101
|
Dludla PV, Joubert E, Muller CJF, Louw J, Johnson R. Hyperglycemia-induced oxidative stress and heart disease-cardioprotective effects of rooibos flavonoids and phenylpyruvic acid-2- O-β-D-glucoside. Nutr Metab (Lond) 2017; 14:45. [PMID: 28702068 PMCID: PMC5504778 DOI: 10.1186/s12986-017-0200-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/23/2017] [Indexed: 12/15/2022] Open
Abstract
Diabetic patients are at an increased risk of developing heart failure when compared to their non-diabetic counter parts. Accumulative evidence suggests chronic hyperglycemia to be central in the development of myocardial infarction in these patients. At present, there are limited therapies aimed at specifically protecting the diabetic heart at risk from hyperglycemia-induced injury. Oxidative stress, through over production of free radical species, has been hypothesized to alter mitochondrial function and abnormally augment the activity of the NADPH oxidase enzyme system resulting in accelerated myocardial injury within a diabetic state. This has led to a dramatic increase in the exploration of plant-derived materials known to possess antioxidative properties. Several edible plants contain various natural constituents, including polyphenols that may counteract oxidative-induced tissue damage through their modulatory effects of intracellular signaling pathways. Rooibos, an indigenous South African plant, well-known for its use as herbal tea, is increasingly studied for its metabolic benefits. Prospective studies linking diet rich in polyphenols from rooibos to reduced diabetes associated cardiovascular complications have not been extensively assessed. Aspalathin, a flavonoid, and phenylpyruvic acid-2-O-β-D-glucoside, a phenolic precursor, are some of the major compounds found in rooibos that can ameliorate hyperglycemia-induced cardiomyocyte damage in vitro. While the latter has demonstrated potential to protect against cell apoptosis, the proposed mechanism of action of aspalathin is linked to its capacity to enhance the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression, an intracellular antioxidant response element. Thus, here we review literature on the potential cardioprotective properties of flavonoids and a phenylpropenoic acid found in rooibos against diabetes-induced oxidative injury.
Collapse
Affiliation(s)
- Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, P.O. Box 19070, Tygerberg, 7505 South Africa.,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Elizabeth Joubert
- Plant Bioactives Group, Post-Harvest and Wine Technology Division, Agricultural Research Council (ARC) Infruitec- Nietvoorbij, Stellenbosch, South Africa.,Department of Food Science, Stellenbosch University, Stellenbosch, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, P.O. Box 19070, Tygerberg, 7505 South Africa.,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa.,Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, P.O. Box 19070, Tygerberg, 7505 South Africa.,Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, P.O. Box 19070, Tygerberg, 7505 South Africa.,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
102
|
Strom J, Chen QM. Loss of Nrf2 promotes rapid progression to heart failure following myocardial infarction. Toxicol Appl Pharmacol 2017; 327:52-58. [DOI: 10.1016/j.taap.2017.03.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/03/2017] [Accepted: 03/30/2017] [Indexed: 12/24/2022]
|
103
|
Zhang C, Li Q, Lai S, Yang L, Shi G, Wang Q, Luo Z, Zhao R, Yu Y. Attenuation of diabetic nephropathy by Sanziguben Granule inhibiting EMT through Nrf2-mediated anti-oxidative effects in streptozotocin (STZ)-induced diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2017; 205:207-216. [PMID: 28501426 DOI: 10.1016/j.jep.2017.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 04/26/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic nephropathy (DN) is an acute and serious diabetic complication characterized by renal hypertrophy and renal fibrosis with the expansion of extracellular matrices. Diabetic nephropathy has become a major cause of end-stage kidney disease. Sanziguben Granule (SZGB) is a compound prescription which has been widely applied in clinical medicine for the prevention and treatment of diabetic nephropathy as well as for acute and chronic kidney injuries. However, the mechanism of protective effects of SZGB in DN remains unclear. MATERIALS AND METHODS In this research, we investigated the effects of SZGB on renal interstitial fibrosis, antioxidant proficiency, and apoptosis in streptozotocin (STZ)-induced diabetic rats. Diabetic rats were prepared by performing a right uninephrectomy along with a single intraperitoneal injection of STZ. Rats were divided into six groups including sham, DN, SZGB-D, SZGB-Z, SZGB-G and fosinopril. SZGB and fosinopril were given to rats by gavage for 12 weeks. Samples from urine, blood and kidneys were collected for biochemical, histological, immunohistochemical and western blot analyses. RESULTS We found that rats treated with SZGB showed reduced 24-h urinary protein excretion along with reduced serum total cholesterol (TC) and triglyceride (TG) levels. SZGB was also shown to prevent the disruption of catalase activity and reduce serum urea, creatinine, and renal malondialdehyde while increasing glutathione levels. Moreover, SZGB administration markedly improved the expression levels of E-cadherin, 4-HNE, Nrf2, HO-1, and Bcl-2, while it decreased the expression levels of Vimentin, α-SMA and Cleaved caspase-3 in the kidneys of diabetic rats. The renoprotective effects of SZGB was believed to be mediated by its antioxidant capacity, and SZGB treatment attenuated renal fibrosis through stimulating the nuclear factor erythroid-2-related factor 2 (Nrf2) signaling pathway in the diabetic kidneys. CONCLUSIONS Therefore, it is suggested that SZGB can restrain epithelial-mesenchymal transition (EMT) through stimulating the Nrf2 pathway, which improves renal interstitial fibrosis in DN.
Collapse
Affiliation(s)
- Chenxue Zhang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Qian Li
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Sisi Lai
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Lei Yang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Guoqi Shi
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Qing Wang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zijie Luo
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ruizhi Zhao
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Yang Yu
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
104
|
Non-linear actions of physiological agents: Finite disarrangements elicit fitness benefits. Redox Biol 2017; 13:235-243. [PMID: 28595161 PMCID: PMC5460745 DOI: 10.1016/j.redox.2017.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/11/2017] [Indexed: 12/16/2022] Open
Abstract
Finite disarrangements of important (vital) physiological agents and nutrients can induce plethora of beneficial effects, exceeding mere attenuation of the specific stress. Such response to disrupted homeostasis appears to be universally conserved among species. The underlying mechanism of improved fitness and longevity, when physiological agents act outside their normal range is similar to hormesis, a phenomenon whereby toxins elicit beneficial effects at low doses. Due to similarity with such non-linear response to toxins described with J-shaped curve, we have coined a new term “mirror J-shaped curves” for non-linear response to finite disarrangement of physiological agents. Examples from the clinical trials and basic research are provided, along with the unifying mechanisms that tie classical non-linear response to toxins with the non-linear response to physiological agents (glucose, oxygen, osmolarity, thermal energy, calcium, body mass, calorie intake and exercise). Reactive oxygen species and cytosolic calcium seem to be common triggers of signaling pathways that result in these beneficial effects. Awareness of such phenomena and exploring underlying mechanisms can help physicians in their everyday practice. It can also benefit researchers when designing studies and interpreting growing number of scientific data showing non-linear responses to physiological agents.
Collapse
|
105
|
Tsai CY, Wen SY, Cheng SY, Wang CH, Yang YC, Viswanadha VP, Huang CY, Kuo WW. Nrf2 Activation as a Protective Feedback to Limit Cell Death in High Glucose-Exposed Cardiomyocytes. J Cell Biochem 2017; 118:1659-1669. [PMID: 27859591 DOI: 10.1002/jcb.25785] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/07/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Cheng-Yen Tsai
- Department of Pediatrics; China Medical University Beigang Hospital; Yunlin 651 Taiwan,ROC
- School of Chinese Medicine; College of Chinese Medicine; China Medical University; Taichung 40402 Taiwan
| | - Su-Ying Wen
- Department of Dermatology; Taipei City Hospital; Renai Branch; Taipei Taiwan
- Center for General Education; Mackay Junior College of Medicine; Nursing, and Management; Taipei Taiwan
| | - Shi-Yann Cheng
- Department of Medical Education and Research and Department of Obstetrics and Gynecology; China Medical University Beigang Hospital; Yunlin 651 Taiwan,ROC
- Department of Obstetrics and Gynecology; China Medical University An Nan Hospital; Yunlin 651 Taiwan,ROC
- Obstetrics and Gynecology; School of Medicine; China Medical University; Taichung Taiwan
| | - Chung-Hsing Wang
- Department of Pediatrics; China Medical University Hospital; Taichung 404 Taiwan,ROC
| | - Yao-Chih Yang
- Department of Biological Science and Technology; College of Biopharmaceutical and Food Sciences; China Medical University; Taichung 404 Taiwan,ROC
| | | | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science; China Medical University; Taichung 404 Taiwan,ROC
- Department of Chinese Medicine; China Medical University Hospital; Taichung 404 Taiwan,ROC
- Department of Health and Nutrition Biotechnology; Asia University; Taichung 413 Taiwan,ROC
| | - Wei-Wen Kuo
- Department of Biological Science and Technology; College of Biopharmaceutical and Food Sciences; China Medical University; Taichung 404 Taiwan,ROC
| |
Collapse
|
106
|
Wang S, Wang B, Wang Y, Tong Q, Liu Q, Sun J, Zheng Y, Cai L. Zinc Prevents the Development of Diabetic Cardiomyopathy in db/db Mice. Int J Mol Sci 2017; 18:580. [PMID: 28272348 PMCID: PMC5372596 DOI: 10.3390/ijms18030580] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 01/04/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is highly prevalent in type 2 diabetes (T2DM) patients. Zinc is an important essential trace metal, whose deficiency is associated with various chronic ailments, including vascular diseases. We assessed T2DM B6.BKS(D)-Leprdb/J (db/db) mice fed for six months on a normal diet containing three zinc levels (deficient, adequate, and supplemented), to explore the role of zinc in DCM development and progression. Cardiac function, reflected by ejection fraction, was significantly decreased, along with increased left ventricle mass and heart weight to tibial length ratio, in db/db mice. As a molecular cardiac hypertrophy marker, atrial natriuretic peptide levels were also significantly increased. Cardiac dysfunction and hypertrophy were accompanied by significantly increased fibrotic (elevated collagen accumulation as well as transforming growth factor β and connective tissue growth factor levels) and inflammatory (enhanced expression of tumor necrosis factor alpha, interleukin-1β, caspase recruitment domain family member 9, and B-cell lymphoma/leukemia 10, and activated p38 mitogen-activated protein kinase) responses in the heart. All these diabetic effects were exacerbated by zinc deficiency, and not affected by zinc supplementation, respectively. Mechanistically, oxidative stress and damage, mirrored by the accumulation of 3-nitrotyrosine and 4-hydroxy-2-nonenal, was significantly increased along with significantly decreased expression of Nrf2 and its downstream antioxidants (NQO-1 and catalase). This was also exacerbated by zinc deficiency in the db/db mouse heart. These results suggested that zinc deficiency promotes the development and progression of DCM in T2DM db/db mice. The exacerbated effects by zinc deficiency on the heart of db/db mice may be related to further suppression of Nrf2 expression and function.
Collapse
Affiliation(s)
- Shudong Wang
- Cardiovascular Center & Geriatric Medicine, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
- Pediatric Research Institute, The Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA.
| | - Bowei Wang
- Pediatric Research Institute, The Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA.
- Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, Jilin, China.
| | - Yuehui Wang
- Cardiovascular Center & Geriatric Medicine, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Qian Tong
- Cardiovascular Center & Geriatric Medicine, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Quan Liu
- Cardiovascular Center & Geriatric Medicine, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Jian Sun
- Cardiovascular Center & Geriatric Medicine, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Yang Zheng
- Cardiovascular Center & Geriatric Medicine, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Lu Cai
- Pediatric Research Institute, The Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA.
- Wendy Novak Diabetes Care Center, Departments of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
107
|
Gu J, Cheng Y, Wu H, Kong L, Wang S, Xu Z, Zhang Z, Tan Y, Keller BB, Zhou H, Wang Y, Xu Z, Cai L. Metallothionein Is Downstream of Nrf2 and Partially Mediates Sulforaphane Prevention of Diabetic Cardiomyopathy. Diabetes 2017; 66:529-542. [PMID: 27903744 PMCID: PMC5248986 DOI: 10.2337/db15-1274] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/04/2016] [Indexed: 12/22/2022]
Abstract
We have reported that sulforaphane (SFN) prevented diabetic cardiomyopathy in both type 1 and type 2 diabetes (T2DM) animal models via the upregulation of nuclear transcription factor erythroid 2-related factor 2 (Nrf2) and metallothionein (MT). In this study, we tested whether SFN protects the heart from T2DM directly through Nrf2, MT, or both. Using Nrf2-knockout (KO), MT-KO, and wild-type (WT) mice, T2DM was induced by feeding a high-fat diet for 3 months followed by a small dose of streptozotocin. Age-matched controls were given a normal diet. Both T2DM and control mice were then treated with or without SFN for 4 months by continually feeding a high-fat or normal diet. SFN prevented diabetes-induced cardiac dysfunction as well as diabetes-associated cardiac oxidative damage, inflammation, fibrosis, and hypertrophy, with increases in Nrf2 and MT expressions in the WT mice. Both Nrf2-KO and MT-KO diabetic mice exhibited greater cardiac damage than WT diabetic mice. SFN did not provide cardiac protection in Nrf2-KO mice, but partially or completely protected the heart from diabetes in MT-KO mice. SFN did not induce MT expression in Nrf2-KO mice, but stimulated Nrf2 function in MT-KO mice. These results suggest that Nrf2 plays the indispensable role for SFN cardiac protection from T2DM with significant induction of MT and other antioxidants. MT expression induced by SFN is Nrf2 dependent, but is not indispensable for SFN-induced cardiac protection from T2DM.
