101
|
Turunen M, Olsson J, Dallner G. Metabolism and function of coenzyme Q. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1660:171-99. [PMID: 14757233 DOI: 10.1016/j.bbamem.2003.11.012] [Citation(s) in RCA: 705] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Coenzyme Q (CoQ) is present in all cells and membranes and in addition to be a member of the mitochondrial respiratory chain it has also several other functions of great importance for the cellular metabolism. This review summarizes the findings available to day concerning CoQ distribution, biosynthesis, regulatory modifications and its participation in cellular metabolism. There are a number of indications that this lipid is not always functioning by its direct presence at the site of action but also using e.g. receptor expression modifications, signal transduction mechanisms and action through its metabolites. The biosynthesis of CoQ is studied in great detail in bacteria and yeast but only to a limited extent in animal tissues and therefore the informations available is restricted. However, it is known that the CoQ is compartmentalized in the cell with multiple sites of biosynthesis, breakdown and regulation which is the basis of functional specialization. Some regulatory mechanisms concerning amount and biosynthesis are established and nuclear transcription factors are partly identified in this process. Using appropriate ligands of nuclear receptors the biosynthetic rate can be increased in experimental system which raises the possibility of drug-induced upregulation of the lipid in deficiency. During aging and pathophysiological conditions the tissue concentration of CoQ is modified which influences cellular functions. In this case the extent of disturbances is dependent on the localization and the modified distribution of the lipid at cellular and membrane levels.
Collapse
Affiliation(s)
- Mikael Turunen
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-106 91 Stockholm, Sweden.
| | | | | |
Collapse
|
102
|
Palmieri F. The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflugers Arch 2003; 447:689-709. [PMID: 14598172 DOI: 10.1007/s00424-003-1099-7] [Citation(s) in RCA: 572] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2003] [Revised: 04/24/2003] [Accepted: 04/28/2003] [Indexed: 12/17/2022]
Abstract
The mitochondrial carriers (MCs) shuttle a variety of metabolites across the inner mitochondrial membrane (i.m.m.). In man they are encoded by the SLC25 genes. Some MCs have isoforms encoded by different SLC25 genes, whereas the phosphate carrier has two variants arising from an alternative splicing of SLC25A3. Six MCs have been sequenced after purification, and many more have been identified from their transport and kinetic properties following heterologous over-expression and reconstitution into liposomes. All MCs of known function belong to the same protein family, since their polypeptide chains consist of three tandemly related sequences of about 100 amino acids, and the repeats of the different carriers are homologous. They probably function as homodimers, each monomer being folded in the membrane into six transmembrane segments. The functional information obtained in studies with mitochondria and/or the reconstituted system has helped to gain an insight into the physiological role of the MCs in cell metabolism, as have tissue distribution, the use of knock-out mice (and/or yeast) and over-expression in human cell lines (or yeast) of individual carriers and isoforms. At the same time, the cloning and functional identification of many SLC25 genes has made it possible (i) to identify the genes (and their defects) responsible for some diseases, e.g. Stanley syndrome and Amish microcephaly, and (ii) where the genes were already known, to characterize the function of the gene products and hence understand the molecular basis and the symptoms of the diseases, e.g. hyperornithinaemia, hyperammonaemia and homocitrullinuria (HHH) syndrome and type II citrullinemia. It is likely that further extension and functional characterization of the SLC25 gene family will elucidate other diseases caused by MC deficiency.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Via Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
103
|
Goglia F, Skulachev VP. A function for novel uncoupling proteins: antioxidant defense of mitochondrial matrix by translocating fatty acid peroxides from the inner to the outer membrane leaflet. FASEB J 2003; 17:1585-91. [PMID: 12958165 DOI: 10.1096/fj.03-0159hyp] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
It is hypothesized that mitochondrial uncoupling proteins operate as carriers of fatty acid peroxide anions. This is assumed to result in electrophoretic extrusion of such anions from the inner to the outer leaflet of the inner mitochondrial membrane, being driven by membrane potential (mitochondrial interior negative). In this way, the inner leaflet is ridded of fatty acid peroxides that otherwise can form very aggressive oxidants damaging mitochondrial DNA, aconitase, and other mitochondrial matrix-localized components of vital importance. The steady-state concentration the fatty acid peroxides is known to be low. This explains why UCP2, 3, 4, and 5 are present in small amounts usually insufficient to make a large contribution to the H+ conductance of the mitochondrial membrane.
Collapse
Affiliation(s)
- Fernando Goglia
- Dipartimento di Scienze Biologiche ed Ambientali, 082100, Benevento, Italy
| | | |
Collapse
|
104
|
Zhou Z, Yon Toh S, Chen Z, Guo K, Ng CP, Ponniah S, Lin SC, Hong W, Li P. Cidea-deficient mice have lean phenotype and are resistant to obesity. Nat Genet 2003; 35:49-56. [PMID: 12910269 DOI: 10.1038/ng1225] [Citation(s) in RCA: 371] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Accepted: 07/14/2003] [Indexed: 11/10/2022]
Abstract
The thermogenic activity of brown adipose tissue (BAT), important for adaptive thermogenesis and energy expenditure, is mediated by the mitochondrial uncoupling protein1 (Ucp1) that uncouples ATP generation and dissipates the energy as heat. We show here that Cidea, a protein of unknown function sharing sequence similarity with the N-terminal region of DNA fragmentation factors Dffb and Dffa, is expressed at high levels in BAT. Cidea-null mice had higher metabolic rate, lipolysis in BAT and core body temperature when subjected to cold treatment. Notably, Cidea-null mice are lean and resistant to diet-induced obesity and diabetes. Furthermore, we provide evidence that the role of Cidea in regulating thermogenesis, lipolysis and obesity may be mediated in part through its direct suppression of Ucp1 activity. Our data thus indicate a role for Cidea in regulating energy balance and adiposity.
