101
|
Shoshan-Barmatz V, Nahon-Crystal E, Shteinfer-Kuzmine A, Gupta R. VDAC1, mitochondrial dysfunction, and Alzheimer's disease. Pharmacol Res 2018; 131:87-101. [DOI: 10.1016/j.phrs.2018.03.010] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/09/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022]
|
102
|
Fouad IA, Sharaf NM, Abdelghany RM, El Sayed NSED. Neuromodulatory Effect of Thymoquinone in Attenuating Glutamate-Mediated Neurotoxicity Targeting the Amyloidogenic and Apoptotic Pathways. Front Neurol 2018; 9:236. [PMID: 29706929 PMCID: PMC5908889 DOI: 10.3389/fneur.2018.00236] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/26/2018] [Indexed: 11/13/2022] Open
Abstract
Overexposure of the glutamatergic N-methyl-d-aspartate (NMDA) receptor to the excitatory neurotransmitter l-glutamic acid leads to neuronal cell death by excitotoxicity as a result of increased intracellular Ca2+, mitochondrial dysfunction, and apoptosis. Moreover, it was previously reported that prolonged activation of the NMDA receptor increased beta-amyloid (Aβ) levels in the brain. Thymoquinone (TQ), the active constituent of Nigella sativa seeds, has been shown to have potent antioxidant and antiapoptotic effects. The aim of the present study was to explore the neuromodulatory effects of different doses of TQ (2.5 and 10 mg/kg) against apoptotic cell death and Aβ formation resulting from glutamate administration in rats using vitamin E as a positive control. Behavioral changes were assessed using Y-maze and Morris water maze tests for evaluating spatial memory and cognitive functions. Caspase-3, Lactate dehydrogenase, Aβ-42, and cytochrome c gene expression were determined. TQ-treated groups showed significant decreases in the levels of all tested biochemical and behavioral parameters compared with the glutamate-treated group. These findings demonstrated that TQ has a promising neuroprotective activity against glutamate-induced neurotoxicity and this effect is mediated through its anti-amyloidogenic, antioxidant, and antiapoptotic activities.
Collapse
Affiliation(s)
- Ibram Amin Fouad
- Department of Pharmacology and Toxicology, German University in Cairo, New Cairo, Egypt
| | - Nadia Mohamed Sharaf
- Department of Pharmacology and Toxicology, German University in Cairo, New Cairo, Egypt
| | | | | |
Collapse
|
103
|
Moon BS, Bai J, Cai M, Liu C, Shi J, Lu W. Kruppel-like factor 4-dependent Staufen1-mediated mRNA decay regulates cortical neurogenesis. Nat Commun 2018; 9:401. [PMID: 29374155 PMCID: PMC5785957 DOI: 10.1038/s41467-017-02720-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 12/18/2017] [Indexed: 11/10/2022] Open
Abstract
Kruppel-like factor 4 (Klf4) is a zinc-finger-containing protein that plays a critical role in diverse cellular physiology. While most of these functions attribute to its role as a transcription factor, it is postulated that Klf4 may play a role other than transcriptional regulation. Here we demonstrate that Klf4 loss in neural progenitor cells (NPCs) leads to increased neurogenesis and reduced self-renewal in mice. In addition, Klf4 interacts with RNA-binding protein Staufen1 (Stau1) and RNA helicase Ddx5/17. They function together as a complex to maintain NPC self-renewal. We report that Klf4 promotes Stau1 recruitment to the 3'-untranslated region of neurogenesis-associated mRNAs, increasing Stau1-mediated mRNA decay (SMD) of these transcripts. Stau1 depletion abrogated SMD of target mRNAs and rescued neurogenesis defects in Klf4-overexpressing NPCs. Furthermore, Ddx5/17 knockdown significantly blocked Klf4-mediated mRNA degradation. Our results highlight a novel molecular mechanism underlying stability of neurogenesis-associated mRNAs controlled by the Klf4/Ddx5/17/Stau1 axis during mammalian corticogenesis.
Collapse
Affiliation(s)
- Byoung-San Moon
- Department of Stem Cell Biology and Regenerative Medicine, Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Jinlun Bai
- Department of Stem Cell Biology and Regenerative Medicine, Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Mingyang Cai
- Department of Stem Cell Biology and Regenerative Medicine, Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Chunming Liu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Jiandang Shi
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Wange Lu
- Department of Stem Cell Biology and Regenerative Medicine, Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
104
|
Shanmuganathan B, Suryanarayanan V, Sathya S, Narenkumar M, Singh SK, Ruckmani K, Pandima Devi K. Anti-amyloidogenic and anti-apoptotic effect of α-bisabolol against Aβ induced neurotoxicity in PC12 cells. Eur J Med Chem 2018; 143:1196-1207. [DOI: 10.1016/j.ejmech.2017.10.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/18/2017] [Accepted: 10/08/2017] [Indexed: 01/09/2023]
|
105
|
Genetic Complexity of Early-Onset Alzheimer’s Disease. NEURODEGENER DIS 2018. [DOI: 10.1007/978-3-319-72938-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
106
|
Huang XF, Li JJ, Tao YG, Wang XQ, Zhang RL, Zhang JL, Su ZQ, Huang QH, Deng YH. Geniposide attenuates Aβ25–35-induced neurotoxicity via the TLR4/NF-κB pathway in HT22 cells. RSC Adv 2018; 8:18926-18937. [PMID: 35539637 PMCID: PMC9080630 DOI: 10.1039/c8ra01038b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/16/2018] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder, is marked by the accumulation of amyloid-β (Aβ) and neuroinflammation which promote the development of AD. Geniposide, the main ingredient isolated from Chinese herbal medicine Gardenia jasminoides Ellis, has a variety of pharmacological functions such as anti-apoptosis and anti-inflammatory activity. Hence, we estimated the inflammatory cytotoxicity caused by Aβ25–35 and the neuroprotective effects of geniposide in HT22 cells. In this research, following incubation with Aβ25–35 (40 μM, 24 h) in HT22 cells, the methylthiazolyl tetrazolium (MTT) and lactate dehydrogenase (LDH) release assays showed that the cell survival rate was significantly decreased. In contrast, the reactive oxygen species (ROS) assay indicated that Aβ25–35 enhanced ROS accumulation and apoptosis showed in both hoechst 33342 staining and annexin V-FITC/PI double staining. And then, immunofluorescence test revealed that Aβ25–35 promoted p65 to transfer into the nucleus indicating p65 was activated by Aβ25–35. Moreover, western blot analysis proved that Aβ25–35 increased the expression of nitric oxide species (iNOS), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2) and interleukin-1β (IL-1β). Simultaneously, Aβ25–35 also promoted the expression of toll-like receptor 4 (TLR4), p-p65 and p-IκB-α accompanied with the increase in the level of beta-secretase 1 (BACE1) and caspase-3 which further supported Aβ25–35 induced apoptosis and inflammation. Fortunately, this up-regulation was reversed by geniposide. In conclusion, our data suggest that geniposide can alleviate Aβ25–35-induced inflammatory response to protect neurons, which is possibly involved with the inhibition of the TLR4/NF-κB pathway in HT22 cells. Geniposide may be the latent treatment for AD induced by neuroinflammation and apoptosis. Alzheimer's disease (AD), a neurodegenerative disorder, is marked by the accumulation of amyloid-β (Aβ) and neuroinflammation which promote the development of AD.![]()
Collapse
Affiliation(s)
- Xiu-Fang Huang
- Sun Yat-Sen Memorial Hospital of Sun Yat-sen University
- Guangzhou
- China
| | - Jian-Jun Li
- Sun Yat-Sen Memorial Hospital of Sun Yat-sen University
- Guangzhou
- China
| | - Yan-Gu Tao
- Sun Yat-Sen Memorial Hospital of Sun Yat-sen University
- Guangzhou
- China
| | - Xie-Qi Wang
- Dermatology Hospital of Southern Medical University
- Dermatology Hospital of Guangdong Province
- Guangzhou
- China
| | - Ru-Lan Zhang
- Sun Yat-Sen Memorial Hospital of Sun Yat-sen University
- Guangzhou
- China
| | - Jia-Lin Zhang
- Dermatology Hospital of Southern Medical University
- Dermatology Hospital of Guangdong Province
- Guangzhou
- China
| | - Zu-Qing Su
- Guangdong Provincial Hospital of Traditional Chinese Medicine
- Guangzhou
- China
| | - Qi-Hui Huang
- Sun Yat-Sen Memorial Hospital of Sun Yat-sen University
- Guangzhou
- China
| | - Yuan-Hui Deng
- Guangdong Provincial Hospital of Traditional Chinese Medicine
- Guangzhou
- China
| |
Collapse
|
107
|
Victor KG, Heffron DS, Sokolowski JD, Majumder U, Leblanc A, Mandell JW. Proteomic identification of synaptic caspase substrates. Synapse 2017; 72. [PMID: 28960461 DOI: 10.1002/syn.22014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/05/2017] [Accepted: 09/24/2017] [Indexed: 01/27/2023]
Abstract
The dismantling and elimination of excess neurons and their connections (pruning) is essential for brain development and may be aberrantly reactivated in some neurodegenerative diseases. Growing evidence implicates caspase-mediated apoptotic and nonapoptotic cascades in the dysfunction and death of neurons in neurodegenerative disorders such as Alzheimer's, Parkinson, and Huntington's diseases. It is the cleaved caspase substrates that are the effectors of synapse elimination. However, their identities, specific cleavage sites, and functional consequences of cleavage are largely unknown. An important gap in our knowledge is a comprehensive catalog of synapse-specific or synapse-enriched caspase targets. Traditional biochemical approaches have revealed only a small number of neuronal caspase targets. Instead, we utilized a gel-based proteomics approach to enable the first global analysis of caspase-mediated cleavage events in mammalian brain synapses, employing both an in vitro system with recombinant activated caspases and an in vivo model of ethanol-induced neuronal apoptosis. Of the more than 70 putative cleavage substrates that were identified, 22 were previously known caspase substrates. Among the novel targets identified and validated by Western blot were the proton pump ATPase subunit ATP6V1B2 and the N-ethylmaleimide-sensitive fusion protein (NSF). Our work represents the first comprehensive, proteome-wide screen for proteolytic targets of caspases in neuronal synapses. Our discoveries will have significance for both furthering basic understanding of roles of caspases in synaptic plasticity and synaptic loss in neurodegeneration, and on a more immediately practical level, may provide candidate biomarkers for measuring synapse loss in human disease states.