Collapse
Affiliation(s)
- Junlian Gu
- The First Hospital of Jilin University, Changchun, Jilin, China
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY
| | - Yanli Cheng
- The First Hospital of Jilin University, Changchun, Jilin, China
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY
| | - Hao Wu
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Lili Kong
- The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY
| | - Shudong Wang
- The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY
| | - Zheng Xu
- The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY
| | - Zhiguo Zhang
- The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yi Tan
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY
| | - Bradley B Keller
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY
| | - Honglan Zhou
- The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuehui Wang
- The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhonggao Xu
- The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lu Cai
- The First Hospital of Jilin University, Changchun, Jilin, China
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY
| |
Collapse
|
108
|
Dludla PV, Muller CJF, Joubert E, Louw J, Essop MF, Gabuza KB, Ghoor S, Huisamen B, Johnson R. Aspalathin Protects the Heart against Hyperglycemia-Induced Oxidative Damage by Up-Regulating Nrf2 Expression. Molecules 2017; 22:molecules22010129. [PMID: 28098811 PMCID: PMC6155802 DOI: 10.3390/molecules22010129] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/26/2016] [Accepted: 01/05/2017] [Indexed: 01/14/2023] Open
Abstract
Aspalathin (ASP) can protect H9c2 cardiomyocytes against high glucose (HG)-induced shifts in myocardial substrate preference, oxidative stress, and apoptosis. The protective mechanism of ASP remains unknown. However, as one of possible, it is well known that phytochemical flavonoids reduce oxidative stress via nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activation resulting in up-regulation of antioxidant genes and enzymes. Therefore, we hypothesized that ASP protects the myocardium against HG- and hyperglycemia-induced oxidative damage by up-regulating Nrf2 expression in H9c2 cardiomyocytes and diabetic (db/db) mice, respectively. Using an oxidative stress RT2 Profiler PCR array, ASP at a dose of 1 µM was demonstrated to protect H9c2 cardiomyocytes against HG-induced oxidative stress, but silencing of Nrf2 abolished this protective response of ASP and exacerbated cardiomyocyte apoptosis. Db/db mice and their non-diabetic (db/+) littermate controls were subsequently treated daily for six weeks with either a low (13 mg/kg) or high (130 mg/kg) ASP dose. Compared to nondiabetic mice the db/db mice presented increased cardiac remodeling and enlarged left ventricular wall that occurred concomitant to enhanced oxidative stress. Daily treatment of mice with ASP at a dose of 130 mg/kg for six weeks was more effective at reversing complications than both a low dose ASP or metformin, eliciting enhanced expression of Nrf2 and its downstream antioxidant genes. These results indicate that ASP maintains cellular homeostasis and protects the myocardium against hyperglycemia-induced oxidative stress through activation of Nrf2 and its downstream target genes.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cardiotonic Agents/pharmacology
- Cell Line
- Chalcones/pharmacology
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Drug Administration Schedule
- Gene Expression Regulation
- Glucose/antagonists & inhibitors
- Glucose/toxicity
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- NF-E2-Related Factor 2/agonists
- NF-E2-Related Factor 2/antagonists & inhibitors
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Signal Transduction
- Ventricular Remodeling/drug effects
Collapse
Affiliation(s)
- Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform (BRIP), Medical Research Council (MRC), Tygerberg 7505, South Africa.
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa.
| | - Christo J F Muller
- Biomedical Research and Innovation Platform (BRIP), Medical Research Council (MRC), Tygerberg 7505, South Africa.
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa.
- Department of Biochemistry and Microbiology, University of Zululand, Kwadlangezwa 3886, South Africa.
| | - Elizabeth Joubert
- Post-Harvest and Wine Technology Division, Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch 7599, South Africa.
- Department of Food Science, Stellenbosch University, Stellenbosch 7599, South Africa.
| | - Johan Louw
- Biomedical Research and Innovation Platform (BRIP), Medical Research Council (MRC), Tygerberg 7505, South Africa.
- Department of Biochemistry and Microbiology, University of Zululand, Kwadlangezwa 3886, South Africa.
| | - M Faadiel Essop
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7599, South Africa.
| | - Kwazi B Gabuza
- Biomedical Research and Innovation Platform (BRIP), Medical Research Council (MRC), Tygerberg 7505, South Africa.
| | - Samira Ghoor
- Biomedical Research and Innovation Platform (BRIP), Medical Research Council (MRC), Tygerberg 7505, South Africa.
| | - Barbara Huisamen
- Biomedical Research and Innovation Platform (BRIP), Medical Research Council (MRC), Tygerberg 7505, South Africa.
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa.
| | - Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), Medical Research Council (MRC), Tygerberg 7505, South Africa.
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa.
| |
Collapse
|
109
|
Yan B, Ren J, Zhang Q, Gao R, Zhao F, Wu J, Yang J. Antioxidative Effects of Natural Products on Diabetic Cardiomyopathy. J Diabetes Res 2017; 2017:2070178. [PMID: 29181412 PMCID: PMC5664314 DOI: 10.1155/2017/2070178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/08/2017] [Accepted: 08/06/2017] [Indexed: 12/31/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a common and severe complication of diabetes and results in high mortality. It is therefore imperative to develop novel therapeutics for the prevention or inhibition of the progression of DCM. Oxidative stress is a key mechanism by which diabetes induces DCM. Hence, targeting of oxidative stress-related processes in DCM could be a promising therapeutic strategy. To date, a number of studies have shown beneficial effects of several natural products on the attenuation of DCM via an antioxidative mechanism of action. The aim of the present review is to provide a comprehensive and concise overview of the previously reported antioxidant natural products in the inhibition of DCM progression. Clinical trials of the antioxidative natural products in the management of DCM are included. In addition, discussion and perspectives are further provided in the present review.
Collapse
Affiliation(s)
- Bingdi Yan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Jin Ren
- Department of Respiratory Medicine, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Qinghua Zhang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Rong Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Fenglian Zhao
- Department of Clinical Laboratory, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Junduo Wu
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| |
Collapse
|
110
|
Dong W, Jia Y, Liu X, Zhang H, Li T, Huang W, Chen X, Wang F, Sun W, Wu H. Sodium butyrate activates NRF2 to ameliorate diabetic nephropathy possibly via inhibition of HDAC. J Endocrinol 2017; 232:71-83. [PMID: 27799462 DOI: 10.1530/joe-16-0322] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 10/25/2016] [Indexed: 01/04/2023]
Abstract
Oxidative stress contributes to the pathogenesis of diabetic nephropathy (DN). Nuclear factor erythroid 2-related factor 2 (NRF2) plays a key role in cellular defense against oxidative stress. NRF2 activators have shown promising preventive effects on DN. Sodium butyrate (NaB) is a known activator of NRF2. However, it is unknown whether NRF2 is required for NaB protection against DN. Therefore, streptozotocin-induced diabetic C57BL/6 Nrf2 knockout and their wild-type mice were treated in the presence or absence of NaB for 20 weeks. Diabetic mice, but not NaB-treated diabetic mice, developed significant renal oxidative damage, inflammation, apoptosis, fibrosis, pathological changes and albuminuria. NaB inhibited histone deacetylase (HDAC) activity and elevated the expression of Nrf2 and its downstream targets heme oxygenase 1 and NAD(P)H dehydrogenase quinone 1. Notably, deletion of the Nrf2 gene completely abolished NaB activation of NRF2 signaling and protection against diabetes-induced renal injury. Interestingly, the expression of Kelch-like ECH-associated protein 1, the negative regulator of NRF2, was not altered by NaB under both diabetic and non-diabetic conditions. Moreover, NRF2 nuclear translocation was not promoted by NaB. Therefore, the present study indicates, for the first time, that NRF2 plays a key role in NaB protection against DN. Other findings suggest that NaB may activate Nrf2 at the transcriptional level, possibly by the inhibition of HDAC activity.
Collapse
Affiliation(s)
- Wenpeng Dong
- Dialysis CenterDaqing Oilfield General Hospital, Daqing, Heilongjiang, People's Republic of China
- Department of NephrologyThe Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Ye Jia
- Department of NephrologyThe First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xiuxia Liu
- Department of Clinical LaboratoryThe Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Huan Zhang
- Operating theatreChina-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Tie Li
- Department of Acupuncture and TuinaChangchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Wenlin Huang
- School of Science and TechnologyGeorgia Gwinnett College, Lawrenceville, Georgia, USA
| | - Xudong Chen
- Gastroenterology Department No. 1Jilin Central General Hospital, Jilin, Jilin, People's Republic of China
| | - Fuchun Wang
- Department of Acupuncture and TuinaChangchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Weixia Sun
- Department of NephrologyThe First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Hao Wu
- Department of Acupuncture and TuinaChangchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
- Department of NephrologyThe Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
111
|
Xu X, Sun J, Chang X, Wang J, Luo M, Wintergerst KA, Miao L, Cai L. Genetic variants of nuclear factor erythroid-derived 2-like 2 associated with the complications in Han descents with type 2 diabetes mellitus of Northeast China. J Cell Mol Med 2016; 20:2078-2088. [PMID: 27374075 PMCID: PMC5082403 DOI: 10.1111/jcmm.12900] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 05/10/2016] [Indexed: 12/25/2022] Open
Abstract
The transcription factor nuclear factor erythroid 2-like 2 (NFE2L2) is essential for preventing type 2 diabetes mellitus (T2DM)-induced complications in animal models. This case and control study assessed genetic variants of NFE2L2 for associations with T2DM and its complications in Han Chinese volunteers. T2DM patients with (n = 214) or without (n = 236) complications, or healthy controls (n = 359), were genotyped for six NFE2L2 single nucleotide polymorphisms (SNPs: rs2364723, rs13001694, rs10497511, rs1806649, rs1962142 and rs6726395) with TaqMan Pre-Designed SNP Genotyping and Sequence System. Serum levels of heme oxygenase-1 (HMOX1) were determined through enzyme-linked immunosorbent assay. Informative data were obtained for 341 cases and 266 controls. Between T2DM patients and controls, the genotypic and allelic frequencies and haplotypes of the SNPs were similar. However, there was a significant difference in genotypic and allelic frequencies of rs2364723, rs10497511, rs1962142 and rs6726395 between T2DM patients with and without complications, including peripheral neuropathy, nephropathy, retinopathy, foot ulcers and microangiopathy. Furthermore, HMOX1 levels were significantly higher in T2DM patients with complications than in controls. Multiple logistic regression analysis, however, showed that only rs2364723 significantly reduced levels of serum HMOX1 in T2DM patients for the GG genotype carriers compared with participants with CG+CC genotype. The data suggest that although NFE2L2 rs2364723, rs10497511, rs1962142 and rs6726395 were not associated with T2DM risk, they were significantly associated with complications of T2DM. In addition, only for rs2364723 higher serum HMOX1 levels were found in the T2DM patients with CG+CC than those with GG genotype.
Collapse
Affiliation(s)
- Xiaohong Xu
- Department of Gynecology and Obstetrics, Second Hospital of Jilin University, Changchun, China
| | - Jing Sun
- Department of Nephropathy, Second Hospital of Jilin University, Changchun, China
| | - Xiaomin Chang
- Department of Nephropathy, Second Hospital of Jilin University, Changchun, China
| | - Ji Wang
- Department of Nephropathy, Second Hospital of Jilin University, Changchun, China
| | - Manyu Luo
- Department of Nephropathy, Second Hospital of Jilin University, Changchun, China
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA
| | - Kupper A Wintergerst
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Louisville, KY, USA
- Wendy L. Novak Diabetes Care Center, Kosair Children's Hospital, University of Louisville, Louisville, KY, USA
| | - Lining Miao
- Department of Nephropathy, Second Hospital of Jilin University, Changchun, China.
| | - Lu Cai
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA.
- Wendy L. Novak Diabetes Care Center, Kosair Children's Hospital, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
112
|
Jankovic A, Ferreri C, Filipovic M, Ivanovic-Burmazovic I, Stancic A, Otasevic V, Korac A, Buzadzic B, Korac B. Targeting the superoxide/nitric oxide ratio by L-arginine and SOD mimic in diabetic rat skin. Free Radic Res 2016; 50:S51-S63. [DOI: 10.1080/10715762.2016.1232483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Aleksandra Jankovic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Belgrade, Serbia
| | - Carla Ferreri
- ISOF, BioFreeRadicals Group, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Milos Filipovic
- CNRS, Institute of Biochemistry and Cellular Genetics, Université de Bordeaux, Bordeaux, France
| | - Ivana Ivanovic-Burmazovic
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ana Stancic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Belgrade, Serbia
| | - Vesna Otasevic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Korac
- Faculty of Biology, Centre for Electron Microscopy, University of Belgrade, Belgrade, Serbia
| | - Biljana Buzadzic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Belgrade, Serbia
| | - Bato Korac
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Belgrade, Serbia
- Faculty of Biology, Centre for Electron Microscopy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
113
|
Zhang X, He H, Liang D, Jiang Y, Liang W, Chi ZH, Ma J. Protective Effects of Berberine on Renal Injury in Streptozotocin (STZ)-Induced Diabetic Mice. Int J Mol Sci 2016; 17:ijms17081327. [PMID: 27529235 PMCID: PMC5000724 DOI: 10.3390/ijms17081327] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/03/2016] [Accepted: 08/01/2016] [Indexed: 12/19/2022] Open
Abstract
Diabetic nephropathy (DN) is a serious diabetic complication with renal hypertrophy and expansion of extracellular matrices in renal fibrosis. Epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells may be involved in the main mechanism. Berberine (BBR) has been shown to have antifibrotic effects in liver, kidney and lung. However, the mechanism of cytoprotective effects of BBR in DN is still unclear. In this study, we investigated the curative effects of BBR on tubulointerstitial fibrosis in streptozotocin (STZ)-induced diabetic mice and the high glucose (HG)-induced EMT in NRK 52E cells. We found that BBR treatment attenuated renal fibrosis by activating the nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway in the diabetic kidneys. Further revealed that BBR abrogated HG-induced EMT and oxidative stress in relation not only with the activation of Nrf2 and two Nrf2-targeted antioxidative genes (NQO-1 and HO-1), but also with the suppressing the activation of TGF-β/Smad signaling pathway. Importantly, knockdown Nrf2 with siRNA not only abolished the BBR-induced expression of HO-1 and NQO-1 but also removed the inhibitory effect of BBR on HG-induced activation of TGF-β/Smad signaling as well as the anti-fibrosis effects. The data from present study suggest that BBR can ameliorate tubulointerstitial fibrosis in DN by activating Nrf2 pathway and inhibiting TGF-β/Smad/EMT signaling activity.
