, P.R. China
| | - Cong Hou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang Harbin, 150040, P.R. China
| | - Tingting Lu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang Harbin, 150040, P.R. China
| | | | - Hairong Wei
- School of Forest Resource and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Yuxiang Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang Harbin, 150040, P.R. China.
| | - Zhigang Wei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang Harbin, 150040, P.R. China.
| |
Collapse
|
103
|
Lion C, Simon C, Huss B, Blervacq AS, Tirot L, Toybou D, Spriet C, Slomianny C, Guerardel Y, Hawkins S, Biot C. BLISS: A Bioorthogonal Dual-Labeling Strategy to Unravel Lignification Dynamics in Plants. Cell Chem Biol 2017; 24:326-338. [DOI: 10.1016/j.chembiol.2017.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/15/2016] [Accepted: 02/01/2017] [Indexed: 01/11/2023]
|
104
|
Hussain RM, Ali M, Feng X, Li X. The essence of NAC gene family to the cultivation of drought-resistant soybean (Glycine max L. Merr.) cultivars. BMC PLANT BIOLOGY 2017; 17:55. [PMID: 28241800 PMCID: PMC5330122 DOI: 10.1186/s12870-017-1001-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/13/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND The NAC gene family is notable due to its large size, as well as its relevance in crop cultivation - particularly in terms of enhancing stress tolerance of plants. These plant-specific proteins contain NAC domain(s) that are named after Petunia NAM and Arabidopsis ATAF1/2 and CUC2 transcription factors based on the consensus sequence they have. Despite the knowledge available regarding NAC protein function, an extensive study on the possible use of GmNACs in developing soybean cultivars with superior drought tolerance is yet to be done. RESULTS In response to this, our study was carried out, mainly through means of phylogenetic analysis (rice and Arabidopsis NAC genes served as seeding sequences). Through this, 139 GmNAC genes were identified and later grouped into 17 clusters. Furthermore, real-time quantitative PCR was carried out on drought-stressed and unstressed leaf tissues of both sensitive (B217 and H228) and tolerant (Jindou 74 and 78) cultivars. This was done to analyze the gene expression of 28 dehydration-responsive GmNAC genes. Upon completing the analysis, it was found that GmNAC gene expression is actually dependent on genotype. Eight of the 28 selected genes (GmNAC004, GmNAC021, GmNAC065, GmNAC066, GmNAC073, GmNAC082, GmNAC083 and GmNAC087) were discovered to have high expression levels in the drought-resistant soybean varieties tested. This holds true for both extreme and standard drought conditions. Alternatively, the drought-sensitive cultivars exhibited lower GmNAC expression levels in comparison to their tolerant counterparts. CONCLUSION The study allowed for the identification of eight GmNAC genes that could be focused upon in future attempts to develop superior soybean varieties, particularly in terms of drought resistance. This study revealed that there were more dehydration-responsive GmNAC genes as (GmNAC004, GmNAC005, GmNAC020 and GmNAC021) in addition to what were reported in earlier inquiries. It is important to note though, that discovering such notable genes is not the only goal of the study. It managed to put emphasis on the significance of further understanding the potential of soybean GmNAC genes, for the purpose of enhancing tolerance towards abiotic stress in general. This scientific inquiry has also revealed that cultivar genotypes tend to differ in their drought-induced gene expression.
Collapse
Affiliation(s)
- Reem M Hussain
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Tishreen University, Faculty of Agriculture, Crop Field Department, Tishreen University, Lattakia, Syria.
| | - Mohammed Ali
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xing Feng
- National Key Lab of Crop Genetic Improvement, College of Life science and Technology, Bioinformatics Lab, Huazhong Agriculture University, Wuhan, 430070, Hubei, People's Republic of China
| | - Xia Li
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
105
|
Tak H, Negi S, Ganapathi TR. Overexpression of MusaMYB31, a R2R3 type MYB transcription factor gene indicate its role as a negative regulator of lignin biosynthesis in banana. PLoS One 2017; 12:e0172695. [PMID: 28234982 PMCID: PMC5325293 DOI: 10.1371/journal.pone.0172695] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/08/2017] [Indexed: 12/03/2022] Open
Abstract
Lignin and polyphenols are important cellular components biosynthesized through phenylpropanoid pathway. Phenylpropanoid pathway in plants is regulated by some important transcription factors including R2R3 MYB transcription factors. In this study, we report the cloning and functional characterization of a banana R2R3-MYB transcription factor (MusaMYB31) by overexpression in transgenic banana plants and evaluated its potential role in regulating biosynthesis of lignin and polyphenols. Sequence analysis of MusaMYB31 indicated its clustering with members of subgroup 4 (Sg4) of R2R3MYB family which are well known for their role as repressors of lignin biosynthesis. Expression analysis indicated higher expression of MusaMYB31 in corm and root tissue, known for presence of highly lignified tissue than other organs of banana. Overexpression of MusaMYB31 in banana cultivar Rasthali was carried out and four transgenic lines were confirmed by GUS histochemical staining, PCR analysis and Southern blot. Histological and biochemical analysis suggested reduction of cell wall lignin in vascular elements of banana. Transgenic lines showed alteration in transcript levels of general phenylpropanoid pathway genes including lignin biosynthesis pathway genes. Reduction of total polyphenols content in transgenic lines was in line with the observation related to repression of general phenylpropanoid pathway genes. This study suggested the potential role of MusaMYB31 as repressor of lignin and polyphenols biosynthesis in banana.
Collapse
Affiliation(s)
- Himanshu Tak
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
| | - Sanjana Negi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
| | - T. R. Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| |
Collapse
|
106
|
PtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynthesis during wood formation in poplar. Sci Rep 2017; 7:41209. [PMID: 28117379 PMCID: PMC5259741 DOI: 10.1038/srep41209] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/16/2016] [Indexed: 01/18/2023] Open
Abstract
Some R2R3 MYB transcription factors have been shown to be major regulators of phenylpropanoid biosynthetic pathway and impact secondary wall formation in plants. In this study, we describe the functional characterization of PtoMYB156, encoding a R2R3-MYB transcription factor, from Populus tomentosa. Expression pattern analysis showed that PtoMYB156 is widely expressed in all tissues examined, but predominantly in leaves and developing wood cells. PtoMYB156 localized to the nucleus and acted as a transcriptional repressor. Overexpression of PtoMYB156 in poplar repressed phenylpropanoid biosynthetic genes, leading to a reduction in the amounts of total phenolic and flavonoid compounds. Transgenic plants overexpressing PtoMYB156 also displayed a dramatic decrease in secondary wall thicknesses of xylem fibers and the content of cellulose, lignin and xylose compared with wild-type plants. Transcript accumulation of secondary wall biosynthetic genes was down-regulated by PtoMYB156 overexpression. Transcriptional activation assays revealed that PtoMYB156 was able to repress the promoter activities of poplar CESA17, C4H2 and GT43B. By contrast, knockout of PtoMYB156 by CRISPR/Cas9 in poplar resulted in ectopic deposition of lignin, xylan and cellulose during secondary cell wall formation. Taken together, these results show that PtoMYB156 may repress phenylpropanoid biosynthesis and negatively regulate secondary cell wall formation in poplar.
Collapse
|
107
|
Hradilová I, Trněný O, Válková M, Cechová M, Janská A, Prokešová L, Aamir K, Krezdorn N, Rotter B, Winter P, Varshney RK, Soukup A, Bednář P, Hanáček P, Smýkal P. A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea ( Pisum sp.). FRONTIERS IN PLANT SCIENCE 2017; 8:542. [PMID: 28487704 PMCID: PMC5404241 DOI: 10.3389/fpls.2017.00542] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/27/2017] [Indexed: 05/19/2023]
Abstract
The origin of the agriculture was one of the turning points in human history, and a central part of this was the evolution of new plant forms, domesticated crops. Seed dispersal and germination are two key traits which have been selected to facilitate cultivation and harvesting of crops. The objective of this study was to analyze anatomical structure of seed coat and pod, identify metabolic compounds associated with water-impermeable seed coat and differentially expressed genes involved in pea seed dormancy and pod dehiscence. Comparative anatomical, metabolomics, and transcriptomic analyses were carried out on wild dormant, dehiscent Pisum elatius (JI64, VIR320) and cultivated, indehiscent Pisum sativum non-dormant (JI92, Cameor) and recombinant inbred lines (RILs). Considerable differences were found in texture of testa surface, length of macrosclereids, and seed coat thickness. Histochemical and biochemical analyses indicated genotype related variation in composition and heterogeneity of seed coat cell walls within macrosclereids. Liquid chromatography-electrospray ionization/mass spectrometry and Laser desorption/ionization-mass spectrometry of separated seed coats revealed significantly higher contents of proanthocyanidins (dimer and trimer of gallocatechin), quercetin, and myricetin rhamnosides and hydroxylated fatty acids in dormant compared to non-dormant genotypes. Bulk Segregant Analysis coupled to high throughput RNA sequencing resulted in identification of 770 and 148 differentially expressed genes between dormant and non-dormant seeds or dehiscent and indehiscent pods, respectively. The expression of 14 selected dormancy-related genes was studied by qRT-PCR. Of these, expression pattern of four genes: porin (MACE-S082), peroxisomal membrane PEX14-like protein (MACE-S108), 4-coumarate CoA ligase (MACE-S131), and UDP-glucosyl transferase (MACE-S139) was in agreement in all four genotypes with Massive analysis of cDNA Ends (MACE) data. In case of pod dehiscence, the analysis of two candidate genes (SHATTERING and SHATTERPROOF) and three out of 20 MACE identified genes (MACE-P004, MACE-P013, MACE-P015) showed down-expression in dorsal and ventral pod suture of indehiscent genotypes. Moreover, MACE-P015, the homolog of peptidoglycan-binding domain or proline-rich extensin-like protein mapped correctly to predicted Dpo1 locus on PsLGIII. This integrated analysis of the seed coat in wild and cultivated pea provides new insight as well as raises new questions associated with domestication and seed dormancy and pod dehiscence.
