101
|
Staudinger R, Wang X, Bandrés JC. Allosteric regulation of CCR5 by guanine nucleotides and HIV-1 envelope. Biochem Biophys Res Commun 2001; 286:41-7. [PMID: 11485305 DOI: 10.1006/bbrc.2001.5345] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chemokine receptor CCR5 is the principal coreceptor for R5 (macrophage-tropic) strains of HIV-1. CCR5 uses G-proteins as transducing elements. Here we report the biochemical consequences of the interaction between CCR5 and G-proteins. Macrophage inflammatory protein-1beta (MIP-1beta) binding to CCR5 was potently and specifically inhibited by guanine nucleotides. The molecular mechanism of this inhibitory effect was shown to be a dose-dependent reduction in MIP-1beta receptors. We also show that the MIP-1beta binding site is allosterically regulated by monovalent cations and that binding of this endogenous agonist is highly temperature sensitive and dependent on divalent cations, characteristic of a G-protein-coupled receptor(GPCR). HIV-1 envelope glycoprotein decreased the affinity of CCR5 for MIP-1beta but also altered the kinetics of MIP-1beta binding to CCR5, proving that it interacts with a distinct, but allosterically coupled binding site. The findings described herein contribute to our understanding of how CCR5 interacts with chemokines and HIV-1 envelope.
Collapse
Affiliation(s)
- R Staudinger
- Department of Neurology, New York University School of Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
102
|
Misumi S, Takamune N, Ido Y, Hayashi S, Endo M, Mukai R, Tachibana K, Umeda M, Shoji S. Evidence as a HIV-1 self-defense vaccine of cyclic chimeric dodecapeptide warped from undecapeptidyl arch of extracellular loop 2 in both CCR5 and CXCR4. Biochem Biophys Res Commun 2001; 285:1309-16. [PMID: 11478800 DOI: 10.1006/bbrc.2001.5267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Novel conformation-specific antibodies were raised against a cyclic chimeric dodecapeptidyl multiple antigen peptide (cCD-MAP) constructed with a spacer-armed Gly-Asp dipeptide and two pentapeptides (S(169)-Q(170)-K(171)-E(172)-G(173) of CCR5 and E(179)-A(180)-D(181)-D(182)-R(183) of CXCR4) which are components of the undecapeptidyl arch (UPA: from R(168) to C(178) in CCR5, from N(176) to C(186) in CXCR4) of extracellular loop 2 (ECL2) in chemokine receptors (CCR5 and CXCR4). Of the antibodies raised, one monoclonal antibody, CPMAb-I (IgMkappa), reacted with cCD-MAP, but not with the linear chimeric dodecapeptide-MAP. The antibody reacted with the cells separately expressing CCR5 or CXCR4, but not with those not expressing the coreceptors. Moreover, the antibody markedly suppressed infection by X4, R5, or R5X4 virus in a dose-dependent manner in a new phenotypic assay for drug susceptibility of HIV-1 using CCR5-expressing Hela/CD4(+) cell clone 1-10 (MAGIC-5). Moreover, CPMAb-I interfered with LAV-1(BRU) infection (m.o.i. = 0.01) of Molt4#8 cells cocultured with CPMAb-I-producing hybridoma in the transwell, and significantly interfered with neither chemotaxis nor calcium influx induced with stromal cell-derived factor 1 alpha (SDF-1alpha). Thus, the antibody raised against the cCD-MAP provides powerful protection or defense against HIV-1 infection. We therefore propose the cCD-MAP or its derivative immunogen as a novel candidate for an HIV-1 coreceptor-based self-defense vaccine.
Collapse
MESH Headings
- AIDS Vaccines/chemical synthesis
- AIDS Vaccines/immunology
- AIDS Vaccines/metabolism
- Animals
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacology
- Antibody Specificity/immunology
- Binding, Competitive/immunology
- Biological Assay
- Cell Line
- Chemokines/metabolism
- Coculture Techniques
- Dose-Response Relationship, Immunologic
- Epitopes/immunology
- Female
- Flow Cytometry
- HIV Infections/immunology
- HIV Infections/prevention & control
- HIV-1/immunology
- Humans
- Mice
- Mice, Inbred BALB C
- Peptides/chemical synthesis
- Peptides/immunology
- Peptides/metabolism
- Peptides, Cyclic/chemical synthesis
- Peptides, Cyclic/immunology
- Peptides, Cyclic/metabolism
- Protein Conformation
- Receptors, CCR5/chemistry
- Receptors, CCR5/immunology
- Receptors, CXCR4/chemistry
- Receptors, CXCR4/immunology
- Signal Transduction/immunology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/metabolism
Collapse
Affiliation(s)
- S Misumi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Mellado M, Rodríguez-Frade JM, Mañes S, Martínez-A C. Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu Rev Immunol 2001; 19:397-421. [PMID: 11244042 DOI: 10.1146/annurev.immunol.19.1.397] [Citation(s) in RCA: 271] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A broad array of biological responses, including cell polarization, movement, immune and inflammatory responses, and prevention of HIV-1 infection, are triggered by the chemokines, a family of structurally related chemoattractant proteins that bind to specific seven-transmembrane receptors linked to G proteins. Here we discuss one of the early signaling pathways activated by chemokines, the JAK/STAT pathway. Through this pathway, and possibly in conjunction with other signaling pathways, the chemokines promote changes in cellular morphology, collectively known as polarization, required for chemotactic responses. The polarized cell expresses the chemokine receptors at the leading cell edge, to which they are conveyed by rafts, a cholesterol-enriched membrane fraction fundamental to the lateral organization of the plasma membrane. Finally, the mechanisms through which the chemokines promote their effect are discussed in the context of the prevention of HIV-1 infection.
Collapse
Affiliation(s)
- M Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, Madrid, E-28049 Spain
| | | | | | | |
Collapse
|
104
|
Affiliation(s)
- Tatjana Dragic
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, 1300 Morris Park Ave, Bronx, NY 10461, USA1
| |
Collapse
|
105
|
Abstract
G-protein-coupled receptors (GPCRs) play a crucial role in mediating effects of extracellular messengers in a wide variety of biological systems, comprising the largest gene superfamily at least in mammals. Mammalian GPCRs are broadly classified into three families based on pharmacological properties and sequence similarities. These sequence similarities are largely confined to the seven transmembrane domains, and much less in the extracellular and intracellular loops and terminals (LTs). Together with the fact that the LTs vary considerably in length and sequence, the LT length of GPCRs has not been studied systematically. Here we have applied a statistical analysis to the length of the LTs of a wide variety of mammalian GPCRs in order to examine the existence of any trends in molecular architecture among a known mammalian GPCR population. Tree diagrams constructed by cluster analyses, using eight length factors in a given GPCR, revealed possible length relations among GPCRs and defined at least three groups. Most samples in Group J (joined) and Group M (minor) had an exceptionally long N-terminal and I3 loop, respectively; and other samples were considered as Group O (other/original). This length-based classification largely coincided with the conventional sequence- and pharmacology-based classification, suggesting that the LT length contains some biological information when analysed at the population level. Principle component analyses suggested the existence of inherent length differences between loops and terminals as well as between extracellular and intracellular LTs. Wilcoxon rank transformation tests unveiled statistically significant differences between Group O and Group J, not only in the N-terminal and I3 loop, but also in the E3 loop. Correlation analyses identified an E1-I2 length-correlation in Group O and Group J and an N-E3 length-correlation in Group J. Taken together, these results suggest a possible functional importance of LT length in the GPCR superfamily.
Collapse
Affiliation(s)
- J M Otaki
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | | |
Collapse
|
106
|
Cormier EG, Tran DN, Yukhayeva L, Olson WC, Dragic T. Mapping the determinants of the CCR5 amino-terminal sulfopeptide interaction with soluble human immunodeficiency virus type 1 gp120-CD4 complexes. J Virol 2001; 75:5541-9. [PMID: 11356961 PMCID: PMC114266 DOI: 10.1128/jvi.75.12.5541-5549.2001] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD4 and CCR5 mediate fusion and entry of R5 human immunodeficiency virus type 1 (HIV-1) strains. Sulfotyrosine and other negatively charged residues in the CCR5 amino-terminal domain (Nt) are crucial for gp120 binding and viral entry. We previously showed that a soluble gp120-CD4 complex specifically binds to a peptide corresponding to CCR5 Nt residues 2 to 18, with sulfotyrosines in positions 10 and 14. This sulfopeptide also inhibits soluble gp120-CD4 binding to cell surface CCR5 as well as infection by an R5 virus. Here we show that residues 10 to 18 constitute the minimal domain of the CCR5 Nt that is able to specifically interact with soluble gp120-CD4 complexes. In addition to sulfotyrosines in positions 10 and 14, negatively charged residues in positions 11 and 18 participate in this interaction. Furthermore, the CCR5 Nt binds to a CD4-induced surface on gp120 that is composed of conserved residues in the V3 loop stem and the C4 domain. Binding of gp120 to cell surface CCR5 is further influenced by residues in the crown of the V3 loop, C1, C2, and C3. Our data suggest that gp120 docking to CCR5 is a multistep process involving several independent regions of the envelope glycoprotein and the coreceptor.