Collapse
Affiliation(s)
- Xiuli Zhang
- Department of Nephrology, Benxi Center Hospital, 29 Victory Road, Benxi 117000, Liaoning, China.
- Science Experiment Center, Benxi Center Hospital, Benxi 117000, Liaoning, China.
- Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang 110001, Liaoning, China.
| | - Hui He
- Science Experiment Center, Benxi Center Hospital, Benxi 117000, Liaoning, China.
| | - Dan Liang
- Troops of 95935 Unit, Haerbin 150111, Heilongjiang, China.
| | - Yan Jiang
- Science Experiment Center, Benxi Center Hospital, Benxi 117000, Liaoning, China.
| | - Wei Liang
- Science Experiment Center, Benxi Center Hospital, Benxi 117000, Liaoning, China.
| | - Zhi-Hong Chi
- Department of pathophysiology, China Medical University, Shenyang 110001, Liaoning, China.
| | - Jianfei Ma
- Department of Nephrology, the First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, China.
| |
Collapse
|
114
|
Xu Z, Wang S, Ji H, Zhang Z, Chen J, Tan Y, Wintergerst K, Zheng Y, Sun J, Cai L. Broccoli sprout extract prevents diabetic cardiomyopathy via Nrf2 activation in db/db T2DM mice. Sci Rep 2016; 6:30252. [PMID: 27457280 PMCID: PMC4960533 DOI: 10.1038/srep30252] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/01/2016] [Indexed: 12/17/2022] Open
Abstract
To develop a clinic-relevant protocol for systemic up-regulation of NFE2-related factor 2 (Nrf2) to prevent diabetic cardiomyopathy (DCM), male db/db and age-matched wild-type (WT) mice were given sulforaphane (SFN, an Nrf2 activator) and its natural source, broccoli sprout extract (BSE) by gavage every other day for 3 months, with four groups: vehicle (0.1 ml/10 g), BSE-low dose (estimated SFN availability at 0.5 mg/kg), BSE-high dose (estimated SFN availability at 1.0 mg/kg), and SFN (0.5 mg/kg). Cardiac function and pathological changes (hypertrophy, fibrosis, inflammation and oxidative damage) were assessed by echocardiography and histopathological examination along with Western blot and real-time PCR, respectively. Both BSE and SFN significantly prevented diabetes-induced cardiac dysfunction, hypertrophy and fibrosis. Mechanistically, BSE, like SFN, significantly up-regulated Nrf2 transcriptional activity, evidenced by the increased Nrf2 nuclear accumulation and its downstream gene expression. This resulted in a significant prevention of cardiac oxidative damage and inflammation. For all these preventive effects, BSE at high dose provided a similar effect as did SFN. These results indicated that BSE at high dose prevents DCM in a manner congruent with SFN treatment. Therefore, it suggests that BSE could potentially be used as a natural and safe treatment against DCM via Nrf2 activation.
Collapse
Affiliation(s)
- Zheng Xu
- Cardiovascular Center, the First Hospital of Jilin University, Changchun, China
- Kosair Children’s Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA
| | - Shudong Wang
- Cardiovascular Center, the First Hospital of Jilin University, Changchun, China
- Kosair Children’s Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA
| | - Honglei Ji
- Cardiovascular Center, the First Hospital of Jilin University, Changchun, China
| | - Zhiguo Zhang
- Cardiovascular Center, the First Hospital of Jilin University, Changchun, China
| | - Jing Chen
- Kosair Children’s Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA
| | - Yi Tan
- Kosair Children’s Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA
- Wendy Novak Diabetes Care Center, University of Louisville, Louisville, KY, USA
| | - Kupper Wintergerst
- Wendy Novak Diabetes Care Center, University of Louisville, Louisville, KY, USA
- Division of Endocrinology, Department of Pediatrics, the University of Louisville, Louisville, KY, USA
| | - Yang Zheng
- Cardiovascular Center, the First Hospital of Jilin University, Changchun, China
| | - Jian Sun
- Cardiovascular Center, the First Hospital of Jilin University, Changchun, China
| | - Lu Cai
- Kosair Children’s Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA
- Wendy Novak Diabetes Care Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
115
|
Mangiferin Upregulates Glyoxalase 1 Through Activation of Nrf2/ARE Signaling in Central Neurons Cultured with High Glucose. Mol Neurobiol 2016; 54:4060-4070. [PMID: 27318675 DOI: 10.1007/s12035-016-9978-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/14/2016] [Indexed: 12/19/2022]
Abstract
Mangiferin, a natural C-glucoside xanthone, has anti-inflammatory, anti-oxidative, neuroprotective actions. Our previous study showed that mangiferin could attenuate diabetes-associated cognitive impairment of rats by enhancing the function of glyoxalase 1 (Glo-1) in brain. The aim of this study was to investigate whether Glo-1 upregulation by mangiferin in central neurons exposed to chronic high glucose may be related to activation of Nrf2/ARE pathway. Compared with normal glucose (25 mmol/L) culture, Glo-1 protein, mRNA, and activity levels were markedly decreased in primary hippocampal and cerebral cortical neurons cultured with high glucose (50 mmol/L) for 72 h, accompanied by the declined Nrf2 nuclear translocation and protein expression of Nrf2 in cell nucleus, as well as protein expression and mRNA level of γ-glutamylcysteine synthetase (γ-GCS) and superoxide dismutase activity, target genes of Nrf2/ARE signaling. Nonetheless, high glucose cotreating with mangiferin or sulforaphane, a typical inducer of Nrf2 activation, attenuated the above changes in both central neurons. In addition, mangiferin and sulforaphane significantly prevented the formation of advanced glycation end-products (AGEs) reflecting Glo-1 activity, while elevated the level of glutathione, a cofactor of Glo-1 activity and production of γ-GCS, in high glucose cultured central neurons. These findings demonstrated that Glo-1 was greatly downregulated in central neurons exposed to chronic high glucose, which is expected to lead the formation of AGEs and oxidative stress damages. We also proved that mangiferin enhanced the function of Glo-1 under high glucose condition by inducing activation of Nrf2/ARE signaling pathway.
Collapse
|
116
|
Shi X, Li Y, Hu J, Yu B. Tert-butylhydroquinone attenuates the ethanol-induced apoptosis of and activates the Nrf2 antioxidant defense pathway in H9c2 cardiomyocytes. Int J Mol Med 2016; 38:123-30. [PMID: 27220726 PMCID: PMC4899004 DOI: 10.3892/ijmm.2016.2605] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/13/2016] [Indexed: 12/26/2022] Open
Abstract
Tert-butylhydroquinone (tBHQ), an inducer of nuclear factor erythroid 2-related factor 2 (Nrf2), has been demonstrated to attenuate oxidative stress-induced injury and the apoptosis of human neural stem cells and other cell types. However, whether tBHQ is able to exert a protective effect against oxidative stress and the apoptosis of cardiomyocytes has not yet been determined. Thus, the objective of the present study was to determine whether tBHQ protects H9c2 cardiomyocytes against ethanol-induced apoptosis. For this purpose, four sets of experiments were performed under standard culture conditions as follows: i) untreated control cells; ii) cell treatment with 200 mM ethanol; iii) cell treatment with 5 µM tBHQ; and iv) cell pre-treatment with 5 µM tBHQ for 24 h, followed by medium change and co-culture with 200 mM ethanol containing 5 µM tBHQ for a further 24 h. The viability of the cardiomyocytes was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The levels of intracellular reactive oxygen species (ROS) and apoptosis were assessed by flow cytometry. Protein expression was measured by western blot analysis, and Nrf2 nuclear localization was observed by immunofluorescence. Exposure to ethanol led to a decrease in the protein expression of Nrf2 and its downstream antioxidant enzymes, accompanied by an increase in ROS generation and in the apoptosis of H9c2 cells. Pre-treatment with tBHQ significantly prevented the H9c2 cells from undergoing ethanol-induced apoptosis. tBHQ also increased the expression of B-cell lymphoma-2 (Bcl-2), whereas Bcl-2-associated X protein (Bax) expression was decreased. tBHQ promoted Nrf2 nuclear localization and increased the expression of Nrf2, superoxide dismutase (SOD), catalase (CAT) and heme oxygenase-1 (HO-1), and simultaneously inhibited the ethanol-induced overproduction of intracellular ROS. Therefore, tBHQ confers protection against the ethanol-induced apoptosis of and activates the Nrf2 antioxidant pathway in H9c2 cardiomyocytes.
Collapse
Affiliation(s)
- Xiaojing Shi
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yang Li
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jun Hu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Bo Yu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
117
|
Lu MC, Ji JA, Jiang ZY, You QD. The Keap1-Nrf2-ARE Pathway As a Potential Preventive and Therapeutic Target: An Update. Med Res Rev 2016; 36:924-63. [PMID: 27192495 DOI: 10.1002/med.21396] [Citation(s) in RCA: 586] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 12/12/2022]
Abstract
The Keap1-Nrf2-ARE ((Kelch-like ECH-Associating protein 1) nuclear factor erythroid 2 related factor 2-antioxidant response element) pathway is one of the most important defense mechanisms against oxidative and/or electrophilic stresses, and it is closely associated with inflammatory diseases, including cancer, neurodegenerative diseases, cardiovascular diseases, and aging. In recent years, progress has been made in strategies aimed at modulating the Keap1-Nrf2-ARE pathway. The Nrf2 activator DMF (Dimethylfumarates) has been approved by the FDA as a new first-line oral drug to treat patients with relapsing forms of multiple sclerosis, while a phase 3 study of another promising candidate, CDDO-Me, was terminated for safety reasons. Directly inhibiting Keap1-Nrf2 protein-protein interactions as a novel Nrf2-modulating strategy has many advantages over using electrophilic Nrf2 activators. The development of Keap1-Nrf2 protein-protein interaction inhibitors has become a topic of intense research, and potent inhibitors of this target have been identified. In addition, inhibiting Nrf2 activity has attracted an increasing amount of attention because it may provide an alternative cancer therapy. This review summarizes the molecular mechanisms and biological functions of the Keap1-Nrf2-ARE system. The main focus of this review is on recent progress in studies of agents that target the Keap1-Nrf2-ARE pathway and the therapeutic applications of such agents.
Collapse
Affiliation(s)
- Meng-Chen Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.,Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Jian-Ai Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.,Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Zheng-Yu Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.,Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.,Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
118
|
Bautista-Niño PK, Portilla-Fernandez E, Vaughan DE, Danser AHJ, Roks AJM. DNA Damage: A Main Determinant of Vascular Aging. Int J Mol Sci 2016; 17:E748. [PMID: 27213333 PMCID: PMC4881569 DOI: 10.3390/ijms17050748] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 01/16/2023] Open
Abstract
Vascular aging plays a central role in health problems and mortality in older people. Apart from the impact of several classical cardiovascular risk factors on the vasculature, chronological aging remains the single most important determinant of cardiovascular problems. The causative mechanisms by which chronological aging mediates its impact, independently from classical risk factors, remain to be elucidated. In recent years evidence has accumulated that unrepaired DNA damage may play an important role. Observations in animal models and in humans indicate that under conditions during which DNA damage accumulates in an accelerated rate, functional decline of the vasculature takes place in a similar but more rapid or more exaggerated way than occurs in the absence of such conditions. Also epidemiological studies suggest a relationship between DNA maintenance and age-related cardiovascular disease. Accordingly, mouse models of defective DNA repair are means to study the mechanisms involved in biological aging of the vasculature. We here review the evidence of the role of DNA damage in vascular aging, and present mechanisms by which genomic instability interferes with regulation of the vascular tone. In addition, we present potential remedies against vascular aging induced by genomic instability. Central to this review is the role of diverse types of DNA damage (telomeric, non-telomeric and mitochondrial), of cellular changes (apoptosis, senescence, autophagy), mediators of senescence and cell growth (plasminogen activator inhibitor-1 (PAI-1), cyclin-dependent kinase inhibitors, senescence-associated secretory phenotype (SASP)/senescence-messaging secretome (SMS), insulin and insulin-like growth factor 1 (IGF-1) signaling), the adenosine monophosphate-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR)-nuclear factor kappa B (NFκB) axis, reactive oxygen species (ROS) vs. endothelial nitric oxide synthase (eNOS)-cyclic guanosine monophosphate (cGMP) signaling, phosphodiesterase (PDE) 1 and 5, transcription factor NF-E2-related factor-2 (Nrf2), and diet restriction.