Collapse
Affiliation(s)
- Zhihong Zhou
- Laboratories of Apoptosis Regulation, Institute of Molecular and Cell Biology, 30 Medical Dr., Singapore 117609, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Berry S. Endosymbiosis and the design of eukaryotic electron transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2003; 1606:57-72. [PMID: 14507427 DOI: 10.1016/s0005-2728(03)00084-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The bioenergetic organelles of eukaryotic cells, mitochondria and chloroplasts, are derived from endosymbiotic bacteria. Their electron transport chains (ETCs) resemble those of free-living bacteria, but were tailored for energy transformation within the host cell. Parallel evolutionary processes in mitochondria and chloroplasts include reductive as well as expansive events: On one hand, bacterial complexes were lost in eukaryotes with a concomitant loss of metabolic flexibility. On the other hand, new subunits have been added to the remaining bacterial complexes, new complexes have been introduced, and elaborate folding patterns of the thylakoid and mitochondrial inner membranes have emerged. Some bacterial pathways were reinvented independently by eukaryotes, such as parallel routes for quinol oxidation or the use of various anaerobic electron acceptors. Multicellular organization and ontogenetic cycles in eukaryotes gave rise to further modifications of the bioenergetic organelles. Besides mitochondria and chloroplasts, eukaryotes have ETCs in other membranes, such as the plasma membrane (PM) redox system, or the cytochrome P450 (CYP) system. These systems have fewer complexes and simpler branching patterns than those in energy-transforming organelles, and they are often adapted to non-bioenergetic functions such as detoxification or cellular defense.
Collapse
Affiliation(s)
- Stephan Berry
- Plant Biochemistry, Faculty of Biology, Ruhr-University-Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| |
Collapse
|
106
|
Cheng G, Polito CC, Haines JK, Shafizadeh SF, Fiorini RN, Zhou X, Schmidt MG, Chavin KD. Decrease of intracellular ATP content downregulated UCP2 expression in mouse hepatocytes. Biochem Biophys Res Commun 2003; 308:573-80. [PMID: 12914789 DOI: 10.1016/s0006-291x(03)01409-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mitochondrial uncoupling protein 2 (UCP2) plays an important role in regulating energy metabolism. We previously reported that UCP2 expression in steatotic livers is increased which leads to diminished hepatic ATP stores and renders steatotic hepatocytes vulnerable to ischemic damage. In this study, reagents that inhibit the production of ATP were used to mimic an ischemic state in the liver in order to investigate the effects of decreased intracellular ATP levels on UCP2 expression in a murine hepatocyte cell line (HEP6-16). Carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), an oxidative phosphorylation uncoupler, was found to decrease intracellular ATP levels in a dose- and time-dependent manner. Relatively high concentrations of FCCP from 8 to 80 microM were required to reduce the intracellular concentration of ATP. The inhibitory effect of FCCP on intracellular ATP was significantly potentiated by 2-deoxy-D-glucose, an inhibitor of glycolysis that when administered alone had no negative effect on cellular ATP levels in mouse hepatocytes. Decreased intracellular ATP levels were accompanied by lower UCP2 mRNA expression. Upon removal of FCCP and/or 2-deoxy-D-glucose and reculture with normal medium, ATP and UCP2 mRNA levels returned to normal within a few hours. Mitochondrial membrane potential in HEP6-16 cells was dissipated by 80 microM FCCP but not 8 microM FCCP, suggesting that the downregulation of UCP2 expression by FCCP was not related to mitochondrial potential changes. Consequently, the in vitro manipulation of ATP stores is consistent with the in vivo observations associated with ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Gang Cheng
- Division of Transplant Surgery, Department of Surgery, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Ito M, Gomori A, Ishihara A, Oda Z, Mashiko S, Matsushita H, Yumoto M, Ito M, Sano H, Tokita S, Moriya M, Iwaasa H, Kanatani A. Characterization of MCH-mediated obesity in mice. Am J Physiol Endocrinol Metab 2003; 284:E940-5. [PMID: 12554598 DOI: 10.1152/ajpendo.00529.2002] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melanin-concentrating hormone (MCH) is a cyclic orexigenic peptide expressed in the lateral hypothalamus. Recently, we demonstrated that chronic intracerebroventricular infusion of MCH induced obesity accompanied by sustained hyperphagia in mice. Here, we analyzed the mechanism of MCH-induced obesity by comparing animals fed ad libitum with pair-fed and control animals. Chronic infusion of MCH significantly increased food intake, body weight, white adipose tissue (WAT) mass, and liver mass in ad libitum-fed mice on a moderately high-fat diet. In addition, a significant increase in lipogenic activity was observed in the WAT of the ad libitum-fed group. Although body weight gain was marginal in the pair-fed group, MCH infusion clearly enhanced the lipogenic activity in liver and WAT. Plasma leptin levels were also increased in the pair-fed group. Furthermore, MCH infusion significantly reduced rectal temperatures in the pair-fed group. In support of these findings, mRNA expression of uncoupling protein-1, acyl-CoA oxidase, and carnitine palmitoyltransferase I, which are key molecules involved in thermogenesis and fatty acid oxidation, were reduced in the brown adipose tissue (BAT) of the pair-fed group, suggesting that MCH infusion might reduce BAT functions. We conclude that the activation of MCH neuronal pathways stimulated adiposity, in part resulting from increased lipogenesis in liver and WAT and reduced energy expenditure in BAT. These findings confirm that modulation of energy homeostasis by MCH may play a critical role in the development of obesity.
