101
|
Ding L, Li R, Sun R, Zhou Y, Zhou Y, Han X, Cui Y, Wang W, Lv Q, Bai J. S-phase kinase-associated protein 2 promotes cell growth and motility in osteosarcoma cells. Cell Cycle 2017; 16:1547-1555. [PMID: 28771075 DOI: 10.1080/15384101.2017.1346760] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Skp2 (S-phase kinase-associated protein 2) plays an oncogenic role in a variety of human cancers. However, the function of Skp2 in osteosarcoma (OS) is elusive. Therefore, in the current study, we explore whether Skp2 exerts its oncogenic function in OS. The cell growth, apoptosis, invasion and cell cycle were measured in OS cells after Skp2 overexpression. We found that overexpression of Skp2 enhanced cell growth, and inhibited cell apoptosis in OS cells. Moreover, we observed that upregulation of Skp2 accelerated cell cycle progression in OS cells. Furthermore, the ability of migration and invasion was enhanced in Skp2 overexpressing OS cells. Mechanically, our Western blotting data suggested that Skp2 decreased the expression of E-cadherin, Foxo1, p21, and p57, but increased MMP-9 in OS cells. In conclusion, our study demonstrated that Skp2 exhibited an oncogenic function in OS cells, suggesting that inhibition of Skp2 may be a novel approach for the treatment of OS.
Collapse
Affiliation(s)
- Lu Ding
- a Department of Orthopedics , Fifth Affiliated Hospital, Xinjiang Medical University , Xinjiang , China.,b Department of Orthopedics , Tumor Hospital Affiliated to Xinjiang Medical University , Xinjiang , China
| | - Rong Li
- c Department of Maternal , Child and Adolescent Health, College of Public Health, Xinjiang Medical University , Xinjiang , China
| | - Rongxin Sun
- d Department of Orthopedics , Sixth Affiliated Hospital, Xinjiang Medical University , Xinjiang , China
| | - Yang Zhou
- b Department of Orthopedics , Tumor Hospital Affiliated to Xinjiang Medical University , Xinjiang , China
| | - Yubo Zhou
- e Department of Orthopedics , Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University , Xinjiang , China
| | - Xiaoping Han
- a Department of Orthopedics , Fifth Affiliated Hospital, Xinjiang Medical University , Xinjiang , China
| | - Yong Cui
- a Department of Orthopedics , Fifth Affiliated Hospital, Xinjiang Medical University , Xinjiang , China
| | - Wu Wang
- a Department of Orthopedics , Fifth Affiliated Hospital, Xinjiang Medical University , Xinjiang , China
| | - Qing Lv
- a Department of Orthopedics , Fifth Affiliated Hospital, Xinjiang Medical University , Xinjiang , China
| | - Jingping Bai
- b Department of Orthopedics , Tumor Hospital Affiliated to Xinjiang Medical University , Xinjiang , China
| |
Collapse
|
102
|
Ding L, Li R, Han X, Zhou Y, Zhang H, Cui Y, Wang W, Bai J. Inhibition of Skp2 suppresses the proliferation and invasion of osteosarcoma cells. Oncol Rep 2017. [PMID: 28627672 DOI: 10.3892/or.2017.5713] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Osteosarcoma (OS) is a common bone tumor that mainly affects children and young adults. S-phase kinase‑associated protein 2 (Skp2) has been characterized to play a critical oncogenic role in a variety of human malignancies. However, the biological function of Skp2 in OS remains largely obscure. In the present study, we elucidated the role of Skp2 in cell growth, cell cycle, apoptosis and migration in OS cells. We found that depletion of Skp2 inhibited cell growth in both MG-63 and SW 1353 cells. Moreover, we observed that depletion of Skp2 triggered cell apoptosis in two OS cell lines. Furthermore, downregulation of Skp2 induced cell cycle arrest in the G0/G1 phase in OS cells. Notably, our wound healing assay results revealed that inhibition of Skp2 suppressed cell migration in OS cells. Invariably, our western blot results demonstrated that depletion of Skp2 in OS cells inhibited activation of pAkt and increased p27 expression in OS cells, suggesting that Skp2 exerted its oncogenic function partly through the regulation of Akt and p27. Our findings revealed that targeting Skp2 could be a promising therapeutic strategy for the treatment of OS.
Collapse
Affiliation(s)
- Lu Ding
- Department of Orthopedics, Tumor Hospital Affiliated to Xinjiang Medical University, Xinshi, Urumqi, Xinjiang 830000, P.R. China
| | - Rong Li
- Department of Maternal, Child and Adolescent Health, College of Public Health, Xinjiang Medical University, Xinshi, Urumqi, Xinjiang 830000, P.R. China
| | - Xiaoping Han
- Department of Orthopedics, Fifth Affiliated Hospital, Xinjiang Medical University, Xinshi, Urumqi, Xinjiang 830000, P.R. China
| | - Yubo Zhou
- Department of Orthopedics, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Xinshi, Urumqi, Xinjiang, P.R. China
| | - Hua Zhang
- Department of Orthopedics, Fifth Affiliated Hospital, Xinjiang Medical University, Xinshi, Urumqi, Xinjiang 830000, P.R. China
| | - Yong Cui
- Department of Orthopedics, Fifth Affiliated Hospital, Xinjiang Medical University, Xinshi, Urumqi, Xinjiang 830000, P.R. China
| | - Wu Wang
- Department of Orthopedics, Fifth Affiliated Hospital, Xinjiang Medical University, Xinshi, Urumqi, Xinjiang 830000, P.R. China
| | - Jingping Bai
- Department of Orthopedics, Tumor Hospital Affiliated to Xinjiang Medical University, Xinshi, Urumqi, Xinjiang 830000, P.R. China
| |
Collapse
|
103
|
Mou H, Guo P, Li X, Zhang C, Jiang J, Wang L, Wang Q, Yuan Z. Nitidine chloride inhibited the expression of S phase kinase-associated protein 2 in ovarian cancer cells. Cell Cycle 2017; 16:1366-1375. [PMID: 28594256 DOI: 10.1080/15384101.2017.1327490] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Nitidine chloride (NC) has been reported to exert its anti-tumor activity in various types of human cancers. However, the molecular mechanism of NC-mediated tumor suppressive function is largely unclear. In the current study, we used several approaches such as MTT, FACS, RT-PCR, Western blotting analysis, invasion assay, transfection, to explore the molecular basis of NC-triggered anti-cancer activity. We found that NC inhibited cell growth, induced cell apoptosis, caused cell cycle arrest in ovarian cancer cells. Emerging evidence has demonstrated that Skp2 plays an important oncogenic role in ovarian cancer. Therefore, we also explored whether NC exerts its biologic function via downregulation of Skp2 in ovarian cancer cells. We observed that NC significantly inhibited the expression of Skp2 in ovarian cancer cells. Notably, overexpression of Skp2 abrogated the anti-cancer activity induced by NC in ovarian cancer cells. Consistently, downregulation of Skp2 expression enhanced the sensitivity of ovarian cancer cells to NC treatment. Thus, inactivation of Skp2 by NC could be a novel strategy for the treatment of human ovarian cancer.
Collapse
Affiliation(s)
- Huaping Mou
- a Department of Gynecology , Second People Hospital of Sichuan Province , Yibin City , China
| | - Ping Guo
- b Department of Oncology , Second People Hospital of Sichuan Province , Yibin City , China.,c Department of Hematology , First Affiliated Hospital of Southwest Medical University , Sichuan , Luzhou , China
| | - Xiaoming Li
- c Department of Hematology , First Affiliated Hospital of Southwest Medical University , Sichuan , Luzhou , China
| | - Chuanli Zhang
- b Department of Oncology , Second People Hospital of Sichuan Province , Yibin City , China
| | - Jing Jiang
- a Department of Gynecology , Second People Hospital of Sichuan Province , Yibin City , China
| | - Lishuai Wang
- b Department of Oncology , Second People Hospital of Sichuan Province , Yibin City , China
| | - Qiu Wang
- b Department of Oncology , Second People Hospital of Sichuan Province , Yibin City , China
| | - Zhiping Yuan
- b Department of Oncology , Second People Hospital of Sichuan Province , Yibin City , China.,c Department of Hematology , First Affiliated Hospital of Southwest Medical University , Sichuan , Luzhou , China
| |
Collapse
|
104
|
Zhuang K, Zhang L, Zhang X, Tang H, Zhang J, Yan Y, Han K, Guo H. Gastrin induces multidrug resistance via the degradation of p27Kip1 in the gastric carcinoma cell line SGC7901. Int J Oncol 2017; 50:2091-2100. [PMID: 28498440 DOI: 10.3892/ijo.2017.3983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/27/2017] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance (MDR) is one of the major reasons for the failure of chemotherapy-based gastric carcinoma (GC) treatments, hence, biologically based therapies are urgently needed. Gastrin (GAS), a key gastrointestinal (GI) hormone, was found to be involved in tumor formation, progression, and metastasis. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemical staining analysis revealed a high level of expression of GAS in drug-insensitive GC tissues (P<0.01) and similar results were revealed in GC cell lines SGC7901 and its multidrug-resistant variants SGC7901/VCR and SGC7901/ADR. We constructed a eukaryotic expression vector pCDNA3.1(+)/GAS for GAS overexpression and recombinant lentiviral vectors for specific siRNA (siGAS). Transfection of pCDNA3.1(+)/GAS increased (P<0.05) while transfection of siGAS (P<0.05) and co-treated with paclitaxel (TAX) and vincristine (VCR) combination (TAX-VCR) decreased (P<0.01) the cell viability of SGC7901, SGC7901/VCR and SGC7901/ADR. Apoptosis rates of SGC7901/VCR and SGC7901/ADR were reduced by pCDNA3.1(+)/GAS and increased by siGAS (P<0.05). The apoptosis rates of SGC7901/VCR, SGC7901/ADR and SGC7901 were all upregulated (P<0.01) when cells were co-treated with a combination of siGAS and TAX-VCR. Additionally, siGAS significantly downregulated the expression of Bcl-2 and multidrug-resistant associate protein (MRP1) and P-glycoprotein (Pgp) (P<0.05) in SGC7901/VCR and SGC7901/ADR cells. Moreover, GAS overexpression in SGC7901 cells significantly inhibited p27Kip1 expression but increased phosphorylation levels of p27Kip1 on Thr (187) and Ser (10) sites (P<0.05), as well as increasing nuclear accumulation of S-phase kinase-associated protein 2 (Skp2) and cytoplasmic accumulation of the Kip1 ubiquitination-promoting complex (KPC) (P<0.05). Silencing of Skp2 blocked the promoting effects of pCDNA3.1(+)/GAS on viability, the expression of MRP1 and Pgp and the inhibitory effects of pCDNA3.1(+)/GAS on apoptosis. In conclusion, we suggest that GAS contributes to the emergence of MDR of SGC7901 cells via the degradation of p27Kip1.
Collapse
Affiliation(s)
- Kun Zhuang
- Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Lingxia Zhang
- Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Xin Zhang
- Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Hailing Tang
- Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Jun Zhang
- Division of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yuan Yan
- Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Kun Han
- Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Hanqing Guo
- Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| |
Collapse
|
105
|
Feng S, Wang Y, Zhang R, Yang G, Liang Z, Wang Z, Zhang G. Curcumin exerts its antitumor activity through regulation of miR-7/Skp2/p21 in nasopharyngeal carcinoma cells. Onco Targets Ther 2017; 10:2377-2388. [PMID: 28496336 PMCID: PMC5422505 DOI: 10.2147/ott.s130055] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Curcumin, a natural polyphenol compound, exhibits tumor suppressive activity in a wide spectrum of cancers, including nasopharyngeal carcinoma cells. However, the exact molecular mechanisms governing this tumor suppressive activity remain elusive. Multiple studies have revealed that miRNAs are critically involved in tumorigenesis, indicating that targeting miRNAs could be a therapeutic strategy for treating human cancer. In the current study, we set out to determine whether curcumin regulates miR-7 expression in nasopharyngeal carcinoma cells. We found that curcumin inhibited cell growth, induced apoptosis, retarded cell migration and invasion, and triggered cell cycle arrest in the human nasopharyngeal carcinoma cell lines CNE1 and CNE2. Importantly, we observed that curcumin upregulated the expression of miR-7 and subsequently inhibited Skp2, a direct miR-7 target. Our results identified that upregulation of miR-7 by curcumin could benefit nasopharyngeal carcinoma patients.