Collapse
Affiliation(s)
- Paula K Bautista-Niño
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
| | - Eliana Portilla-Fernandez
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
| | - Douglas E Vaughan
- Department of Medicine & Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - A H Jan Danser
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
| | - Anton J M Roks
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands.
| |
Collapse
|
119
|
Hackfort BT, Mishra PK. Emerging role of hydrogen sulfide-microRNA crosstalk in cardiovascular diseases. Am J Physiol Heart Circ Physiol 2016; 310:H802-12. [PMID: 26801305 PMCID: PMC4867357 DOI: 10.1152/ajpheart.00660.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/18/2016] [Indexed: 12/15/2022]
Abstract
Despite an obnoxious smell and toxicity at a high dose, hydrogen sulfide (H2S) is emerging as a cardioprotective gasotransmitter. H2S mitigates pathological cardiac remodeling by regulating several cellular processes including fibrosis, hypertrophy, apoptosis, and inflammation. These encouraging findings in rodents led to initiation of a clinical trial using a H2S donor in heart failure patients. However, the underlying molecular mechanisms by which H2S mitigates cardiac remodeling are not completely understood. Empirical evidence suggest that H2S may regulate signaling pathways either by directly influencing a gene in the cascade or interacting with nitric oxide (another cardioprotective gasotransmitter) or both. Recent studies revealed that H2S may ameliorate cardiac dysfunction by up- or downregulating specific microRNAs. MicroRNAs are noncoding, conserved, regulatory RNAs that modulate gene expression mostly by translational inhibition and are emerging as a therapeutic target for cardiovascular disease (CVD). Few microRNAs also regulate H2S biosynthesis. The inter-regulation of microRNAs and H2S opens a new avenue for exploring the H2S-microRNA crosstalk in CVD. This review embodies regulatory mechanisms that maintain the physiological level of H2S, exogenous H2S donors used for increasing the tissue levels of H2S, H2S-mediated regulation of CVD, H2S-microRNAs crosstalk in relation to the pathophysiology of heart disease, clinical trials on H2S, and future perspectives for H2S as a therapeutic agent for heart failure.
Collapse
Affiliation(s)
- Bryan T Hackfort
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
120
|
Qian Y, Zhang Y, Zhong P, Peng K, Xu Z, Chen X, Lu K, Chen G, Li X, Liang G. Inhibition of inflammation and oxidative stress by an imidazopyridine derivative X22 prevents heart injury from obesity. J Cell Mol Med 2016; 20:1427-42. [PMID: 27019072 PMCID: PMC4956940 DOI: 10.1111/jcmm.12832] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/10/2016] [Indexed: 12/21/2022] Open
Abstract
Inflammation and oxidative stress plays an important role in the development of obesity‐related complications and cardiovascular disease. Benzimidazole and imidazopyridine compounds are a class of compounds with a variety of activities, including anti‐inflammatory, antioxidant and anti‐cancer. X22 is an imidazopyridine derivative we synthesized and evaluated previously for anti‐inflammatory activity in lipopolysaccharide‐stimulated macrophages. However, its ability to alleviate obesity‐induced heart injury via its anti‐inflammatory actions was unclear. This study was designed to evaluate the cardioprotective effects of X22 using cell culture studies and a high‐fat diet rat model. We observed that palmitic acid treatment in cardiac‐derived H9c2 cells induced a significant increase in reactive oxygen species, inflammation, apoptosis, fibrosis and hypertrophy. All of these changes were inhibited by treatment with X22. Furthermore, oral administration of X22 suppressed high‐fat diet‐induced oxidative stress, inflammation, apoptosis, hypertrophy and fibrosis in rat heart tissues and decreased serum lipid concentration. We also found that the anti‐inflammatory and anti‐oxidative actions of X22 were associated with Nrf2 activation and nuclear factor‐kappaB (NF‐κB) inhibition, respectively, both in vitro and in vivo. The results of this study indicate that X22 may be a promising cardioprotective agent and that Nrf2 and NF‐κB may be important therapeutic targets for obesity‐related complications.
Collapse
Affiliation(s)
- Yuanyuan Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peng Zhong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Cardiology, The 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Kesong Peng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zheng Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuemei Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kongqin Lu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gaozhi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
121
|
Liu J, Quan J, Feng J, Zhang Q, Xu Y, Liu J, Huang W, Liu J, Tian L. High glucose regulates LN expression in human liver sinusoidal endothelial cells through ROS/integrin αvβ3 pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 42:231-236. [PMID: 26896612 DOI: 10.1016/j.etap.2016.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 01/24/2016] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
Diabetes mellitus can cause a wide variety of vascular complications and is one of the major risk factors for Non Alcoholic Fatty Liver Disease (NAFLD). The present study was designed investigate the expression of laminin (LN) in human liver sinusoidal endothelial cells (HLSECs) induced by high glucose and the role of reactive oxygen species (ROS) and integrin αvβ3 in the regulation of LN expression. HLSECs were cultured and treated with media containing 25 mM glucose in the presence or absence of N-acetylcysteine (NAC) or clone LM609. The level of intracellular ROS of HLSECs was measured with 2',7' dichloro-fluorescein diacetate (DCFH-DA) probe. Expression of integrin αvβ3 was measured using RT-PCR and Western blot. Expression of LN was testified by immunofluorescence assay. Compared with that in control group, ROS level and the expression of integrin αvβ3 and LN increased in high glucose group. Compared with that in high glucose group, antioxidant NAC inhibited the expression of integrin αvβ3, NAC and the anti-body for blocking integrin αvβ3 (clone LM609) down-regulated the expression of LN. However, the above parameters did not differ between control and mannitol groups. High glucose up-regulates expression of LN in HLSECs through ROS/integrin αvβ3 pathway.
Collapse
Affiliation(s)
- Jing Liu
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Jinxing Quan
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Jing Feng
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Qi Zhang
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Yanjia Xu
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Jia Liu
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Wenhui Huang
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Juxiang Liu
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Limin Tian
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China.
| |
Collapse
|
122
|
Song Y, Wen L, Sun J, Bai W, Jiao R, Hu Y, Peng X, He Y, Ou S. Cytoprotective mechanism of ferulic acid against high glucose-induced oxidative stress in cardiomyocytes and hepatocytes. Food Nutr Res 2016; 60:30323. [PMID: 26869273 PMCID: PMC4751457 DOI: 10.3402/fnr.v60.30323] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 01/14/2023] Open
Abstract
Background Ferulic acid (FA), a phenolic acid, is a potential therapy for diabetes mellitus. FA has been shown to protect against hepatic and myocardial injury and oxidative stress in obese rats with late-stage diabetes, but the mechanism of the antioxidative activity of FA is still unclear. Objective The aim of this study was to elucidate whether FA can prevent damage to cardiomyocytes and hepatocytes caused by high glucose (HG)-induced oxidative stress and whether the protection effects of FA on these cells are related to the Keap1-Nrf2-ARE signaling pathways. Design Cells were divided into four groups: a control group (cultured with normal medium), an HG group (medium containing 80 mmol/L glucose), an FA+HG group (medium containing 80 mmol/L glucose and 1, 5, or 10 µg/mL FA), and a dimethylbiguanide (DMBG)+HG group (medium containing 80 mmol/L glucose and 50 µg/mL DMBG). Results FA treatment significantly increased cell viability and significantly decreased cell apoptosis compared with the HG-treated group. Moreover, FA down-regulated the expression of Keap1 protein and up-regulated the expression of Nrf2 protein and gene transcription of HO-1 and glutathione S-transferase (GST) in a dose-dependent manner. Conclusion FA alleviated the HG-induced oxidative stress and decreased cell apoptosis in hepatocytes and cardiomyocytes. These effects were associated with the Keap1-Nrf2-ARE signaling pathway.
Collapse
Affiliation(s)
- Yuan Song
- Out-patient Department, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Luona Wen
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Jianxia Sun
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Weibin Bai
- Department of Food Science and Engineering, Jinan University, Guangzhou, China;
| | - Rui Jiao
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Yunfeng Hu
- Out-patient Department, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Yong He
- Out-patient Department, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou, China;
| |
Collapse
|
123
|
Anti-Inflammatory Therapy Modulates Nrf2-Keap1 in Kidney from Rats with Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4693801. [PMID: 26955430 PMCID: PMC4756195 DOI: 10.1155/2016/4693801] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/18/2015] [Accepted: 01/03/2016] [Indexed: 12/17/2022]
Abstract
This study addressed the relationship of proinflammatory cytokines and Nrf2-Keap1 system in diabetic nephropathy. The experimental groups were control, diabetic, and diabetic treated with mycophenolate mofetil (MMF). The renal function, proinflammatory and profibrotic cytokines, oxidative stress, morphology, and nephrin expression were assessed. Diabetic group showed impaired renal function in association with oxidative stress and decreased Nrf2 nuclear translocation. These results were associated with increased mesangial matrix index, interstitial fibrosis, and increased nephrin expression in cortex and urine excretion. Additionally, interleukin-1β, IL-6, and transforming growth factor-β1 were increased in plasma and kidney. MMF treatment conserved renal function, prevented renal structural alterations, and partially prevented the proinflammatory and profibrotic cytokines overexpression. Despite that MMF treatment induced nephrin overexpression in renal tissue, preventing its urinary loss. MMF salutary effects were associated with a partial prevention of oxidative stress, increased Nrf2 nuclear translocation, and conservation of antioxidant enzymes in renal tissue. In conclusion, our results confirm that inflammation is a key factor in the progression of diabetic nephropathy and suggest that treatment with MMF protects the kidney by an antioxidant mechanism, possibly regulated at least in part by the Nrf2/Keap1 system, in addition to its well-known anti-inflammatory effects.
Collapse
|
124
|
Myofibrillogenesis regulator-1 attenuated hypoxia/reoxygenation-induced apoptosis by inhibiting the PERK/Nrf2 pathway in neonatal rat cardiomyocytes. Apoptosis 2015; 20:285-97. [PMID: 25542256 DOI: 10.1007/s10495-014-1081-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The purpose of this study was to investigate the role of myofibrillogenesis regulator-1 (MR-1) in cardiomyocyte apoptosis induced by hypoxia/reoxygenation (H/R), through protein kinase R-like ER kinase (PERK)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. To address this aim, an H/R model of neonatal rat cardiomyocytes was used. MR-1 was overexpressed using an adenoviral vector system and knocked down using MR-1 specific siRNA. Apoptosis was assessed by using Annexin V/PI double staining, terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling assay, and the Bcl-2/Bax ratio. Western blotting was used to detect the protein levels of MR-1, glucose-regulated protein 78 (GRP78), total and phosphorylated PERK, Nrf2, activating transcription factor 4 (ATF4), C/EBP homologous protein (CHOP), Bcl-2 and Bax. Immunofluorescence staining was used to assess the subcellular location of Nrf2. We found that H/R induced significant apoptosis in neonatal rat cardiomyocytes. MR-1 overexpression attenuated H/R-induced apoptosis, decreased GRP78 (P < 0.01) and CHOP expression (P < 0.05), and increased the Bcl-2/Bax ratio (P < 0.01). MR-1 overexpression suppressed H/R-induced PERK phosphorylation, Nrf2 nuclear translocation, and ATF4 expression (P < 0.01). While MR-1 knockdown aggravated H/R-induced apoptosis, increased expression of GRP78 and CHOP (P < 0.05), and decreased the Bcl-2/Bax ratio (P < 0.01). MR-1 knockdown significantly increased H/R-induced PERK phosphorylation (P < 0.05), Nrf2 nuclear translocation, and ATF4 expression (P < 0.01). These findings suggest that MR-1 alleviates H/R-induced cardiomyocyte apoptosis through inhibition of the PERK/Nrf2 pathway.
Collapse
|
125
|
Perrini S, Tortosa F, Natalicchio A, Pacelli C, Cignarelli A, Palmieri VO, Caccioppoli C, De Stefano F, Porro S, Leonardini A, Ficarella R, De Fazio M, Cocco T, Puglisi F, Laviola L, Palasciano G, Giorgino F. The p66Shc protein controls redox signaling and oxidation-dependent DNA damage in human liver cells. Am J Physiol Gastrointest Liver Physiol 2015; 309:G826-40. [PMID: 26336926 DOI: 10.1152/ajpgi.00041.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 08/04/2015] [Indexed: 01/31/2023]
Abstract
The p66Shc protein mediates oxidative stress-related injury in multiple tissues. Steatohepatitis is characterized by enhanced oxidative stress-mediated cell damage. The role of p66Shc in redox signaling was investigated in human liver cells and alcoholic steatohepatitis. HepG2 cells with overexpression of wild-type or mutant p66Shc, with Ser36 replacement by Ala, were obtained through infection with recombinant adenoviruses. Reactive oxygen species and oxidation-dependent DNA damage were assessed by measuring dihydroethidium oxidation and 8-hydroxy-2'-deoxyguanosine accumulation into DNA, respectively. mRNA and protein levels of signaling intermediates were evaluated in HepG2 cells and liver biopsies from control and alcoholic steatohepatitis subjects. Exposure to H2O2 increased reactive oxygen species and phosphorylation of p66Shc on Ser36 in HepG2 cells. Overexpression of p66Shc promoted reactive oxygen species synthesis and oxidation-dependent DNA damage, which were further enhanced by H2O2. p66Shc activation also resulted in increased Erk-1/2, Akt, and FoxO3a phosphorylation. Blocking of Erk-1/2 activation inhibited p66Shc phosphorylation on Ser36. Increased p66Shc expression was associated with reduced mRNA levels of antioxidant molecules, such as NF-E2-related factor 2 and its target genes. In contrast, overexpression of the phosphorylation defective p66Shc Ala36 mutant inhibited p66Shc signaling, enhanced antioxidant genes, and suppressed reactive oxygen species and oxidation-dependent DNA damage. Increased p66Shc protein levels and Akt phosphorylation were observed in liver biopsies from alcoholic steatohepatitis compared with control subjects. In human alcoholic steatohepatitis, increased hepatocyte p66Shc protein levels may enhance susceptibility to DNA damage by oxidative stress by promoting reactive oxygen species synthesis and repressing antioxidant pathways.