Collapse
Affiliation(s)
- Iveta Hradilová
- Department of Botany, Palacký University in OlomoucOlomouc, Czechia
| | - Oldřich Trněný
- Department of Plant Biology, Mendel University in BrnoBrno, Czechia
- Agricultural Research, Ltd.Troubsko, Czechia
| | - Markéta Válková
- Department of Analytical Chemistry, Regional Centre of Advanced Technologies and Materials, Palacký University in OlomoucOlomouc, Czechia
- Faculty of Science, Palacký University in OlomoucOlomouc, Czechia
| | - Monika Cechová
- Department of Analytical Chemistry, Regional Centre of Advanced Technologies and Materials, Palacký University in OlomoucOlomouc, Czechia
- Faculty of Science, Palacký University in OlomoucOlomouc, Czechia
| | - Anna Janská
- Department of Experimental Plant Biology, Charles UniversityPrague, Czechia
| | - Lenka Prokešová
- Department of Crop Science, Breeding and Plant Medicine, Mendel University in BrnoBrno, Czechia
| | - Khan Aamir
- Research Program-Genetic Gains, ICRISATHyderabad, India
| | | | | | | | | | - Aleš Soukup
- Department of Experimental Plant Biology, Charles UniversityPrague, Czechia
| | - Petr Bednář
- Department of Analytical Chemistry, Regional Centre of Advanced Technologies and Materials, Palacký University in OlomoucOlomouc, Czechia
- Faculty of Science, Palacký University in OlomoucOlomouc, Czechia
| | - Pavel Hanáček
- Department of Plant Biology, Mendel University in BrnoBrno, Czechia
| | - Petr Smýkal
- Department of Botany, Palacký University in OlomoucOlomouc, Czechia
- *Correspondence: Petr Smýkal
| |
Collapse
|
108
|
Wang L, Hu X, Jiao C, Li Z, Fei Z, Yan X, Liu C, Wang Y, Wang X. Transcriptome analyses of seed development in grape hybrids reveals a possible mechanism influencing seed size. BMC Genomics 2016; 17:898. [PMID: 27829355 PMCID: PMC5103508 DOI: 10.1186/s12864-016-3193-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/22/2016] [Indexed: 11/30/2022] Open
Abstract
Background Seedlessness in grape (Vitis vinifera) is of considerable commercial importance for both the table grape and processing industries. Studies to date of grape seed development have been made certain progress, but many key genes have yet to be identified and characterized. Results In this study we analyzed the seed transcriptomes of progeny derived from the V. vinifera seeded maternal parent ‘Red Globe’ and the seedless paternal parent ‘Centennial seedless’ to identify genes associated with seedlessness. A total of 6,607 differentially expressed genes (DEGs) were identified and examined from multiple perspectives, including expression patterns, Gene Ontology (GO) annotations, pathway enrichment, inferred hormone influence and epigenetic regulation. The expression data of hormone-related genes and hormone level measurement reveals the differences during seed development between seedless and seeded progeny. Based on both our results and previous studies of A. thaliana seed development, we generated network maps of grape seed-related DEGs, with particular reference to hormone balance, seed coat and endosperm development, and seed identity complexes. Conclusion In summary, the major differences identified during seed development of seedless and seeded progeny were associated with hormone and epigenetic regulation, the development of the seed coat and endosperm, and the formation of seed identity complexes. Overall the data provides insights into the possible molecular mechanism controlling grape seed size, which is of great importance for both basic research and future translation applications in the grape industry. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3193-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoyan Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
| | - Xiaoxiao Yan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China. .,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
109
|
Chezem WR, Clay NK. Regulation of plant secondary metabolism and associated specialized cell development by MYBs and bHLHs. PHYTOCHEMISTRY 2016; 131:26-43. [PMID: 27569707 PMCID: PMC5048601 DOI: 10.1016/j.phytochem.2016.08.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 08/10/2016] [Accepted: 08/15/2016] [Indexed: 05/20/2023]
Abstract
Plants are unrivaled in the natural world in both the number and complexity of secondary metabolites they produce, and the ubiquitous phenylpropanoids and the lineage-specific glucosinolates represent two such large and chemically diverse groups. Advances in genome-enabled biochemistry and metabolomic technologies have greatly increased the understanding of their metabolic networks in diverse plant species. There also has been some progress in elucidating the gene regulatory networks that are key to their synthesis, accumulation and function. This review highlights what is currently known about the gene regulatory networks and the stable sub-networks of transcription factors at their cores that regulate the production of these plant secondary metabolites and the differentiation of specialized cell types that are equally important to their defensive function. Remarkably, some of these core components are evolutionarily conserved between secondary metabolism and specialized cell development and across distantly related plant species. These findings suggest that the more ancient gene regulatory networks for the differentiation of fundamental cell types may have been recruited and remodeled for the generation of the vast majority of plant secondary metabolites and their specialized tissues.
Collapse
Affiliation(s)
- William R Chezem
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, USA.
| | - Nicole K Clay
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
110
|
Chen J, Xie J, Chen B, Quan M, Li Y, Li B, Zhang D. Genetic variations and miRNA-target interactions contribute to natural phenotypic variations in Populus. THE NEW PHYTOLOGIST 2016; 212:150-60. [PMID: 27265357 DOI: 10.1111/nph.14040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/28/2016] [Indexed: 05/22/2023]
Abstract
Variation in regulatory factors, including microRNAs (miRNAs), contributes to variation in quantitative and complex traits. However, in plants, variants in miRNAs and their target genes that contribute to natural phenotypic variation, and the underlying regulatory networks, remain poorly characterized. We investigated the associations and interactions of single-nucleotide polymorphisms (SNPs) in miRNAs and their target genes with phenotypes in 435 individuals from a natural population of Populus. We used RNA-seq to identify 217 miRNAs differentially expressed in a tension wood system, and identified 1196 candidate target genes; degradome sequencing confirmed 60 of the target sites. In addition, 72 miRNA-target pairs showed significant co-expression. Gene ontology (GO) term analysis showed that most of the genes in the co-regulated pairs participate in biological regulation. Genome resequencing found 5383 common SNPs (frequency ≥ 0.05) in 139 miRNAs and 31 037 SNPs in 819 target genes. Single-SNP association analyses identified 232 significant associations between wood traits (P ≤ 0.05) and SNPs in 102 miRNAs and 1387 associations with 478 target genes. Among these, 102 miRNA-target pairs associated with the same traits. Multi-SNP associations found 102 epistatic pairs associated with traits. Furthermore, a reconstructed regulatory network contained 12 significantly co-expressed pairs, including eight miRNAs and nine targets associated with traits. Lastly, both expression and genetic association showed that miR156i, miR156j, miR396a and miR6445b were involved in the formation of tension wood. This study shows that variants in miRNAs and target genes contribute to natural phenotypic variation and annotated roles and interactions of miRNAs and their target genes by genetic association analysis.
Collapse
Affiliation(s)
- Jinhui Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Jianbo Xie
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Beibei Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Mingyang Quan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Ying Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Bailian Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Department of Forestry, North Carolina State University, Raleigh, NC, 27695-8203, USA
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
111
|
Verdaguer R, Soler M, Serra O, Garrote A, Fernández S, Company-Arumí D, Anticó E, Molinas M, Figueras M. Silencing of the potato StNAC103 gene enhances the accumulation of suberin polyester and associated wax in tuber skin. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5415-5427. [PMID: 27520790 PMCID: PMC5049391 DOI: 10.1093/jxb/erw305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Suberin and wax deposited in the cork (phellem) layer of the periderm form the lipophilic barrier that protects mature plant organs. Periderm lipids have been widely studied for their protective function with regards to dehydration and for how they respond to environmental stresses and wounding. However, despite advances in the biosynthetic pathways of suberin and associated wax, little is known about the regulation of their deposition. Here, we report on a potato NAC transcription factor gene, StNAC103, induced in the tuber phellem (skin). The StNAC103 promoter is active in cells undergoing suberization such as in the basal layer of the phellem, but also in the root apical meristem. Gene silencing in potato periderm correlates with an increase in the suberin and wax load, and specifically in alkanes, ω-hydroxyacids, diacids, ferulic acid, and primary alcohols. Concomitantly, silenced lines also showed up-regulation of key genes related to the biosynthesis and transport of suberin and wax in the tuber periderm. Taken together, our results suggest that StNAC103 has a role in the tight regulation of the formation of apoplastic barriers and is, to the best of our knowledge, the first candidate gene to be identified as being involved in the repression of suberin and wax deposition.
Collapse
Affiliation(s)
- Roger Verdaguer
- Laboratori del Suro, Biology Department, Campus Montilivi, E-17071 Girona, Catalonia, Spain
| | - Marçal Soler
- Laboratori del Suro, Biology Department, Campus Montilivi, E-17071 Girona, Catalonia, Spain Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617, Auzeville, 31326 Castanet Tolosan, France
| | - Olga Serra
- Laboratori del Suro, Biology Department, Campus Montilivi, E-17071 Girona, Catalonia, Spain
| | - Aïda Garrote
- Laboratori del Suro, Biology Department, Campus Montilivi, E-17071 Girona, Catalonia, Spain
| | - Sandra Fernández
- Laboratori del Suro, Biology Department, Campus Montilivi, E-17071 Girona, Catalonia, Spain
| | - Dolors Company-Arumí
- Laboratori del Suro, Biology Department, Campus Montilivi, E-17071 Girona, Catalonia, Spain
| | - Enriqueta Anticó
- Chemistry Department, Faculty of Sciences, University of Girona, Campus Montilivi, E-17071 Girona, Catalonia, Spain
| | - Marisa Molinas
- Laboratori del Suro, Biology Department, Campus Montilivi, E-17071 Girona, Catalonia, Spain
| | - Mercè Figueras
- Laboratori del Suro, Biology Department, Campus Montilivi, E-17071 Girona, Catalonia, Spain
| |
Collapse
|
112
|
Wang G, Zhang S, Ma X, Wang Y, Kong F, Meng Q. A stress-associated NAC transcription factor (SlNAC35) from tomato plays a positive role in biotic and abiotic stresses. PHYSIOLOGIA PLANTARUM 2016; 158:45-64. [PMID: 26991441 DOI: 10.1111/ppl.12444] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/21/2016] [Accepted: 02/11/2016] [Indexed: 05/21/2023]
Abstract
The NAC transcription factor family participates in responses to various kinds of environmental stimuli in plants. Responses of NAC genes to abiotic stresses have been widely studied, but their functions in response to biotic stress are little reported in plants, especially in crops. In the present study, we examined the functions of a novel tomato (Solanum lycopersicum) NAC protein (SlNAC35) in abiotic and biotic stress resistance by using transgenic tobacco. Expression analysis found that SlNAC35 expression was induced by drought stress, salt stress, bacterial pathogen, and signaling molecules, suggesting its involvement in plant responses to biotic and abiotic stimuli. Moreover, transgenic lines exhibited a greater number of lateral roots and longer root length compared with Vec lines (empty vector lines) after drought and salt treatment. These results indicate that overexpression of SlNAC35 promoted root growth and development under drought and salt stresses. Higher expressions of NtARF1, NtARF2 and NtARF8 were observed under drought and salt stresses in transgenic lines, suggesting that overexpression of SlNAC35 promoted growth and development of roots in transgenic lines possibly by involving auxin signaling and by regulating NtARF expression. In addition, SlNAC35 overexpression improved resistance to bacterial pathogen in transgenic tobacco, and reactive oxygen species may be in the upstream of salicylic acid (SA) signaling in transgenic tobacco during defense response.
Collapse
Affiliation(s)
- Guodong Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, P. R. China
| | - Song Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, P. R. China
| | - Xiaocui Ma
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, P. R. China
| | - Yong Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, P. R. China
| | - Fanying Kong
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, P. R. China
| | - Qingwei Meng
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, P. R. China
| |
Collapse
|
113
|
Chen J, Jing Y, Zhang X, Li L, Wang P, Zhang S, Zhou H, Wu J. Evolutionary and Expression Analysis Provides Evidence for the Plant Glutamate-like Receptors Family is Involved in Woody Growth-related Function. Sci Rep 2016; 6:32013. [PMID: 27554066 PMCID: PMC4995503 DOI: 10.1038/srep32013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 08/01/2016] [Indexed: 01/10/2023] Open
Abstract
Glutamate-like receptors (GLRs) is a highly conserved family of ligand-gated ion channels, which have been associated with various physiological and developmental processes. Here, we investigated the evolutionary pattern of GLRs in plants. We observed that tandem duplications occupied the largest proportion of the plant GLR gene family expansion. Based on a phylogenetic tree, we suggested a new subfamily, GLR4, which is widespread in angiosperm but absence on Brassicales. Meanwhile, because GLR1 and GLR2 subfamilies were potential sister clades, we combined them into the GLR1&2 subfamily. A comparative analysis of plant GLR subfamilies revealed that selective forces shaped the GLR1&2 repertoires in the stems of eudicotyledons with distinct functional preferences. Moreover, GLR1&2 formed a species-specific highwoody-expanded subfamily, with preferential expression in the cambial-enriched and shoot apical meristem fractions of the highwood species. Together, these findings lay the foundation for evolutionary analysis of plant GLRs over the entire plant timescale and identified unique targets for manipulating the woody-growth behaviours of plant GLRs.