Collapse
Affiliation(s)
- E G Cormier
- Microbiology and Immunology Department, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
107
|
Lehner T, Doyle C, Wang Y, Babaahmady K, Whittall T, Tao L, Bergmeier L, Kelly C. Immunogenicity of the extracellular domains of C-C chemokine receptor 5 and the in vitro effects on simian immunodeficiency virus or HIV infectivity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:7446-55. [PMID: 11390497 DOI: 10.4049/jimmunol.166.12.7446] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The C-C chemokine receptor CCR5 serves an important function in chemotaxis of lymphocytes, monocytes, and dendritic cells. CCR5 is also the major coreceptor in most macrophage-tropic HIV-1 infections. Immunization of rhesus macaques with a baculovirus-generated CCR5 construct or peptides derived from the sequences of the four extracellular domains of CCR5 elicited IgG and IgA Abs, inhibition of SIV replication, and CD4+ T cell proliferative responses to three of the extracellular domains of CCR5. The immune sera reacted with cell surface CCR5 expressed on HEK 293 cells. T and B cell epitope mapping revealed major and minor T and B cell epitopes in the N-terminal, first, and second loops of CCR5. The three C-C chemokines, RANTES, macrophage-inflammatory protein-1alpha, and macrophage-inflammatory protein-1beta, were up-regulated by immunization with the CCR5-derived peptides, and the cell surface expression of CCR5 was decreased. The CCR5 Abs were complementary to the C-C chemokines in inhibiting HIV replication in vitro. Immunization with the four extracellular domains of CCR5 suggests that three of them are immunogenic, with maximal T cell responses being elicited by the second loop peptide. However, maximal Abs to the cell surface CCR5 or viral inhibitory Abs in vitro were induced by the N-terminal peptide. Up-regulation of the three C-C chemokines and down-modulation of cell surface CCR5 were elicited by the second loop, N-terminal, and first loop peptides. The data suggest that a dual mechanism of C-C chemokines and specific Abs may engage and down-modulate the CCR5 coreceptors and prevent in vitro HIV or SIV replication.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/pharmacology
- Antiviral Agents/pharmacology
- Baculoviridae/genetics
- Baculoviridae/immunology
- Cell Line
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cells, Cultured
- Chemokines, CC/biosynthesis
- Chemokines, CC/immunology
- Epitope Mapping
- Epitopes, B-Lymphocyte/analysis
- Epitopes, T-Lymphocyte/analysis
- Extracellular Space/immunology
- HIV-1/immunology
- Humans
- Immune Sera/pharmacology
- Immunoglobulin A/blood
- Immunoglobulin G/blood
- Immunoglobulin G/pharmacology
- Injections, Intramuscular
- Lymphocyte Activation/immunology
- Lymphoid Tissue/cytology
- Lymphoid Tissue/immunology
- Macaca mulatta
- Molecular Sequence Data
- Peptide Fragments/administration & dosage
- Peptide Fragments/chemical synthesis
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Protein Structure, Tertiary/genetics
- Receptors, CCR5/administration & dosage
- Receptors, CCR5/biosynthesis
- Receptors, CCR5/genetics
- Receptors, CCR5/immunology
- Simian Immunodeficiency Virus/immunology
- Simian Immunodeficiency Virus/physiology
- Spodoptera/genetics
- Spodoptera/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/virology
- Transfection
- Up-Regulation/immunology
- Virus Replication/immunology
Collapse
Affiliation(s)
- T Lehner
- Departments of. Immunobiology and Oral Medicine and Pathology, Guy's, King's & St. Thomas' Hospital Medical Schools, London, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Agrawal L, Alkhatib G, Agrawal L. Chemokine receptors: emerging opportunities for new anti-HIV therapies. Expert Opin Ther Targets 2001; 5:303-326. [PMID: 12540267 DOI: 10.1517/14728222.5.3.303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The chemokine receptors CCR5 and CXCR4 are G-protein coupled receptors (GPCRs) of the immune system and the major co-receptors required for entry of HIV into CD4(+) target cells. CCR5 is critical for both human immunodeficiency virus (HIV) disease transmission and progression, whereas CXCR4 may be very important in late stages of disease. Additional co-receptors have been shown to function under certain conditions in vitro but evidence of supporting roles in HIV disease is currently lacking. The sheer number of co-receptors potentially used by HIV and the complexity of co-receptors usage are major challenges confronting usage of these molecules as drug development targets. Balanced against this, is a long history of success by the pharmaceutical industry in developing small molecule antagonists for many other classes of GPCRs. In this review, we discuss the current state of understanding of the co-receptor-based antiviral agents designed to block viral entry. The therapeutic potential of this field will be judged from future studies on the efficacy of these novel inhibitors in clinical trials. The data so far obtained from a number of studies point to the potential clinical use of this emerging class of therapeutic agents. Here we review current progress in co-receptor-based antiretroviral drug development and discuss the potential advantages and disadvantages of this approach.
Collapse
Affiliation(s)
- Lokesh Agrawal
- Department of Microbiology and Immunology, Walther Oncology Center, Indiana University School of Medicine, 1044 W Walnut Street, Room 302, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
109
|
Cotter RL, Zheng J, Che M, Niemann D, Liu Y, He J, Thomas E, Gendelman HE. Regulation of human immunodeficiency virus type 1 infection, beta-chemokine production, and CCR5 expression in CD40L-stimulated macrophages: immune control of viral entry. J Virol 2001; 75:4308-20. [PMID: 11287580 PMCID: PMC114176 DOI: 10.1128/jvi.75.9.4308-4320.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2000] [Accepted: 01/19/2001] [Indexed: 01/31/2023] Open
Abstract
Mononuclear phagocytes (MP) and T lymphocytes play a pivotal role in the host immune response to human immunodeficiency virus type 1 (HIV-1) infection. Regulation of such immune responses can be mediated, in part, through the interaction of the T-lymphocyte-expressed molecule CD40 ligand (CD40L) with its receptor on MP, CD40. Upregulation of CD40L on CD4+ peripheral blood mononuclear cells during advanced HIV-1 disease has previously been reported. Based on this observation, we studied the influence of CD40L-CD40 interactions on MP effector function and viral regulation in vitro. We monitored productive viral infection, cytokine and beta-chemokine production, and beta-chemokine receptor expression in monocyte-derived macrophages (MDM) after treatment with soluble CD40L. Beginning 1 day after infection and continuing at 3-day intervals, treatment with CD40L inhibited productive HIV-1 infection in MDM in a dose-dependent manner. A concomitant and marked upregulation of beta-chemokines (macrophage inhibitory proteins 1alpha and 1beta and RANTES [regulated upon activation normal T-cell expressed and secreted]) and the proinflammatory cytokine tumor necrosis factor alpha (TNF-alpha) was observed in HIV-1-infected and CD40L-treated MDM relative to either infected or activated MDM alone. The addition of antibodies to RANTES or TNF-alpha led to a partial reversal of the CD40L-mediated inhibition of HIV-1 infection. Surface expression of CD4 and the beta-chemokine receptor CCR5 was reduced on MDM in response to treatment with CD40L. In addition, treatment of CCR5- and CD4-transfected 293T cells with secretory products from CD40L-stimulated MDM prior to infection with a CCR5-tropic HIV-1 reporter virus led to inhibition of viral entry. In conclusion, we demonstrate that CD40L-mediated inhibition of viral entry coincides with a broad range of MDM immune effector responses and the down-modulation of CCR5 and CD4 expression.
Collapse
Affiliation(s)
- R L Cotter
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska 68198-5215, USA
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Pollakis G, Kang S, Kliphuis A, Chalaby MI, Goudsmit J, Paxton WA. N-linked glycosylation of the HIV type-1 gp120 envelope glycoprotein as a major determinant of CCR5 and CXCR4 coreceptor utilization. J Biol Chem 2001; 276:13433-41. [PMID: 11278567 DOI: 10.1074/jbc.m009779200] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The variable V1V2 and V3 regions of the human immunodeficiency virus type-1 (HIV-1) envelope glycoprotein (gp120) can influence viral coreceptor usage. To substantiate this we generated isogenic HIV-1 molecularly cloned viruses that were composed of the HxB2 envelope backbone containing the V1V2 and V3 regions from viruses isolated from a patient progressing to disease. We show that the V3 amino acid charge per se had little influence on altering the virus coreceptor phenotype. The V1V2 region and its N-linked glycosylation degree were shown to confer CXCR4 usage and provide the virus with rapid replication kinetics. Loss of an N-linked glycosylation site within the V3 region had a major influence on the virus switching from the R5 to X4 phenotype in a V3 charge-dependent manner. The loss of this V3 N-linked glycosylation site was also linked with the broadening of the coreceptor repertoire to incorporate CCR3. By comparing the amino acid sequences of primary HIV-1 isolates, we identified a strong association between high V3 charge and the loss of this V3 N-linked glycosylation site. These results demonstrate that the N-linked glycosylation pattern of the HIV-1 envelope can strongly influence viral coreceptor utilization and the R5 to X4 switch.
Collapse
Affiliation(s)
- G Pollakis
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
111
|
Martín J, LaBranche CC, González-Scarano F. Differential CD4/CCR5 utilization, gp120 conformation, and neutralization sensitivity between envelopes from a microglia-adapted human immunodeficiency virus type 1 and its parental isolate. J Virol 2001; 75:3568-80. [PMID: 11264346 PMCID: PMC114848 DOI: 10.1128/jvi.75.8.3568-3580.2001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infects and induces syncytium formation in microglial cells from the central nervous system (CNS). A primary isolate (HIV-1(BORI)) was sequentially passaged in cultured microglia, and the isolate recovered (HIV-1(BORI-15)) showed high levels of fusion and replicated more efficiently in microglia (J. M. Strizki, A. V. Albright, H. Sheng, M. O'Connor, L. Perrin, and F. González-Scarano, J. Virol. 70:7654-7662, 1996). The parent and adapted viruses used CCR5 as coreceptor. Recombinant viruses demonstrated that the syncytium-inducing phenotype was associated with four amino acid differences in the V1/V2 region of the viral gp120 (J. T. C. Shieh, J. Martin, G. Baltuch, M. H. Malim, and F. González-Scarano, J. Virol. 74:693-701, 2000). We produced luciferase-reporter, env-pseudotyped viruses using plasmids containing env sequences from HIV-1(BORI), HIV-1(BORI-15), and the V1/V2 region of HIV-1(BORI-15) in the context of HIV-1(BORI) env (named rBORI, rB15, and rV1V2, respectively). The pseudotypes were used to infect cells expressing various amounts of CD4 and CCR5 on the surface. In contrast to the parent recombinant, the rB15 and rV1V2 pseudotypes retained their infectability in cells expressing low levels of CD4 independent of the levels of CCR5, and they infected cells expressing CD4 with a chimeric coreceptor containing the third extracellular loop of CCR2b in the context of CCR5 or a CCR5 Delta4 amino-terminal deletion mutant. The VH-rB15 and VH-rV1V2 recombinant viruses were more sensitive to neutralization by a panel of HIV-positive sera than was VH-rBORI. Interestingly, the CD4-induced 17b epitope on gp120 was more accessible in the rB15 and rV1V2 pseudotypes than in rBORI, even before CD4 binding, and concomitantly, the rB15 and rV1V2 pseudotypes were more sensitive to neutralization with the human 17b monoclonal antibody. Adaptation to growth in microglia--cells that have reduced expression of CD4 in comparison with other cell types--appears to be associated with changes in gp120 that modify its ability to utilize CD4 and CCR5. Changes in the availability of the 17b epitope indicate that these affect conformation. These results imply that the process of adaptation to certain tissue types such as the CNS directly affects the interaction of HIV-1 envelope glycoproteins with cell surface components and with humoral immune responses.
Collapse
Affiliation(s)
- J Martín
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
112
|
Singer II, Scott S, Kawka DW, Chin J, Daugherty BL, DeMartino JA, DiSalvo J, Gould SL, Lineberger JE, Malkowitz L, Miller MD, Mitnaul L, Siciliano SJ, Staruch MJ, Williams HR, Zweerink HJ, Springer MS. CCR5, CXCR4, and CD4 are clustered and closely apposed on microvilli of human macrophages and T cells. J Virol 2001; 75:3779-90. [PMID: 11264367 PMCID: PMC114869 DOI: 10.1128/jvi.75.8.3779-3790.2001] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chemokine receptors CCR5 and CXCR4 act synergistically with CD4 in an ordered multistep mechanism to allow the binding and entry of human immunodeficiency virus type 1 (HIV-1). The efficiency of such a coordinated mechanism depends on the spatial distribution of the participating molecules on the cell surface. Immunoelectron microscopy was performed to address the subcellular localization of the chemokine receptors and CD4 at high resolution. Cells were fixed, cryoprocessed, and frozen; 80-nm cryosections were double labeled with combinations of CCR5, CXCR4, and CD4 antibodies and then stained with immunogold. Surprisingly, CCR5, CXCR4, and CD4 were found predominantly on microvilli and appeared to form homogeneous microclusters in all cell types examined, including macrophages and T cells. Further, while mixed microclusters were not observed, homogeneous microclusters of CD4 and the chemokine receptors were frequently separated by distances less than the diameter of an HIV-1 virion. Such distributions are likely to facilitate cooperative interactions with HIV-1 during virus adsorption to and penetration of human leukocytes and have significant implications for development of therapeutically useful inhibitors of the entry process. Although the mechanism underlying clustering is not understood, clusters were observed in small trans-Golgi vesicles, implying that they were organized shortly after synthesis and well before insertion into the cellular membrane. Chemokine receptors normally act as sensors, detecting concentration gradients of their ligands and thus providing directional information for cellular migration during both normal homeostasis and inflammatory responses. Localization of these sensors on the microvilli should enable more precise monitoring of their environment, improving efficiency of the chemotactic process. Moreover, since selectins, some integrins, and actin are also located on or in the microvillus, this organelle has many of the major elements required for chemotaxis.