Collapse
Affiliation(s)
- Ken G Victor
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Daniel S Heffron
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jennifer D Sokolowski
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Usnish Majumder
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Andrea Leblanc
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - James W Mandell
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
108
|
Rehker J, Rodhe J, Nesbitt RR, Boyle EA, Martin BK, Lord J, Karaca I, Naj A, Jessen F, Helisalmi S, Soininen H, Hiltunen M, Ramirez A, Scherer M, Farrer LA, Haines JL, Pericak-Vance MA, Raskind WH, Cruchaga C, Schellenberg GD, Joseph B, Brkanac Z. Caspase-8, association with Alzheimer's Disease and functional analysis of rare variants. PLoS One 2017; 12:e0185777. [PMID: 28985224 PMCID: PMC5630132 DOI: 10.1371/journal.pone.0185777] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/19/2017] [Indexed: 12/30/2022] Open
Abstract
The accumulation of amyloid beta (Aβ) peptide (Amyloid cascade hypothesis), an APP protein cleavage product, is a leading hypothesis in the etiology of Alzheimer's disease (AD). In order to identify additional AD risk genes, we performed targeted sequencing and rare variant burden association study for nine candidate genes involved in the amyloid metabolism in 1886 AD cases and 1700 controls. We identified a significant variant burden association for the gene encoding caspase-8, CASP8 (p = 8.6x10-5). For two CASP8 variants, p.K148R and p.I298V, the association remained significant in a combined sample of 10,820 cases and 8,881 controls. For both variants we performed bioinformatics structural, expression and enzymatic activity studies and obtained evidence for loss of function effects. In addition to their role in amyloid processing, caspase-8 and its downstream effector caspase-3 are involved in synaptic plasticity, learning, memory and control of microglia pro-inflammatory activation and associated neurotoxicity, indicating additional mechanisms that might contribute to AD. As caspase inhibition has been proposed as a mechanism for AD treatment, our finding that AD-associated CASP8 variants reduce caspase function calls for caution and is an impetus for further studies on the role of caspases in AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jan Rehker
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States of America
| | - Johanna Rodhe
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Ryan R. Nesbitt
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States of America
| | - Evan A. Boyle
- Department of Genetics, Stanford University, CA, United States of America
| | - Beth K. Martin
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Jenny Lord
- Department of Psychiatry, Washington University, St. Louis, MO, United States of America
| | - Ilker Karaca
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Adam Naj
- Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Seppo Helisalmi
- Institute of Clinical Medicine–Neurology, University of Eastern Finland, Kuopio, Finland
| | - Hilkka Soininen
- Institute of Clinical Medicine–Neurology, University of Eastern Finland, Kuopio, Finland
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Mikko Hiltunen
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Alfredo Ramirez
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Martin Scherer
- Department of Primary Medical Care, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Lindsay A. Farrer
- Departments of Medicine (Biomedical Genetics), Neurology, Ophthalmology, Epidemiology, and Biostatistics, Boston University, Boston, MA, United States of America
| | - Jonathan L. Haines
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, United States of America
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, United States of America
| | - Margaret A. Pericak-Vance
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, United States of America
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, United States of America
| | - Wendy H. Raskind
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States of America
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, St. Louis, MO, United States of America
| | - Gerard D. Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
| | - Bertrand Joseph
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Zoran Brkanac
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States of America
- * E-mail:
| |
Collapse
|
109
|
Abstract
A fluorescent probe based on an excimer-forming benzothiazolyl-cyanovinylene (CV) dye was developed to target the apoptotic protease caspase-3. Upon the action of caspase-3, the water-soluble fluorescent probe Ac-DEVD-NH-CV, which is weakly green emissive in aqueous solution, is converted to hydrophobic CV-NH2, which spontaneously aggregates. Aggregation of CV-NH2 promotes excimer emission of the CV dye, which allows for the study of caspase-3 activity in vitro and for imaging the activity of the enzyme in living cells because of the large red shift and enhanced fluorescence signal of the probe.
Collapse
Affiliation(s)
- Tae-Il Kim
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University , 126 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Hanyong Jin
- School of Pharmacy, Chung-Ang University , 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University , 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| | - Youngmi Kim
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University , 126 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
110
|
Shoshan-Barmatz V, Maldonado EN, Krelin Y. VDAC1 at the crossroads of cell metabolism, apoptosis and cell stress. Cell Stress 2017; 1:11-36. [PMID: 30542671 PMCID: PMC6287957 DOI: 10.15698/cst2017.10.104] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review presents current knowledge related to VDAC1 as a multi-functional mitochondrial protein acting on both sides of the coin, regulating cell life and death, and highlighting these functions in relation to disease. It is now recognized that VDAC1 plays a crucial role in regulating the metabolic and energetic functions of mitochondria. The location of VDAC1 at the outer mitochondrial membrane (OMM) allows the control of metabolic cross-talk between mitochondria and the rest of the cell and also enables interaction of VDAC1 with proteins involved in metabolic and survival pathways. Along with regulating cellular energy production and metabolism, VDAC1 is also involved in the process of mitochondria-mediated apoptosis by mediating the release of apoptotic proteins and interacting with anti-apoptotic proteins. VDAC1 functions in the release of apoptotic proteins located in the mitochondrial intermembrane space via oligomerization to form a large channel that allows passage of cytochrome c and AIF and their release to the cytosol, subsequently resulting in apoptotic cell death. VDAC1 also regulates apoptosis via interactions with apoptosis regulatory proteins, such as hexokinase, Bcl2 and Bcl-xL, some of which are also highly expressed in many cancers. This review also provides insight into VDAC1 function in Ca2+ homeostasis, oxidative stress, and presents VDAC1 as a hub protein interacting with over 100 proteins. Such interactions enable VDAC1 to mediate and regulate the integration of mitochondrial functions with cellular activities. VDAC1 can thus be considered as standing at the crossroads between mitochondrial metabolite transport and apoptosis and hence represents an emerging cancer drug target.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Eduardo N Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC. USA
| | - Yakov Krelin
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|
111
|
Traumatic Brain Injury and Stem Cell: Pathophysiology and Update on Recent Treatment Modalities. Stem Cells Int 2017; 2017:6392592. [PMID: 28852409 PMCID: PMC5568618 DOI: 10.1155/2017/6392592] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/26/2017] [Indexed: 12/30/2022] Open
Abstract
Traumatic brain injury (TBI) is a complex condition that presents with a wide spectrum of clinical symptoms caused by an initial insult to the brain through an external mechanical force to the skull. In the United States alone, TBI accounts for more than 50,000 deaths per year and is one of the leading causes of mortality among young adults in the developed world. Pathophysiology of TBI is complex and consists of acute and delayed injury. In the acute phase, brain tissue destroyed upon impact includes neurons, glia, and endothelial cells, the latter of which makes up the blood-brain barrier. In the delayed phase, “toxins” released from damaged cells set off cascades in neighboring cells eventually leading to exacerbation of primary injury. As researches further explore pathophysiology and molecular mechanisms underlying this debilitating condition, numerous potential therapeutic strategies, especially those involving stem cells, are emerging to improve recovery and possibly reverse damage. In addition to elucidating the most recent advances in the understanding of TBI pathophysiology, this review explores two primary pathways currently under investigation and are thought to yield the most viable therapeutic approach for treatment of TBI: manipulation of endogenous neural cell response and administration of exogenous stem cell therapy.
Collapse
|
112
|
Abolishing Tau cleavage by caspases at Aspartate 421 causes memory/synaptic plasticity deficits and pre-pathological Tau alterations. Transl Psychiatry 2017; 7:e1198. [PMID: 28786980 PMCID: PMC5611732 DOI: 10.1038/tp.2017.165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 01/03/2023] Open
Abstract
TAU mutations are genetically linked to fronto-temporal dementia (FTD) and hyper-phosphorylated aggregates of Tau form neurofibrillary tangles (NFTs) that constitute a pathological hallmark of Alzheimer disease (AD) and FTD. These observations indicate that Tau has a pivotal role in the pathogenesis of neurodegenerative disorders. Tau is cleaved by caspases at Aspartate421, to form a Tau metabolite known as δTau; δTau is increased in AD, due to the hyper-activation of caspases in AD brains. δTau is considered a critical toxic moiety underlying neurodegeneration, which initiates and facilitates NFT formation. As Tau is a therapeutic target in neurodegeneration, it is important to rigorously determine whether δTau is a toxic Tau species that should be pharmacologically attacked. To directly address these questions, we have generated a knock-in (KI) mouse called TauDN-that expresses a Tau mutant that cannot be cleaved by caspases. TauDN mice present short-term memory deficits and synaptic plasticity defects. Moreover, mice carrying two mutant Tau alleles show increased total insoluble hyper-phosphorylated Tau in the forebrain. These data are in contrast with the concept that δTau is a critical toxic moiety underlying neurodegeneration, and suggest that cleavage of Tau by caspases represents a negative feedback mechanism aimed to eliminate toxic Tau species. Alternatively, it is possible that either a reduction or an increase in δTau leads to synaptic dysfunction, memory impairments and Tau pathology. Both possibilities will have to be considered when targeting caspase cleavage of Tau in AD therapy.
Collapse
|
113
|
Chen YC. Impact of a discordant helix on β-amyloid structure, aggregation ability and toxicity. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:681-687. [DOI: 10.1007/s00249-017-1235-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/26/2017] [Accepted: 06/26/2017] [Indexed: 11/24/2022]
|
114
|
Caspase-3-dependent cleavage of Akt modulates tau phosphorylation via GSK3β kinase: implications for Alzheimer's disease. Mol Psychiatry 2017; 22:1002-1008. [PMID: 28138159 DOI: 10.1038/mp.2016.214] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/26/2016] [Accepted: 09/14/2016] [Indexed: 01/23/2023]
Abstract
The pathological hallmark of Alzheimer's disease (AD) is accumulation of misfolded amyloid-β peptides and hyperphosphorylated tau protein in the brain. Increasing evidence suggests that serine-aspartyl proteases-caspases are activated in the AD brain. Previous studies identified a caspase-3 cleavage site within the amyloid-β precursor protein, and a caspase-3 cleavage of tau as the mechanisms involved in the development of Aβ and tau neuropathology, respectively. However, the potential role that caspase-3 could have on tau metabolism remains unknown. In the current studies, we provide experimental evidence that caspase-3 directly and specifically regulates tau phosphorylation, and demonstrate that this effect is mediated by the GSK3β kinase pathway via a caspase-3-dependent cleavage of the protein kinase B (also known as Akt). In addition, we confirm these results in vivo by using a transgenic mouse model of AD. Collectively, our findings demonstrate a new role for caspase-3 in the neurobiology of tau, and suggest that therapeutic strategies aimed at inhibiting this protease-dependent cleavage of Akt may prove beneficial in preventing tau hyperphosphorylation and subsequent neuropathology in AD and related tauopathies.