Collapse
Affiliation(s)
- Sebastio Perrini
- Department of Emergency and Organ Transplantation, Section on Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Federica Tortosa
- Department of Emergency and Organ Transplantation, Section on Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Annalisa Natalicchio
- Department of Emergency and Organ Transplantation, Section on Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Consiglia Pacelli
- Department of Medical Biochemistry, Biology and Physics, University of Bari Aldo Moro, Bari, Italy
| | - Angelo Cignarelli
- Department of Emergency and Organ Transplantation, Section on Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo O Palmieri
- Department of Biochemical Sciences and Human Oncology, Clinica Medica "A. Murri," University of Bari Aldo Moro, Bari, Italy
| | | | - Francesca De Stefano
- Department of Emergency and Organ Transplantation, Section on Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Stefania Porro
- Department of Emergency and Organ Transplantation, Section on Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Anna Leonardini
- Department of Emergency and Organ Transplantation, Section on Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Romina Ficarella
- Department of Emergency and Organ Transplantation, Section on Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Michele De Fazio
- Department of Emergency and Organ Transplantation, General Surgery and Liver Transplantation, University of Bari Aldo Moro, Bari, Italy; and
| | - Tiziana Cocco
- Department of Medical Biochemistry, Biology and Physics, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Puglisi
- Department of Emergency and Organ Transplantation, General Surgery and Liver Transplantation, University of Bari Aldo Moro, Bari, Italy; and Azienda Sanitaria Locale Bari, Ospedale M. Sarcone, Terlizzi (BA), Italy
| | - Luigi Laviola
- Department of Emergency and Organ Transplantation, Section on Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Palasciano
- Department of Biochemical Sciences and Human Oncology, Clinica Medica "A. Murri," University of Bari Aldo Moro, Bari, Italy
| | - Francesco Giorgino
- Department of Emergency and Organ Transplantation, Section on Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy;
| |
Collapse
|
126
|
Tebay LE, Robertson H, Durant ST, Vitale SR, Penning TM, Dinkova-Kostova AT, Hayes JD. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic Biol Med 2015; 88:108-146. [PMID: 26122708 PMCID: PMC4659505 DOI: 10.1016/j.freeradbiomed.2015.06.021] [Citation(s) in RCA: 645] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) regulates the basal and stress-inducible expression of a battery of genes encoding key components of the glutathione-based and thioredoxin-based antioxidant systems, as well as aldo-keto reductase, glutathione S-transferase, and NAD(P)H quinone oxidoreductase-1 drug-metabolizing isoenzymes along with multidrug-resistance-associated efflux pumps. It therefore plays a pivotal role in both intrinsic resistance and cellular adaptation to reactive oxygen species (ROS) and xenobiotics. Activation of Nrf2 can, however, serve as a double-edged sword because some of the genes it induces may contribute to chemical carcinogenesis by promoting futile redox cycling of polycyclic aromatic hydrocarbon metabolites or confer resistance to chemotherapeutic drugs by increasing the expression of efflux pumps, suggesting its cytoprotective effects will vary in a context-specific fashion. In addition to cytoprotection, Nrf2 also controls genes involved in intermediary metabolism, positively regulating those involved in NADPH generation, purine biosynthesis, and the β-oxidation of fatty acids, while suppressing those involved in lipogenesis and gluconeogenesis. Nrf2 is subject to regulation at multiple levels. Its ability to orchestrate adaptation to oxidants and electrophiles is due principally to stress-stimulated modification of thiols within one of its repressors, the Kelch-like ECH-associated protein 1 (Keap1), which is present in the cullin-3 RING ubiquitin ligase (CRL) complex CRLKeap1. Thus modification of Cys residues in Keap1 blocks CRLKeap1 activity, allowing newly translated Nrf2 to accumulate rapidly and induce its target genes. The ability of Keap1 to repress Nrf2 can be attenuated by p62/sequestosome-1 in a mechanistic target of rapamycin complex 1 (mTORC1)-dependent manner, thereby allowing refeeding after fasting to increase Nrf2-target gene expression. In parallel with repression by Keap1, Nrf2 is also repressed by β-transducin repeat-containing protein (β-TrCP), present in the Skp1-cullin-1-F-box protein (SCF) ubiquitin ligase complex SCFβ-TrCP. The ability of SCFβ-TrCP to suppress Nrf2 activity is itself enhanced by prior phosphorylation of the transcription factor by glycogen synthase kinase-3 (GSK-3) through formation of a DSGIS-containing phosphodegron. However, formation of the phosphodegron in Nrf2 by GSK-3 is inhibited by stimuli that activate protein kinase B (PKB)/Akt. In particular, PKB/Akt activity can be increased by phosphoinositide 3-kinase and mTORC2, thereby providing an explanation of why antioxidant-responsive element-driven genes are induced by growth factors and nutrients. Thus Nrf2 activity is tightly controlled via CRLKeap1 and SCFβ-TrCP by oxidative stress and energy-based signals, allowing it to mediate adaptive responses that restore redox homeostasis and modulate intermediary metabolism. Based on the fact that Nrf2 influences multiple biochemical pathways in both positive and negative ways, it is likely its dose-response curve, in terms of susceptibility to certain degenerative disease, is U-shaped. Specifically, too little Nrf2 activity will lead to loss of cytoprotection, diminished antioxidant capacity, and lowered β-oxidation of fatty acids, while conversely also exhibiting heightened sensitivity to ROS-based signaling that involves receptor tyrosine kinases and apoptosis signal-regulating kinase-1. By contrast, too much Nrf2 activity disturbs the homeostatic balance in favor of reduction, and so may have deleterious consequences including overproduction of reduced glutathione and NADPH, the blunting of ROS-based signal transduction, epithelial cell hyperplasia, and failure of certain cell types to differentiate correctly. We discuss the basis of a putative U-shaped Nrf2 dose-response curve in terms of potentially competing processes relevant to different stages of tumorigenesis.
Collapse
Affiliation(s)
- Lauren E Tebay
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - Stephen T Durant
- AstraZeneca Oncology Innovative Medicines, Bioscience, 33F197 Mereside, Alderley Park, Cheshire SK10 4TG, UK
| | - Steven R Vitale
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK.
| |
Collapse
|
127
|
Ali M, Mehmood A, Anjum MS, Tarrar MN, Khan SN, Riazuddin S. Diazoxide preconditioning of endothelial progenitor cells from streptozotocin-induced type 1 diabetic rats improves their ability to repair diabetic cardiomyopathy. Mol Cell Biochem 2015; 410:267-79. [PMID: 26359087 DOI: 10.1007/s11010-015-2560-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/03/2015] [Indexed: 01/09/2023]
Abstract
Type 1 diabetes mellitus (DM) is a strong risk factor for the development of diabetic cardiomyopathy (DCM) which is the leading cause of morbidity and mortality in the type 1 diabetic patients. Stem cells may act as a therapeutic agent for the repair of DCM. However, deteriorated functional abilities and survival of stem cells derived from type 1 diabetic subjects need to be overcome for obtaining potential outcome of the stem cell therapy. Diazoxide (DZ) a highly selective mitochondrial ATP-sensitive K(+) channel opener has been previously shown to improve the ability of mesenchymal stem cells for the repair of heart failure. In the present study, we evaluated the effects of DZ preconditioning in improving the ability of streptozotocin-induced type 1 diabetes affected bone marrow-derived endothelial progenitor cells (DM-EPCs) for the repair of DCM in the type 1 diabetic rats. DM-EPCs were characterized by immunocytochemistry, flow cytometry, and reverse transcriptase PCR for endothelial cell-specific markers like vWF, VE cadherin, VEGFR2, PECAM, CD34, and eNOS. In vitro studies included preconditioning of DM-EPCs with 200 μM DZ for 30 min followed by exposure to either 200 μM H2O2 for 2 h (for oxidative stress induction) or 30 mM glucose media (for induction of hyperglycemic stress) for 48 h. Non-preconditioned EPCs with and without exposure to H2O2 and 30 mM high glucose served as controls. These cells were then evaluated for survival (by MTT and XTT cell viability assays), senescence, paracrine potential (by ELISA for VEGF), and alteration in gene expression [VEGF, stromal derived factor-1α (SDF-1α), HGF, bFGF, Bcl2, and Caspase-3]. DZ preconditioned DM-EPCs demonstrated significantly increased survival and VEGF release while reduced cell injury and senescence. Furthermore, DZ preconditioned DM-EPCs exhibited up-regulated expression of prosurvival genes (VEGF, SDF-1α, HGF, bFGF, and Bcl2) on exposure to H2O2, and VEGF and Bcl2 on exposure to hyperglycemia while down regulation of Caspase-3 gene. Eight weeks after type 1 diabetes induction, DZ preconditioned, and non-preconditioned DM-EPCs were transplanted into left ventricle of diabetic rats (at a dose of 2 × 10(6) DM-EPCs/70 μl serum free medium). After 4 weeks, DZ preconditioned DM-EPCs transplantation improved cardiac function as assessed by Millar's apparatus. There was decrease in collagen content estimated by Masson's trichrome and sirius red staining. Furthermore, reduced cell injury was observed as evidenced by decreased expression of Caspase-3 and increased expression of prosurvival genes Bcl2, VEGF, and bFGF by semi-quantitative real-time PCR. In conclusion, the present study demonstrated that DZ preconditioning enhanced EPCs survival under oxidative and hyperglycemic stress and their ability to treat DCM.
Collapse
Affiliation(s)
- Muhammad Ali
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan.
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan.
| | - Muhammad Sohail Anjum
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan.
| | | | - Shaheen N Khan
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan.
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan. .,Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan.
| |
Collapse
|
128
|
Strom J, Xu B, Tian X, Chen QM. Nrf2 protects mitochondrial decay by oxidative stress. FASEB J 2015; 30:66-80. [PMID: 26340923 DOI: 10.1096/fj.14-268904] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 08/13/2015] [Indexed: 12/22/2022]
Abstract
Sublethal levels of oxidative stress are commonly associated with various pathophysiological conditions. Cardiomyocytes have the highest content of mitochondria among all cell types, allowing the study of mitochondria in cells surviving oxidative stress and address whether nuclear factor-erythroid-derived 2-related factor 2 (Nrf2) can reverse these changes. Mitochondria normally exist in elaborated networks, which were replaced by predominately individual punctuate mitochondria 24 h after exposure to a nonlethal dose of H2O2. Electron microscopy revealed that cells surviving H2O2 show swelling of mitochondria with disorganized cristae and areas of condensation. Measurements of functional mitochondria showed a H2O2 dose-dependent decrease over a course of 5 d. At the protein and mRNA levels, cells surviving H2O2 treatment show a reduction of mitochondrial components, cytochrome c, and cytochrome b. Nrf2 overexpression prevented H2O2 from inducing mitochondria morphologic changes and reduction of cytochrome b/c. Although Nrf2 is known as a transcription factor regulating antioxidant and detoxification genes, Nrf2 overexpression did not significantly reduce the level of protein oxidation. Instead, Nrf2 was found to associate with the outer mitochondrial membrane. Mitochondria prepared from the myocardium of Nrf2 knockout mice are more sensitive to permeability transition. Our data suggest that Nrf2 protects mitochondria from oxidant injury likely through direct interaction with mitochondria.
Collapse
Affiliation(s)
- Joshua Strom
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Beibei Xu
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Xiuqing Tian
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Qin M Chen
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
129
|
Zhou S, Jin J, Bai T, Sachleben LR, Cai L, Zheng Y. Potential drugs which activate nuclear factor E2-related factor 2 signaling to prevent diabetic cardiovascular complications: A focus on fumaric acid esters. Life Sci 2015; 134:56-62. [PMID: 26044512 DOI: 10.1016/j.lfs.2015.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/01/2015] [Accepted: 05/01/2015] [Indexed: 12/30/2022]
Abstract
Diabetes and its cardiovascular complications have been a major public health issue. These complications are mainly attributable to a severe imbalance between free radical and reactive oxygen species production and the antioxidant defense systems. Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that controls the basal and inducible expression of a battery of antioxidant enzyme genes and other cyto-protective phase II detoxifying enzymes. As a result, Nrf2 has gained great attention as a promising drug target for preventing diabetic cardiovascular complications. And while animal studies have shown that several Nrf2 activators manifest a potential to efficiently prevent the diabetic complications, their use in humans has not been approved due to the lack of substantial evidence regarding safety and efficacy of the Nrf2 activation. We provide here a brief review of a few clinically-used drugs that can up-regulate Nrf2 with the potential of extending their usage to diabetic patients for the prevention of cardiovascular complications and conclude with a closer inspection of dimethyl fumarate and its mimic members.
Collapse
Affiliation(s)
- Shanshan Zhou
- Department of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China
| | - Jingpeng Jin
- Endoscopy Center China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China
| | - Tao Bai
- Department of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China
| | - Leroy R Sachleben
- Kosair Children's Hospital Research Institute at the Department of Pediatrics of the University of Louisville, Louisville 40202, USA
| | - Lu Cai
- Kosair Children's Hospital Research Institute at the Department of Pediatrics of the University of Louisville, Louisville 40202, USA.
| | - Yang Zheng
- Department of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
130
|
Cytoprotection of baicalein against oxidative stress-induced cardiomyocytes injury through the Nrf2/Keap1 pathway. J Cardiovasc Pharmacol 2015; 65:39-46. [PMID: 25343567 DOI: 10.1097/fjc.0000000000000161] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Baicalein is one of the major flavonoids found in the root of Scutellaria baicalensis Georgi. Previous studies suggest that baicalein displays protective effect on experimental cardiac models in vitro and in vivo. However, the mode of action remains unclear. Here, we showed that baicalein conferred cardioprotective effect against oxidative stress-induced cell injury in H9c2 cells and human embryonic stem cells-derived cardiomyocytes. Immunoprecipitation with anti-NF-E2-related factor 2 (Nrf2) antibody in baicalein-treated cells demonstrated that baicalein effectively disrupted the association between Nrf2 and Kelch-like epichlorohydrin-associated protein 1 (Keap1). In addition, the unbounded Nrf2 translocated from cytoplasm to nucleus and increased Nrf2/heme oxygenase-1 (HO-1) content in a time-dependent manner. Moreover, antioxidant response element transcriptional activity was enhanced by baicalein treatment, and the Nrf2 siRNA transfection could block the cytoprotective effect of baicalein. Taken together, these results demonstrate that baicalein protected cardiomyocytes against oxidative stress-induced cell injury through the Nrf2/Keap1 pathway.
