101
|
Haapalainen AM, Koski MK, Qin YM, Hiltunen JK, Glumoff T. Binary structure of the two-domain (3R)-hydroxyacyl-CoA dehydrogenase from rat peroxisomal multifunctional enzyme type 2 at 2.38 A resolution. Structure 2003; 11:87-97. [PMID: 12517343 DOI: 10.1016/s0969-2126(02)00931-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The crystal structure of (3R)-hydroxyacyl-CoA dehydrogenase of rat peroxisomal multifunctional enzyme type 2 (MFE-2) was solved at 2.38 A resolution. The catalytic entity reveals an alpha/beta short chain alcohol dehydrogenase/reductase (SDR) fold and the conformation of the bound nicotinamide adenine dinucleotide (NAD(+)) found in other SDR enzymes. Of great interest is the separate COOH-terminal domain, which is not seen in other SDR structures. This domain completes the active site cavity of the neighboring monomer and extends dimeric interactions. Peroxisomal diseases that arise because of point mutations in the dehydrogenase-coding region of the MFE-2 gene can be mapped to changes in amino acids involved in NAD(+) binding and protein dimerization.
Collapse
Affiliation(s)
- Antti M Haapalainen
- Biocenter Oulu and Department of Biochemistry, University of Oulu, P.O. Box 3000, FIN-90014 University of Oulu, Oulu, Finland
| | | | | | | | | |
Collapse
|
102
|
McKeever BM, Hawkins BK, Geissler WM, Wu L, Sheridan RP, Mosley RT, Andersson S. Amino acid substitution of arginine 80 in 17beta-hydroxysteroid dehydrogenase type 3 and its effect on NADPH cofactor binding and oxidation/reduction kinetics. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1601:29-37. [PMID: 12429500 DOI: 10.1016/s1570-9639(02)00434-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
17beta-Hydroxysteroid dehydrogenase type 3 (17beta-HSD-3) is a member of the short-chain dehydrogenase/reductase (SDR) family and is essential for the reductive conversion of inactive C(19)-steroid, androstenedione, to the biologically active androgen, testosterone, which plays a central role in the development of the male phenotype. Mutations that inactivate this enzyme give rise to a rare form of male pseudohermaphroditism, referred to as 17beta-HSD-3 deficiency. One such mutation is the replacement of arginine at position 80 with glutamine, compromising enzyme activity by increasing the cofactor binding constant 60-fold. In the absence of a 17beta-HSD-3 crystal structure, we have grafted its amino acid sequence for the NADPH binding site on the X-ray crystal structures of glutathione reductase (Protein Data Bank code 1gra) and 17beta-HSD type 1 (Protein Data Bank codes 1fdv and 1fdu) where we find the trunk of the arginine 80 side chain forms part of the hydrophobic pocket for the purine ring of adenosine while its guanidinium moiety interacts with the 2'-phosphate to both stabilize cofactor binding and neutralize its intrinsic negative charge through two hydrogen bonds. To qualitatively assess the role arginine 80 plays in both selecting and stabilizing NADPH binding, it was replaced with each amino acid and the mutant enzymes subjected to enzymatic analysis. There are only seven enzymes exhibiting any measurable enzymatic activity with arginine approximately lysine>leucine>glutamine>methionine>tyrosine>isoleucine. With an aspartic acid at position 58 in 17beta-HSD-3 occupying the equivalent space in the cofactor binding pocket as arginine 224 in glutathione reductase or serine 12 in 17beta-HSD-1, there was an expectation that some of the mutants might use NADH as a cofactor. In no case was NADH found to substitute for NADPH.
Collapse
Affiliation(s)
- Brian M McKeever
- Merck Research Laboratories, Merck & Co., Inc., RY50-105, 126 East Lincoln Avenue, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | |
Collapse
|
103
|
Schmitt S, Kuhn D, Klebe G. A new method to detect related function among proteins independent of sequence and fold homology. J Mol Biol 2002; 323:387-406. [PMID: 12381328 DOI: 10.1016/s0022-2836(02)00811-2] [Citation(s) in RCA: 295] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A new method has been developed to detect functional relationships among proteins independent of a given sequence or fold homology. It is based on the idea that protein function is intimately related to the recognition and subsequent response to the binding of a substrate or an endogenous ligand in a well-characterized binding pocket. Thus, recognition of similar ligands, supposedly linked to similar function, requires conserved recognition features exposed in terms of common physicochemical interaction properties via the functional groups of the residues flanking a particular binding cavity. Following a technique commonly used in the comparison of small molecule ligands, generic pseudocenters coding for possible interaction properties were assigned for a large sample set of cavities extracted from the entire PDB and stored in the database Cavbase. Using a particular query cavity a series of related cavities of decreasing similarity is detected based on a clique detection algorithm. The detected similarity is ranked according to property-based surface patches shared in common by the different clique solutions. The approach either retrieves protein cavities accommodating the same (e.g. co-factors) or closely related ligands or it extracts proteins exhibiting similar function in terms of a related catalytic mechanism. Finally the new method has strong potential to suggest alternative molecular skeletons in de novo design. The retrieval of molecular building blocks accommodated in a particular sub-pocket that shares similarity with the pocket in a protein studied by drug design can inspire the discovery of novel ligands.
Collapse
Affiliation(s)
- Stefan Schmitt
- Inst. of Pharmaceutical Chemistry, Univ. of Marburg, Marbacher Weg 6, D-35032, Marburg, Germany
| | | | | |
Collapse
|
104
|
Kallberg Y, Oppermann U, Jörnvall H, Persson B. Short-chain dehydrogenases/reductases (SDRs). EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4409-17. [PMID: 12230552 DOI: 10.1046/j.1432-1033.2002.03130.x] [Citation(s) in RCA: 338] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Short-chain dehydrogenases/reductases (SDRs) are enzymes of great functional diversity. Even at sequence identities of typically only 15-30%, specific sequence motifs are detectable, reflecting common folding patterns. We have developed a functional assignment scheme based on these motifs and we find five families. Two of these families were known previously and are called 'classical' and 'extended' families, but they are now distinguished at a further level based on coenzyme specificities. This analysis gives seven subfamilies of classical SDRs and three subfamilies of extended SDRs. We find that NADP(H) is the preferred coenzyme among most classical SDRs, while NAD(H) is that preferred among most extended SDRs. Three families are novel entities, denoted 'intermediate', 'divergent' and 'complex', encompassing short-chain alcohol dehydrogenases, enoyl reductases and multifunctional enzymes, respectively. The assignment scheme was applied to the genomes of human, mouse, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana and Saccharomyces cerevisiae. In the animal genomes, the extended SDRs amount to around one quarter or less of the total number of SDRs, while in the A. thaliana and S. cerevisiae genomes, the extended members constitute about 40% of the SDR forms. The numbers of NAD(H)-dependent and NADP(H)-dependent SDRs are similar in human, mouse and plant, while the proportions of NAD(H)-dependent enzymes are much lower in fruit fly, worm and yeast. We show that, in spite of the great diversity of the SDR superfamily, the primary structure alone can be used for functional assignments and for predictions of coenzyme preference.
Collapse
Affiliation(s)
- Yvonne Kallberg
- Department of Medical Biochemistry and Biophysics and Stockholm Bioinformatics Centre, Karolinska Institutet, Sweden
| | | | | | | |
Collapse
|
105
|
Bottoms CA, Smith PE, Tanner JJ. A structurally conserved water molecule in Rossmann dinucleotide-binding domains. Protein Sci 2002; 11:2125-37. [PMID: 12192068 PMCID: PMC2373605 DOI: 10.1110/ps.0213502] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A computational comparison of 102 high-resolution (</=1.90 A) enzyme-dinucleotide (NAD, NADP, FAD) complexes was performed to investigate the role of solvent in dinucleotide recognition by Rossmann fold domains. The typical binding site contains about 9-12 water molecules, and about 30% of the hydrogen bonds between the protein and the dinucleotide are water mediated. Detailed inspection of the structures reveals a structurally conserved water molecule bridging dinucleotides with the well-known glycine-rich phosphate-binding loop. This water molecule displays a conserved hydrogen-bonding pattern. It forms hydrogen bonds to the dinucleotide pyrophosphate, two of the three conserved glycine residues of the phosphate-binding loop, and a residue at the C-terminus of strand four of the Rossmann fold. The conserved water molecule is also present in high-resolution structures of apo enzymes. However, the water molecule is not present in structures displaying significant deviations from the classic Rossmann fold motif, such as having nonstandard topology, containing a very short phosphate-binding loop, or having alpha-helix "A" oriented perpendicular to the beta-sheet. Thus, the conserved water molecule appears to be an inherent structural feature of the classic Rossmann dinucleotide-binding domain.