Collapse
MESH Headings
- Animals
- CD4 Antigens/genetics
- CD4 Antigens/metabolism
- Cell Line
- Cells, Cultured
- Fluorescent Antibody Technique
- Golgi Apparatus/metabolism
- HIV Antibodies/immunology
- HIV Envelope Protein gp120/metabolism
- HIV-1/metabolism
- HIV-1/physiology
- Humans
- Macrophages/cytology
- Macrophages/metabolism
- Macrophages/ultrastructure
- Macrophages/virology
- Membrane Microdomains/metabolism
- Membrane Microdomains/ultrastructure
- Microscopy, Electron, Scanning
- Microscopy, Immunoelectron
- Microvilli/metabolism
- Microvilli/ultrastructure
- Rabbits
- Receptors, CCR2
- Receptors, CCR5/genetics
- Receptors, CCR5/metabolism
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Receptors, Chemokine/metabolism
- Secretory Vesicles/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/metabolism
- T-Lymphocytes/ultrastructure
- T-Lymphocytes/virology
- Thermodynamics
Collapse
Affiliation(s)
- I I Singer
- Department of Immunology and Rheumotology, Merck Research Laboratories, Rahway, New Jersey 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Youn BS, Yu KY, Alkhatib G, Kwon BS. The seventh transmembrane domain of cc chemokine receptor 5 is critical for MIP-1beta binding and receptor activation: role of MET 287. Biochem Biophys Res Commun 2001; 281:627-33. [PMID: 11237703 DOI: 10.1006/bbrc.2001.4393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CC chemokine receptor 5 (CCR5) is a high-affinity receptor for macrophage inflammatory protein (MIP)-1beta and functions as the major coreceptor for entry of macrophage-tropic (M-tropic) human immunodeficiency virus type 1 (HIV-1). To evaluate the role of transmembrane domains (TM) in the receptor function of CCR5, the seventh transmembrane domain (TM7) was examined in a series of chimeric receptor constructs including CCR5TM (CCR5 backbone/CCR5 TM7 replaced with CCR1 TM7) and mutants of CCR5TM. The CCR5TM chimera exhibited a dramatic reduction in receptor activation, as well as little or no MIP-1beta binding. Further mutational analysis revealed that Met 287 in TM7 of CCR5 is a critical molecular determinant for both MIP-1beta binding and receptor activation. Interestingly, all of the chimeric/mutated receptors were biologically active in an HIV-1 coreceptor fusion assay, demonstrating that chemokine binding is independent of HIV-1 coreceptor activity.
Collapse
Affiliation(s)
- B S Youn
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | | | | | | |
Collapse
|
114
|
Abstract
HIV virus particles interact with several receptors on cell surfaces. Two receptors, CD4 and a co-receptor act sequentially to trigger fusion of viral and cellular membranes and confer virus entry into cells. For HIV-1, the chemokine receptor CCR5 is the predominant co-receptor exploited for transmission and replication in vivo. Variants that switch to use CXCR4 and perhaps other co-receptors evolve in some infected individuals and have altered tropism and pathogenic properties. Other cell surface receptors including mannose binding protein on macrophages and DC-SIGN on dendritic cells also interact with gp120 on virus particles but do not actively promote fusion and virus entry. These receptors may tether virus particles to cells enabling interactions with suboptimal concentrations of CD4 and/or co-receptors. Alternatively such receptors may transport cell surface trapped virions into lymph nodes before transmitting them to susceptible cells. Therapeutic strategies that prevent HIV from interacting with receptors are currently being developed. This review describes how the interaction and use of different cellular receptors influences HIV tropism and pathogenesis in vivo.
Collapse
Affiliation(s)
- P R Clapham
- Center for AIDS Research, Program in Molecular Medicine, Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
115
|
Mori K, Rosenzweig M, Desrosiers RC. Mechanisms for adaptation of simian immunodeficiency virus to replication in alveolar macrophages. J Virol 2000; 74:10852-9. [PMID: 11044136 PMCID: PMC110966 DOI: 10.1128/jvi.74.22.10852-10859.2000] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In contrast to the simian immunodeficiency virus SIVmac239, which replicates poorly in rhesus monkey alveolar macrophages, a variant with nine amino acid changes in envelope (SIVmac239/316E) replicates efficiently and to high titer in these same cells. We examined levels of viral DNA, RNA, antigen, and infectious virus to identify the nature of the block to SIVmac239 replication in these cells. Low levels of viral antigen (0.1 to 1.0 ng of p27 per ml) and infectious virus (100 to 1,000 infectious units per ml) were produced in the supernatant 1 to 4 days after SIVmac239 infection, but these levels did not increase subsequently. SIVmac239 DNA was synthesized in these macrophage cultures during the initial 24 h after infection, but the levels did not increase subsequently. Quantitation of the numbers of infectious cells in cultures over time and the results of experiments in which cells were reexposed to SIVmac239 after the initial exposure indicated that only a small proportion of cells were susceptible to SIVmac239 infection in these alveolar macrophage cultures and that the vast majority (>95%) of cells were refractory to SIVmac239 infection. In contrast to the results with SIVmac239, the levels of viral antigen, infectious virus, and viral DNA increased exponentially 2 to 7 days after infection by SIVmac239/316E, reaching levels greater than 100 ng of p27 per ml and 100,000 infectious units per ml. Since SIVmac239/316E has previously been described as a virus capable of infecting cells in a relatively CD4-independent fashion, we examined the levels of CD4 expression on the surface of fresh and cultured alveolar macrophages from rhesus monkeys. The levels of CD4 expression were extremely low, below the limit of detection by flow cytometry, on greater than 99% of the macrophages. CCR5(+) cells were profoundly depleted only from alveolar macrophage cultures infected with SIVmac239/316E. High concentrations of an antibody to CD4 delayed but did not block replication of SIVmac239/316E. The results suggest that the adaptation of SIVmac316 to efficient replication in alveolar macrophages results from its ability to infect these cells in a CD4-independent fashion or in a CD4-dependent fashion even at extremely low levels of surface CD4 expression. Since resident macrophages in brains and lungs of humans also express little or no CD4, our findings predict the presence of human immunodeficiency virus type 1 that is relatively CD4 independent in the lung and brain compartments of infected people.
Collapse
Affiliation(s)
- K Mori
- AIDS Research Center, Tsukuba Primate Center, National Institute of Infectious Diseases, Tsukuba, Ibaraki 305, Japan
| | | | | |
Collapse
|
116
|
Farzan M, Vasilieva N, Schnitzler CE, Chung S, Robinson J, Gerard NP, Gerard C, Choe H, Sodroski J. A tyrosine-sulfated peptide based on the N terminus of CCR5 interacts with a CD4-enhanced epitope of the HIV-1 gp120 envelope glycoprotein and inhibits HIV-1 entry. J Biol Chem 2000; 275:33516-21. [PMID: 10938094 DOI: 10.1074/jbc.m007228200] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sequential association of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 with CD4 and a seven-transmembrane segment coreceptor such as CCR5 or CXCR4 initiates entry of the virus into its target cell. The N terminus of CCR5, which contains several sulfated tyrosines, plays a critical role in the CD4-dependent association of gp120 with CCR5 and in viral entry. Here we demonstrate that a tyrosine-sulfated peptide based on the N terminus of CCR5, but not its unsulfated analogue, inhibits infection of macrophages and peripheral blood mononuclear cells by CCR5-dependent, but not CXCR4-dependent, HIV-1 isolates. The sulfated peptide also inhibited the association of CCR5-expressing cells with gp120-soluble CD4 complexes and, less efficiently, with MIP-1alpha. Moreover, this peptide inhibited the precipitation of gp120 by 48d and 23e antibodies, which recognize CD4-inducible gp120 epitopes, but not by several other antibodies that recognize proximal epitopes. The ability of the sulfated peptide to block 48d association with gp120 was dependent in part on seven tropism-determining residues in the third variable (V3) and fourth conserved (C4) domains of gp120. These data underscore the important role of the N-terminal sulfate moieties of CCR5 in the entry of R5 HIV-1 isolates and localize a critical contact between gp120 and CCR5.
Collapse
Affiliation(s)
- M Farzan
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Affiliation(s)
- U H von Andrian
- Center for Blood Research, Department of Pathology, Harvard Medical School, Boston 02115, USA.
| | | |
Collapse
|
118
|
Hu Q, Trent JO, Tomaras GD, Wang Z, Murray JL, Conolly SM, Navenot JM, Barry AP, Greenberg ML, Peiper SC. Identification of ENV determinants in V3 that influence the molecular anatomy of CCR5 utilization. J Mol Biol 2000; 302:359-75. [PMID: 10970739 DOI: 10.1006/jmbi.2000.4076] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The V3 loop of the ENV glycoprotein exerts a dominant influence on the interaction of gp120 with coreceptors. Primary env genes cloned from sequential isolates from two seroconverters revealed Pro-->Ala conversion in the conserved GPG motif of the V3 crown in seven of 17 R5 ENV. ENV containing the GPG motif in the V3 crown had fusogenic activity with chimeric receptors containing either the N terminus or loops of CCR5, whereas those with the GAG variant utilized only the former. Site-directed mutagenesis of multiple primary and prototypic R5 env genes demonstrated that the GPG motif was necessary for dual utilization of the N terminus and body of CCR5 in both gain and loss-of-function experiments. All ENV containing the GPG V3 crown showed CCR5 binding in the presence of soluble CD4, whereas it was not detected with the GAG variants. Molecular dynamic simulations of a V3 peptide predicts that the Pro-->Ala substitution results in a conformational change with loss of the crown structure. These studies demonstrate that sequences in the third hypervariable region determine the specificity of coreceptor utilization for fusion, and that a conserved motif in the crown directly influences the molecular anatomy of the interaction between gp120 and CCR5.