Collapse
|
131
|
Natural Nrf2 activators in diabetes. Clin Chim Acta 2015; 448:182-92. [PMID: 26165427 DOI: 10.1016/j.cca.2015.07.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/30/2015] [Accepted: 07/07/2015] [Indexed: 12/21/2022]
Abstract
Prediabetes and diabetes are rising worldwide. Control of blood glucose is crucial to prevent or delay diabetic complications that frequently result in increased morbidity and mortality. Most strategies include medical treatment and changes in lifestyle and diet. Some nutraceutical compounds have been recognized as adjuvants in diabetes control. Many of them can activate the nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which has been recognized as a master regulator of the antioxidant response. Recent studies have described the role of Nrf2 in obesity, metabolic syndrome, nephropathy, retinopathy and neuropathy, where its activation prevents the development of diabetes and its complications. It has been demonstrated that natural compounds derived from plants, vegetables, fungi and micronutrients (such as curcumin, sulforaphane, resveratrol and vitamin D among others) can activate Nrf2 and, thus, promote antioxidant pathways to mitigate oxidative stress and hyperglycemic damage. The role of some natural Nrf2 activators and its effect in diabetes is discussed.
Collapse
|
132
|
Fredenburgh LE, Merz AA, Cheng S. Haeme oxygenase signalling pathway: implications for cardiovascular disease. Eur Heart J 2015; 36:1512-8. [PMID: 25827602 PMCID: PMC4475572 DOI: 10.1093/eurheartj/ehv114] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/25/2015] [Accepted: 03/19/2015] [Indexed: 01/04/2023] Open
Abstract
Evidence now points to the haeme oxygenase (HO) pathway as a possible actor in modulating risk for cardiovascular disease (CVD). In particular, the HO pathway may represent a key endogenous modulator of oxidative, inflammatory, and cytotoxic stress while also exhibiting vasoregulatory properties. In this review, we summarize the accumulating experimental and emerging clinical data indicating how activity of the HO pathway and its products may play a role in mechanisms underlying the development of CVD. We also identify gaps in the literature to date and suggest future directions for investigation. Because HO pathway activity can be influenced not only by genetic traits and environmental stimuli but also by a variety of existing pharmacologic interventions, the pathway could serve as a prime target for reducing the overall burden of CVD. Further work is needed to determine the role of HO pathway products as possible prognostic markers of risk for clinical CVD events and the extent to which therapeutic augmentation or inhibition of HO pathway activity could serve to modify CVD risk.
Collapse
Affiliation(s)
- Laura E Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Allison A Merz
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Susan Cheng
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA Framingham Heart Study, Framingham, MA, USA
| |
Collapse
|
133
|
Yu M, Liu Y, Zhang B, Shi Y, Cui L, Zhao X. Inhibiting microRNA-144 abates oxidative stress and reduces apoptosis in hearts of streptozotocin-induced diabetic mice. Cardiovasc Pathol 2015; 24:375-81. [PMID: 26164195 DOI: 10.1016/j.carpath.2015.06.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Hyperglycemia-induced reactive oxygen species (ROS) generation contributes to the development of diabetic cardiomyopathy. However, little is known about the role of microRNAs in the regulation of ROS formation and myocardial apoptosis in streptozotocin (STZ)-induced diabetic mice. METHODS AND RESULTS It was observed that microRNA-144 (miR-144) level was lower in heart tissues of STZ-induced diabetic mice. High glucose exposure also reduced miR-144 levels in cultured cardiomyocytes. Moreover, miR-144 modulated high glucose-induced oxidative stress in cultured cardiomyocytes by directly targeting nuclear factor-erythroid 2-related factor 2 (Nrf2), which was a central regulator of cellular response to oxidative stress. The miR-144 mimics aggravated high glucose-induced ROS formation and apoptosis in cardiomyocytes, which could be attenuated by treatment with Dh404, an activator of Nrf2. Meanwhile, inhibition of miR-144 suppressed ROS formation and apoptosis induced by high glucose in cultured cardiomyocytes. What was more important is that reduced myocardial oxidative stress and apoptosis and improved cardiac function were identified in STZ-induced diabetic mice when treated with miR-144 antagomir. CONCLUSION Although miR-144 cannot explain the increased oxidative stress in STZ, therapeutic interventions directed at decreasing miR-144 may help to decrease oxidative stress in these hearts. Inhibition of miR-144 might have clinical potential to abate oxidative stress as well as to reduce cardiomyocyte apoptosis and improve cardiac function in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Manli Yu
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yu Liu
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Bili Zhang
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yicheng Shi
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ling Cui
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xianxian Zhao
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
134
|
Hafstad AD, Boardman N, Aasum E. How exercise may amend metabolic disturbances in diabetic cardiomyopathy. Antioxid Redox Signal 2015; 22:1587-605. [PMID: 25738326 PMCID: PMC4449627 DOI: 10.1089/ars.2015.6304] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Over-nutrition and sedentary lifestyle has led to a worldwide increase in obesity, insulin resistance, and type 2 diabetes (T2D) associated with an increased risk of development of cardiovascular disorders. Diabetic cardiomyopathy, independent of hypertension or coronary disease, is induced by a range of systemic changes and may through multiple processes result in functional and structural cardiac derangements. The pathogenesis of this cardiomyopathy is complex and multifactorial, and it will eventually lead to reduced cardiac working capacity and increased susceptibility to ischemic injury. RECENT ADVANCES Metabolic disturbances such as altered lipid handling and substrate utilization, decreased mechanical efficiency, mitochondrial dysfunction, disturbances in nonoxidative glucose pathways, and increased oxidative stress are hallmarks of diabetic cardiomyopathy. Interestingly, several of these disturbances are found to precede the development of cardiac dysfunction. CRITICAL ISSUES Exercise training is effective in the prevention and treatment of obesity and T2D. In addition to its beneficial influence on diabetes/obesity-related systemic changes, it may also amend many of the metabolic disturbances characterizing the diabetic myocardium. These changes are due to both indirect effects, exercise-mediated systemic changes, and direct effects originating from the high contractile activity of the heart during physical training. FUTURE DIRECTIONS Revealing the molecular mechanisms behind the beneficial effects of exercise training is of considerable scientific value to generate evidence-based therapy and in the development of new treatment strategies.
Collapse
Affiliation(s)
- Anne D Hafstad
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Neoma Boardman
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ellen Aasum
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
135
|
Onodera Y, Teramura T, Takehara T, Fukuda K. Hyaluronic acid regulates a key redox control factor Nrf2 via phosphorylation of Akt in bovine articular chondrocytes. FEBS Open Bio 2015; 5:476-84. [PMID: 26106522 PMCID: PMC4475775 DOI: 10.1016/j.fob.2015.05.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/12/2015] [Accepted: 05/24/2015] [Indexed: 12/31/2022] Open
Abstract
One important pharmacological function of hyaluronic acid (HA) in chondrocytes is reduction of cellular superoxide generation and accumulation. Here we demonstrated a relationship between HA supplementation and accumulation of Nuclear factor-erythroid-2-related factor 2 (Nrf2), which is a master transcription factor in cellular redox reactions, in cultured chondrocytes derived from bovine joint cartilage. In HA-treated chondrocytes, expression of Nrf2 and its downstream genes was upregulated. In HA-treated chondrocytes, Akt was phosphorylated, and inhibition of Akt activity or suppression of HA receptors CD44 and/or RHAMM with siRNAs prevented HA-mediated Nrf2 accumulation. Furthermore, Nrf2 siRNA inhibited the HA effect on antioxidant enzymes. These results show that HA might contribute to ROS reduction through Nrf2 regulation by activating Akt. Our study suggests a new mechanism for extracellular matrix (ECM)-mediated redox systems in chondrocytes.
Collapse
Affiliation(s)
- Yuta Onodera
- Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Takeshi Teramura
- Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Toshiyuki Takehara
- Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Kanji Fukuda
- Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| |
Collapse
|
136
|
Predonzani A, Calì B, Agnellini AHR, Molon B. Spotlights on immunological effects of reactive nitrogen species: When inflammation says nitric oxide. World J Exp Med 2015; 5:64-76. [PMID: 25992321 PMCID: PMC4436941 DOI: 10.5493/wjem.v5.i2.64] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/09/2015] [Accepted: 02/04/2015] [Indexed: 02/06/2023] Open
Abstract
Over the last decades, nitric oxide (NO) has been definitively recognised as one of the key players involved in immunity and inflammation. NO generation was originally described in activated macrophages, which still represent the prototype of NO-producing cells. Notwithstanding, additional cell subsets belonging to both innate and adaptive immunity have been documented to sustain NO propagation by means of the enzymatic activity of different nitric oxide synthase isoforms. Furthermore, due to its chemical characteristics, NO could rapidly react with other free radicals to generate different reactive nitrogen species (RNS), which have been intriguingly associated with many pathological conditions. Nonetheless, the plethora of NO/RNS-mediated effects still remains extremely puzzling. The aim of this manuscript is to dig into the broad literature on the topic to provide intriguing insights on NO-mediated circuits within immune system. We analysed NO and RNS immunological clues arising from their biochemical properties, immunomodulatory activities and finally dealing with their impact on different pathological scenarios with far prompting intriguing perspectives for their pharmacological targeting.
Collapse
|
137
|
Islam KN, Polhemus DJ, Donnarumma E, Brewster LP, Lefer DJ. Hydrogen Sulfide Levels and Nuclear Factor-Erythroid 2-Related Factor 2 (NRF2) Activity Are Attenuated in the Setting of Critical Limb Ischemia (CLI). J Am Heart Assoc 2015; 4:JAHA.115.001986. [PMID: 25977470 PMCID: PMC4599428 DOI: 10.1161/jaha.115.001986] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background Cystathionine γ-lyase, cystathionine β-synthase, and 3-mercaptopyruvate sulfurtransferase are endogenous enzymatic sources of hydrogen sulfide (H2S). Functions of H2S are mediated by several targets including ion channels and signaling proteins. Nuclear factor-erythroid 2-related factor 2 is responsible for the expression of antioxidant response element–regulated genes and is known to be upregulated by H2S. We examined the levels of H2S, H2S-producing enzymes, and nuclear factor-erythroid 2-related factor 2 activation status in skeletal muscle obtained from critical limb ischemia (CLI) patients. Methods and Results Gastrocnemius tissues were attained postamputation from human CLI and healthy control patients. We found mRNA and protein levels of cystathionine γ-lyase, cystathionine β-synthase, and 3-mercaptopyruvate sulfurtransferase were significantly decreased in skeletal muscle of CLI patients as compared to control. H2S and sulfane sulfur levels were significantly decreased in skeletal muscle of CLI patients. We also observed significant reductions in nuclear factor-erythroid 2-related factor 2 activation as well as antioxidant proteins, such as Cu, Zn-superoxide dismutase, catalase, and glutathione peroxidase in skeletal muscle of CLI patients. Biomarkers of oxidative stress, such as malondialdehyde and protein carbonyl formation, were significantly increased in skeletal muscle of CLI patients as compared to healthy controls. Conclusions The data demonstrate that H2S bioavailability and nuclear factor-erythroid 2-related factor 2 activation are both attenuated in CLI tissues concomitant with significantly increased oxidative stress. Reductions in the activity of H2S-producing enzymes may contribute to the pathogenesis of CLI.