Collapse
|
106
|
Wu Q, Xu M, Cheng C, Zhou Z, Huang Y, Zhao W, Zeng L, Xu J, Fu X, Ying K, Xie Y, Mao Y. Molecular cloning and characterization of a novel Dehydrogenase/reductase (SDR family) member 1 genea from human fetal brain. Mol Biol Rep 2002; 28:193-8. [PMID: 12153138 DOI: 10.1023/a:1015722001960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Short-chain dehydrogenases/reductases (SDR) constitute a large protein family of NAD(P)(H)-dependent oxidoreductase. They are defined by distinct, common sequence motifs and show a wide range of substrate specialisms. By large-scale sequencing analysis of a human fetal brain cDNA library, we isolated a novel human SDR-type dehydrogenase/reductase gene named Dehydrogenase/reductase (SDR family) member 1 (DHRS1). The DHRS1 cDNA is 1411 base pair in length, encoding a 314-amino-acid polypeptide which has a SDR motif. Northern blot reveals two bands, of about 0.9 and 1.4 kb in size. These two forms are expressed in many tissues. The DHRS1 gene is localized on chromosome 14q21.3. It has 9 exons and spans 9.2 kb of the genomic DNA.
Collapse
Affiliation(s)
- Q Wu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Filling C, Berndt KD, Benach J, Knapp S, Prozorovski T, Nordling E, Ladenstein R, Jörnvall H, Oppermann U. Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. J Biol Chem 2002; 277:25677-84. [PMID: 11976334 DOI: 10.1074/jbc.m202160200] [Citation(s) in RCA: 466] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Short-chain dehydrogenases/reductases form a large, evolutionarily old family of NAD(P)(H)-dependent enzymes with over 60 genes found in the human genome. Despite low levels of sequence identity (often 10-30%), the three-dimensional structures display a highly similar alpha/beta folding pattern. We have analyzed the role of several conserved residues regarding folding, stability, steady-state kinetics, and coenzyme binding using bacterial 3beta/17beta-hydroxysteroid dehydrogenase and selected mutants. Structure determination of the wild-type enzyme at 1.2-A resolution by x-ray crystallography and docking analysis was used to interpret the biochemical data. Enzyme kinetic data from mutagenetic replacements emphasize the critical role of residues Thr-12, Asp-60, Asn-86, Asn-87, and Ala-88 in coenzyme binding and catalysis. The data also demonstrate essential interactions of Asn-111 with active site residues. A general role of its side chain interactions for maintenance of the active site configuration to build up a proton relay system is proposed. This extends the previously recognized catalytic triad of Ser-Tyr-Lys residues to form a tetrad of Asn-Ser-Tyr-Lys in the majority of characterized short-chain dehydrogenases/reductase enzymes.
Collapse
Affiliation(s)
- Charlotta Filling
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Maeda M, Kaku H, Shimada M, Nishioka T. Cloning and sequence analysis of D-erythrulose reductase from chicken: its close structural relation to tetrameric carbonyl reductases. Protein Eng Des Sel 2002; 15:611-7. [PMID: 12200544 DOI: 10.1093/protein/15.7.611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sequence analysis of a cDNA for D-erythrulose reductase from chicken liver showed that the deduced open reading frame encodes the protein with a molecular mass of 26 kDa consisting of 246 amino acids. Although the reductase shares more than 60% identity in the amino acid sequence with the mouse tetrameric carbonyl reductase, these two enzymes have many biochemical differences; their substrate specificity, subcellular localization, organ distribution, etc. A three-dimensional structure of D-erythrulose reductase was predicted by comparative modeling based on the structure of the tetrameric carbonyl reductase (PDB entry = 1CYD). Most of the residues at the active site (within 4 A from the ligand) of the carbonyl reductase were also conserved in the D-erythrulose reductase. Nevertheless, Val190 and Leu146 in the active site of the tetrameric carbonyl reductase were substituted in the D-erythrulose reductase by Asn192 and His148, respectively. The substitutions in the active sites may be related to the difference in substrate specificity of the two enzymes. The phylogenic analysis of D-erythrulose reductase and the other related proteins suggests that the protein described as a carbonyl reductase D-erythrulose reductase.
Collapse
Affiliation(s)
- Miki Maeda
- National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan.
| | | | | | | |
Collapse
|
109
|
Nakagawa J, Ishikura S, Asami J, Isaji T, Usami N, Hara A, Sakurai T, Tsuritani K, Oda K, Takahashi M, Yoshimoto M, Otsuka N, Kitamura K. Molecular characterization of mammalian dicarbonyl/L-xylulose reductase and its localization in kidney. J Biol Chem 2002; 277:17883-91. [PMID: 11882650 DOI: 10.1074/jbc.m110703200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this report, we first cloned a cDNA for a protein that is highly expressed in mouse kidney and then isolated its counterparts in human, rat hamster, and guinea pig by polymerase chain reaction-based cloning. The cDNAs of the five species encoded polypeptides of 244 amino acids, which shared more than 85% identity with each other and showed high identity with a human sperm 34-kDa protein, P34H, as well as a murine lung-specific carbonyl reductase of the short-chain dehydrogenase/reductase superfamily. In particular, the human protein is identical to P34H, except for one amino acid substitution. The purified recombinant proteins of the five species were about 100-kDa homotetramers with NADPH-linked reductase activity for alpha-dicarbonyl compounds, catalyzed the oxidoreduction between xylitol and l-xylulose, and were inhibited competitively by n-butyric acid. Therefore, the proteins are designated as dicarbonyl/l-xylulose reductases (DCXRs). The substrate specificity and kinetic constants of DCXRs for dicarbonyl compounds and sugars are similar to those of mammalian diacetyl reductase and l-xylulose reductase, respectively, and the identity of the DCXRs with these two enzymes was demonstrated by their co-purification from hamster and guinea pig livers and by protein sequencing of the hepatic enzymes. Both DCXR and its mRNA are highly expressed in kidney and liver of human and rodent tissues, and the protein was localized primarily to the inner membranes of the proximal renal tubules in murine kidneys. The results imply that P34H and diacetyl reductase (EC ) are identical to l-xylulose reductase (EC ), which is involved in the uronate cycle of glucose metabolism, and the unique localization of the enzyme in kidney suggests that it has a role other than in general carbohydrate metabolism.
Collapse
Affiliation(s)
- Junichi Nakagawa
- Medicinal Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Saitama-shi, Saitama 330-8530, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Selstam E, Schelin J, Brain T, Williams WP. The effects of low pH on the properties of protochlorophyllide oxidoreductase and the organization of prolamellar bodies of maize (Zea mays). EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2336-46. [PMID: 11985616 DOI: 10.1046/j.1432-1033.2002.02897.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prolamellar bodies (PLB) contain two photochemically active forms of the enzyme protochlorophyllide oxidoreductase POR-PChlide640 and POR-PChlide650 (the spectral forms of POR-Chlide complexes with absorption maxima at the indicated wavelengths). Resuspension of maize PLB in media with a pH below 6.8 leads to a rapid conversion of POR-PChlide650 to POR-PChlide640 and a dramatic re-organization of the PLB membrane system. In the absence of excess NADPH, the absorption maximum of the POR complex undergoes a further shift to about 635 nm. This latter shift is reversible on the re-addition of NADPH with a half-saturation value of about 0.25 mm NADPH for POR-PChlide640 reformation. The disappearance of POR-PChlide650 and the reorganization of the PLB, however, are irreversible. Restoration of low-pH treated PLB to pH 7.5 leads to a further breakdown down of the PLB membrane and no reformation of POR-PChlide650. Related spectral changes are seen in PLB aged at room temperature at pH 7.5 in NADPH-free assay medium. The reformation of POR-PChlide650 in this system is readily reversible on re-addition of NADPH with a half-saturation value about 1.0 microm. Comparison of the two sets of changes suggest a close link between the stability of the POR-PChlide650, membrane organization and NADPH binding. The low-pH driven spectral changes seen in maize PLB are shown to be accelerated by adenosine AMP, ADP and ATP. The significance of this is discussed in terms of current suggestions of the possible involvement of phosphorylation (or adenylation) in changes in the aggregational state of the POR complex.