Collapse
Affiliation(s)
- Jianqing Chen
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinghui Jing
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyue Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Leiting Li
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongsheng Zhou
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Juyou Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
114
|
Xu H, Cao D, Feng J, Wu H, Lin J, Wang Y. Transcriptional regulation of vascular cambium activity during the transition from juvenile to mature stages in Cunninghamia lanceolata. JOURNAL OF PLANT PHYSIOLOGY 2016; 200:7-17. [PMID: 27317969 DOI: 10.1016/j.jplph.2016.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/09/2016] [Accepted: 06/01/2016] [Indexed: 06/06/2023]
Abstract
Cunninghamia lanceolata (Lamb.) Hook., an evergreen conifer distributed in southern China, has been recognized as the most commercially important timber species due to its rapid growth. However, the molecular mechanisms underlying growth alternation due to vascular cambium activity are poorly understood. Here, we used cryosectioning to isolate the vascular cambium tissue of C. lanceolata at three stages, namely, juvenile, transition and mature (3-, 13-, and 35-year-old trees respectively) for transcriptome-wide analysis. Through assembling and annotation of transcripts, 108,767 unigenes and some potential growth-regulated genes were identified. A total of 5213, 4873 and 2541 differentially expressed genes (DEGs) were identified in the three stages. DEGs related to cambial activity, cell division and cell wall modification were detected at various developmental stages of the vascular cambium. In addition, some putative genes involved in plant hormone biosynthesis were also differentially regulated. These results indicate that various cambium-related molecular activities result in alterations in the growth of C. lanceolata, particularly during the transition from juvenile to mature stages. The findings of the present study improve our understanding of cambium development and may aid in studies of the molecular mechanisms of wood production and provide fundamental insights into the establishment of the optimal rotation period for silvicultural trees.
Collapse
Affiliation(s)
- Huimin Xu
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Dechang Cao
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jinling Feng
- College of Forestry, Fujian Agriculture and Forestry University, Fujian 350002, China
| | - Hongyang Wu
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yanwei Wang
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
115
|
Pascual MB, El-Azaz J, de la Torre FN, Cañas RA, Avila C, Cánovas FM. Biosynthesis and Metabolic Fate of Phenylalanine in Conifers. FRONTIERS IN PLANT SCIENCE 2016; 7:1030. [PMID: 27468292 PMCID: PMC4942462 DOI: 10.3389/fpls.2016.01030] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/30/2016] [Indexed: 05/18/2023]
Abstract
The amino acid phenylalanine (Phe) is a critical metabolic node that plays an essential role in the interconnection between primary and secondary metabolism in plants. Phe is used as a protein building block but it is also as a precursor for numerous plant compounds that are crucial for plant reproduction, growth, development, and defense against different types of stresses. The metabolism of Phe plays a central role in the channeling of carbon from photosynthesis to the biosynthesis of phenylpropanoids. The study of this metabolic pathway is particularly relevant in trees, which divert large amounts of carbon into the biosynthesis of Phe-derived compounds, particularly lignin, an important constituent of wood. The trunks of trees are metabolic sinks that consume a considerable percentage of carbon and energy from photosynthesis, and carbon is finally immobilized in wood. This paper reviews recent advances in the biosynthesis and metabolic utilization of Phe in conifer trees. Two alternative routes have been identified: the ancient phenylpyruvate pathway that is present in microorganisms, and the arogenate pathway that possibly evolved later during plant evolution. Additionally, an efficient nitrogen recycling mechanism is required to maintain sustained growth during xylem formation. The relevance of phenylalanine metabolic pathways in wood formation, the biotic interactions, and ultraviolet protection is discussed. The genetic manipulation and transcriptional regulation of the pathways are also outlined.
Collapse
Affiliation(s)
| | | | | | | | | | - Francisco M. Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de MálagaMálaga, Spain
| |
Collapse
|
116
|
Plasencia A, Soler M, Dupas A, Ladouce N, Silva-Martins G, Martinez Y, Lapierre C, Franche C, Truchet I, Grima-Pettenati J. Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1381-93. [PMID: 26579999 DOI: 10.1111/pbi.12502] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/02/2015] [Accepted: 10/17/2015] [Indexed: 05/26/2023]
Abstract
Eucalyptus are of tremendous economic importance being the most planted hardwoods worldwide for pulp and paper, timber and bioenergy. The recent release of the Eucalyptus grandis genome sequence pointed out many new candidate genes potentially involved in secondary growth, wood formation or lineage-specific biosynthetic pathways. Their functional characterization is, however, hindered by the tedious, time-consuming and inefficient transformation systems available hitherto for eucalypts. To overcome this limitation, we developed a fast, reliable and efficient protocol to obtain and easily detect co-transformed E. grandis hairy roots using fluorescent markers, with an average efficiency of 62%. We set up conditions both to cultivate excised roots in vitro and to harden composite plants and verified that hairy root morphology and vascular system anatomy were similar to wild-type ones. We further demonstrated that co-transformed hairy roots are suitable for medium-throughput functional studies enabling, for instance, protein subcellular localization, gene expression patterns through RT-qPCR and promoter expression, as well as the modulation of endogenous gene expression. Down-regulation of the Eucalyptus cinnamoyl-CoA reductase1 (EgCCR1) gene, encoding a key enzyme in lignin biosynthesis, led to transgenic roots with reduced lignin levels and thinner cell walls. This gene was used as a proof of concept to demonstrate that the function of genes involved in secondary cell wall biosynthesis and wood formation can be elucidated in transgenic hairy roots using histochemical, transcriptomic and biochemical approaches. The method described here is timely because it will accelerate gene mining of the genome for both basic research and industry purposes.
Collapse
Affiliation(s)
- Anna Plasencia
- UMR5546, Toulouse III Paul Sabatier University-CNRS, Plant Research Laboratory (LRSV), Castanet Tolosan, France
| | - Marçal Soler
- UMR5546, Toulouse III Paul Sabatier University-CNRS, Plant Research Laboratory (LRSV), Castanet Tolosan, France
| | - Annabelle Dupas
- UMR5546, Toulouse III Paul Sabatier University-CNRS, Plant Research Laboratory (LRSV), Castanet Tolosan, France
| | - Nathalie Ladouce
- UMR5546, Toulouse III Paul Sabatier University-CNRS, Plant Research Laboratory (LRSV), Castanet Tolosan, France
| | - Guilherme Silva-Martins
- UMR5546, Toulouse III Paul Sabatier University-CNRS, Plant Research Laboratory (LRSV), Castanet Tolosan, France
| | - Yves Martinez
- FRAIB, CNRS, Cell Imaging Plateform, Castanet Tolosan, France
| | - Catherine Lapierre
- INRA/AgroParisTech, UMR1318, Saclay Plant Science, Jean-Pierre Bourgin Institute (IJPB), Versailles, France
| | | | - Isabelle Truchet
- UMR5546, Toulouse III Paul Sabatier University-CNRS, Plant Research Laboratory (LRSV), Castanet Tolosan, France
| | - Jacqueline Grima-Pettenati
- UMR5546, Toulouse III Paul Sabatier University-CNRS, Plant Research Laboratory (LRSV), Castanet Tolosan, France
| |
Collapse
|
117
|
Arun-Chinnappa KS, McCurdy DW. Identification of Candidate Transcriptional Regulators of Epidermal Transfer Cell Development in Vicia faba Cotyledons. FRONTIERS IN PLANT SCIENCE 2016; 7:717. [PMID: 27252730 PMCID: PMC4879131 DOI: 10.3389/fpls.2016.00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/10/2016] [Indexed: 05/08/2023]
Abstract
Transfer cells (TCs) are anatomically-specialized cells formed at apoplasmic-symplasmic bottlenecks in nutrient transport pathways in plants. TCs form invaginated wall ingrowths which provide a scaffold to amplify plasma membrane surface area and thus increase the density of nutrient transporters required to achieve enhanced nutrient flow across these bottlenecks. Despite their importance to nutrient transport in plants, little is known of the transcriptional regulation of wall ingrowth formation. Here, we used RNA-Seq to identify transcription factors putatively involved in regulating epidermal TC development in cotyledons of Vicia faba. Comparing cotyledons cultured for 0, 3, 9, and 24 h to induce trans-differentiation of epidermal TCs identified 43 transcription factors that showed either epidermal-specific or epidermal-enhanced expression, and 10 that showed epidermal-specific down regulation. Members of the WRKY and ethylene-responsive families were prominent in the cohort of transcription factors showing epidermal-specific or epidermal-enhanced expression, consistent with the initiation of TC development often representing a response to stress. Members of the MYB family were also prominent in these categories, including orthologs of MYB genes involved in localized secondary wall deposition in Arabidopsis thaliana. Among the group of transcription factors showing down regulation were various homeobox genes and members of the MADs-box and zinc-finger families of poorly defined functions. Collectively, this study identified several transcription factors showing expression characteristics and orthologous functions that indicate likely participation in transcriptional regulation of epidermal TC development in V. faba cotyledons.
Collapse
Affiliation(s)
| | - David W. McCurdy
- Centre for Plant Science, School of Environmental and Life Sciences, The University of NewcastleCallaghan, NSW, Australia
| |
Collapse
|
118
|
Li LF, Olsen KM. To Have and to Hold: Selection for Seed and Fruit Retention During Crop Domestication. Curr Top Dev Biol 2016; 119:63-109. [PMID: 27282024 DOI: 10.1016/bs.ctdb.2016.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Crop domestication provides a useful model system to characterize the molecular and developmental bases of morphological variation in plants. Among the most universal changes resulting from selection during crop domestication is the loss of seed and fruit dispersal mechanisms, which greatly facilitates harvesting efficiency. In this review, we consider the molecular genetic and developmental bases of the loss of seed shattering and fruit dispersal in six major crop plant families, three of which are primarily associated with seed crops (Poaceae, Brassicaceae, Fabaceae) and three of which are associated with fleshy-fruited crops (Solanaceae, Rosaceae, Rutaceae). We find that the developmental basis of the loss of seed/fruit dispersal is conserved in a number of independently domesticated crops, indicating the widespread occurrence of developmentally convergent evolution in response to human selection. With regard to the molecular genetic approaches used to characterize the basis of this trait, traditional biparental quantitative trait loci mapping remains the most commonly used strategy; however, recent advances in next-generation sequencing technologies are now providing new avenues to map and characterize loss of shattering/dispersal alleles. We anticipate that continued application of these approaches, together with candidate gene analyses informed by known shattering candidate genes from other crops, will lead to a rapid expansion of our understanding of this critical domestication trait.
Collapse
Affiliation(s)
- L-F Li
- Washington University in St. Louis, St. Louis, MO, United States; Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, PR China.
| | - K M Olsen
- Washington University in St. Louis, St. Louis, MO, United States.
| |
Collapse
|
119
|
Lamara M, Raherison E, Lenz P, Beaulieu J, Bousquet J, MacKay J. Genetic architecture of wood properties based on association analysis and co-expression networks in white spruce. THE NEW PHYTOLOGIST 2016; 210:240-55. [PMID: 26619072 PMCID: PMC5063130 DOI: 10.1111/nph.13762] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/13/2015] [Indexed: 05/02/2023]
Abstract
Association studies are widely utilized to analyze complex traits but their ability to disclose genetic architectures is often limited by statistical constraints, and functional insights are usually minimal in nonmodel organisms like forest trees. We developed an approach to integrate association mapping results with co-expression networks. We tested single nucleotide polymorphisms (SNPs) in 2652 candidate genes for statistical associations with wood density, stiffness, microfibril angle and ring width in a population of 1694 white spruce trees (Picea glauca). Associations mapping identified 229-292 genes per wood trait using a statistical significance level of P < 0.05 to maximize discovery. Over-representation of genes associated for nearly all traits was found in a xylem preferential co-expression group developed in independent experiments. A xylem co-expression network was reconstructed with 180 wood associated genes and several known MYB and NAC regulators were identified as network hubs. The network revealed a link between the gene PgNAC8, wood stiffness and microfibril angle, as well as considerable within-season variation for both genetic control of wood traits and gene expression. Trait associations were distributed throughout the network suggesting complex interactions and pleiotropic effects. Our findings indicate that integration of association mapping and co-expression networks enhances our understanding of complex wood traits.