Collapse
Affiliation(s)
- Q Hu
- Henry Vogt Cancer Research Institute, James Graham Brown Cancer Center, Louisville, KY, 40202, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Abstract
CCR5 is the major coreceptor for macrophage-tropic strains of the human immunodeficiency virus type I (HIV-1). Homozygotes for a 32-base pair (bp) deletion in the coding sequence of the receptor (CCR5Δ32) were found to be highly resistant to viral infection, and CCR5 became, therefore, one of the paradigms illustrating the influence of genetic variability onto individual susceptibility to infectious and other diseases. We investigated the functional consequences of 16 other natural CCR5 mutations described in various human populations. We found that 10 of these variants are efficiently expressed at the cell surface, bind [125I]-MIP-1β with affinities similar to wtCCR5, respond functionally to chemokines, and act as HIV-1 coreceptors. In addition to Δ32, six mutations were characterized by major alterations in their functional response to chemokines, as a consequence of intracellular trapping and poor expression at the cell surface (C101X, FS299), general or specific alteration of ligand binding affinities (C20S, C178R, A29S), or relative inability to mediate receptor activation (L55Q). A29S displayed an unusual pharmacological profile, binding and responding to MCP-2 similarly to wtCCR5, but exhibiting severely impaired binding and functional responses to MIP-1α, MIP-1β, and RANTES. In addition to Δ32, only C101X was totally unable to mediate entry of HIV-1. The fact that nonfunctional CCR5 alleles are relatively frequent in various human populations reinforces the hypothesis of a selective pressure favoring these alleles.
Collapse
|
120
|
Abstract
Abstract
CCR5 is the major coreceptor for macrophage-tropic strains of the human immunodeficiency virus type I (HIV-1). Homozygotes for a 32-base pair (bp) deletion in the coding sequence of the receptor (CCR5Δ32) were found to be highly resistant to viral infection, and CCR5 became, therefore, one of the paradigms illustrating the influence of genetic variability onto individual susceptibility to infectious and other diseases. We investigated the functional consequences of 16 other natural CCR5 mutations described in various human populations. We found that 10 of these variants are efficiently expressed at the cell surface, bind [125I]-MIP-1β with affinities similar to wtCCR5, respond functionally to chemokines, and act as HIV-1 coreceptors. In addition to Δ32, six mutations were characterized by major alterations in their functional response to chemokines, as a consequence of intracellular trapping and poor expression at the cell surface (C101X, FS299), general or specific alteration of ligand binding affinities (C20S, C178R, A29S), or relative inability to mediate receptor activation (L55Q). A29S displayed an unusual pharmacological profile, binding and responding to MCP-2 similarly to wtCCR5, but exhibiting severely impaired binding and functional responses to MIP-1α, MIP-1β, and RANTES. In addition to Δ32, only C101X was totally unable to mediate entry of HIV-1. The fact that nonfunctional CCR5 alleles are relatively frequent in various human populations reinforces the hypothesis of a selective pressure favoring these alleles.
Collapse
|
121
|
Chabot DJ, Broder CC. Substitutions in a homologous region of extracellular loop 2 of CXCR4 and CCR5 alter coreceptor activities for HIV-1 membrane fusion and virus entry. J Biol Chem 2000; 275:23774-82. [PMID: 10827088 DOI: 10.1074/jbc.m003438200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CXCR4 and CCR5 are the principal coreceptors for human immunodeficiency virus type-1 (HIV-1) infection. Previously, mutagenesis of CXCR4 identified single amino acid changes that either impaired CXCR4's coreceptor activity for CXCR4-dependent (X4) isolate envelope glycoproteins (Env) or expanded its activity, allowing it to serve as a functional coreceptor for CCR5-dependent (R5) isolates. The most potent of these point mutations was an alanine substitution for the aspartic acid residue at position 187 in extracellular loop 2 (ecl-2), and here we show that this mutation also permits a variety of primary R5 isolate Envs, including those of other subtypes (clades), to employ it as a coreceptor. We also examined the corresponding region of CCR5 and demonstrate that the substitution of the serine residue in the homologous ecl-2 position with aspartic acid impairs CCR5 coreceptor activity for isolates across several clades. These results highlight a homologous and critical element in ecl-2, of both the CXCR4 and CCR5 molecules, for their respective coreceptor activities. Charge elimination expands CXCR4 coreceptor activity, while a similar charge introduction can destroy the coreceptor function of CCR5. These findings provide further evidence that there are conserved elements in both CXCR4 and CCR5 involved in coreceptor function.
Collapse
Affiliation(s)
- D J Chabot
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA
| | | |
Collapse
|
122
|
Kuhmann SE, Platt EJ, Kozak SL, Kabat D. Cooperation of multiple CCR5 coreceptors is required for infections by human immunodeficiency virus type 1. J Virol 2000; 74:7005-15. [PMID: 10888639 PMCID: PMC112217 DOI: 10.1128/jvi.74.15.7005-7015.2000] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to the primary cell surface receptor CD4, CCR5 or another coreceptor is necessary for infections by human immunodeficiency virus type 1 (HIV-1), yet the mechanisms of coreceptor function and their stoichiometries in the infection pathway remain substantially unknown. To address these issues, we studied the effects of CCR5 concentrations on HIV-1 infections using wild-type CCR5 and two attenuated mutant CCR5s, one with the mutation Y14N at a critical tyrosine sulfation site in the amino terminus and one with the mutation G163R in extracellular loop 2. The Y14N mutation converted a YYT sequence at positions 14 to 16 to an NYT consensus site for N-linked glycosylation, and the mutant protein was shown to be glycosylated at that position. The relationships between HIV-1 infectivity values and CCR5 concentrations took the form of sigmoidal (S-shaped) curves, which were dramatically altered in different ways by these mutations. Both mutations shifted the curves by factors of approximately 30- to 150-fold along the CCR5 concentration axis, consistent with evidence that they reduce affinities of virus for the coreceptor. In addition, the Y14N mutation specifically reduced the maximum efficiencies of infection that could be obtained at saturating CCR5 concentrations. The sigmoidal curves for all R5 HIV-1 isolates were quantitatively consistent with a simple mathematical model, implying that CCR5s reversibly associate with cell surface HIV-1 in a concentration-dependent manner, that approximately four to six CCR5s assemble around the virus to form a complex needed for infection, and that both mutations inhibit assembly of this complex but only the Y14N mutation also significantly reduces its ability to successfully mediate HIV-1 infections. Although several alternative models would be compatible with our data, a common feature of these alternatives is the cooperation of multiple CCR5s in the HIV-1 infection pathway. This cooperativity will need to be considered in future studies to address in detail the mechanism of CCR5-mediated HIV-1 membrane fusion.
Collapse
Affiliation(s)
- S E Kuhmann
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA
| | | | | | | |
Collapse
|
123
|
Tokizawa S, Shimizu N, Hui-Yu L, Deyu F, Haraguchi Y, Oite T, Hoshino H. Infection of mesangial cells with HIV and SIV: identification of GPR1 as a coreceptor. Kidney Int 2000; 58:607-17. [PMID: 10916084 DOI: 10.1046/j.1523-1755.2000.00207.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Mesangial cells are an important component of the glomerulus. Dysfunction of mesangial cells is thought to be involved in the development of human immunodeficiency virus type 1 (HIV-1)-associated nephropathy (HIVAN). HIVAN is a structural renal failure frequently observed in patients with acquired immune deficiency syndrome. However, the susceptibility of mesangial cells to HIV-1 is disputable. More than ten G protein-coupled receptors, including chemokine receptors, have been shown to act as HIV-1 coreceptors that determine the susceptibilities of cells to HIV-1 strains with specific cell tropisms. METHODS We examined the susceptibility of mesangial cells to various HIV-1, HIV type 2 (HIV-2) and simian immunodeficiency virus (SIV) strains. Expression of CD4 and HIV/SIV coreceptors was examined by Western blotting and polymerase chain reaction. RESULTS Mesangial cells were found to be susceptible to HIV-1 variant and mutants that infect brain-derived cells, but highly resistant to T-tropic (X4), M-tropic (R5) or dual-tropic (X4R5) HIV-1 strains. In addition, mesangial cells were also susceptible to HIV-2 and SIV strains that infect the brain-derived cells. Among HIV/SIV coreceptors we tested, the expression of GPR1 mRNA was detected in mesangial cells. Expression of CD4 mRNA and protein was also detected in them. Mesangial cells and GPR1-transduced CD4-positive cells showed similar susceptibilities to the HIV-1 variant and mutants and HIV-2 and SIV strains. CONCLUSIONS CD4 and GPR1 mRNAs were detected in mesangial cells. Mesangial cells were susceptible to HIV/SIV strains that use GPR1 as a coreceptor. Our findings suggest that an orphan G protein-coupled receptor, GPR1, is a coreceptor expressed in mesangial cells. It remains to be investigated whether the interaction of mesangial cells with specific HIV-1 strains through GPR1 plays a role in the development of HIVAN.
Collapse
Affiliation(s)
- S Tokizawa
- Department of Virology and Preventive Medicine, Gunma University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
124
|
Baba M, Miyake H, Okamoto M, Iizawa Y, Okonogi K. Establishment of a CCR5-expressing T-lymphoblastoid cell line highly susceptible to R5 HIV type 1. AIDS Res Hum Retroviruses 2000; 16:935-41. [PMID: 10890354 DOI: 10.1089/08892220050058344] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The beta-chemokine receptor CCR5 is considered to be an attractive target for inhibition of CCR5-using (R5 or macrophage-tropic) HIV-1. However, R5 HIV-1 cannot replicate in CD4+ T cell or monocyte lines because of the lack of CCR5 expression on their surface, which apparently hampers discovery and development of effective CCR5 antagonists against HIV-1 replication. In this study, we have established the CCR5-expressing T cell line MOLT-4/CCR5, highly permissive to the replication of R5 HIV-1. The cells express a considerable amount of CCR5 on their surface. When the cells were infected with the R5 HIV-1 strains Ba-L and JR-FL, the virus-induced cytopathic effect (syncytium formation) was observed, and the cells produced large amounts of HIV-1 p24 antigen in the culture supernatants. The analyses of progeny viruses for their coreceptor use and gp120 V3 nucleotide sequence revealed that they were R5 HIV-1. The parental cell line MOLT-4 was much less susceptible to Ba-L and totally insusceptible to JR-FL. Furthermore, MOLT-4/CCR5 cells could support the replication of an R5 clinical isolate, but MOLT-4 cells could not. When TAK-779, a novel small-molecule nonpeptide CCR5 antagonist, was examined for its inhibitory effect on R5 HIV-1 replication in MOLT-4/CCR5 cells, the compound displayed potent antiviral activity, as demonstrated in peripheral blood mononuclear cells. These results indicate that the established cell line will be an extremely useful tool for experiments with R5 HIV-1.
Collapse
Affiliation(s)
- M Baba
- Division of Human Retroviruses, Center for Chronic Viral Diseases, Faculty of Medicine, Kagoshima University, Japan.
| | | | | | | | | |
Collapse
|
125
|
Kajumo F, Thompson DA, Guo Y, Dragic T. Entry of R5X4 and X4 human immunodeficiency virus type 1 strains is mediated by negatively charged and tyrosine residues in the amino-terminal domain and the second extracellular loop of CXCR4. Virology 2000; 271:240-7. [PMID: 10860877 DOI: 10.1006/viro.2000.0308] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CXCR4 mediates the fusion and entry of X4 and R5X4 strains of human immunodeficiency virus type 1 (HIV-1). The residues involved in CXCR4 coreceptor function have not all yet been identified, but tyrosine and negatively charged residues in the amino-terminal domain of CCR5 were shown to be indispensable for gp120 binding and entry of R5 and R5X4 strains. We therefore evaluated the role of such residues in CXCR4 coreceptor function by replacing tyrosines (Y), aspartic acids (D), and glutamic acids (E) with alanines (A) and testing the ability of these mutants to mediate the entry of X4 and R5X4 HIV-1 isolates. Our results show that viral entry depends on YDE-rich clusters in both the amino-terminus and the second extracellular loop of CXCR4. Different viral isolates vary in their dependence on residues in one or the other domain. The determinants of CXCR4 coreceptor function are, therefore, more diffuse and isolate-dependent than those of CCR5.