Collapse
Affiliation(s)
- Masahiko Ito
- Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd., Okubo 3, Tsukuba 300-2611, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Huang SG. Binding of fatty acids to the uncoupling protein from brown adipose tissue mitochondria. Arch Biochem Biophys 2003; 412:142-6. [PMID: 12646277 DOI: 10.1016/s0003-9861(03)00031-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The uncoupling protein 1 (UCP1) is a H(+) carrier which plays a key role in heat generation in brown adipose tissue. The H(+) transport activity of UCP1 is activated by long-chain fatty acids and inhibited by purine nucleotides. While nucleotide binding has been well characterized, the interaction of fatty acid with UCP1 remains unknown. Here I demonstrate the binding of fatty acids by competition with a fluorescent nucleotide probe 2(')-O-dansyl guanosine 5(')-triphosphate (GTP), which has been shown previously to bind at the nucleotide binding site in UCP1. Fatty acids but not their esters competitively inhibit the binding of 2(')-O-dansyl GTP to UCP1. The fatty acid effect was enhanced at higher pH, suggesting the binding of fatty acid anion to UCP1. The inhibition constants K(i) were determined by fluorescence titrations for various fatty acids. Short-chain (C<8) fatty acids display no affinity, whereas medium-chain (C10-14) and unsaturated C18 fatty acids exhibit stronger affinity (K(i)=65 microM, for elaidic acid). This specificity profile agrees with previous functional data obtained in both proteoliposomes and mitochondria, suggesting a possible physiological role of this fatty acid binding site.
Collapse
Affiliation(s)
- Shu-Gui Huang
- Institute of Physical Biochemistry, University of Munich, Schillerstrasse 44, Munich D-80336, Germany.
| |
Collapse
|
109
|
Abstract
Proton channels exist in a wide variety of membrane proteins where they transport protons rapidly and efficiently. Usually the proton pathway is formed mainly by water molecules present in the protein, but its function is regulated by titratable groups on critical amino acid residues in the pathway. All proton channels conduct protons by a hydrogen-bonded chain mechanism in which the proton hops from one water or titratable group to the next. Voltage-gated proton channels represent a specific subset of proton channels that have voltage- and time-dependent gating like other ion channels. However, they differ from most ion channels in their extraordinarily high selectivity, tiny conductance, strong temperature and deuterium isotope effects on conductance and gating kinetics, and insensitivity to block by steric occlusion. Gating of H(+) channels is regulated tightly by pH and voltage, ensuring that they open only when the electrochemical gradient is outward. Thus they function to extrude acid from cells. H(+) channels are expressed in many cells. During the respiratory burst in phagocytes, H(+) current compensates for electron extrusion by NADPH oxidase. Most evidence indicates that the H(+) channel is not part of the NADPH oxidase complex, but rather is a distinct and as yet unidentified molecule.
Collapse
Affiliation(s)
- Thomas E Decoursey
- Department of Molecular Biophysics and Physiology, Rush Presbyterian St. Luke's Medical Center, Chicago, Illinois 60612, USA.
| |
Collapse
|
110
|
Oxidative phosphorylation, mitochondrial proton cycling, free-radical production and aging. ADVANCES IN CELL AGING AND GERONTOLOGY 2003. [DOI: 10.1016/s1566-3124(03)14003-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
111
|
Echtay KS, Murphy MP, Smith RAJ, Talbot DA, Brand MD. Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants. J Biol Chem 2002; 277:47129-35. [PMID: 12372827 DOI: 10.1074/jbc.m208262200] [Citation(s) in RCA: 302] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Superoxide activates nucleotide-sensitive mitochondrial proton transport through the uncoupling proteins UCP1, UCP2, and UCP3 (Echtay, K. S., et al. (2002) Nature 415, 1482-1486). Two possible mechanisms were proposed: direct activation of the UCP proton transport mechanism by superoxide or its products and a cycle of hydroperoxyl radical entry coupled to UCP-catalyzed superoxide anion export. Here we provide evidence for the first mechanism and show that superoxide activates UCP2 in rat kidney mitochondria from the matrix side of the mitochondrial inner membrane: (i) Exogenous superoxide inhibited matrix aconitase, showing that external superoxide entered the matrix. (ii) Superoxide-induced uncoupling was abolished by low concentrations of the mitochondrially targeted antioxidants 10-(6'-ubiquinonyl)decyltriphenylphosphonium (mitoQ) or 2-[2-(triphenylphosphonio)ethyl]-3,4-dihydro-2,5,7,8-tetramethyl-2H-1-benzopyran-6-ol bromide (mitoVit E), which are ubiquinone (Q) or tocopherol derivatives targeted to the matrix by covalent attachment to triphenylphosphonium cation. However, superoxide-induced uncoupling was not affected by similar concentrations of the nontargeted antioxidants Q(o), Q(1), decylubiquinone, vitamin E, or 6-hydroxy-2,5,7,8-tetramethylchroman 2-carboxylic acid (TROLOX) or of the mitochondrially targeted but redox-inactive analogs decyltriphenylphosphonium or 4-chlorobutyltriphenylphosphonium. Thus matrix superoxide appears to be necessary for activation of UCP2 by exogenous superoxide. (iii) When the reduced to oxidized ratio of mitoQ accumulated by mitochondria was increased by inhibiting cytochrome oxidase, it induced nucleotide-sensitive uncoupling that was not inhibited by external superoxide dismutase. Under these conditions quinols are known to produce superoxide, and because mitoQ is localized within the mitochondrial matrix this suggests that production of superoxide in the matrix was sufficient to activate UCP2. Furthermore, the superoxide did not need to be exported or to cycle across the inner membrane to cause uncoupling. We conclude that superoxide (or its products) exerts its uncoupling effect by activating the proton transport mechanism of uncoupling proteins at the matrix side of the mitochondrial inner membrane.