Collapse
Affiliation(s)
- Mebarek Lamara
- Forest Research Centre, and Institute for System and Integrative BiologyUniversité LavalQuébecQCG1V 0A6Canada
| | - Elie Raherison
- Forest Research Centre, and Institute for System and Integrative BiologyUniversité LavalQuébecQCG1V 0A6Canada
| | - Patrick Lenz
- Forest Research Centre, and Institute for System and Integrative BiologyUniversité LavalQuébecQCG1V 0A6Canada
- Canadian Wood Fibre CentreCanadian Forest ServiceNatural Resources CanadaQuébecQCG1V 4C7Canada
| | - Jean Beaulieu
- Forest Research Centre, and Institute for System and Integrative BiologyUniversité LavalQuébecQCG1V 0A6Canada
- Canadian Wood Fibre CentreCanadian Forest ServiceNatural Resources CanadaQuébecQCG1V 4C7Canada
- Canada Research Chair in Forest and Environmental GenomicsUniversité LavalQuébecQCG1V 0A6Canada
| | - Jean Bousquet
- Forest Research Centre, and Institute for System and Integrative BiologyUniversité LavalQuébecQCG1V 0A6Canada
- Canada Research Chair in Forest and Environmental GenomicsUniversité LavalQuébecQCG1V 0A6Canada
| | - John MacKay
- Forest Research Centre, and Institute for System and Integrative BiologyUniversité LavalQuébecQCG1V 0A6Canada
- Department of Plant SciencesUniversity of OxfordOxford0X1 3RBUK
| |
Collapse
|
120
|
Rui Y, Anderson CT. Functional Analysis of Cellulose and Xyloglucan in the Walls of Stomatal Guard Cells of Arabidopsis. PLANT PHYSIOLOGY 2016; 170:1398-419. [PMID: 26729799 PMCID: PMC4775103 DOI: 10.1104/pp.15.01066] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 01/03/2016] [Indexed: 05/18/2023]
Abstract
Stomatal guard cells are pairs of specialized epidermal cells that control water and CO2 exchange between the plant and the environment. To fulfill the functions of stomatal opening and closure that are driven by changes in turgor pressure, guard cell walls must be both strong and flexible, but how the structure and dynamics of guard cell walls enable stomatal function remains poorly understood. To address this question, we applied cell biological and genetic analyses to investigate guard cell walls and their relationship to stomatal function in Arabidopsis (Arabidopsis thaliana). Using live-cell spinning disk confocal microscopy, we measured the motility of cellulose synthase (CESA)-containing complexes labeled by green fluorescent protein (GFP)-CESA3 and observed a reduced proportion of GFP-CESA3 particles colocalizing with microtubules upon stomatal closure. Imaging cellulose organization in guard cells revealed a relatively uniform distribution of cellulose in the open state and a more fibrillar pattern in the closed state, indicating that cellulose microfibrils undergo dynamic reorganization during stomatal movements. In cesa3(je5) mutants defective in cellulose synthesis and xxt1 xxt2 mutants lacking the hemicellulose xyloglucan, stomatal apertures, changes in guard cell length, and cellulose reorganization were aberrant during fusicoccin-induced stomatal opening or abscisic acid-induced stomatal closure, indicating that sufficient cellulose and xyloglucan are required for normal guard cell dynamics. Together, these results provide new insights into how guard cell walls allow stomata to function as responsive mediators of gas exchange at the plant surface.
Collapse
Affiliation(s)
- Yue Rui
- Department of Biology (Y.R., C.T.A.) and Center for Lignocellulose Structure and Formation (C.T.A.), Pennsylvania State University, University Park, Pennsylvania 16802
| | - Charles T Anderson
- Department of Biology (Y.R., C.T.A.) and Center for Lignocellulose Structure and Formation (C.T.A.), Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
121
|
Zhang Q, Zhang X, Pettolino F, Zhou G, Li C. Changes in cell wall polysaccharide composition, gene transcription and alternative splicing in germinating barley embryos. JOURNAL OF PLANT PHYSIOLOGY 2016; 191:127-139. [PMID: 26788957 DOI: 10.1016/j.jplph.2015.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 06/05/2023]
Abstract
Barley (Hordeum vulgare L.) seed germination initiates many important biological processes such as DNA, membrane and mitochondrial repairs. However, little is known on cell wall modifications in germinating embryos. We have investigated cell wall polysaccharide composition change, gene transcription and alternative splicing events in four barley varieties at 24h and 48 h germination. Cell wall components in germinating barley embryos changed rapidly, with increases in cellulose and (1,3)(1,4)-β-D-glucan (20-100%) within 24h, but decreases in heteroxylan and arabinan (3-50%). There were also significant changes in the levels of type I arabinogalactans and heteromannans. Alternative splicing played very important roles in cell wall modifications. At least 22 cell wall transcripts were detected to undergo either alternative 3' splicing, alternative 5' splicing or intron retention type of alternative splicing. These genes coded enzymes catalyzing synthesis and degradation of cellulose, heteroxylan, (1,3)(1,4)-β-D-glucan and other cell wall polymers. Furthermore, transcriptional regulation also played very important roles in cell wall modifications. Transcript levels of primary wall cellulase synthase, heteroxylan synthesizing and nucleotide sugar inter-conversion genes were very high in germinating embryos. At least 50 cell wall genes changed transcript levels significantly. Expression patterns of many cell wall genes coincided with changes in polysaccharide composition. Our data showed that cell wall polysaccharide metabolism was very active in germinating barley embryos, which was regulated at both transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Qisen Zhang
- Australian Export Grains Innovation Centre, 3 Baron-Hay Court, South Perth, WA 6155, Australia.
| | - Xiaoqi Zhang
- Western Barley Genetics Alliance, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia.
| | | | - Gaofeng Zhou
- Department of Agriculture and Food Western Australia, 3 Baron-Hay Court, South Perth, WA 6155, Australia.
| | - Chengdao Li
- Australian Export Grains Innovation Centre, 3 Baron-Hay Court, South Perth, WA 6155, Australia; Western Barley Genetics Alliance, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia; Department of Agriculture and Food Western Australia, 3 Baron-Hay Court, South Perth, WA 6155, Australia.
| |
Collapse
|
122
|
Prunier J, Verta JP, MacKay JJ. Conifer genomics and adaptation: at the crossroads of genetic diversity and genome function. THE NEW PHYTOLOGIST 2016; 209:44-62. [PMID: 26206592 DOI: 10.1111/nph.13565] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/14/2015] [Indexed: 05/21/2023]
Abstract
Conifers have been understudied at the genomic level despite their worldwide ecological and economic importance but the situation is rapidly changing with the development of next generation sequencing (NGS) technologies. With NGS, genomics research has simultaneously gained in speed, magnitude and scope. In just a few years, genomes of 20-24 gigabases have been sequenced for several conifers, with several others expected in the near future. Biological insights have resulted from recent sequencing initiatives as well as genetic mapping, gene expression profiling and gene discovery research over nearly two decades. We review the knowledge arising from conifer genomics research emphasizing genome evolution and the genomic basis of adaptation, and outline emerging questions and knowledge gaps. We discuss future directions in three areas with potential inputs from NGS technologies: the evolutionary impacts of adaptation in conifers based on the adaptation-by-speciation model; the contributions of genetic variability of gene expression in adaptation; and the development of a broader understanding of genetic diversity and its impacts on genome function. These research directions promise to sustain research aimed at addressing the emerging challenges of adaptation that face conifer trees.
Collapse
Affiliation(s)
- Julien Prunier
- Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Jukka-Pekka Verta
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstrasse 39, Tübingen, 72076, Germany
| | - John J MacKay
- Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
123
|
Fennell AY, Schlauch KA, Gouthu S, Deluc LG, Khadka V, Sreekantan L, Grimplet J, Cramer GR, Mathiason KL. Short day transcriptomic programming during induction of dormancy in grapevine. FRONTIERS IN PLANT SCIENCE 2015; 6:834. [PMID: 26582400 PMCID: PMC4632279 DOI: 10.3389/fpls.2015.00834] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 09/23/2015] [Indexed: 05/05/2023]
Abstract
Bud dormancy in grapevine is an adaptive strategy for the survival of drought, high and low temperatures and freeze dehydration stress that limit the range of cultivar adaptation. Therefore, development of a comprehensive understanding of the biological mechanisms involved in bud dormancy is needed to promote advances in selection and breeding, and to develop improved cultural practices for existing grape cultivars. The seasonally indeterminate grapevine, which continuously develops compound axillary buds during the growing season, provides an excellent system for dissecting dormancy, because the grapevine does not transition through terminal bud development prior to dormancy. This study used gene expression patterns and targeted metabolite analysis of two grapevine genotypes that are short photoperiod responsive (Vitis riparia) and non-responsive (V. hybrid, Seyval) for dormancy development to determine differences between bud maturation and dormancy commitment. Grapevine gene expression and metabolites were monitored at seven time points under long (LD, 15 h) and short (SD, 13 h) day treatments. The use of age-matched buds and a small (2 h) photoperiod difference minimized developmental differences and allowed us to separate general photoperiod from dormancy specific gene responses. Gene expression profiles indicated three distinct phases (perception, induction and dormancy) in SD-induced dormancy development in V. riparia. Different genes from the NAC DOMAIN CONTAINING PROTEIN 19 and WRKY families of transcription factors were differentially expressed in each phase of dormancy. Metabolite and transcriptome analyses indicated ABA, trehalose, raffinose and resveratrol compounds have a potential role in dormancy commitment. Finally, a comparison between V. riparia compound axillary bud dormancy and dormancy responses in other species emphasized the relationship between dormancy and the expression of RESVERATROL SYNTHASE and genes associated with C3HC4-TYPE RING FINGER and NAC DOMAIN CONTAINING PROTEIN 19 transcription factors.