Collapse
Affiliation(s)
- F Kajumo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
126
|
Affiliation(s)
- C M McManus
- Department of Pathology, University of Pennsylvania, Philadelphia 19104, USA
| | | |
Collapse
|
127
|
Cormier EG, Persuh M, Thompson DA, Lin SW, Sakmar TP, Olson WC, Dragic T. Specific interaction of CCR5 amino-terminal domain peptides containing sulfotyrosines with HIV-1 envelope glycoprotein gp120. Proc Natl Acad Sci U S A 2000; 97:5762-7. [PMID: 10823934 PMCID: PMC18507 DOI: 10.1073/pnas.97.11.5762] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The HIV-1 envelope glycoprotein gp120 interacts consecutively with CD4 and the CCR5 coreceptor to mediate the entry of certain HIV-1 strains into target cells. Acidic residues and sulfotyrosines in the amino-terminal domain (Nt) of CCR5 are crucial for viral fusion and entry. We tested the binding of a panel of CCR5 Nt peptides to different soluble gp120/CD4 complexes and anti-CCR5 mAbs. The tyrosine residues in the peptides were sulfated, phosphorylated, or unmodified. None of the gp120/CD4 complexes associated with peptides containing unmodified or phosphorylated tyrosines. The gp120/CD4 complexes containing envelope glycoproteins from isolates that use CCR5 as a coreceptor associated with Nt peptides containing sulfotyrosines but not with peptides containing sulfotyrosines in scrambled Nt sequences. Finally, only peptides containing sulfotyrosines inhibited the entry of an R5 isolate. Our data show that proper posttranslational modification of the CCR5 Nt is required for gp120 binding and viral entry. More importantly, the Nt domain determines the specificity of the interaction between CCR5 and gp120s from isolates that use this coreceptor.
Collapse
Affiliation(s)
- E G Cormier
- Albert Einstein College of Medicine, Microbiology and Immunology Department, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
128
|
Rizzuto C, Sodroski J. Fine definition of a conserved CCR5-binding region on the human immunodeficiency virus type 1 glycoprotein 120. AIDS Res Hum Retroviruses 2000; 16:741-9. [PMID: 10826481 DOI: 10.1089/088922200308747] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A previous study implicated a conserved surface of the human immunodeficiency virus (HIV-1) gp120 exterior envelope glycoprotein in binding the CCR5 viral coreceptor (Rizzuto C, Wyatt R, Hernández-Ramos N, Sun Y, Kwong PD, Hendrickson WA, and Sodroski J: Science 1998;280:1949-1953). Additional mutagenesis indicates that important residues in this region for CCR5 binding are Ile-420, Lys-421, Gln-422, Pro-438, and Gly-441. These highly conserved residues are located on two strands that connect the gp120 bridging sheet and outer domain, suggesting a mechanism whereby interdomain conformational shifts induced by CD4 binding could facilitate CCR5 binding.
Collapse
Affiliation(s)
- C Rizzuto
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
129
|
Dragic T, Trkola A, Thompson DA, Cormier EG, Kajumo FA, Maxwell E, Lin SW, Ying W, Smith SO, Sakmar TP, Moore JP. A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5. Proc Natl Acad Sci U S A 2000; 97:5639-44. [PMID: 10779565 PMCID: PMC25881 DOI: 10.1073/pnas.090576697] [Citation(s) in RCA: 339] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HIV-1 entry into CD4(+) cells requires the sequential interactions of the viral envelope glycoproteins with CD4 and a coreceptor such as the chemokine receptors CCR5 and CXCR4. A plausible approach to blocking this process is to use small molecule antagonists of coreceptor function. One such inhibitor has been described for CCR5: the TAK-779 molecule. To facilitate the further development of entry inhibitors as antiviral drugs, we have explored how TAK-779 acts to prevent HIV-1 infection, and we have mapped its site of interaction with CCR5. We find that TAK-779 inhibits HIV-1 replication at the membrane fusion stage by blocking the interaction of the viral surface glycoprotein gp120 with CCR5. We could identify no amino acid substitutions within the extracellular domain of CCR5 that affected the antiviral action of TAK-779. However, alanine scanning mutagenesis of the transmembrane domains revealed that the binding site for TAK-779 on CCR5 is located near the extracellular surface of the receptor, within a cavity formed between transmembrane helices 1, 2, 3, and 7.
Collapse
Affiliation(s)
- T Dragic
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Basu S, Sriram B, Goila R, Banerjea AC. Targeted cleavage of HIV-1 coreceptor-CXCR-4 by RNA-cleaving DNA-enzyme: inhibition of coreceptor function. Antiviral Res 2000; 46:125-34. [PMID: 10854664 DOI: 10.1016/s0166-3542(00)00075-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
HIV needs the chemokine receptors (HIV-1 coreceptors) to initiate infection and gain entry into a susceptible cell. CCR5 receptor is used by macrophage tropic viruses to establish infection, and CXCR-4 is used by T lymphocyte tropic virus which are usually found at the terminal stages of the disease. These chemokine receptors are, therefore, attractive targets to interfere with the entry as well as spread of HIV-1 in the host. As our antiviral approach, we have earlier assembled a DNA-enzyme-916 against CCR5 (Goila and Banerjea, 1998). We have now designed against the CXCR-4 gene a mono-DNA-enzyme, which showed sequence specific cleavage activity. When CXCR-4-DNA-enzyme was placed in tandem with CCR5-DNA-enzyme, specific cleavage of their respective target sites were observed using a 60 bases long synthetic target RNA which possessed the target sites for both the DNA-enzymes. The cleavage by the CXCR-4 DNA-enzyme was found to be significantly more efficient than by the CCR5-DNA-enzyme. Analyses of the cleaved fragments by mono- and di-DNA-enzyme indicated strongly that hybridization of the CCR5-DNA-enzyme with its cognate target RNA, actually facilitated the cleavage by the CXCR-4 DNA-enzyme. Furthermore, the di-DNA-enzyme was able to cleave the substrate RNA to completion. These DNA-enzymes, when introduced into a mammalian cell line expressing the appropriate chemokine receptor, interfered specifically with the HIV-1 coreceptor functions. Using this strategy, it may be possible to interfere with the infection and spread of R5 as well as X4 viruses.
Collapse
Affiliation(s)
- S Basu
- Laboratory of Virology, National Institute of Immunology, Aruna Asaf Ali Marg, -110067, New Delhi, India
| | | | | | | |
Collapse
|
131
|
Chabot DJ, Chen H, Dimitrov DS, Broder CC. N-linked glycosylation of CXCR4 masks coreceptor function for CCR5-dependent human immunodeficiency virus type 1 isolates. J Virol 2000; 74:4404-13. [PMID: 10756055 PMCID: PMC111957 DOI: 10.1128/jvi.74.9.4404-4413.2000] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The chemokine receptors CXCR4 and CCR5 are the principal coreceptors for infection of X4 and R5 human immunodeficiency virus type 1 (HIV-1) isolates, respectively. Here we report on the unexpected observation that the removal of the N-linked glycosylation sites in CXCR4 potentially allows the protein to serve as a universal coreceptor for both X4 and R5 laboratory-adapted and primary HIV-1 strains. We hypothesize that this alteration unmasks existing common extracellular structures reflecting a conserved three-dimensional similarity of important elements of CXCR4 and CCR5 that are involved in HIV envelope glycoprotein (Env) interaction. These results may have far-reaching implications for the differential recognition of cell type-dependent glycosylated CXCR4 by HIV-1 isolates and their evolution in vivo. They also suggest a possible explanation for the various observations of restricted virus entry in some cell types and further our understanding of the framework of elements that represent the Env-coreceptor contact sites.
Collapse
Affiliation(s)
- D J Chabot
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA
| | | | | | | |
Collapse
|
132
|
Vila-Coro AJ, Mellado M, Martín de Ana A, Lucas P, del Real G, Martínez-A C, Rodríguez-Frade JM. HIV-1 infection through the CCR5 receptor is blocked by receptor dimerization. Proc Natl Acad Sci U S A 2000; 97:3388-93. [PMID: 10725362 PMCID: PMC16249 DOI: 10.1073/pnas.97.7.3388] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The identification of the chemokine receptors as receptors for HIV-1 has boosted interest in these molecules, raising expectations for the development of new strategies to prevent HIV-1 infection. The discovery that chemokines block HIV-1 replication has focused attention on identifying their mechanism of action. Previous studies concluded that this inhibitory effect may be mediated by steric hindrance or by receptor down-regulation. We have identified a CCR5 receptor-specific mAb that neither competes with the chemokine for binding nor triggers signaling, as measured by Ca(2+) influx or chemotaxis. The antibody neither triggers receptor down-regulation nor interferes with the R5 JRFL viral strain gp120 binding to CCR5, but blocks HIV-1 replication in both in vitro assays using peripheral blood mononuclear cells as HIV-1 targets, as well as in vivo using human peripheral blood mononuclear cell-reconstituted SCID (severe combined immunodeficient) mice. Our evidence shows that the anti-CCR5 mAb efficiently prevents HIV-1 infection by inducing receptor dimerization. Chemokine receptor dimerization also is induced by chemokines and is required for their anti-HIV-1 activity. In addition to providing a molecular mechanism through which chemokines block HIV-1 infection, these results illustrate the prospects for developing new tools that possess HIV-1 suppressor activity, but lack the undesired inflammatory side effects of the chemokines.
Collapse
Affiliation(s)
- A J Vila-Coro
- Department of Immunology and Oncology, Centro Nacional de Biotecnologia, Universidad Autónoma de Madrid, Campus de Cantoblanco, E-28049, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
133
|
HIV-1 infection through the CCR5 receptor is blocked by receptor dimerization. Proc Natl Acad Sci U S A 2000; 97. [PMID: 10725362 PMCID: PMC16249 DOI: 10.1073/pnas.050457797] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The identification of the chemokine receptors as receptors for HIV-1 has boosted interest in these molecules, raising expectations for the development of new strategies to prevent HIV-1 infection. The discovery that chemokines block HIV-1 replication has focused attention on identifying their mechanism of action. Previous studies concluded that this inhibitory effect may be mediated by steric hindrance or by receptor down-regulation. We have identified a CCR5 receptor-specific mAb that neither competes with the chemokine for binding nor triggers signaling, as measured by Ca(2+) influx or chemotaxis. The antibody neither triggers receptor down-regulation nor interferes with the R5 JRFL viral strain gp120 binding to CCR5, but blocks HIV-1 replication in both in vitro assays using peripheral blood mononuclear cells as HIV-1 targets, as well as in vivo using human peripheral blood mononuclear cell-reconstituted SCID (severe combined immunodeficient) mice. Our evidence shows that the anti-CCR5 mAb efficiently prevents HIV-1 infection by inducing receptor dimerization. Chemokine receptor dimerization also is induced by chemokines and is required for their anti-HIV-1 activity. In addition to providing a molecular mechanism through which chemokines block HIV-1 infection, these results illustrate the prospects for developing new tools that possess HIV-1 suppressor activity, but lack the undesired inflammatory side effects of the chemokines.
