101
|
Tan SK, Cooper ME. Is clinical trial data showing positive progress for the treatment of diabetic kidney disease? Expert Opin Emerg Drugs 2023; 28:217-226. [PMID: 37897430 DOI: 10.1080/14728214.2023.2277762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/27/2023] [Indexed: 10/30/2023]
Affiliation(s)
- Seng Kiong Tan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Diabetes Centre, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Mark E Cooper
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
102
|
Mercier AK, Sunnåker M, Ueckert S, Pawlik T, Henricson E, Molodetskyi O, Law GC, Parker VER, Oscarsson J. Pharmacokinetics and Tolerability of Zibotentan in Patients with Concurrent Moderate Renal and Moderate Hepatic Impairment. Clin Pharmacokinet 2023; 62:1713-1724. [PMID: 37801266 PMCID: PMC10684621 DOI: 10.1007/s40262-023-01306-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Zibotentan, a selective endothelin A receptor antagonist, is in development for chronic liver and kidney disease. The pharmacokinetics (PK) of zibotentan were previously investigated in patients with either renal impairment or hepatic impairment, but the impact of both pathologies on PK was not evaluated. This study evaluated the PK and tolerability of a single oral dose of zibotentan in participants with concurrent moderate renal impairment and moderate hepatic impairment versus control participants. METHODS Twelve participants with moderate renal and hepatic impairment and 11 healthy matched control participants with no clinically significant liver or kidney disease were enrolled in an open-label, parallel-group study design. After administration of a single oral dose of zibotentan 5 mg, blood and urine sampling was performed. Pharmacokinetic parameters were determined for each of the two cohorts and compared. Comparisons between the cohorts were based on the geometric least squares mean ratio for the primary endpoints, which were area under the plasma concentration-time curve (AUC) from time zero to infinity (AUC∞) and from time zero to the time of the last measurable concentration (AUClast), and maximum plasma drug concentration (Cmax) on Day 1 through 120 h post-dose. Secondary endpoints included apparent total body clearance (CL/F) on Day 1 through 120 h post-dose. Safety endpoints were assessed up to discharge. RESULTS In total, 11 participants with concurrent moderate renal and hepatic impairment, and 11 controls, completed the study. Zibotentan was generally well tolerated, and no new clinically significant safety findings were observed. Total exposure (AUC∞ and AUClast) was approximately 2.10-fold higher in participants with concurrent moderate renal and hepatic impairment versus controls, while Cmax and total nonrenal body clearance were similar among all groups. A regression-based post hoc analysis, comparing exposure and CL/F in patients with concurrent impairment to patients with either renal or hepatic impairment alone, showed that CL/F with concurrent impairment was approximately half of that in controls and was positively correlated with reduction of renal function. Inclusion of the data on concurrent moderate renal and hepatic impairment in the regression analysis led to a narrower confidence interval for the predicted mean CL/F in participants with moderate hepatic impairment. CONCLUSION The presented findings advance the understanding of the PK of zibotentan in both renal impairment and hepatic impairment, with and without overlapping pathologies, and will thus increase the confidence of dose selection in future studies, particularly in vulnerable patient populations with concurrent renal and hepatic impairment. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT05112419.
Collapse
Affiliation(s)
- Anne-Kristina Mercier
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Gothenburg, Sweden.
| | - Mikael Sunnåker
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Gothenburg, Sweden
| | - Sebastian Ueckert
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Gothenburg, Sweden
| | - Tadeusz Pawlik
- Biopharmaceuticals R&D, Late-Stage Clinical Development, Cardiovascular, Renal and Metabolism, AstraZeneca, Warsaw, Poland
| | - Emilia Henricson
- Biopharmaceuticals R&D, Late-Stage Clinical Development, Cardiovascular, Renal and Metabolism, AstraZeneca, Gothenburg, Sweden
| | | | - Gordon C Law
- Early Biometrics and Statistical Innovation, Data Science and Artificial Intelligence, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Victoria E R Parker
- Early-Stage Clinical Development, Cardiovascular, Renal and Metabolism, AstraZeneca, Cambridge, UK
| | - Jan Oscarsson
- Biopharmaceuticals R&D, Late-Stage Clinical Development, Cardiovascular, Renal and Metabolism, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
103
|
Maixnerova D, Hartinger J, Tesar V. Expanding options of supportive care in IgA nephropathy. Clin Kidney J 2023; 16:ii47-ii54. [PMID: 38053975 PMCID: PMC10695500 DOI: 10.1093/ckj/sfad201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Indexed: 12/07/2023] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide, with a potentially serious prognosis. At present, management of IgAN is primarily based on therapeutic lifestyle changes, and excellent blood pressure control and maximized supportive treatment with the combination of inhibition of the renin-angiotensin-aldosterone system with either inhibitors of angiotensin-converting enzyme or angiotensin II receptor blockers and inhibitors of sodium-glucose cotransporter-2, and possibly in the future also with endothelin antagonists. Supportive care currently represents the cornerstone of treatment of IgAN. Targeted-release formulation of budesonide should replace systemic corticosteroids in patients with higher proteinuria and active histological lesions. New treatment options are aimed at immunopathogenesis of IgAN including depletion or modulation of Galactose-deficient-Immunoglobulin A1-producing B cells, plasma cells, and the alternate and/or lectin pathway of complement. The exact place of monoclonal antibodies and complement inhibitors will need to be determined. This article reviews potential supportive therapies currently available for patients with IgAN.
Collapse
Affiliation(s)
- Dita Maixnerova
- Department of Nephrology, General University Hospital, First Faculty of Medicine, Prague, Czech Republic
| | - Jan Hartinger
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital Prague, Prague, Czech Republic
| | - Vladimir Tesar
- Department of Nephrology, General University Hospital, First Faculty of Medicine, Prague, Czech Republic
| |
Collapse
|
104
|
Iwagami M. Post hoc analysis of the SONAR trial: potential analgesic effects of atrasentan? Kidney Int 2023; 104:1062-1064. [PMID: 37981428 DOI: 10.1016/j.kint.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 11/21/2023]
Abstract
Chan et al. conducted a post hoc analysis of the Study of Diabetic Nephropathy with Atrasentan (SONAR) to demonstrate that atrasentan reduced chronic pain-related adverse events reported by investigators and the initiation of analgesics. This study creates an interesting hypothesis, but it is limited in that the pain information was collected as part of the adverse events and the presence/absence of pain at baseline was unknown. Thus, prospective clinical trials are required to confirm these findings.
Collapse
Affiliation(s)
- Masao Iwagami
- Department of Health Services Research, Institute of Medicine, University of Tsukuba, Ibaraki, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan; Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
105
|
Heerspink HJ, Jongs N, Schloemer P, Little DJ, Brinker M, Tasto C, Karpefors M, Wheeler DC, Bakris G, Perkovic V, Nkulikiyinka R, Rossert J, Gasparyan SB. Development and Validation of a New Hierarchical Composite End Point for Clinical Trials of Kidney Disease Progression. J Am Soc Nephrol 2023; 34:2025-2038. [PMID: 37872654 PMCID: PMC10703083 DOI: 10.1681/asn.0000000000000243] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/20/2023] [Indexed: 10/25/2023] Open
Abstract
SIGNIFICANCE STATEMENT The established composite kidney end point in clinical trials combines clinical events with sustained large changes in GFR but does not weigh the relative clinical importance of the end point components. By contrast, a hierarchical composite end point (HCE) accounts for the clinical importance of the end point components. The authors developed and validated a kidney HCE that combines clinical kidney outcomes with longitudinal GFR changes (GFR slope). They demonstrate that in seven major placebo-controlled kidney outcome trials with different medications, treatment effect estimates on the HCE were consistently in similar directions and of similar magnitudes compared with treatment effects on the established kidney end point. The HCE's prioritization of clinical outcomes and ability to combine dichotomous outcomes with GFR slope make it an attractive alternative to the established kidney end point. BACKGROUND The established composite kidney end point in clinical trials combines clinical events with sustained large changes in GFR. However, the statistical method does not weigh the relative clinical importance of the end point components. A HCE accounts for the clinical importance of the end point components and enables combining dichotomous outcomes with continuous measures. METHODS We developed and validated a new HCE for kidney disease progression, performing post hoc analyses of seven major Phase 3 placebo-controlled trials that assessed the effects of canagliflozin, dapagliflozin, finerenone, atrasentan, losartan, irbesartan, and aliskiren in patients with CKD. We calculated the win odds (WOs) for treatment effects on a kidney HCE, defined as a hierarchical composite of all-cause mortality; kidney failure; sustained 57%, 50%, and 40% GFR declines from baseline; and GFR slope. The WO describes the odds of a more favorable outcome for receiving the active compared with the control. We compared the WO with the hazard ratio (HR) of the primary kidney outcome of the original trials. RESULTS In all trials, treatment effects calculated with the WO reflected a similar direction and magnitude of the treatment effect compared with the HR. Clinical trials incorporating the HCE would achieve increased statistical power compared with the established composite end point at equivalent sample sizes. CONCLUSIONS In seven major kidney clinical trials, the WO and HR provided similar direction of treatment effect estimates with smaller HRs associated with larger WOs. The prioritization of clinical outcomes and inclusion of broader composite end points makes the HCE an attractive alternative to the established kidney end point.
Collapse
Affiliation(s)
- Hiddo J.L. Heerspink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- The George Institute for Global Health, Sydney, New South Wales, Australia
| | - Niels Jongs
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Patrick Schloemer
- Pharmaceuticals, Research and Development, Bayer AG, Berlin, Germany
| | - Dustin J. Little
- Late Stage Development, Cardiovascular, Renal and Metabolism (CVRM), Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Meike Brinker
- Pharmaceuticals, Research and Development, Bayer AG, Wuppertal, Germany
| | - Christoph Tasto
- Pharmaceuticals, Research and Development, Bayer AG, Wuppertal, Germany
| | - Martin Karpefors
- Late Stage Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - David C. Wheeler
- The George Institute for Global Health, Sydney, New South Wales, Australia
- Department of Renal Medicine, University College London, London, United Kingdom
| | - George Bakris
- Department of Medicine, University of Chicago Medicine, Chicago, Illinois
| | - Vlado Perkovic
- The George Institute for Global Health, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, University New South Wales, Sydney, New South Wales, Australia
| | | | - Jerome Rossert
- Late Stage Development, Cardiovascular, Renal and Metabolism (CVRM), Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Samvel B. Gasparyan
- Late Stage Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
106
|
Chan KW, Smeijer JD, Schechter M, Jongs N, Vart P, Kohan DE, Gansevoort RT, Liew A, Tang SCW, Wanner C, de Zeeuw D, Heerspink HJL. Post hoc analysis of the SONAR trial indicates that the endothelin receptor antagonist atrasentan is associated with less pain in patients with type 2 diabetes and chronic kidney disease. Kidney Int 2023; 104:1219-1226. [PMID: 37657768 DOI: 10.1016/j.kint.2023.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023]
Abstract
Pain is prevalent among patients with diabetes and chronic kidney disease (CKD). The management of chronic pain in these patients is limited by nephrotoxicity of commonly used drugs including non-steroidal anti-inflammatory drugs (NSAIDs) and opioids. Since previous studies implicated endothelin-1 in pain nociception, our post hoc analysis of the SONAR trial assessed the association between the endothelin receptor antagonist atrasentan and pain and prescription of analgesics. SONAR was a randomized, double-blind, placebo-controlled clinical trial that recruited participants with type 2 diabetes and CKD (estimated glomerular filtration rate 25-75 ml/min/1.73 m2; urinary albumin-to-creatinine ratio 300-5000 mg/g). Participants were randomized to receive atrasentan or placebo (1834 each arm). The main outcome was pain-related adverse events (AEs) reported by investigators. We applied Cox regression to assess the effect of atrasentan compared to placebo on the risk of the first reported pain-related AE and, secondly, first prescription of analgesics. We used the Anderson-Gill method to assess effects on all (first and subsequent) pain-related AEs. During 2.2-year median follow-up, 1183 pain-related AEs occurred. Rates for the first pain-related event were 138.2 and 170.2 per 1000 person-years in the atrasentan and placebo group respectively (hazard ratio 0.82 [95% confidence interval 0.72-0.93]). Atrasentan also reduced the rate of all (first and subsequent) pain-related AEs (rate ratio 0.80 [0.70-0.91]). These findings were similar after accounting for competing risk of death (sub-hazard ratio 0.81 [0.71-0.92]). Patients treated with atrasentan initiated fewer analgesics including NSAIDs and opioids compared to placebo during follow-up (hazard ratio = 0.72 [0.60-0.88]). Thus, atrasentan was associated with reduced pain-related events and pain-related use of analgesics in carefully selected patients with type 2 diabetes and CKD.