Collapse
Affiliation(s)
- Karim S Echtay
- Medical Research Council Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY, UK
| | | | | | | | | |
Collapse
|
112
|
Ledesma A, de Lacoba MG, Arechaga I, Rial E. Modeling the transmembrane arrangement of the uncoupling protein UCP1 and topological considerations of the nucleotide-binding site. J Bioenerg Biomembr 2002; 34:473-86. [PMID: 12678439 DOI: 10.1023/a:1022522310279] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The uncoupling protein from brown adipose tissue (UCP1) is a mitochondrial proton transporter whose activity is inhibited by purine nucleotides. UCP1, like the other members of the mitochondrial transporter superfamily, is an homodimer and each subunit contains six transmembrane segments. In an attempt to understand the structural elements that are important for nucleotide binding, a model for the transmembrane arrangement of UCP1 has been built by computational methods. Biochemical and sequence analysis considerations are taken as constraints. The main features of the model include the following: (i) the six transmembrane alpha-helices (TMHs) associate to form an antiparallel helix bundle; (ii) TMHs have an amphiphilic nature and thus the hydrophobic and variable residues face the lipid bilayer; (iii) matrix loops do not penetrate in the core of the bundle; and (iv) the polar core constitutes the translocation pathway. Photoaffinity labeling and mutagenesis studies have identified several UCP1 regions that interact with the nucleotide. We present a model where the nucleotide binds deep inside the bundle core. The purine ring interacts with the matrix loops while the polyphosphate chain is stabilized through interactions with essential Arg residues in the TMH and whose side chains face the core of the helix bundle.
Collapse
Affiliation(s)
- Amalia Ledesma
- Centro de Investigaciones Biológicas, CSIC, Velázquez 144, 28006 Madrid, Spain
| | | | | | | |
Collapse
|
113
|
Almeida AM, Navet R, Jarmuszkiewicz W, Vercesi AE, Sluse-Goffart CM, Sluse FE. The energy-conserving and energy-dissipating processes in mitochondria isolated from wild type and nonripening tomato fruits during development on the plant. J Bioenerg Biomembr 2002; 34:487-98. [PMID: 12678440 DOI: 10.1023/a:1022574327117] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bioenergetics of tomato (Lycopersicon esculentum) development on the plant was followed from the early growing stage to senescence in wild type (climacteric) and nonripening mutant (nor, non-climacteric) fruits. Fruit development was expressed in terms of evolution of chlorophyll a content allowing the assessment of a continuous time-course in both cultivars. Measured parameters: the cytochrome pathway-dependent respiration, i.e., the ATP synthesis-sustained respiration (energy-conserving), the uncoupling protein (UCP) activity-sustained respiration (energy-dissipating), the alternative oxidase(AOX)-mediated respiration (energy-dissipating), as well as the protein expression of UCP and AOX, and free fatty acid content exhibited different evolution patterns in the wild type and nor mutant that can be attributed to their climacteric/nonclimacteric properties, respectively. In the wild type, the climacteric respiratory burst observed in vitro depended totally on an increse in the cytochrome pathway activity sustained by ATP synthesis, while the second respiratory rise during the ripening stage was linked to a strong increase in AOX activity accompanied by an overexpression of AOX protein. In wild type mitochondria, the 10-microM linoleic acid-stimulated UCP-activity-dependent respiration remained constant during the whole fruit development except in senescence where general respiratory decay was observed.
Collapse
Affiliation(s)
- Andréa Miyasaka Almeida
- Laboratory of Bioenergetics, Department of Life Sciences, Institute of Chemistry B6, University of Liège, Sart Tilman, B-4000 Liège, Belgium
| | | | | | | | | | | |
Collapse
|
114
|
Arousal from hibernation and BAT thermogenesis against cold: central mechanism and molecular basis. J Therm Biol 2002. [DOI: 10.1016/s0306-4565(02)00024-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
115
|
Abstract
The uncoupling proteins (UCPs) are transporters, present in the mitochondrial inner membrane, that mediate a regulated discharge of the proton gradient that is generated by the respiratory chain. This energy-dissipatory mechanism can serve functions such as thermogenesis, maintenance of the redox balance, or reduction in the production of reactive oxygen species. Some UCP homologs may not act as true uncouplers, however, and their activity has yet to be defined. The UCPs are integral membrane proteins, each with a molecular mass of 31-34 kDa and a tripartite structure in which a region of around 100 residues is repeated three times; each repeat codes for two transmembrane segments and a long hydrophilic loop. The functional carrier unit is a homodimer. So far, 45 genes encoding members of the UCP family have been described, and they can be grouped into six families. Most of the described genes are from mammals, but UCP genes have also been found in fish, birds and plants, and there is also functional evidence to suggest their presence in fungi and protozoa. UCPs are encoded in their mature form by nuclear genes and, unlike many nuclear-encoded mitochondrial proteins, they lack a cleavable mitochondrial import signal. The information for mitochondrial targeting resides in the first loop that protrudes into the mitochondrial matrix; the second matrix loop is essential for insertion of the protein into the inner mitochondrial membrane. UCPs are regulated at both the transcriptional level and by activation and inhibition in the mitochondrion.
Collapse
Affiliation(s)
- Amalia Ledesma
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Velázquez 144, 28006 Madrid, Spain
| | - Mario García de Lacoba
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Velázquez 144, 28006 Madrid, Spain
| | - Eduardo Rial
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Velázquez 144, 28006 Madrid, Spain
| |
Collapse
|
116
|
Shabalina I, Wiklund C, Bengtsson T, Jacobsson A, Cannon B, Nedergaard J. Uncoupling protein-1: involvement in a novel pathway for beta-adrenergic, cAMP-mediated intestinal relaxation. Am J Physiol Gastrointest Liver Physiol 2002; 283:G1107-16. [PMID: 12381524 DOI: 10.1152/ajpgi.00193.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The pathway for adrenergic relaxation of smooth muscle is not fully understood. As mitochondrial uncoupling protein-1 (UCP1) expression has been reported in cells within the longitudinal smooth muscle layer of organs exhibiting peristalsis, we examined whether the absence of UCP1 affects adrenergic responsiveness. Intestinal (ileal) segments were obtained from UCP1-ablated mice and from wild-type mice (C57Bl/6, 129/SvPas, and outbred NMRI). In UCP1-containing mice, isoprenaline totally inhibited contractions induced by electrical field stimulation, but in intestine from UCP1-ablated mice, a significant residual contraction remained even at a high isoprenaline concentration; the segments were threefold less sensitive to isoprenaline. Also, when contraction was induced by carbachol, there was a residual isoprenaline-insensitive contraction. Similar results were obtained with the beta(3)-selective agonist CL-316,243 and with the adenylyl cyclase stimulator forskolin. Thus the UCP1 reported to be expressed in the longitudinal muscle layer of the mouse intestine is apparently functional, and UCP1, presumably through uncoupling, may be involved in a novel pathway leading from increased cAMP levels to relaxation in organs exhibiting peristalsis.