Collapse
Affiliation(s)
- Eva Selstam
- Umeå Plant Science Center, Department of Plant Physiology, University of Umeå, Sweden
| | | | | | | |
Collapse
|
111
|
Huang YW, Pineau I, Chang HJ, Azzi A, Bellemare V, Laberge S, Lin SX. Critical residues for the specificity of cofactors and substrates in human estrogenic 17beta-hydroxysteroid dehydrogenase 1: variants designed from the three-dimensional structure of the enzyme. Mol Endocrinol 2001; 15:2010-20. [PMID: 11682630 DOI: 10.1210/mend.15.11.0730] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human estrogenic 17beta-hydroxysteroid dehydrogenase is an NADP(H)-preferring enzyme. It possesses 11- and 4-fold higher specificity toward NADP(H) over NAD(H) for oxidation and reduction, respectively, as demonstrated by kinetic studies. To elucidate the roles of the amino acids involved in cofactor specificity, we generated variants by site-directed mutagenesis. The results showed that introducing a positively charged residue, lysine, at the Ser12 position increased the enzyme's preference for NADP(H) more than 20-fold. Substitution of the negatively charged residue, aspartic acid, into the Leu36 position switched the enzyme's cofactor preference from NADPH to NAD with a 220-fold change in the ratio of the specificity toward the two cofactors in the case of oxidation. This variant dramatically abolished the enzyme's reductase function and stimulated its dehydrogenase activity, as shown by enzyme activity in intact cells. The substrate-binding pocket was also studied with four variants: Ser142Gly, Ser142Cys, His221Ala, and Glu282Ala. The Ser142Gly variant abolished most of the enzyme's oxidation and reduction activities. The residual reductase activity in vitro is less than 2% that of the wild-type enzyme. However, the Ser142Cys variant was fully inactive, both as a partially purified protein and in intact cells. This suggests that the bulky sulfhydryl group of cysteine entirely disrupted the catalytic triad and that the Ser142 side chain is important for maintaining the integrity of this triad. His221 variation weakened the apparent affinity for estrone, as demonstrated by a 30-fold increase in Michaelis-Menten constant, supporting its important role in substrate binding. This residue may play an important role in substrate inhibition via the formation of a dead-end complex. The formerly suggested importance of Glu282 could not be confirmed.
Collapse
Affiliation(s)
- Y W Huang
- Medical Research Council Group in Molecular Endocrinology, Oncology, and Molecular Endocrinology Research Center, Laval University Medical Center, Québec, Québec G1V 4G2, Canada
| | | | | | | | | | | | | |
Collapse
|
112
|
Schmitt S, Hendlich M, Klebe G. Von der Struktur zur Funktion: ein neuer Ansatz zum Erkennen von funktionellen Ähnlichkeiten zwischen Proteinen unabhängig von Sequenz- und Faltungshomologie. Angew Chem Int Ed Engl 2001. [DOI: 10.1002/1521-3757(20010903)113:17<3237::aid-ange3237>3.0.co;2-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
113
|
Schmitt S, Hendlich M, Klebe G. From Structure to Function: A New Approach to Detect Functional Similarity among Proteins Independent from Sequence and Fold Homology. Angew Chem Int Ed Engl 2001; 40:3141-3144. [PMID: 29712060 DOI: 10.1002/1521-3773(20010903)40:17<3141::aid-anie3141>3.0.co;2-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2001] [Indexed: 11/10/2022]
Abstract
Protein function is almost invariably linked with the specific recognition of substrates or endogenous ligands in particular binding pockets; proteins of related function should, therefore, share comparable recognition pockets. On the basis of this idea a new computer method has been developed to detect functional relationships among proteins, independent of a particular sequence or fold homology, in which the functionality of the residues is translated into simple physicochemical descriptors. By this method novel ligands in drug design can be suggested.
Collapse
Affiliation(s)
- Stefan Schmitt
- Philipps-Universität Marburg Institut für Pharmazeutische Chemie Marbacher Weg 6, 35032 Marburg (Germany) Fax: (+49) 6421-282-8994
| | - Manfred Hendlich
- Philipps-Universität Marburg Institut für Pharmazeutische Chemie Marbacher Weg 6, 35032 Marburg (Germany) Fax: (+49) 6421-282-8994
| | - Gerhard Klebe
- Philipps-Universität Marburg Institut für Pharmazeutische Chemie Marbacher Weg 6, 35032 Marburg (Germany) Fax: (+49) 6421-282-8994
| |
Collapse
|
114
|
Hörer S, Stoop J, Mooibroek H, Baumann U, Sassoon J. The crystallographic structure of the mannitol 2-dehydrogenase NADP+ binary complex from Agaricus bisporus. J Biol Chem 2001; 276:27555-61. [PMID: 11335726 DOI: 10.1074/jbc.m102850200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mannitol, an acyclic six-carbon polyol, is one of the most abundant sugar alcohols occurring in nature. In the button mushroom, Agaricus bisporus, it is synthesized from fructose by the enzyme mannitol 2-dehydrogenase (MtDH; EC ) using NADPH as a cofactor. Mannitol serves as the main storage carbon (up to 50% of the fruit body dry weight) and plays a critical role in growth, fruit body development, osmoregulation, and salt tolerance. Furthermore, mannitol dehydrogenases are being evaluated for commercial mannitol production as alternatives to the less efficient chemical reduction of fructose. Given the importance of mannitol metabolism and mannitol dehydrogenases, MtDH was cloned into the pET28 expression system and overexpressed in Escherichia coli. Kinetic and physicochemical properties of the recombinant enzyme are indistinguishable from the natural enzyme. The crystal structure of its binary complex with NADP was solved at 1.5-A resolution and refined to an R value of 19.3%. It shows MtDH to be a tetramer and a member of the short chain dehydrogenase/reductase family of enzymes. The catalytic residues forming the so-called catalytic triad can be assigned to Ser(149), Tyr(169), and Lys(173).
Collapse
Affiliation(s)
- S Hörer
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland
| | | | | | | | | |
Collapse
|
115
|
Rizner TL, Adamski J, Stojan J. 17Beta-hydroxysteroid dehydrogenase from Cochliobolus lunatus: model structure and substrate specificity. Arch Biochem Biophys 2001; 384:255-62. [PMID: 11368312 DOI: 10.1006/abbi.2000.2064] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A homology-built structural model of 17beta-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus, a member of the short-chain dehydrogenase/reductase family, was worked out using the known three-dimensional structure of trihydroxynaphthalene reductase (EC 1.3.1.50) from Magnaporthe grisea as a template. Due to 61% sequence identity, the model also revealed a similar backbone trace. On the basis of qualitative thin-layer chromatography and comparative kinetic tests of the activity toward various potential steroid substrates, we conclude that androgens are more efficiently converted than estrogens. Their specific oxidoreduction predominantly occurs at the C17 position while no significant conversion at C3 and C20 was determined. Additionally, a thousand times effective inhibition by 5-methyl-(1,2,4)-triazolo[3,4-b]benzothiazole and no activity toward 2,3-dihydro-2,5-dihydroxy-4H-benzopyran-4-one indicate distinct specificies of 17beta-hydroxysteroid dehydrogenase from the fungus C. lunatus and trihydroxynaphthalene reductase. The results of the analysis of progress curve measurements for the forward and backward reactions are consistent with the Theorell-Chance reaction mechanism also predicted from the structural model. In accordance with these results, 4-androstene-3,17-dione was docked into the enzyme active site using molecular modeling and dynamics calculations.
Collapse
Affiliation(s)
- T L Rizner
- Institute of Biochemistry, Medical Faculty, University of Ljubljana, Slovenia
| | | | | |
Collapse
|
116
|
Ghosh D, Sawicki M, Pletnev V, Erman M, Ohno S, Nakajin S, Duax WL. Porcine carbonyl reductase. structural basis for a functional monomer in short chain dehydrogenases/reductases. J Biol Chem 2001; 276:18457-63. [PMID: 11279087 DOI: 10.1074/jbc.m100538200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Porcine testicular carbonyl reductase (PTCR) belongs to the short chain dehydrogenases/reductases (SDR) superfamily and catalyzes the NADPH-dependent reduction of ketones on steroids and prostaglandins. The enzyme shares nearly 85% sequence identity with the NADPH-dependent human 15-hydroxyprostaglandin dehydrogenase/carbonyl reductase. The tertiary structure of the enzyme at 2.3 A reveals a fold characteristic of the SDR superfamily that uses a Tyr-Lys-Ser triad as catalytic residues, but exhibits neither the functional homotetramer nor the homodimer that distinguish all SDRs. It is the first known monomeric structure in the SDR superfamily. In PTCR, which is also active as a monomer, a 41-residue insertion immediately before the catalytic Tyr describes an all-helix subdomain that packs against interfacial helices, eliminating the four-helix bundle interface conserved in the superfamily. An additional anti-parallel strand in the PTCR structure also blocks the other strand-mediated interface. These novel structural features provide the basis for the scaffolding of one catalytic site within a single molecule of the enzyme.