Collapse
Affiliation(s)
- Anne Y. Fennell
- Northern Plains BioStress Laboratory, Plant Science Department, South Dakota State UniversityBrookings, SD, USA
| | - Karen A. Schlauch
- Department of Biochemistry and Molecular Biology, University of Nevada, RenoReno, NV, USA
| | | | - Laurent G. Deluc
- Department of Horticulture, Oregon State UniversityCorvallis, OR, USA
| | - Vedbar Khadka
- Northern Plains BioStress Laboratory, Plant Science Department, South Dakota State UniversityBrookings, SD, USA
| | - Lekha Sreekantan
- Northern Plains BioStress Laboratory, Plant Science Department, South Dakota State UniversityBrookings, SD, USA
| | - Jerome Grimplet
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja)Logroño, Spain
| | - Grant R. Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, RenoReno, NV, USA
| | - Katherine L. Mathiason
- Northern Plains BioStress Laboratory, Plant Science Department, South Dakota State UniversityBrookings, SD, USA
| |
Collapse
|
124
|
Pascual MB, Cánovas FM, Ávila C. The NAC transcription factor family in maritime pine (Pinus Pinaster): molecular regulation of two genes involved in stress responses. BMC PLANT BIOLOGY 2015; 15:254. [PMID: 26500018 PMCID: PMC4619436 DOI: 10.1186/s12870-015-0640-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/08/2015] [Indexed: 05/05/2023]
Abstract
BACKGROUND NAC transcription factors comprise a large plant-specific gene family involved in the regulation of diverse biological processes. Despite the growing number of studies on NAC transcription factors in various species, little information is available about this family in conifers. The goal of this study was to identify the NAC transcription family in maritime pine (Pinus pinaster), to characterize ATAF-like genes in response to various stresses and to study their molecular regulation. METHODS We have isolated two maritime pine NAC genes and using a transient expression assay in N. benthamiana leaves estudied the promoter jasmonate response. RESULTS In this study, we identified 37 NAC genes from maritime pine and classified them into six main subfamilies. The largest group includes 12 sequences corresponding to stress-related genes. Two of these NAC genes, PpNAC2 and PpNAC3, were isolated and their expression profiles were examined at various developmental stages and in response to various types of stress. The expression of both genes was strongly induced by methyl jasmonate (MeJA), mechanical wounding, and high salinity. The promoter regions of these genes were shown to contain cis-elements involved in the stress response and plant hormonal regulation, including E-boxes, which are commonly found in the promoters of genes that respond to jasmonate, and binding sites for bHLH proteins. Using a transient expression assay in N. benthamiana leaves, we found that the promoter of PpNAC3 was rapidly induced upon MeJA treatment, while this response disappeared in plants in which the transcription factor NbbHLH2 was silenced. CONCLUSION Our results suggest that PpNAC2 and PpNAC3 encode stress-responsive NAC transcription factors involved in the jasmonate response in pine. Furthermore, these data also suggest that the jasmonate signaling pathway is conserved between angiosperms and gymnosperms. These findings may be useful for engineering stress tolerance in pine via biotechnological approaches.
Collapse
Affiliation(s)
- Ma Belén Pascual
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus Universitario de Teatinos, Universidad de Málaga, 29071, Málaga, Spain.
| | - Francisco M Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus Universitario de Teatinos, Universidad de Málaga, 29071, Málaga, Spain.
| | - Concepción Ávila
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus Universitario de Teatinos, Universidad de Málaga, 29071, Málaga, Spain.
| |
Collapse
|
125
|
Exogenous GA₃ Application Enhances Xylem Development and Induces the Expression of Secondary Wall Biosynthesis Related Genes in Betula platyphylla. Int J Mol Sci 2015; 16:22960-75. [PMID: 26404260 PMCID: PMC4613346 DOI: 10.3390/ijms160922960] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 11/17/2022] Open
Abstract
Gibberellin (GA) is a key signal molecule inducing differentiation of tracheary elements, fibers, and xylogenesis. However the molecular mechanisms underlying the effect of GA on xylem elongation and secondary wall development in tree species remain to be determined. In this study, Betula platyphylla (birch) seeds were treated with 300 ppm GA3 and/or 300 ppm paclobutrazol (PAC), seed germination was recorded, and transverse sections of hypocotyls were stained with toluidine blue; the two-month-old seedlings were treated with 50 μM GA3 and/or 50 μM PAC, transverse sections of seedling stems were stained using phloroglucinol–HCl, and secondary wall biosynthesis related genes expression was analyzed by real-time quantitative PCR. Results indicated that germination percentage, energy and time of seeds, hypocotyl height and seedling fresh weight were enhanced by GA3, and reduced by PAC; the xylem development was wider in GA3-treated plants than in the control; the expression of NAC and MYB transcription factors, CESA, PAL, and GA oxidase was up-regulated during GA3 treatment, suggesting their role in GA3-induced xylem development in the birch. Our results suggest that GA3 induces the expression of secondary wall biosynthesis related genes to trigger xylogenesis in the birch plants.
Collapse
|
126
|
|
127
|
Zhong R, Yuan Y, Spiekerman JJ, Guley JT, Egbosiuba JC, Ye ZH. Functional Characterization of NAC and MYB Transcription Factors Involved in Regulation of Biomass Production in Switchgrass (Panicum virgatum). PLoS One 2015; 10:e0134611. [PMID: 26248336 PMCID: PMC4527753 DOI: 10.1371/journal.pone.0134611] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/10/2015] [Indexed: 11/18/2022] Open
Abstract
Switchgrass is a promising biofuel feedstock due to its high biomass production and low agronomic input requirements. Because the bulk of switchgrass biomass used for biofuel production is lignocellulosic secondary walls, studies on secondary wall biosynthesis and its transcriptional regulation are imperative for designing strategies for genetic improvement of biomass production in switchgrass. Here, we report the identification and functional characterization of a group of switchgrass transcription factors, including several NACs (PvSWNs) and a MYB (PvMYB46A), for their involvement in regulating secondary wall biosynthesis. PvSWNs and PvMYB46A were found to be highly expressed in stems and their expression was closely associated with sclerenchyma cells. Overexpression of PvSWNs and PvMYB46A in Arabidopsis was shown to result in activation of the biosynthetic genes for cellulose, xylan and lignin and ectopic deposition of secondary walls in normally parenchymatous cells. Transactivation and complementation studies demonstrated that PvSWNs were able to activate the SNBE-driven GUS reporter gene and effectively rescue the secondary wall defects in the Arabidopsis snd1 nst1 double mutant, indicating that they are functional orthologs of Arabidopsis SWNs. Furthermore, we showed that PvMYB46A could activate the SMRE-driven GUS reporter gene and complement the Arabidopsis myb46 myb83 double mutant, suggesting that it is a functional ortholog of Arabidopsis MYB46/MYB83. Together, these results indicate that PvSWNs and PvMYB46A are transcriptional switches involved in regulating secondary wall biosynthesis, which provides molecular tools for genetic manipulation of biomass production in switchgrass.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, United States of America
| | - Youxi Yuan
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, United States of America
| | - John J. Spiekerman
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, United States of America
| | - Joshua T. Guley
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, United States of America
| | - Janefrances C. Egbosiuba
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, United States of America
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, United States of America
- * E-mail:
| |
Collapse
|
128
|
Liu J, Hai G, Wang C, Cao S, Xu W, Jia Z, Yang C, Wang JP, Dai S, Cheng Y. Comparative proteomic analysis of Populus trichocarpa early stem from primary to secondary growth. J Proteomics 2015; 126:94-108. [DOI: 10.1016/j.jprot.2015.05.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 01/01/2023]
|
129
|
Tang X, Zhuang Y, Qi G, Wang D, Liu H, Wang K, Chai G, Zhou G. Poplar PdMYB221 is involved in the direct and indirect regulation of secondary wall biosynthesis during wood formation. Sci Rep 2015; 5:12240. [PMID: 26179205 PMCID: PMC4503951 DOI: 10.1038/srep12240] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/23/2015] [Indexed: 12/27/2022] Open
Abstract
Wood is formed by the successive addition of secondary xylem, which consists of cells with a conspicuously thickened secondary wall composed mainly of cellulose, xylan and lignin. Currently, few transcription factors involved in the direct regulation of secondary wall biosynthesis have been characterized in tree species. Here, we show that PdMYB221, a poplar ortholog of the Arabidopsis R2R3-MYB transcription factor AtMYB4, directly regulates secondary wall biosynthesis during wood formation. PdMYB221 is predominantly expressed in cells of developing wood, and the protein it encodes localizes to the nucleus and acts as a transcriptional repressor. Ectopic expression of PdMYB221 resulted in reduced cell wall thicknesses of fibers and vessels in Arabidopsis inflorescence stems. The amounts of cellulose, xylose, and lignin were decreased and the expression of key genes synthesizing the three components was suppressed in PdMYB221 overexpression plants. Transcriptional activation assays showed that PdMYB221 repressed the promoters of poplar PdCESA7/8, PdGT47C, PdCOMT2 and PdCCR1. Electrophoretic mobility shift assays revealed that PdMYB221 bound directly to the PdCESA8, PdGT47C, and PdCOMT2 promoters. Together, our results suggest that PdMYB221 may be involved in the negative regulation of secondary wall formation through the direct and indirect suppression of the gene expression of secondary wall biosynthesis.
Collapse
Affiliation(s)
- Xianfeng Tang
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yamei Zhuang
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guang Qi
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Dian Wang
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Huanhuan Liu
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Kairong Wang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guohua Chai
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Gongke Zhou
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| |
Collapse
|
130
|
Sun X, Gong SY, Nie XY, Li Y, Li W, Huang GQ, Li XB. A R2R3-MYB transcription factor that is specifically expressed in cotton (Gossypium hirsutum) fibers affects secondary cell wall biosynthesis and deposition in transgenic Arabidopsis. PHYSIOLOGIA PLANTARUM 2015; 154:420-32. [PMID: 25534543 DOI: 10.1111/ppl.12317] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/30/2014] [Accepted: 12/12/2014] [Indexed: 05/22/2023]
Abstract
Secondary cell wall (SCW) is an important industrial raw material for pulping, papermaking, construction, lumbering, textiles and potentially for biofuel production. The process of SCW thickening of cotton fibers lays down the cellulose that will constitute the bulk (up to 96%) of the fiber at maturity. In this study, a gene encoding a MYB-domain protein was identified in cotton (Gossypium hirsutum) and designated as GhMYBL1. Quantitative real-time polymerase chain reaction (RT-PCR) analysis revealed that GhMYBL1 was specifically expressed in cotton fibers at the stage of secondary wall deposition. Further analysis indicated that this protein is a R2R3-MYB transcription factor, and is targeted to the cell nucleus. Overexpression of GhMYBL1 in Arabidopsis affected the formation of SCW in the stem xylem of the transgenic plants. The enhanced SCW thickening also occurred in the interfascicular fibers, xylary fibers and vessels of the GhMYBL1-overexpression transgenic plants. The expression of secondary wall-associated genes, such as CesA4, CesA7, CesA8, PAL1, F5H and 4CL1, were upregulated, and consequently, cellulose and lignin biosynthesis were enhanced in the GhMYBL1 transgenic plants. These data suggested that GhMYBL1 may participate in modulating the process of secondary wall biosynthesis and deposition of cotton fibers.
Collapse
Affiliation(s)
- Xiang Sun
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Si-Ying Gong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xiao-Ying Nie
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wen Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Geng-Qing Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
131
|
Abstract
Wood (also termed secondary xylem) is the most abundant biomass produced by plants, and is one of the most important sinks for atmospheric carbon dioxide. The development of wood begins with the differentiation of the lateral meristem, vascular cambium, into secondary xylem mother cells followed by cell expansion, secondary wall deposition, programmed cell death, and finally heartwood formation. Significant progress has been made in the past decade in uncovering the molecular players involved in various developmental stages of wood formation in tree species. Hormonal signalling has been shown to play critical roles in vascular cambium cell proliferation and a peptide-receptor-transcription factor regulatory mechanism similar to that controlling the activity of apical meristems is proposed to be involved in the maintenance of vascular cambium activity. It has been demonstrated that the differentiation of vascular cambium into xylem mother cells is regulated by plant hormones and HD-ZIP III transcription factors, and the coordinated activation of secondary wall biosynthesis genes during wood formation is mediated by a transcription network encompassing secondary wall NAC and MYB master switches and their downstream transcription factors. Most genes encoding the biosynthesis enzymes for wood components (cellulose, xylan, glucomannan, and lignin) have been identified in poplar and a number of them have been functionally characterized. With the availability of genome sequences of tree species from both gymnosperms and angiosperms, and the identification of a suite of wood-associated genes, it is expected that our understanding of the molecular control of wood formation in trees will be greatly accelerated.