Collapse
Affiliation(s)
- Irina Shabalina
- Wenner-Gren Institute, Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
117
|
Hourton-Cabassa C, Mesneau A, Miroux B, Roussaux J, Ricquier D, Zachowski A, Moreau F. Alteration of plant mitochondrial proton conductance by free fatty acids. Uncoupling protein involvement. J Biol Chem 2002; 277:41533-8. [PMID: 12196511 DOI: 10.1074/jbc.m202805200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We characterized the uncoupling activity of the plant uncoupling protein from Solanum tuberosum (StUCP) using mitochondria from intact potato tubers or from yeast (Saccharomyces cerevisiae) expressing the StUCP gene. Compared with mitochondria from transfected yeast, StUCP is present at very low levels in intact potato mitochondrial membranes (at least thirty times lower) as shown by immunodetection with anti-UCP1 antibodies. Under conditions that ruled out undesirable effects of nucleotides and free fatty acids on uncoupling activity measurement in plant mitochondria, the linoleic acid-induced depolarization in potato mitochondria was insensitive to the nucleotides ATP, GTP, or GDP. In addition, sensitivity to linoleic acid was similar in potato and in control yeast mitochondria, suggesting that uncoupling occurring in potato mitochondria was because of a UCP-independent proton diffusion process. By contrast, yeast mitochondria expressing StUCP exhibited a higher sensitivity to free fatty acids than those from the control yeast and especially a marked proton conductance in the presence of low amounts of linoleic acid. However, this fatty acid-induced uncoupling was also insensitive to nucleotides. Altogether, these results suggest that uncoupling of oxidative phosphorylation and heat production cannot be the dominant feature of StUCP expressed in native potato tissues. However, it could play a role in preventing reactive oxygen species production as proposed for mammalian UCP2 and UCP3.
Collapse
Affiliation(s)
- Cecile Hourton-Cabassa
- Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes UMR 7632 CNRS/UPMC, Tour 53 (case 154), 4 place Jussieu, 75252 Paris cedex 05, France.
| | | | | | | | | | | | | |
Collapse
|
118
|
Capková M, Houstek J, Hansíková H, Hainer V, Kunesová M, Zeman J. Activities of cytochrome c oxidase and citrate synthase in lymphocytes of obese and normal-weight subjects. Int J Obes (Lond) 2002; 26:1110-7. [PMID: 12119577 DOI: 10.1038/sj.ijo.0802055] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2001] [Revised: 03/12/2002] [Accepted: 03/25/2002] [Indexed: 11/08/2022]
Abstract
BACKGROUND Obesity represents a heterogeneous group of disorders associated with broad spectrum of metabolic and endocrine abnormalities. The metabolic changes in obesity may also concern the efficacy of mitochondrial system of energy provision. The aim of our study was to analyse activities of mitochondrial enzymes cytochrome c oxidase (COX) and citrate synthase (CS) in isolated lymphocytes of obese and normal-weight subjects. RESULTS In the group of 304 non-obese controls, differences between men and women were found neither in the COX and CS activities nor in the COX/CS ratio in isolated lymphocytes. The activity of COX did not change even with age, whereas the activity of CS decreased significantly resulting in age-dependent increase of the COX/CS ratio (P<0.01). In the group of 60 obese patients aged 17-75 y, the COX activity was 1.2-fold higher (P<0.01) and the CS activity was 1.3-fold lower (P<0.01) compared to 151 non-obese healthy age-matched controls. Consequently, the COX/CS ratio became 1.7-fold higher (P<0.01) in the obese patients compared to the non-obese population, which indicates that both the absolute and relative oxidative capacity are increased. CONCLUSION Isolated lymphocytes from peripheral blood contribute very little to the overall metabolic turnover, but they may serve as easily available marker cells for studying the changes of mitochondrial energy converting systems in obesity.
Collapse
Affiliation(s)
- M Capková
- Department of Pediatrics and Centre for Integrated Genomics, Charles University, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
119
|
Larrarte E, Margareto J, Novo FJ, Marti A, Alfredo Martínez J. UCP1 muscle gene transfer and mitochondrial proton leak mediated thermogenesis. Arch Biochem Biophys 2002; 404:166-71. [PMID: 12127082 DOI: 10.1016/s0003-9861(02)00201-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mitochondrial uncoupling protein 1 (UCP1) mediates the thermogenic transport of protons through the inner mitochondrial membrane. This proton leak uncouples respiration from ATP synthesis. The current study assessed the possible contribution of UCP1 muscle gene transfer to impair mitochondrial respiration in a tissue lacking UCP1 gene expression. Rats received an intramuscular injection of plasmid pXC1 containing UCP1 cDNA in the right tibialis muscles, while left tibialis muscles were injected with empty plasmid as control. Ten days after DNA injection, mitochondria from tibialis anterior muscles were isolated and analyzed. UCP1 gene transfer resulted in protein expression as analyzed by inmunoblotting. Mitochondria isolated from UCP1-injected muscles showed a significant increase in state 2 and state 4 oxygen consumption rates and a decreased respiration control ratio in comparison to mitochondria from control muscles. Furthermore, UCP1-containing mitochondria had a lower membrane potential in those states (2 and 4) when compared with control mitochondria. Our results revealed that UCP1 muscle gene transfer is associated with an induced mitochondrial proton leak, which could contribute to increase energy expenditure.