Collapse
Affiliation(s)
- Shaoyan Feng
- Department of Otorhinolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou.,Department of Otolaryngology, Head and Neck Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai
| | - Yu Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou
| | | | - Guangwei Yang
- Department of Radiation Oncology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, People's Republic of China
| | - Zibin Liang
- Department of Radiation Oncology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, People's Republic of China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou
| | - Gehua Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou
| |
Collapse
|
106
|
Zhai H, Shi Y, Chen X, Wang J, Lu Y, Zhang F, Liu Z, Lei T, Fan D. CacyBP/SIP promotes the proliferation of colon cancer cells. PLoS One 2017; 12:e0169959. [PMID: 28196083 PMCID: PMC5308830 DOI: 10.1371/journal.pone.0169959] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/25/2016] [Indexed: 01/30/2023] Open
Abstract
CacyBP/SIP is a component of the ubiquitin pathway and is overexpressed in several transformed tumor tissues, including colon cancer, which is one of the most common cancers worldwide. It is unknown whether CacyBP/SIP promotes the proliferation of colon cancer cells. This study examined the expression level, subcellular localization, and binding activity of CacyBP/SIP in human colon cancer cells in the presence and absence of the hormone gastrin. We found that CacyBP/SIP was expressed in a high percentage of colon cancer cells, but not in normal colonic surface epithelium. CacyBP/SIP promoted the cell proliferation of colon cancer cells under both basal and gastrin stimulated conditions as shown by knockdown studies. Gastrin stimulation triggered the translocation of CacyBP/SIP to the nucleus, and enhanced interaction between CacyBP/SIP and SKP1, a key component of ubiquitination pathway which further mediated the proteasome-dependent degradation of p27kip1 protein. The gastrin induced reduction in p27kip1 was prevented when cells were treated with the proteasome inhibitor MG132. These results suggest that CacyBP/SIP may be promoting growth of colon cancer cells by enhancing ubiquitin-mediated degradation of p27kip1.
Collapse
Affiliation(s)
- Huihong Zhai
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yongquan Shi
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiong Chen
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jun Wang
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Faming Zhang
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhengxiong Liu
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ting Lei
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- * E-mail:
| |
Collapse
|
107
|
Ng MY, Wang M, Casey PJ, Gan YH, Hagen T. Activation of MAPK/ERK signaling by Burkholderia pseudomallei cycle inhibiting factor (Cif). PLoS One 2017; 12:e0171464. [PMID: 28166272 PMCID: PMC5293191 DOI: 10.1371/journal.pone.0171464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/20/2017] [Indexed: 01/01/2023] Open
Abstract
Cycle inhibiting factors (Cifs) are virulence proteins secreted by the type III secretion system of some Gram-negative pathogenic bacteria including Burkholderia pseudomallei. Cif is known to function to deamidate Nedd8, leading to inhibition of Cullin E3 ubiquitin ligases (CRL) and consequently induction of cell cycle arrest. Here we show that Cif can function as a potent activator of MAPK/ERK signaling without significant activation of other signaling pathways downstream of receptor tyrosine kinases. Importantly, we found that the ability of Cif to activate ERK is dependent on its deamidase activity, but independent of Cullin E3 ligase inhibition. This suggests that apart from Nedd8, other cellular targets of Cif-dependent deamidation exist. We provide evidence that the mechanism involved in Cif-mediated ERK activation is dependent on recruitment of the Grb2-SOS1 complex to the plasma membrane. Further investigation revealed that Cif appears to modify the phosphorylation status of SOS1 in a region containing the CDC25-H and proline-rich domains. It is known that prolonged Cullin E3 ligase inhibition leads to cellular apoptosis. Therefore, we hypothesize that ERK activation is an important mechanism to counter the pro-apoptotic effects of Cif. Indeed, we show that Cif dependent ERK activation promotes phosphorylation of the proapoptotic protein Bim, thereby potentially conferring a pro-survival signal. In summary, we identified a novel deamidation-dependent mechanism of action of the B. pseudomallei virulence factor Cif/CHBP to activate MAPK/ERK signaling. Our study demonstrates that bacterial proteins such as Cif can serve as useful molecular tools to uncover novel aspects of mammalian signaling pathways.
Collapse
Affiliation(s)
- Mei Ying Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mei Wang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Patrick J Casey
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Yunn-Hwen Gan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thilo Hagen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
108
|
Li Z, Liu H, Li B, Zhang Y, Piao C. Saurolactam Inhibits Proliferation, Migration, and Invasion of Human Osteosarcoma Cells. Cell Biochem Biophys 2017; 72:719-26. [PMID: 25627547 DOI: 10.1007/s12013-015-0523-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Osteosarcoma is a common type of malignant bone tumor with features of osteoid formation or osteolytic lesions of bone. New therapeutic approaches are urgently needed since it lacks response to chemotherapeutic treatments. Saurolactam, a natural compound isolated from the aerial portions of Saururus chinensis, was reported to have an anti-inflammatory activity. Here, we demonstrate that saurolactam shows anti-cancer activity against human osteosarcoma cells. Saurolactam treatment inhibited proliferation of human osteosarcoma cell lines MG-63 and HOS and decreased colony formation in soft agar in a dose-dependent manner. Intraperitoneal administration of saurolactam at 25 mg/kg of body weight for 21 days dramatically inhibited the growth of MG-63 xenografts in nude mice. Flow cytometric analysis indicated that saurolactam treatment (20 μM) led to G1 cell cycle arrest and induced apoptosis in these two cell lines. Western analysis suggested that saurolactam treatment resulted in a reduction of Akt/PKB, phospho-Ser473-Akt, c-Myc, and S-phase kinase-associated protein 2 (Skp2) in MG-63 and HOS osteosarcoma cells. Akt overexpression significantly abolished saurolactam-induced decrease in protein and phosphorylation levels of Akt, c-Myc, and Skp2 protein levels, implying that Akt inactivation was a causal mediator of saurolactam-induced inhibition of c-Myc and Skp2. Moreover, Skp2 overexpression in MG-63 cells partly abolished the growth inhibition induced by saurolactam. Saurolactam treatment repressed migration and invasion ability, and Skp2 overexpression significantly blocked these inhibitory effects of saurolactam in MG-63 Cells. The present study indicates that saurolactam might represent a new promising agent to improve osteosarcoma treatment.
Collapse
Affiliation(s)
- Zhengwei Li
- The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, People's Republic of China
| | - Hui Liu
- Department of Human Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Baizhi Li
- Institute of Frontier Medical Science of Jilin University, Changchun, 130021, People's Republic of China
| | - Yanzhe Zhang
- The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, People's Republic of China
| | - Chengdong Piao
- The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, People's Republic of China.
| |
Collapse
|
109
|
Nestal de Moraes G, Bella L, Zona S, Burton MJ, Lam EWF. Insights into a Critical Role of the FOXO3a-FOXM1 Axis in DNA Damage Response and Genotoxic Drug Resistance. Curr Drug Targets 2016; 17:164-77. [PMID: 25418858 PMCID: PMC5403963 DOI: 10.2174/1389450115666141122211549] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/06/2014] [Accepted: 11/19/2014] [Indexed: 11/22/2022]
Abstract
FOXO3a and FOXM1 are two forkhead transcription factors with antagonistic roles in cancer and DNA damage response. FOXO3a functions like a typical tumour suppressor, whereas FOXM1 is a potent oncogene aberrantly overexpressed in genotoxic resistant cancers. FOXO3a not only represses FOXM1 expression but also its transcriptional output. Recent research has provided novel insights into a central role for FOXO3a and FOXM1 in DNA damage response. The FOXO3a-FOXM1 axis plays a pivotal role in DNA damage repair and the accompanied cellular response through regulating the expression of genes essential for DNA damage sensing, mediating, signalling and repair as well as for senescence, cell cycle and cell death control. In this manner, the FOXO3a-FOXM1 axis also holds the key to cell fate decision in response to genotoxic therapeutic agents and controls the equilibrium between DNA repair and cell termination by cell death or senescence. As a consequence, inhibition of FOXM1 or reactivation of FOXO3a in cancer cells could enhance the efficacy of DNA damaging cancer therapies by decreasing the rate of DNA repair and cell survival while increasing senescence and cell death. Conceptually, targeting FOXO3a and FOXM1 may represent a promising molecular therapeutic option for improving the efficacy and selectivity of DNA damage agents, particularly in genotoxic agent resistant cancer. In addition, FOXO3a, FOXM1 and their downstream transcriptional targets may also be reliable diagnostic biomarkers for predicting outcome, for selecting therapeutic options, and for monitoring treatments in DNA-damaging agent therapy.
Collapse
Affiliation(s)
| | | | | | | | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
110
|
Kim JA, Tan Y, Wang X, Cao X, Veeraraghavan J, Liang Y, Edwards DP, Huang S, Pan X, Li K, Schiff R, Wang XS. Comprehensive functional analysis of the tousled-like kinase 2 frequently amplified in aggressive luminal breast cancers. Nat Commun 2016; 7:12991. [PMID: 27694828 PMCID: PMC5064015 DOI: 10.1038/ncomms12991] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/24/2016] [Indexed: 12/13/2022] Open
Abstract
More aggressive and therapy-resistant oestrogen receptor (ER)-positive breast cancers remain a great clinical challenge. Here our integrative genomic analysis identifies tousled-like kinase 2 (TLK2) as a candidate kinase target frequently amplified in ∼10.5% of ER-positive breast tumours. The resulting overexpression of TLK2 is more significant in aggressive and advanced tumours, and correlates with worse clinical outcome regardless of endocrine therapy. Ectopic expression of TLK2 leads to enhanced aggressiveness in breast cancer cells, which may involve the EGFR/SRC/FAK signalling. Conversely, TLK2 inhibition selectively inhibits the growth of TLK2-high breast cancer cells, downregulates ERα, BCL2 and SKP2, impairs G1/S cell cycle progression, induces apoptosis and significantly improves progression-free survival in vivo. We identify two potential TLK2 inhibitors that could serve as backbones for future drug development. Together, amplification of the cell cycle kinase TLK2 presents an attractive genomic target for aggressive ER-positive breast cancers. Luminal B oestrogen receptor positive breast cancers are generally aggressive tumors with poor outcomes. Here, the authors show that the kinase TLK2 is amplified and overexpressed in these tumors and correlates with reduced survival, TLK2 inhibition induces apoptosis in vitro and improves survival in mice.
Collapse
Affiliation(s)
- Jin-Ah Kim
- Lester &Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ying Tan
- Lester &Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xian Wang
- Lester &Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.,University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Xixi Cao
- Lester &Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jamunarani Veeraraghavan
- Lester &Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yulong Liang
- Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Dean P Edwards
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Pathology &Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shixia Huang
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xuewen Pan
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Kaiyi Li
- Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Rachel Schiff
- Lester &Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xiao-Song Wang
- Lester &Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.,University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
111
|
Sharma SS, Ma L, Pledger WJ. p27Kip1 inhibits the cell cycle through non-canonical G1/S phase-specific gatekeeper mechanism. Cell Cycle 2016; 14:3954-64. [PMID: 26697844 DOI: 10.1080/15384101.2015.1100775] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The cyclin-dependent kinase (CDK) inhibitor p27Kip1 has been shown to regulate cellular proliferation via inhibition of CDK activities. It is now recognized that p27Kip1 can regulate cellular processes through non-canonical, CDK-independent mechanisms. We have developed an inducible p27Kip1 model in cultured cells to explore CDK-independent p27Kip1 regulation of biological processes. We present evidence that p27Kip1 can function in a CDK-independent manner to inhibit entry and/or progression of S phase. Even though this p27Kip1 mechanism is non-canonical it does requires the intact cyclin-binding motif in p27Kip1. We suggest a mechanism similar to that proposed in post-mitotic neural cells whereby p27Kip1 functions to coordinate growth arrest and apoptosis. Our hypothesis supports the concept that p27Kip1 is a gatekeeper for the entry and progression of S phase through interaction with specific protein(s) or via binding to specific DNA sequences in a CDK-independent manner.
Collapse
Affiliation(s)
| | - Le Ma
- a Gibbs Cancer Center and Research Institute ; Spartanburg , SC
| | - W Jackson Pledger
- a Gibbs Cancer Center and Research Institute ; Spartanburg , SC.,b Edward Via College of Osteopathic Medicine ; Department of Molecular Medicine ; Spartanburg , SC USA
| |
Collapse
|
112
|
Luo J, Chen Y, Li Q, Wang B, Zhou Y, Lan H. CRM-1 knockdown inhibits extrahepatic cholangiocarcinoma tumor growth by blocking the nuclear export of p27Kip1. Int J Mol Med 2016; 38:381-90. [PMID: 27279267 PMCID: PMC4935460 DOI: 10.3892/ijmm.2016.2628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 05/18/2016] [Indexed: 12/28/2022] Open
Abstract
Cholangiocarcinoma is a deadly disease which responds poorly to surgery and conventional chemotherapy or radiotherapy. Early diagnosis is difficult due to the anatomical and biological characteristics of cholangiocarcinoma. Cyclin-dependent kinase inhibitor 1B (p27Kip1) is a cyclin‑dependent kinase inhibitor and in the present study, we found that p27Kip1 expression was suppressed in the nucleus and increased in the cytoplasm in 53 samples of cholangiocarcinoma from patients with highly malignant tumors (poorly-differentiated and tumor-node-metastsis (TNM) stage III-IV) compared with that in samples from 10 patients with chronic cholangitis. The expression of phosphorylated (p-)p27Kip1 (Ser10), one of the phosphorylated forms of p27Kip1, was increased in the patient samples with increasing malignancy and clinical stage. Coincidentally, chromosome region maintenance 1 (CRM-1; also referred to as exportin 1 or Xpo1), a critical protein responsible for protein translocation from the nucleus to the cytoplasm, was also overexpressed in the tumor samples which were poorly differentiated and of a higher clinical stage. Through specific short hairpin RNA (shRNA)-mediated knockdown of CRM-1 in the cholangiocarcinoma cell line QBC939, we identified an elevation of cytoplasmic p27Kip1 and a decrease of nuclear p27Kip1. Furthermore, the viability and colony formation ability of QBC939 cells was largely reduced with G1 arrest. Consistent with the findings of the in vitro experiments, in a xenograft mouse model, the tumors formed in the CRM-1 knockdown group were markedly smaller and weighed less than those in the control group in vivo. Taken together, these findings demonstrated that the interplay between CRM-1 and p27Kip1 may provide potentially potent biomarkers and functional targets for the development of future cholangiocarcinoma treatments.