Collapse
Affiliation(s)
- Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
132
|
McCann MC, Carpita NC. Biomass recalcitrance: a multi-scale, multi-factor, and conversion-specific property. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4109-18. [PMID: 26060266 DOI: 10.1093/jxb/erv267] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Recalcitrance of plant biomass to enzymatic hydrolysis for biofuel production is thought to be a property conferred by lignin or lignin-carbohydrate complexes. However, chemical catalytic and thermochemical conversion pathways, either alone or in combination with biochemical and fermentative pathways, now provide avenues to utilize lignin and to expand the product range beyond ethanol or butanol. To capture all of the carbon in renewable biomass, both lignin-derived aromatics and polysaccharide-derived sugars need to be transformed by catalysts to liquid hydrocarbons and high-value co-products. We offer a new definition of recalcitrance as those features of biomass which disproportionately increase energy requirements in conversion processes, increase the cost and complexity of operations in the biorefinery, and/or reduce the recovery of biomass carbon into desired products. The application of novel processing technologies applied to biomass reveal new determinants of recalcitrance that comprise a broad range of molecular, nanoscale, and macroscale factors. Sampling natural genetic diversity within a species, transgenic approaches, and synthetic biology approaches are all strategies that can be used to select biomass for reduced recalcitrance in various pretreatments and conversion pathways.
Collapse
Affiliation(s)
- Maureen C McCann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA
| | - Nicholas C Carpita
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-1392, USA
| |
Collapse
|
133
|
Raherison ESM, Giguère I, Caron S, Lamara M, MacKay JJ. Modular organization of the white spruce (Picea glauca) transcriptome reveals functional organization and evolutionary signatures. THE NEW PHYTOLOGIST 2015; 207:172-187. [PMID: 25728802 PMCID: PMC5024012 DOI: 10.1111/nph.13343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/18/2015] [Indexed: 05/13/2023]
Abstract
Transcript profiling has shown the molecular bases of several biological processes in plants but few studies have developed an understanding of overall transcriptome variation. We investigated transcriptome structure in white spruce (Picea glauca), aiming to delineate its modular organization and associated functional and evolutionary attributes. Microarray analyses were used to: identify and functionally characterize groups of co-expressed genes; investigate expressional and functional diversity of vascular tissue preferential genes which were conserved among Picea species, and identify expression networks underlying wood formation. We classified 22 857 genes as variable (79%; 22 coexpression groups) or invariant (21%) by profiling across several vegetative tissues. Modular organization and complex transcriptome restructuring among vascular tissue preferential genes was revealed by their assignment to coexpression groups with partially overlapping profiles and partially distinct functions. Integrated analyses of tissue-based and temporally variable profiles identified secondary xylem gene networks, showed their remodelling over a growing season and identified PgNAC-7 (no apical meristerm (NAM), Arabidopsis transcription activation factor (ATAF) and cup-shaped cotyledon (CUC) transcription factor 007 in Picea glauca) as a major hub gene specific to earlywood formation. Reference profiling identified comprehensive, statistically robust coexpressed groups, revealing that modular organization underpins the evolutionary conservation of the transcriptome structure.
Collapse
Affiliation(s)
- Elie S M Raherison
- Center for Forest Research and Institute for Integrative and Systems Biology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Isabelle Giguère
- Center for Forest Research and Institute for Integrative and Systems Biology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Sébastien Caron
- Center for Forest Research and Institute for Integrative and Systems Biology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Mebarek Lamara
- Center for Forest Research and Institute for Integrative and Systems Biology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - John J MacKay
- Department of Plant Sciences, University of Oxford, OX1 3RB, Oxford, UK
| |
Collapse
|
134
|
Tuttle JR, Nah G, Duke MV, Alexander DC, Guan X, Song Q, Chen ZJ, Scheffler BE, Haigler CH. Metabolomic and transcriptomic insights into how cotton fiber transitions to secondary wall synthesis, represses lignification, and prolongs elongation. BMC Genomics 2015; 16:477. [PMID: 26116072 PMCID: PMC4482290 DOI: 10.1186/s12864-015-1708-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 06/19/2015] [Indexed: 11/20/2022] Open
Abstract
Background The morphogenesis of single-celled cotton fiber includes extreme elongation and staged cell wall differentiation. Designing strategies for improving cotton fiber for textiles and other uses relies on uncovering the related regulatory mechanisms. In this research we compared the transcriptomes and metabolomes of two Gossypium genotypes, Gossypium barbadense cv Phytogen 800 and G. hirsutum cv Deltapine 90. When grown in parallel, the two types of fiber developed similarly except for prolonged fiber elongation in the G. barbadense cultivar. The data were collected from isolated fibers between 10 to 28 days post anthesis (DPA) representing: primary wall synthesis to support elongation; transitional cell wall remodeling; and secondary wall cellulose synthesis, which was accompanied by continuing elongation only in G. barbadense fiber. Results Of 206 identified fiber metabolites, 205 were held in common between the two genotypes. Approximately 38,000 transcripts were expressed in the fiber of each genotype, and these were mapped to the reference set and interpreted by homology to known genes. The developmental changes in the transcriptomes and the metabolomes were compared within and across genotypes with several novel implications. Transitional cell wall remodeling is a distinct stable developmental stage lasting at least four days (18 to 21 DPA). Expression of selected cell wall related transcripts was similar between genotypes, but cellulose synthase gene expression patterns were more complex than expected. Lignification was transcriptionally repressed in both genotypes. Oxidative stress was lower in the fiber of G. barbadense cv Phytogen 800 as compared to G. hirsutum cv Deltapine 90. Correspondingly, the G. barbadense cultivar had enhanced capacity for management of reactive oxygen species during its prolonged elongation period, as indicated by a 138-fold increase in ascorbate concentration at 28 DPA. Conclusions The parallel data on deep-sequencing transcriptomics and non-targeted metabolomics for two genotypes of single-celled cotton fiber showed that a discrete developmental stage of transitional cell wall remodeling occurs before secondary wall cellulose synthesis begins. The data showed how lignification can be transcriptionally repressed during secondary cell wall synthesis, and they implicated enhanced capacity to manage reactive oxygen species through the ascorbate-glutathione cycle as a positive contributor to fiber length. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1708-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John R Tuttle
- Department of Crop Science, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Gyoungju Nah
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Mary V Duke
- USDA ARS Genomics and Bioinformatics Research Unit, Stoneville, MS, 38776, USA.
| | | | - Xueying Guan
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Qingxin Song
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Z Jeffrey Chen
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Brian E Scheffler
- USDA ARS Genomics and Bioinformatics Research Unit, Stoneville, MS, 38776, USA.
| | - Candace H Haigler
- Department of Crop Science, North Carolina State University, Raleigh, NC, 27695, USA. .,Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
135
|
Phosphorylation is an on/off switch for 5-hydroxyconiferaldehyde O-methyltransferase activity in poplar monolignol biosynthesis. Proc Natl Acad Sci U S A 2015; 112:8481-6. [PMID: 26109572 DOI: 10.1073/pnas.1510473112] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although phosphorylation has long been known to be an important regulatory modification of proteins, no unequivocal evidence has been presented to show functional control by phosphorylation for the plant monolignol biosynthetic pathway. Here, we present the discovery of phosphorylation-mediated on/off regulation of enzyme activity for 5-hydroxyconiferaldehyde O-methyltransferase 2 (PtrAldOMT2), an enzyme central to monolignol biosynthesis for lignification in stem-differentiating xylem (SDX) of Populus trichocarpa. Phosphorylation turned off the PtrAldOMT2 activity, as demonstrated in vitro by using purified phosphorylated and unphosphorylated recombinant PtrAldOMT2. Protein extracts of P. trichocarpa SDX, which contains endogenous kinases, also phosphorylated recombinant PtrAldOMT2 and turned off the recombinant protein activity. Similarly, ATP/Mn(2+)-activated phosphorylation of SDX protein extracts reduced the endogenous SDX PtrAldOMT2 activity by ∼ 60%, and dephosphorylation fully restored the activity. Global shotgun proteomic analysis of phosphopeptide-enriched P. trichocarpa SDX protein fractions identified PtrAldOMT2 monophosphorylation at Ser(123) or Ser(125) in vivo. Phosphorylation-site mutagenesis verified the PtrAldOMT2 phosphorylation at Ser(123) or Ser(125) and confirmed the functional importance of these phosphorylation sites for O-methyltransferase activity. The PtrAldOMT2 Ser(123) phosphorylation site is conserved across 93% of AldOMTs from 46 diverse plant species, and 98% of the AldOMTs have either Ser(123) or Ser(125). PtrAldOMT2 is a homodimeric cytosolic enzyme expressed more abundantly in syringyl lignin-rich fiber cells than in guaiacyl lignin-rich vessel cells. The reversible phosphorylation of PtrAldOMT2 is likely to have an important role in regulating syringyl monolignol biosynthesis of P. trichocarpa.
Collapse
|
136
|
Hefer CA, Mizrachi E, Myburg AA, Douglas CJ, Mansfield SD. Comparative interrogation of the developing xylem transcriptomes of two wood-forming species: Populus trichocarpa and Eucalyptus grandis. THE NEW PHYTOLOGIST 2015; 206:1391-405. [PMID: 25659405 DOI: 10.1111/nph.13277] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/04/2014] [Indexed: 05/15/2023]
Abstract
Wood formation is a complex developmental process governed by genetic and environmental stimuli. Populus and Eucalyptus are fast-growing, high-yielding tree genera that represent ecologically and economically important species suitable for generating significant lignocellulosic biomass. Comparative analysis of the developing xylem and leaf transcriptomes of Populus trichocarpa and Eucalyptus grandis together with phylogenetic analyses identified clusters of homologous genes preferentially expressed during xylem formation in both species. A conserved set of 336 single gene pairs showed highly similar xylem preferential expression patterns, as well as evidence of high functional constraint. Individual members of multi-gene orthologous clusters known to be involved in secondary cell wall biosynthesis also showed conserved xylem expression profiles. However, species-specific expression as well as opposite (xylem versus leaf) expression patterns observed for a subset of genes suggest subtle differences in the transcriptional regulation important for xylem development in each species. Using sequence similarity and gene expression status, we identified functional homologs likely to be involved in xylem developmental and biosynthetic processes in Populus and Eucalyptus. Our study suggests that, while genes involved in secondary cell wall biosynthesis show high levels of gene expression conservation, differential regulation of some xylem development genes may give rise to unique xylem properties.
Collapse
Affiliation(s)
- Charles A Hefer
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Eshchar Mizrachi
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Carl J Douglas
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 4030-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
137
|
Qiu Z, Li X, Zhao Y, Zhang M, Wan Y, Cao D, Lu S, Lin J. Genome-wide analysis reveals dynamic changes in expression of microRNAs during vascular cambium development in Chinese fir, Cunninghamia lanceolata. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3041-54. [PMID: 25795740 DOI: 10.1093/jxb/erv103] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding regulatory RNAs that play key roles in the process of plant development. To date, extensive studies of miRNAs have been performed in a few model plants, but few efforts have focused on small RNAs (sRNAs) in conifers because of the lack of reference sequences for their enormous genomes. In this study, Solexa sequencing of three sRNA libraries obtained from dormant, reactivating, and active vascular cambium in Chinese fir (Cunninghamia lanceolata) using tangential cryosectioning identified 20 known miRNA families and 18 novel potential miRNAs, of which nine novel miRNA precursors were validated by RT-PCR and sequencing. More than half of these novel miRNAs displayed stage-specific expression patterns in the vascular cambium. Furthermore, analysing the 103 miRNAs and their predicted targets indicated that about 70% appeared to negatively regulate their targets, of which two target genes involved in the regulation of cambial cell division were validated via RNA ligase-mediated rapid amplification of 5'-cDNA ends (RLM 5'-RACE) and transient co-expression in Nicotiana benthamiana leaves. Interestingly, miRNA156 and miRNA172 may regulate the phase transition in vascular cambium from dormancy to active growth. These results provide new insights into the important regulatory functions of miRNAs in vascular cambium development and wood formation in conifers.