Collapse
|
134
|
Maeda Y, Foda M, Matsushita S, Harada S. Involvement of both the V2 and V3 regions of the CCR5-tropic human immunodeficiency virus type 1 envelope in reduced sensitivity to macrophage inflammatory protein 1alpha. J Virol 2000; 74:1787-93. [PMID: 10644351 PMCID: PMC111656 DOI: 10.1128/jvi.74.4.1787-1793.2000] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine whether C-C chemokines play an important role in the phenotype switch of human immunodeficiency virus (HIV) from CCR5 to CXCR4 usage during the course of an infection in vivo, macrophage inflammatory protein (MIP)-1alpha-resistant variants were isolated from CCR5-tropic (R5) HIV-1 in vitro. The selected variants displayed reduced sensitivities to MIP-1alpha (fourfold) through CCR5-expressing CD4-HeLa/long terminal repeat-beta-galactosidase (MAGI/CCR5) cells. The variants were also resistant to other natural ligands for CCR5, namely, MIP-1beta (>4-fold) and RANTES (regulated upon activation, normal T-cell expressed and secreted) (6-fold). The env sequence analyses revealed that the variants had amino acid substitutions in V2 (valine 166 to methionine) and V3 (serine 303 to glycine), although the same V3 substitution appeared in virus passaged without MIP-1alpha. A single-round replication assay using a luciferase reporter HIV-1 strain pseudotyped with mutant envelopes confirmed that mutations in both V2 and V3 were necessary to confer the reduced sensitivity to MIP-1alpha, MIP-1beta, and RANTES. However, the double mutant did not switch its chemokine receptor usage from CCR5 to CXCR4, indicating the altered recognition of CCR5 by this mutant. These results indicated that V2 combined with the V3 region of the CCR5-tropic HIV-1 envelope modulates the sensitivity of HIV-1 to C-C chemokines without altering the ability to use chemokine receptors.
Collapse
Affiliation(s)
- Y Maeda
- Department of Biodefence and Medical Virology, School of Medicine, Kumamoto University, Kumamoto, Japan.
| | | | | | | |
Collapse
|
135
|
Shieh JT, Martín J, Baltuch G, Malim MH, González-Scarano F. Determinants of syncytium formation in microglia by human immunodeficiency virus type 1: role of the V1/V2 domains. J Virol 2000; 74:693-701. [PMID: 10623731 PMCID: PMC111589 DOI: 10.1128/jvi.74.2.693-701.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Microglia are the main reservoir for human immunodeficiency virus type 1 (HIV-1) in the central nervous system (CNS), and multinucleated giant cells, the result of fusion of HIV-1-infected microglia and brain macrophages, are the neuropathologic hallmark of HIV dementia. One potential explanation for the formation of syncytia is viral adaptation for these CD4(+) CNS cells. HIV-1(BORI-15), a virus adapted to growth in microglia by sequential passage in vitro, mediates high levels of fusion and replicates more efficiently in microglia and monocyte-derived-macrophages than its unpassaged parent (J. M. Strizki, A. V. Albright, H. Sheng, M. O'Connor, L. Perrin, and F. Gonzalez-Scarano, J. Virol. 70:7654-7662, 1996). Since the interaction between the viral envelope glycoprotein and CD4 and the chemokine receptor mediates fusion and plays a key role in tropism, we have analyzed the HIV-1(BORI-15) env as a fusogen and in recombinant and pseudotyped viruses. Its syncytium-forming phenotype is not the result of a switch in coreceptor use but rather of the HIV-1(BORI-15) envelope-mediated fusion of CD4(+)CCR5(+) cells with greater efficiency than that of its parental strain, either by itself or in the context of a recombinant virus. Genetic analysis indicated that the syncytium-forming phenotype was due to four discrete amino acid differences in V1/V2, with a single-amino-acid change between the parent and the adapted virus (E153G) responsible for the majority of the effect. Additionally, HIV-1(BORI-15) env-pseudotyped viruses were less sensitive to decreases in the levels of CD4 on transfected 293T cells, leading to the hypothesis that the differences in V1/V2 alter the interaction between this envelope and CD4 or CCR5, or both. In sum, the characterization of the envelope of HIV-1(BORI-15), a highly fusogenic glycoprotein with genetic determinants in V1/V2, may lead to a better understanding of the relationship between HIV replication and syncytium formation in the CNS and of the importance of this region of gp120 in the interaction with CD4 and CCR5.
Collapse
Affiliation(s)
- J T Shieh
- Department of Neurology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
136
|
Tailor CS, Nouri A, Kabat D. A comprehensive approach to mapping the interacting surfaces of murine amphotropic and feline subgroup B leukemia viruses with their cell surface receptors. J Virol 2000; 74:237-44. [PMID: 10590111 PMCID: PMC111533 DOI: 10.1128/jvi.74.1.237-244.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Because mutations in envelope glycoproteins of retroviruses or in their cell surface receptors can eliminate function by multiple mechanisms, it has been difficult to unambiguously identify sites for their interactions by site-directed mutagenesis. Recently, we developed a gain-of-function approach to overcome this problem. Our strategy relies on the fact that feline leukemia virus subgroup B (FeLV-B) and amphotropic murine leukemia virus (A-MLV) have closely related gp70 surface envelope glycoproteins and use related Na(+)-dependent phosphate symporters, Pit1 and Pit2, respectively, as their receptors. We previously observed that FeLV-B/A-MLV envelope glycoprotein chimeras spliced between the variable regions VRA and VRB were unable to use Pit1 or Pit2 as a receptor but could efficiently use specific Pit1/Pit2 chimeras. The latter study suggested that the VRA of A-MLV and FeLV-B functionally interact with the presumptive extracellular loops 4 and 5 (ECL4 and -5) of their respective receptors, whereas VRB interacts with ECL2. We also found that FeLV-B gp70 residues F60 and P61 and A-MLV residues Y60 and V61 in the first disulfide-bonded loop of VRA were important for functional interaction with the receptor's ECL4 or -5. We have now extended this approach to identify additional VRA and VRB residues that are involved in receptor recognition. Our studies imply that FeLV-B VRA residues F60 and P61 interact with the Pit1 ECL5 region, whereas VRA residues 66 to 78 interact with Pit1 ECL4. Correspondingly, A-MLV VRA residues Y60 and V61 interact with the Pit2 ECL5 region, whereas residues 66 to 78 interact with Pit2 ECL4. Similar studies that focused on the gp70 VRB implicated residues 129 to 139 as contributing to specific interactions with the receptor ECL2. These results identify three regions of gp70 that interact in a specific manner with distinct portions of their receptors, thereby providing a map of the functionally interacting surfaces.
Collapse
Affiliation(s)
- C S Tailor
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA.
| | | | | |
Collapse
|
137
|
Martín JC, Bandrés JC. Cells of the monocyte-macrophage lineage and pathogenesis of HIV-1 infection. J Acquir Immune Defic Syndr 1999; 22:413-29. [PMID: 10961602 DOI: 10.1097/00126334-199912150-00001] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It is thought that monocyte-macrophages and probably dendritic cells play a central role in HIV-1 primary infection, as well as in its evolution, given that they are among the first cells infected and later function as important reservoirs for the virus. These cells may participate in the selection of certain viral strains instead of others. Levels of CCR5 coreceptor expression on the surface of monocytes and macrophages determine their susceptibility to infection by HIV-1 strains using this coreceptor and may explain, in part, the differences in the infectivity of these cells through the maturation process. However, selection for certain strains is not only determined by the level of coreceptor expression, but by the biochemical properties of the different coreceptors and their relationship with other surface molecules and the chemokine and cytokine networks, which also influence the selective viral infection and replication in these cells. Any current or newly designed therapies need to be evaluated, including careful analysis of the levels of HIV-1 infection of the cells of the monocyte-macrophage lineage, because these cells are both significant viral reservoirs and a center of virus production at all stages of the disease.
Collapse
Affiliation(s)
- J C Martín
- New York Harbor VA Medical Center, New York, USA
| | | |
Collapse
|
138
|
Blanpain C, Doranz BJ, Vakili J, Rucker J, Govaerts C, Baik SS, Lorthioir O, Migeotte I, Libert F, Baleux F, Vassart G, Doms RW, Parmentier M. Multiple charged and aromatic residues in CCR5 amino-terminal domain are involved in high affinity binding of both chemokines and HIV-1 Env protein. J Biol Chem 1999; 274:34719-27. [PMID: 10574939 DOI: 10.1074/jbc.274.49.34719] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CCR5 is a functional receptor for MIP-1alpha, MIP-1beta, RANTES (regulated on activation normal T cell expressed), MCP-2, and MCP-4 and constitutes the main coreceptor for macrophage tropic human and simian immunodeficiency viruses. By using CCR5-CCR2b chimeras, we have shown previously that the second extracellular loop of CCR5 is the major determinant for chemokine binding specificity, whereas the amino-terminal domain plays a major role for human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus coreceptor function. In the present work, by using a panel of truncation and alanine-scanning mutants, we investigated the role of specific residues in the CCR5 amino-terminal domain for chemokine binding, functional response to chemokines, HIV-1 gp120 binding, and coreceptor function. Truncation of the amino-terminal domain resulted in a progressive decrease of the binding affinity for chemokines, which correlated with a similar drop in functional responsiveness. Mutants lacking residues 2-13 exhibited fairly weak responses to high concentrations (500 nM) of RANTES or MIP-1beta. Truncated mutants also exhibited a reduction in the binding affinity for R5 Env proteins and coreceptor activity. Deletion of 4 or 12 residues resulted in a 50 or 80% decrease in coreceptor function, respectively. Alanine-scanning mutagenesis identified several charged and aromatic residues (Asp-2, Tyr-3, Tyr-10, Asp-11, and Glu-18) that played an important role in both chemokine and Env high affinity binding. The overlapping binding site of chemokines and gp120 on the CCR5 amino terminus, as well as the involvement of these residues in the epitopes of monoclonal antibodies, suggests that these regions are particularly exposed at the receptor surface.