Collapse
Affiliation(s)
| | - Yongjun Chen
- Department of Bile Duct and Pancreatic Surgery and
| | - Qiang Li
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Bing Wang
- Department of Bile Duct and Pancreatic Surgery and
| | | | | |
Collapse
|
113
|
Xu Y, Zhao F, Qiu Q, Chen K, Wei J, Kong Q, Gao B, Melo-Cardenas J, Zhang B, Zhang J, Song J, Zhang DD, Zhang J, Fan Y, Li H, Fang D. The ER membrane-anchored ubiquitin ligase Hrd1 is a positive regulator of T-cell immunity. Nat Commun 2016; 7:12073. [PMID: 27417417 PMCID: PMC4947160 DOI: 10.1038/ncomms12073] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/25/2016] [Indexed: 01/16/2023] Open
Abstract
Identification of positive regulators of T-cell immunity induced during autoimmune diseases is critical for developing novel therapies. The endoplasmic reticulum resident ubiquitin ligase Hrd1 has recently emerged as a critical regulator of dendritic cell antigen presentation, but its role in T-cell immunity is unknown. Here we show that genetic deletion of Hrd1 in mice inhibits T-cell proliferation, production of IL-2, and differentiation of Th1 and Th17 cells, and consequently protects mice from experimental autoimmune encephalomyelitis. Hrd1 facilitates T-cell proliferation by the destruction of cyclin-dependent kinase inhibitor p27(kip1), and deletion of p27(kip1) in Hrd1-null T-cells rescues proliferative capacity but not the production of cytokines, including IL-2, IFN-γ and IL-17. T-cell expression of Hrd1 is higher in patients with multiple sclerosis than in healthy individuals, and knockdown of Hrd1 in human CD4(+) T cells inhibits activation and differentiation to Th1 and Th17 cells. Our study identifies Hrd1 as a previously unappreciated positive regulator of T cells and implies that Hrd1 is a potential therapeutic target for autoimmune diseases.
Collapse
Affiliation(s)
- Yuanming Xu
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| | - Fang Zhao
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| | - Quan Qiu
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
- Allergy Center, Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| | - Kun Chen
- Allergy Center, Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| | - Juncheng Wei
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| | - Qingfei Kong
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| | - Beixue Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| | - Johanna Melo-Cardenas
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| | - Bin Zhang
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Jianxun Song
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizon 85721, USA
| | - Jianing Zhang
- Department of Biochemistry, School of Life Science and Medicine, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yunping Fan
- Guangdong Provincial Engineering Research Center for Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Huabin Li
- Allergy Center, Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye and ENT Hospital, Fudan University, Shanghai 200031, China
- Guangdong Provincial Engineering Research Center for Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| |
Collapse
|
114
|
Upregulation of p27 cyclin-dependent kinase inhibitor and a C-terminus truncated form of p27 contributes to G1 phase arrest. Sci Rep 2016; 6:27829. [PMID: 27282251 PMCID: PMC4901259 DOI: 10.1038/srep27829] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 05/25/2016] [Indexed: 11/29/2022] Open
Abstract
Potent anti-cancer compounds FR901464 and its methyl-ketal derivative spliceostatin A (SSA) inhibit cell cycle progression at G1 and G2/M phases. These compounds bind to the spliceosome and inhibit the splicing reaction. However, the molecular mechanism underlying G1 arrest after SSA treatment remains unknown. In this study, we found that ~90% of SSA-treated cells arrested at G1 phase after cell cycle synchronization. SSA treatment caused upregulation of the p27 cyclin-dependent kinase inhibitor both at mRNA and protein levels. In addition to p27, we observed expression of p27*, a C-terminal truncated form of p27 that is translated from CDKN1B (p27) pre-mRNA accumulated after splicing inhibition. Overexpression of p27 or p27* inhibited the exit from G1 phase after a double thymidine block. Conversely, knocking down of p27 by siRNA partially suppressed the G1 phase arrest caused by SSA treatment. There results suggest that G1 arrest in SSA-treated cells is caused, at least in part, by upregulation of p27 and p27*.
Collapse
|
115
|
Wang L, Ye X, Cai X, Su J, Ma R, Yin X, Zhou X, Li H, Wang Z. Curcumin suppresses cell growth and invasion and induces apoptosis by down-regulation of Skp2 pathway in glioma cells. Oncotarget 2016; 6:18027-37. [PMID: 26046466 PMCID: PMC4627233 DOI: 10.18632/oncotarget.4090] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/11/2015] [Indexed: 11/25/2022] Open
Abstract
Studies have demonstrated that curcumin exerts its tumor suppressor function in a variety of human cancers including glioma. However, the exact underlying molecular mechanisms remain obscure. Emerging evidence has revealed that Skp2 (S-phase kinase associated protein 2) plays an oncogenic role in tumorigenesis. Therefore, we aim to determine whether curcumin suppresses the Skp2 expression, leading to the inhibition of cell growth, invasion, induction of apoptosis, and cell cycle arrest. To this end, we conducted multiple methods such as MTT assay, Flow cytometry, Wound healing assay, invasion assay, RT-PCR, Western blotting, and transfection to explore the functions and molecular insights of curcumin in glioma cells. We found that curcumin significantly inhibited cell growth, suppressed cell migration and invasion, induced apoptosis and cell cycle arrest in glioma cells. Furthermore, we observed that overexpression of Skp2 promoted cell growth, migration, and invasion, whereas depletion of Skp2 suppressed cell growth, migration, and invasion and triggered apoptosis in glioma cells. Mechanistically, we defined that curcumin markedly down-regulated Skp2 expression and subsequently up-regulated p57 expression. Moreover, our results demonstrated that curcumin exerts its antitumor activity through inhibition of Skp2 pathway. Collectively, our findings suggest that targeting Skp2 by curcumin could be a promising therapeutic approach for glioma prevention and therapy.
Collapse
Affiliation(s)
- Lixia Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, China
| | - Xiantao Ye
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, China
| | - Xingming Cai
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingna Su
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, China
| | - Renqiang Ma
- Department of ENT, Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuyuan Yin
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, China
| | - Xiuxia Zhou
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, China
| | - Huabin Li
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of ENT, Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, China
| |
Collapse
|
116
|
Choi HH, Phan L, Chou PC, Su CH, Yeung SCJ, Chen JS, Lee MH. COP1 enhances ubiquitin-mediated degradation of p27Kip1 to promote cancer cell growth. Oncotarget 2016; 6:19721-34. [PMID: 26254224 PMCID: PMC4637316 DOI: 10.18632/oncotarget.3821] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/11/2015] [Indexed: 11/25/2022] Open
Abstract
p27 is a critical CDK inhibitor involved in cell cycle regulation, and its stability is critical for cell proliferation. Constitutive photomorphogenic 1 (COP1) is a RING-containing E3 ubiquitin ligase involved in regulating important target proteins for cell growth, but its biological activity in cell cycle progression is not well characterized. Here, we report that p27Kip1 levels are accumulated in G1 phase, with concurrent reduction of COP1 levels. Mechanistic studies show that COP1 directly interacts with p27 through a VP motif on p27 and functions as an E3 ligase of p27 to accelerate the ubiquitin-mediated degradation of p27. Also, COP1-p27 axis deregulation is involved in tumorigenesis. These findings define a new mechanism for posttranslational regulation of p27 and provide insight into the characteristics of COP1-overexpressing cancers.
Collapse
Affiliation(s)
- Hyun Ho Choi
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
| | - Liem Phan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping-Chieh Chou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Chun-Hui Su
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sai-Ching J Yeung
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA.,Department of Cancer Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiun-Sheng Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mong-Hong Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA.,Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.,Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| |
Collapse
|
117
|
Teratake Y, Kuga C, Hasegawa Y, Sato Y, Kitahashi M, Fujimura L, Watanabe-Takano H, Sakamoto A, Arima M, Tokuhisa T, Hatano M. Transcriptional repression of p27 is essential for murine embryonic development. Sci Rep 2016; 6:26244. [PMID: 27196371 PMCID: PMC4872541 DOI: 10.1038/srep26244] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/28/2016] [Indexed: 12/12/2022] Open
Abstract
The Nczf gene has been identified as one of Ncx target genes and encodes a novel KRAB zinc-finger protein, which functions as a sequence specific transcriptional repressor. In order to elucidate Nczf functions, we generated Nczf knockout (Nczf−/−) mice. Nczf−/− mice died around embryonic day 8.5 (E8.5) with small body size and impairment of axial rotation. Histopathological analysis revealed that the cell number decreased and pyknotic cells were occasionally observed. We examined the expression of cell cycle related genes in Nczf−/− mice. p27 expression was increased in E8.0 Nczf−/− mice compared to that of wild type mice. Nczf knockdown by siRNA resulted in increased expression of p27 in mouse embryonic fibroblasts (MEFs). Furthermore, p27 promoter luciferase reporter gene analysis confirmed the regulation of p27 mRNA expression by Nczf. Nczf−/−; p27−/− double knockout mice survived until E11.5 and the defect of axial rotation was restored. These data suggest that p27 repression by Nczf is essential in the developing embryo.
Collapse
Affiliation(s)
- Youichi Teratake
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Chisa Kuga
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Yuta Hasegawa
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Yoshiharu Sato
- Developmental Genetics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Masayasu Kitahashi
- Developmental Genetics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Lisa Fujimura
- Biomedical Research Center, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Haruko Watanabe-Takano
- Biomedical Research Center, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Akemi Sakamoto
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan.,Biomedical Research Center, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Masafumi Arima
- Developmental Genetics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Takeshi Tokuhisa
- Developmental Genetics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Masahiko Hatano
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan.,Biomedical Research Center, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| |
Collapse
|
118
|
Zheng N, Zhou Q, Wang Z, Wei W. Recent advances in SCF ubiquitin ligase complex: Clinical implications. Biochim Biophys Acta Rev Cancer 2016; 1866:12-22. [PMID: 27156687 DOI: 10.1016/j.bbcan.2016.05.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/09/2022]
Abstract
F-box proteins, which are subunit recruiting modules of SCF (SKP1-Cullin 1-F-box protein) E3 ligase complexes, play critical roles in the development and progression of human malignancies through governing multiple cellular processes including cell proliferation, apoptosis, invasion and metastasis. Moreover, there are emerging studies that lead to the development of F-box proteins inhibitors with promising therapeutic potential. In this article, we describe how F-box proteins including but not restricted to well-established Fbw7, Skp2 and β-TRCP, are involved in tumorigenesis. However, in-depth investigation is required to further explore the mechanism and the physiological contribution of undetermined F-box proteins in carcinogenesis. Lastly, we suggest that targeting F-box proteins could possibly open new avenues for the treatment and prevention of human cancers.
Collapse
Affiliation(s)
- Nana Zheng
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Quansheng Zhou
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou 215123, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, MA 02215, USA.
| |
Collapse
|
119
|
Cryptic sequence features within the disordered protein p27Kip1 regulate cell cycle signaling. Proc Natl Acad Sci U S A 2016; 113:5616-21. [PMID: 27140628 DOI: 10.1073/pnas.1516277113] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peptide motifs embedded within intrinsically disordered regions (IDRs) of proteins are often the sites of posttranslational modifications that control cell-signaling pathways. How do IDR sequences modulate the functionalities of motifs? We answer this question using the polyampholytic C-terminal IDR of the cell cycle inhibitory protein p27(Kip1) (p27). Phosphorylation of Thr-187 (T187) within the p27 IDR controls entry into S phase of the cell division cycle. Additionally, the conformational properties of polyampholytic sequences are predicted to be influenced by the linear patterning of oppositely charged residues. Therefore, we designed sequence variants of the p27 IDR to alter charge patterning outside the primary substrate motif containing T187. Computer simulations and biophysical measurements confirm predictions regarding the impact of charge patterning on the global dimensions of IDRs. Through functional studies, we uncover cryptic sequence features within the p27 IDR that influence the efficiency of T187 phosphorylation. Specifically, we find a positive correlation between T187 phosphorylation efficiency and the weighted net charge per residue of an auxiliary motif. We also find that accumulation of positive charges within the auxiliary motif can diminish the efficiency of T187 phosphorylation because this increases the likelihood of long-range intra-IDR interactions that involve both the primary and auxiliary motifs and inhibit their contributions to function. Importantly, our findings suggest that the cryptic sequence features of the WT p27 IDR negatively regulate T187 phosphorylation signaling. Our approaches provide a generalizable strategy for uncovering the influence of sequence contexts on the functionalities of primary motifs in other IDRs.