Collapse
Affiliation(s)
- Zongbo Qiu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China College of Life Sciences, Henan Normal University, Xinxiang 453007, China Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaojuan Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yuanyuan Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Manman Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yinglang Wan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Dechang Cao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Shanfa Lu
- Medicinal Plant Cultivation Research Centre, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jinxing Lin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
138
|
Hussey SG, Saïdi MN, Hefer CA, Myburg AA, Grima-Pettenati J. Structural, evolutionary and functional analysis of the NAC domain protein family in Eucalyptus. THE NEW PHYTOLOGIST 2015; 206:1337-50. [PMID: 25385212 DOI: 10.1111/nph.13139] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/24/2014] [Indexed: 05/21/2023]
Abstract
NAC domain transcription factors regulate many developmental processes and stress responses in plants and vary widely in number and family structure. We analysed the characteristics and evolution of the NAC gene family of Eucalyptus grandis, a fast-growing forest tree in the rosid order Myrtales. NAC domain genes identified in the E. grandis genome were subjected to amino acid sequence, phylogenetic and motif analyses. Transcript abundance in developing tissues and abiotic stress conditions in E. grandis and E. globulus was quantified using RNA-seq and reverse transcription quantitative PCR (RT-qPCR). One hundred and eighty-nine E. grandis NAC (EgrNAC) proteins, arranged into 22 subfamilies, are extensively duplicated in subfamilies associated with stress response. Most EgrNAC genes form tandem duplicate arrays that frequently carry signatures of purifying selection. Sixteen amino acid motifs were identified in EgrNAC proteins, eight of which are enriched in, or unique to, Eucalyptus. New candidates for the regulation of normal and tension wood development and cold responses were identified. This first description of a Myrtales NAC domain family reveals an unique history of tandem duplication in stress-related subfamilies that has likely contributed to the adaptation of eucalypts to the challenging Australian environment. Several new candidates for the regulation of stress, wood formation and tree-specific development are reported.
Collapse
Affiliation(s)
- Steven G Hussey
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Mohammed N Saïdi
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université Toulouse, UPS, CNRS, BP 42617, F-31326, Castanet-Tolosan, France
| | - Charles A Hefer
- Department of Botany, University of British Columbia, 3529-6270 University Blvd, Vancouver, BC, Canada, V6T 1Z4
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Jacqueline Grima-Pettenati
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université Toulouse, UPS, CNRS, BP 42617, F-31326, Castanet-Tolosan, France
| |
Collapse
|
139
|
Soler M, Camargo ELO, Carocha V, Cassan-Wang H, San Clemente H, Savelli B, Hefer CA, Paiva JAP, Myburg AA, Grima-Pettenati J. The Eucalyptus grandis R2R3-MYB transcription factor family: evidence for woody growth-related evolution and function. THE NEW PHYTOLOGIST 2015; 206:1364-77. [PMID: 25250741 DOI: 10.1111/nph.13039] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/05/2014] [Indexed: 05/19/2023]
Abstract
The R2R3-MYB family, one of the largest transcription factor families in higher plants, controls a wide variety of plant-specific processes including, notably, phenylpropanoid metabolism and secondary cell wall formation. We performed a genome-wide analysis of this superfamily in Eucalyptus, one of the most planted hardwood trees world-wide. A total of 141 predicted R2R3-MYB sequences identified in the Eucalyptus grandis genome sequence were subjected to comparative phylogenetic analyses with Arabidopsis thaliana, Oryza sativa, Populus trichocarpa and Vitis vinifera. We analysed features such as gene structure, conserved motifs and genome location. Transcript abundance patterns were assessed by RNAseq and validated by high-throughput quantitative PCR. We found some R2R3-MYB subgroups with expanded membership in E. grandis, V. vinifera and P. trichocarpa, and others preferentially found in woody species, suggesting diversification of specific functions in woody plants. By contrast, subgroups containing key genes regulating lignin biosynthesis and secondary cell wall formation are more conserved across all of the species analysed. In Eucalyptus, R2R3-MYB tandem gene duplications seem to disproportionately affect woody-preferential and woody-expanded subgroups. Interestingly, some of the genes belonging to woody-preferential subgroups show higher expression in the cambial region, suggesting a putative role in the regulation of secondary growth.
Collapse
Affiliation(s)
- Marçal Soler
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Eduardo Leal Oliveira Camargo
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Victor Carocha
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET) Av. da República, Quinta do Marquês, 2781-901, Oeiras, Portugal
| | - Hua Cassan-Wang
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Hélène San Clemente
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Bruno Savelli
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Charles A Hefer
- Bioinformatics and Computational Biology Unit, Department of Biochemistry, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Jorge A Pinto Paiva
- Instituto de Biologia Experimental e Tecnológica (iBET) Av. da República, Quinta do Marquês, 2781-901, Oeiras, Portugal
- Instituto de Investigaçao Científica e Tropical (IICT/MNE) Palacio Burnay - Rua da Junqueira, 30, 1349-007, Lisboa, Portugal
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Jacqueline Grima-Pettenati
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| |
Collapse
|
140
|
Nakano Y, Yamaguchi M, Endo H, Rejab NA, Ohtani M. NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants. FRONTIERS IN PLANT SCIENCE 2015; 6:288. [PMID: 25999964 PMCID: PMC4419676 DOI: 10.3389/fpls.2015.00288] [Citation(s) in RCA: 284] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/09/2015] [Indexed: 05/08/2023]
Abstract
Plant cells biosynthesize primary cell walls (PCW) in all cells and produce secondary cell walls (SCWs) in specific cell types that conduct water and/or provide mechanical support, such as xylem vessels and fibers. The characteristic mechanical stiffness, chemical recalcitrance, and hydrophobic nature of SCWs result from the organization of SCW-specific biopolymers, i.e., highly ordered cellulose, hemicellulose, and lignin. Synthesis of these SCW-specific biopolymers requires SCW-specific enzymes that are regulated by SCW-specific transcription factors. In this review, we summarize our current knowledge of the transcriptional regulation of SCW formation in plant cells. Advances in research on SCW biosynthesis during the past decade have expanded our understanding of the transcriptional regulation of SCW formation, particularly the functions of the NAC and MYB transcription factors. Focusing on the NAC-MYB-based transcriptional network, we discuss the regulatory systems that evolved in land plants to modify the cell wall to serve as a key component of structures that conduct water and provide mechanical support.
Collapse
Affiliation(s)
- Yoshimi Nakano
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan
| | - Masatoshi Yamaguchi
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Saitama UniversitySaitama, Japan
- PRESTO (Precursory Research for Embryonic Science and Technology), Japan Science and Technology AgencyKawaguchi, Japan
| | - Hitoshi Endo
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan
| | - Nur Ardiyana Rejab
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan
- Faculty of Science, Institute of Biological Sciences, University of MalayaKuala Lumpur, Malaysia
| | - Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan
- Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| |
Collapse
|
141
|
You J, Zhang L, Song B, Qi X, Chan Z. Systematic analysis and identification of stress-responsive genes of the NAC gene family in Brachypodium distachyon. PLoS One 2015; 10:e0122027. [PMID: 25815771 PMCID: PMC4376915 DOI: 10.1371/journal.pone.0122027] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/07/2015] [Indexed: 11/19/2022] Open
Abstract
Plant-specific NAC proteins are one of the largest families of transcription factors in plants, and members of this family have been characterized with roles in the regulation of diverse biological processes, including development and stress responses. In the present study, we identified 101 putative NAC domain-encoding genes (BdNACs) through systematic sequence analysis in Brachypodium distachyon, a new model plant of family Poaceae. BdNAC proteins were phylogenetically clustered into 13 groups, and each group possesses similar motif compositions. Phylogenetic analysis using known stress-related NACs from Arabidopsis and rice as query sequences identified 18 BdNACs as putative stress-responsive genes. In silico promoter analysis showed that almost all BdNAC genes contain putative stress-related cis-elements in their promoter regions. Expression profile of BdNAC genes in response to abiotic stresses and phytohormones was analyzed by quantitative real-time RT-PCR. Several putative stress-responsive BdNAC genes, including BdNAC003 and BdNAC044 which is ortholog of known stress-responsive rice gene SNAC1 and SNAC2, respectively, were highly regulated by multiple abiotic stresses and stress-related phytohormone treatments. Taken together, our results presented here would be helpful in laying the foundation for understanding of the complex mechanisms of NAC mediated abiotic stress signaling transduction pathways in B. distachyon.
Collapse
Affiliation(s)
- Jun You
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Lihua Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Bo Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhulong Chan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
142
|
Chen J, Chen B, Zhang D. Transcript profiling of Populus tomentosa genes in normal, tension, and opposite wood by RNA-seq. BMC Genomics 2015; 16:164. [PMID: 25886950 PMCID: PMC4372042 DOI: 10.1186/s12864-015-1390-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 02/24/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Wood formation affects the chemical and physical properties of wood, and thus affects its utility as a building material or a feedstock for biofuels, pulp and paper. To obtain genome-wide insights on the transcriptome changes and regulatory networks in wood formation, we used high-throughput RNA sequencing to characterize cDNA libraries of mature xylem from tension wood (TW), opposite wood (OW), and normal wood (NW), in the industrial tree species Populus tomentosa. RESULTS Our sequencing generated 140,978,316 (TW), 128,972,228 (OW), and 117,672,362 (NW) reads, corresponding to 10,127 (TW), 10,129 (OW), and 10,129 (NW) unique genes. Of these, 361 genes were differentially transcribed between TW and OW (log2FC ≥ 1 or ≤ -1, FDR < 0.05), 2,658 differed between OW and NW, and 2,417 differed between TW and NW. This indicates that NW differs significantly from the wood in branches; GO term analysis also indicated that OW experienced more transcriptome remodeling. The differentially expressed genes included 97 encoding transcription factors (TFs), 40 involved in hormone signal transduction, 33 in lignin biosynthesis, 21 in flavonoid biosynthesis, and 43 in cell wall metabolism, including cellulose synthase, sucrose synthase, and COBRA. More than half of the differentially expressed TF showed more than 4-fold lower transcript levels in NW compared with TW or OW, indicating that TF abundances differed dramatically in different wood types and may have important roles in the formation of reaction wood. In addition, transcripts of most of the genes involved in lignin biosynthesis were more abundant in OW compared with TW, consistent with the higher lignin content of OW. We constructed two transcriptomic networks for the regulation of lignin and cellulose biosynthesis, including TFs, based on the co-expression patterns of different genes. Lastly, we used reverse transcription quantitative PCR to validate the differentially expressed genes identified. CONCLUSIONS Here, we identified the global patterns and differences in gene expression among TW, OW, and NW, and constructed two transcriptomic regulatory networks involved in TW formation in P. tomentosa. We also identified candidate genes for molecular breeding of wood quality, and provided a starting point to decipher the molecular mechanisms of wood formation in Populus.