Collapse
Affiliation(s)
- Eider Larrarte
- Department of Physiology and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | | | | | | | | |
Collapse
|
120
|
Mills EM, Xu D, Fergusson MM, Combs CA, Xu Y, Finkel T. Regulation of cellular oncosis by uncoupling protein 2. J Biol Chem 2002; 277:27385-92. [PMID: 12011039 DOI: 10.1074/jbc.m111860200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell death can proceed through at least two distinct pathways. Apoptosis is an energy-dependent process characterized morphologically by cell shrinkage, whereas oncosis is a form of cell death induced by energy depletion and initially characterized by cell swelling. We demonstrate in HeLa cells but not in normal diploid fibroblasts that modest increases in the expression level of uncoupling protein 2 (UCP-2) leads to a rapid and dramatic fall in mitochondrial membrane potential and to a reduction of mitochondrial NADH and intracellular ATP. In HeLa cells, increased UCP-2 expression leads to a form of cell death that is not inhibited by the anti-apoptotic gene product Bcl-2 and that morphologically resembles cellular oncosis. We further describe the creation of a dominant interfering mutant of UCP-2 whose expression increases resting mitochondrial membrane potential and selectively increases the resistance to cell death following oncotic but not apoptotic stimuli. These results suggest that distinct genetic programs may regulate the cellular response to either apoptotic or oncotic stimuli.
Collapse
Affiliation(s)
- Edward M Mills
- Cardiovascular Branch, NHLBI/National Institutes of Health, 10 Center Drive, Bldg. 10/6N-240, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
121
|
Couplan E, del Mar Gonzalez-Barroso M, Alves-Guerra MC, Ricquier D, Goubern M, Bouillaud F. No evidence for a basal, retinoic, or superoxide-induced uncoupling activity of the uncoupling protein 2 present in spleen or lung mitochondria. J Biol Chem 2002; 277:26268-75. [PMID: 12011051 DOI: 10.1074/jbc.m202535200] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The phenotypes observed in mice whose uncoupling protein (Ucp2) gene had been invalidated by homologous recombination (Ucp2(-/-) mice) are consistent with an increase in mitochondrial membrane potential in macrophages and pancreatic beta cells. This could support an uncoupling (proton transport) activity of UCP2 in the inner mitochondrial membrane in vivo. We used mitochondria from lung or spleen, the two organs expressing the highest level of UCP2, to compare the proton leak of the mitochondrial inner membrane of wild-type and Ucp2(-/-) mice. No difference was observed under basal conditions. Previous reports have concluded that retinoic acid and superoxide activate proton transport by UCP2. Spleen mitochondria showed a higher sensitivity to retinoic acid than liver mitochondria, but this was not caused by UCP2. In contrast with a previous report, superoxide failed to increase the proton leak rate in kidney mitochondria, where no UCP2 expression was detected, and also in spleen mitochondria, which does not support stimulation of UCP2 uncoupling activity by superoxide. Finally, no increase in the ATP/ADP ratio was observed in spleen or lung of Ucp2(-/-) mice. Therefore, no evidence could be gathered for the uncoupling activity of the UCP2 present in spleen or lung mitochondria. Although this may be explained by difficulties with isolated mitochondria, it may also indicate that UCP2 has another physiological significance in spleen and lung.
Collapse
Affiliation(s)
- Elodie Couplan
- Ceremod CNRS UPR9078, 9 rue Jules Hetzel, Meudon 92190, France
| | | | | | | | | | | |
Collapse
|
122
|
Moazed B, Desautels M. Control of proteolysis by norepinephrine and insulin in brown adipocytes: role of ATP, phosphatidylinositol 3-kinase, and p70 S6K. Can J Physiol Pharmacol 2002; 80:541-52. [PMID: 12117303 DOI: 10.1139/y02-078] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to evaluate some of the mechanisms by which norepinephrine (NE) and insulin may influence protein degradation in mouse brown adipocytes differentiated in cultures. The effects of NE and insulin, alone or in combination, on three factors known to influence proteolysis (maintenance of cell ATP and 1-phosphatidylinositol 3-kinase (PI 3-kinase) and p70 ribosomal S6-kinase (p70 S6K) activities) were examined. It was proposed that NE affects proteolysis indirectly by decreasing cell ATP from activation of uncoupling protein-1 (UCP1)-dependent mitochondrial respiration. This was tested by comparing the effects of NE and fatty acids (which directly activate UCP1) on proteolysis in brown adipocytes, as well as in pre-adipocytes and 3T3-L1 adipocytes, which do not express UCP1. An inhibitory effect of insulin on proteolysis is observed in both pre-adipocytes and differentiated cells, whereas NE and exogenously added fatty acids inhibit proteolysis only in brown adipocytes. There is a linear relationship between reductions in cell ATP and proteolysis in response to increasing concentrations of NE or fatty acids. PI 3-kinase activity is required for proteolysis, because two selective inhibitors (wortmannin and LY294002) reduce proteolysis in both pre-adipocytes and differentiated cells. This effect is not additive to that of NE, which suggests they affect the same proteolytic pathway. In contrast to NE, insulin increases PI 3-kinase activity and phosphorylation of p70 S6K. Rapamycin, which prevented insulin-dependent increase in phosphorylation of p70 S6K, increases proteolysis in brown adipocytes and antagonizes the inhibitory effect of insulin on proteolysis, but not the inhibitory effect of NE. Thus, insulin inhibits proteolysis via rapamycin-sensitive activation of p70 S6K, whereas the effect of NE appears largely to be a function of decreasing cell ATP content.