Collapse
|
120
|
CSN6 deregulation impairs genome integrity in a COP1-dependent pathway. Oncotarget 2016; 6:11779-93. [PMID: 25957415 PMCID: PMC4494904 DOI: 10.18632/oncotarget.3151] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/17/2015] [Indexed: 02/07/2023] Open
Abstract
Understanding genome integrity and DNA damage response are critical to cancer treatment. In this study, we identify CSN6's biological function in regulating genome integrity. Constitutive photomorphogenic 1 (COP1), an E3 ubiquitin ligase regulated by CSN6, is downregulated by DNA damage, but the biological consequences of this phenomenon are poorly understood. p27Kip1 is a critical CDK inhibitor involved in cell cycle regulation, but its response to DNA damage remains unclear. Here, we report that p27Kip1 levels are elevated after DNA damage, with concurrent reduction of COP1 levels. Mechanistic studies showed that during DNA damage response COP1's function as an E3 ligase of p27 is compromised, thereby reducing the ubiquitin-mediated degradation of p27Kip1. Also, COP1 overexpression leads to downregulation of p27Kip1, thereby promoting the expression of mitotic kinase Aurora A. Overexpression of Aurora A correlates with poor survival. These findings provide new insight into CSN6-COP1-p27Kip1-Aurora A axis in DNA damage repair and tumorigenesis.
Collapse
|
121
|
Iskandarani A, Bhat AA, Siveen KS, Prabhu KS, Kuttikrishnan S, Khan MA, Krishnankutty R, Kulinski M, Nasr RR, Mohammad RM, Uddin S. Bortezomib-mediated downregulation of S-phase kinase protein-2 (SKP2) causes apoptotic cell death in chronic myelogenous leukemia cells. J Transl Med 2016; 14:69. [PMID: 26956626 PMCID: PMC4784454 DOI: 10.1186/s12967-016-0823-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/25/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Proteasome inhibitors are attractive cancer therapeutic agents because they can regulate apoptosis-related proteins. Bortezomib also known as Velcade(®), a proteasome inhibitor that has been approved by the food and drug administration for treatment of patients with multiple myeloma, and many clinical trials are ongoing to examine to the efficacy of bortezomib for the treatment of other malignancies. Bortezomib has been shown to induce apoptosis and inhibit cell growth of many cancer cells. In current study, we determine whether bortezomib induces cell death/apoptosis in CML. METHODS Cell viability was measured using MTT assays. Apoptosis was measured by annexin V/PI dual staining and DNA fragmentation assays. Immunoblotting was performed to examine the expression of proteins. Colony assays were performed using methylcellulose. RESULTS Treatment of CML cells with bortezomib results in downregulation of S-phase kinase protein 2 (SKP2) and concomitant stabilization of the expression of p27Kip1. Furthermore, knockdown of SKP2 with small interference RNA specific for SKP2 caused accumulation of p27Kip1. CML cells exposed to bortezomib leads to conformational changes in Bax protein, resulting in loss of mitochondrial membrane potential and leakage of cytochrome c to the cytosol. In the cytosol, cytochrome c causes sequential activation of caspase-9, caspase-3, PARP cleavage and apoptosis. Pretreatment of CML cells with a universal inhibitor of caspases, z-VAD-fmk, prevents bortezomib-mediated apoptosis. Our data also demonstrated that bortezomib treatment of CML downregulates the expression of inhibitor of apoptosis proteins. Finally, inhibition of proteasome pathways by bortezomib suppresses colony formation ability of CML cells. CONCLUSIONS Altogether, these findings suggest that bortezomib suppresses the cell proliferation via induction of apoptosis in CML cells by downregulation of SKP2 with concomitant accumulation of p27Kip1, suggesting that proteasomal pathway may form novel therapeutic targets for better management of CML.
Collapse
Affiliation(s)
- Ahmad Iskandarani
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar.
| | - Ajaz A Bhat
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar.
| | - Kodappully S Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar.
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar.
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar.
| | - Muzammil A Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar.
| | - Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar.
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar.
| | - Rihab R Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon.
| | - Ramzi M Mohammad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar.
| |
Collapse
|
122
|
Lub S, Maes K, Menu E, De Bruyne E, Vanderkerken K, Van Valckenborgh E. Novel strategies to target the ubiquitin proteasome system in multiple myeloma. Oncotarget 2016; 7:6521-37. [PMID: 26695547 PMCID: PMC4872730 DOI: 10.18632/oncotarget.6658] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/23/2015] [Indexed: 12/20/2022] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by the accumulation of plasma cells in the bone marrow (BM). The success of the proteasome inhibitor bortezomib in the treatment of MM highlights the importance of the ubiquitin proteasome system (UPS) in this particular cancer. Despite the prolonged survival of MM patients, a significant amount of patients relapse or become resistant to therapy. This underlines the importance of the development and investigation of novel targets to improve MM therapy. The UPS plays an important role in different cellular processes by targeted destruction of proteins. The ubiquitination process consists of enzymes that transfer ubiquitin to proteins targeting them for proteasomal degradation. An emerging and promising approach is to target more disease specific components of the UPS to reduce side effects and overcome resistance. In this review, we will focus on different components of the UPS such as the ubiquitin activating enzyme E1, the ubiquitin conjugating enzyme E2, the E3 ubiquitin ligases, the deubiquitinating enzymes (DUBs) and the proteasome. We will discuss their role in MM and the implications in drug discovery for the treatment of MM.
Collapse
Affiliation(s)
- Susanne Lub
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ken Maes
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eline Menu
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elke De Bruyne
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Els Van Valckenborgh
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
123
|
Uddin S, Bhat AA, Krishnankutty R, Mir F, Kulinski M, Mohammad RM. Involvement of F-BOX proteins in progression and development of human malignancies. Semin Cancer Biol 2016; 36:18-32. [PMID: 26410033 DOI: 10.1016/j.semcancer.2015.09.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 12/13/2022]
Abstract
The Ubiquitin Proteasome System (UPS) is a core regulator with various protein components (ubiquitin-activating E1 enzymes, ubiquitin-conjugating E2 enzymes, ubiquitin-protein E3 ligases, and the 26S proteasome) which work together in a coordinated fashion to ensure the appropriate and efficient proteolysis of target substrates. E3 ubiquitin ligases are essential components of the UPS machinery, working with E1 and E2 enzymes to bind substrates and assist the transport of ubiquitin molecules onto the target protein. As the UPS controls the degradation of several oncogenes and tumor suppressors, dysregulation of this pathway leads to several human malignancies. A major category of E3 Ub ligases, the SCF (Skp-Cullin-F-box) complex, is composed of four principal components: Skp1, Cul1/Cdc53, Roc1/Rbx1/Hrt1, and an F-box protein (FBP). FBPs are the substrate recognition components of SCF complexes and function as adaptors that bring substrates into physical proximity with the rest of the SCF. Besides acting as a component of SCF complexes, FBPs are involved in DNA replication, transcription, cell differentiation and cell death. This review will highlight the recent literature on three well characterized FBPs SKP2, Fbw7, and beta-TRCP. In particular, we will focus on the involvement of these deregulated FBPs in the progression and development of various human cancers. We will also highlight some novel substrates recently identified for these FBPs.
Collapse
Affiliation(s)
- Shahab Uddin
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ajaz A Bhat
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Roopesh Krishnankutty
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Fayaz Mir
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Michal Kulinski
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ramzi M Mohammad
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
124
|
Thacker G, Kumar Y, Khan MP, Shukla N, Kapoor I, Kanaujiya JK, Lochab S, Ahmed S, Sanyal S, Chattopadhyay N, Trivedi AK. Skp2 inhibits osteogenesis by promoting ubiquitin-proteasome degradation of Runx2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:510-9. [PMID: 26778333 DOI: 10.1016/j.bbamcr.2016.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/13/2015] [Accepted: 01/05/2016] [Indexed: 12/16/2022]
Abstract
Osteogenic transcription factor Runx2 is essential for osteoblast differentiation. The activity of Runx2 is tightly regulated at transcriptional as well as post-translational level. However, regulation of Runx2 stability by ubiquitin mediated proteasomal degradation by E3 ubiquitin ligases is little-known. Here, for the first time we demonstrate that Skp2, an SCF family E3 ubiquitin ligase negatively targets Runx2 by promoting its polyubiquitination and proteasome dependent degradation. Co-immunoprecipitation studies revealed that Skp2 physically interacts with Runx2 both in a heterologous as well as physiologically relevant system. Functional consequences of Runx2-Skp2 physical interaction were then assessed by promoter reporter assay. We show that Skp2-mediated downregulation of Runx2 led to reduced Runx2 transactivation and osteoblast differentiation. On the contrary, inhibition of Skp2 restored Runx2 levels and promoted osteoblast differentiation. We further show that Skp2 and Runx2 proteins are co-expressed and show inverse relation in vivo such as in lactating, ovariectomized and estrogen-treated ovariectomized animals. Together, these data demonstrate that Skp2 targets Runx2 for ubiquitin mediated degradation and hence negatively regulate osteogenesis. Therefore, the present study provides a plausible therapeutic target for osteoporosis or cleidocranial dysplasia caused by the heterozygous mutation of Runx2 gene.
Collapse
Affiliation(s)
- Gatha Thacker
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Yogesh Kumar
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Mohd Parvez Khan
- Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Nidhi Shukla
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Isha Kapoor
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Jitendra Kumar Kanaujiya
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Savita Lochab
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Shakil Ahmed
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Sabyasachi Sanyal
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Arun Kumar Trivedi
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India.
| |
Collapse
|
125
|
Imamura Y, Wang PL, Masuno K, Sogawa N. Salivary protein histatin 3 regulates cell proliferation by enhancing p27(Kip1) and heat shock cognate protein 70 ubiquitination. Biochem Biophys Res Commun 2016; 470:269-274. [PMID: 26775844 DOI: 10.1016/j.bbrc.2016.01.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/12/2016] [Indexed: 01/10/2023]
Abstract
Histatins are salivary proteins with antimicrobial activities. We previously reported that histatin 3 binds to heat shock cognate protein 70 (HSC70), which is constitutively expressed, and induces DNA synthesis stimulation and promotes human gingival fibroblast (HGF) survival. However, the underlying mechanisms of histatin 3 remain largely unknown. Here, we found that the KRHH sequence of histatin 3 at the amino acid positions 5-8 was essential for enhancing p27(Kip1) (a cyclin-dependent kinase inhibitor) binding to HSC70 that occurred in a dose-dependent manner; histatin 3 enhanced the binding between p27(Kip1) and HSC70 during the G1/S transition of HGFs as opposed to histatin 3-M(5-8) (substitution of KRHH for EEDD in histatin 3). Histatin 3, but not histatin 3-M(5-8), stimulated DNA synthesis and promoted HGF survival. Histatin 3 dose-dependently enhanced both p27(Kip1) and HSC70 ubiquitination, whereas histatin 3-M(5-8) did not. These findings provide further evidence that histatin 3 may be involved in the regulation of cell proliferation, particularly during G1/S transition, via the ubiquitin-proteasome system of p27(Kip1) and HSC70.
Collapse
Affiliation(s)
- Yasuhiro Imamura
- Department of Pharmacology, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan.
| | - Pao-Li Wang
- Department of Bacteriology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Kazuya Masuno
- Department of Dental Education Innovation, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Norio Sogawa
- Department of Pharmacology, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan
| |
Collapse
|
126
|
Jung C, Hong JY, Bae SY, Kang SS, Park HJ, Lee SK. Antitumor Activity of Americanin A Isolated from the Seeds of Phytolacca americana by Regulating the ATM/ATR Signaling Pathway and the Skp2-p27 Axis in Human Colon Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2015; 78:2983-2993. [PMID: 26595875 DOI: 10.1021/acs.jnatprod.5b00743] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The antiproliferative and antitumor activities of americanin A (1), a neolignan isolated from the seeds of Phytolacca americana, were investigated in human colon cancer cells. Compound 1 inhibited the proliferation of HCT116 human colon cancer cells both in vitro and in vivo. The induction of G2/M cell-cycle arrest by 1 was concomitant with regulation of the ataxia telangiectasia-mutated/ATM and Rad3-related (ATM/ATR) signaling pathway. Treatment with 1 activated ATM and ATR, initiating the subsequent signal transduction cascades that include checkpoint kinase 1 (Chk1), checkpoint kinase 2 (Chk2), and tumor suppressor p53. Another line of evidence underlined the significance of 1 in regulation of the S phase kinase-associated protein 2 (Skp2)-p27 axis. Compound 1 targeted selectively Skp2 for degradation and thereby stabilized p27. Therefore, compound 1 suppressed the activity of cyclin B1 and its partner cell division cycle 2 (cdc2) to prevent entry into mitosis. Furthermore, prolonged treatment with 1 induced apoptosis by producing excessive reactive oxygen species. The intraperitoneal administration of 1 inhibited the growth of HCT116 tumor xenografts in nude mice without any overt toxicity. Modulation of the ATM/ATR signaling pathway and the Skp2-p27 axis might be plausible mechanisms of action for the antiproliferative and antitumor activities of 1 in human colon cancer cells.