Collapse
Affiliation(s)
- C Blanpain
- IRIBHN, Université Libre de Bruxelles, Campus Erasme, 808 Route de Lennik, B-1070 Bruxelles, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
|
140
|
Leith JG, Copeland KF, McKay PJ, Bienzle D, Richards CD, Rosenthal KL. T cell-derived suppressive activity: evidence of autocrine noncytolytic control of HIV type 1 transcription and replication. AIDS Res Hum Retroviruses 1999; 15:1553-61. [PMID: 10580406 DOI: 10.1089/088922299309847] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ability of CD8+ T lymphocytes to suppress the transcription and replication of HIV-1 is well documented. We have demonstrated that the factor(s) responsible for the suppression of HIV-1 LTR-mediated gene expression are not the CC chemokines RANTES, MIP-1alpha, and MIP-1beta. Interestingly, these and other chemokines and cytokines are produced by both CD8+ and CD4+ T lymphocytes. On the presumption that CD4+ T lymphocytes may also be able to modulate HIV-1 expression in vitro we assessed the LTR-modulatory effects of a panel of culture supernatants derived from stimulated CD4+ T lymphocytes from HIV-positive patients and uninfected controls. Supernatants of both CD4+ and CD8+ T cells mediated a suppression of LTR-driven gene expression in Jurkat T cells and an enhancement of gene expression in U38 monocytic cells. On the basis of these results, and using a herpesvirus saimiri (HVS)-transformed CD4+ T lymphocyte clone (HVSCD4), we demonstrate that both suppressive and enhancing effects are dose dependent. Furthermore, we have shown that supernatants of both HVSCD4 and HVSCD8 cells suppress LTR-mediated gene expression and HIV-1 replication in transfected/infected T cells. In U1 monocytic cells, supernatants of both CD4+ and CD8+ lymphocytes from an HIV-1-infected individual enhanced LTR-mediated gene expression, HIV-1 replication, and TNF-alpha production. However, only these effects as induced by CD8+ T cells were sensitive to the G protein inhibitor pertussis toxin. These results indicate that factors produced by both CD4+ and CD8+ T cells exert dichotomous effects on HIV-1 gene expression and replication in T cells and monocytes.
Collapse
Affiliation(s)
- J G Leith
- Department of Pathology and Molecular Medicine, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
141
|
Wang Z, Lee B, Murray JL, Bonneau F, Sun Y, Schweickart V, Zhang T, Peiper SC. CCR5 HIV-1 Coreceptor Activity. J Biol Chem 1999; 274:28413-9. [PMID: 10497202 DOI: 10.1074/jbc.274.40.28413] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human (H-) CCR5 is the primary coreceptor for ENV-mediated fusion by R5 strains of human immunodeficiency virus type 1, whereas mouse (M-) CCR5 lacks this function. An array of 23 H/M-CCR5 hybrids containing increasing amounts of H-CCR5 extending from the N terminus generated by random chimeragenesis had a biphasic pattern of coreceptor activity with JRFL and 89.6, revealing active regions in the N-terminal extracellular domain (N-ED) and at the junction of cytoplasmic loop 3. The M-CCR5 mutant in which divergent residues were replaced with the corresponding H-CCR5 N-ED sequence (NyYTsE) gained coreceptor function in fusion but not infection experiments. A M-CCR5 double mutant with substitution of human sequences for divergent residues from the N-ED and cytoplasmic loop 3 had augmented coreceptor activity in fusion assays and gain of function in infection experiments. The SIV-251 ENV utilized H- and M-CCR5 and variants. Flow cytometric analysis of M-CCR5 mutants and bifunctional receptors composed of CD4 domains fused to M-CCR5 mutants excluded the possibility that differences in coreceptor activity resulted from variations in cell surface expression. These results demonstrate that the coreceptor activity of the H-CCR5 N-ED is modulated by intracellular residues, illustrating the complexity of CCR5 requirements for interaction with ENV.
Collapse
Affiliation(s)
- Z Wang
- Henry Vogt Cancer Research Institute, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Penton-Rol G, Cota M, Polentarutti N, Luini W, Bernasconi S, Borsatti A, Sica A, LaRosa GJ, Sozzani S, Poli G, Mantovani A. Up-Regulation of CCR2 Chemokine Receptor Expression and Increased Susceptibility to the Multitropic HIV Strain 89.6 in Monocytes Exposed to Glucocorticoid Hormones. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.6.3524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Glucocorticoid hormones (GC) are potent antiinflammatory agents widely used in the treatment of diverse human diseases. The present study was aimed at assessing the effect of GC on chemokine receptor expression in human monocytes. Dexamethasone (Dex) up-regulated mRNA expression of the monocyte chemotactic protein (MCP-1, CCL2) chemokine receptor CCR2. The effect was selective in that other chemokine receptors were not substantially affected. Stimulation by Dex was observed after 4 h of exposure at concentrations of 10−7 to 10−5 M. Steroids devoid of GC activity were inactive, and the GC receptor antagonist, RU486, inhibited stimulation. Dex did not affect the rate of nuclear transcription, but augmented the CCR2 mRNA half-life. Augmentation of CCR2 expression by Dex was associated with increased chemotaxis. Finally, Dex treatment induced productive replication of the HIV strain 89.6, which utilizes CCR2 as entry coreceptor, in freshly isolated monocytes. Together with previous findings, these results indicate that at least certain pro- and antiinflammatory molecules have reciprocal and divergent effects on expression of a major monocyte chemoattractant, MCP-1, and of its receptor (CCR2). Augmentation of monocyte CCR2 expression may underlie unexplained in vivo effects of GC as well as some of their actions on HIV infection.
Collapse
Affiliation(s)
- Giselle Penton-Rol
- *Department of Immunology and Cell Biology, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Manuela Cota
- †AIDS Immunopathogenesis Unit, Ospedale S. Raffaele, Milan, Italy
| | - Nadia Polentarutti
- *Department of Immunology and Cell Biology, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Walter Luini
- *Department of Immunology and Cell Biology, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Sergio Bernasconi
- *Department of Immunology and Cell Biology, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Alessandro Borsatti
- *Department of Immunology and Cell Biology, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Antonio Sica
- *Department of Immunology and Cell Biology, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | - Silvano Sozzani
- *Department of Immunology and Cell Biology, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Guido Poli
- †AIDS Immunopathogenesis Unit, Ospedale S. Raffaele, Milan, Italy
| | - Alberto Mantovani
- *Department of Immunology and Cell Biology, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
- §Section of Pathology and Immunology, Department of Biotechnology, University of Brescia, Brescia, Italy
| |
Collapse
|
143
|
Greco G, Mackewicz C, Levy JA. Sensitivity of human immunodeficiency virus infection to various alpha, beta and gamma chemokines. J Gen Virol 1999; 80 ( Pt 9):2369-2373. [PMID: 10501489 DOI: 10.1099/0022-1317-80-9-2369] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Examination of a large panel of chemokines indicates that in addition to RANTES, MIP-1alpha and MIP-1beta, the beta-chemokine MCP-2 and, to a lesser extent, the gamma-chemokine lymphotactin also show anti-human immunodeficiency virus (HIV) activity in cell culture. The amount of chemokine needed to suppress HIV replication by > or = 50% was generally greater (> or = 250 ng/ml) than that required for inhibition of virus infection by RANTES, MIP-1alpha and MIP-1beta. The beta-chemokine MCP-3 was found to enhance the replication of both non-syncytium-inducing (NSI) and syncytium-inducing (SI) viruses at high concentrations (0.5-5 microg/ml). In contrast to a previous report, macrophage-derived chemokine was not found to inhibit HIV replication of either NSI or SI viruses, but at low concentrations enhanced NSI virus replication. When small amounts of RANTES or MCP-2 were added together with high concentrations of non-inhibitory chemokines, the anti-HIV effects were countered. Information on chemokines that affect HIV infection could be useful for future therapeutic strategies.
Collapse
Affiliation(s)
- Giampaolo Greco
- Department of Medicine and Cancer Research Institute, Division of Hematology/Oncology, University of California, School of Medicine, San Francisco, CA 94143-1270, USA1
| | - Carl Mackewicz
- Department of Medicine and Cancer Research Institute, Division of Hematology/Oncology, University of California, School of Medicine, San Francisco, CA 94143-1270, USA1
| | - Jay A Levy
- Department of Medicine and Cancer Research Institute, Division of Hematology/Oncology, University of California, School of Medicine, San Francisco, CA 94143-1270, USA1
| |
Collapse
|
144
|
Klasse PJ, Rosenkilde MM, Signoret N, Pelchen-Matthews A, Schwartz TW, Marsh M. CD4-Chemokine receptor hybrids in human immunodeficiency virus type 1 infection. J Virol 1999; 73:7453-66. [PMID: 10438835 PMCID: PMC104272 DOI: 10.1128/jvi.73.9.7453-7466.1999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most human immunodeficiency virus (HIV) strains require both CD4 and a chemokine receptor for entry into a host cell. In order to analyze how the HIV-1 envelope glycoprotein interacts with these cellular molecules, we constructed single-molecule hybrids of CD4 and chemokine receptors and expressed these constructs in the mink cell line Mv-1-lu. The two N-terminal (2D) or all four (4D) extracellular domains of CD4 were linked to the N terminus of the chemokine receptor CXCR4. The CD4(2D)CXCR4 hybrid mediated infection by HIV-1(LAI) to nearly the same extent as the wild-type molecules, whereas CD4(4D)CXCR4 was less efficient. Recombinant SU(LAI) protein competed more efficiently with the CXCR4-specific monoclonal antibody 12G5 for binding to CD4(2D)CXCR4 than for binding to CD4(4D)CXCR4. Stromal cell-derived factor 1 (SDF-1) blocked HIV-1(LAI) infection of cells expressing CD4(2D)CXCR4 less efficiently than for cells expressing wild-type CXCR4 and CD4, whereas down-modulation of CXCR4 by SDF-1 was similar for hybrids and wild-type CXCR4. In contrast, the bicyclam AMD3100, a nonpeptide CXCR4 ligand that did not down-modulate the hybrids, blocked hybrid-mediated infection at least as potently as for wild-type CXCR4. Thus SDF-1, but not the smaller molecule AMD3100, may interfere at multiple points with the binding of the surface unit (SU)-CD4 complex to CXCR4, a mechanism that the covalent linkage of CD4 to CXCR4 impedes. Although the CD4-CXCR4 hybrids yielded enhanced SU interactions with the chemokine receptor moiety, this did not overcome the specific coreceptor requirement of different HIV-1 strains: the X4 virus HIV-1(LAI) and the X4R5 virus HIV-1(89. 6), unlike the R5 strain HIV-1(SF162), infected Mv-1-lu cells expressing the CD4(2D)CXCR4 hybrid, but none could use hybrids of CD4 and the chemokine receptor CCR2b, CCR5, or CXCR2. Thus single-molecule hybrid constructs that mimic receptor-coreceptor complexes can be used to dissect coreceptor function and its inhibition.