Collapse
Affiliation(s)
- Kam Wa Chan
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong SAR; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR
| | - J David Smeijer
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Meir Schechter
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Diabetes Unit, Department of Endocrinology and Metabolism, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Niels Jongs
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Priya Vart
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Donald E Kohan
- Division of Nephrology, University of Utah Health, Salt Lake City, Utah, USA
| | - Ron T Gansevoort
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Christoph Wanner
- Department of Medicine, Division of Nephrology, Würzburg University Clinic, Würzburg, Germany; Department of Clinical Research and Epidemiology, Renal Research Unit, Comprehensive Heart Failure Center, Würzburg University, Würzburg, Germany
| | - Dick de Zeeuw
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; The George Institute for Global Health, Sydney, New South Wales, Australia.
| |
Collapse
|
107
|
Pradhan N, Dobre M. Emerging Preventive Strategies in Chronic Kidney Disease: Recent Evidence and Gaps in Knowledge. Curr Atheroscler Rep 2023; 25:1047-1058. [PMID: 38038822 PMCID: PMC11552309 DOI: 10.1007/s11883-023-01172-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 12/02/2023]
Abstract
PURPOSE OF REVIEW Chronic kidney disease (CKD) is increasingly prevalent worldwide and is associated with increased cardiovascular risk. New therapeutic options to slow CKD progression and reduce cardiovascular morbidity and mortality have recently emerged. This review highlights recent evidence and gaps in knowledge in emerging CKD preventive strategies. RECENT FINDINGS EMPA-Kidney trial found that empagliflozin, a sodium-glucose co-transporter 2 inhibitor (SGLT2i) led to 28% lower risk of progression of kidney disease or death from cardiovascular causes, compared to placebo. This reinforced the previous findings from DAPA-CKD and CREDENCE trials and led to inclusion of SGLT2i as the cornerstone of CKD preventive therapy in both diabetic and non-diabetic CKD. Finerenone, a selective nonsteroidal mineralocorticoid receptor antagonist, slowed diabetic kidney disease progression by 23% compared to placebo in a pool analysis of FIDELIO-DKD and FIGARO-DKD trials. Non-pharmacological interventions, including low protein diet, and early CKD detection and risk stratification strategies based on novel biomarkers have also gained momentum. Ongoing efforts to explore the wealth of molecular mechanisms in CKD, added to integrative omics modeling are well posed to lead to novel therapeutic targets in kidney care. While breakthrough pharmacological interventions continue to improve outcomes in CKD, the heterogeneity of kidney diseases warrants additional investigation. Further research into specific kidney disease mechanisms will facilitate the identification of patient populations most likely to benefit from targeted interventions.
Collapse
Affiliation(s)
- Nishigandha Pradhan
- Division of Nephrology and Hypertension, University Hospitals Cleveland Medical Center, 11100 Euclid Ave, Cleveland, OH, 44106, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Mirela Dobre
- Division of Nephrology and Hypertension, University Hospitals Cleveland Medical Center, 11100 Euclid Ave, Cleveland, OH, 44106, USA.
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
108
|
Georgianos PI, Agarwal R. Hypertension in chronic kidney disease-treatment standard 2023. Nephrol Dial Transplant 2023; 38:2694-2703. [PMID: 37355779 PMCID: PMC10689140 DOI: 10.1093/ndt/gfad118] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 06/26/2023] Open
Abstract
Hypertension is very common and remains often poorly controlled in patients with chronic kidney disease (CKD). Accurate blood pressure (BP) measurement is the essential first step in the diagnosis and management of hypertension. Dietary sodium restriction is often overlooked, but can improve BP control, especially among patients treated with an agent to block the renin-angiotensin system. In the presence of very high albuminuria, international guidelines consistently and strongly recommend the use of an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker as the antihypertensive agent of first choice. Long-acting dihydropyridine calcium channel blockers and diuretics are reasonable second- and third-line therapeutic options. For patients with treatment-resistant hypertension, guidelines recommend the addition of spironolactone to the baseline antihypertensive regimen. However, the associated risk of hyperkalemia restricts the broad utilization of spironolactone in patients with moderate-to-advanced CKD. Evidence from the CLICK (Chlorthalidone in Chronic Kidney Disease) trial indicates that the thiazide-like diuretic chlorthalidone is effective and serves as an alternative therapeutic opportunity for patients with stage 4 CKD and uncontrolled hypertension, including those with treatment-resistant hypertension. Chlorthalidone can also mitigate the risk of hyperkalemia to enable the concomitant use of spironolactone, but this combination requires careful monitoring of BP and kidney function for the prevention of adverse events. Emerging agents, such as the non-steroidal mineralocorticoid receptor antagonist ocedurenone, dual endothelin receptor antagonist aprocitentan and the aldosterone synthase inhibitor baxdrostat offer novel targets and strategies to control BP better. Larger and longer term clinical trials are needed to demonstrate the safety and efficacy of these novel therapies in the future. In this article, we review the current standards of treatment and discuss novel developments in pathophysiology, diagnosis, outcome prediction and management of hypertension in patients with CKD.
Collapse
Affiliation(s)
- Panagiotis I Georgianos
- 2nd Department of Nephrology, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Rajiv Agarwal
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine and Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| |
Collapse
|
109
|
Sinha SK, Nicholas SB. Pathomechanisms of Diabetic Kidney Disease. J Clin Med 2023; 12:7349. [PMID: 38068400 PMCID: PMC10707303 DOI: 10.3390/jcm12237349] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 03/15/2024] Open
Abstract
The worldwide occurrence of diabetic kidney disease (DKD) is swiftly rising, primarily attributed to the growing population of individuals affected by type 2 diabetes. This surge has been transformed into a substantial global concern, placing additional strain on healthcare systems already grappling with significant demands. The pathogenesis of DKD is intricate, originating with hyperglycemia, which triggers various mechanisms and pathways: metabolic, hemodynamic, inflammatory, and fibrotic which ultimately lead to renal damage. Within each pathway, several mediators contribute to the development of renal structural and functional changes. Some of these mediators, such as inflammatory cytokines, reactive oxygen species, and transforming growth factor β are shared among the different pathways, leading to significant overlap and interaction between them. While current treatment options for DKD have shown advancement over previous strategies, their effectiveness remains somewhat constrained as patients still experience residual risk of disease progression. Therefore, a comprehensive grasp of the molecular mechanisms underlying the onset and progression of DKD is imperative for the continued creation of novel and groundbreaking therapies for this condition. In this review, we discuss the current achievements in fundamental research, with a particular emphasis on individual factors and recent developments in DKD treatment.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- College of Medicine, Charles R Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
110
|
Dhaun N, Chapman GB. Endothelin antagonism: stepping into the spotlight. Lancet 2023; 402:1945-1947. [PMID: 37931628 DOI: 10.1016/s0140-6736(23)02419-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Affiliation(s)
- Neeraj Dhaun
- Edinburgh Kidney, University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK.
| | - Gavin Brian Chapman
- Edinburgh Kidney, University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
111
|
Heerspink HJL, Kiyosue A, Wheeler DC, Lin M, Wijkmark E, Carlson G, Mercier AK, Åstrand M, Ueckert S, Greasley PJ, Ambery P. Zibotentan in combination with dapagliflozin compared with dapagliflozin in patients with chronic kidney disease (ZENITH-CKD): a multicentre, randomised, active-controlled, phase 2b, clinical trial. Lancet 2023; 402:2004-2017. [PMID: 37931629 DOI: 10.1016/s0140-6736(23)02230-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND In patients with chronic kidney disease, SGLT2 inhibitors and endothelin A receptor antagonists (ERAs) can reduce albuminuria and glomerular filtration rate (GFR) decline. We assessed the albuminuria-lowering efficacy and safety of the ERA zibotentan combined with the SGLT2 inhibitor dapagliflozin. METHODS ZENITH-CKD was a multicentre, randomised, double-blind, active-controlled clinical trial, done in 170 clinical practice sites in 18 countries. Adults (≥18 to ≤90 years) with an estimated GFR (eGFR) of 20 mL/min per 1·73 m2 or greater and a urinary albumin-to-creatinine ratio (UACR) of 150-5000 mg/g were randomly assigned (2:1:2) to 12 weeks of daily treatment with zibotentan 1·5 mg plus dapagliflozin 10 mg, zibotentan 0·25 mg plus dapagliflozin 10 mg, or dapagliflozin 10 mg plus placebo, as adjunct to angiotensin-converting enzyme inhibitors or angiotensin receptor blockers if tolerated. The primary endpoint was a change from baseline in log-transformed UACR (zibotentan 1·5 mg plus dapagliflozin vs dapagliflozin plus placebo) at week 12. Fluid retention was an event of special interest, defined as an increase in bodyweight of at least 3% (at least 2·5% must have been from total body water) from baseline or an increase of at least 100% in B-type natriuretic peptide (BNP) and either a BNP concentration greater than 200 pg/mL if without atrial fibrillation or BNP greater than 400 pg/mL if with atrial fibrillation. This trial is registered with ClinicalTrials.gov, NCT04724837, and is completed. FINDINGS Between April 28, 2021, and Jan 17, 2023, we assessed 1492 participants for eligibility. For the main analysis, we randomly assigned 449 (30%) participants, 447 (99%) of whom (mean age 62·8 years [SD 12·1], 138 [31%] female, 309 [69%] male, 305 [68%] White, mean eGFR 46·7 mL/min per 1·73 m2 [SD 22·4], and median UACR 565·5 mg/g [IQR 243·0-1212·6]) received treatment with zibotentan 1·5 mg plus dapagliflozin (n=179 [40%]), zibotentan 0·25 mg plus dapagliflozin (n=91 [20%]), or dapagliflozin plus placebo (n=177 [40%]). Zibotentan 1·5 mg plus dapagliflozin and zibotentan 0·25 mg plus dapagliflozin reduced UACR versus dapagliflozin plus placebo throughout the treatment period of the study. At week 12, the difference in UACR versus dapagliflozin plus placebo was -33·7% (90% CI -42·5 to -23·5; p<0·0001) for zibotentan 1·5 mg plus dapagliflozin and -27·0% (90% CI -38·4 to -13·6; p=0·0022) for zibotentan 0·25 mg plus dapagliflozin. Fluid-retention events were observed in 33 (18%) of 179 participants in the zibotentan 1·5 mg plus dapagliflozin group, eight (9%) of 91 in the zibotentan 0·25 mg plus dapagliflozin group, and 14 (8%) of 177 in the dapagliflozin plus placebo group. INTERPRETATION Zibotentan combined with dapagliflozin reduced albuminuria with an acceptable tolerability and safety profile and is an option to reduce chronic kidney disease progression in patients already receiving currently recommended therapy. FUNDING AstraZeneca.
Collapse
Affiliation(s)
- Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands; The George Institute for Global Health, Sydney, NSW, Australia.
| | | | - David C Wheeler
- Department of Nephrology, University College London, London, UK
| | - Min Lin
- Biometrics Late Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Emma Wijkmark
- Biometrics Late Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Glenn Carlson
- Clinical Development, Late Cardiovascular, Renal and Metabolism, AstraZeneca, Gothenburg, Sweden
| | - Anne-Kristina Mercier
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Magnus Åstrand
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Sebastian Ueckert
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Peter J Greasley
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Phil Ambery
- Clinical Late Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
112
|
Chen J, Wang Q, Li R, Li Z, Jiang Q, Yan F, Ye J. The role of sirtuins in the regulatin of oxidative stress during the progress and therapy of type 2 diabetes mellitus. Life Sci 2023; 333:122187. [PMID: 37858715 DOI: 10.1016/j.lfs.2023.122187] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by insulin resistance and impaired glucose homeostasis. Oxidative stress, arising from an imbalance between reactive oxygen species (ROS) production and antioxidant defense systems, plays a significant role in the development and progression of T2DM. The sirtuin family, particularly Sirt1, Sirt3, and Sirt6, have emerged as key regulators of oxidative stress in various cellular processes. This review aims to explore the role of the sirtuin family in oxidative stress during the progression of T2DM and their potential as therapeutic targets. We discussed the mechanisms through which sirtuins modulate oxidative stress, their impact on insulin sensitivity, and beta-cell function involved in T2DM. Furthermore, we highlight drugs targeting sirtuin activation and related complications in T2DM. This review summarizes the role as well as mechanism of sirtuins in the regulation of oxidative stress in T2DM and available drugs targeting sirtuins in clinic, which may provide novel insights into the mechanism and therapy of T2DM.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, PR China; State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Qi Wang
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, PR China
| | - Ruiyan Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Zhe Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular research Institute, Wuhan University, Wuhan 430060, China
| | - Qizhou Jiang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Fangrong Yan
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Junmei Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China.
| |
Collapse
|
113
|
Dou F, Liu Q, Lv S, Xu Q, Wang X, Liu S, Liu G. FN1 and TGFBI are key biomarkers of macrophage immune injury in diabetic kidney disease. Medicine (Baltimore) 2023; 102:e35794. [PMID: 37960829 PMCID: PMC10637504 DOI: 10.1097/md.0000000000035794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/04/2023] [Indexed: 11/15/2023] Open
Abstract
The pathogenesis of diabetic kidney disease (DKD) is complex, and the existing treatment methods cannot control disease progression well. Macrophages play an important role in the development of DKD. This study aimed to search for biomarkers involved in immune injury induced by macrophages in DKD. The GSE96804 dataset was downloaded and analyzed by the CIBERSORT algorithm to understand the differential infiltration of macrophages between DKD and normal controls. Weighted gene co-expression network analysis was used to explore the correlation between gene expression modules and macrophages in renal tissue of DKD patients. Protein-protein interaction network and machine learning algorithm were used to screen the hub genes in the key modules. Subsequently, the GSE30528 dataset was used to further validate the expression of hub genes and analyze the diagnostic effect by the receiver operating characteristic curve. The clinical data were applied to explore the prognostic significance of hub genes. CIBERSORT analysis showed that macrophages increased significantly in DKD renal tissue samples. A total of ten modules were generated by weighted gene co-expression network analysis, of which the blue module was closely associated with macrophages. The blue module mainly played an important role in biological processes such as immune response and fibrosis. Fibronectin 1 (FN1) and transforming growth factor beta induced (TGFBI) were identified as hub genes of DKD patients. Receiver operating characteristic curve analysis was performed in the test cohort: FN1 and TGFBI had larger area under the curve values (0.99 and 0.88, respectively). Clinical validation showed that 2 hub genes were negatively correlated with the estimated glomerular filtration rate in DKD patients. In addition, FN1 and TGFBI showed a strong positive correlation with macrophage alternative activation. FN1 and TGFBI are promising biomarkers for the diagnosis and treatment of DKD patients, which may participate in immune response and fibrosis induced by macrophages.