Collapse
Affiliation(s)
- Kazi N Islam
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA (K.N.I., D.J.P., E.D., D.J.L.)
| | - David J Polhemus
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA (K.N.I., D.J.P., E.D., D.J.L.)
| | - Erminia Donnarumma
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA (K.N.I., D.J.P., E.D., D.J.L.)
| | | | - David J Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA (K.N.I., D.J.P., E.D., D.J.L.)
| |
Collapse
|
138
|
Zhou N, Lee WR, Abasht B. Messenger RNA sequencing and pathway analysis provide novel insights into the biological basis of chickens' feed efficiency. BMC Genomics 2015; 16:195. [PMID: 25886891 PMCID: PMC4414306 DOI: 10.1186/s12864-015-1364-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 02/20/2015] [Indexed: 11/21/2022] Open
Abstract
Background Advanced selection technologies have been developed and continually optimized to improve traits of agricultural importance; however, these methods have been primarily applied without knowledge of underlying biological changes that may be induced by selection. This study aims to characterize the biological basis of differences between chickens with low and high feed efficiency (FE) with a long-term goal of improving the ability to select for FE. Results High-throughput RNA sequencing was performed on 23 breast muscle samples from commercial broiler chickens with extremely high (n = 10) and low (n = 13) FE. An average of 34 million paired-end reads (75 bp) were produced for each sample, 80% of which were properly mapped to the chicken reference genome (Ensembl Galgal4). Differential expression analysis identified 1,059 genes (FDR < 0.05) that significantly divergently expressed in breast muscle between the high- and low-FE chickens. Gene function analysis revealed that genes involved in muscle remodeling, inflammatory response and free radical scavenging were mostly up-regulated in the high-FE birds. Additionally, growth hormone and IGFs/PI3K/Akt signaling pathways were enriched in differentially expressed genes, which might contribute to the high breast muscle yield in high-FE birds and partly explain the FE advantage of high-FE chickens. Conclusions This study provides novel insights into transcriptional differences in breast muscle between high- and low-FE broiler chickens. Our results show that feed efficiency is associated with breast muscle growth in these birds; furthermore, some physiological changes, e.g., inflammatory response and oxidative stress, may occur in the breast muscle of the high-FE chickens, which may be of concern for continued selection for both of these traits together in modern broiler chickens. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1364-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nan Zhou
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.
| | | | - Behnam Abasht
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
139
|
Smyrnias I, Zhang X, Zhang M, Murray TV, Brandes RP, Schröder K, Brewer AC, Shah AM. Nicotinamide Adenine Dinucleotide Phosphate Oxidase-4–Dependent Upregulation of Nuclear Factor Erythroid–Derived 2-Like 2 Protects the Heart During Chronic Pressure Overload. Hypertension 2015; 65:547-53. [DOI: 10.1161/hypertensionaha.114.04208] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ioannis Smyrnias
- From the Department of Cardiology, Cardiovascular Division, King’s College London British Heart Foundation Centre, London, United Kingdom (I.S., X.Z., M.Z., T.V.A.M., A.C.B., A.M.S.); and Vascular Research Centre, Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (R.P.B., K.S.)
| | - Xiaohong Zhang
- From the Department of Cardiology, Cardiovascular Division, King’s College London British Heart Foundation Centre, London, United Kingdom (I.S., X.Z., M.Z., T.V.A.M., A.C.B., A.M.S.); and Vascular Research Centre, Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (R.P.B., K.S.)
| | - Min Zhang
- From the Department of Cardiology, Cardiovascular Division, King’s College London British Heart Foundation Centre, London, United Kingdom (I.S., X.Z., M.Z., T.V.A.M., A.C.B., A.M.S.); and Vascular Research Centre, Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (R.P.B., K.S.)
| | - Thomas V.A. Murray
- From the Department of Cardiology, Cardiovascular Division, King’s College London British Heart Foundation Centre, London, United Kingdom (I.S., X.Z., M.Z., T.V.A.M., A.C.B., A.M.S.); and Vascular Research Centre, Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (R.P.B., K.S.)
| | - Ralf P. Brandes
- From the Department of Cardiology, Cardiovascular Division, King’s College London British Heart Foundation Centre, London, United Kingdom (I.S., X.Z., M.Z., T.V.A.M., A.C.B., A.M.S.); and Vascular Research Centre, Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (R.P.B., K.S.)
| | - Katrin Schröder
- From the Department of Cardiology, Cardiovascular Division, King’s College London British Heart Foundation Centre, London, United Kingdom (I.S., X.Z., M.Z., T.V.A.M., A.C.B., A.M.S.); and Vascular Research Centre, Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (R.P.B., K.S.)
| | - Alison C. Brewer
- From the Department of Cardiology, Cardiovascular Division, King’s College London British Heart Foundation Centre, London, United Kingdom (I.S., X.Z., M.Z., T.V.A.M., A.C.B., A.M.S.); and Vascular Research Centre, Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (R.P.B., K.S.)
| | - Ajay M. Shah
- From the Department of Cardiology, Cardiovascular Division, King’s College London British Heart Foundation Centre, London, United Kingdom (I.S., X.Z., M.Z., T.V.A.M., A.C.B., A.M.S.); and Vascular Research Centre, Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (R.P.B., K.S.)
| |
Collapse
|
140
|
Varga ZV, Giricz Z, Liaudet L, Haskó G, Ferdinandy P, Pacher P. Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1852:232-242. [PMID: 24997452 PMCID: PMC4277896 DOI: 10.1016/j.bbadis.2014.06.030] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/11/2014] [Accepted: 06/24/2014] [Indexed: 12/26/2022]
Abstract
Diabetes is a recognized risk factor for cardiovascular diseases and heart failure. Diabetic cardiovascular dysfunction also underscores the development of diabetic retinopathy, nephropathy and neuropathy. Despite the broad availability of antidiabetic therapy, glycemic control still remains a major challenge in the management of diabetic patients. Hyperglycemia triggers formation of advanced glycosylation end products (AGEs), activates protein kinase C, enhances polyol pathway, glucose autoxidation, which coupled with elevated levels of free fatty acids, and leptin have been implicated in increased generation of superoxide anion by mitochondria, NADPH oxidases and xanthine oxidoreductase in diabetic vasculature and myocardium. Superoxide anion interacts with nitric oxide forming the potent toxin peroxynitrite via diffusion limited reaction, which in concert with other oxidants triggers activation of stress kinases, endoplasmic reticulum stress, mitochondrial and poly(ADP-ribose) polymerase 1-dependent cell death, dysregulates autophagy/mitophagy, inactivates key proteins involved in myocardial calcium handling/contractility and antioxidant defense, activates matrix metalloproteinases and redox-dependent pro-inflammatory transcription factors (e.g. nuclear factor kappaB) promoting inflammation, AGEs formation, eventually culminating in myocardial dysfunction, remodeling and heart failure. Understanding the complex interplay of oxidative/nitrosative stress with pro-inflammatory, metabolic and cell death pathways is critical to devise novel targeted therapies for diabetic cardiomyopathy, which will be overviewed in this brief synopsis. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
Collapse
Affiliation(s)
- Zoltán V Varga
- Laboratory of Physiological Studies, National Institutes of Health/NIAAA, Bethesda, MD, USA; Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán Giricz
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Lucas Liaudet
- Department of Intensive Care Medicine BH 08-621-University Hospital Medical Center 1011 LAUSANNE Switzerland
| | - György Haskó
- Department of Surgery and Center for Immunity and Inflammation, Rutgers NJ Medical School, USA
| | - Peter Ferdinandy
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Pál Pacher
- Laboratory of Physiological Studies, National Institutes of Health/NIAAA, Bethesda, MD, USA.
| |
Collapse
|
141
|
Michaelson J, Hariharan V, Huang H. Hyperglycemic and hyperlipidemic conditions alter cardiac cell biomechanical properties. Biophys J 2015; 106:2322-9. [PMID: 24896111 DOI: 10.1016/j.bpj.2014.04.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 04/24/2014] [Accepted: 04/28/2014] [Indexed: 12/11/2022] Open
Abstract
Currently, many diabetic cardiomyopathy (DC) studies focus on either in vitro molecular pathways or in vivo whole-heart properties such as ejection fraction. However, as DC is primarily a disease caused by changes in structural and functional properties, such studies may not precisely identify the influence of hyperglycemia or hyperlipidemia in producing specific cellular changes, such as increased myocardial stiffness or diastolic dysfunction. To address this need, we developed an in vitro approach to examine how structural and functional properties may change as a result of a diabetic environment. Particle-tracking microrheology was used to characterize the biomechanical properties of cardiac myocytes and fibroblasts under hyperglycemia or hyperlipidemic conditions. We showed that myocytes, but not fibroblasts, exhibited increased stiffness under diabetic conditions. Hyperlipidemia, but not hyperglycemia, led to increased cFos expression. Although direct application of reactive oxygen species had only limited effects that altered myocyte properties, the antioxidant N-acetylcysteine had broader effects in limiting glucose or fatty-acid alterations. Changes consistent with clinical DC alterations occur in cells cultured in elevated glucose or fatty acids. However, the individual roles of glucose, reactive oxygen species, and fatty acids are varied, suggesting multiple pathway involvement.
Collapse
Affiliation(s)
- Jarett Michaelson
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Venkatesh Hariharan
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Hayden Huang
- Department of Biomedical Engineering, Columbia University, New York, New York.
| |
Collapse
|
142
|
Kovac S, Angelova PR, Holmström KM, Zhang Y, Dinkova-Kostova AT, Abramov AY. Nrf2 regulates ROS production by mitochondria and NADPH oxidase. Biochim Biophys Acta Gen Subj 2014; 1850:794-801. [PMID: 25484314 PMCID: PMC4471129 DOI: 10.1016/j.bbagen.2014.11.021] [Citation(s) in RCA: 474] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/27/2014] [Accepted: 11/29/2014] [Indexed: 12/30/2022]
Abstract
Background Nuclear factor (erythroid-derived 2) factor 2 (Nrf2) is a crucial transcription factor mediating protection against oxidants. Nrf2 is negatively regulated by cytoplasmic Kelch-like ECH associated protein 1 (Keap1) thereby providing inducible antioxidant defence. Antioxidant properties of Nrf2 are thought to be mainly exerted by stimulating transcription of antioxidant proteins, whereas its effects on ROS production within the cell are uncertain. Methods Live cell imaging and qPCR in brain hippocampal glio-neuronal cultures and explants slice cultures with graded expression of Nrf2, i.e. Nrf2-knockout (Nrf2-KO), wild-type (WT), and Keap1-knockdown (Keap1-KD). Results We here show that ROS production in Nrf2-KO cells and tissues is increased compared to their WT counterparts. Mitochondrial ROS production is regulated by the Keap1–Nrf2 pathway by controlling mitochondrial bioenergetics. Surprisingly, Keap1-KD cells and tissues also showed higher rates of ROS production when compared to WT, although with a smaller magnitude. Analysis of the mRNA expression levels of the two NOX isoforms implicated in brain pathology showed, that NOX2 is dramatically upregulated under conditions of Nrf2 deficiency, whereas NOX4 is upregulated when Nrf2 is constitutively activated (Keap1-KD) to a degree which paralleled the increases in ROS production. Conclusions These observations suggest that the Keap1–Nrf2 pathway regulates both mitochondrial and cytosolic ROS production through NADPH oxidase. General significance Findings supports a key role of the Keap1–Nrf2 pathway in redox homeostasis within the cell. We studied ROS production/NADPH oxidase expression in Nrf2-KO and Keap1-KD cells. ROS production is increased in Nrf2-KO and Keap1-KD neurons when compared to WT. NOX2/NOX4 mRNA in Nrf2-KO and Keap1-KD paralleled these changes.
Collapse
Affiliation(s)
- Stjepana Kovac
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK; Department of Neurology, University of Muenster, Muenster, Germany
| | - Plamena R Angelova
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Kira M Holmström
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Ying Zhang
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - Albena T Dinkova-Kostova
- Departments of Pharmacology and Molecular Sciences and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Departments of Pharmacology and Molecular Sciences and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Andrey Y Abramov
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
143
|
Jiménez-Osorio AS, Picazo A, González-Reyes S, Barrera-Oviedo D, Rodríguez-Arellano ME, Pedraza-Chaverri J. Nrf2 and redox status in prediabetic and diabetic patients. Int J Mol Sci 2014; 15:20290-305. [PMID: 25383674 PMCID: PMC4264167 DOI: 10.3390/ijms151120290] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/01/2014] [Accepted: 11/03/2014] [Indexed: 02/02/2023] Open
Abstract
The redox status associated with nuclear factor erythroid 2-related factor-2 (Nrf2) was evaluated in prediabetic and diabetic subjects. Total antioxidant status (TAS) in plasma and erythrocytes, glutathione (GSH) and malondialdehyde (MDA) content and activity of antioxidant enzymes were measured as redox status markers in 259 controls, 111 prediabetics and 186 diabetic type 2 subjects. Nrf2 was measured in nuclear extract fractions from peripheral blood mononuclear cells (PBMC). Nrf2 levels were lower in prediabetic and diabetic patients. TAS, GSH and activity of glutamate cysteine ligase were lower in diabetic subjects. An increase of MDA and superoxide dismutase activity was found in diabetic subjects. These results suggest that low levels of Nrf2 are involved in the development of oxidative stress and redox status disbalance in diabetic patients.
Collapse
Affiliation(s)
- Angélica S Jiménez-Osorio
- Faculty of Chemistry, Department of Biology, National Autonomous University of Mexico (UNAM), University City 04510 DF, Mexico.
| | - Alejandra Picazo
- Faculty of Medicine, Department of Pharmacology, National Autonomous University of Mexico (UNAM), University City 04510 DF, Mexico.
| | - Susana González-Reyes
- Faculty of Chemistry, Department of Biology, National Autonomous University of Mexico (UNAM), University City 04510 DF, Mexico.
| | - Diana Barrera-Oviedo
- Faculty of Medicine, Department of Pharmacology, National Autonomous University of Mexico (UNAM), University City 04510 DF, Mexico.
| | - Martha E Rodríguez-Arellano
- Research Department, Hospital Regional "Lic. Adolfo López Mateos", ISSSTE, Av. Universidad 1321, Florida 01030 DF, Mexico.
| | - José Pedraza-Chaverri
- Faculty of Chemistry, Department of Biology, National Autonomous University of Mexico (UNAM), University City 04510 DF, Mexico.
| |
Collapse
|
144
|
Liu Q, Wang S, Cai L. Diabetic cardiomyopathy and its mechanisms: Role of oxidative stress and damage. J Diabetes Investig 2014; 5:623-634. [PMID: 25422760 PMCID: PMC4234223 DOI: 10.1111/jdi.12250] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 01/29/2023] Open
Abstract
Diabetic cardiomyopathy as an important threat to health occurs with or without coexistence of vascular diseases. The exact mechanisms underlying the disease remain incompletely clear. Although several pathological mechanisms responsible for diabetic cardiomyopathy have been proposed, oxidative stress is widely considered as one of the major causes for the pathogenesis of the disease. Hyperglycemia-, hyperlipidemia-, hypertension- and inflammation-induced oxidative stress are major risk factors for the development of microvascular pathogenesis in the diabetic myocardium, which results in abnormal gene expression, altered signal transduction and the activation of pathways leading to programmed myocardial cell deaths. In the present article, we aim to provide an extensive review of the role of oxidative stress and anti-oxidants in diabetic cardiomyopathy based on our own works and literature information available.