Collapse
Affiliation(s)
- D Ghosh
- Department of Structural Biology, Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203, USA
| | | | | | | | | | | | | |
Collapse
|
117
|
Terada T, Sugihara Y, Nakamura K, Sato R, Sakuma S, Fujimoto Y, Fujita T, Inazu N, Maeda M. Characterization of multiple Chinese hamster carbonyl reductases. Chem Biol Interact 2001; 130-132:847-61. [PMID: 11306100 DOI: 10.1016/s0009-2797(00)00240-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Carbonyl reductase (CR) is an enzyme which can catalyze the oxidoreduction of various carbonyl compounds in the presence of NAD(P)H. With the PCR method, using primers carrying the conserved nucleotide sequence among mammalian CRs, we isolated three different cDNAs (CHCR1, CHCR2 and CHCR3) which encode a unique carbonyl reductase from the Chinese hamster. The PCR products of CHCR1 and CHCR2 were clearly isolated with Bpu1102I, BspEI and XmaI restriction enzymes. The nucleotide-sequence of CHCR3 was completely different from those of CHCR1 and CHCR2. The predicted double-wound betaalphabetaalpha-structures of the CHCRs suggests the presence of a typical NADP(+)-binding motif and is similar to the corresponding region of 3alpha,20beta-hydroxysteroid dehydrogenase and mouse lung tetrameric carbonyl reductase. The deduced amino acid sequence of CHCR1 showed a high homology to CHCR2 (>96%) and the other mammalian CRs (>81%). However, CHCR3 showed a high homology to human CBR3 (>86%) and a relatively lower homology to the other CHCRs (<76%). Bacterial recombinant CHCRs showed typical carbonyl reductase activities towards 4-benzoylpyridine, 4-nitrobenzaldehyde and pyridine 4-carboxyaldehyde. These three CRs showed not only 3-keto reductase of steroids, but also 20-keto reductase. However, these CRs did not show any activity of 17-keto reductase activity. Both CHCR1 and CHCR2 have prostaglandin 9-keto reductase and 15-hydroxyprostaglandin dehydrogenase activities towards PGE(2) and PGF(2alpha) from the analyses of enzymatic reaction products. The results of Western blotting and RT-PCR suggest these CHCRs have a tissue-dependent-distribution in the Chinese hamster.
Collapse
Affiliation(s)
- T Terada
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Benach J, Atrian S, Ladenstein R, Gonzàlez-Duarte R. Genesis of Drosophila ADH: the shaping of the enzymatic activity from a SDR ancestor. Chem Biol Interact 2001; 130-132:405-15. [PMID: 11306062 DOI: 10.1016/s0009-2797(00)00265-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Drosophila alcohol dehydrogenase (ADH) is an NAD(H)-dependent oxidoreductase that catalyzes the oxidation of alcohols and aldehydes. Structurally and biochemically distinct from all the reported ADHs (typically, the mammalian medium-chain dehydrogenase/reductase-ethanol-metabolizing enzyme), it stands as the only small-alcohol transforming system that has originated from a short-chain dehydrogenase/reductase (SDR) ancestor. The crystal structures of the apo, binary (E.NAD(+)) and three ternary (E.NAD(+).acetone, E.NAD(+).3-pentanone and E.NAD(+).cyclohexanone) forms of Drosophila lebanonensis ADH have allowed us to infer the structural and kinetic features accounting for the generation of the ADH activity within the SDR lineage.
Collapse
Affiliation(s)
- J Benach
- Center for Structural Biochemistry, Karolinska Institutet, Hälsovägen 7, 141 57, Huddinge, Sweden
| | | | | | | |
Collapse
|
119
|
Maser E, Xiong G, Grimm C, Ficner R, Reuter K. 3alpha-Hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni: biological significance, three-dimensional structure and gene regulation. Chem Biol Interact 2001; 130-132:707-22. [PMID: 11306088 DOI: 10.1016/s0009-2797(00)00302-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
3alpha-Hydroxysteroid dehydrogenase/carbonyl reductase (3alpha-HSD/CR) catalyses the oxidoreduction at carbon 3 of steroid hormones and is postulated to initiate the complete mineralisation of the steroid nucleus to CO(2) and H(2)O in Comamonas testosteroni. The enzyme was found to be functional towards a variety of steroid substrates, including the steroid antibiotic fusidic acid. The enzyme also catalyses the carbonyl reduction of non-steroidal aldehydes and ketones such as a novel insecticide. It is suggested that 3alpha-HSD/CR contributes to important defense strategies of C. testosteroni against natural and synthetic toxicants. The 3alpha-HSD/CR gene (hsdA) is 774 base pairs long and the deduced amino acid sequence comprises 258 residues with a calculated molecular mass of 26.4 kDa. A homology search revealed 3alpha-HSD/CR as a new member of the short-chain dehydrogenase/reductase (SDR) superfamily. Upon gel permeation chromatography the purified enzyme elutes as a 49.4 kDa protein indicating a dimeric nature of 3alpha-HSD/CR. The protein was crystallised and the structure solved by X-ray analysis. The crystal structure reveals one homodimer per asymmetric unit, thereby verifying its dimeric nature. Dimerisation takes place via an interface essentially built-up by helix alphaG and strand betaG of each subunit. So far, this type of intermolecular contact has exclusively been observed in homotetrameric SDRs, but never in the structure of a homodimeric SDR. The formation of a tetramer is blocked in 3alpha-HSD/CR by the presence of a predominantly alpha-helical subdomain, which is missing in all other SDRs of known structure. The promoter domain was localised within the 93 bp region upstream of hsdA and the transcriptional start site was identified at 28 bp upstream of the translation start site. Interestingly, hsdA expression was found to be under negative control by two repressor proteins, the genes of which were found in opposite direction downstream or overlapping with hsdA. Based on our results, we propose that induction of hsdA expression in C. testosteroni by steroids actually appears to be a de-repression by preventing the binding of repressor proteins to regulatory regions.
Collapse
Affiliation(s)
- E Maser
- Department of Pharmacology and Toxicology, School of Medicine, Philipps-University of Marburg, Karl-von-Frisch-Strasse 1, 35033, Marburg, Germany.
| | | | | | | | | |
Collapse
|
120
|
Sciotti M, Wermuth B. Coenzyme specificity of human monomeric carbonyl reductase: contribution of Lys-15, Ala-37 and Arg-38. Chem Biol Interact 2001; 130-132:871-8. [PMID: 11306102 DOI: 10.1016/s0009-2797(00)00242-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Short-chain dehydrogenases/reductases catalyze the oxidoreduction of alcohol and carbonyl compounds using either NAD or NADPH as coenzyme. Structural analysis suggests that specificity for NADPH is conferred by two highly conserved basic residues in the N-terminal part of the peptide chain, whereas specificity for NAD correlates with the presence of an Asp adjacent to the position of the distal basic residue in NADP-dependent enzymes. We carried out site-directed mutagenesis of the two basic residues: Lys-15 and Arg-38, as well as of Ala-37 of human monomeric carbonyl reductase in order to investigate their contribution to coenzyme binding and specificity. Substitution of Lys-15 or Arg-38 by Gln and, even more pronounced Asp decreased the catalytic efficiency (k(cat)/K(m,NADPH)) by more than three orders of magnitude. Similarly, substitution of Asp for Ala-37 decreased k(cat)/K(m,NADPH) 1000-fold but had little effect on k(cat)/K(m,NADH). The results demonstrate the importance of basic residues at positions 15 and 38 and the absence of an acidic residue at position 37 for NADPH binding and catalysis.
Collapse
Affiliation(s)
- M Sciotti
- Central Chemical Laboratory of the University Clinics, Inselspital, CH-3010, Bern, Switzerland
| | | |
Collapse
|
121
|
Ishikura S, Isaji T, Usami N, Kitahara K, Nakagawa J, Hara A. Molecular cloning, expression and tissue distribution of hamster diacetyl reductase. Identity with L-xylulose reductase. Chem Biol Interact 2001; 130-132:879-89. [PMID: 11306103 DOI: 10.1016/s0009-2797(00)00315-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Using rapid amplification of cDNA ends PCR, a cDNA species for diacetyl reductase (EC 1.1.1.5) was isolated from hamster liver. The encoded protein consisted of 244 amino acids, and showed high sequence identity to mouse lung carbonyl reductase and hamster sperm P26h protein, which belong to the short-chain dehydrogenase/reductase family. The enzyme efficiently reduced L-xylulose as well as diacetyl, and slowly oxidized xylitol. The K(m) values for L-xylulose and xylitol were similar to those reported for L-xylulose reductase (EC 1.1.1.10) of guinea pig liver. The identity of diacetyl reductase with L-xylulose reductase was demonstrated by co-purification of the two enzyme activities from hamster liver and their proportional distribution in other tissues.
Collapse
Affiliation(s)
- S Ishikura
- Laboratory of Biochemistry, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, 502-8585, Gifu, Japan
| | | | | | | | | | | |
Collapse
|
122
|
Fujimoto K, Hara M, Yamada H, Sakurai M, Inaba A, Tomomura A, Katoh S. Role of the conserved Ser-Tyr-Lys triad of the SDR family in sepiapterin reductase. Chem Biol Interact 2001; 130-132:825-32. [PMID: 11306098 DOI: 10.1016/s0009-2797(00)00238-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sepiapterin reductase (EC 1.1.1.153; SPR) is an enzyme involved in the biosynthesis of tetrahydrobiopterin; and SPR has been identified as a member of the NADP(H)-preferring short-chain dehydrogenase/reductase (SDR) family based on its catalytic properties for exogenous carbonyl compounds and molecular structure. To examine possible differences in the catalytic sites of SPR for exogenous carbonyl compounds and the native pteridine substrates, we investigated by site-directed mutagenesis the role of the highly conserved Ser-Tyr-Lys triad (Ser and YXXXK motif) in SPR, which was shown to be the catalytic site of SDR-family enzymes. From the analysis of catalytic constants for single- and double-point mutants against the triad, Ser and YXXXK motif, in the SPR molecule, participate in the reduction of the carbonyl group of both pteridine and exogenous carbonyl compounds. The Ser and the Tyr of the triad may co-act in proton transfer and stabilization for the carbonyl group of substrates, as was demonstrated for those in the SDR family. But either the Tyr or the Ser of SPR can function alone for proton transfer to a certain extent and show low activity for both substrates.