Collapse
Affiliation(s)
- Fulin Dou
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, China
| | - Qingzhen Liu
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, China
| | - Shasha Lv
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, China
| | - Qiaoying Xu
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, China
| | - Xueling Wang
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, China
| | - Shanshan Liu
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, China
| | - Gang Liu
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, China
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
114
|
Mitsnefes MM, Wühl E. Role of hypertension in progression of pediatric CKD. Pediatr Nephrol 2023; 38:3519-3528. [PMID: 36732375 DOI: 10.1007/s00467-023-05894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 02/04/2023]
Abstract
Hypertension is frequent in children with chronic kidney disease (CKD). Its prevalence varies according to CKD stage and cause. It is relatively uncommon in children with congenital kidney disease, while acquired kidney disease is associated with a higher prevalence of hypertension. Studies in children with CKD utilizing ambulatory blood pressure monitoring also showed a high prevalence of masked hypertension. Uncontrolled and longstanding hypertension in children is associated with progression of CKD. Aggressive treatment of high blood pressure should be an essential part of care to delay CKD progression in children.
Collapse
Affiliation(s)
- Mark M Mitsnefes
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA.
| | - Elke Wühl
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| |
Collapse
|
115
|
Abraham GR, Williams TL, Maguire JJ, Greasley PJ, Ambery P, Davenport AP. Current and future strategies for targeting the endothelin pathway in cardiovascular disease. NATURE CARDIOVASCULAR RESEARCH 2023; 2:972-990. [PMID: 39196099 DOI: 10.1038/s44161-023-00347-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/07/2023] [Indexed: 08/29/2024]
Abstract
The first endothelin (ET)-1 receptor antagonist was approved for clinical use over 20 years ago, but to date this class of compounds has been limited to treating pulmonary arterial hypertension, a rare disease. Translational research over the last 5 years has reignited interest in the ET system as a therapeutic target across the spectrum of cardiovascular diseases including resistant hypertension, microvascular angina and post-coronavirus disease 2019 conditions. Notable developments include approval of a new ETA receptor antagonist and, intriguingly, combining the actions of ETA and an angiotensin II type 1 receptor antagonist within the same novel small molecule. Combinations of ET receptor blockers with other drugs, including phosphodiesterase-5 inhibitors and sodium-glucose co-transporter-2 antagonists, may drive synergistic benefits with the prospect of alleviating side effects. These new therapeutic strategies have the potential to dramatically widen the scope of indications targeting the ET-1 pathway.
Collapse
Affiliation(s)
- George R Abraham
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Thomas L Williams
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Janet J Maguire
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Peter J Greasley
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Philip Ambery
- Late-Stage Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anthony P Davenport
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
116
|
Kohan DE, Barratt J, Heerspink HJ, Campbell KN, Camargo M, Ogbaa I, Haile-Meskale R, Rizk DV, King A. Targeting the Endothelin A Receptor in IgA Nephropathy. Kidney Int Rep 2023; 8:2198-2210. [PMID: 38025243 PMCID: PMC10658204 DOI: 10.1016/j.ekir.2023.07.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 12/01/2023] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide and carries a substantial risk of kidney failure. New agency-approved therapies, either specifically for IgAN or for chronic kidney disease (CKD) in general, hold out hope for mitigating renal deterioration in patients with IgAN. The latest addition to this therapeutic armamentarium targets the endothelin-A receptor (ETAR). Activation of ETAR on multiple renal cell types elicits a host of pathophysiological effects, including vasoconstriction, cell proliferation, inflammation, apoptosis, and fibrosis. Blockade of ETAR is renoprotective in experimental models of IgAN and reduces proteinuria in patients with IgAN. This review discusses the evidence supporting the use of ETAR blockade in IgAN as well as addressing the potential role for this class of agents among the current and emerging therapies for treating this disorder.
Collapse
Affiliation(s)
- Donald E. Kohan
- Division of Nephrology, University of Utah Health, Salt Lake City, Utah, USA
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Hiddo J.L. Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Kirk N. Campbell
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Ike Ogbaa
- Chinook Therapeutics, Seattle, Washington, USA
| | | | - Dana V. Rizk
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andrew King
- Chinook Therapeutics, Seattle, Washington, USA
| |
Collapse
|
117
|
Maayah ZH, Ferdaoussi M, Boukouris AE, Takahara S, Das SK, Khairy M, Mackey JR, Pituskin E, Sutendra G, Paterson DI, Dyck JR. Endothelin Receptor Blocker Reverses Breast Cancer-Induced Cardiac Remodeling. JACC CardioOncol 2023; 5:686-700. [PMID: 37969640 PMCID: PMC10635889 DOI: 10.1016/j.jaccao.2023.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 11/17/2023] Open
Abstract
Background Although some cancer therapies have overt and/or subclinical cardiotoxic effects that increase subsequent cardiovascular risk in breast cancer patients, we have recently shown that the breast tumor itself can also induce cardiac hypertrophy through the activation of the endothelin system to contribute to cardiovascular risk. However, the extent to which the suppression of the activation of the endothelin system could improve cardiac remodeling in breast cancer patients has yet to be investigated. Objectives We aimed to retrospectively assess the cardiac morphology/function in patients with breast cancer before receiving cancer chemotherapy and to investigate if the suppression of the activation of the endothelin system improves cardiac remodeling in a mouse model of breast cancer. Methods Our study involved 28 previously studied women with breast cancer (including 24 after tumor resection) before receiving adjuvant therapy and 17 control healthy women. In addition, we explored how the endothelin system contributed to breast cancer-induced cardiac remodeling using a mouse model of breast cancer. Results Our results indicate that before chemotherapy, breast cancer patients already exhibit relative cardiac remodeling and subclinical cardiac dysfunction, which was associated with the activation of the endothelin system. Importantly, our mouse data also show that the endothelin receptor blocker atrasentan significantly lessened cardiac remodeling and improved cardiac function in a preclinical model of breast cancer. Conclusions Although our findings should be further examined in other preclinical/clinical models, our data suggest that endothelin receptor blockers may play a role in cardiac health in individuals with breast cancer. (Understanding and Treating Heart Failure With Preserved Ejection Fraction: Novel Mechanisms, Diagnostics and Potential Therapeutics [Alberta HEART]; NCT02052804 and Multidisciplinary Team Intervention in Cardio-Oncology [TITAN]; NCT01621659).
Collapse
Affiliation(s)
- Zaid H. Maayah
- Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University Health, Qatar University, Doha, Qatar
| | - Mourad Ferdaoussi
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | | | - Shingo Takahara
- Division of Cardiovascular Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Subhash K. Das
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Mostafa Khairy
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - Gopinath Sutendra
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - D. Ian Paterson
- Division of Cardiology, University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Jason R.B. Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
118
|
Heidari Nejad S, Azzam O, Schlaich MP. Dual Endothelin Antagonism with Aprocitentan as a Novel Therapeutic Approach for Resistant Hypertension. Curr Hypertens Rep 2023; 25:343-352. [PMID: 37566184 PMCID: PMC10505105 DOI: 10.1007/s11906-023-01259-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/12/2023]
Abstract
PURPOSE OF REVIEW: Resistant hypertension (RH) defined as uncontrolled blood pressure despite the use of a combination of a renin-angiotensin system blocker, a calcium channel blocker, and a diuretic at maximally tolerated doses is associated with a substantially increased risk of cardiovascular and renal events. Despite targeting relevant pathophysiological pathways contributing to elevated blood pressure, approximately 10-15% of hypertensive patients remain above recommended blood pressure targets. Further optimization of blood pressure control is particularly challenging in patient populations who frequently present with RH such as elderly and patients with chronic kidney disease, due to the unfavorable safety profile of the recommended fourth-line therapy with mineralocorticoid receptor antagonists. This review explores the potential role of endothelin antagonists as an alternative fourth-line therapy. RECENT FINDINGS: Despite the well-described role of the endothelin pathway in the pathogenesis of hypertension, it is currently not targeted therapeutically. Recently however, main outcome data from the PRECISION study, a randomized placebo-controlled phase 3 trial, in patients with RH on guideline-recommended standardized single-pill background therapy convincingly demonstrated the safety and blood pressure-lowering efficacy of the dual endothelin antagonist Aprocitentan. Findings from the phase 3 PRECISION study could signify a turning point in the utilization of endothelin receptor antagonists as a standard treatment for patients with RH.
Collapse
Affiliation(s)
- Sayeh Heidari Nejad
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit and RPH Research Foundation, The University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
- Department of Nephrology, Royal Perth Hospital, Perth, Australia
| | - Omar Azzam
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit and RPH Research Foundation, The University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
- Department of Nephrology, Royal Perth Hospital, Perth, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit and RPH Research Foundation, The University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia.
- Department of Nephrology, Royal Perth Hospital, Perth, Australia.
- Department of Cardiology, Royal Perth Hospital, Perth, Australia.
| |
Collapse
|
119
|
Nørregaard R, Mutsaers HAM, Frøkiær J, Kwon TH. Obstructive nephropathy and molecular pathophysiology of renal interstitial fibrosis. Physiol Rev 2023; 103:2827-2872. [PMID: 37440209 PMCID: PMC10642920 DOI: 10.1152/physrev.00027.2022] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023] Open
Abstract
The kidneys play a key role in maintaining total body homeostasis. The complexity of this task is reflected in the unique architecture of the organ. Ureteral obstruction greatly affects renal physiology by altering hemodynamics, changing glomerular filtration and renal metabolism, and inducing architectural malformations of the kidney parenchyma, most importantly renal fibrosis. Persisting pathological changes lead to chronic kidney disease, which currently affects ∼10% of the global population and is one of the major causes of death worldwide. Studies on the consequences of ureteral obstruction date back to the 1800s. Even today, experimental unilateral ureteral obstruction (UUO) remains the standard model for tubulointerstitial fibrosis. However, the model has certain limitations when it comes to studying tubular injury and repair, as well as a limited potential for human translation. Nevertheless, ureteral obstruction has provided the scientific community with a wealth of knowledge on renal (patho)physiology. With the introduction of advanced omics techniques, the classical UUO model has remained relevant to this day and has been instrumental in understanding renal fibrosis at the molecular, genomic, and cellular levels. This review details key concepts and recent advances in the understanding of obstructive nephropathy, highlighting the pathophysiological hallmarks responsible for the functional and architectural changes induced by ureteral obstruction, with a special emphasis on renal fibrosis.
Collapse
Affiliation(s)
- Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| |
Collapse
|
120
|
Perico N, Remuzzi G, Griffin MD, Cockwell P, Maxwell AP, Casiraghi F, Rubis N, Peracchi T, Villa A, Todeschini M, Carrara F, Magee BA, Ruggenenti PL, Rota S, Cappelletti L, McInerney V, Griffin TP, Islam MN, Introna M, Pedrini O, Golay J, Finnerty AA, Smythe J, Fibbe WE, Elliman SJ, O'Brien T. Safety and Preliminary Efficacy of Mesenchymal Stromal Cell (ORBCEL-M) Therapy in Diabetic Kidney Disease: A Randomized Clinical Trial (NEPHSTROM). J Am Soc Nephrol 2023; 34:1733-1751. [PMID: 37560967 PMCID: PMC10561817 DOI: 10.1681/asn.0000000000000189] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/26/2023] [Indexed: 08/11/2023] Open
Abstract
SIGNIFICANCE STATEMENT Mesenchymal stromal cells (MSCs) may offer a novel therapy for diabetic kidney disease (DKD), although clinical translation of this approach has been limited. The authors present findings from the first, lowest dose cohort of 16 adults with type 2 diabetes and progressive DKD participating in a randomized, placebo-controlled, dose-escalation phase 1b/2a trial of next-generation bone marrow-derived, anti-CD362 antibody-selected allogeneic MSCs (ORBCEL-M). A single intravenous (iv) infusion of 80×10 6 cells was safe and well-tolerated, with one quickly resolved infusion reaction in the placebo group and no subsequent treatment-related serious adverse events (SAEs). Compared with placebo, the median annual rate of decline in eGFR was significantly lower with ORBCEL-M, although mGFR did not differ. The results support further investigation of ORBCEL-M in this patient population in an appropriately sized phase 2b study. BACKGROUND Systemic therapy with mesenchymal stromal cells may target maladaptive processes involved in diabetic kidney disease progression. However, clinical translation of this approach has been limited. METHODS The Novel Stromal Cell Therapy for Diabetic Kidney Disease (NEPHSTROM) study, a randomized, placebo-controlled phase 1b/2a trial, assesses safety, tolerability, and preliminary efficacy of next-generation bone marrow-derived, anti-CD362-selected, allogeneic mesenchymal stromal cells (ORBCEL-M) in adults with type 2 diabetes and progressive diabetic kidney disease. This first, lowest dose cohort of 16 participants at three European sites was randomized (3:1) to receive intravenous infusion of ORBCEL-M (80×10 6 cells, n =12) or placebo ( n =4) and was followed for 18 months. RESULTS At baseline, all participants were negative for anti-HLA antibodies and the measured GFR (mGFR) and estimated GFR were comparable between groups. The intervention was safe and well-tolerated. One placebo-treated participant had a quickly resolved infusion reaction (bronchospasm), with no subsequent treatment-related serious adverse events. Two ORBCEL-M recipients died during follow-up of causes deemed unrelated to the trial intervention; one recipient developed low-level anti-HLA antibodies. The median annual rate of kidney function decline after ORBCEL-M therapy compared with placebo did not differ by mGFR, but was significantly lower by eGFR estimated by the Chronic Kidney Disease Epidemiology Collaboration and Modification of Diet in Renal Disease equations. Immunologic profiling provided evidence of preservation of circulating regulatory T cells, lower natural killer T cells, and stabilization of inflammatory monocyte subsets in those receiving the cell therapy compared with placebo. CONCLUSIONS Findings indicate safety and tolerability of intravenous ORBCEL-M cell therapy in the trial's lowest dose cohort. The rate of decline in eGFR (but not mGFR) over 18 months was significantly lower among those receiving cell therapy compared with placebo. Further studies will be needed to determine the therapy's effect on CKD progression. CLINICAL TRIAL REGISTRATION NUMBER ClinicalTrial.gov NCT02585622 .