Collapse
|
115
|
Siedlak SL, Jiang Y, Huntley ML, Wang L, Gao J, Xie F, Liu J, Su B, Perry G, Wang X. TMEM230 Accumulation in Granulovacuolar Degeneration Bodies and Dystrophic Neurites of Alzheimer’s Disease. J Alzheimers Dis 2017; 58:1027-1033. [DOI: 10.3233/jad-170190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Sandra L. Siedlak
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Yinfei Jiang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Mikayla L. Huntley
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Luwen Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Ju Gao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Fei Xie
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Jingyi Liu
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Bo Su
- Department of Neurobiology, Shandong University, Shandong Sheng, China
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
116
|
Disordered APP metabolism and neurovasculature in trauma and aging: Combined risks for chronic neurodegenerative disorders. Ageing Res Rev 2017; 34:51-63. [PMID: 27829172 DOI: 10.1016/j.arr.2016.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/20/2016] [Accepted: 11/04/2016] [Indexed: 11/20/2022]
Abstract
Traumatic brain injury (TBI), advanced age, and cerebral vascular disease are factors conferring increased risk for late onset Alzheimer's disease (AD). These conditions are also related pathologically through multiple interacting mechanisms. The hallmark pathology of AD consists of pathological aggregates of amyloid-β (Aβ) peptides and tau proteins. These molecules are also involved in neuropathology of several other chronic neurodegenerative diseases, and are under intense investigation in the aftermath of TBI as potential contributors to the risk for developing AD and chronic traumatic encephalopathy (CTE). The pathology of TBI is complex and dependent on injury severity, age-at-injury, and length of time between injury and neuropathological evaluation. In addition, the mechanisms influencing pathology and recovery after TBI likely involve genetic/epigenetic factors as well as additional disorders or comorbid states related to age and central and peripheral vascular health. In this regard, dysfunction of the aging neurovascular system could be an important link between TBI and chronic neurodegenerative diseases, either as a precipitating event or related to accumulation of AD-like pathology which is amplified in the context of aging. Thus with advanced age and vascular dysfunction, TBI can trigger self-propagating cycles of neuronal injury, pathological protein aggregation, and synaptic loss resulting in chronic neurodegenerative disease. In this review we discuss evidence supporting TBI and aging as dual, interacting risk factors for AD, and the role of Aβ and cerebral vascular dysfunction in this relationship. Evidence is discussed that Aβ is involved in cyto- and synapto-toxicity after severe TBI, and that its chronic effects are potentiated by aging and impaired cerebral vascular function. From a therapeutic perspective, we emphasize that in the fields of TBI- and aging-related neurodegeneration protective strategies should include preservation of neurovascular function.
Collapse
|
117
|
Angiotensin II Receptor Blockers Attenuate Lipopolysaccharide-Induced Memory Impairment by Modulation of NF-κB-Mediated BDNF/CREB Expression and Apoptosis in Spontaneously Hypertensive Rats. Mol Neurobiol 2017; 55:1725-1739. [DOI: 10.1007/s12035-017-0450-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/07/2017] [Indexed: 11/28/2022]
|
118
|
Dagbay KB, Bolik-Coulon N, Savinov SN, Hardy JA. Caspase-6 Undergoes a Distinct Helix-Strand Interconversion upon Substrate Binding. J Biol Chem 2017; 292:4885-4897. [PMID: 28154009 DOI: 10.1074/jbc.m116.773499] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/01/2017] [Indexed: 12/22/2022] Open
Abstract
Caspases are cysteine aspartate proteases that are major players in key cellular processes, including apoptosis and inflammation. Specifically, caspase-6 has also been implicated in playing a unique and critical role in neurodegeneration; however, structural similarities between caspase-6 and other caspase active sites have hampered precise targeting of caspase-6. All caspases can exist in a canonical conformation, in which the substrate binds atop a β-strand platform in the 130's region. This caspase-6 region can also adopt a helical conformation that has not been seen in any other caspases. Understanding the dynamics and interconversion between the helical and strand conformations in caspase-6 is critical to fully assess its unique function and regulation. Here, hydrogen/deuterium exchange mass spectrometry indicated that caspase-6 is inherently and dramatically more conformationally dynamic than closely related caspase-7. In contrast to caspase-7, which rests constitutively in the strand conformation before and after substrate binding, the hydrogen/deuterium exchange data in the L2' and 130's regions suggested that before substrate binding, caspase-6 exists in a dynamic equilibrium between the helix and strand conformations. Caspase-6 transitions exclusively to the canonical strand conformation only upon substrate binding. Glu-135, which showed noticeably different calculated pK a values in the helix and strand conformations, appears to play a key role in the interconversion between the helix and strand conformations. Because caspase-6 has roles in several neurodegenerative diseases, exploiting the unique structural features and conformational changes identified here may provide new avenues for regulating specific caspase-6 functions for therapeutic purposes.
Collapse
Affiliation(s)
| | | | - Sergey N Savinov
- Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | | |
Collapse
|
119
|
Gleevec shifts APP processing from a β-cleavage to a nonamyloidogenic cleavage. Proc Natl Acad Sci U S A 2017; 114:1389-1394. [PMID: 28115709 DOI: 10.1073/pnas.1620963114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Neurotoxic amyloid-β peptides (Aβ) are major drivers of Alzheimer's disease (AD) and are formed by sequential cleavage of the amyloid precursor protein (APP) by β-secretase (BACE) and γ-secretase. Our previous study showed that the anticancer drug Gleevec lowers Aβ levels through indirect inhibition of γ-secretase activity. Here we report that Gleevec also achieves its Aβ-lowering effects through an additional cellular mechanism. It renders APP less susceptible to proteolysis by BACE without inhibiting BACE enzymatic activity or the processing of other BACE substrates. This effect closely mimics the phenotype of APP A673T, a recently discovered mutation that protects carriers against AD and age-related cognitive decline. In addition, Gleevec induces formation of a specific set of APP C-terminal fragments, also observed in cells expressing the APP protective mutation and in cells exposed to a conventional BACE inhibitor. These Gleevec phenotypes require an intracellular acidic pH and are independent of tyrosine kinase inhibition, given that a related compound lacking tyrosine kinase inhibitory activity, DV2-103, exerts similar effects on APP metabolism. In addition, DV2-103 accumulates at high concentrations in the rodent brain, where it rapidly lowers Aβ levels. This study suggests that long-term treatment with drugs that indirectly modulate BACE processing of APP but spare other BACE substrates and achieve therapeutic concentrations in the brain might be effective in preventing or delaying the onset of AD and could be safer than nonselective BACE inhibitor drugs.
Collapse
|
120
|
Kumar S, Cieplak P. CaspNeuroD: a knowledgebase of predicted caspase cleavage sites in human proteins related to neurodegenerative diseases. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw142. [PMID: 28025335 PMCID: PMC5199200 DOI: 10.1093/database/baw142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/18/2016] [Accepted: 10/06/2016] [Indexed: 12/19/2022]
Abstract
Background: A variety of neurodegenerative diseases (NDs) have been associated with deregulated caspase activation that leads to neuronal death. Caspases appear to be involved in the molecular pathology of NDs by directly cleaving important proteins. For instance, several proteins involved in Alzheimer’s disease, including β-amyloid precursor protein (APP) and presenilins, are known to be cleaved by caspases. Therefore, cell death pathway may play a central role in many neurological diseases, and targeting the important proteins that control the cell survival and death may potentially represent a therapeutic approach for chronic neurodegenerative disorders. Findings: We developed CaspNeuroD, a relational database of in silico predicted caspase cleavage sites in human proteins associated with NDs. The prediction has been done on collection of 249 human proteins reported in clinical studies of NDs using the recently published CaspDB Random Forest machine-learning model. This database could be used for identifying new caspase substrates and further our understanding of the caspase-mediated substrate cleavage in NDs. Conclusion: Our database provides information about potential caspase cleavage sites in a verified set of human proteins involved in NDs. It provides also information about the conservation of cleavage positions in corresponding orthologs, and information about the positions of single nucleotide polymorphisms and posttranslational modifications (PTMs) that may modulate the caspase cleavage efficiency. Database URL:caspdb.sanfordburnham.org/caspneurod.php .
Collapse
Affiliation(s)
- Sonu Kumar
- SBP Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Piotr Cieplak
- SBP Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
121
|
Martín-Aragón S, Jiménez-Aliaga KL, Benedí J, Bermejo-Bescós P. Neurohormetic responses of quercetin and rutin in a cell line over-expressing the amyloid precursor protein (APPswe cells). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1285-1294. [PMID: 27765347 DOI: 10.1016/j.phymed.2016.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/23/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Plant secondary metabolites may induce adaptive cellular stress-responses in a variety of cells including neurons at the sub-toxic doses ingested by humans. Such 'neurohormesis' phenomenon, activated by flavonoids such as quercetin or rutin, may involve cell responses driven by modulation of signaling pathways which are responsible for its neuroprotective effects. PURPOSE We attempt to explore the molecular mechanisms involved in the neurohormetic responses to quercetin and rutin exposure, in a SH-SY5Y cell line which stably overexpresses the amyloid precursor protein (APP) Swedish mutation, based on a biphasic concentration-response relationship for cell viability. METHODS We examined the impact of both natural compounds, at concentrations in its hormetic range on the following cell parameters: chymotrypsin-like activity of the proteasome system; PARP-1 protein levels and expression and caspase activation; APP processing; and the main endogenous antioxidant enzymes. RESULTS Proteasome activities following quercetin or rutin treatment were significantly augmented in comparison with non-treated cells. Activity of caspase-3 was significantly attenuated by treatment with quercetin or rutin. Modest increased levels of PARP-1 protein and mRNA transcripts were observed in relation to the mild increase of proteasome activity. Significant reductions of the full-length APP and sAPP protein and APP mRNA levels were related to significant enhancements of α-secretase ADAM-10 protein and mRNA transcripts and significant increases of BACE processing in cells exposed to rutin. Furthermore, quercetin or rutin treatment displayed an overall increase of the four antioxidant enzymes. CONCLUSIONS The upregulation of the proteasome activity observed upon quercetin or rutin treatment could be afforded by a mild increased of PARP-1. Consequently, targeting the proteasome by quercetin or rutin to enhance its activity in a mild manner could avoid caspase activation. Moreover, it is likely that APP processing of cells upon rutin treatment is mostly driven by the non-amyloidogenic pathway leading to a putative reduction of βA production. Overall induction of endogenous antioxidant enzymes under quercetin or rutin treatments of APPswe cells might modulate its proteasome activity. We might conclude that quercetin and rutin might exert a neurohormetic cell response affecting various signaling pathways and molecular networks associated with modulation of proteasome function.