Collapse
Affiliation(s)
- Cholomi Jung
- College of Pharmacy, Natural Products Research Institute, Seoul National University , Seoul 151-742, Korea
| | - Ji-Young Hong
- College of Pharmacy, Natural Products Research Institute, Seoul National University , Seoul 151-742, Korea
| | - Song Yi Bae
- College of Pharmacy, Natural Products Research Institute, Seoul National University , Seoul 151-742, Korea
| | - Sam Sik Kang
- College of Pharmacy, Natural Products Research Institute, Seoul National University , Seoul 151-742, Korea
| | - Hyen Joo Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University , Seoul 151-742, Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University , Seoul 151-742, Korea
| |
Collapse
|
127
|
Abstract
Ubiquitination, the structured degradation and turnover of cellular proteins, is regulated by the ubiquitin-proteasome system (UPS). Most proteins that are critical for cellular regulations and functions are targets of the process. Ubiquitination is comprised of a sequence of three enzymatic steps, and aberrations in the pathway can lead to tumor development and progression as observed in many cancer types. Recent evidence indicates that targeting the UPS is effective for certain cancer treatment, but many more potential targets might have been previously overlooked. In this review, we will discuss the current state of small molecules that target various elements of ubiquitination. Special attention will be given to novel inhibitors of E3 ubiquitin ligases, especially those in the SCF family.
Collapse
Affiliation(s)
- John Kenneth Morrow
- Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Hui-Kuan Lin
- Department of Molecular & Cellular Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shuxing Zhang
- Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
128
|
Vosper J, Masuccio A, Kullmann M, Ploner C, Geley S, Hengst L. Statin-induced depletion of geranylgeranyl pyrophosphate inhibits cell proliferation by a novel pathway of Skp2 degradation. Oncotarget 2015; 6:2889-902. [PMID: 25605247 PMCID: PMC4413625 DOI: 10.18632/oncotarget.3068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/21/2014] [Indexed: 12/18/2022] Open
Abstract
Statins, such as lovastatin, can induce a cell cycle arrest in the G1 phase. This robust antiproliferative activity remains intact in many cancer cells that are deficient in cell cycle checkpoints and leads to an increased expression of CDK inhibitor proteins p27Kip1 and p21Cip1. The molecular details of this statin-induced growth arrest remains unclear. Here we present evidence that lovastatin can induce the degradation of Skp2, a subunit of the SCFSkp2 ubiquitin ligase that targets p27Kip1 and p21Cip1 for proteasomal destruction. The statin-induced degradation of Skp2 is cell cycle phase independent and does not require its well characterised degradation pathway mediated by APC/CCdh1- or Skp2 autoubiquitination. An N-terminal domain preceding the F-box of Skp2 is both necessary and sufficient for its statin mediated degradation. The degradation of Skp2 results from statin induced depletion of geranylgeranyl isoprenoid intermediates of cholesterol biosynthesis. Inhibition of geranylgeranyl-transferase-I also promotes APC/CCdh1- independent degradation of Skp2, indicating that de-modification of a geranylgeranylated protein triggers this novel pathway of Skp2 degradation.
Collapse
Affiliation(s)
- Jonathan Vosper
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Alessia Masuccio
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Kullmann
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Ploner
- Division of Molecular Pathophysiology, Biocenter/Clinic of Plastic and Reconstructive Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Stephan Geley
- Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Ludger Hengst
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
129
|
Lyu L, Whitcomb EA, Jiang S, Chang ML, Gu Y, Duncan MK, Cvekl A, Wang WL, Limi S, Reneker LW, Shang F, Du L, Taylor A. Unfolded-protein response-associated stabilization of p27(Cdkn1b) interferes with lens fiber cell denucleation, leading to cataract. FASEB J 2015; 30:1087-95. [PMID: 26590164 DOI: 10.1096/fj.15-278036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/02/2015] [Indexed: 12/21/2022]
Abstract
Failure of lens fiber cell denucleation (LFCD) is associated with congenital cataracts, but the pathobiology awaits elucidation. Recent work has suggested that mechanisms that direct the unidirectional process of LFCD are analogous to the cyclic processes associated with mitosis. We found that lens-specific mutations that elicit an unfolded-protein response (UPR) in vivo accumulate p27(Cdkn1b), show cyclin-dependent kinase (Cdk)-1 inhibition, retain their LFC nuclei, and are cataractous. Although a UPR was not detected in lenses expressing K6W-Ub, they also accumulated p27 and showed failed LFCD. Induction of a UPR in human lens epithelial cells (HLECs) also induced accumulation of p27 associated with decreased levels of S-phase kinase-associated protein (Skp)-2, a ubiquitin ligase that regulates mitosis. These cells also showed decreased lamin A/C phosphorylation and metaphase arrest. The suppression of lamin A/C phosphorylation and metaphase transition induced by the UPR was rescued by knockdown of p27. Taken together, these data indicate that accumulation of p27, whether related to the UPR or not, prevents the phosphorylation of lamin A/C and LFCD in maturing LFCs in vivo, as well as in dividing HLECs. The former leads to cataract and the latter to metaphase arrest. These results suggest that accumulation of p27 is a common mechanism underlying retention of LFC nuclei.
Collapse
Affiliation(s)
- Lei Lyu
- *Ministry of Education Key Laboratory of Bio-resource and Eco-environment, College of Life Science, Sichuan University, Sichuan China; Laboratory for Nutrition and Vision Research, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA; Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Elizabeth A Whitcomb
- *Ministry of Education Key Laboratory of Bio-resource and Eco-environment, College of Life Science, Sichuan University, Sichuan China; Laboratory for Nutrition and Vision Research, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA; Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Shuhong Jiang
- *Ministry of Education Key Laboratory of Bio-resource and Eco-environment, College of Life Science, Sichuan University, Sichuan China; Laboratory for Nutrition and Vision Research, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA; Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Min-Lee Chang
- *Ministry of Education Key Laboratory of Bio-resource and Eco-environment, College of Life Science, Sichuan University, Sichuan China; Laboratory for Nutrition and Vision Research, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA; Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Yumei Gu
- *Ministry of Education Key Laboratory of Bio-resource and Eco-environment, College of Life Science, Sichuan University, Sichuan China; Laboratory for Nutrition and Vision Research, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA; Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Melinda K Duncan
- *Ministry of Education Key Laboratory of Bio-resource and Eco-environment, College of Life Science, Sichuan University, Sichuan China; Laboratory for Nutrition and Vision Research, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA; Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Ales Cvekl
- *Ministry of Education Key Laboratory of Bio-resource and Eco-environment, College of Life Science, Sichuan University, Sichuan China; Laboratory for Nutrition and Vision Research, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA; Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Wei-Lin Wang
- *Ministry of Education Key Laboratory of Bio-resource and Eco-environment, College of Life Science, Sichuan University, Sichuan China; Laboratory for Nutrition and Vision Research, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA; Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Saima Limi
- *Ministry of Education Key Laboratory of Bio-resource and Eco-environment, College of Life Science, Sichuan University, Sichuan China; Laboratory for Nutrition and Vision Research, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA; Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Lixing W Reneker
- *Ministry of Education Key Laboratory of Bio-resource and Eco-environment, College of Life Science, Sichuan University, Sichuan China; Laboratory for Nutrition and Vision Research, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA; Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Fu Shang
- *Ministry of Education Key Laboratory of Bio-resource and Eco-environment, College of Life Science, Sichuan University, Sichuan China; Laboratory for Nutrition and Vision Research, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA; Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Linfang Du
- *Ministry of Education Key Laboratory of Bio-resource and Eco-environment, College of Life Science, Sichuan University, Sichuan China; Laboratory for Nutrition and Vision Research, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA; Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Allen Taylor
- *Ministry of Education Key Laboratory of Bio-resource and Eco-environment, College of Life Science, Sichuan University, Sichuan China; Laboratory for Nutrition and Vision Research, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA; Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
130
|
Lu W, Liu S, Li B, Xie Y, Adhiambo C, Yang Q, Ballard BR, Nakayama KI, Matusik RJ, Chen Z. SKP2 inactivation suppresses prostate tumorigenesis by mediating JARID1B ubiquitination. Oncotarget 2015; 6:771-88. [PMID: 25596733 PMCID: PMC4359254 DOI: 10.18632/oncotarget.2718] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/11/2014] [Indexed: 12/21/2022] Open
Abstract
Aberrant elevation of JARID1B and histone H3 lysine 4 trimethylation (H3K4me3) is frequently observed in many diseases including prostate cancer (PCa), yet the mechanisms on the regulation of JARID1B and H3K4me3 through epigenetic alterations still remain poorly understood. Here we report that Skp2 modulates JARID1B and H3K4me3 levels in vitro in cultured cells and in vivo in mouse models. We demonstrated that Skp2 inactivation decreased H3K4me3 levels, along with a reduction of cell growth, cell migration and malignant transformation of Pten/Trp53 double null MEFs, and further restrained prostate tumorigenesis of Pten/Trp53 mutant mice. Mechanistically, Skp2 decreased the K63-linked ubiquitination of JARID1B by E3 ubiquitin ligase TRAF6, thus decreasing JARID1B demethylase activity and in turn increasing H3K4me3. In agreement, Skp2 deficiency resulted in an increase of JARID1B ubiquitination and in turn a reduction of H3K4me3, and induced senescence through JARID1B accumulation in nucleoli of PCa cells and prostate tumors of mice. Furthermore, we showed that the elevations of Skp2 and H3K4me3 contributed to castration-resistant prostate cancer (CRPC) in mice, and were positively correlated in human PCa specimens. Taken together, our findings reveal a novel network of SKP2-JARID1B, and targeting SKP2 and JARID1B may be a potential strategy for PCa control.
Collapse
Affiliation(s)
- Wenfu Lu
- Department of Biochemistry and Cancer Biology, Meharry Medical College, TN 37208, USA
| | - Shenji Liu
- Department of Biochemistry and Cancer Biology, Meharry Medical College, TN 37208, USA
| | - Bo Li
- Department of Biochemistry and Cancer Biology, Meharry Medical College, TN 37208, USA
| | - Yingqiu Xie
- Department of Biochemistry and Cancer Biology, Meharry Medical College, TN 37208, USA
| | - Christine Adhiambo
- Department of Biochemistry and Cancer Biology, Meharry Medical College, TN 37208, USA
| | - Qing Yang
- Department of Biochemistry and Cancer Biology, Meharry Medical College, TN 37208, USA
| | - Billy R Ballard
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College, TN 37208, USA
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Robert J Matusik
- Department of Urologic Surgery, Vanderbilt University School of Medicine, TN 37232, USA
| | - Zhenbang Chen
- Department of Biochemistry and Cancer Biology, Meharry Medical College, TN 37208, USA
| |
Collapse
|
131
|
Swanson CI, Meserve JH, McCarter PC, Thieme A, Mathew T, Elston TC, Duronio RJ. Expression of an S phase-stabilized version of the CDK inhibitor Dacapo can alter endoreplication. Development 2015; 142:4288-98. [PMID: 26493402 DOI: 10.1242/dev.115006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/12/2015] [Indexed: 01/01/2023]
Abstract
In developing organisms, divergence from the canonical cell division cycle is often necessary to ensure the proper growth, differentiation, and physiological function of a variety of tissues. An important example is endoreplication, in which endocycling cells alternate between G and S phase without intervening mitosis or cytokinesis, resulting in polyploidy. Although significantly different from the canonical cell cycle, endocycles use regulatory pathways that also function in diploid cells, particularly those involved in S phase entry and progression. A key S phase regulator is the Cyclin E-Cdk2 kinase, which must alternate between periods of high (S phase) and low (G phase) activity in order for endocycling cells to achieve repeated rounds of S phase and polyploidy. The mechanisms that drive these oscillations of Cyclin E-Cdk2 activity are not fully understood. Here, we show that the Drosophila Cyclin E-Cdk2 inhibitor Dacapo (Dap) is targeted for destruction during S phase via a PIP degron, contributing to oscillations of Dap protein accumulation during both mitotic cycles and endocycles. Expression of a PIP degron mutant Dap attenuates endocycle progression but does not obviously affect proliferating diploid cells. A mathematical model of the endocycle predicts that the rate of destruction of Dap during S phase modulates the endocycle by regulating the length of G phase. We propose from this model and our in vivo data that endo S phase-coupled destruction of Dap reduces the threshold of Cyclin E-Cdk2 activity necessary to trigger the subsequent G-S transition, thereby influencing endocycle oscillation frequency and the extent of polyploidy.