Collapse
Affiliation(s)
- Norberto Perico
- Centro di Ricerche Cliniche per le Malattie Rare “Aldo e Cele Daccò”, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Centro di Ricerche Cliniche per le Malattie Rare “Aldo e Cele Daccò”, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Matthew D. Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, University of Galway, Galway, Ireland
| | - Paul Cockwell
- Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Institute of Ageing and Immunity, University of Birmingham, Birmingham, United Kingdom
| | | | - Federica Casiraghi
- Centro di Ricerche Cliniche per le Malattie Rare “Aldo e Cele Daccò”, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Nadia Rubis
- Centro di Ricerche Cliniche per le Malattie Rare “Aldo e Cele Daccò”, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Tobia Peracchi
- Centro di Ricerche Cliniche per le Malattie Rare “Aldo e Cele Daccò”, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Alessandro Villa
- Centro di Ricerche Cliniche per le Malattie Rare “Aldo e Cele Daccò”, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marta Todeschini
- Centro di Ricerche Cliniche per le Malattie Rare “Aldo e Cele Daccò”, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Fabiola Carrara
- Centro di Ricerche Cliniche per le Malattie Rare “Aldo e Cele Daccò”, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Bernadette A. Magee
- Northern Ireland Histocompatibility and Immunogenetics Laboratory, Belfast City Hospital, Belfast, Northern Ireland
| | - Piero L. Ruggenenti
- Centro di Ricerche Cliniche per le Malattie Rare “Aldo e Cele Daccò”, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
- Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Stefano Rota
- Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Laura Cappelletti
- Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Veronica McInerney
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, University of Galway, Galway, Ireland
- HRB Clinical Research Facility, University of Galway, Galway, Ireland
| | - Tomás P. Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, University of Galway, Galway, Ireland
| | - Md Nahidul Islam
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, University of Galway, Galway, Ireland
| | - Martino Introna
- Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Olga Pedrini
- Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
- Fondazione per la Ricerca Ospedale di Bergamo (FROM), Bergamo, Italy
| | - Josée Golay
- Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Andrew A. Finnerty
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, University of Galway, Galway, Ireland
- HRB Clinical Research Facility, University of Galway, Galway, Ireland
- Centre for Cell Manufacturing Ireland, University of Galway, Galway, Ireland
| | - Jon Smythe
- NHS Blood and Transplant Oxford Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, University of Galway, Galway, Ireland
| |
Collapse
|
121
|
Veenit V, Heerspink HJL, Ahlström C, Greasley PJ, Skritic S, van Zuydam N, Kohan DE, Hansen PBL, Menzies RI. The sodium glucose co-transporter 2 inhibitor dapagliflozin ameliorates the fluid-retaining effect of the endothelin A receptor antagonist zibotentan. Nephrol Dial Transplant 2023; 38:2289-2297. [PMID: 37102226 PMCID: PMC10539223 DOI: 10.1093/ndt/gfad078] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Endothelin A receptor antagonists (ETARA) slow chronic kidney disease (CKD) progression but their use is limited due to fluid retention and associated clinical risks. Sodium-glucose co-transporter 2 inhibitors (SGLT2i) cause osmotic diuresis and improve clinical outcomes in CKD and heart failure. We hypothesized that co-administration of the SGLT2i dapagliflozin with the ETARA zibotentan would mitigate the fluid retention risk using hematocrit (Hct) and bodyweight as proxies for fluid retention. METHODS Experiments were performed in 4% salt fed WKY rats. First, we determined the effect of zibotentan (30, 100 or 300 mg/kg/day) on Hct and bodyweight. Second, we assessed the effect of zibotentan (30 or 100 mg/kg/day) alone or in combination with dapagliflozin (3 mg/kg/day) on Hct and bodyweight. RESULTS Hct at Day 7 was lower in zibotentan versus vehicle groups [zibotentan 30 mg/kg/day, 43% (standard error 1); 100 mg/kg/day, 42% (1); and 300 mg/kg/day, 42% (1); vs vehicle, 46% (1); P < .05], while bodyweight was numerically higher in all zibotentan groups compared with vehicle. Combining zibotentan with dapagliflozin for 7 days prevented the change in Hct [zibotentan 100 mg/kg/day and dapagliflozin, 45% (1); vs vehicle 46% (1); P = .44] and prevented the zibotentan-driven increase in bodyweight (zibotentan 100 mg/kg/day + dapagliflozin 3 mg/kg/day = -3.65 g baseline corrected bodyweight change; P = .15). CONCLUSIONS Combining ETARA with SGLT2i prevents ETARA-induced fluid retention, supporting clinical studies to assess the efficacy and safety of combining zibotentan and dapagliflozin in individuals with CKD.
Collapse
Affiliation(s)
- Vandana Veenit
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christine Ahlström
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Peter J Greasley
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stanko Skritic
- Innovation Strategies & External Liaison, Pharmaceutical Technologies & Development, AstraZeneca, Gothenburg, Sweden; Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Natalie van Zuydam
- Biostatistics Sweden, Data Science and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Donald E Kohan
- Division of Nephrology, University of Utah Health, Salt Lake City, UT, USA
| | - Pernille B L Hansen
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Robert I Menzies
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
122
|
Shihoya W, Sano FK, Nureki O. Structural insights into endothelin receptor signalling. J Biochem 2023; 174:317-325. [PMID: 37491722 PMCID: PMC10533325 DOI: 10.1093/jb/mvad055] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/27/2023] Open
Abstract
Endothelins and their receptors, type A (ETA) and type B (ETB), modulate vital cellular processes, including growth, survival, invasion and angiogenesis, through multiple G proteins. This review highlights the structural determinations of these receptors by X-ray crystallography and cryo-electron microscopy, and their activation mechanisms by endothelins. Explorations of the conformational changes upon receptor activation have provided insights into the unique G-protein coupling feature of the endothelin receptors. The review further delves into the binding modes of the clinical antagonist and the inverse agonists. These findings significantly contribute to understanding the mechanism of G-protein activation and have potential implications for drug development, particularly in the context of vasodilatory antagonists and agonists targeting the endothelin receptors.
Collapse
Affiliation(s)
- Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Fumiya K Sano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| |
Collapse
|
123
|
Sato T, Azuma Y, Ozone C, Okazaki M, Takeda A, Okada M, Futamura K, Hiramitsu T, Goto N, Narumi S, Watarai Y. Possible Advantage of Glucagon-Like Peptide 1 Receptor Agonists for Kidney Transplant Recipients With Type 2 Diabetes. J Clin Endocrinol Metab 2023; 108:2597-2603. [PMID: 36974363 DOI: 10.1210/clinem/dgad177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
CONTEXT Glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) have the potential to improve native kidney function. OBJECTIVE This work aimed to elucidate the possible protective effects of GLP-1 RAs on kidney graft function after successful kidney transplantation (KTX). METHODS This retrospective cohort study included all KTX recipients (KTRs) at our facility with type 2 diabetes who were followed up from 1 month post-transplantation for 24 months or longer as of December 31, 2020. We investigated associations between the use of GLP-1 RAs and other antidiabetic medications (non-GLP-1 RAs) and the risk of sustained estimated glomerular filtration rate (eGFR) reduction (40% reduction compared with baseline for 4 months) for KTRs with type 2 diabetes. We calculated the propensity score of initiating GLP-1 RAs compared with that of initiating non-GLP-1 RAs as a function of baseline covariates using logistic regression. The inverse probability of the treatment-weighted odds ratio was estimated to control for baseline confounding variables. Sodium-glucose cotransporter 2 inhibitor use was a competing event. The primary outcome was sustained eGFR reduction of at least 40% from baseline for 4 months post-transplantation. RESULTS Seventy-three patients were GLP-1 RA users and 73 were non-GLP-1 RA users. Six patients and 1 patient in the non-GLP-1 RA and GLP-1 RA groups had sustained eGFR reduction. GLP-1 RA use after KTX was associated with a lower risk of sustained eGFR reduction. CONCLUSION GLP-1 RAs resulted in lower eGFR reduction compared with non-GLP-1 RAs and may contribute to better kidney graft survival after KTX.
Collapse
Affiliation(s)
- Tetsuhiko Sato
- Division of Integrated Strategic Medicine, Japanese Red Cross Aichi Medical Center, Nagoya Daini Hospital, Nagoya, Aichi 4668650, Japan
- Division of Diabetes and Endocrinology, Japanese Red Cross Aichi Medical Center, Nagoya Daini Hospital, Nagoya, Aichi 4668650, Japan
| | - Yoshinori Azuma
- Division of Diabetes and Endocrinology, Japanese Red Cross Aichi Medical Center, Nagoya Daini Hospital, Nagoya, Aichi 4668650, Japan
| | - Chikafumi Ozone
- Division of Diabetes and Endocrinology, Japanese Red Cross Aichi Medical Center, Nagoya Daini Hospital, Nagoya, Aichi 4668650, Japan
| | - Mikako Okazaki
- Division of Diabetes and Endocrinology, Japanese Red Cross Aichi Medical Center, Nagoya Daini Hospital, Nagoya, Aichi 4668650, Japan
| | - Asami Takeda
- Department of Nephrology, Japanese Red Cross Aichi Medical Center, Nagoya Daini Hospital, Nagoya, Aichi 4668650, Japan
| | - Manabu Okada
- Department of Transplant Surgery, Japanese Red Cross Aichi Medical Center, Nagoya Daini Hospital, Nagoya, Aichi 4668650, Japan
| | - Kenta Futamura
- Department of Transplant Nephrology, Japanese Red Cross Aichi Medical Center, Nagoya Daini Hospital, Nagoya, Aichi 4668650, Japan
| | - Takahisa Hiramitsu
- Department of Transplant Surgery, Japanese Red Cross Aichi Medical Center, Nagoya Daini Hospital, Nagoya, Aichi 4668650, Japan
| | - Norihiko Goto
- Department of Transplant Nephrology, Japanese Red Cross Aichi Medical Center, Nagoya Daini Hospital, Nagoya, Aichi 4668650, Japan
| | - Shunji Narumi
- Department of Transplant Surgery, Japanese Red Cross Aichi Medical Center, Nagoya Daini Hospital, Nagoya, Aichi 4668650, Japan
| | - Yoshihiko Watarai
- Department of Transplant Surgery, Japanese Red Cross Aichi Medical Center, Nagoya Daini Hospital, Nagoya, Aichi 4668650, Japan
| |
Collapse
|
124
|
Smeijer JD, Kohan DE, Rossing P, Correa-Rotter R, Liew A, Tang SCW, de Zeeuw D, Gansevoort RT, Ju W, Lambers Heerspink HJ. Insulin resistance, kidney outcomes and effects of the endothelin receptor antagonist atrasentan in patients with type 2 diabetes and chronic kidney disease. Cardiovasc Diabetol 2023; 22:251. [PMID: 37716952 PMCID: PMC10505320 DOI: 10.1186/s12933-023-01964-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/14/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Insulin resistance (IR) is a pathophysiologic hallmark of type 2 diabetes and associated with the presence of chronic kidney disease (CKD). Experimental studies suggest that endothelin-1 increases IR. We assessed the association between IR and cardio-renal outcomes and the effect of the selective endothelin receptor antagonist atrasentan on IR in patients with type 2 diabetes and CKD. METHODS We used data from the RADAR and SONAR trials that recruited participants with type 2 diabetes and CKD [eGFR 25-75 mL/min/1.73 m², urine albumin-to-creatinine ratio of 300-5000 mg/g]. IR was calculated using the homeostatic model assessment (HOMA-IR). The association between HOMA-IR and the pre-specified cardio-renal outcomes was assessed using multivariable Cox proportional hazards regression, and effects of atrasentan on HOMA-IR by a linear mixed effect model. RESULTS In the SONAR trial, each log-unit increase in HOMA-IR was associated with an increased risk of the composite cardio-renal outcome [hazard ratio 1.32 (95%CI 1.09,1.60; p = 0.004)], kidney outcome [hazard ratio 1.30 (95%CI 1.00,1.68; p-value = 0.048)], and the kidney or all-cause mortality outcome [hazard ratio 1.25 (95%CI 1.01,1.55; p-value = 0.037)]. After 12 weeks treatment in the RADAR trial (N = 123), atrasentan 0.75 mg/day and 1.25 mg/day compared to placebo reduced HOMA-IR by 19.1 (95%CI -17.4, 44.3) and 26.7% (95%CI -6.4, 49.5), respectively. In the SONAR trial (N = 1914), atrasentan 0.75 mg/day compared to placebo reduced HOMA-IR by 9.6% (95%CI 0.6, 17.9). CONCLUSIONS More severe IR is associated with increased risk of cardio-renal outcomes. The endothelin receptor antagonist atrasentan reduced IR. TRIAL REGISTRATION RADAR trial (Reducing Residual Albuminuria in Subjects With Diabetes and Nephropathy With AtRasentan): NCT01356849. SONAR trial (The Study Of Diabetic Nephropathy With AtRasentan) NCT01858532.