Collapse
Affiliation(s)
- Sagrario Martín-Aragón
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Karim Lizeth Jiménez-Aliaga
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Juana Benedí
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Paloma Bermejo-Bescós
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
122
|
Ben-Hail D, Shoshan-Barmatz V. VDAC1-interacting anion transport inhibitors inhibit VDAC1 oligomerization and apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1612-23. [DOI: 10.1016/j.bbamcr.2016.04.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/01/2016] [Accepted: 04/06/2016] [Indexed: 10/22/2022]
|
123
|
Del Prete D, Rice RC, Rajadhyaksha AM, D'Adamio L. Amyloid Precursor Protein (APP) May Act as a Substrate and a Recognition Unit for CRL4CRBN and Stub1 E3 Ligases Facilitating Ubiquitination of Proteins Involved in Presynaptic Functions and Neurodegeneration. J Biol Chem 2016; 291:17209-27. [PMID: 27325702 DOI: 10.1074/jbc.m116.733626] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Indexed: 12/23/2022] Open
Abstract
The amyloid precursor protein (APP), whose mutations cause Alzheimer disease, plays an important in vivo role and facilitates transmitter release. Because the APP cytosolic region (ACR) is essential for these functions, we have characterized its brain interactome. We found that the ACR interacts with proteins that regulate the ubiquitin-proteasome system, predominantly with the E3 ubiquitin-protein ligases Stub1, which binds the NH2 terminus of the ACR, and CRL4(CRBN), which is formed by Cul4a/b, Ddb1, and Crbn, and interacts with the COOH terminus of the ACR via Crbn. APP shares essential functions with APP-like protein-2 (APLP2) but not APP-like protein-1 (APLP1). Noteworthy, APLP2, but not APLP1, interacts with Stub1 and CRL4(CRBN), pointing to a functional pathway shared only by APP and APLP2. In vitro ubiquitination/ubiquitome analysis indicates that these E3 ligases are enzymatically active and ubiquitinate the ACR residues Lys(649/650/651/676/688) Deletion of Crbn reduces ubiquitination of Lys(676) suggesting that Lys(676) is physiologically ubiquitinated by CRL4(CRBN) The ACR facilitated in vitro ubiquitination of presynaptic proteins that regulate exocytosis, suggesting a mechanism by which APP tunes transmitter release. Other dementia-related proteins, namely Tau and apoE, interact with and are ubiquitinated via the ACR in vitro This, and the evidence that CRBN and CUL4B are linked to intellectual disability, prompts us to hypothesize a pathogenic mechanism, in which APP acts as a modulator of E3 ubiquitin-protein ligase(s), shared by distinct neuronal disorders. The well described accumulation of ubiquitinated protein inclusions in neurodegenerative diseases and the link between the ubiquitin-proteasome system and neurodegeneration make this concept plausible.
Collapse
Affiliation(s)
- Dolores Del Prete
- From the Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461 and
| | - Richard C Rice
- the Division of Pediatric Neurology, Department of Pediatrics, and
| | - Anjali M Rajadhyaksha
- the Division of Pediatric Neurology, Department of Pediatrics, and Feil Family Brain and Mind Research Institute, Weill Cornell Autism Research Program, Weill Cornell Medical College, New York, New York 10065
| | - Luciano D'Adamio
- From the Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461 and
| |
Collapse
|
124
|
Menze ET, Esmat A, Tadros MG, Khalifa AE, Abdel-Naim AB. Genistein improves sensorimotor gating: Mechanisms related to its neuroprotective effects on the striatum. Neuropharmacology 2016; 105:35-46. [PMID: 26764242 DOI: 10.1016/j.neuropharm.2016.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 12/21/2015] [Accepted: 01/04/2016] [Indexed: 12/15/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder, characterized by selective atrophy in the striatum, particularly the medium spiny GABAergic efferent neurons. This results in striatal sensorimotor gating deficits. Systemic administration of 3-nitropropionic acid (3-NPA) produces selective lesions mimicking those of HD. Males were found to be more susceptible to 3-NPA-induced neurotoxicity than females, suggesting neuroprotective effects of estrogens. Phytoestrogens, including genistein, are good estrogenic alternatives that keep their beneficial effects on non-reproductive organs and lack the potential hazardous side effects. The current study was designed to investigate the potential beneficial effects of genistein in 3-NPA-induced HD in ovariectomized rats. Results showed that 3-NPA (20 mg/kg) administration caused significant disruption of the rats' locomotor activity and prepulse inhibition. In addition, it decreased striatal ATP levels and increased oxidative stress, inflammatory and apoptotic markers with striatal focal hemorrhage and gliosis. Pretreatment with 17β-estradiol (2.5 mg/kg) or genistein (20 mg/kg) led to a significant improvement of behavioral parameters, increased ATP production, decreased oxidative stress, attenuated inflammation and apoptosis. Therefore, this study suggests potential neuroprotective effects of genistein in ovariectomized rats challenged with 3-NPA.
Collapse
Affiliation(s)
- Esther T Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed Esmat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amani E Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
125
|
Trillaud-Doppia E, Paradis-Isler N, Boehm J. A single amino acid difference between the intracellular domains of amyloid precursor protein and amyloid-like precursor protein 2 enables induction of synaptic depression and block of long-term potentiation. Neurobiol Dis 2016; 91:94-104. [PMID: 26921470 DOI: 10.1016/j.nbd.2016.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 01/29/2016] [Accepted: 02/23/2016] [Indexed: 12/16/2022] Open
Abstract
Alzheimer disease (AD) is initially characterized as a disease of the synapse that affects synaptic transmission and synaptic plasticity. While amyloid-beta and tau have been traditionally implicated in causing AD, recent studies suggest that other factors, such as the intracellular domain of the amyloid-precursor protein (APP-ICD), can also play a role in the development of AD. Here, we show that the expression of APP-ICD induces synaptic depression, while the intracellular domain of its homolog amyloid-like precursor protein 2 (APLP2-ICD) does not. We are able to show that this effect by APP-ICD is due to a single alanine vs. proline difference between APP-ICD and APLP2-ICD. The alanine in APP-ICD and the proline in APLP2-ICD lie directly behind a conserved caspase cleavage site. Inhibition of caspase cleavage of APP-ICD prevents the induction of synaptic depression. Finally, we show that the expression of APP-ICD increases and facilitates long-term depression and blocks induction of long-term potentiation. The block in long-term potentiation can be overcome by mutating the aforementioned alanine in APP-ICD to the proline of APLP2. Based on our results, we propose the emergence of a new APP critical domain for the regulation of synaptic plasticity and in consequence for the development of AD.
Collapse
Affiliation(s)
- Emilie Trillaud-Doppia
- Département Neurosciences, Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Nicolas Paradis-Isler
- Département Neurosciences, Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Jannic Boehm
- Département Neurosciences, Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|
126
|
Riechers SP, Butland S, Deng Y, Skotte N, Ehrnhoefer DE, Russ J, Laine J, Laroche M, Pouladi MA, Wanker EE, Hayden MR, Graham RK. Interactome network analysis identifies multiple caspase-6 interactors involved in the pathogenesis of HD. Hum Mol Genet 2016; 25:1600-18. [DOI: 10.1093/hmg/ddw036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/05/2016] [Indexed: 11/14/2022] Open
|
127
|
APP Receptor? To Be or Not To Be. Trends Pharmacol Sci 2016; 37:390-411. [PMID: 26837733 DOI: 10.1016/j.tips.2016.01.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 11/22/2022]
Abstract
Amyloid precursor protein (APP) and its metabolites play a key role in Alzheimer's disease pathogenesis. The idea that APP may function as a receptor has gained momentum based on its structural similarities to type I transmembrane receptors and the identification of putative APP ligands. We review the recent experimental evidence in support of this notion and discuss how this concept is viewed in the field. Specifically, we focus on the structural and functional characteristics of APP as a cell surface receptor, and on its interaction with adaptors and signaling proteins. We also address the importance of APP function as a receptor in Alzheimer's disease etiology and discuss how this function might be potentially important for the development of novel therapeutic approaches.
Collapse
|
128
|
Kerridge C, Kozlova DI, Nalivaeva NN, Turner AJ. Hypoxia Affects Neprilysin Expression Through Caspase Activation and an APP Intracellular Domain-dependent Mechanism. Front Neurosci 2015; 9:426. [PMID: 26617481 PMCID: PMC4643132 DOI: 10.3389/fnins.2015.00426] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/20/2015] [Indexed: 12/12/2022] Open
Abstract
While gene mutations in the amyloid precursor protein (APP) and the presenilins lead to an accumulation of the amyloid β-peptide (Aβ) in the brain causing neurodegeneration and familial Alzheimer's disease (AD), over 95% of all AD cases are sporadic. Despite the pathologies being indistinguishable, relatively little is known about the mechanisms affecting generation of Aβ in the sporadic cases. Vascular disorders such as ischaemia and stroke are well established risk factors for the development of neurodegenerative diseases and systemic hypoxic episodes have been shown to increase Aβ production and accumulation. We have previously shown that hypoxia causes a significant decrease in the expression of the major Aβ-degrading enzyme neprilysin (NEP) which might deregulate Aβ clearance. Aβ itself is derived from the transmembrane APP along with several other biologically active metabolites including the C-terminal fragment (CTF) termed the APP intracellular domain (AICD), which regulates the expression of NEP and some other genes in neuronal cells. Here we show that in hypoxia there is a significantly increased expression of caspase-3, 8, and 9 in human neuroblastoma NB7 cells, which can degrade AICD. Using chromatin immunoprecipitation we have revealed that there was also a reduction of AICD bound to the NEP promoter region which underlies the decreased expression and activity of the enzyme under hypoxic conditions. Incubation of the cells with a caspase-3 inhibitor Z-DEVD-FMK could rescue the effect of hypoxia on NEP activity protecting the levels of AICD capable of binding the NEP promoter. These data suggest that activation of caspases might play an important role in regulation of NEP levels in the brain under pathological conditions such as hypoxia and ischaemia leading to a deficit of Aβ clearance and increasing the risk of development of AD.