Collapse
Affiliation(s)
- Christina I Swanson
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joy H Meserve
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Patrick C McCarter
- Curriculum in Bioinformatics & Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Alexis Thieme
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Tony Mathew
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Timothy C Elston
- Curriculum in Bioinformatics & Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert J Duronio
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
132
|
Vriend J, Ghavami S, Marzban H. The role of the ubiquitin proteasome system in cerebellar development and medulloblastoma. Mol Brain 2015; 8:64. [PMID: 26475605 PMCID: PMC4609148 DOI: 10.1186/s13041-015-0155-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/08/2015] [Indexed: 01/12/2023] Open
Abstract
Cerebellar granule cells precursors are derived from the upper rhombic lip and migrate tangentially independent of glia along the subpial stream pathway to form the external germinal zone. Postnatally, granule cells migrate from the external germinal zone radially through the Purkinje cell layer, guided by Bergmann glia fibers, to the internal granular cell layer. Medulloblastomas (MBs) are the most common malignant childhood brain tumor. Many of these tumors develop from precursor cells of the embryonic rhombic lips. Four main groups of MB are recognized. The WNT group of MBs arise primarily from the lower rhombic lip and embryonic brainstem. The SHH group of MBs originate from cerebellar granule cell precursors in the external germinal zone of the embryonic cerebellum. The cellular origins of type 3 and type 4 MBs are not clear. Several ubiquitin ligases are revealed to be significant factors in development of the cerebellum as well as in the initiation and maintenance of MBs. Proteasome dysfunction at a critical stage of development may be a major factor in determining whether progenitor cells which are destined to become granule cells differentiate normally or become MB cells. We propose the hypothesis that proteasomal activity is essential to regulate the critical transition between proliferating granule cells and differentiated granule cells and that proteasome dysfunction may lead to MB. Proteasome dysfunction could also account for various mutations in MBs resulting from deficiencies in DNA checkpoint and repair mechanisms prior to development of MBs. Data showing a role for the ubiquitin ligases β-TrCP, FBW7, Huwe1, and SKP2 in MBs suggest the possibility of a classification of MBs based on the expression (over expression or under expression) of specific ubiquitin ligases which function as oncogenes, tumor suppressors or cell cycle regulators.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, Rm129, BMSB, 745 Bannatyne Avenue, Winnipeg, MB, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rm129, BMSB, 745 Bannatyne Avenue, Winnipeg, MB, Canada.,Children's Hospital Research Institute of Manitoba (CHRIM), College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, Rm129, BMSB, 745 Bannatyne Avenue, Winnipeg, MB, Canada. .,Children's Hospital Research Institute of Manitoba (CHRIM), College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
133
|
Lovisa S, Citro S, Sonego M, Dall'Acqua A, Ranzuglia V, Berton S, Colombatti A, Belletti B, Chiocca S, Schiappacassi M, Baldassarre G. SUMOylation regulates p27Kip1 stability and localization in response to TGFβ. J Mol Cell Biol 2015; 8:17-30. [PMID: 26450989 DOI: 10.1093/jmcb/mjv056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 06/08/2015] [Indexed: 11/13/2022] Open
Abstract
Exposure of normal and tumor-derived cells to TGFβ results in different outcomes, depending on the regulation of key targets. The CDK inhibitor p27(Kip1) is one of these TGFβ targets and is essential for the TGFβ-induced cell cycle arrest. TGFβ treatment inhibits p27(Kip1) degradation and induces its nuclear translocation, through mechanisms that are still unknown. Recent evidences suggest that SUMOylation, a post-translational modification able to modulate the stability and subcellular localization of target proteins, critically modifies members of the TGFβ signaling pathway. Here, we demonstrate that p27(Kip1) is SUMOylated in response to TGFβ treatment. Using different p27(Kip1) point mutants, we identified lysine 134 (K134) as the residue modified by small ubiquitin-like modifier 1 (SUMO1) in response to TGFβ treatment. TGFβ-induced K134 SUMOylation increased protein stability and nuclear localization of both endogenous and exogenously expressed p27(Kip1). We observed that SUMOylation regulated p27(Kip1) binding to CDK2, thereby governing its nuclear proteasomal degradation through the phosphorylation of threonine 187. Importantly, p27(Kip1) SUMOylation was necessary for proper cell cycle exit following TGFβ treatment. These data indicate that SUMOylation is a novel regulatory mechanism that modulates p27(Kip1) function in response to TGFβ stimulation. Given the involvement of TGFβ signaling in cancer cell proliferation and invasion, our data may shed light on an important aspect of this pathway during tumor progression.
Collapse
Affiliation(s)
- Sara Lovisa
- Division of Experimental Oncology 2 Centro di Riferimento Oncologico, National Cancer Institute, Aviano 33081, Italy
| | - Simona Citro
- Department of Experimental Oncology, European Institute of Oncology at the IFOM-IEO Campus, Milan 20139, Italy
| | - Maura Sonego
- Division of Experimental Oncology 2 Centro di Riferimento Oncologico, National Cancer Institute, Aviano 33081, Italy
| | - Alessandra Dall'Acqua
- Division of Experimental Oncology 2 Centro di Riferimento Oncologico, National Cancer Institute, Aviano 33081, Italy
| | - Valentina Ranzuglia
- Division of Experimental Oncology 2 Centro di Riferimento Oncologico, National Cancer Institute, Aviano 33081, Italy
| | - Stefania Berton
- Division of Experimental Oncology 2 Centro di Riferimento Oncologico, National Cancer Institute, Aviano 33081, Italy
| | - Alfonso Colombatti
- Division of Experimental Oncology 2 Centro di Riferimento Oncologico, National Cancer Institute, Aviano 33081, Italy Department of Scienze e Tecnologie Biomediche, MATI Center of Excellence, University of Udine, Udine 33010, Italy
| | - Barbara Belletti
- Division of Experimental Oncology 2 Centro di Riferimento Oncologico, National Cancer Institute, Aviano 33081, Italy
| | - Susanna Chiocca
- Department of Experimental Oncology, European Institute of Oncology at the IFOM-IEO Campus, Milan 20139, Italy
| | - Monica Schiappacassi
- Division of Experimental Oncology 2 Centro di Riferimento Oncologico, National Cancer Institute, Aviano 33081, Italy
| | - Gustavo Baldassarre
- Division of Experimental Oncology 2 Centro di Riferimento Oncologico, National Cancer Institute, Aviano 33081, Italy
| |
Collapse
|
134
|
Liu Y, Mallampalli RK. Small molecule therapeutics targeting F-box proteins in cancer. Semin Cancer Biol 2015; 36:105-19. [PMID: 26427329 DOI: 10.1016/j.semcancer.2015.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022]
Abstract
The ubiquitin proteasome system (UPS) plays vital roles in maintaining protein equilibrium mainly through proteolytic degradation of targeted substrates. The archetypical SCF ubiquitin E3 ligase complex contains a substrate recognition subunit F-box protein that recruits substrates to the catalytic ligase core for its polyubiquitylation and subsequent proteasomal degradation. Several well-characterized F-box proteins have been demonstrated that are tightly linked to neoplasia. There is mounting information characterizing F-box protein-substrate interactions with the rationale to develop unique therapeutics for cancer treatment. Here we review that how F-box proteins function in cancer and summarize potential small molecule inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Medicine, The Acute Lung Injury, Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Rama K Mallampalli
- Department of Medicine, The Acute Lung Injury, Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, United States; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, United States.
| |
Collapse
|
135
|
Andreu Z, Khan MA, González-Gómez P, Negueruela S, Hortigüela R, San Emeterio J, Ferrón SR, Martínez G, Vidal A, Fariñas I, Lie DC, Mira H. The cyclin-dependent kinase inhibitor p27 kip1 regulates radial stem cell quiescence and neurogenesis in the adult hippocampus. Stem Cells 2015; 33:219-29. [PMID: 25185890 DOI: 10.1002/stem.1832] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 08/06/2014] [Indexed: 12/22/2022]
Abstract
Members of the cyclin-dependent kinase (CDK)-inhibitory protein (CIP)/kinase-inhibitory protein (KIP) family of cyclin-dependent kinase inhibitors regulate proliferation and cell cycle exit of mammalian cells. In the adult brain, the CIP/KIP protein p27(kip1) has been related to the regulation of intermediate progenitor cells located in neurogenic niches. Here, we uncover a novel function of p27(kip1) in the adult hippocampus as a dual regulator of stem cell quiescence and of cell-cycle exit of immature neurons. In vivo, p27(kip1) is detected in radial stem cells expressing SOX2 and in newborn neurons of the dentate gyrus. In vitro, the Cdkn1b gene encoding p27(kip1) is transcriptionally upregulated by quiescence signals such as BMP4. The nuclear accumulation of p27(kip1) protein in adult hippocampal stem cells encompasses the BMP4-induced quiescent state and its overexpression is able to block proliferation. p27(kip1) is also expressed in immature neurons upon differentiation of adult hippocampal stem cell cultures. Loss of p27(kip1) leads to an increase in proliferation and neurogenesis in the adult dentate gyrus, which results from both a decrease in the percentage of radial stem cells that are quiescent and a delay in cell cycle exit of immature neurons. Analysis of animals carrying a disruption in the cyclin-CDK interaction domain of p27(kip1) indicates that the CDK inhibitory function of the protein is necessary to control the activity of radial stem cells. Thus, we report that p27(kip1) acts as a central player of the molecular program that keeps adult hippocampal stem cells out of the cell cycle.
Collapse
Affiliation(s)
- Zoraida Andreu
- Unidad de Neurobiología Molecular, Área de Biología Celular y Desarrollo, UFIEC, Instituto de Salud Carlos III, Majadahonda, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
The novel protective role of P27 in MLN4924-treated gastric cancer cells. Cell Death Dis 2015; 6:e1867. [PMID: 26313918 PMCID: PMC4558507 DOI: 10.1038/cddis.2015.215] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/12/2015] [Accepted: 06/16/2015] [Indexed: 12/19/2022]
Abstract
The tumor-suppressor gene cyclin-dependent kinase inhibitor 1B (P27) is downregulated in gastric cancer cells mainly through proteolytic degradation mediated by the SKP-Cullin1-F-Box (SCF) complex. But the correlation between its downregulation and gastric cancer prognosis still remains indefinite. MLN4924, an anti-tumor agent, which suppresses the SCF complex by inhibiting Cullin1 neddylation, emerges as a promising tool to elucidate its functions in gastric cancer cells. In this study, MLN4924 induced significant growth inhibition of gastric cancer cells in a dose-dependent manner, along with the simultaneous accumulation of P27 and cell cycle abnormalities such as G2/M arrest. Importantly, we found that P27 silencing in MLN4924-treated cells resulted in an enhancement of growth inhibition both in vitro and in vivo. Mechanism analysis revealed the antagonism effects of antioxidants to this excess apoptosis, suggesting reactive oxygen species (ROS) overproduction especially in the mitochondria was the principal cause of the augmentation. Moreover, the robust ROS attacked the mitochondria to initiate collapse of the mitochondrial membrane permeability and the exportation of apoptosis-inducing factor (AIF), IAP-binding mitochondrial protein (SMAC/DIABLO) and cytochrome c. Finally, we also found that P27 knockdown affected the expression profile of several critical BH3 family members to amplify the mitochondrial dysfunction and apoptosis. In summary, our findings unveiled a protective role of P27 by maintaining mitochondrial membrane permeability in MLN4924-treated gastric cancer cells, and therefore highlighted the potential combination of MLN4924 with P27 inhibition to improve its therapeutic efficacy.
Collapse
|
137
|
Hnit SST, Xie C, Yao M, Holst J, Bensoussan A, De Souza P, Li Z, Dong Q. p27(Kip1) signaling: Transcriptional and post-translational regulation. Int J Biochem Cell Biol 2015; 68:9-14. [PMID: 26279144 DOI: 10.1016/j.biocel.2015.08.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/08/2015] [Accepted: 08/10/2015] [Indexed: 11/30/2022]
Abstract
p27(Kip1) is an inhibitor of a broad spectrum of cyclin-dependent kinases (CDKs), and the loss of a single p27(Kip1) allele is thereby sufficient to increase tumor incidence via CDK-mediated cell cycle entry. As such, down-regulation of p27(Kip1) protein levels, in particular nuclear expressed p27(Kip1), is implicated in both disease progression and poor prognosis in a variety of cancers. p27(Kip1) expression is positively regulated by the transcription factor MENIN, and inhibited by oncogenic transcription factors MYC and PIM. However, regulation of p27(Kip1) protein expression and function is predominantly through post-translational modifications that alter both the cellular localization and the extent of E3 ubiquitin ligase-mediated degradation. Phosphorylation of p27(Kip1) at Thr(187) and Ser(10) is a prerequisite for its degradation via the E3 ubiquitin ligases SKP2 (nuclear) and KPC (cytoplasmic), respectively. Additionally, Ser(10) phosphorylated p27(Kip1) is predominantly localized in the cytoplasm due to the nuclear export protein CRM1. Another E3 ubiquitin ligase, PIRH2, degrades p27(Kip1) in both the cytoplasm and nucleus independent of phosphorylation state. As such, inhibition of cell cycle entry and progression in a variety of cancers may be achieved with therapies designed to correct p27(Kip1) localization and/or block its degradation.