Collapse
Affiliation(s)
- J David Smeijer
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Donald E Kohan
- Division of Nephrology, University of Utah Health, Salt Lake City, UT, USA
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ricardo Correa-Rotter
- National Medical Science and Nutrition Institute Salvador Zubirán, Mexico City, Mexico
| | - Adrian Liew
- Mount Elizabeth Novena Hospital, Singapore, Singapore
- George Institute for Global Health, Newtown, Australia
| | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Dick de Zeeuw
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ron T Gansevoort
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wenjun Ju
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hiddo J Lambers Heerspink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
- George Institute for Global Health, Newtown, Australia.
| |
Collapse
|
125
|
Shi C, Wan Y, He A, Wu X, Shen X, Zhu X, Yang J, Zhou Y. Urinary metabolites associate with the presence of diabetic kidney disease in type 2 diabetes and mediate the effect of inflammation on kidney complication. Acta Diabetol 2023; 60:1199-1207. [PMID: 37184672 PMCID: PMC10359369 DOI: 10.1007/s00592-023-02094-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023]
Abstract
AIMS Diabetic kidney disease (DKD) is the one of the leading causes of end-stage kidney disease. Unraveling novel biomarker signatures capable to identify patients with DKD is favorable for tackle the burden. Here, we investigated the possible association between urinary metabolites and the presence of DKD in type 2 diabetes (T2D), and further, whether the associated metabolites improve discrimination of DKD and mediate the effect of inflammation on kidney involvement was evaluated. METHODS Two independent cohorts comprising 192 individuals (92 DKD) were analyzed. Urinary metabolites were analyzed by targeted metabolome profiling and inflammatory cytokine IL-18 were measured by ELISA. Differentially expressed metabolites were selected and mediation analysis was carried out. RESULTS Seven potential metabolite biomarkers (i.e., S-Adenosyl-L-homocysteine, propionic acid, oxoadipic acid, leucine, isovaleric acid, isobutyric acid, and indole-3-carboxylic acid) were identified using the discovery and validation design. In the pooled analysis, propionic acid, oxoadipic acid, leucine, isovaleric acid, isobutyric acid, and indole-3-carboxylic acid were markedly and independently associated with DKD. The composite index of 7 potential metabolite biomarkers (CMI) mediated 32.99% of the significant association between the inflammatory IL-18 and DKD. Adding the metabolite biomarkers improved the discrimination of DKD. CONCLUSIONS In T2D, several associated urinary metabolites were identified to improve the prediction of DKD. Whether interventions aimed at reducing CMI also reduce the risk of DKD especially in patients with high IL-18 needs further investigations.
Collapse
Affiliation(s)
- Caifeng Shi
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, No. 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China
| | - Yemeng Wan
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, No. 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China
| | - Aiqin He
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, No. 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China
| | - Xiaomei Wu
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, No. 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China
| | - Xinjia Shen
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, No. 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China
| | - Xueting Zhu
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, No. 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China
| | - Junwei Yang
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, No. 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China.
| | - Yang Zhou
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, No. 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China.
| |
Collapse
|
126
|
Chan KW, Kwong ASK, Tan KCB, Lui SL, Chan GC, Ip TP, Yiu WH, Cowling BJ, Taam Wong V, Lao L, Feng Y, Lai KN, Tang SC. Add-on Rehmannia-6-Based Chinese Medicine in Type 2 Diabetes and CKD: A Multicenter Randomized Controlled Trial. Clin J Am Soc Nephrol 2023; 18:1163-1174. [PMID: 37307005 PMCID: PMC10564374 DOI: 10.2215/cjn.0000000000000199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND Diabetes is the leading cause of CKD and kidney failure. We assessed the real-world effectiveness of Rehmannia-6-based Chinese medicine treatment, the most used Chinese medicine formulation, on the change in eGFR and albuminuria in patients with diabetes and CKD with severely increased albuminuria. METHODS In this randomized, assessor-blind, standard care-controlled, parallel, multicenter trial, 148 adult patients from outpatient clinics with type 2 diabetes, an eGFR of 30-90 ml/min per 1.73 m 2 , and a urine albumin-to-creatinine ratio (UACR) of 300-5000 mg/g were randomized 1:1 to a 48-week add-on protocolized Chinese medicine treatment program (using Rehmannia-6-based formulations in the granule form taken orally) or standard care alone. Primary outcomes were the slope of change in eGFR and UACR between baseline and end point (48 weeks after randomization) in the intention-to-treat population. Secondary outcomes included safety and the change in biochemistry, biomarkers, and concomitant drug use. RESULTS The mean age, eGFR, and UACR were 65 years, 56.7 ml/min per 1.73 m 2 , and 753 mg/g, respectively. Ninety-five percent ( n =141) of end point primary outcome measures were retrievable. For eGFR, the estimated slope of change was -2.0 (95% confidence interval [CI], -0.1 to -3.9) and -4.7 (95% CI, -2.9 to -6.5) ml/min per 1.73 m 2 in participants treated with add-on Chinese medicine or standard care alone, resulting in a 2.7 ml/min per 1.73 m 2 per year (95% CI, 0.1 to 5.3; P = 0.04) less decline with Chinese medicine. For UACR, the estimated proportion in the slope of change was 0.88 (95% CI, 0.75 to 1.02) and 0.99 (95% CI, 0.85 to 1.14) in participants treated with add-on Chinese medicine or standard care alone, respectively. The intergroup proportional difference (0.89, 11% slower increment in add-on Chinese medicine, 95% CI, 0.72 to 1.10; P = 0.28) did not reach statistical significance. Eighty-five adverse events were recorded from 50 participants (add-on Chinese medicine versus control: 22 [31%] versus 28 [36%]). CONCLUSIONS Rehmannia-6-based Chinese medicine treatment stabilized eGFR on top of standard care alone after 48 weeks in patients with type 2 diabetes, stage 2-3 CKD, and severely increased albuminuria. CLINICAL TRIAL REGISTRY Semi-individualized Chinese Medicine Treatment as an Adjuvant Management for Diabetic Nephropathy (SCHEMATIC), NCT02488252 .
Collapse
Affiliation(s)
- Kam Wa Chan
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Alfred Siu Kei Kwong
- Department of Family Medicine and Primary Healthcare, Hong Kong West Cluster, Hospital Authority, Hong Kong SAR, China
| | - Kathryn Choon Beng Tan
- Division of Endocrinology & Metabolism, Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sing Leung Lui
- Department of Medicine, Tung Wah Hospital, Hong Kong SAR, China
| | - Gary C.W. Chan
- Department of Medicine, Queen Mary Hospital, Hong Kong SAR, China
| | - Tai Pang Ip
- Department of Medicine, Tung Wah Hospital, Hong Kong SAR, China
| | - Wai Han Yiu
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Benjamin John Cowling
- Division of Epidemiology and Biostatistics, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
| | - Vivian Taam Wong
- School of Chinese Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lixing Lao
- School of Chinese Medicine, The University of Hong Kong, Hong Kong SAR, China
- Virginia University of Integrative Medicine, Fairfax, Virginia
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kar Neng Lai
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sydney C.W. Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
127
|
Rojas-Rivera JE, García-Carro C, Ávila AI, Espino M, Espinosa M, Fernández-Juárez G, Fulladosa X, Goicoechea M, Macía M, Morales E, Quintana LF, Praga M. Diagnosis and treatment of lupus nephritis: a summary of the Consensus Document of the Spanish Group for the Study of Glomerular Diseases (GLOSEN). Clin Kidney J 2023; 16:1384-1402. [PMID: 37664575 PMCID: PMC10468759 DOI: 10.1093/ckj/sfad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Indexed: 09/05/2023] Open
Abstract
Lupus nephritis (LN) is the most frequent serious manifestation of patients with systemic lupus erythematosus (SLE). Up to 60% of SLE patients develop LN, which has a significant impact on their quality of life and prognosis. Recent advances have improved the diagnostic approach to LN, and new drugs that block specific pathways and kidney damage progression have been developed. Several randomized and well-powered clinical trials have confirmed the efficacy of these agents in terms of proteinuria remission and preservation of kidney function in the medium and long term, with an acceptable safety profile and good tolerance. The combination of different therapies allows for reduction of the dose and duration of corticosteroids and other potentially toxic therapies and leads to an increase in the number of patients achieving complete remission of the disease. This consensus document carried out by the Spanish Group for the Study of Glomerular Diseases (GLOSEN) provides practical and updated recommendations, based on the best available evidence and clinical expertise of participating nephrologists.
Collapse
Affiliation(s)
- Jorge E Rojas-Rivera
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
- Departament of Medicine, Universidad Autónoma de Madrid
| | | | | | - Mar Espino
- Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | - Xavier Fulladosa
- Hospital Universitario de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Manuel Macía
- Hospital Universitario Nuestra Señora de la Candelaria, Tenerife, Spain
| | - Enrique Morales
- Hospital Universitario 12 de Octubre, Madrid, Spain
- Instituto de Investigación Hospital Universitario 12 de Octubre, Madrid, Spain
- Departament of Medicine, Universidad Complutense, Madrid, Spain
| | - Luis F Quintana
- Hospital Clínic de Barcelona, Barcelona, Spain
- Departament of Medicine, Universidad de Barcelona, IDIBAPS, Barcelona, Spain
| | - Manuel Praga
- Instituto de Investigación Hospital Universitario 12 de Octubre, Madrid, Spain
- Departament of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
128
|
Liu J, Shi Y, Diao Y, Zeng X, Fu P. Strategies to Improve Long-Term Outcomes for Patients with Chronic Kidney Disease in China. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:265-276. [PMID: 37899997 PMCID: PMC10601912 DOI: 10.1159/000530022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/17/2023] [Indexed: 10/31/2023]
Abstract
Background Chronic kidney disease (CKD) is an incurable disease requiring lifelong management. China has a high prevalence of CKD, which disproportionately affects older adults and those with chronic risk factors for CKD development. The rising prevalence of CKD in China places a substantial burden on the general population and the healthcare system. Summary In China, there are currently many unmet needs for patients with CKD and high-risk individuals, resulting from a lack of education and support to reduce risk factors, delayed diagnoses, limited knowledge of CKD among primary-care physicians, and poor access to treatments among some patient populations. An integrated, nationwide approach is required to improve the current situation of CKD management in China. There are currently several national healthcare frameworks in place that focus on new major health policies to prevent disease and encourage people to adopt healthier lifestyles, and while they do not directly target CKD, they may have a positive indirect impact. We explore the unmet needs for patients with CKD in China and discuss the potential strategies that may be required to overcome them. Such strategies include improving physician and patient education, establishing a targeted screening programme, supporting patients to improve self-management behaviours, accelerating the creation of medical consortia and medical satellite centres, and migrating from hospital- to community-based management. In addition to policy-driven strategies, development of novel therapies will be key to providing new solutions for the long-term management of CKD. Key Messages An integrated, nationwide approach is required, incorporating policy-driven changes to the clinical management of CKD, as well as the development of novel CKD treatments.
Collapse
Affiliation(s)
- Jing Liu
- Renal Division, West China Hospital of Sichuan University, Chengdu, China
- Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Yunying Shi
- Renal Division, West China Hospital of Sichuan University, Chengdu, China
| | - Yongshu Diao
- Renal Division, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoxi Zeng
- Renal Division, West China Hospital of Sichuan University, Chengdu, China
- West China Biomedical Big Data Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Fu
- Renal Division, West China Hospital of Sichuan University, Chengdu, China
- Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
129
|
Herskind AEJ, Nørgaard B. Gender representation in drug development studies for diabetes mellitus. A systematic review. Diabetes Metab Syndr 2023; 17:102815. [PMID: 37413814 DOI: 10.1016/j.dsx.2023.102815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND During the last 20 years, the prevalence of diabetes mellitus (DM) has increased drastically, and so has the number of associated medicine and drug development studies. Despite knowing that men and women respond differently to DM medicines, biological gender differences still tend not to be prioritized during medicine development. OBJECTIVE This study examined gender representation in medicine development studies for DM. METHOD We conducted a systematic review, and in February 2022, we searched EMBASE (Excerpta Medica Database), MEDLINE (Medical Literature Analysis and Retrieval System Online) and PubMed using a block search strategy. Randomized controlled studies (RCTs) including people diagnosed with DM (any type) aged 18-65 years were included. The Consolidated Standards of Reporting Trial 2010 checklist was applied to assess the studies' reported quality. The results are presented in a narrative synthesis. RESULTS Nine studies met the inclusion criteria. On average, women represented 31.4% of study participants, and similarly, for each trial phase, women were less represented than men. CONCLUSION This review showed an unequal gender representation in drug development studies for DM, with women and men representing 31.4% and 68.6% of the study participants, respectively, in the included studies. However, gender differences in medical drug studies might be due to specific exclusion criteria, participants' behaviour toward attending in medicine development or the law in the country of origin.
Collapse
Affiliation(s)
| | - Birgitte Nørgaard
- Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej9, 5000, Odense C, Denmark.
| |
Collapse
|
130
|
Guo C, Cao M, Diao N, Wang W, Geng H, Su Y, Sun T, Lu X, Kong M, Chen D. Novel pH-responsive E-selectin targeting natural polysaccharides hybrid micelles for diabetic nephropathy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 52:102696. [PMID: 37394108 DOI: 10.1016/j.nano.2023.102696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023]
Abstract
Diabetic nephropathy (DN) is an important complication of diabetes and is the main cause of end-stage renal disease. The pathogenesis of DN is complex, including glucose and lipid metabolism disorder, inflammation, and so on. Novel hybrid micelles loaded Puerarin (Pue) based on Angelica sinensis polysaccharides (ASP) and Astragalus polysaccharide (APS) were fabricated with pH-responsive ASP-hydrazone-ibuprofen (BF) materials (ASP-HZ-BF, SHB) and sialic acid (SA) modified APS-hydrazone-ibuprofen materials (SA/APS-HZ-BF, SPHB) by thin-film dispersion method. The SA in hybrid micelles can specifically bind to the E-selectin receptor which is highly expressed in inflammatory vascular endothelial cells. The loaded Pue could be accurately delivered to the inflammatory site of the kidney in response to the low pH microenvironment. Overall, this study provides a promising strategy for developing hybrid micelles based on natural polysaccharides for the treatment of diabetic nephropathy by inhibiting renal inflammatory reactions, and antioxidant stress.