Collapse
Affiliation(s)
- P J Klasse
- MRC Laboratory for Molecular Cell Biology and Department of Biochemistry and Molecular Biology, University College London, London WC1E 6BT, United Kingdom.
| | | | | | | | | | | |
Collapse
|
145
|
Génin P, Mamane Y, Kwon H, LePage C, Wainberg MA, Hiscott J. Differential regulation of CC chemokine gene expression in human immunodeficiency virus-infected myeloid cells. Virology 1999; 261:205-15. [PMID: 10497106 DOI: 10.1006/viro.1999.9852] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The importance of chemokine expression on HIV infection has been emphasized by the discovery that infection of CD4(+) T cells by M-tropic strains of HIV-1 is antagonized by the chemokines RANTES, MIP-1alpha, and MIP-1beta, which are natural ligands of CCR5, a major coreceptor for macrophagetropic (M-tropic) isolates of HIV-1. Similarly, the CCR2b ligands MCP-1 and MCP-3 inhibit productive infection of PBMCs by both CCR5- and CXCR4-dependent strains of HIV-1, suggesting that expression of the MCP-1 chemokine may affect HIV infection via signaling through the CCR2 receptor and subsequent desensitization of the CCR5 and/or CXCR4 signaling pathway. Given the major role played by chemokine receptors in HIV-1 fusion/entry and the regulatory effects of chemokines on HIV-1 infection, we examined the pattern of chemokine gene expression in HIV-1-infected myeloid cells and in primary monocyte/macrophages. Chronic HIV-1 infection of U937 monocytic cells increased the expression of RANTES, MIP-1alpha, MIP-1beta, and IL-8 chemokine genes, but strongly inhibited PMA/PHA- and TNFalpha-induced MCP-1 gene transcription. HIV-1-mediated inhibition of MCP-1 transcription and secretion was further confirmed in de novo HIV-1-infected U937 cells and correlated with a delay in HIV- and signal-induced NF-kappaB binding to the MCP-1 promoter. The inhibition of MCP-1 gene expression may provide a mechanism by which HIV-1 escapes the early influence of chemokine expression in monocytic cells.
Collapse
Affiliation(s)
- P Génin
- Lady Davis Institute for Medical Research, McGill University, Montreal, H3T 1E2, Canada
| | | | | | | | | | | |
Collapse
|
146
|
Gupta SK, Pillarisetti K. Cutting Edge: CXCR4-Lo: Molecular Cloning and Functional Expression of a Novel Human CXCR4 Splice Variant. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.5.2368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Human CXCR4 is a specific receptor for the CXC chemokine stromal cell-derived factor-1 (SDF-1) and a coreceptor for T cell line tropic strains of HIV-1. Genetic knockouts of CXCR4 and SDF-1 have delineated their critical role during embryonic cardiogenesis, leukopoiesis, and vasculogenesis. Herein, we used bioinformatics and differential strategies like isoform-specific RT-PCR and Northern blots to identify and clone a novel unspliced isoform of human CXCR4, termed CXCR4-Lo. CXCR4-Lo corresponds to a larger ∼4.0-kb mRNA transcript and differs from the known human CXCR4 by the first 9 aa in the functionally important NH2-terminal extracellular domain of the receptor. CXCR4-Lo-transfected rat basophil leukemia-2H3 cells responded to SDF-1 with a transient rise of intracellular Ca2+ concentration and by undergoing chemotaxis. Expression of CXCR4-Lo is noteworthy, as it may have differential affinity as a coreceptor for HIV strains in comparison with CXCR4. Furthermore, CXCR4-Lo may also provide a functional backup to CXCR4 during embryogenesis.
Collapse
Affiliation(s)
- Shalley K. Gupta
- Department of Cardiovascular Pharmacology, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406
| | - Kodandaram Pillarisetti
- Department of Cardiovascular Pharmacology, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406
| |
Collapse
|
147
|
Efremov R, Truong MJ, Darcissac EC, Zeng J, Grau O, Vergoten G, Debard C, Capron A, Bahr GM. Human chemokine receptors CCR5, CCR3 and CCR2B share common polarity motif in the first extracellular loop with other human G-protein coupled receptors implications for HIV-1 coreceptor function. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:746-56. [PMID: 10469138 DOI: 10.1046/j.1432-1327.1999.00553.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chemokine receptors (CRs) are 7-helix membrane proteins from the family of G-protein coupled receptors (GPCRs). A few human CRs act as cofactors for macrophage-tropic (M-tropic) human immunodeficiency virus type-1 (HIV-1) entry into cells, while others do not. In this study, we describe an application of molecular modeling techniques to delineate common molecular determinants that might be related to coreceptor activity, and the use of the data to identify other GPCRs as putative cofactors for M-tropic HIV-1 entry. Subsequently, the results were confirmed by an experimental approach. The sequences of extracellular domains (ECDs) of CRs were employed in a compatibility search against a database of environmental profiles derived for proteins with known spatial structure. The best-scoring sequence-profile alignments obtained for each ECD were compared in pairs to check for common patterns in residue environments, and consensus sequence-profile fits for ECDs were also derived. Similar hydrophobicity motifs were found in the first extracellular loops of the CRs CCR5, CCR3, and CCR2B, and are all used by M-tropic HIV-1 for cell entry. In contrast, other CRs did not reveal common motifs. However, the same environmental pattern was also delineated in the first extracellular loop of some human GPCRs showing either high (group 1) or low (group 2) degree of similarity of their polarity patterns with those in HIV-1 coreceptors. To address the question of whether the delineated molecular determinant plays a critical role in the receptor-virus binding, three of the identified GPCRs, bradykinin receptor (BRB2) and G-protein receptor (GPR)-CY6 from group 1, and GPR8 from group 2, were cloned and transfected into HeLa-CD4 cells, which are nonpermissive to M-tropic HIV-1 infection. We demonstrate that, similar to CCR5, the two selected GPCRs from group 1 were capable of mediating M-tropic HIV-1 entry, whereas GPR8 from group 2 did not serve as HIV-1 coreceptor. The potential biological significance of the identified structural motif shared by the human CCR5, CCR3, CCR2B and other GPCRs is discussed.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Cloning, Molecular
- Consensus Sequence
- DNA Primers
- GTP-Binding Proteins/metabolism
- HIV-1/physiology
- HeLa Cells
- Humans
- Molecular Sequence Data
- Protein Structure, Secondary
- Receptors, CCR2
- Receptors, CCR3
- Receptors, CCR5/chemistry
- Receptors, CCR5/genetics
- Receptors, CCR5/physiology
- Receptors, Chemokine/chemistry
- Receptors, Chemokine/genetics
- Receptors, Chemokine/physiology
- Receptors, Cytokine/chemistry
- Receptors, Cytokine/genetics
- Receptors, Cytokine/physiology
- Receptors, HIV/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- R Efremov
- M.M. Shemyakin, Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Daar ES, Lynn H, Donfield S, Gomperts E, Hilgartner MW, Hoots K, Chernoff D, Winkler C, O'Brien SJ. Effects of plasma HIV RNA, CD4+ T lymphocytes, and the chemokine receptors CCR5 and CCR2b on HIV disease progression in hemophiliacs. Hemophilia Growth and Development Study. J Acquir Immune Defic Syndr 1999; 21:317-25. [PMID: 10428111 DOI: 10.1097/00126334-199908010-00010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have investigated the effects of plasma HIV RNA, CD4+ T lymphocytes and chemokine receptors CCR5 and CCR2b on HIV disease progression in hemophiliacs. We prospectively observed during follow-up 207 HIV-infected hemophiliacs in the Hemophilia Growth and Development Study. Plasma HIV RNA was measured on cryopreserved plasma from enrollment using the Chiron Corporation bDNA (version 2.0) assay. Genoytpe variants CCR2b-641 and CCR5-delta32 were detected using standard molecular techniques. Those with the mutant allele for CCR2b, and to a lesser extent CCR5, had lower plasma HIV RNA, and higher CD4+ T lymphocytes than did those without these genetic variants. After controlling for the effects of plasma HIV RNA and CD4+ T lymphocytes, those with the CCR2b mutant allele compared with those wild-type, had a trend toward a lower risk of progression to AIDS, adjusted relative hazard of 1.94 (95% confidence interval [CI], 0.9-4.18; p = .092), and AIDS-related death, relative hazard 1.97 (95% CI, 0.98-4.00; p = .059). We conclude that plasma HIV RNA, CD4+ T lymphocytes, and CCR genotypes are correlated, and the protective affect of CCR2b against HIV disease progression is not completely explained by plasma HIV RNA or CD4+ T-lymphocyte number.
Collapse
Affiliation(s)
- E S Daar
- Cedars-Sinai Burns & Allen Research Institute, Department of Medicine, and the University of California Los Angeles School of Medicine, 90048, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Chabot DJ, Zhang PF, Quinnan GV, Broder CC. Mutagenesis of CXCR4 identifies important domains for human immunodeficiency virus type 1 X4 isolate envelope-mediated membrane fusion and virus entry and reveals cryptic coreceptor activity for R5 isolates. J Virol 1999; 73:6598-609. [PMID: 10400757 PMCID: PMC112744 DOI: 10.1128/jvi.73.8.6598-6609.1999] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CXCR4 is a chemokine receptor and a coreceptor for T-cell-line-tropic (X4) and dual-tropic (R5X4) human immunodeficiency virus type 1 (HIV-1) isolates. Cells coexpressing CXCR4 and CD4 will fuse with appropriate HIV-1 envelope glycoprotein (Env)-expressing cells. The delineation of the critical regions involved in the interactions within the Env-CD4-coreceptor complex are presently under intensive investigation, and the use of chimeras of coreceptor molecules has provided valuable information. To define these regions in greater detail, we have employed a strategy involving alanine-scanning mutagenesis of the extracellular domains of CXCR4 coupled with a highly sensitive reporter gene assay for HIV-1 Env-mediated membrane fusion. Using a panel of 41 different CXCR4 mutants, we have identified several charged residues that appear important for coreceptor activity for X4 Envs; the mutations E15A (in which the glutamic acid residue at position 15 is replaced by alanine) and E32A in the N terminus, D97A in extracellular loop 1 (ecl-1), and R188A in ecl-2 impaired coreceptor activity for X4 and R5X4 Envs. In addition, substitution of alanine for any of the four extracellular cysteines alone resulted in conformational changes of various degrees, while mutants with paired cysteine deletions partially retained their structure. Our data support the notion that all four cysteines are involved in disulfide bond formation. We have also identified substitutions which greatly enhance or convert CXCR4's coreceptor activity to support R5 Env-mediated fusion (N11A, R30A, D187A, and D193A), and together our data suggest the presence of conserved extracellular elements, common to both CXCR4 and CCR5, involved in their coreceptor activities. These data will help us to better detail the CXCR4 structural requirements exhibited by different HIV-1 strains and will direct further mutagenesis efforts aimed at better defining the domains in CXCR4 involved in the HIV-1 Env-mediated fusion process.
Collapse
Affiliation(s)
- D J Chabot
- Departments of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA
| | | | | | | |
Collapse
|
150
|
Abstract
Interaction of HIV and SIV Envelope (Env) proteins with viral coreceptors is a critical step in viral entry. By using a sensitive and specific gp120 binding assay, we have identified a discordance between the ability of a coreceptor to support Env-mediated membrane fusion and high-affinity binding of gp120. Direct binding of gp120 from the dual-tropic HIV-1 strain 89.6 was not detectable for any coreceptor that it uses for fusion, while detectable binding of gp120s from the R5 HIV-1 strains JRFL and CM235 and the SIV strain 239 was not measurable for many CCR5 chimeras and mutants that function efficiently as viral coreceptors. In comparison, binding of chemokines to these same mutants was highly predictive of their ability to signal. Thus, gp120 is more sensitive than chemokines to perturbations of CCR5 structure. We conclude that while chemokine binding to CCR5 is a good predictor of chemokine receptor function, gp120 binding does not always predict coreceptor function.
Collapse
Affiliation(s)
- S S Baik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | | | | |
Collapse
|