Collapse
Affiliation(s)
- Su Su Thae Hnit
- School of Science and Health, University of Western Sydney, Australia
| | - Chanlu Xie
- School of Science and Health, University of Western Sydney, Australia
| | - Mu Yao
- Central Clinical School and Charles Perkins Centre, The University of Sydney and Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Jeff Holst
- Origins of Cancer Program, Centenary Institute, Camperdown, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Alan Bensoussan
- National Institute of Complementary Medicine, University of Western Sydney, Australia
| | - Paul De Souza
- School of Medicine, University of Western Sydney, Australia
| | - Zhong Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Qihan Dong
- School of Science and Health, University of Western Sydney, Australia; Central Clinical School and Charles Perkins Centre, The University of Sydney and Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia; School of Medicine, University of Western Sydney, Australia.
| |
Collapse
|
138
|
Högel H, Miikkulainen P, Bino L, Jaakkola PM. Hypoxia inducible prolyl hydroxylase PHD3 maintains carcinoma cell growth by decreasing the stability of p27. Mol Cancer 2015. [PMID: 26223520 PMCID: PMC4520080 DOI: 10.1186/s12943-015-0410-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Hypoxia can halt cell cycle progression of several cell types at the G1/S interface. The arrest needs to be overcome by cancer cells. We have previously shown that the hypoxia-inducible cellular oxygen sensor PHD3/EGLN3 enhances hypoxic cell cycle entry at the G1/S boundary. Methods We used PHD3 knockdown by siRNA and shRNA in HeLa and 786–0 renal cancer cells. Flow cytometry with cell synchronization was used to study cell growth at different cell cycle phases. Total and phosphospecific antibodies together with cycloheximide chase were used to study p27/CDKN1B expression and fractionations for subcellular protein localization. Results Here we show that PHD3 enhances cell cycle by decreasing the expression of the CDK inhibitor p27/CDKN1B. PHD3 reduction led to increased p27 expression under hypoxia or VHL mutation. p27 was both required and sufficient for the PHD3 knockdown induced cell cycle block. PHD3 knockdown did not affect p27 transcription and the effect was HIF-independent. In contrast, PHD3 depletion increased the p27 half-life from G0 to S-phase. PHD3 depletion led to an increase in p27 phosphorylation at serine 10 without affecting threonine phosphorylation. Intact serine 10 was required for normal hypoxic and PHD3-mediated degradation of p27. Conclusions The data demonstrates that PHD3 can drive cell cycle entry at the G1/S transition through decreasing the half-life of p27 that occurs by attenuating p27S10 phosphorylation. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0410-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heidi Högel
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6B, 20520, Turku, Finland. .,Department of Medical Biochemistry, Faculty of Medicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.
| | - Petra Miikkulainen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6B, 20520, Turku, Finland. .,Department of Medical Biochemistry, Faculty of Medicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.
| | - Lucia Bino
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6B, 20520, Turku, Finland. .,Present address: Institute of Biophysics, The Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | - Panu M Jaakkola
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6B, 20520, Turku, Finland. .,Department of Medical Biochemistry, Faculty of Medicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland. .,Department of Oncology and Radiotherapy, Turku University Hospital, Hämeentie 11, 20520, Turku, Finland.
| |
Collapse
|
139
|
Jiang C, Veon W, Li H, Hallows KR, Roy P. Epithelial morphological reversion drives Profilin-1-induced elevation of p27(kip1) in mesenchymal triple-negative human breast cancer cells through AMP-activated protein kinase activation. Cell Cycle 2015; 14:2914-23. [PMID: 26176334 DOI: 10.1080/15384101.2015.1069929] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Profilin-1 (Pfn1) is an important regulator of actin polymerization that is downregulated in human breast cancer. Previous studies have shown Pfn1 has a tumor-suppressive effect on mesenchymal-like triple-negative breast cancer cells, and Pfn1-induced growth suppression is partly mediated by upregulation of cell-cycle inhibitor p27(kip1) (p27). In this study, we demonstrate that Pfn1 overexpression leads to accumulation of p27 through promoting AMPK activation and AMPK-dependent phosphorylation of p27 on T198 residue, a post-translational modification that leads to increased protein stabilization of p27. This pathway is mediated by Pfn1-induced epithelial morphological reversion of mesenchymal breast cancer through cadherin-mediated restoration of adherens junctions. These findings not only elucidate a potential mechanism of how Pfn1 may inhibit proliferation of mesenchymal breast cancer cells, but also highlight a novel pathway of cadherin-mediated p27 induction and therefore cell-cycle control in cells.
Collapse
Affiliation(s)
- Chang Jiang
- a Department of Bioengineering ; University of Pittsburgh ; Pittsburgh PA
| | - William Veon
- a Department of Bioengineering ; University of Pittsburgh ; Pittsburgh PA
| | - Hui Li
- b Department of Medicine ; Renal Electrolyte Division; University of Pittsburgh ; Pittsburgh PA
| | - Kenneth R Hallows
- b Department of Medicine ; Renal Electrolyte Division; University of Pittsburgh ; Pittsburgh PA.,c Department of Cell Biology ; University of Pittsburgh ; Pittsburgh PA
| | - Partha Roy
- a Department of Bioengineering ; University of Pittsburgh ; Pittsburgh PA.,d Magee Women's Research Institute; University of Pittsburgh ; Pittsburgh PA.,e Department of Pathology ; University of Pittsburgh ; PA
| |
Collapse
|
140
|
Feng X, Li Z, Du Y, Fu H, Klein JD, Cai H, Sands JM, Chen G. Downregulation of urea transporter UT-A1 activity by 14-3-3 protein. Am J Physiol Renal Physiol 2015; 309:F71-8. [PMID: 25995111 PMCID: PMC4490382 DOI: 10.1152/ajprenal.00546.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 05/13/2015] [Indexed: 11/22/2022] Open
Abstract
Urea transporter (UT)-A1 in the kidney inner medulla plays a critical role in the urinary concentrating mechanism and thereby in the regulation of water balance. The 14-3-3 proteins are a family of seven isoforms. They are multifunctional regulatory proteins that mainly bind to phosphorylated serine/threonine residues in target proteins. In the present study, we found that all seven 14-3-3 isoforms were detected in the kidney inner medulla. However, only the 14-3-3 γ-isoform was specifically and highly associated with UT-A1, as demonstrated by a glutathione-S-transferase-14-3-3 pulldown assay. The cAMP/adenylyl cyclase stimulator forskolin significantly enhanced their binding. Coinjection of 14-3-3γ cRNA into oocytes resulted in a decrease of UT-A1 function. In addition, 14-3-3γ increased UT-A1 ubiquitination and protein degradation. 14-3-3γ can interact with both UT-A1 and mouse double minute 2, the E3 ubiquitin ligase for UT-A1. Thus, activation of cAMP/PKA increases 14-3-3γ interactions with UT-A1 and stimulates mouse double minute 2-mediated UT-A1 ubiquitination and degradation, thereby forming a novel regulatory mechanism of urea transport activity.
Collapse
Affiliation(s)
- Xiuyan Feng
- Renal Division, Department of Medicine, Emory University, School of Medicine, Atlanta, Georgia; Section of Nephrology, Atlanta Veterans Administration Medical Center, Decatur, Georgia
| | - Zenggang Li
- Department of Pharmacology, Emory University, School of Medicine, Atlanta, Georgia
| | - Yuhong Du
- Department of Pharmacology, Emory University, School of Medicine, Atlanta, Georgia
| | - Haian Fu
- Department of Pharmacology, Emory University, School of Medicine, Atlanta, Georgia
| | - Janet D Klein
- Renal Division, Department of Medicine, Emory University, School of Medicine, Atlanta, Georgia; Department of Physiology, Emory University, School of Medicine, Atlanta, Georgia; and
| | - Hui Cai
- Renal Division, Department of Medicine, Emory University, School of Medicine, Atlanta, Georgia; Department of Physiology, Emory University, School of Medicine, Atlanta, Georgia; and Section of Nephrology, Atlanta Veterans Administration Medical Center, Decatur, Georgia
| | - Jeff M Sands
- Renal Division, Department of Medicine, Emory University, School of Medicine, Atlanta, Georgia; Department of Physiology, Emory University, School of Medicine, Atlanta, Georgia; and
| | - Guangping Chen
- Renal Division, Department of Medicine, Emory University, School of Medicine, Atlanta, Georgia; Department of Physiology, Emory University, School of Medicine, Atlanta, Georgia; and
| |
Collapse
|
141
|
Abstract
PURPOSE OF REVIEW Deregulated proteolysis is increasingly being implicated in pathogenesis of lymphoma. In this review, we highlight the major cellular processes that are affected by deregulated proteolysis of critical substrates that promote lymphoproliferative disorders. RECENT FINDINGS Emerging evidence supports the role of aberrant proteolysis by the ubiquitin proteasome system (UPS) in lymphoproliferative disorders. Several UPS mediators are identified to be altered in lymphomagenesis. However, the precise role of their alteration and comprehensive knowledge of their target substrate critical for lymphomagenesis is far from complete. SUMMARY Many E3 ligase and deubiquitinases that contribute to regulated proteolysis of substrates critical for major cellular processes are altered in various lineages of lymphoma. Understanding of the proteolytic regulatory mechanisms of these major cellular pathways may offer novel biomarkers and targets for lymphoma therapy.
Collapse
|
142
|
Gao JK, Wang LX, Long B, Ye XT, Su JN, Yin XY, Zhou XX, Wang ZW. Arsenic Trioxide Inhibits Cell Growth and Invasion via Down- Regulation of Skp2 in Pancreatic Cancer Cells. Asian Pac J Cancer Prev 2015; 16:3805-10. [PMID: 25987041 DOI: 10.7314/apjcp.2015.16.9.3805] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Arsenic trioxide (ATO) has been found to exert anti-cancer activity in various human malignancies. However, the molecular mechanisms by which ATO inhibits tumorigenesis are not fully elucidated. In the current study, we explored the molecular basis of ATO-mediated tumor growth inhibition in pancreatic cancer cells. We used multiple approaches such as MTT assay, wound healing assay, Transwell invasion assay, annexin V-FITC, cell cycle analysis, RT-PCR and Western blotting to achieve our goal. We found that ATO treatment effectively caused cell growth inhibition, suppressed clonogenic potential and induced G2-M cell cycle arrest and apoptosis in pancreatic cancer cells. Moreover, we observed a significant down-regulation of Skp2 after treatment with ATO. Furthermore, we revealed that ATO regulated Skp2 downstream genes such as FOXO1 and p53. These findings demonstrate that inhibition of Skp2 could be a novel strategy for the treatment of pancreatic cancer by ATO.
Collapse
Affiliation(s)
- Jian-Kun Gao
- Department of Basic Medical Sciences, Sichuan College of Traditional Chinese Medicine, Mianyang, Sichuan, China E-mail : ,
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Caffeic Acid phenethyl ester is a potential therapeutic agent for oral cancer. Int J Mol Sci 2015; 16:10748-66. [PMID: 25984601 PMCID: PMC4463674 DOI: 10.3390/ijms160510748] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/07/2015] [Accepted: 05/06/2015] [Indexed: 12/15/2022] Open
Abstract
Head and neck cancers, which affect 650,000 people and cause 350,000 deaths per year, is the sixth leading cancer by cancer incidence and eighth by cancer-related death worldwide. Oral cancer is the most common type of head and neck cancer. More than 90% of oral cancers are oral and oropharyngeal squamous cell carcinoma (OSCC). The overall five-year survival rate of OSCC patients is approximately 63%, which is due to the low response rate to current therapeutic drugs. In this review we discuss the possibility of using caffeic acid phenethyl ester (CAPE) as an alternative treatment for oral cancer. CAPE is a strong antioxidant extracted from honeybee hive propolis. Recent studies indicate that CAPE treatment can effectively suppress the proliferation, survival, and metastasis of oral cancer cells. CAPE treatment inhibits Akt signaling, cell cycle regulatory proteins, NF-κB function, as well as activity of matrix metalloproteinase (MMPs), epidermal growth factor receptor (EGFR), and Cyclooxygenase-2 (COX-2). Therefore, CAPE treatment induces cell cycle arrest and apoptosis in oral cancer cells. According to the evidence that aberrations in the EGFR/phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling, NF-κB function, COX-2 activity, and MMPs activity are frequently found in oral cancers, and that the phosphorylation of Akt, EGFR, and COX-2 correlates to oral cancer patient survival and clinical progression, we believe that CAPE treatment will be useful for treatment of advanced oral cancer patients.