Collapse
Affiliation(s)
- K Fujimoto
- Department of Biochemistry, Meikai University School of Dentistry, Sakado, 350-0283, Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
123
|
Lanisnik Rizner T, Stojan J, Adamski J. 17beta-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus: structural and functional aspects. Chem Biol Interact 2001; 130-132:793-803. [PMID: 11306095 DOI: 10.1016/s0009-2797(00)00235-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
17beta-Hydroxysteroid dehydrogenase (17beta-HSD) activity has been described in all filamentous fungi tested, but until now only one 17beta-HSD from Cochliobolus lunatus (17beta-HSDcl) was sequenced. We examined the evolutionary relationship among 17beta-HSDcl, fungal reductases, versicolorin reductase (Ver1), trihydroxynaphthalene reductase (THNR), and other homologous proteins. In the phylogenetic tree 17beta-HSDcl formed a separate branch with Ver1, while THNRs reside in another branch, indicating that 17beta-HSDcl could have similar function as Ver1. The structural relationship was investigated by comparing a model structure of 17beta-HSDcl to several known crystal structures of the short chain dehydrogenase/reductase (SDR) family. A similarity was observed to structures of bacterial 7alpha-HSD and plant tropinone reductase (TR). Additionally, substrate specificity revealed that among the substrates tested the 17beta-HSDcl preferentially catalyzed reductions of steroid substrates with a 3-keto group, Delta(4) or 5alpha, such as: 4-estrene-3,17-dione and 5alpha-androstane-3,17-dione.
Collapse
Affiliation(s)
- T Lanisnik Rizner
- Institute of Biochemistry, Medical Faculty, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.
| | | | | |
Collapse
|
124
|
Liao D, Basarab GS, Gatenby AA, Valent B, Jordan DB. Structures of trihydroxynaphthalene reductase-fungicide complexes: implications for structure-based design and catalysis. Structure 2001; 9:19-27. [PMID: 11342131 DOI: 10.1016/s0969-2126(00)00548-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Trihydroxynaphthalene reductase catalyzes two intermediate steps in the fungal melanin biosynthetic pathway. The enzyme, a typical short-chain dehydrogenase, is the biochemical target of three commercial fungicides. The fungicides bind preferentially to the NADPH form of the enzyme. RESULTS Three X-ray structures of the Magnaporthe grisea enzyme complexed with NADPH and two commercial and one experimental fungicide were determined at 1.7 A (pyroquilon), 2.0 A (2,3-dihydro-4-nitro-1H-inden-1-one, 1), and 2.1 A (phthalide) resolutions. The chemically distinct inhibitors occupy similar space within the enzyme's active site. The three inhibitors share hydrogen bonds with the side chain hydroxyls of Ser-164 and Tyr-178 via a carbonyl oxygen (pyroquilon and 1) or via a carbonyl oxygen and a ring oxygen (phthalide). Active site residues occupy similar positions among the three structures. A buried water molecule that is hydrogen bonded to the NZ nitrogen of Lys-182 in each of the three structures likely serves to stabilize the cationic form of the residue for participation in catalysis. CONCLUSIONS The pro S hydrogen of NADPH (which is transferred as a hydride to the enzyme's naphthol substrates) is directed toward the carbonyl carbon of the inhibitors that mimic an intermediate along the reaction coordinate. Modeling tetrahydroxynaphthalene and trihydroxynaphthalene in the active site shows steric and electrostatic repulsion between the extra hydroxyl oxygen of the former substrate and the sulfur atom of Met-283 (the C-terminal residue), which accounts, in part, for the 4-fold greater substrate specificity for trihydroxynaphthalene over tetrahydroxynaphthalene.
Collapse
Affiliation(s)
- D Liao
- DuPont Central Research and Development Experimental Station, Wilmington, DE 19880, USA.
| | | | | | | | | |
Collapse
|
125
|
Ishikura S, Usami N, Kitahara K, Isaji T, Oda K, Nakagawa J, Hara A. Enzymatic characteristics and subcellular distribution of a short-chain dehydrogenase/reductase family protein, P26h, in hamster testis and epididymis. Biochemistry 2001; 40:214-24. [PMID: 11141073 DOI: 10.1021/bi001804u] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A hamster sperm 26 kDa protein (P26h) is strikingly homologous with mouse lung carbonyl reductase (MLCR) and is highly expressed in the testis, but its physiological functions in the testis are unknown. We show that recombinant P26h resembles NADP(H)-dependent MLCR in the tetrameric structure, broad substrate specificity, inhibitor sensitivity, and activation by arachidonic acid, but differs in a preference for NAD(H) and high efficiency for the oxidoreduction between 5alpha-androstane-3alpha,17beta-diol (k(cat)/K(M) = 243 s(-1) mM(-1)) and 5alpha-dihydrotestosterone (k(cat)/K(M) = 377 s(-1) mM(-1)). The replacement of Ser38-Leu39-Ile40 in P26h with the corresponding sequence (Thr38-Arg39-Thr40) of MLCR led to a switch in favor of NADP(H) specificity, suggesting the key role of the residues in the coenzyme specificity. While the P26h mRNA was detected only in the testis of the mature hamster tissues, its enzyme activity was found mainly in the mitochondrial fraction of the testis and in the nuclear fraction of the epididymis on subcellular fractionation, in which a mitochondrial enzyme, isocitrate dehydrogenase, exhibited a similar distribution pattern. The enzyme activity of P26h in the two tissue subcellular fractions was effectively solubilized by mixing with 1% Triton X-100 and 0.2 M KCl, and enhanced more than 10-fold. The enzymes purified from the two tissue fractions exhibited almost the same structural and catalytic properties as those of the recombinant P26h. These results suggest that P26h mainly exists as a tetrameric dehydrogenase in mitochondria of testicular cells and plays a role in controlling the intracellular concentration of a potent androgen, 5alpha-dihydrotestosterone, during spermatogenesis, in which it may be incorporated in mitochondrial sheaths of spermatozoa.
Collapse
Affiliation(s)
- S Ishikura
- Biochemistry Laboratory, Gifu Pharmaceutical University, Mitahora-higashi, Gifu 502-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
126
|
Grimm C, Maser E, Möbus E, Klebe G, Reuter K, Ficner R. The crystal structure of 3alpha -hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni shows a novel oligomerization pattern within the short chain dehydrogenase/reductase family. J Biol Chem 2000; 275:41333-9. [PMID: 11007791 DOI: 10.1074/jbc.m007559200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni (3alpha-HSDH) as well as the structure of its binary complex with NAD(+) have been solved at 1.68-A and 1.95-A resolution, respectively. The enzyme is a member of the short chain dehydrogenase/reductase (SDR) family. Accordingly, the active center and the conformation of the bound nucleotide cofactor closely resemble those of other SDRs. The crystal structure reveals one homodimer per asymmetric unit representing the physiologically active unity. Dimerization takes place via an interface essentially built-up by helix alphaG and strand betaG of each subunit. So far this type of intermolecular contact has exclusively been observed in homotetrameric SDRs but never in the structure of a homodimeric SDR. The formation of a tetramer is blocked in 3alpha-HSDH by the presence of a predominantly alpha-helical subdomain which is missing in all other SDRs of known structure.
Collapse
Affiliation(s)
- C Grimm
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, 35037 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
127
|
Terada T, Sugihara Y, Nakamura K, Sato R, Inazu N, Maeda M. Cloning and bacterial expression of monomeric short-chain dehydrogenase/reductase (carbonyl reductase) from CHO-K1 cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6849-57. [PMID: 11082196 DOI: 10.1046/j.1432-1033.2000.01787.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mammalian carbonyl reductase (EC 1.1.1.184) is an enzyme that can catalyze the reduction of many carbonyl compounds, using NAD(P)H. We isolated a cDNA of carbonyl reductase (CHO-CR) from CHO-K1 cells which was 1208 bp long, including a poly(A) tail, and contained an 831-bp ORF. The deduced amino-acid sequence of 277 residues contained a typical motif for NADP+-binding (TGxxxGxG) and an SDR active site motif (S-Y-K). CHO-CR closely resembles mammalian carbonyl reductases with 71-73% identity. CHO-CR cDNA had the highest similarity to human CBR3 with 86% identity. Using the pET-28a expression vector, recombinant CHO-CR (rCHO-CR) was expressed in Escherichia coli BL21 (DE3) cells and purified with a Ni2+-affinity resin to homogeneity with a 35% yield. rCHO-CR had broad substrate specificity towards xenobiotic carbonyl compounds. RT-PCR of Chinese hamster tissues suggest that CHO-CR is highly expressed in kidney, testis, brain, heart, liver, uterus and ovary. Southern blotting analysis indicated the complexity of the Chinese hamster carbonyl reductase gene.