Collapse
Affiliation(s)
- Caroline Kerridge
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds Leeds, UK ; Neuroscience, Eli Lilly and Company Limited, Lilly Research Centre Surrey, UK
| | - Daria I Kozlova
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences St. Petersburg, Russia
| | - Natalia N Nalivaeva
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds Leeds, UK ; I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences St. Petersburg, Russia
| | - Anthony J Turner
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds Leeds, UK
| |
Collapse
|
129
|
Fanutza T, Del Prete D, Ford MJ, Castillo PE, D’Adamio L. APP and APLP2 interact with the synaptic release machinery and facilitate transmitter release at hippocampal synapses. eLife 2015; 4:e09743. [PMID: 26551565 PMCID: PMC4755753 DOI: 10.7554/elife.09743] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/08/2015] [Indexed: 12/16/2022] Open
Abstract
The amyloid precursor protein (APP), whose mutations cause familial Alzheimer's disease, interacts with the synaptic release machinery, suggesting a role in neurotransmission. Here we mapped this interaction to the NH2-terminal region of the APP intracellular domain. A peptide encompassing this binding domain -named JCasp- is naturally produced by a γ-secretase/caspase double-cut of APP. JCasp interferes with the APP-presynaptic proteins interaction and, if linked to a cell-penetrating peptide, reduces glutamate release in acute hippocampal slices from wild-type but not APP deficient mice, indicating that JCasp inhibits APP function.The APP-like protein-2 (APLP2) also binds the synaptic release machinery. Deletion of APP and APLP2 produces synaptic deficits similar to those caused by JCasp. Our data support the notion that APP and APLP2 facilitate transmitter release, likely through the interaction with the neurotransmitter release machinery. Given the link of APP to Alzheimer's disease, alterations of this synaptic role of APP could contribute to dementia.
Collapse
Affiliation(s)
- Tomas Fanutza
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, United States
| | - Dolores Del Prete
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, United States
| | | | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Luciano D’Adamio
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, United States
| |
Collapse
|
130
|
Zhu J, Su J, Liu R, Yang J. Relationship between the FAS gene A-670G polymorphism and Alzheimer's disease: a meta-analysis. Aging Clin Exp Res 2015; 27:563-71. [PMID: 25809055 DOI: 10.1007/s40520-015-0351-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/16/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUNDS AND AIMS The pathogenetic mechanism of Alzheimer's disease (AD) is still unknown; however, gene polymorphism may play a critical role in the pathogenesis of AD. The aim of this meta-analysis was to evaluate the association between FAS gene A-670G polymorphism and AD. METHODS We searched all related subjects in PubMed, Embase, Cochrane Library, SinoMed, and the China Knowledge Resource Integrated Database and identified seven studies reporting a relationship between the A-670G polymorphism in the FAS gene and AD. RESULTS A total of 1512 cases and 1707 controls were included in the seven studies. The meta-analyses results suggested no significant association between the A-670G polymorphism and AD in any genetic models. When a subgroup analysis was conducted by ethnicity, the A-670G polymorphism was also not relevant to AD. However, when stratified by age, the GG genotype increased the risk of early-onset AD. We also found that the A-670G polymorphism was related to patients with AD who carried the apolipoprotein-E ε4 allele in three genetic models. CONCLUSIONS To sum up, our data suggested that the FAS gene A-670G polymorphism may not be associated with AD. When a subgroup analysis was conducted by ethnicity, the A-670G polymorphism was also not related with AD in Asian and Caucasian population. However, the FAS-670 GG genotype may increase the risk of AD in the younger population (age, ≤65 years). Furthermore, we found that the A-670G polymorphism was related to patients with AD who carried the APOE4 allele in dominant, allele and homozygous models.
Collapse
|
131
|
Borutaite V, Morkuniene R, Valincius G. Beta-amyloid oligomers: recent developments. Biomol Concepts 2015; 2:211-22. [PMID: 25962030 DOI: 10.1515/bmc.2011.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 05/09/2011] [Indexed: 01/01/2023] Open
Abstract
Recent studies point to a critical role of soluble β-amyloid oligomers in the pathogenesis of one of the most common neurodegenerative diseases, Alzheimer's disease (AD). Beta-amyloid peptides are cleavage products of a ubiquitously expressed protein, the amyloid precursor protein. Early studies suggested that accumulation of extracellular β-amyloid aggregates are the most toxic species causing synaptic dysfunction and neuronal loss in particular regions of the brain (neurobiological features underlying cognitive decline of the AD patients). In recent years, a shift of pardigm occurred, and now there is accumulating evidence that soluble oligomeric forms of the peptide are the most toxic to neuronal cells. In this review, we discuss recent findings on the toxic effects of amyloid-β oligomers, their physico-chemical properties and the possible pathways of their formation in vitro and in vivo.
Collapse
|
132
|
Li Y, Dai YB, Sun JY, Xiang Y, Yang J, Dai SY, Zhang X. Neuroglobin Attenuates Beta Amyloid-Induced Apoptosis Through Inhibiting Caspases Activity by Activating PI3K/Akt Signaling Pathway. J Mol Neurosci 2015; 58:28-38. [PMID: 26346601 DOI: 10.1007/s12031-015-0645-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/19/2015] [Indexed: 11/27/2022]
Abstract
Excessive accumulation and deposition of amyloid-beta (Aβ) has been considered as a pivotal event in the pathogenesis of Alzheimer's disease (AD). Neuronal apoptosis is one of the characteristics of AD, which is a possible mechanism underlying Aβ-induced neuronal neurotoxicity. Neuroglobin (Ngb) is a newly discovered vertebrate heme protein that exhibits neuroprotective functions against cell death associated with hypoxic and amyloid insult. However, until now, the exact mechanism of neuroglobin's protective action has not been determined. To investigate the potential neuroprotective roles and mechanisms of Ngb, transgenic AD mice (APPswe/PSEN1dE9) and SH-SY5Y cells transfected with pAPPswe were enrolled into the study. In vivo, overexpression of Ngb via intracerebroventricular injection with pNgb attenuated memory, cognitive impairment, and plaque generations. In pAPPswe transfected SH-SY5Y cells, Ngb not only decreased the generation of Aβ42, but also attenuated mitochondrial dysfunction and apoptosis through suppressing the activation of caspase-3, caspase-9 by Akt activating phosphorylation, which were restrained by phosphatidylinositol 3-kinase inhibitor (LY294002). Our data indicate the anti-apoptotic property of Ngb may play a neuroprotective role against AD.
Collapse
Affiliation(s)
- Yu Li
- Department of Pathology, Chongqing Medical University, Chongqing, China.,Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience & Key Laboratory of Neurobiology, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Yu-bing Dai
- Department of Otolaryngology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jie-yun Sun
- Department of Pathology, Chongqing Medical University, Chongqing, China.,Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience & Key Laboratory of Neurobiology, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Yue Xiang
- Department of Pathology, Chongqing Medical University, Chongqing, China.,Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience & Key Laboratory of Neurobiology, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Jun Yang
- Department of Pathology, Chongqing Medical University, Chongqing, China.,Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience & Key Laboratory of Neurobiology, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Song-yang Dai
- Department of Pathology, Chongqing Medical University, Chongqing, China.,Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience & Key Laboratory of Neurobiology, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Xiong Zhang
- Department of Pathology, Chongqing Medical University, Chongqing, China. .,Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China. .,Institute of Neuroscience & Key Laboratory of Neurobiology, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China.
| |
Collapse
|
133
|
Shi F, Kouadir M, Yang Y. NALP3 inflammasome activation in protein misfolding diseases. Life Sci 2015; 135:9-14. [DOI: 10.1016/j.lfs.2015.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 04/09/2015] [Accepted: 05/03/2015] [Indexed: 01/26/2023]
|
134
|
Shaham-Niv S, Adler-Abramovich L, Schnaider L, Gazit E. Extension of the generic amyloid hypothesis to nonproteinaceous metabolite assemblies. SCIENCE ADVANCES 2015; 1:e1500137. [PMID: 26601224 PMCID: PMC4643800 DOI: 10.1126/sciadv.1500137] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 06/25/2015] [Indexed: 05/26/2023]
Abstract
The accumulation of amyloid fibrils is the hallmark of several major human diseases. Although the formation of these supramolecular entities has previously been associated with proteins and peptides, it was later demonstrated that even phenylalanine, a single amino acid, can form fibrils that have amyloid-like biophysical, biochemical, and cytotoxic properties. Moreover, the generation of antibodies against these assemblies in phenylketonuria patients and the correlating mice model suggested a pathological role for the assemblies. We determine that several other metabolites that accumulate in metabolic disorders form ordered amyloid-like ultrastructures, which induce apoptotic cell death, as observed for amyloid structures. The formation of amyloid-like assemblies by metabolites implies a general phenomenon of amyloid formation, not limited to proteins and peptides, and offers a new paradigm for metabolic diseases.
Collapse
Affiliation(s)
- Shira Shaham-Niv
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Lihi Adler-Abramovich
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Tel Aviv Univeristy, Tel Aviv 69978, Israel
| | - Lee Schnaider
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
135
|
Hanna DMF, Tadros MG, Khalifa AE. ADIOL protects against 3-NP-induced neurotoxicity in rats: Possible impact of its anti-oxidant, anti-inflammatory and anti-apoptotic actions. Prog Neuropsychopharmacol Biol Psychiatry 2015; 60:36-51. [PMID: 25689821 DOI: 10.1016/j.pnpbp.2015.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 01/20/2023]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder with a wide spectrum of cognitive, behavioral and motor abnormalities. The mitochondrial toxin 3-nitropropionic acid (3-NP) effectively induces specific behavioral changes and selective striatal lesions similar to that observed in HD. Some neurosteroids, synthesized in neurons and glial cells, previously showed neuroprotective abilities. 5-Androstene-3β-17β-diol (ADIOL) is a major metabolite of dehydroepiandrosterone (DHEA) with previously reported anti-inflammatory, anti-apoptotic and neuroprotective activities. The neuroprotective potential of ADIOL in HD was not previously investigated. Therefore, the present study investigated the neuroprotective effects of ADIOL against 3-NP-induced behavioral changes, oxidative stress, inflammation and apoptosis. Intraperitoneal administration of 3-NP (20mg/kg) for 4 consecutive days in rats caused significant loss in body weight, reduced prepulse inhibition (PPI) of acoustic startle response, locomotor hypoactivity with altered cortical/striatal histological structure, increased cortical/striatal oxidative stress, inflammation and apoptosis. Administration of ADIOL (25mg/kg, s.c.) for two days before 3-NP significantly attenuated the reduction in body weights and PPI, increased locomotor activity and restored cortical/striatal histological structure nearly to normal. Moreover, it displayed anti-oxidant, anti-inflammatory and anti-apoptotic activities as evidenced by the elevation of cortical and striatal reduced glutathione levels, reductions of cortical and striatal malondialdehyde, striatal tumor necrosis factor alpha and interleukin-6 levels. Only a small number of iNOS and caspase-3 positive cells were detected in sections from rats pretreated with ADIOL. This study suggests a potential neuroprotective role of ADIOL against 3-NP-induced Huntington's disease-like manifestations. Such neuroprotection can be attributed to its anti-oxidant, anti-inflammatory and anti-apoptotic activities.