Collapse
Affiliation(s)
- Quan Liu
- Center of Cardiovascular Diseases at the First Hospital of the Jilin UniversityChangchun, China
| | - Shudong Wang
- Center of Cardiovascular Diseases at the First Hospital of the Jilin UniversityChangchun, China
- Kosair Children's Hospital Research Institute, the Department of Pediatrics, the University of LouisvilleLouisville, KY, USA
| | - Lu Cai
- Kosair Children's Hospital Research Institute, the Department of Pediatrics, the University of LouisvilleLouisville, KY, USA
- Departments of Radiation Oncology, Pharmacology and Toxicology, the University of LouisvilleLouisville, KY, USA
| |
Collapse
|
145
|
Liu J, Tang Y, Feng Z, Hou C, Wang H, Yan J, Liu J, Shen W, Zang W, Liu J, Long J. Acetylated FoxO1 mediates high-glucose induced autophagy in H9c2 cardiomyoblasts: regulation by a polyphenol -(-)-epigallocatechin-3-gallate. Metabolism 2014; 63:1314-23. [PMID: 25062567 DOI: 10.1016/j.metabol.2014.06.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/14/2014] [Accepted: 06/16/2014] [Indexed: 11/18/2022]
Abstract
OBJECTIVE FoxO1 acts as a pivotal transcription factor in insulin signaling. However, in hyperglycemia induced cardiac complications, whether FoxO1 is involved remains unclear. The goal of this study was to delineate the potential role of FoxO1 under high-glucose condition. MATERIALS/METHODS We investigated insulin resistance and reactive oxygen species (ROS) generation in H9c2 cardiomyoblasts after high-glucose exposure. A series of autophagy biomarkers were measured and further confirmed by LC3 turnover assay. Using gene silencing and overexpression experiments we dissected the molecular mechanisms of FoxO1 regulated autophagy. We also tested the protective effect of (-)-epigallocatechin-3-gallate (EGCG, a green tea-derived polyphenol) in high-glucose treated H9c2 cardiomyoblasts. RESULTS High-glucose elicited elevated ROS, autophagy and FoxO1 abundance in cultured H9c2 cardiomyoblasts. Specifically, high-glucose significantly augmented the acetylated FoxO1 in cytosol. In line, compared with 3A-FoxO1 (majorly localized in nuclei with a strong transcriptional activity), overexpression of WT-FoxO1 led to more intense elevated autophagy with enhanced acetylation of FoxO1. In addition, FoxO1 RNAi brought down autophagy induced by high-glucose. Intriguingly, EGCG successfully reversed ROS, autophagy and acetylated FoxO1 in high-glucose treated H9c2 cells. CONCLUSION Our findings suggest that FoxO1, especially the acetylated form, regulates high-glucose induced autophagy in H9c2 cardiomyoblasts, which can be prevented by EGCG via a possible ROS-FoxO1 pathway.
Collapse
Affiliation(s)
- Jia Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ying Tang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chen Hou
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hui Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiong Yan
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jing Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, Xi'an 710049, China
| | - Weili Shen
- Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Weijin Zang
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
146
|
Abstract
Diabetic cardiomyopathy (DCM), as one of the major cardiac complications in diabetic patients, is known to related with oxidative stress that is due to a severe imbalance between reactive oxygen species (ROS) and/or reactive nitrogen species (RNS) generation and their clearance by antioxidant defense systems. Transcription factor nuclear factor NF-E2-related factor 2 (Nrf2) plays an important role in maintaining the oxidative homeostasis by regulating multiple downstream antioxidants. Diabetes may up-regulate several antioxidants in the heart as a compensative mechanism at early stage, but at late stage, diabetes not only generates extra ROS and/or RNS but also impairs antioxidant capacity in the heart, including Nrf2. In an early study, we have established that Nrf2 protect the cardiac cells and heart from high level of glucose in vitro and hyperglycemia in vivo, and in the following study demonstrated the significant down-regulation of cardiac Nrf2 expression in diabetic animals and patients. Using Nrf2-KO mice or Nrf2 inducers, blooming evidence has indicated the important protection by Nrf2 from cardiac pathogenesis in the diabetes. Therefore, this brief review summarizes the status of studies on Nrf2's role in preventing DCM and even other complications, the need for new and safe Nrf2 inducer screening and the precaution for the undesirable side of Nrf2 under certain conditions.
Collapse
Affiliation(s)
- Jing Chen
- Kosair Children's Hospital Research Institute, Department of Pediatrics, the University of Louisville School of Medicine, Louisville, KY, USA
| | - Zhiguo Zhang
- Kosair Children's Hospital Research Institute, Department of Pediatrics, the University of Louisville School of Medicine, Louisville, KY, USA
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun, China
| | - Lu Cai
- Kosair Children's Hospital Research Institute, Department of Pediatrics, the University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
147
|
Jiang X, Bai Y, Zhang Z, Xin Y, Cai L. Protection by sulforaphane from type 1 diabetes-induced testicular apoptosis is associated with the up-regulation of Nrf2 expression and function. Toxicol Appl Pharmacol 2014; 279:198-210. [PMID: 24967692 DOI: 10.1016/j.taap.2014.06.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 06/11/2014] [Accepted: 06/15/2014] [Indexed: 12/20/2022]
Abstract
Diabetes-induced testicular apoptosis is predominantly due to increased oxidative stress. The nuclear factor-erythroid 2-related factor 2 (Nrf2), as a master transcription factor in controlling anti-oxidative systems, is able to be induced by sulforaphane (SFN). To examine whether SFN prevents testicular apoptosis, type 1 diabetic mouse model was induced with multiple low-dose streptozotocin. Diabetic and age-matched control mice were treated with and without SFN at 0.5mg/kg daily in five days of each week for 3months and then kept until 6months. Diabetes significantly increased testicular apoptosis that was associated with endoplasmic reticulum stress and mitochondrial cell death pathways, shown by the increased expression of C/EBP homologous protein (CHOP), cleaved caspase-12, Bax to Bcl2 expression ratio, and cleaved caspase-3. Diabetes also significantly increased testicular oxidative damage, inflammation and fibrosis, and decreased germ cell proliferation. All these diabetic effects were significantly prevented by SFN treatment for the first 3months, and the protective effect could be sustained at 3months after SFN treatment. SFN was able to up-regulate Nrf2 expression and function. The latter was reflected by the increased phosphorylation of Nrf2 at Ser40 and expression of Nrf2 downstream antioxidants at mRNA and protein levels. These results suggest that type 1 diabetes significantly induced testicular apoptosis and damage along with increasing oxidative stress and cell death and suppressing Nrf2 expression and function. SFN is able to prevent testicular oxidative damage and apoptosis in type 1 diabetes mice, which may be associated with the preservation of testicular Nrf2 expression and function under diabetic condition.
Collapse
Affiliation(s)
- Xin Jiang
- The First Hospital of Jilin University, Changchun 130021, China; KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202, USA
| | - Yang Bai
- The First Hospital of Jilin University, Changchun 130021, China; KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202, USA
| | - Zhiguo Zhang
- The First Hospital of Jilin University, Changchun 130021, China; KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202, USA
| | - Ying Xin
- KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202, USA; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Lu Cai
- The First Hospital of Jilin University, Changchun 130021, China; KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202, USA.
| |
Collapse
|
148
|
The role of Nrf2-mediated pathway in cardiac remodeling and heart failure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:260429. [PMID: 25101151 PMCID: PMC4102082 DOI: 10.1155/2014/260429] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 04/12/2014] [Accepted: 04/30/2014] [Indexed: 12/30/2022]
Abstract
Heart failure (HF) is frequently the consequence of sustained, abnormal neurohormonal, and mechanical stress and remains a leading cause of death worldwide. The key pathophysiological process leading to HF is cardiac remodeling, a term referring to maladaptation to cardiac stress at the molecular, cellular, tissue, and organ levels. HF and many of the conditions that predispose one to HF are associated with oxidative stress. Increased generation of reactive oxygen species (ROS) in the heart can directly lead to increased necrosis and apoptosis of cardiomyocytes which subsequently induce cardiac remodeling and dysfunction. Nuclear factor-erythroid-2- (NF-E2-) related factor 2 (Nrf2) is a transcription factor that controls the basal and inducible expression of a battery of antioxidant genes and other cytoprotective phase II detoxifying enzymes that are ubiquitously expressed in the cardiovascular system. Emerging evidence has revealed that Nrf2 and its target genes are critical regulators of cardiovascular homeostasis via the suppression of oxidative stress, which is the key player in the development and progression of HF. The purpose of this review is to summarize evidence that activation of Nrf2 enhances endogenous antioxidant defenses and counteracts oxidative stress-associated cardiac remodeling and HF.
Collapse
|
149
|
Dietary Lycium barbarum polysaccharide induces Nrf2/ARE pathway and ameliorates insulin resistance induced by high-fat via activation of PI3K/AKT signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:145641. [PMID: 25045414 PMCID: PMC4089200 DOI: 10.1155/2014/145641] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/03/2014] [Indexed: 02/08/2023]
Abstract
Lycium barbarum polysaccharide (LBP), an antioxidant from wolfberry, displays the antioxidative and anti-inflammatory effects on experimental models of insulin resistance in vivo. However, the effective mechanism of LBP on high-fat diet-induced insulin resistance is still unknown. The objective of the study was to investigate the mechanism involved in LBP-mediated phosphatidylinositol 3-kinase (PI3K)/AKT/Nrf2 axis against high-fat-induced insulin resistance. HepG2 cells were incubated with LBP for 12 hrs in the presence of palmitate. C57BL/6J mice were fed a high-fat diet supplemented with LBP for 24 weeks. We analyzed the expression of nuclear factor-E2-related factor 2 (Nrf2), Jun N-terminal kinases (JNK), and glycogen synthase kinase 3β (GSK3β) involved in insulin signaling pathway in vivo and in vitro. First, LBP significantly induced phosphorylation of Nrf2 through PI3K/AKT signaling. Second, LBP obviously increased detoxification and antioxidant enzymes expression and reduced reactive oxygen species (ROS) levels via PI3K/AKT/Nrf2 axis. Third, LBP also regulated phosphorylation levels of GSK3β and JNK through PI3K/AKT signaling. Finally, LBP significantly reversed glycolytic and gluconeogenic genes expression via the activation of Nrf2-mediated cytoprotective effects. In summary, LBP is novel antioxidant against insulin resistance induced by high-fat diet via activation of PI3K/AKT/Nrf2 pathway.
Collapse
|
150
|
Liu Y, Wang Y, Miao X, Zhou S, Tan Y, Liang G, Zheng Y, Liu Q, Sun J, Cai L. Inhibition of JNK by compound C66 prevents pathological changes of the aorta in STZ-induced diabetes. J Cell Mol Med 2014; 18:1203-1212. [PMID: 24720784 PMCID: PMC4508159 DOI: 10.1111/jcmm.12267] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/28/2014] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular diseases as leading causes of the mortality world-wide are related to diabetes. The present study was to explore the protective effect of curcumin analogue C66 on diabetes-induced pathogenic changes of aortas. Diabetes was induced in male C57BL/6 mice with a single intraperitoneal injection of streptozotocin. Diabetic mice and age-matched non-diabetic mice were randomly treated with either vehicle (Control and Diabetes), C66 (C66 and Diabetes/C66) or c-Jun N-terminal kinase (JNK) inhibitor (sp600125, JNKi and Diabetes/JNKi). All three treatments were given by gavage at 5 mg/kg every other day for 3 months. Aortic inflammation, oxidative stress, fibrosis, cell apoptosis and proliferation, Nrf2 expression and transcription were assessed by immunohistochemical staining for the protein level and real-time PCR method for mRNA level. Diabetes increased aortic wall thickness and structural derangement as well as JNK phosphorylation, all of which were attenuated by C66 treatment as JNKi did. Inhibition of JNK phosphorylation by C66 and JNKi also significantly prevented diabetes-induced increases in inflammation, oxidative and nitrative stress, apoptosis, cell proliferation and fibrosis. Furthermore, inhibition of JNK phosphorylation by C66 and JNKi significantly increased aortic Nrf2 expression and transcription function (e.g. increased expression of Nrf2-downstream genes) in normal and diabetic conditions. These results suggest that diabetes-induced pathological changes in the aorta can be protected by C66 via inhibition of JNK function, accompanied by the up-regulation of Nrf2 expression and function.
Collapse
Affiliation(s)
- Yucheng Liu
- Kosair Children Hospital Research Institute at the Department of Pediatrics of the University of LouisvilleLouisville, KY, USA
| | - Yonggang Wang
- The First Hospital of Jilin UniversityChangchun, China
| | - Xiao Miao
- Kosair Children Hospital Research Institute at the Department of Pediatrics of the University of LouisvilleLouisville, KY, USA
- The Second Hospital of Jilin UniversityChangchun, China
| | - Shanshan Zhou
- Kosair Children Hospital Research Institute at the Department of Pediatrics of the University of LouisvilleLouisville, KY, USA
- The First Hospital of Jilin UniversityChangchun, China
| | - Yi Tan
- Kosair Children Hospital Research Institute at the Department of Pediatrics of the University of LouisvilleLouisville, KY, USA
- The Chinese-American Research Institute, Wenzhou Medical UniversityWenzhou, China
| | - Guang Liang
- The Chinese-American Research Institute, Wenzhou Medical UniversityWenzhou, China
| | - Yang Zheng
- The First Hospital of Jilin UniversityChangchun, China
| | - Quan Liu
- The First Hospital of Jilin UniversityChangchun, China
| | - Jian Sun
- The First Hospital of Jilin UniversityChangchun, China
| | - Lu Cai
- Kosair Children Hospital Research Institute at the Department of Pediatrics of the University of LouisvilleLouisville, KY, USA
- The Chinese-American Research Institute, Wenzhou Medical UniversityWenzhou, China
| |
Collapse
|