Collapse
Affiliation(s)
- T Terada
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Japan.
| | | | | | | | | | | |
Collapse
|
128
|
Powell AJ, Read JA, Banfield MJ, Gunn-Moore F, Yan SD, Lustbader J, Stern AR, Stern DM, Brady RL. Recognition of structurally diverse substrates by type II 3-hydroxyacyl-CoA dehydrogenase (HADH II)/amyloid-beta binding alcohol dehydrogenase (ABAD). J Mol Biol 2000; 303:311-27. [PMID: 11023795 DOI: 10.1006/jmbi.2000.4139] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human type II hydroxyacyl-CoA dehydrogenase/amyloid-beta binding alcohol dehydrogenase (HADH II/ABAD) is an oxidoreductase whose salient features include broad substrate specificity, encompassing 3-hydroxyacyl-CoA derivatives, hydroxysteroids, alcohols and beta-hydroxybutyrate, and the capacity to bind amyloid-beta peptide, leading to propagation of amyloid-induced cell stress. In this study, we examine the structure and enzymatic activity of the homologous rat HADH II/ABAD enzyme. We report the crystal structure of rat HADH II/ABAD as a binary complex with its NADH cofactor to 2.0 A resolution, as a ternary complex with NAD(+) and 3-ketobutyrate (acetoacetate) to 1.4 A resolution, and as a ternary complex with NADH and 17 beta-estradiol to 1.7 A resolution. This first crystal structure of an HADH II confirms these enzymes are closely related to the short-chain hydroxysteroid dehydrogenases and differ substantially from the classic, type I 3-hydroxyacyl-CoA dehydrogenases. Binding of the ketobutyrate substrate is accompanied by closure of the active site specificity loop, whereas the steroid substrate does not appear to require closure for binding. Despite the different chemical nature of the two bound substrates, the presentation of chemical groups within the active site of each complex is remarkably similar, allowing a general mechanism for catalytic activity to be proposed. There is a characteristic extension to the active site that is likely to accommodate the CoA moiety of 3-hydroxyacyl-CoA substrates. Rat HADH II/ABAD also binds amyloid-beta (1-40) peptide with a K(D) of 21 nM, which is similar to the interaction exhibited between this peptide and human HADH II/ABAD. These studies provide the first structural insights into HADH II/ABAD interaction with its substrates, and indicate the relevance of the rodent enzyme and associated rodent models for analysis of HADH II/ABAD's physiologic and pathophysiologic properties.
Collapse
Affiliation(s)
- A J Powell
- Department of Biochemistry, University of Bristol, Bristol, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Rosano C, Bisso A, Izzo G, Tonetti M, Sturla L, De Flora A, Bolognesi M. Probing the catalytic mechanism of GDP-4-keto-6-deoxy-d-mannose Epimerase/Reductase by kinetic and crystallographic characterization of site-specific mutants. J Mol Biol 2000; 303:77-91. [PMID: 11021971 DOI: 10.1006/jmbi.2000.4106] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GDP-4-keto-6-deoxy-d-mannose epimerase/reductase is a bifunctional enzyme responsible for the last step in the biosynthesis of GDP-l-fucose, the substrate of fucosyl transferases. Several cell-surface antigens, including the leukocyte Lewis system and cell-surface antigens in pathogenic bacteria, depend on the availability of GDP-l-fucose for their expression. Therefore, the enzyme is a potential target for therapy in pathological states depending on selectin-mediated cell-to-cell interactions. Previous crystallographic investigations have shown that GDP-4-keto-6-deoxy-d-mannose epimerase/reductase belongs to the short-chain dehydrogenase/reductase protein homology family. The enzyme active-site region is at the interface of an N-terminal NADPH-binding domain and a C-terminal domain, held to bind the substrate. The design, expression and functional characterization of seven site-specific mutant forms of GDP-4-keto-6-deoxy-d-mannose epimerase/reductase are reported here. In parallel, the crystal structures of the native holoenzyme and of three mutants (Ser107Ala, Tyr136Glu and Lys140Arg) have been investigated and refined at 1. 45-1.60 A resolution, based on synchrotron data (R-factors range between 12.6 % and 13.9 %). The refined protein models show that besides the active-site residues Ser107, Tyr136 and Lys140, whose mutations impair the overall enzymatic activity and may affect the coenzyme binding mode, side-chains capable of proton exchange, located around the expected substrate (GDP-4-keto-6-deoxy-d-mannose) binding pocket, are selectively required during the epimerization and reduction steps. Among these, Cys109 and His179 may play a primary role in proton exchange between the enzyme and the epimerization catalytic intermediates. Finally, the additional role of mutated active-site residues involved in substrate recognition and in enzyme stability has been analyzed.
Collapse
Affiliation(s)
- C Rosano
- Department of Physics-INFM and Advanced Biotechnology Center-IST, University of Genova, Largo Rosanna Benzi 10, Genova, I-16132, Italy
| | | | | | | | | | | | | |
Collapse
|
130
|
Costello CA, Payson RA, Menke MA, Larson JL, Brown KA, Tanner JE, Kaiser RE, Hershberger CL, Zmijewski MJ. Purification, characterization, cDNA cloning and expression of a novel ketoreductase from Zygosaccharomyces rouxii. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5493-501. [PMID: 10951208 DOI: 10.1046/j.1432-1327.2000.01608.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel ketoreductase isolated from Zygosaccharomyces rouxii catalyzes the asymmetric reduction of selected ketone substrates of commercial importance. The 37.8-kDa ketoreductase was purified more than 300-fold to > 95% homogeneity from whole cells with a 30% activity yield. The ketoreductase functions as a monomer with an apparent Km for 3,4-methylenedioxyphenyl acetone of 2.9 mM and a Km for NADPH of 23.5 microM. The enzyme is able to effectively reduce alpha-ketolactones, alpha-ketolactams, and diketones. Inhibition is observed in the presence of diethyl pyrocarbonate, suggesting that a histidine is crucial for catalysis. The 1.0-kb ketoreductase gene was cloned and sequenced from a Z. rouxii cDNA library using a degenerate primer to the N-terminal sequence of the purified protein. Furthermore, it was expressed in both Escherichia coli and Pichia pastoris and shown to be active. Substrate specificity, lack of a catalytic metal, and extent of protein sequence identity to known reductases suggests that the enzyme falls into the carbonyl reductase enzyme class.
Collapse
Affiliation(s)
- C A Costello
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Affiliation(s)
- F Haeseleer
- Department of Ophthalmology, University of Washington School of Medicine, Seattle 98195-6485, USA
| | | |
Collapse
|
132
|
Wang H, Lei B, Tu SC. Vibrio harveyi NADPH-FMN oxidoreductase arg203 as a critical residue for NADPH recognition and binding. Biochemistry 2000; 39:7813-9. [PMID: 10869187 DOI: 10.1021/bi0003745] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Luminous bacteria contain three types of NAD(P)H-FMN oxidoreductases (flavin reductases) with different pyridine nucleotide specificities. Among them, the NADPH-specific flavin reductase from Vibrio harveyi exhibits a uniquely high preference for NADPH. In comparing the substrate specificity, crystal structure, and primary sequence of this flavin reductase with other structurally related proteins, we hypothesize that the conserved Arg203 residue of this reductase is critical to the specific recognition of NADPH. The mutation of this residue to an alanine resulted in only small changes in the binding and reduction potential of the FMN cofactor, the K(m) for the FMN substrate, and the k(cat). In contrast, the K(m) for NADPH was increased 36-fold by such a mutation. The characteristic perturbation of the FMN cofactor absorption spectrum upon NADP(+) binding by the wild-type reductase was abolished by the same mutation. While the k(cat)/K(m,NADPH) was reduced from 1990 x 10(5) to 46 x 10(5) M(-1) min(-1) by the mutation, the mutated variant showed a k(cat)/K(m,NADH) of 4 x 10(5) M(-1) min(-1), closely resembling that of the wild-type reductase. The deuterium isotope effects (D)V and (D)(V/K) for (4R)-[4-(2)H]-NADPH were 1.7 and 1.4, respectively, for the wild-type reductase but were increased to 3.8 and 4.0, respectively, for the mutated variant. Such a finding indicates that the rates of NADPH and NADP(+) dissociation in relation to the isotope-sensitive redox steps were both increased as a result of the mutation. These results all provide support to the critical role of the Arg203 in the specific recognition and binding of NADPH.