Collapse
Affiliation(s)
- Diana M F Hanna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Amani E Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
136
|
Drosophila spaghetti and doubletime link the circadian clock and light to caspases, apoptosis and tauopathy. PLoS Genet 2015; 11:e1005171. [PMID: 25951229 PMCID: PMC4423883 DOI: 10.1371/journal.pgen.1005171] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 03/25/2015] [Indexed: 01/23/2023] Open
Abstract
While circadian dysfunction and neurodegeneration are correlated, the mechanism for this is not understood. It is not known if age-dependent circadian dysfunction leads to neurodegeneration or vice-versa, and the proteins that mediate the effect remain unidentified. Here, we show that the knock-down of a regulator (spag) of the circadian kinase Dbt in circadian cells lowers Dbt levels abnormally, lengthens circadian rhythms and causes expression of activated initiator caspase (Dronc) in the optic lobes during the middle of the day or after light pulses at night. Likewise, reduced Dbt activity lengthens circadian period and causes expression of activated Dronc, and a loss-of-function mutation in Clk also leads to expression of activated Dronc in a light-dependent manner. Genetic epistasis experiments place Dbt downstream of Spag in the pathway, and Spag-dependent reductions of Dbt are shown to require the proteasome. Importantly, activated Dronc expression due to reduced Spag or Dbt activity occurs in cells that do not express the spag RNAi or dominant negative Dbt and requires PDF neuropeptide signaling from the same neurons that support behavioral rhythms. Furthermore, reduction of Dbt or Spag activity leads to Dronc-dependent Drosophila Tau cleavage and enhanced neurodegeneration produced by human Tau in a fly eye model for tauopathy. Aging flies with lowered Dbt or Spag function show markers of cell death as well as behavioral deficits and shortened lifespans, and even old wild type flies exhibit Dbt modification and activated caspase at particular times of day. These results suggest that Dbt suppresses expression of activated Dronc to prevent Tau cleavage, and that the circadian clock defects confer sensitivity to expression of activated Dronc in response to prolonged light. They establish a link between the circadian clock factors, light, cell death pathways and Tau toxicity, potentially via dysregulation of circadian neuronal remodeling in the optic lobes. Alzheimer’s disease is the most common cause of dementia in the aging population. It is a progressive neurodegenerative disorder that attacks the brain neurons, resulting in loss of memory, thinking and behavioral changes. One pathological hallmark is aggregation of the microtubule-associated protein Tau. A growing body of evidence highlights the importance of caspase-dependent Tau truncation in initiation and potentiation of Tau aggregation. Here we use the fruit fly Drosophila to examine the links between circadian rhythms, aging, apoptosis and Alzheimer’s Disease. We identified a regulator (spag) of the circadian kinase Dbt that functions to stabilize Dbt during the middle of the day. In addition, the caspase Dronc is regulated by Dbt and Spag and, when activated by reduction of either, targets Tau for cleavage, leading to behavioral deficits and shortened lifespans. The expression of activated caspase occurs in several parts of the brain in a manner requiring signaling from a neuropeptide produced by circadian cells. Wild type flies with no genetic modifications eventually exhibit modified Dbt and expression of activated caspase at specific times of day, further demonstrating the links between the circadian clock, light and apoptosis.
Collapse
|
137
|
Meng P, Yoshida H, Tanji K, Matsumiya T, Xing F, Hayakari R, Wang L, Tsuruga K, Tanaka H, Mimura J, Kosaka K, Itoh K, Takahashi I, Kawaguchi S, Imaizumi T. Carnosic acid attenuates apoptosis induced by amyloid-β 1-42 or 1-43 in SH-SY5Y human neuroblastoma cells. Neurosci Res 2015; 94:1-9. [PMID: 25510380 DOI: 10.1016/j.neures.2014.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 12/04/2014] [Accepted: 12/04/2014] [Indexed: 01/03/2023]
Abstract
Amyloid-beta (Aβ) peptides, Aβ 1-42 (Aβ42) and Aβ43 in particular, cause neurotoxicity and cell death in the brain of Alzheimer's disease (AD) at higher concentrations. Carnosic acid (CA), a phenolic diterpene compound in the labiate herbs rosemary and sage, serves as an activator for neuroprotective and neurotrophic functions in brain cells. We investigated the effect of CA on apoptosis induced by Aβ42 or Aβ43 in cultured SH-SY5Y human neuroblastoma cells. Treatment of the cells with Aβ42 or Aβ43 (monomer, 10 μM each) induced apoptosis, which was confirmed by the cleavage of poly-(ADP-ribose) polymerase (PARP) and apoptosis-inducing factor (AIF). Concurrently, the Aβ treatment induced the activation of caspase (Casp) cascades including an effector Casp (Casp3) and initiator Casps (Casp4, Casp8 and Casp9). Pretreatment of the cells with CA (10 μM) partially attenuated the apoptosis induced by Aβ42 or Aβ43. CA pretreatment also reduced the cellular oligomers of Aβ42 and Aβ43. These results suggest that CA suppressed the activation of Casp cascades by reducing the intracellular oligomerization of exogenous Aβ42/43 monomer. The ingestion of an adequate amount of CA may have a potential in the prevention of Aβ-mediated diseases, particularly AD.
Collapse
Affiliation(s)
- Pengfei Meng
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Hidemi Yoshida
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan.
| | - Kunikazu Tanji
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Tomoh Matsumiya
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Fei Xing
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Ryo Hayakari
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Liang Wang
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Kazushi Tsuruga
- Department of Pediatrics, Hirosaki University School of Medicine and Hospital, Hirosaki 036-8563, Japan
| | - Hiroshi Tanaka
- Department of Pediatrics, Hirosaki University School of Medicine and Hospital, Hirosaki 036-8563, Japan; Department of School Health Science, Faculty of Education, Hirosaki University, Hirosaki 036-8560, Japan
| | - Junsei Mimura
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Kunio Kosaka
- Research and Development Center, Nagase & Co. Ltd., 2-2-3, Kobe 651-2241, Japan
| | - Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Ippei Takahashi
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Shogo Kawaguchi
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| |
Collapse
|
138
|
Chu J, Li JG, Joshi YB, Giannopoulos PF, Hoffman NE, Madesh M, Praticò D. Gamma secretase-activating protein is a substrate for caspase-3: implications for Alzheimer's disease. Biol Psychiatry 2015; 77:720-8. [PMID: 25052851 PMCID: PMC4268092 DOI: 10.1016/j.biopsych.2014.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/29/2014] [Accepted: 06/01/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND A major feature of Alzheimer's disease (AD) is the accumulation of amyloid-beta (Aβ), whose formation is regulated by the gamma-secretase complex and its activating protein (also known as GSAP). Because GSAP interacts with gamma-secretase without affecting the cleavage of Notch, it is an ideal target for a viable anti-Aβ therapy. However, despite much interest in this protein, the mechanisms involved in its neurobiology are unknown. METHODS Postmortem brain tissue samples from AD patients, transgenic mouse models of AD, and neuronal cells were used to investigate the molecular mechanism involved in GSAP formation and subsequent amyloidogenesis. RESULTS We identified a caspase-3 processing domain in the GSAP sequence and provide experimental evidence that this caspase is essential for GSAP activation and biogenesis of Aβ peptides. Furthermore, we demonstrated that caspase-3-dependent GSAP formation occurs in brains of individuals with AD and two different mouse models of AD and that the process is biologically relevant because its pharmacological blockade reduces Aβ pathology in vivo. CONCLUSIONS Our data, by identifying caspase-3 as the endogenous modulator of GSAP and Aβ production, establish caspase-3 as a novel, attractive and viable Aβ-lowering therapeutic target for AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Domenico Praticò
- Department of Pharmacology, Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania.
| |
Collapse
|
139
|
Camargo LM, Zhang XD, Loerch P, Caceres RM, Marine SD, Uva P, Ferrer M, de Rinaldis E, Stone DJ, Majercak J, Ray WJ, Yi-An C, Shearman MS, Mizuguchi K. Pathway-based analysis of genome-wide siRNA screens reveals the regulatory landscape of APP processing. PLoS One 2015; 10:e0115369. [PMID: 25723573 PMCID: PMC4344212 DOI: 10.1371/journal.pone.0115369] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/14/2014] [Indexed: 01/08/2023] Open
Abstract
The progressive aggregation of Amyloid-β (Aβ) in the brain is a major trait of Alzheimer's Disease (AD). Aβ is produced as a result of proteolytic processing of the β-amyloid precursor protein (APP). Processing of APP is mediated by multiple enzymes, resulting in the production of distinct peptide products: the non-amyloidogenic peptide sAPPα and the amyloidogenic peptides sAPPβ, Aβ40, and Aβ42. Using a pathway-based approach, we analyzed a large-scale siRNA screen that measured the production of different APP proteolytic products. Our analysis identified many of the biological processes/pathways that are known to regulate APP processing and have been implicated in AD pathogenesis, as well as revealing novel regulatory mechanisms. Furthermore, we also demonstrate that some of these processes differentially regulate APP processing, with some mechanisms favouring production of certain peptide species over others. For example, synaptic transmission having a bias towards regulating Aβ40 production over Aβ42 as well as processes involved in insulin and pancreatic biology having a bias for sAPPβ production over sAPPα. In addition, some of the pathways identified as regulators of APP processing contain genes (CLU, BIN1, CR1, PICALM, TREM2, SORL1, MEF2C, DSG2, EPH1A) recently implicated with AD through genome wide association studies (GWAS) and associated meta-analysis. In addition, we provide supporting evidence and a deeper mechanistic understanding of the role of diabetes in AD. The identification of these processes/pathways, their differential impact on APP processing, and their relationships to each other, provide a comprehensive systems biology view of the “regulatory landscape” of APP.