Collapse
|
144
|
Luo J, Zhou Y, Wang B, Li Q, Chen Y, Lan H. Immunohistochemically detected expression of Skp2, p27 kip1, and p-p27 (Thr187) in patients with cholangiocarcinoma. Tumour Biol 2015; 36:5119-25. [PMID: 25663461 DOI: 10.1007/s13277-015-3164-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/26/2015] [Indexed: 02/06/2023] Open
Abstract
The paper was aimed to detect the expression of Skp2, p27(kip1) (p27), and p-p27 (Thr187) in patients with cholangiocarcinoma (CCA). Western blot and immunohistochemistry were used to analyze the expression and subcellular localization of p27, Skp2, and p-p27 (Thr187) in tissue specimens of 53 patients with CCA and 10 with chronic proliferative cholangitis (CPC). Besides, the relationships of p27, Skp2, and p-p27 (Thr187) with clinicopathologic findings were examined, followed by analysis of the relationships of p27 expression with p-p27 (Thr187) and Skp2 in CCA tissue. The expression of p27 was lower in CCA than CPC tissue, and the expression of Skp2 and p-p27 (Thr187) was higher in CCA than CPC tissue (P < 0.05). The positive p27 and Skp2 proteins were mainly expressed in nucleus and cytoplasm of CCA, and p-p27 (Thr187) was only observed in nucleus. The expression of p27, Skp2, and p-p27 (Thr187) was closely associated with tumor grade and TNM stage (P < 0.05). A significantly negative correlation between the expression of p27 and Skp2 (r = -0.480, P < 0.05) and between the expression of p27 and p-p27 (Thr187) (r = -0.387, P < 0.05) was observed. Skp2-dependent proteasomal degradation of p27 plays role in the malignant transformation of CCA. Besides, the expression of p27, Skp2, and p-p27 (Thr187) may serve as markers for the progression of CCA.
Collapse
Affiliation(s)
- Jian Luo
- Integrated Dept, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Hankou District, Wuhan, 430030, Hubei Province, China,
| | | | | | | | | | | |
Collapse
|
145
|
Pan Y, Liang H, Chen W, Zhang H, Wang N, Wang F, Zhang S, Liu Y, Zhao C, Yan X, Zhang J, Zhang CY, Gu H, Zen K, Chen X. microRNA-200b and microRNA-200c promote colorectal cancer cell proliferation via targeting the reversion-inducing cysteine-rich protein with Kazal motifs. RNA Biol 2015; 12:276-289. [PMID: 25826661 PMCID: PMC4615722 DOI: 10.1080/15476286.2015.1017208] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/19/2014] [Accepted: 01/09/2015] [Indexed: 10/23/2022] Open
Abstract
MicroRNA-200b and microRNA-200c (miR-200b/c) are 2 of the most frequently upregulated oncomiRs in colorectal cancer cells. The role of miR-200b/c during colorectal tumorigenesis, however, remains unclear. In the present study, we report that miR-200b/c can promote colorectal cancer cell proliferation via targeting the reversion-inducing cysteine-rich protein with Kazal motifs (RECK). Firstly, bioinformatics analysis predicted RECK as a conserved target of miR-200b/c. By overexpressing or knocking down miR-200b/c in colorectal cancer cells, we experimentally validated that miR-200b/c are direct regulators of RECK. Secondly, an inverse correlation between the levels of miR-200b/c and RECK protein was found in human colorectal cancer tissues and cell lines. Thirdly, we demonstrated that repression of RECK by miR-200b/c consequently triggered SKP2 (S-phase kinase-associated protein 2) elevation and p27(Kip1) (also known as cyclin-dependent kinase inhibitor 1B) degradation in colorectal cancer cells, which eventually promotes cancer cell proliferation. Finally, promoting tumor cell growth by miR-200b/c-targeting RECK was also observed in the xenograft mouse model. Taken together, our results demonstrate that miR-200b/c play a critical role in promoting colorectal tumorigenesis through inhibiting RECK expression and subsequently triggering SKP2 elevation and p27(Kip1) degradation.
Collapse
Key Words
- 3′-UTR, 3′-untranslated region
- CDKN1B, cyclin-dependent kinase inhibitor 1B
- CRC, colorectal cancer
- EMT, epithelial-mesenchymal transition
- EdU, 5-ethynyl-2′-deoxyuridine
- MMP, metalloproteinase
- NAT, normal adjacent tissue
- ORF, open reading frame
- RECK
- RECK, reversion-inducing cysteinerich protein with Kazal motifs
- SKP2, S-phase kinase-associated protein 2
- ZEB, zinc finger E-box-binding protein
- cell proliferation
- colorectal cancer
- miR-200b/c
- miR-200b/c, microRNA-200b and microRNA-200c
- miRNA, microRNA
- oncogene
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Yi Pan
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology; State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing, Jiangsu, China
| | - Hongwei Liang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology; State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing, Jiangsu, China
| | - Weixu Chen
- First Affiliated Hospital of Nanjing Medical University; Nanjing, Jiangsu, China
| | - Hongjie Zhang
- First Affiliated Hospital of Nanjing Medical University; Nanjing, Jiangsu, China
| | - Nan Wang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology; State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing, Jiangsu, China
| | - Feng Wang
- Department of General Surgery of Drum Tower Hospital Affiliated to Medical School of Nanjing University; Nanjing, Jiangsu, China
| | - Suyang Zhang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology; State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing, Jiangsu, China
| | - Yanqing Liu
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology; State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing, Jiangsu, China
| | - Chihao Zhao
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology; State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing, Jiangsu, China
| | - Xin Yan
- The Comprehensive Cancer Center of Drum Tower Hospital Affiliated to Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University; Nanjing, Jiangsu, China
| | - Junfeng Zhang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology; State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing, Jiangsu, China
| | - Chen-Yu Zhang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology; State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing, Jiangsu, China
| | - Hongwei Gu
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology; State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing, Jiangsu, China
| | - Ke Zen
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology; State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing, Jiangsu, China
| | - Xi Chen
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology; State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing, Jiangsu, China
| |
Collapse
|
146
|
Sahasrabuddhe AA, Elenitoba-Johnson KSJ. Role of the ubiquitin proteasome system in hematologic malignancies. Immunol Rev 2014; 263:224-39. [DOI: 10.1111/imr.12236] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
147
|
de Cássia Ruy P, Torrieri R, Toledo JS, de Souza Alves V, Cruz AK, Ruiz JC. Intrinsically disordered proteins (IDPs) in trypanosomatids. BMC Genomics 2014; 15:1100. [PMID: 25496281 PMCID: PMC4378006 DOI: 10.1186/1471-2164-15-1100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 12/04/2014] [Indexed: 11/10/2022] Open
Abstract
Background Proteins are composed of one or more amino acid chains and exhibit several structure levels. IDPs (intrinsically disordered proteins) represent a class of proteins that do not fold into any particular conformation and exist as dynamic ensembles in their native state. Due to their intrinsic adaptability, IDPs participate in many regulatory biological processes, including parasite immune escape. Using the information from trypanosomatids proteomes, we developed a pipeline for the identification, characterization and analysis of IDPs. The pipeline employs six disorder prediction methodologies and integrates structural and functional annotation information, subcellular location prediction and physicochemical properties. At the core of the IDP pipeline, there is a relational database that describes the protein disorder knowledge in a logically consistent manner. Results The results obtained from the IDP pipeline showed that Leishmania and Trypanosoma species have approximately 70% and 55% IDPs, respectively. Our results indicate that IDPs in trypanosomatids contain disorder-promoting amino acids and order-promoting amino acids. The functional annotation analysis demonstrated enrichment of selected Gene Ontology terms. A relevant association was observed between the disordered residue numbers within predicted IDPs and their subcellular location, lack of transmembrane domains and lack of predicted function. We validated our computational findings with 2D electrophoresis designed for IDP identification and found that 100% of the identified protein spots were predicted in silico. Conclusions Because there is no pipeline or database addressing IDPs in trypanosomatids, the pipeline described here represents the first attempt to establish possible correlations between protein function and structural disorder in these eukaryotes. Interestingly, all significant associations detected in the contingency analysis were observed when the protein disorder content reached approximately 40%. The exploratory data analysis allowed us to develop hypotheses regarding the IDPs’ association with key biological features of these parasites, including transcription and transcriptional regulation, RNA processing and splicing, and cytoskeleton. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1100) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Jeronimo Conceição Ruiz
- Informática de Biossistemas, Centro de Pesquisas René Rachou - Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, MG, Brasil.
| |
Collapse
|
148
|
Liu J, Shaik S, Dai X, Wu Q, Zhou X, Wang Z, Wei W. Targeting the ubiquitin pathway for cancer treatment. Biochim Biophys Acta Rev Cancer 2014; 1855:50-60. [PMID: 25481052 DOI: 10.1016/j.bbcan.2014.11.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 12/15/2022]
Abstract
Proteasome-mediated degradation is a common mechanism by which cells renew their intracellular proteins and maintain protein homeostasis. In this process, the E3 ubiquitin ligases are responsible for targeting specific substrates (proteins) for ubiquitin-mediated degradation. However, in cancer cells, the stability and the balance between oncoproteins and tumor suppressor proteins are disturbed in part due to deregulated proteasome-mediated degradation. This ultimately leads to either stabilization of oncoprotein(s) or increased degradation of tumor suppressor(s), contributing to tumorigenesis and cancer progression. Therefore, E3 ubiquitin ligases including the SCF types of ubiquitin ligases have recently evolved as promising therapeutic targets for the development of novel anti-cancer drugs. In this review, we highlighted the critical components along the ubiquitin pathway including E1, E2, various E3 enzymes and DUBs that could serve as potential drug targets and also described the available bioactive compounds that target the ubiquitin pathway to control various cancers.
Collapse
Affiliation(s)
- Jia Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Shavali Shaik
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Xiangpeng Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Qiong Wu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Xiuxia Zhou
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
149
|
Abstract
The clinical successes of proteasome inhibitors for the treatment of cancer have highlighted the therapeutic potential of targeting this protein degradation system. However, proteasome inhibitors prevent the degradation of numerous proteins, which may cause adverse effects. Increased specificity could be achieved by inhibiting the components of the ubiquitin-proteasome system that target specific subsets of proteins for degradation. F-box proteins are the substrate-targeting subunits of SKP1-CUL1-F-box protein (SCF) ubiquitin ligase complexes. Through the degradation of a plethora of diverse substrates, SCF ubiquitin ligases control a multitude of processes at the cellular and organismal levels, and their dysregulation is implicated in many pathologies. SCF ubiquitin ligases are characterized by their high specificity for substrates, and these ligases therefore represent promising drug targets. However, the potential for therapeutic manipulation of SCF complexes remains an underdeveloped area. This Review explores and discusses potential strategies to target SCF-mediated biological processes to treat human diseases.
Collapse
Affiliation(s)
- Jeffrey R Skaar
- 1] Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, New York 10016, USA. [2]
| | - Julia K Pagan
- 1] Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, New York 10016, USA. [2]
| | - Michele Pagano
- 1] Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, New York 10016, USA. [2] Howard Hughes Medical Institute
| |
Collapse
|
150
|
Rao F, Xu J, Khan AB, Gadalla MM, Cha JY, Xu R, Tyagi R, Dang Y, Chakraborty A, Snyder SH. Inositol hexakisphosphate kinase-1 mediates assembly/disassembly of the CRL4-signalosome complex to regulate DNA repair and cell death. Proc Natl Acad Sci U S A 2014; 111:16005-10. [PMID: 25349427 PMCID: PMC4234592 DOI: 10.1073/pnas.1417900111] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inositol polyphosphates containing an energetic pyrophosphate bond are formed primarily by a family of three inositol hexakisphosphate (IP6) kinases (IP6K1-3). The Cullin-RING ubiquitin ligases (CRLs) regulate diverse biological processes through substrate ubiquitylation. CRL4, comprising the scaffold Cullin 4A/B, the E2-interacting Roc1/2, and the adaptor protein damage-specific DNA-binding protein 1, is activated by DNA damage. Basal CRL4 activity is inhibited by binding to the COP9 signalosome (CSN). UV radiation and other stressors dissociate the complex, leading to E3 ligase activation, but signaling events that trigger signalosome dissociation from CRL4 have been unclear. In the present study, we show that, under basal conditions, IP6K1 forms a ternary complex with CSN and CRL4 in which IP6K1 and CRL4 are inactive. UV dissociates IP6K1 to generate IP7, which then dissociates CSN-CRL4 to activate CRL4. Thus, IP6K1 is a novel CRL4 subunit that transduces UV signals to mediate disassembly of the CRL4-CSN complex, thereby regulating nucleotide excision repair and cell death.
Collapse
Affiliation(s)
- Feng Rao
- The Solomon H. Snyder Department of Neuroscience
| | - Jing Xu
- The Solomon H. Snyder Department of Neuroscience
| | - A Basit Khan
- The Solomon H. Snyder Department of Neuroscience
| | - Moataz M Gadalla
- The Solomon H. Snyder Department of Neuroscience, Department of Pharmacology and Molecular Sciences, and
| | | | - Risheng Xu
- The Solomon H. Snyder Department of Neuroscience, Department of Pharmacology and Molecular Sciences, and
| | - Richa Tyagi
- The Solomon H. Snyder Department of Neuroscience
| | - Yongjun Dang
- Department of Pharmacology and Molecular Sciences, and
| | | | - Solomon H Snyder
- The Solomon H. Snyder Department of Neuroscience, Department of Pharmacology and Molecular Sciences, and Department of Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|