Collapse
Affiliation(s)
- Bita Moazed
- University of Saskatchewan, College of Medicine, Department of Physiology, Saskatoon, Canada
| | | |
Collapse
|
123
|
Bouaziz N, Redon M, Quéré L, Remacle J, Michiels C. Mitochondrial respiratory chain as a new target for anti-ischemic molecules. Eur J Pharmacol 2002; 441:35-45. [PMID: 12007918 DOI: 10.1016/s0014-2999(02)01490-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vascular diseases like thrombosis, myocardial infarction, cerebral ischemia or chronic venous insufficiency affect a high proportion of the population. They are all associated with more or less pronounced ischemic conditions. We have previously shown that some venotropic drugs display an anti-ischemic activity, i.e. they prevent the hypoxia-induced decrease in ATP content in cultured cells. The effect is due to the fact that these molecules maintain mitochondrial respiratory activity during hypoxia. Among them is bilobalide. Starting from the 3D structure of bilobalide, we designed new molecules presenting the same chemical features. They were synthesized and tested for their biological activity. As the parent compound, two of them, malonic acid dicyclopent-2-enyl ester (MRC2P119) and 2-oxo-3-oxa-bicyclo[3.1.0]hexane-1-carboxylic acid allyl ester (MRC2P57), were able to markedly increase the respiratory control ratio of isolated mitochondria. They are able to prevent the inhibition of complex I by amytal and of complex III by myxothiazol, but not the uncoupling of the respiration by carbonylcyanide m-chlorophenyl hydrazone (m-CCP). Moreover, MRC2P119 and MRCP2P57 inhibit, in a dose-dependent way, the hypoxia-induced decrease in ATP content in endothelial cells as well as the subsequent activation of these cells as evidenced by an inhibition of the increase in neutrophil adherence to the endothelial cells induced by hypoxia. Finally, MRC2P119 prevent the hypoxia- and the hypoxia-reoxygenation-induced decrease in viability of SH-SY5Y neuroblastoma cells. In conclusion, we identified two new molecules, which display anti-ischemic properties when tested in vitro on endothelial and neuronal cell types. This anti-ischemic activity is probably due to a protection of complexes I and III of the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Najat Bouaziz
- Laboratoire de Biochimie et Biologie Cellulaire, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | | | | | | | | |
Collapse
|
124
|
Echtay KS, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S, Stuart JA, Harper JA, Roebuck SJ, Morrison A, Pickering S, Clapham JC, Brand MD. Superoxide activates mitochondrial uncoupling proteins. Nature 2002; 415:96-9. [PMID: 11780125 DOI: 10.1038/415096a] [Citation(s) in RCA: 1052] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Uncoupling protein 1 (UCP1) diverts energy from ATP synthesis to thermogenesis in the mitochondria of brown adipose tissue by catalysing a regulated leak of protons across the inner membrane. The functions of its homologues, UCP2 and UCP3, in other tissues are debated. UCP2 and UCP3 are present at much lower abundance than UCP1, and the uncoupling with which they are associated is not significantly thermogenic. Mild uncoupling would, however, decrease the mitochondrial production of reactive oxygen species, which are important mediators of oxidative damage. Here we show that superoxide increases mitochondrial proton conductance through effects on UCP1, UCP2 and UCP3. Superoxide-induced uncoupling requires fatty acids and is inhibited by purine nucleotides. It correlates with the tissue expression of UCPs, appears in mitochondria from yeast expressing UCP1, and is absent in skeletal muscle mitochondria from UCP3 knockout mice. Our findings indicate that the interaction of superoxide with UCPs may be a mechanism for decreasing the concentrations of reactive oxygen species inside mitochondria.
Collapse
Affiliation(s)
- Karim S Echtay
- Medical Research Council Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Harper JA, Stuart JA, Jekabsons MB, Roussel D, Brindle KM, Dickinson K, Jones RB, Brand MD. Artifactual uncoupling by uncoupling protein 3 in yeast mitochondria at the concentrations found in mouse and rat skeletal-muscle mitochondria. Biochem J 2002; 361:49-56. [PMID: 11743882 PMCID: PMC1222297 DOI: 10.1042/0264-6021:3610049] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Western blots detected uncoupling protein 3 (UCP3) in skeletal-muscle mitochondria from wild-type but not UCP3 knock-out mice. Calibration with purified recombinant UCP3 showed that mouse and rat skeletal muscle contained 0.14 microg of UCP3/mg of mitochondrial protein. This very low UCP3 content is 200-700-fold less than the concentration of UCP1 in brown-adipose-tissue mitochondria from warm-adapted hamster (24-84 microg of UCP1/mg of mitochondrial protein). UCP3 was present in brown-adipose-tissue mitochondria from warm-adapted rats but was undetectable in rat heart mitochondria. We expressed human UCP3 in yeast mitochondria at levels similar to, double and 7-fold those found in rodent skeletal-muscle mitochondria. Yeast mitochondria containing UCP3 were more uncoupled than empty-vector controls, particularly at concentrations that were 7-fold physiological. However, uncoupling by UCP3 was not stimulated by the known activators palmitate and superoxide; neither were they inhibited by GDP, suggesting that the observed uncoupling was a property of non-native protein. As a control, UCP1 was expressed in yeast mitochondria at similar concentrations to that of UCP3 and at up to 50% of the physiological level of UCP1. Low levels of UCP1 gave palmitate-dependent and GDP-sensitive proton conductance but higher levels of UCP1 caused an additional GDP-insensitive uncoupling artifact. We conclude that the uncoupling of yeast mitochondria by high levels of UCP3 expression is entirely an artifact and provides no evidence for any native uncoupling activity of the protein.