Collapse
Affiliation(s)
- Chunjing Guo
- College of Marine Life Science, Ocean University of China, 5# Yushan 10 Road, Qingdao 266003, PR China
| | - Min Cao
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Ningning Diao
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Wenxin Wang
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Hongxu Geng
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Yanguo Su
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Tianying Sun
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Xinyue Lu
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Ming Kong
- College of Marine Life Science, Ocean University of China, 5# Yushan 10 Road, Qingdao 266003, PR China.
| | - Daquan Chen
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China.
| |
Collapse
|
131
|
Goyal JL, Gupta A, Gandhi P. Ocular manifestations in renal diseases. Indian J Ophthalmol 2023; 71:2938-2943. [PMID: 37530260 PMCID: PMC10538849 DOI: 10.4103/ijo.ijo_3234_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/22/2023] [Accepted: 03/27/2023] [Indexed: 08/03/2023] Open
Abstract
The eyes and kidneys are the targets for end-organ damage in multiple pathologies. Both these organs develop during the same embryonic stage around the fourth to sixth week of gestation, thus sharing a strong correlation between both eye and kidney diseases. Both the eyes and kidneys can be the target of the systemic disease process; however, the eyes can also be affected as a consequence of renal disease or its treatment. Risk factors such as diabetes, hypertension, and smoking are commonly shared between kidney and eye diseases. Ocular manifestations can be predictive of renal disease, and/or patients with renal disease are at higher risk for developing ocular manifestations. Various congenital anomalies of the eyes and kidneys can also present as an oculorenal syndrome. This article summarizes the ocular pathology, which can be seen in renal diseases.
Collapse
Affiliation(s)
- Jawahar Lal Goyal
- Department of Ophthalmology, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Arushi Gupta
- Department of Ophthalmology, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Pulkit Gandhi
- Rochester General Hospital, Centre for Kidney Disease and Hypertension, Rochester, New York, USA
| |
Collapse
|
132
|
Keller MP, Hudkins KL, Shalev A, Bhatnagar S, Kebede MA, Merrins MJ, Davis DB, Alpers CE, Kimple ME, Attie AD. What the BTBR/J mouse has taught us about diabetes and diabetic complications. iScience 2023; 26:107036. [PMID: 37360692 PMCID: PMC10285641 DOI: 10.1016/j.isci.2023.107036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Human and mouse genetics have delivered numerous diabetogenic loci, but it is mainly through the use of animal models that the pathophysiological basis for their contribution to diabetes has been investigated. More than 20 years ago, we serendipidously identified a mouse strain that could serve as a model of obesity-prone type 2 diabetes, the BTBR (Black and Tan Brachyury) mouse (BTBR T+ Itpr3tf/J, 2018) carrying the Lepob mutation. We went on to discover that the BTBR-Lepob mouse is an excellent model of diabetic nephropathy and is now widely used by nephrologists in academia and the pharmaceutical industry. In this review, we describe the motivation for developing this animal model, the many genes identified and the insights about diabetes and diabetes complications derived from >100 studies conducted in this remarkable animal model.
Collapse
Affiliation(s)
- Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kelly L. Hudkins
- Department of Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Anath Shalev
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, UK
| | - Sushant Bhatnagar
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, UK
| | - Melkam A. Kebede
- School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, Sydney, NSW 2006, Australia
| | - Matthew J. Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Dawn Belt Davis
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Charles E. Alpers
- Department of Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Michelle E. Kimple
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
133
|
Zhang K, Fu Z, Zhang Y, Chen X, Cai G, Hong Q. The role of cellular crosstalk in the progression of diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1173933. [PMID: 37538798 PMCID: PMC10395826 DOI: 10.3389/fendo.2023.1173933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most common complications of diabetes, and its main manifestations are progressive proteinuria and abnormal renal function, which eventually develops end stage renal disease (ESRD). The pathogenesis of DN is complex and involves many signaling pathways and molecules, including metabolic disorders, genetic factors, oxidative stress, inflammation, and microcirculatory abnormalities strategies. With the development of medical experimental techniques, such as single-cell transcriptome sequencing and single-cell proteomics, the pathological alterations caused by kidney cell interactions have attracted more and more attention. Here, we reviewed the characteristics and related mechanisms of crosstalk among kidney cells podocytes, endothelial cells, mesangial cells, pericytes, and immune cells during the development and progression of DN and highlighted its potential therapeutic effects.
Collapse
|
134
|
Inker LA, Collier W, Greene T, Miao S, Chaudhari J, Appel GB, Badve SV, Caravaca-Fontán F, Del Vecchio L, Floege J, Goicoechea M, Haaland B, Herrington WG, Imai E, Jafar TH, Lewis JB, Li PKT, Maes BD, Neuen BL, Perrone RD, Remuzzi G, Schena FP, Wanner C, Wetzels JFM, Woodward M, Heerspink HJL. A meta-analysis of GFR slope as a surrogate endpoint for kidney failure. Nat Med 2023; 29:1867-1876. [PMID: 37330614 DOI: 10.1038/s41591-023-02418-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/24/2023] [Indexed: 06/19/2023]
Abstract
Glomerular filtration rate (GFR) decline is causally associated with kidney failure and is a candidate surrogate endpoint for clinical trials of chronic kidney disease (CKD) progression. Analyses across a diverse spectrum of interventions and populations is required for acceptance of GFR decline as an endpoint. In an analysis of individual participant data, for each of 66 studies (total of 186,312 participants), we estimated treatment effects on the total GFR slope, computed from baseline to 3 years, and chronic slope, starting at 3 months after randomization, and on the clinical endpoint (doubling of serum creatinine, GFR < 15 ml min-1 per 1.73 m2 or kidney failure with replacement therapy). We used a Bayesian mixed-effects meta-regression model to relate treatment effects on GFR slope with those on the clinical endpoint across all studies and by disease groups (diabetes, glomerular diseases, CKD or cardiovascular diseases). Treatment effects on the clinical endpoint were strongly associated with treatment effects on total slope (median coefficient of determination (R2) = 0.97 (95% Bayesian credible interval (BCI) 0.82-1.00)) and moderately associated with those on chronic slope (R2 = 0.55 (95% BCI 0.25-0.77)). There was no evidence of heterogeneity across disease. Our results support the use of total slope as a primary endpoint for clinical trials of CKD progression.
Collapse
Affiliation(s)
- Lesley A Inker
- Division of Nephrology, Tufts Medical Center, Boston, MA, USA.
| | - Willem Collier
- Population Health Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Tom Greene
- Population Health Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Shiyuan Miao
- Division of Nephrology, Tufts Medical Center, Boston, MA, USA
| | - Juhi Chaudhari
- Division of Nephrology, Tufts Medical Center, Boston, MA, USA
| | - Gerald B Appel
- Division of Nephrology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Sunil V Badve
- George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia
| | | | - Lucia Del Vecchio
- Department of Nephrology and Dialysis, Sant'Anna Hospital, ASST Lariana, Como, Italy
| | - Jürgen Floege
- Division of Nephrology, RWTH Aachen University, Aachen, Germany
| | - Marian Goicoechea
- Department of Nephrology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Benjamin Haaland
- Population Health Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - William G Herrington
- Medical Research Council Population Health Research Unit, Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Enyu Imai
- Nakayamadera Imai Clinic, Takarazuka, Japan
| | - Tazeen H Jafar
- Program in Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Julia B Lewis
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Philip K T Li
- Division of Nephrology, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Bart D Maes
- Department of Nephrology, AZ Delta, Roeselare, Belgium
| | - Brendon L Neuen
- George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia
| | | | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Francesco P Schena
- Renal, Dialysis and Transplant Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Christoph Wanner
- Renal Research Unit, Comprehensive Heart Failure Center, Department of Clinical Research and Epidemiology, University of Würzburg, Würzburg, Germany
| | - Jack F M Wetzels
- Department of Nephrology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Mark Woodward
- George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia
- George Institute for Global Health, School of Public Health, Imperial College London, London, UK
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
135
|
Heerspink HJL, Jongs N, Neuen BL, Schloemer P, Vaduganathan M, Inker LA, Fletcher RA, Wheeler DC, Bakris G, Greene T, Chertow GM, Perkovic V. Effects of newer kidney protective agents on kidney endpoints provide implications for future clinical trials. Kidney Int 2023; 104:181-188. [PMID: 37119876 DOI: 10.1016/j.kint.2023.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 05/01/2023]
Abstract
Doubling of serum creatinine (equivalent to a 57% decline in the estimated glomerular filtration rate (eGFR)) is an accepted component of a composite kidney endpoint in clinical trials. Smaller declines in eGFR (40%, 50%) have been applied in several recently conducted clinical trials. Here, we assessed the effects of newer kidney protective agents on endpoints including smaller proportional declines in eGFR to compare relative event rates and the magnitude of observed treatment effects. We performed a post hoc analysis of 4401 patients in the CREDENCE, 4304 in the DAPA-CKD, 5734 in the FIDELIO-DKD, and 3668 in the SONAR trials, which assessed the effects of canagliflozin, dapagliflozin, finerenone and atrasentan in patients with chronic kidney disease. Effects of active therapies versus placebo on alternative composite kidney endpoints incorporating different eGFR decline thresholds (40%, 50%, or 57% eGFR reductions from baseline) with kidney failure or death due to kidney failure were compared. Cox-proportional hazards regression models were used to assess and compare treatment effects. During follow-up, event rates were higher for endpoints incorporating smaller versus larger eGFR decline thresholds. Compared to the treatment effects on kidney failure or death due to kidney failure, the magnitude of relative treatment effects was generally similar when considering composite endpoints incorporating smaller declines in eGFR. Hazard ratios for the four interventions ranged from 0.63 to 0.82 for the endpoint incorporating 40% eGFR decline and 0.59 to 0.76 for the endpoint incorporating 57% eGFR decline. Clinical trials incorporating a 40% eGFR decline in a composite endpoint would require approximately half the number of participants compared to a 57% eGFR decline with equivalent statistical power. Thus, in populations at high risk of CKD progression, the relative effects of newer kidney protective therapies appear generally similar across endpoints based on varying eGFR decline thresholds.
Collapse
Affiliation(s)
- Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands; The George Institute for Global Health, Sydney, Australia.
| | - Niels Jongs
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Brendon L Neuen
- The George Institute for Global Health, Sydney, Australia; Department of Renal Medicine, Royal North Shore Hospital, Sydney, Australia
| | | | | | - Lesley A Inker
- Division of Nephrology, Tufts Medical Center, Boston, Massachusetts, USA
| | | | - David C Wheeler
- Department of Renal Medicine, University College London, London, UK
| | - George Bakris
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Tom Greene
- Division of Biostatistics, Department of Population Health Sciences, University of Utah Health, Salt Lake City, Utah, USA
| | - Glenn M Chertow
- Department of Medicine, Epidemiology and Biostatistics, Stanford University School of Medicine, Stanford, California, USA; Department of Health Policy, Stanford University School of Medicine, Stanford, California, USA
| | - Vlado Perkovic
- Faculty of Medicine & Health, University New South Wales, Sydney, Australia
| |
Collapse
|
136
|
Obadina M, Wilson S, Derebail VK, Little J. Emerging Therapies and Advances in Sickle Cell Disease with a Focus on Renal Manifestations. KIDNEY360 2023; 4:997-1005. [PMID: 37254256 PMCID: PMC10371301 DOI: 10.34067/kid.0000000000000162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
The underlying mechanisms of disease in sickle cell disease (SCD) contribute to a multifaceted nephropathy, commonly manifested as albuminuria. In severe SCD genotypes ( e.g. , Hemoglobin SS [HbSS]), albuminuria and CKD are major predictors of mortality in this population. Therefore, the monitoring and management of renal function is an intrinsic part of comprehensive care in SCD. Management of nephropathy in SCD can be accomplished with SCD-directed therapies and/or CKD-directed therapies. In the past 5 years, novel disease-modifying and palliative therapies have been approved in SCD to target aspects of the disease, such as anemia, inflammation, and vasculopathy. Along with conventional hydroxyurea and chronic transfusion, l -glutamine, crizanlizumab, and voxelotor have all been shown to mitigate some adverse effect of SCD, and their effect on nephropathy is being investigated. CKD-directed therapies such as renin-angiotensin-aldosterone system blockers have long been used in SCD nephropathy; however, more complete long-term studies on benefits are needed. Given the effect of renal disease on survival, further assessment of the mechanisms and efficacy of these SCD-directed or CKD-directed therapeutic agents is essential.
Collapse
Affiliation(s)
- Mofiyin Obadina
- Division of Hematology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Sam Wilson
- Division of Hematology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
- UNC Blood Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Vimal K. Derebail
- Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Jane Little
- Division of Hematology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
- UNC Blood Research Center, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
137
|
Liu Z, Liu J, Wang W, An X, Luo L, Yu D, Sun W. Epigenetic modification in diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1133970. [PMID: 37455912 PMCID: PMC10348754 DOI: 10.3389/fendo.2023.1133970] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common microangiopathy in diabetic patients and the main cause of death in diabetic patients. The main manifestations of DKD are proteinuria and decreased renal filtration capacity. The glomerular filtration rate and urinary albumin level are two of the most important hallmarks of the progression of DKD. The classical treatment of DKD is controlling blood glucose and blood pressure. However, the commonly used clinical therapeutic strategies and the existing biomarkers only partially slow the progression of DKD and roughly predict disease progression. Therefore, novel therapeutic methods, targets and biomarkers are urgently needed to meet clinical requirements. In recent years, increasing attention has been given to the role of epigenetic modification in the pathogenesis of DKD. Epigenetic variation mainly includes DNA methylation, histone modification and changes in the noncoding RNA expression profile, which are deeply involved in DKD-related inflammation, oxidative stress, hemodynamics, and the activation of abnormal signaling pathways. Since DKD is reversible at certain disease stages, it is valuable to identify abnormal epigenetic modifications as early diagnosis and treatment targets to prevent the progression of end-stage renal disease (ESRD). Because the current understanding of the epigenetic mechanism of DKD is not comprehensive, the purpose of this review is to summarize the role of epigenetic modification in the occurrence and development of DKD and evaluate the value of epigenetic therapies in DKD.