Collapse
Affiliation(s)
- H Wang
- Department of Biology and Biochemistry and Chemistry, University of Houston, Houston, Texas 77204-5513, USA
| | | | | |
Collapse
|
133
|
Benach J, Atrian S, Fibla J, Gonzàlez-Duarte R, Ladenstein R. Structure-function relationships in Drosophila melanogaster alcohol dehydrogenase allozymes ADH(S), ADH(F) and ADH(UF), and distantly related forms. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3613-22. [PMID: 10848978 DOI: 10.1046/j.1432-1327.2000.01390.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drosophila melanogaster alcohol dehydrogenase (ADH), a paradigm for gene-enzyme molecular evolution and natural selection studies, presents three main alleloforms (ADHS, ADHF and ADHUF) differing by one or two substitutions that render different biochemical properties to the allelozymes. A three-dimensional molecular model of the three allozymes was built by homology modeling using as a template the available crystal structure of the orthologous D. lebanonensis ADH, which shares a sequence identity of 82.2%. Comparison between D. lebanonensis and D. melanogaster structures showed that there is almost no amino-acid change near the substrate or coenzyme binding sites and that the hydrophobic active site cavity is strictly conserved. Nevertheless, substitutions are not distributed at random in nonconstricted positions, or located in external loops, but they appear clustered mainly in secondary structure elements. From comparisons between D. melanogaster allozymes and with D. simulans, a very closely related species, a model based on changes in the electrostatic potential distribution is presented to explain their differential behavior. The depth of knowledge on Drosophila ADH genetics and kinetics, together with the recently obtained structural information, could provide a better understanding of the mechanisms underlying molecular evolution and population genetics.
Collapse
Affiliation(s)
- J Benach
- Center for Structural Biochemistry, Karolinska Institutet, Huddinge, Sweden
| | | | | | | | | |
Collapse
|
134
|
Vedadi M, Barriault D, Sylvestre M, Powlowski J. Active site residues of cis-2,3-dihydro-2,3-dihydroxybiphenyl dehydrogenase from Comamonas testosteroni strain B-356. Biochemistry 2000; 39:5028-34. [PMID: 10819967 DOI: 10.1021/bi992232k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
cis-2,3-dihydro-2,3-dihydroxybiphenyl dehydrogenase (BphB) from Comamonas testosteroni strain B-356 is the second enzyme of the biphenyl/polychlorinated biphenyl degradation pathway. Based on the crystal structure of a related BphB, three conserved residues, Ser142, Tyr155, and Lys159, have been suggested to function as a "catalytic triad" as for other members of the short-chain alcohol dehydrogenase/reductase (SDR) family. In this study, substitution of each triad residue was examined in BphB. At pH 9.0, turnover numbers relative to wild-type enzyme were as follows: Y155F, 0.1%; S142A, 1%; and K159A, 10%. Although the Michaelis constants of K159A and S142A for cis-2,3-dihydro-2,3-dihydroxybiphenyl increased about 20-fold, relatively little change was observed in the K(m) for dinucleotide. The K159A mutant, which showed little dehydrogenase activity at pH 7, was sharply activated by increasing the pH, reaching almost 25% of the activity of the wild-type enzyme at pH 9. 8. These three residues are therefore critical for BphB activity, as suggested by the crystal structure and similarity to other SDR family members. In addition, BphB showed a strong preference for NAD(+) over NADP(+), with a 260-fold higher specificity constant (k(cat)/K(m)). Evidence is presented that the inefficient use of NADP(+) by BphB might partly be due to the presence of an aspartate residue at position 36.
Collapse
Affiliation(s)
- M Vedadi
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada H3G 1M8
| | | | | | | |
Collapse
|
135
|
Fisher M, Kroon JT, Martindale W, Stuitje AR, Slabas AR, Rafferty JB. The X-ray structure of Brassica napus beta-keto acyl carrier protein reductase and its implications for substrate binding and catalysis. Structure 2000; 8:339-47. [PMID: 10801480 DOI: 10.1016/s0969-2126(00)00115-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND beta-Keto acyl carrier protein reductase (BKR) catalyzes the pyridine-nucleotide-dependent reduction of a 3-oxoacyl form of acyl carrier protein (ACP), the first reductive step in de novo fatty acid biosynthesis and a reaction often performed in polyketide biosynthesis. The Brassica napus BKR enzyme is NADPH-dependent and forms part of a dissociable type II fatty acid synthetase (FAS). Significant sequence similarity is observed with enoyl acyl carrier protein reductase (ENR), the other reductase of FAS, and the short-chain alcohol dehydrogenase (SDR) family. RESULTS The first crystal structure of BKR has been determined at 2.3 A resolution in a binary complex with an NADP(+) cofactor. The structure reveals a homotetramer in which each subunit has a classical dinucleotide-binding fold. A triad of Ser154, Tyr167 and Lys171 residues is found at the active site, characteristic of the SDR family. Overall BKR has a very similar structure to ENR with good superimposition of catalytically important groups. Modelling of the substrate into the active site of BKR indicates the need for conformational changes in the enzyme. CONCLUSIONS A catalytic mechanism can be proposed involving the conserved triad. Helix alpha6 must shift its position to permit substrate binding to BKR and might act as a flexible lid on the active site. The similarities in fold, mechanism and substrate binding between BKR, which catalyzes a carbon-oxygen double-bond reduction, and ENR, the carbon-carbon double-bond oxidoreductase in FAS, suggest a close evolutionary link during the development of the fatty acid biosynthetic pathway.
Collapse
Affiliation(s)
- M Fisher
- Department of Molecular Biology and Biotechnology, Krebs Institute for Biomolecular Research, The University of Sheffield, Sheffield, S10 2TN, UK
| | | | | | | | | | | |
Collapse
|
136
|
Guan G, Todo T, Tanaka M, Young G, Nagahama Y. Isoleucine-15 of rainbow trout carbonyl reductase-like 20β-hydroxysteroid dehydrogenase is critical for coenzyme (NADPH) binding. Proc Natl Acad Sci U S A 2000; 97:3079-83. [PMID: 10725344 PMCID: PMC16195 DOI: 10.1073/pnas.97.7.3079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carbonyl reductase-like 20β-hydroxysteroid dehydrogenase (CR/20β-HSD) is an enzyme that converts 17α-hydroxyprogesterone to 17α,20β-dihydroxy-4-pregnen-3-one (the maturation-inducing hormone of salmonid fish). We have previously isolated two types of CR/20β-HSD cDNAs from ovarian follicle of rainbow trout (
Oncorhynchus mykiss
). Recombinant proteins produced by expression in
Escherichia coli
in vitro
showed that one (type A) had CR and 20β-HSD activity but that the other (type B) did not. Among the three distinct residues between the protein products encoded by the two cDNAs, two residues (positions 15 and 27) are located in the N-terminal Rossmann fold, the coenzyme binding site. To investigate the structure/function relationships of CR/20β-HSDs, we generated mutants by site-directed mutagenesis at the following positions: MutA/I15T, MutB/T15I, and MutB/Q27K. Enzyme activity of wild-type A was abolished by substitution of Ile-15 by Thr (MutA/I15T). Conversely, enzyme activity was acquired by the replacement of Thr-15 with Ile in type B (MutB/T15I). MutB/T15I mutant showed properties similar to the wild-type A in every aspect tested. Mutation MutB/Q27K had only partial enzyme activity, indicating that Ile-15 plays an important role in enzyme binding of cofactor NADPH.
Collapse
Affiliation(s)
- G Guan
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | | | | | |
Collapse
|
137
|
Isoleucine-15 of rainbow trout carbonyl reductase-like 20beta-hydroxysteroid dehydrogenase is critical for coenzyme (NADPH) binding. Proc Natl Acad Sci U S A 2000. [PMID: 10725344 PMCID: PMC16195 DOI: 10.1073/pnas.040548697] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carbonyl reductase-like 20beta-hydroxysteroid dehydrogenase (CR/20beta-HSD) is an enzyme that converts 17alpha-hydroxyprogesterone to 17alpha, 20beta-dihydroxy-4-pregnen-3-one (the maturation-inducing hormone of salmonid fish). We have previously isolated two types of CR/20beta-HSD cDNAs from ovarian follicle of rainbow trout (Oncorhynchus mykiss). Recombinant proteins produced by expression in Escherichia coli in vitro showed that one (type A) had CR and 20beta-HSD activity but that the other (type B) did not. Among the three distinct residues between the protein products encoded by the two cDNAs, two residues (positions 15 and 27) are located in the N-terminal Rossmann fold, the coenzyme binding site. To investigate the structure/function relationships of CR/20beta-HSDs, we generated mutants by site-directed mutagenesis at the following positions: MutA/I15T, MutB/T15I, and MutB/Q27K. Enzyme activity of wild-type A was abolished by substitution of Ile-15 by Thr (MutA/I15T). Conversely, enzyme activity was acquired by the replacement of Thr-15 with Ile in type B (MutB/T15I). MutB/T15I mutant showed properties similar to the wild-type A in every aspect tested. Mutation MutB/Q27K had only partial enzyme activity, indicating that Ile-15 plays an important role in enzyme binding of cofactor NADPH.