Collapse
Affiliation(s)
- Luiz Miguel Camargo
- Merck Research Laboratories, Merck & Co, Boston, United States of America
- * E-mail:
| | | | - Patrick Loerch
- Merck Research Laboratories, Merck & Co, Boston, United States of America
| | | | - Shane D. Marine
- Merck Research Laboratories, Merck & Co, North Wales, United States of America
| | - Paolo Uva
- Merck Research Laboratories, Instituto di Recerca di Biologia Molecolare, Pomezia, Italy
| | - Marc Ferrer
- Merck Research Laboratories, Merck & Co, North Wales, United States of America
| | - Emanuele de Rinaldis
- Merck Research Laboratories, Instituto di Recerca di Biologia Molecolare, Pomezia, Italy
| | - David J. Stone
- Merck Research Laboratories, Merck & Co, West Point, United States of America
| | - John Majercak
- Merck Research Laboratories, Merck & Co, West Point, United States of America
| | - William J. Ray
- Merck Research Laboratories, Merck & Co, West Point, United States of America
| | - Chen Yi-An
- National Institute of Biomedical Innovation, Osaka, Japan
| | - Mark S. Shearman
- Merck Research Laboratories, Merck & Co, Boston, United States of America
| | | |
Collapse
|
140
|
Therapeutic Effects of TianDiJingWan on the Aβ 25-35-Induced Alzheimer's Disease Model Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:307350. [PMID: 25815030 PMCID: PMC4357045 DOI: 10.1155/2015/307350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 12/28/2022]
Abstract
The main purpose of this study was to demonstrate the therapeutic effects and mechanism of TDJW, a modern Chinese medicine prescription developed based on the basic traditional Chinese medicine theory of “tonifying the kidney essence,” on the Aβ25–35-induced AD rats. The AD model was established by the intracerebroventricular administrations of Aβ25–35 into the hippocampus CA1 tissue of SD male rats. 72 rats were randomly divided into six groups: sham operation, AD model, donepezil, high TDJW group, medium TDJW group, and low TDJW group. After oral administration of TDJW, the results of Morris water maze and step-down test showed that the learning and memory abilities of AD rats were significantly improved. And biochemical measurement demonstrated that Ach and Glu in hippocampus tissues of AD rats were increased as well. Moreover, the Aβ deposits and p-Tau aggregations in hippocampus CA1 tissues of AD rats were attenuated as observed in the micrographs of immunohistochemistry study, and the results of ELISA indicated that the expressions of TNF-α, IL-1β, and IL-6 in hippocampus tissues were significantly decreased. In conclusion, the present study demonstrated that TDJW could be used as a promising therapeutic agent for the clinical applications of AD treatment in patients.
Collapse
|
141
|
Shao H, Zhang Y, Dong Y, Yu B, Xia W, Xie Z. Chronic treatment with anesthetic propofol improves cognitive function and attenuates caspase activation in both aged and Alzheimer's disease transgenic mice. J Alzheimers Dis 2015; 41:499-513. [PMID: 24643139 DOI: 10.3233/jad-132792] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
There is a need to seek new treatment(s) for Alzheimer's disease (AD). A recent study showed that AD patients may have decreased levels of functional GABA receptors. Propofol, a commonly used anesthetic, is a GABA receptor agonist. We therefore set out to perform a proof of concept study to determine whether chronic treatment with propofol (50 mg/kg/week) can improve cognitive function in both aged wild-type (WT) and AD transgenic (Tg) mice. Propofol was administrated to the WT and AD Tg mice once a week for 8 or 12 weeks, respectively. Morris water maze was used to assess the cognitive function of the mice following the propofol treatment. Activation of caspase-3, caspase-9, and caspase-8 was investigated using western blot analysis at the end of the propofol treatment. In the mechanistic studies, effects of propofol, amyloid-β protein (Aβ), and GABA receptor antagonist flumazenil on caspase-3 activation and opening of the mitochondrial permeability transition pore were assessed in H4 human neuroglioma and mouse neuroblastoma cells by western blot analysis and flow cytometry. Here we showed that the propofol treatment improved cognitive function and attenuated brain caspase-3 and caspase-9 activation in both aged WT and AD Tg mice. Propofol attenuated Aβ-induced caspase-3 activation and opening of the mitochondrial permeability transition pore in the cells, and flumazenil inhibited the propofol's effects. These results suggested that propofol might improve cognitive function via attenuating the Aβ-induced mitochondria dysfunction and caspase activation, which explored the potential that anesthetic propofol could improve cognitive function in elderly and AD patients.
Collapse
Affiliation(s)
- Haijun Shao
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Weiming Xia
- Department of Veterans Affairs, Medical Research and Development Service and Geriatric Research, Education and Clinical Center, Bedford, MA, USA
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
142
|
Pascoe MC, Howells DW, Crewther DP, Carey LM, Crewther SG. Fish oil supplementation associated with decreased cellular degeneration and increased cellular proliferation 6 weeks after middle cerebral artery occlusion in the rat. Neuropsychiatr Dis Treat 2015; 11:153-64. [PMID: 25609971 PMCID: PMC4298295 DOI: 10.2147/ndt.s72925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Anti-inflammatory long-chain omega-3 polyunsaturated fatty acids (n-3-LC-PUFAs) are both neuroprotective and have antidepressive effects. However the influence of dietary supplemented n-3-LC-PUFAs on inflammation-related cell death and proliferation after middle cerebral artery occlusion (MCAo)-induced stroke is unknown. We have previously demonstrated that anxiety-like and hyperactive locomotor behaviors are reduced in n-3-LC-PUFA-fed MCAo animals. Thus in the present study, male hooded Wistar rats were exposed to MCAo or sham surgeries and examined behaviorally 6 weeks later, prior to euthanasia and examination of lesion size, cell death and proliferation in the dentate gyrus, cornu ammonis region of the hippocampus of the ipsilesional hemispheres, and the thalamus of the ipsilesional and contralesional hemispheres. Markers of cell genesis and cell degeneration in the hippocampus or thalamus of the ipsilesional hemisphere did not differ between surgery and diet groups 6 weeks post MCAo. Dietary supplementation with n-3-LC-PUFA decreased cell degeneration and increased cell proliferation in the thalamic region of the contralesional hemisphere. MCAo-associated cell degeneration in the hippocampus and thalamus positively correlated with anxiety-like and hyperactive locomotor behaviors previously reported in these animals. These results suggest that anti-inflammatory n-3-LC-PUFA supplementation appears to have cellular protective effects after MCAo in the rat, which may affect behavioral outcomes.
Collapse
Affiliation(s)
| | - David W Howells
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | | | - Leeanne M Carey
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia ; Department of Occupational Therapy, School of Allied Health La Trobe University, VIC, Australia
| | - Sheila G Crewther
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
143
|
Deng Z, Fu H, Xiao Y, Zhang B, Sun G, Wei Q, Ai B, Hu Q. Effects of selenium on lead-induced alterations in Aβ production and Bcl-2 family proteins. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:221-228. [PMID: 25528413 DOI: 10.1016/j.etap.2014.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
Previous studies in humans and animals have suggested that lead (Pb) may increase the expression of amyloid precursor protein (APP) and accumulation of amyloid β protein (Aβ). Our previous studies have revealed that selenium (Se) can partially improve memory deficits induced by Pb exposure. In this study we sought to investigate the effect of Pb and Se on the endogenous expression of APP, Aβ40 and Bcl-2 family proteins. In vitro, the protein levels of APP and Aβ significantly decreased in SH-SY5Y and PC12 cells co-incubated with Pb-acetate and selenomethionine (SeMet) for 48h, compared with cells treated with Pb-acetate alone. Furthermore, these reductions induced by Se appeared to be concentration-dependent. In Wistar rats, we observed that the mRNA and protein levels of APP, the protein level of Bax, and the ratio of Bax/Bcl-2 protein significantly increased after Pb treatment at embryonic stage and in neonates. These increases were significantly reversed by the treatment of Se. Taken together, our results suggest that Se can attenuate the alterations in APP expression and Aβ production as well as Bcl-2 family proteins induced by lead exposure in cells and in animals.
Collapse
Affiliation(s)
- Zhiqiang Deng
- Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; Nanchang Center for Disease Control and Prevention, Nanchang 330038, China
| | - Hongjun Fu
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Yongmei Xiao
- Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Bo Zhang
- Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Guangshun Sun
- Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qing Wei
- Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Baomin Ai
- Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qiansheng Hu
- Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
144
|
The multifaceted nature of amyloid precursor protein and its proteolytic fragments: friends and foes. Acta Neuropathol 2015; 129:1-19. [PMID: 25287911 DOI: 10.1007/s00401-014-1347-2] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 12/29/2022]
Abstract
The amyloid precursor protein (APP) has occupied a central position in Alzheimer's disease (AD) pathophysiology, in large part due to the seminal role of amyloid-β peptide (Aβ), a proteolytic fragment derived from APP. Although the contribution of Aβ to AD pathogenesis is accepted by many in the research community, recent studies have unveiled a more complicated picture of APP's involvement in neurodegeneration in that other APP-derived fragments have been shown to exert pathological influences on neuronal function. However, not all APP-derived peptides are neurotoxic, and some even harbor neuroprotective effects. In this review, we will explore this complex picture by first discussing the pleiotropic effects of the major APP-derived peptides cleaved by multiple proteases, including soluble APP peptides (sAPPα, sAPPβ), various C- and N-terminal fragments, p3, and APP intracellular domain fragments. In addition, we will highlight two interesting sequences within APP that likely contribute to this duality in APP function. First, it has been found that caspase-mediated cleavage of APP in the cytosolic region may release a cytotoxic peptide, C31, which plays a role in synapse loss and neuronal death. Second, recent studies have implicated the -YENPTY- motif in the cytoplasmic region as a domain that modulates several APP activities through phosphorylation and dephosphorylation of the first tyrosine residue. Thus, this review summarizes the current understanding of various APP proteolytic products and the interplay among them to gain deeper insights into the possible mechanisms underlying neurodegeneration and AD pathophysiology.