Collapse
Affiliation(s)
- Jinhui Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
| | - Beibei Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
| |
Collapse
|
143
|
Comprehensive analysis suggests overlapping expression of rice ONAC transcription factors in abiotic and biotic stress responses. Int J Mol Sci 2015; 16:4306-26. [PMID: 25690040 PMCID: PMC4346958 DOI: 10.3390/ijms16024306] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/11/2015] [Indexed: 02/02/2023] Open
Abstract
NAC (NAM/ATAF/CUC) transcription factors comprise a large plant-specific gene family that contains more than 149 members in rice. Extensive studies have revealed that NAC transcription factors not only play important roles in plant growth and development, but also have functions in regulation of responses to biotic and abiotic stresses. However, biological functions for most of the members in the NAC family remain unknown. In this study, microarray data analyses revealed that a total of 63 ONAC genes exhibited overlapping expression patterns in rice under various abiotic (salt, drought, and cold) and biotic (infection by fungal, bacterial, viral pathogens, and parasitic plants) stresses. Thirty-eight ONAC genes exhibited overlapping expression in response to any two abiotic stresses, among which 16 of 30 selected ONAC genes were upregulated in response to exogenous ABA. Sixty-five ONAC genes showed overlapping expression patterns in response to any two biotic stresses. Results from the present study suggested that members of the ONAC genes with overlapping expression pattern may have pleiotropic biological functions in regulation of defense response against different abiotic and biotic stresses, which provide clues for further functional analysis of the ONAC genes in stress tolerance and pathogen resistance.
Collapse
|
144
|
Nishitani K, Demura T. Editorial: an emerging view of plant cell walls as an apoplastic intelligent system. PLANT & CELL PHYSIOLOGY 2015; 56:177-179. [PMID: 25673766 DOI: 10.1093/pcp/pcv001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Kazuhiko Nishitani
- Laboratory of Plant Cell Wall Biology, Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 890-8578 Japan
| | - Taku Demura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192 Japan
| |
Collapse
|
145
|
Zhong R, Ye ZH. The Arabidopsis NAC transcription factor NST2 functions together with SND1 and NST1 to regulate secondary wall biosynthesis in fibers of inflorescence stems. PLANT SIGNALING & BEHAVIOR 2015; 10:e989746. [PMID: 25751728 PMCID: PMC4622706 DOI: 10.4161/15592324.2014.989746] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Transcriptional regulation of secondary wall biosynthesis in Arabidopsis thaliana has been shown to be mediated by a group of secondary wall NAC master switches, including NST1, NST2, SND1 and VND1 to VND7. It has been shown that VND1 to VND7 regulate secondary wall biosynthesis in vessels, NST1 and NST2 function redundantly in anther endothecium, and SND1 and NST1 are required for secondary wall thickening in fibers of stems. However, it is unknown whether NST2 is involved in regulating secondary wall biosynthesis in fibers of stems. In this report, we demonstrated that similar to SND1, NST2 together with NST1 were highly expressed in interfascicular fibers and xylary fibers but not in vessels of stems. Although simultaneous mutations of SND1 and NST1 have been shown to result in a significant impairment of secondary wall thickening in fibers, a small amount of secondary walls was deposited in fibers during the late stage of stem development. In contrast, simultaneous mutations of SND1, NST1 and NST2 led to a complete loss of secondary wall thickening in fibers. These results demonstrate that NST2 together with SND1 and NST1 regulate secondary wall biosynthesis in fibers of stems.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology; University of Georgia; Athens, GA USA
| | - Zheng-Hua Ye
- Department of Plant Biology; University of Georgia; Athens, GA USA
- Correspondence to: Zheng-Hua Ye;
| |
Collapse
|
146
|
Dong Y, Wang YZ. Seed shattering: from models to crops. FRONTIERS IN PLANT SCIENCE 2015; 6:476. [PMID: 26157453 PMCID: PMC4478375 DOI: 10.3389/fpls.2015.00476] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/15/2015] [Indexed: 05/19/2023]
Abstract
Seed shattering (or pod dehiscence, or fruit shedding) is essential for the propagation of their offspring in wild plants but is a major cause of yield loss in crops. In the dicot model species, Arabidopsis thaliana, pod dehiscence necessitates a development of the abscission zones along the pod valve margins. In monocots, such as cereals, an abscission layer in the pedicle is required for the seed shattering process. In the past decade, great advances have been made in characterizing the genetic contributors that are involved in the complex regulatory network in the establishment of abscission cell identity. We summarize the recent burgeoning progress in the field of genetic regulation of pod dehiscence and fruit shedding, focusing mainly on the model species A. thaliana with its close relatives and the fleshy fruit species tomato, as well as the genetic basis responsible for the parallel loss of seed shattering in domesticated crops. This review shows how these individual genes are co-opted in the developmental process of the tissues that guarantee seed shattering. Research into the genetic mechanism underlying seed shattering provides a premier prerequisite for the future breeding program for harvest in crops.
Collapse
Affiliation(s)
| | - Yin-Zheng Wang
- *Correspondence: Yin-Zheng Wang, State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing 100093, China,
| |
Collapse
|
147
|
Stender EG, O'Shea C, Skriver K. Subgroup-specific intrinsic disorder profiles of Arabidopsis NAC transcription factors: Identification of functional hotspots. PLANT SIGNALING & BEHAVIOR 2015; 10:e1010967. [PMID: 26107850 PMCID: PMC4622513 DOI: 10.1080/15592324.2015.1010967] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
Protein intrinsic disorder (ID), referring to the lack of a fixed tertiary structure, is significant in signaling and transcription. We recently characterized ID in 6 phylogenetically representative Arabidopsis thaliana NAC transcription factors. Their transcription regulatory domains are mostly disordered but contain short, functionally important regions with structure propensities known as molecular recognition features. Here, we analyze for NAC subgroup-specific ID patterns. Some subgroups, such as the VND subgroup implicated in secondary cell wall biosynthesis, and the NAP/SHYG subgroup have highly conserved ID profiles. For the stress-associated ATAF1 subgroup and the CUC/ORE1 subgroup involved in development, only sub clades have similar ID patterns. For similar ID profiles, conserved molecular recognition features and sequence motifs represent likely functional determinants of e.g. transcriptional activation and interactions. Based on our analysis, we suggest that ID profiling of regulatory proteins in general can be used to guide identification of interaction partners of network proteins.
Collapse
Affiliation(s)
- Emil G Stender
- Department of Biology; University of Copenhagen; Copenhagen, Denmark
| | - Charlotte O'Shea
- Department of Biology; University of Copenhagen; Copenhagen, Denmark
| | - Karen Skriver
- Department of Biology; University of Copenhagen; Copenhagen, Denmark
| |
Collapse
|
148
|
Liu Y, Douglas CJ. A role for OVATE FAMILY PROTEIN1 (OFP1) and OFP4 in a BLH6-KNAT7 multi-protein complex regulating secondary cell wall formation in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2015; 10:e1033126. [PMID: 26107719 PMCID: PMC4622736 DOI: 10.1080/15592324.2015.1033126] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 03/15/2015] [Accepted: 03/17/2015] [Indexed: 05/22/2023]
Abstract
Formation of secondary walls is a complex process that requires the coordinated and developmentally regulated expression of secondary wall biosynthetic genes. In Arabidopsis thaliana, a transcriptional network orchestrates the biosynthesis and deposition of the main SCW components in xylem and fiber cells. It was recently reported that interacting TALE homeodomain proteins BEL-LIKE HOMEODOMAIN6 (BLH6) and KNOTTED ARABIDOPSIS THALIANA7 (KNAT7) negatively regulate secondary cell wall formation in the interfascicular fibers of Arabidopsis inflorescence stems. Members of the Arabidopsis OVATE FAMILY PROTEIN (OFP) family of transcriptional regulators have been shown to physically interact in yeast with various KNAT and BLH proteins, forming a proposed TALE-OFP protein interaction network. This study presents molecular and genetic data indicating that OFP1 and OFP4, previously reported to interact with TALE homeodomain proteins, enhance the repression activity of BLH6, supporting a role for these OFPs as components of a putative multi-protein transcription regulatory complex containing BLH6 and KNAT7.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Botany; University of British Columbia; Vancouver, BC, Canada
| | - Carl J Douglas
- Department of Botany; University of British Columbia; Vancouver, BC, Canada
- Correspondence to: Carl J Douglas;
| |
Collapse
|
149
|
Li Q, Song J, Peng S, Wang JP, Qu GZ, Sederoff RR, Chiang VL. Plant biotechnology for lignocellulosic biofuel production. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1174-92. [PMID: 25330253 DOI: 10.1111/pbi.12273] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 08/11/2014] [Accepted: 09/05/2014] [Indexed: 05/18/2023]
Abstract
Lignocelluloses from plant cell walls are attractive resources for sustainable biofuel production. However, conversion of lignocellulose to biofuel is more expensive than other current technologies, due to the costs of chemical pretreatment and enzyme hydrolysis for cell wall deconstruction. Recalcitrance of cell walls to deconstruction has been reduced in many plant species by modifying plant cell walls through biotechnology. These results have been achieved by reducing lignin content and altering its composition and structure. Reduction of recalcitrance has also been achieved by manipulating hemicellulose biosynthesis and by overexpression of bacterial enzymes in plants to disrupt linkages in the lignin-carbohydrate complexes. These modified plants often have improved saccharification yield and higher ethanol production. Cell wall-degrading (CWD) enzymes from bacteria and fungi have been expressed at high levels in plants to increase the efficiency of saccharification compared with exogenous addition of cellulolytic enzymes. In planta expression of heat-stable CWD enzymes from bacterial thermophiles has made autohydrolysis possible. Transgenic plants can be engineered to reduce recalcitrance without any yield penalty, indicating that successful cell wall modification can be achieved without impacting cell wall integrity or plant development. A more complete understanding of cell wall formation and structure should greatly improve lignocellulosic feedstocks and reduce the cost of biofuel production.
Collapse
Affiliation(s)
- Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China; State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
150
|
Zhong R, Ye ZH. Complexity of the transcriptional network controlling secondary wall biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:193-207. [PMID: 25443846 DOI: 10.1016/j.plantsci.2014.09.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/14/2014] [Accepted: 09/15/2014] [Indexed: 05/02/2023]
Abstract
Secondary walls in the form of wood and fibers are the most abundant biomass produced by vascular plants, and are important raw materials for many industrial uses. Understanding how secondary walls are constructed is of significance in basic plant biology and also has far-reaching implications in genetic engineering of plant biomass better suited for various end uses, such as biofuel production. Secondary walls are composed of three major biopolymers, i.e., cellulose, hemicelluloses and lignin, the biosynthesis of which requires the coordinated transcriptional regulation of all their biosynthesis genes. Genomic and molecular studies have identified a number of transcription factors, whose expression is associated with secondary wall biosynthesis. We comprehensively review how these secondary wall-associated transcription factors function together to turn on the secondary wall biosynthetic program, which leads to secondary wall deposition in vascular plants. The transcriptional network regulating secondary wall biosynthesis employs a multi-leveled feed-forward loop regulatory structure, in which the top-level secondary wall NAC (NAM, ATAF1/2 and CUC2) master switches activate the second-level MYB master switches and they together induce the expression of downstream transcription factors and secondary wall biosynthesis genes. Secondary wall NAC master switches and secondary wall MYB master switches bind to and activate the SNBE (secondary wall NAC binding element) and SMRE (secondary wall MYB-responsive element) sites, respectively, in their target gene promoters. Further investigation of what and how developmental signals trigger the transcriptional network to regulate secondary wall biosynthesis and how different secondary wall-associated transcription factors function cooperatively in activating secondary wall biosynthetic pathways will lead to a better understanding of the molecular mechanisms underlying the transcriptional control of secondary wall biosynthesis.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|