Collapse
Affiliation(s)
- James A Harper
- MRC Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY, U.K
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Abstract
Mitochondrial proton cycling is responsible for a significant proportion of basal or standard metabolic rate, so further uncoupling of mitochondria may be a good way to increase energy expenditure and represents a good pharmacological target for the treatment of obesity. Uncoupling by 2,4-dinitrophenol has been used in this way in the past with notable success, and some of the effects of thyroid hormone treatment to induce weight loss may also be due to uncoupling. Diet can alter the pattern of phospholipid fatty acyl groups in the mitochondrial membrane, and this may be a route to uncoupling in vivo. Energy expenditure can be increased by stimulating the activity of uncoupling protein 1 (UCP1) in brown adipocytes either directly or through beta 3-adrenoceptor agonists. UCP2 in a number of tissues, UCP3 in skeletal muscle and the adenine nucleotide translocase have also been proposed as possible drug targets. Specific uncoupling of muscle or brown adipocyte mitochondria remains an attractive target for the development of antiobesity drugs.
Collapse
Affiliation(s)
- J A Harper
- MRC Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY, UK
| | | | | |
Collapse
|
127
|
Jabůrek M, Varecha M, Jezek P, Garlid KD. Alkylsulfonates as probes of uncoupling protein transport mechanism. Ion pair transport demonstrates that direct H(+) translocation by UCP1 is not necessary for uncoupling. J Biol Chem 2001; 276:31897-905. [PMID: 11468281 DOI: 10.1074/jbc.m103507200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of fatty acid-dependent uncoupling by mitochondrial uncoupling proteins (UCP) is still in debate. We have hypothesized that the anionic fatty acid head group is translocated by UCP, and the proton is transported electroneutrally in the bilayer by flip-flop of the protonated fatty acid. Alkylsulfonates are useful as probes of the UCP transport mechanism. They are analogues of fatty acids, and they are transported by UCP1, UCP2, and UCP3. We show that undecanesulfonate and laurate are mutually competitive inhibitors, supporting the hypothesis that fatty acid anion is transported by UCP1. Alkylsulfonates cannot be protonated because of their low pK(a), consequently, they cannot catalyze electroneutral proton transport in the bilayer and cannot support uncoupling by UCP. We report for the first time that propranolol forms permeant ion pairs with the alkylsulfonates, thereby removing this restriction. Because a proton is transported with the neutral ion pair, the sulfonate is able to deliver protons across the bilayer, behaving as if it were a fatty acid. When ion pair transport is combined with UCP1, we now observe electrophoretic proton transport and uncoupling of brown adipose tissue mitochondria. These experiments confirm that the proton transport of UCP-mediated uncoupling takes place in the lipid bilayer and not via UCP itself. Thus, UCP1, like other members of its gene family, translocates anions and does not translocate protons.
Collapse
Affiliation(s)
- M Jabůrek
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland, Oregon 97006, USA
| | | | | | | |
Collapse
|
128
|
Considine MJ, Daley DO, Whelan J. The expression of alternative oxidase and uncoupling protein during fruit ripening in mango. PLANT PHYSIOLOGY 2001; 126:1619-29. [PMID: 11500560 PMCID: PMC117161 DOI: 10.1104/pp.126.4.1619] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2001] [Accepted: 05/07/2001] [Indexed: 05/19/2023]
Abstract
The expression of alternative oxidase (Aox) and uncoupling proteins (Ucp) was investigated during ripening in mango (Mangifera indica) and compared with the expression of peroxisomal thiolase, a previously described ripening marker in mango. The multigene family for the Aox in mango was expressed differentially during ripening. Abundance of Aox message and protein both peaked at the ripe stage. Expression of the single gene for the Ucp peaked at the turning stage and the protein abundance peaked at the ripe stage. Proteins of the cytochrome chain peaked at the mature stage of ripening. The pattern of protein accumulation suggested that increases in cytochrome chain components played an important role in facilitating the climacteric burst of respiration and that the Aox and Ucp may play a role in post-climacteric senescent processes. Because both message and protein for the Aox and Ucp increased in a similar pattern, it suggests that their expression is not controlled in a reciprocal manner but may be active simultaneously.
Collapse
Affiliation(s)
- M J Considine
- Department of Biochemistry, The University of Western Australia, Nedlands, Western Australia 6907, Australia
| | | | | |
Collapse
|
129
|
Stuart JA, Harper JA, Brindle KM, Jekabsons MB, Brand MD. Physiological levels of mammalian uncoupling protein 2 do not uncouple yeast mitochondria. J Biol Chem 2001; 276:18633-9. [PMID: 11278935 DOI: 10.1074/jbc.m011566200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We assessed the ability of human uncoupling protein 2 (UCP2) to uncouple mitochondrial oxidative phosphorylation when expressed in yeast at physiological and supraphysiological levels. We used three different inducible UCP2 expression constructs to achieve mitochondrial UCP2 expression levels in yeast of 33, 283, and 4100 ng of UCP2/mg of mitochondrial protein. Yeast mitochondria expressing UCP2 at 33 or 283 ng/mg showed no increase in proton conductance, even in the presence of various putative effectors, including palmitate and all-trans-retinoic acid. Only when UCP2 expression in yeast mitochondria was increased to 4 microg/mg, more than an order of magnitude greater than the highest known physiological concentration, was proton conductance increased. This increased proton conductance was not abolished by GDP. At this high level of UCP2 expression, an inhibition of substrate oxidation was observed, which cannot be readily explained by an uncoupling activity of UCP2. Quantitatively, even the uncoupling seen at 4 microgram/mg was insufficient to account for the basal proton conductance of mammalian mitochondria. These observations suggest that uncoupling of yeast mitochondria by UCP2 is an overexpression artifact leading to compromised mitochondrial integrity.
Collapse
Affiliation(s)
- J A Stuart
- Medical Research Council Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | |
Collapse
|