Collapse
|
145
|
Płóciennik A, Prendecki M, Zuba E, Siudzinski M, Dorszewska J. Activated Caspase-3 and Neurodegeneration and Synaptic Plasticity in Alzheimer’s Disease. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/aad.2015.43007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
146
|
Liu B, Zhu Y, Zhou J, Wei Y, Long C, Chen M, Ling Y, Ge J, Zhuo Y. Endoplasmic reticulum stress promotes amyloid-beta peptides production in RGC-5 cells. Cell Stress Chaperones 2014; 19:827-35. [PMID: 24643796 PMCID: PMC4389842 DOI: 10.1007/s12192-014-0506-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 01/05/2023] Open
Abstract
Endoplasmic reticulum (ER) stress has been implicated in various neurodegenerative diseases, including Alzheimer's disease. We have previously observed amyloid production in the retina of the Tg2576 transgenic mouse model of Alzheimer's disease. In this study, we used tunicamycin-induced ER stress in RGC-5 cells, a cell line identical to the photoreceptor cell line 661W, to investigate the effect of ER stress on production of amyloid-beta (Abeta) peptides. We found that the mRNA level of amyloid-beta precursor protein (APP) remained stable, while the protein level of amyloid-beta precursor protein (APP) was decreased, the amyloid-beta precursor protein cleaving enzymes beta-site APP-cleaving enzyme 1 and presenilin 1 were upregulated, Abeta1-40 and Abeta1-42 production were increased, and reactive oxygen species production and apoptosis markers were elevated following induction of ER stress. The protein level of Abeta degradation enzymes, neprilysin, endothelin-converting enzyme 1, and endothelin-converting enzyme 2 remained unchanged during the prolonged ER stress, showing that the generation of Abeta did not result from reduction of proteolysis by these enzymes. Inclusion of group II caspase inhibitor, Z-DEVD-FMK, increased the ER stress mediated Abeta production, suggesting that they are generated by a caspase-independent mechanism. Our findings provided evidence of a role of ER stress in Abeta peptide overproduction and apoptotic pathway activation in RGC-5 cells.
Collapse
Affiliation(s)
- Bingqian Liu
- />State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060 China
| | - Yingting Zhu
- />State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060 China
| | - Jiayi Zhou
- />New England College of Optometry, Boston, MA 02115 USA
| | - Yantao Wei
- />State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060 China
| | - Chongde Long
- />State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060 China
| | - Mengfei Chen
- />State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060 China
| | - Yunlan Ling
- />State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060 China
| | - Jian Ge
- />State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060 China
| | - Yehong Zhuo
- />State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060 China
| |
Collapse
|
147
|
Wang XJ, Cao Q, Zhang Y, Su XD. Activation and regulation of caspase-6 and its role in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 2014; 55:553-72. [PMID: 25340928 DOI: 10.1146/annurev-pharmtox-010814-124414] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Caspases, a family of cysteine proteases, are major mediators of apoptosis and inflammation. Caspase-6 is classified as an apoptotic effector, and it mediates nuclear shrinkage during apoptosis, but it possesses unique activation and regulation mechanisms that differ from those of other effector caspases. Furthermore, increasing evidence has shown that caspase-6 is highly involved in axon degeneration and neurodegenerative diseases, such as Huntington's disease and Alzheimer's disease. Cleavage at the caspase-6 site in mutated huntingtin protein is a prerequisite for the development of the characteristic behavioral and neuropathological features of Huntington's disease. Active caspase-6 is present in early stages of Alzheimer's disease, and caspase-6 activity is associated with the disease's pathological lesions. In this review, we discuss the evidence relevant to the role of caspase-6 in neurodegenerative diseases and summarize its activation and regulation mechanisms. In doing so, we provide new insight about potential therapeutic approaches that incorporate the modulation of caspase-6 function for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiao-Jun Wang
- State Key Laboratory of Protein and Plant Gene Research and
| | | | | | | |
Collapse
|
148
|
Saeed Y, Xie B, Xu J, Wang H, Hassan M, Wang R, Hong M, Hong Q, Deng Y. Indirect effects of radiation induce apoptosis and neuroinflammation in neuronal SH-SY5Y cells. Neurochem Res 2014; 39:2334-42. [PMID: 25227747 DOI: 10.1007/s11064-014-1432-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/24/2014] [Accepted: 09/04/2014] [Indexed: 01/19/2023]
Abstract
Recent studies have evaluated the role of direct radiation exposure in neurodegenerative disorders; however, association among indirect effects of radiation and neurodegenerative diseases remains rarely discussed. The objective of this study was to estimate the relative risk of neurodegeneration due to direct and indirect effects of radiation. (60)Co gamma ray was used as source of direct radiation whereas irradiated cell conditioned medium (ICCM) was used to mimic the indirect effect of radiation. To determine the potency of ICCM to inhibit neuronal cells survival colony forming assay was performed. The role of ICCM to induce apoptosis in neuronal SH-SY5Y cells was estimated by TUNEL assay and Annexin V/PI assay. Level of oxidative stress and the concentration of inflammatory cytokines after exposing to direct radiation and ICCM were evaluated by ELISA method. Expression of key apoptotic protein following direct and indirect radiation exposure was investigated by western blot technique. Experimental data manifest that ICCM account loss of cell survival and increase apoptotic induction in neuronal SH-SY5Y cells that was dependent on time and dose. Moreover, ICCM stimulate significant release of inflammatory cytokines i.e., tumor necrosis factor TNF-alpha (P < 0.01), Interleukin-1 (IL-1, P < 0.001), and Interleukin-6 (IL-6, P < 0.001) in neuronal SH-SY5Y cells and elevate the level of oxidative stress (MDA, P < 0.01). Up-regulation of key apoptotic protein expression i.e., Bax, Bid, cytochrome C, caspase-8 and caspase-3 confirms the toxicity of ICCM to neuronal cells. This study provides the evidence that indirect effect of radiation can be as much damaging to neuronal cells as direct radiation exposure can be. Hence, more focused research on estimation risks of indirect effect of radiation to CNS at molecular level may help to reduce the uncertainty about cure and cause of several neurodegenerative disorders.
Collapse
Affiliation(s)
- Yasmeen Saeed
- School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Liu X, Ma C, Xing R, Zhang W, Tian B, Li X, Li Q, Zhang Y. The calmodulin-dependent protein kinase II inhibitor KN-93 protects rat cerebral cortical neurons from N-methyl-D-aspartic acid-induced injury. Neural Regen Res 2014; 8:111-20. [PMID: 25206480 PMCID: PMC4107511 DOI: 10.3969/j.issn.1673-5374.2013.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/13/2012] [Indexed: 11/18/2022] Open
Abstract
In this study, primary cultured cerebral cortical neurons of Sprague-Dawley neonatal rats were treated with 0.25, 0.5, and 1.0 μM calmodulin-dependent protein kinase II inhibitor KN-93 after 50 μM N-methyl-D-aspartic acid-induced injury. Results showed that, compared with N-methyl-Daspartic acid-induced injury neurons, the activity of cells markedly increased, apoptosis was significantly reduced, leakage of lactate dehydrogenase decreased, and intracellular Ca(2+) concentrations in neurons reduced after KN-93 treatment. The expression of caspase-3, phosphorylated calmodulin-dependent protein kinase II and total calmodulin-dependent protein kinase II protein decreased after KN-93 treatment. And the effect was apparent at a dose of 1.0 μM KN-93. Experimental findings suggest that KN-93 can induce a dose-dependent neuroprotective effect, and that the underlying mechanism may be related to the down-regulation of caspase-3 and calmodulin- dependent protein kinase II expression.
Collapse
Affiliation(s)
- Xuewen Liu
- Department of Neurology, First Affiliated Hospital of Liaoning Medical College, Jinzhou 121001, Liaoning Province, China
| | - Cui Ma
- Liaoning Medical College, Jinzhou 121001, Liaoning Province, China
| | - Ruixian Xing
- Department of Neurology, First Affiliated Hospital of Liaoning Medical College, Jinzhou 121001, Liaoning Province, China
| | - Weiwei Zhang
- Jinzhou Kangning Hospital, Jinzhou 121001, Liaoning Province, China
| | - Buxian Tian
- Department of Neurology, First Affiliated Hospital of Liaoning Medical College, Jinzhou 121001, Liaoning Province, China
| | - Xidong Li
- Department of Neurology, First Affiliated Hospital of Liaoning Medical College, Jinzhou 121001, Liaoning Province, China
| | - Qiushi Li
- Department of Neurology, First Affiliated Hospital of Liaoning Medical College, Jinzhou 121001, Liaoning Province, China
| | - Yanhui Zhang
- Department of Neurology, First Affiliated Hospital of Liaoning Medical College, Jinzhou 121001, Liaoning Province, China
| |
Collapse
|
150
|
Bhavnani BR, Stanczyk FZ. Pharmacology of conjugated equine estrogens: efficacy, safety and mechanism of action. J Steroid Biochem Mol Biol 2014; 142:16-29. [PMID: 24176763 DOI: 10.1016/j.jsbmb.2013.10.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/10/2013] [Accepted: 10/17/2013] [Indexed: 12/12/2022]
Abstract
Oral conjugated equine estrogens (CEE) are the most used estrogen formulation for postmenopausal hormone therapy either alone or in combination with a progestin. CEE is most commonly used for the management of early menopausal symptoms such as hot flashes, vaginitis, insomnia, and mood disturbances. Additionally, if used at the start of the menopausal phase (age 50-59 years), CEE prevents osteoporosis and may in some women reduce the risk of cardiovascular disease (CVD) and Alzheimer's disease (AD). There appears to be a common mechanism through which estrogens can protect against CVD and AD. CEE is a natural formulation of an extract prepared from pregnant mares' urine. The product monogram lists the presence of only 10 estrogens consisting of the classical estrogens, estrone and 17β-estradiol, and a group of unique ring B unsaturated estrogens such as equilin and equilenin. The ring B unsaturated estrogens are formed by an alternate steroidogenic pathway in which cholesterol is not an obligatory intermediate. Both the route of administration and structure of these estrogens play a role in the overall pharmacology of CEE. In contrast to 17β-estradiol, ring B unsaturated estrogens express their biological effects mainly mediated by the estrogen receptor β and not the estrogen receptor α. All estrogen components of CEE are antioxidants, and some ring B unsaturated estrogens have several fold greater antioxidant activity than estrone and 17β-estradiol. The cardioprotective and neuroprotective effects of CEE appear to be, to some extent, due to its ability to prevent the formation of oxidized LDL and HDL, and by inhibiting or modulating some of the key proteases involved in programmed cell death (apoptosis) induced by the excess neurotransmitter glutamate and other neurotoxins. Selective combinations of ring B unsaturated estrogens have the potential of being developed as novel therapeutic agents for the prevention of cardiovascular disease and Alzheimer's disease in both aging women and men. This article is part of a Special Issue entitled 'Menopause'.
Collapse
Affiliation(s)
- Bhagu R Bhavnani
- Department of Obstetrics and Gynecology, University of Toronto and The Keenan Research Center of Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8.
| | - Frank Z Stanczyk
- Department of Obstetrics and Gynecology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, United States; Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, United States
| |
Collapse
|