Collapse
Affiliation(s)
- Zhe Liu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
- College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jiahui Liu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wanning Wang
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingna An
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ling Luo
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Weixia Sun
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
138
|
Lin R, Junttila J, Piuhola J, Lepojärvi ES, Magga J, Kiviniemi AM, Perkiömäki J, Huikuri H, Ukkola O, Tulppo M, Kerkelä R. Endothelin-1 is associated with mortality that can be attenuated with high intensity statin therapy in patients with stable coronary artery disease. COMMUNICATIONS MEDICINE 2023; 3:87. [PMID: 37349571 PMCID: PMC10287654 DOI: 10.1038/s43856-023-00322-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND All coronary artery disease (CAD) patients do not benefit equally of secondary prevention. Individualized intensity of drug therapy is currently implemented in guidelines for CAD and diabetes. Novel biomarkers are needed to identify patient subgroups potentially benefitting from individual therapy. This study aimed to investigate endothelin-1 (ET-1) as a biomarker for increased risk of adverse events and to evaluate if medication could alleviate the risks in patients with high ET-1. METHODS A prospective observational cohort study ARTEMIS included 1946 patients with angiographically documented CAD. Blood samples and baseline data were collected at enrollment and the patients were followed for 11 years. Multivariable Cox regression was used to assess the association between circulating ET-1 level and all-cause mortality, cardiovascular (CV) death, non-CV death and sudden cardiac death (SCD). RESULTS Here we show an association of circulating ET-1 level with higher risk for all-cause mortality (HR: 2.06; 95% CI 1.5-2.83), CV death, non-CV death and SCD in patients with CAD. Importantly, high intensity statin therapy reduces the risk for all-cause mortality (adjusted HR: 0.05; 95% CI 0.01-0.38) and CV death (adjusted HR: 0.06; 95% CI 0.01-0.44) in patients with high ET-1, but not in patients with low ET-1. High intensity statin therapy does not associate with reduction of risk for non-CV death or SCD. CONCLUSIONS Our data suggests a prognostic value for high circulating ET-1 in patients with stable CAD. High intensity statin therapy associates with reduction of risk for all-cause mortality and CV death in CAD patients with high ET-1.
Collapse
Affiliation(s)
- Ruizhu Lin
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
| | - Juhani Junttila
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Centre Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Jarkko Piuhola
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
| | - E Samuli Lepojärvi
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
| | - Johanna Magga
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Antti M Kiviniemi
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
| | - Juha Perkiömäki
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
| | - Heikki Huikuri
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
| | - Olavi Ukkola
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
| | - Mikko Tulppo
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland.
- Medical Research Centre Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
- Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
139
|
Crompton M, Skinner LJ, Satchell SC, Butler MJ. Aldosterone: Essential for Life but Damaging to the Vascular Endothelium. Biomolecules 2023; 13:1004. [PMID: 37371584 PMCID: PMC10296074 DOI: 10.3390/biom13061004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The renin angiotensin aldosterone system is a key regulator of blood pressure. Aldosterone is the final effector of this pathway, acting predominantly via mineralocorticoid receptors. Aldosterone facilitates the conservation of sodium and, with it, water and acts as a powerful stimulus for potassium excretion. However, evidence for the pathological impact of excess mineralocorticoid receptor stimulation is increasing. Here, we discussed how in the heart, hyperaldosteronism is associated with fibrosis, cardiac dysfunction, and maladaptive hypertrophy. In the kidney, aldosterone was shown to cause proteinuria and fibrosis and may contribute to the progression of kidney disease. More recently, studies suggested that aldosterone excess damaged endothelial cells. Here, we reviewed how damage to the endothelial glycocalyx may contribute to this process. The endothelial glycocalyx is a heterogenous, negatively charged layer on the luminal surface of cells. Aldosterone exposure alters this layer. The resulting structural changes reduced endothelial reactivity in response to protective shear stress, altered permeability, and increased immune cell trafficking. Finally, we reviewed current therapeutic strategies for limiting endothelial damage and suggested that preventing glycocalyx remodelling in response to aldosterone exposure may provide a novel strategy, free from the serious adverse effect of hyperkalaemia seen in response to mineralocorticoid blockade.
Collapse
Affiliation(s)
| | | | | | - Matthew J. Butler
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Whitson Street, Bristol BS1 3NY, UK
| |
Collapse
|
140
|
Saleh MA, Shaaban AA, Talaat IM, Elmougy A, Adra SF, Ahmad F, Qaisar R, Elmoselhi AB, Abu-Gharbieh E, El-Huneidi W, Eladl MA, Shehatou G, Kafl HE. RhoA/ROCK inhibition attenuates endothelin-1-induced glomerulopathy in the rats. Life Sci 2023; 323:121687. [PMID: 37030613 DOI: 10.1016/j.lfs.2023.121687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/25/2023] [Accepted: 04/05/2023] [Indexed: 04/10/2023]
Abstract
Endothelin-1 (ET-1) contributes to the development of kidney diseases. However, the underlying molecular mechanism is largely undefined. Here we sought to investigate the potential role of ET-1 receptors, ETA and ETB in the regulation of increased glomerular permeability and underlying signaling pathways post-ET-1 infusion. Male Sprague-Dawley rats were infused with ET-1 (2 pmol/kg per minute, i.v.) for four weeks, and the effect on glomerular permeability to albumin (Palb) and albuminuria was measured. The selective ROCK-1/2 inhibitor, Y-27632, was administered to a separate group of rats to determine its effect on ET-1-induced Palb and albuminuria. The role of ETA and ETB receptors in regulating RhoA/ROCK activity was determined by incubating isolated glomeruli from normal rats with ET-1 and with selective ETA and ETB receptor antagonists. ET-1 infusion for four weeks significantly elevated Palb and albuminuria. Y-27632 significantly reduced the elevation of Palb and albuminuria. The activities of both RhoA and ROCK-1/2 were increased by ET-1 infusion. Selective ETB receptor antagonism had no effect on the elevated activity of both RhoA and ROCK-1/2 enzymes. Selective ETA receptor and combined ETA/ETB receptors blockade restored the activity of RhoA and ROCK-1/2 to normal levels. In addition, chronic ET-1 infusion increased the levels of glomerular inflammatory and fibrotic markers. These effects were all attenuated in rats following ROCK-1/2 inhibition. These observations suggest that ET-1 contributes to increased albuminuria, inflammation, and fibrosis by modulating the activity of the ETA-RhoA/ROCK-1/2 pathway. Selective ETA receptor blockade may represent a potential therapeutic strategy to limit glomerular injury and albuminuria in kidney disease.
Collapse
Affiliation(s)
- Mohamed A Saleh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Ahmed A Shaaban
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City 35712, Egypt
| | - Iman M Talaat
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Pathology Department, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Atef Elmougy
- Pediatric Nephrology Unit, Mansoura University Children's Hospital, Mansoura University, Mansoura 35516, Egypt
| | - Saryia F Adra
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Firdos Ahmad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates
| | - Rizwan Qaisar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Adel B Elmoselhi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Eman Abu-Gharbieh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohamed A Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - George Shehatou
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City 35712, Egypt
| | - Hoda E Kafl
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
141
|
Yuan H, Sui H, Li S. Diosgenin alleviates the inflammatory damage and insulin resistance in high glucose‑induced podocyte cells via the AMPK/SIRT1/NF‑κB signaling pathway. Exp Ther Med 2023; 25:259. [PMID: 37153902 PMCID: PMC10155255 DOI: 10.3892/etm.2023.11958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/22/2023] [Indexed: 05/10/2023] Open
Abstract
Diabetic nephropathy (DN) is the predominant cause of end-stage renal disease globally. Diosgenin (DSG) has been reported to play a protective role in podocyte injury in DN. The present study aimed to explore the role of DSG in DN, as well as its mechanism of action in a high glucose (HG)-induced in vitro model of DN in podocytes. Cell viability, apoptosis, inflammatory response and insulin-stimulated glucose uptake were evaluated using Cell Counting Kit-8, TUNEL, ELISA and 2-deoxy-D-glucose assay, respectively. In addition, the expression of AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/NF-κB signaling-related proteins in podocyte cells was measured using western blotting. The results indicated that DSG enhanced the viability of podocytes after HG exposure, but inhibited inflammatory damage and attenuated insulin resistance. Moreover, DSG induced the activation of the AMPK/SIRT1/NF-κB signaling pathway. Furthermore, treatment with compound C, an inhibitor of AMPK, counteracted the protective effects of DSG on HG-induced podocyte cells. Therefore, DSG may be a potential therapeutic compound for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Haoyu Yuan
- Department of Endocrinology, The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Huacheng Sui
- Department of Endocrinology, The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Saimei Li
- Department of Endocrinology, The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Correspondence to: Dr Saimei Li, Department of Endocrinology, The First Clinical College of Guangzhou University of Chinese Medicine, 12 Airport Road, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
142
|
Tommerdahl KL, Kula AJ, Bjornstad P. Pharmacological management of youth with type 2 diabetes and diabetic kidney disease: a comprehensive review of current treatments and future directions. Expert Opin Pharmacother 2023; 24:913-924. [PMID: 37071054 PMCID: PMC10198950 DOI: 10.1080/14656566.2023.2203319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/12/2023] [Indexed: 04/19/2023]
Abstract
INTRODUCTION Diabetic kidney disease (DKD) is a leading cause of mortality in people with type 2 diabetes (T2D), and over 50% of individuals with youth-onset T2D will develop DKD as a young adult. Diagnosis of early-onset DKD remains a challenge in young persons with T2D secondary to a lack of available biomarkers for early DKD, while the injuries may still be reversible. Furthermore, multiple barriers exist to initiate timely prevention and treatment strategies for DKD, including a lack of Food and Drug Administration approval of medications in pediatrics; provider comfort with medication prescription, titration, and monitoring; and medication adherence. AREAS COVERED Therapies that have promise for slowing DKD progression in youth with T2D include metformin, renin-angiotensin-aldosterone system inhibitors, glucagon-like peptide-1 receptor agonists, sodium glucose co-transporter 2 inhibitors, thiazolidinediones, sulfonylureas, endothelin receptor agonists, and mineralocorticoid antagonists. Novel agents are also in development to act synergistically on the kidneys with the aforementioned medications. We comprehensively review the available pharmacologic strategies for DKD in youth-onset T2D including mechanisms of action, potential adverse effects, and kidney-specific effects, with an emphasis on published pediatric and adult trials. EXPERT OPINION Large clinical trials evaluating pharmacologic interventions targeting the treatment of DKD in youth-onset T2D are strongly needed.
Collapse
Affiliation(s)
- Kalie L. Tommerdahl
- Department of Pediatrics, Section of Pediatric Endocrinology, Children’s Hospital Colorado and University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
- Ludeman Family Center for Women’s Health Research, Division of General Internal Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexander J. Kula
- Department of Pediatrics, Section of Pediatric Nephrology, Lurie Children’s Hospital and Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Petter Bjornstad
- Department of Pediatrics, Section of Pediatric Endocrinology, Children’s Hospital Colorado and University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Ludeman Family Center for Women’s Health Research, Division of General Internal Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
143
|
Zhang S, Li X, Liu S, Zhang W, Li M, Qiao C. Research progress on the role of ET-1 in diabetic kidney disease. J Cell Physiol 2023; 238:1183-1192. [PMID: 37063089 DOI: 10.1002/jcp.31023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/16/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
Diabetic kidney disease (DKD) is one of the common complications of diabetes mellitus, which usually progresses to end-stage renal disease and causes great damage to the health of patients. Endothelin-1 (ET-1), a molecule closely associated with the progression of DKD, has increased expression in response to high glucose stimulation and is involved in hemodynamic changes, inflammation, glomerular and tubular dysfunction in the kidney, causing an increase in proteinuria and a decrease in glomerular filtration function, ultimately leading to glomerulosclerosis and renal failure. This paper aims to review the molecular level changes, regulatory mechanisms, and mechanisms of action of ET-1 under DKD, clinical trials of ET-1 receptor antagonists in recent years and current problems, to provide basic information and new research directions and ideas for the treatment of DKD and ET-1-related research.
Collapse
Affiliation(s)
- Shenghao Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaodan Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Siyu Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wanting Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Meinuo Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Chen Qiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
144
|
Huang Z, Vlasschaert C, Robinson-Cohen C, Pan Y, Sun X, Lash JP, Kestenbaum B, Kelly TN. Emerging evidence on the role of clonal hematopoiesis of indeterminate potential in chronic kidney disease. Transl Res 2023; 256:87-94. [PMID: 36586535 PMCID: PMC10101890 DOI: 10.1016/j.trsl.2022.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Chronic kidney disease (CKD) was responsible for 1.2 million deaths globally in 2016. Despite the large and growing burden of CKD, treatment options are limited and generally only preserve kidney function. Characterizing molecular precursors to incident and progressive CKD could point to critically needed prevention and treatment strategies. Clonal hematopoiesis of indeterminate potential (CHIP) is typically characterized by the clonal expansion of blood cells carrying somatic mutations in specific driver genes. An age-related disorder, CHIP is rare in the young but common in older adults. Recent studies have identified causal associations between CHIP and atherosclerotic cardiovascular disease which are most likely mediated by inflammation, a hallmark of CKD. Animal evidence has supported causal effects of CHIP on kidney injury, inflammation, and fibrosis, providing impetus for human research. Although prospective epidemiologic studies investigating associations of CHIP with development and progression of CKD are few, intriguing findings have been reported. CHIP was significantly associated with kidney function decline and end stage kidney disease in the general population, although effect sizes were modest. Recent work suggests larger associations of CHIP with kidney disease progression in CKD patients, but further investigations in this area are needed. In addition, the accumulating literature has identified some heterogeneity in associations between CHIP and kidney endpoints across study populations, but reasons for these differences remain unclear. The current review provides an in-depth exploration into this nascent area of research, develops a conceptual framework linking CHIP to CKD, and discusses the clinical and public health implications of this work.
Collapse
Affiliation(s)
- Zhijie Huang
- Department of Epidemiology, Tulane University, New Orleans, Louisiana
| | | | - Cassianne Robinson-Cohen
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yang Pan
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Xiao Sun
- Department of Epidemiology, Tulane University, New Orleans, Louisiana; Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - James P Lash
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Bryan Kestenbaum
- Division of Nephrology, Department of Medicine, Kidney Research Institute, University of Washington, Seattle, Washington
| | - Tanika N Kelly
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
145
|
Chen D, Shao M, Song Y, Ren G, Guo F, Fan X, Wang Y, Zhang W, Qin G. Single-cell RNA-seq with spatial transcriptomics to create an atlas of human diabetic kidney disease. FASEB J 2023; 37:e22938. [PMID: 37130011 DOI: 10.1096/fj.202202013rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Diabetic kidney disease (DKD) develops in ~40% of patients with diabetes and is the leading cause of chronic kidney disease worldwide. We used single-cell RNA-sequencing and spatial transcriptomic analyses of kidney specimens from patients with DKD. Unsupervised clustering revealed distinct cell clusters, including epithelial cells and fibroblasts. We also identified differentially expressed genes (DEGs) and assessed enrichment, and cell-cell interactions. Specific enrichment of DKD was evident in venous endothelial cells (VECs) and fibroblasts with elevated CCL19 expression. The DEGs in most kidney parenchymal cells in DKD were primarily enriched in inflammatory signaling pathways. Intercellular crosstalk revealed that most cell interactions in DKD are associated with chemokines. Spatial transcriptomics revealed that VECs co-localized with fibroblasts, with most immune cells being enriched in areas of renal fibrosis. These results provided insight into the cell populations, intercellular interactions, and signaling pathways underlying the pathogenesis and potential targets for treating DKD.
Collapse
Affiliation(s)
- Duo Chen
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingwei Shao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Song
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gaofei Ren
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Guo
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xunjie Fan
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanyan Wang
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guijun Qin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
146
|
Yeoh SE, Docherty KF, Campbell RT, Jhund PS, Hammarstedt A, Heerspink HJ, Jarolim P, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, Solomon SD, Sjöstrand M, Bengtsson O, Greasley PJ, Sattar N, Welsh P, Sabatine MS, Morrow DA, McMurray JJ. Endothelin-1, Outcomes in Patients With Heart Failure and Reduced Ejection Fraction, and Effects of Dapagliflozin: Findings From DAPA-HF. Circulation 2023; 147:1670-1683. [PMID: 37039015 PMCID: PMC10212584 DOI: 10.1161/circulationaha.122.063327] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/20/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND ET-1 (endothelin-1) is implicated in the pathophysiology of heart failure and renal disease. Its prognostic importance and relationship with kidney function in patients with heart failure with reduced ejection fraction receiving contemporary treatment are uncertain. We investigated these and the efficacy of dapagliflozin according to ET-1 level in the DAPA-HF trial (Dapagliflozin and Prevention of Adverse Outcomes in Heart Failure). METHODS We investigated the incidence of the primary outcome (cardiovascular death or worsening heart failure), change in kidney function, and the effect of dapagliflozin according to baseline ET-1 concentration, adjusting in Cox models for other recognized prognostic variables in heart failure including NT-proBNP (N-terminal pro-B-type natriuretic peptide). We also examined the effect of dapagliflozin on ET-1 level. RESULTS Overall, 3048 participants had baseline ET-1 measurements: tertile 1 (T1; ≤3.28 pg/mL; n=1016); T2 (>3.28-4.41 pg/mL; n=1022); and T3 (>4.41 pg/mL; n=1010). Patients with higher ET-1 were more likely male, more likely obese, and had lower left ventricular ejection fraction, lower estimated glomerular filtration rate, worse functional status, and higher NT-proBNP and hs-TnT (high-sensitivity troponin-T). In the adjusted Cox models, higher baseline ET-1 was independently associated with worse outcomes and steeper decline in kidney function (adjusted hazard ratio for primary outcome of 1.95 [95% CI, 1.53-2.50] for T3 and 1.36 [95% CI, 1.06-1.75] for T2; both versus T1; estimated glomerular filtration rate slope: T3, -3.19 [95% CI, -3.66 to -2.72] mL/min per 1.73 m2 per y, T2, -2.08 [95% CI, -2.52 to -1.63] and T1 -2.35 [95% CI, -2.79 to -1.91]; P=0.002). The benefit of dapagliflozin was consistent regardless of baseline ET-1, and the placebo-corrected decrease in ET-1 with dapagliflozin was 0.13 pg/mL (95% CI, 0.25-0.01; P=0.029). CONCLUSIONS Higher baseline ET-1 concentration was independently associated with worse clinical outcomes and more rapid decline in kidney function. The benefit of dapagliflozin was consistent across the range of ET-1 concentrations measured, and treatment with dapagliflozin led to a small decrease in serum ET-1 concentration. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT03036124.
Collapse
Affiliation(s)
- Su Ern Yeoh
- British Heart Foundation Cardiovascular Research Centre, University of Glasgow, United Kingdom (S.E.Y., K.F.D., R.T.C., P.S.J., N.S., P.W., J.J.V.M.)
| | - Kieran F. Docherty
- British Heart Foundation Cardiovascular Research Centre, University of Glasgow, United Kingdom (S.E.Y., K.F.D., R.T.C., P.S.J., N.S., P.W., J.J.V.M.)
| | - Ross T. Campbell
- British Heart Foundation Cardiovascular Research Centre, University of Glasgow, United Kingdom (S.E.Y., K.F.D., R.T.C., P.S.J., N.S., P.W., J.J.V.M.)
| | - Pardeep S. Jhund
- British Heart Foundation Cardiovascular Research Centre, University of Glasgow, United Kingdom (S.E.Y., K.F.D., R.T.C., P.S.J., N.S., P.W., J.J.V.M.)
| | - Ann Hammarstedt
- BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Sweden (A.H., M.S., O.B., P.J.G.)
| | - Hiddo J.L. Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, The Netherlands (H.J.L.H.)
- George Institute for Global Health, University of New South Wales, Sydney, Australia (H.J.L.H.)
| | - Petr Jarolim
- Department of Pathology (P.J.), Brigham and Women’s Hospital, Boston, MA
| | - Lars Køber
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Denmark (L.K.)
| | - Mikhail N. Kosiborod
- Saint Luke’s Mid America Heart Institute, University of Missouri, Kansas City (M.N.K.)
| | | | - Piotr Ponikowski
- Center for Heart Diseases, University Hospital, Wroclaw Medical University, Poland (P.P.)
| | - Scott D. Solomon
- Division of Cardiovascular Medicine (S.D.S.), Brigham and Women’s Hospital, Boston, MA
| | - Mikaela Sjöstrand
- BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Sweden (A.H., M.S., O.B., P.J.G.)
- Thrombolysis in Myocardial Infarction Study Group (M.S.S., D.A.M.), Brigham and Women’s Hospital, Boston, MA
| | - Olof Bengtsson
- BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Sweden (A.H., M.S., O.B., P.J.G.)
| | - Peter J. Greasley
- BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Sweden (A.H., M.S., O.B., P.J.G.)
| | - Naveed Sattar
- British Heart Foundation Cardiovascular Research Centre, University of Glasgow, United Kingdom (S.E.Y., K.F.D., R.T.C., P.S.J., N.S., P.W., J.J.V.M.)
| | - Paul Welsh
- British Heart Foundation Cardiovascular Research Centre, University of Glasgow, United Kingdom (S.E.Y., K.F.D., R.T.C., P.S.J., N.S., P.W., J.J.V.M.)
| | - Marc S. Sabatine
- British Heart Foundation Cardiovascular Research Centre, University of Glasgow, United Kingdom (S.E.Y., K.F.D., R.T.C., P.S.J., N.S., P.W., J.J.V.M.)
- BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Sweden (A.H., M.S., O.B., P.J.G.)
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, The Netherlands (H.J.L.H.)
- George Institute for Global Health, University of New South Wales, Sydney, Australia (H.J.L.H.)
- Department of Pathology (P.J.), Brigham and Women’s Hospital, Boston, MA
- Thrombolysis in Myocardial Infarction Study Group (M.S.S., D.A.M.), Brigham and Women’s Hospital, Boston, MA
- Division of Cardiovascular Medicine (S.D.S.), Brigham and Women’s Hospital, Boston, MA
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Denmark (L.K.)
- Saint Luke’s Mid America Heart Institute, University of Missouri, Kansas City (M.N.K.)
- Universidad Nacional de Córdoba, Argentina (F.A.M.)
- Center for Heart Diseases, University Hospital, Wroclaw Medical University, Poland (P.P.)
| | - David A. Morrow
- Thrombolysis in Myocardial Infarction Study Group (M.S.S., D.A.M.), Brigham and Women’s Hospital, Boston, MA
| | - John J.V. McMurray
- British Heart Foundation Cardiovascular Research Centre, University of Glasgow, United Kingdom (S.E.Y., K.F.D., R.T.C., P.S.J., N.S., P.W., J.J.V.M.)
| |
Collapse
|
147
|
Méndez Fernández AB, Vergara Arana A, Olivella San Emeterio A, Azancot Rivero MA, Soriano Colome T, Soler Romeo MJ. Cardiorenal syndrome and diabetes: an evil pairing. Front Cardiovasc Med 2023; 10:1185707. [PMID: 37234376 PMCID: PMC10206318 DOI: 10.3389/fcvm.2023.1185707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Cardiorenal syndrome (CRS) is a pathology where the heart and kidney are involved, and the deterioration of one of them leads to the malfunction of the other. Diabetes mellitus (DM) carries a higher risk of HF and a worse prognosis. Furthermore, almost half of people with DM will have chronic kidney disease (CKD), which means that DM is the main cause of kidney failure. The triad of cardiorenal syndrome and diabetes is known to be associated with increased risk of hospitalization and mortality. Cardiorenal units, with a multidisciplinary team (cardiologist, nephrologist, nursing), multiple tools for diagnosis, as well as new treatments that help to better control cardio-renal-metabolic patients, offer holistic management of patients with CRS. In recent years, the appearance of drugs such as sodium-glucose cotransporter type 2 inhibitors, have shown cardiovascular benefits, initially in patients with type 2 DM and later in CKD and heart failure with and without DM2, offering a new therapeutic opportunity, especially for cardiorenal patients. In addition, glucagon-like peptide-1 receptor agonists have shown CV benefits in patients with DM and CV disease in addition to a reduced risk of CKD progression.
Collapse
Affiliation(s)
| | - Ander Vergara Arana
- Department of Nephrology, Hospital Universitario Vall d´Hebron, Barcelona, Spain
| | | | | | - Toni Soriano Colome
- Department of Cardiology, Hospital Universitario Vall d´Hebron, Barcelona, Spain
| | | |
Collapse
|
148
|
Smeijer JD, Kohan DE, de Zeeuw D, Heerspink HJL. Diuretic medication and change in fluid retention biomarkers during treatment with the endothelin receptor antagonist atrasentan. Diabetes Obes Metab 2023. [PMID: 37157922 DOI: 10.1111/dom.15110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Affiliation(s)
- J David Smeijer
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands
| | - Donald E Kohan
- Division of Nephrology, University of Utah Health, Salt Lake City, Utah, USA
| | - D de Zeeuw
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
149
|
Kohan DE, Liew A, Tang SCW, Barratt J, Heerspink HJL. Effects of atrasentan on markers of liver function in patients with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab 2023. [PMID: 37139863 DOI: 10.1111/dom.15103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023]
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health, Salt Lake City, Utah, USA
| | | | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
150
|
Oda Y, Nishi H, Nangaku M. Role of Inflammation in Progression of Chronic Kidney Disease in Type 2 Diabetes Mellitus: Clinical Implications. Semin Nephrol 2023; 43:151431. [PMID: 37865982 DOI: 10.1016/j.semnephrol.2023.151431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Progression of chronic kidney disease in type 2 diabetes has been understood conventionally as a consequence of intraglomerular hemodynamic changes and aberrant metabolic pathways. However, an increasing body of experimental evidence has highlighted the role of inflammatory response in the progression of diabetic kidney disease. Macrophage polarization in response to specific microenvironmental stimuli affects the pathology of diabetic kidneys. The diabetic milieu also up-regulates inflammatory cytokines, chemokines, and adhesion molecules, and promotes inflammatory signal transduction pathways, including inflammasomes. Therefore, from a reverse translational perspective, modulation of the inflammatory response may be the driving force of the renoprotective effects of renin-angiotensin system inhibitors, sodium-glucose cotransporter-2 inhibitors, and mineralocorticoid receptor antagonists, all of which have been shown to slow disease progression. Currently, many agents that target the inflammation in the kidneys directly are evaluated in clinical trials. This article discusses recent clinical and experimental milestones in drug development for diabetic kidney disease with a perspective on inflammation in the kidneys. Such insights may enable a targeted approach to discovering novel drugs against chronic kidney disease in type 2 diabetes.
Collapse
Affiliation(s)
- Yasuhiro Oda
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Nishi
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|