Collapse
|
138
|
Duax WL, Ghosh D, Pletnev V. Steroid dehydrogenase structures, mechanism of action, and disease. VITAMINS AND HORMONES 2000; 58:121-48. [PMID: 10668397 DOI: 10.1016/s0083-6729(00)58023-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Steroid dehydrogenase enzymes influence mammalian reproduction, hypertension, neoplasia, and digestion. The three-dimensional structures of steroid dehydrogenase enzymes reveal the position of the catalytic triad, a possible mechanism of keto-hydroxyl interconversion, a molecular mechanism of inhibition, and the basis for selectivity. Glycyrrhizic acid, the active ingredient in licorice, and its metabolite carbenoxolone are potent inhibitors of human 11 beta-hydroxysteroid dehydrogenase and bacterial 3 alpha, 20 beta-hydroxysteroid dehydrogenase (3 alpha, 20 beta-HSD). The three-dimensional structure of the 3 alpha, 20 beta-HSD carbenoxolone complex unequivocally verifies the postulated active site of the enzyme, shows that inhibition is a result of direct competition with the substrate for binding, and provides a plausible model for the mechanism of inhibition of 11 beta-hydroxysteroid dehydrogenase by carbenoxolone. The structure of the ternary complex of human 17 beta-hydroxysteroid dehydrogenase type 1 (17 beta-HSD) with the cofactor NADP+ and the antiestrogen equilin reveals the details of binding of an inhibitor in the active site of the enzyme and the possible roles of various amino acids in the catalytic cleft. The short-chain dehydrogenase reductase (SDR) family includes these steroid dehydrogenase enzymes and more than 60 other proteins from human, mammalian, insect, and bacterial sources. Most members of the family contain the tyrosine and lysine of the catalytic triad in a YxxxK sequence. X-ray crystal structures of 13 members of the family have been completed. When the alpha-carbon backbone of the cofactor binding domains of the structures are superimposed, the conserved residues are at the core of the structure and in the cofactor binding domain, but not in the substrate binding pocket.
Collapse
Affiliation(s)
- W L Duax
- Hauptman-Woodward Medical Research Institute, Inc., Buffalo, New York 14203, USA
| | | | | |
Collapse
|
139
|
Somoza JR, Menon S, Schmidt H, Joseph-McCarthy D, Dessen A, Stahl ML, Somers WS, Sullivan FX. Structural and kinetic analysis of Escherichia coli GDP-mannose 4,6 dehydratase provides insights into the enzyme's catalytic mechanism and regulation by GDP-fucose. Structure 2000; 8:123-35. [PMID: 10673432 DOI: 10.1016/s0969-2126(00)00088-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND GDP-mannose 4,6 dehydratase (GMD) catalyzes the conversion of GDP-(D)-mannose to GDP-4-keto, 6-deoxy-(D)-mannose. This is the first and regulatory step in the de novo biosynthesis of GDP-(L)-fucose. Fucose forms part of a number of glycoconjugates, including the ABO blood groups and the selectin ligand sialyl Lewis X. Defects in GDP-fucose metabolism have been linked to leukocyte adhesion deficiency type II (LADII). RESULTS The structure of the GDP-mannose 4,6 dehydratase apo enzyme has been determined and refined using data to 2.3 A resolution. GMD is a homodimeric protein with each monomer composed of two domains. The larger N-terminal domain binds the NADP(H) cofactor in a classical Rossmann fold and the C-terminal domain harbors the sugar-nucleotide binding site. We have determined the GMD dissociation constants for NADP, NADPH and GDP-mannose. Each GMD monomer binds one cofactor and one substrate molecule, suggesting that both subunits are catalytically competent. GDP-fucose acts as a competitive inhibitor, suggesting that it binds to the same site as GDP-mannose, providing a mechanism for the feedback inhibition of fucose biosynthesis. CONCLUSIONS The X-ray structure of GMD reveals that it is a member of the short-chain dehydrogenase/reductase (SDR) family of proteins. We have modeled the binding of NADP and GDP-mannose to the enzyme and mutated four of the active-site residues to determine their function. The combined modeling and mutagenesis data suggests that at position 133 threonine substitutes serine as part of the serine-tyrosine-lysine catalytic triad common to the SDR family and Glu 135 functions as an active-site base.
Collapse
Affiliation(s)
- J R Somoza
- Wyeth Research, Cambridge, MA 02140, USA
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Atalla A, Maser E. Carbonyl reduction of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in cytosol of mouse liver and lung. Toxicology 1999; 139:155-66. [PMID: 10614696 DOI: 10.1016/s0300-483x(99)00114-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a strong lung carcinogen in all species tested. To elicit its tumorigenic effects, NNK requires metabolic activation which is supposed to occur via alpha-hydroxylation by cytochrome P450 enzymes. Carbonyl reduction to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) followed by glucuronosylation is considered to be the main detoxification pathway in humans. Therefore, NNK carbonyl reducing activity is crucial for NNK inactivation since it initiates the final excretion of this lung carcinogen. Until the present work, studies on NNK metabolism have focused exclusively on microsomal fractions, and several cytochrome P450 enzymes have been shown to be involved in alpha-hydroxylation of NNK. In addition, 11beta-hydroxysteroid dehydrogenase type 1(11beta-HSD1) which is located in the endoplasmic reticulum of the cell has been identified to catalyze the carbonyl reduction of NNK in microsomes. In this study, we provide evidence that carbonyl reduction of NNK does also take place in the cytosolic fraction of mouse liver and lung, and that cytosolic carbonyl reductase contributes to the detoxification of NNK. At a fixed substrate concentration of 1 mM NNK, the specific activity of cytosolic NNAL formation amounts to 72% (liver) and 28% (lung) compared with that in the respective microsomal fractions. Although considerable NNK carbonyl reduction occurred with NADH, the preferred cosubstrate in cytosol is either NADPH or an NADPH-regenerating system. Due to the inhibitor sensitivity to menadione, ethacrynic acid, dicoumarol and quercitrin, it is concluded that carbonyl reductase (EC 1.1.1.184) is mainly responsible for NNAL formation in liver and lung cytosol. The expression of cytosolic carbonyl reductase and microsomal 11beta-HSD1 was established on the mRNA level by reverse transcription-PCR in both liver and lung. Enzyme kinetic studies revealed a nonsaturable Michaelis-Menten kinetic of NNK carbonyl reduction in cytosol. Possibly some other cytosolic NNK carbonyl reducing enzymes are also involved in NNAL formation. In conclusion, this is the first report to show that carbonyl reduction of NNK does occur in cytosol. Further studies with purified enzyme preparations are needed to explore the detailed contribution of the cytosolic enzymes participating in the final elimination of this lung carcinogen.
Collapse
Affiliation(s)
- A Atalla
- Department of Pharmacology and Toxicology, School of Medicine, Philipps University of Marsburg, Germany
| | | |
Collapse
|
141
|
Winberg JO, Brendskag MK, Sylte I, Lindstad RI, McKinley-McKee JS. The catalytic triad in Drosophila alcohol dehydrogenase: pH, temperature and molecular modelling studies. J Mol Biol 1999; 294:601-16. [PMID: 10610783 DOI: 10.1006/jmbi.1999.3235] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Drosophila alcohol dehydrogenase belongs to the short chain dehydrogenase/reductase (SDR) family which lack metal ions in their active site. In this family, it appears that the three amino acid residues, Ser138, Tyr151 and Lys155 have a similar function as the catalytic zinc in medium chain dehydrogenases. The present work has been performed in order to obtain information about the function of these residues. To obtain this goal, the pH and temperature dependence of various kinetic coefficients of the alcohol dehydrogenase from Drosophila lebanonensis was studied and three-dimensional models of the ternary enzyme-coenzyme-substrate complexes were created from the X-ray crystal coordinates of the D. lebanonensis ADH complexed with either NAD(+) or the NAD(+)-3-pentanone adduct. The kon velocity for ethanol and the ethanol competitive inhibitor pyrazole increased with pH and was regulated through the ionization of a single group in the binary enzyme-NAD(+) complex, with a DeltaHion value of 74(+/-4) kJ/mol (18(+/-1) kcal/mol). Based on this result and the constructed three-dimensional models of the enzyme, the most likely candidate for this catalytic residue is Ser138. The present kinetic study indicates that the role of Lys155 is to lower the pKa values of both Tyr151 and Ser138 already in the free enzyme. In the binary enzyme-NAD(+) complex, the positive charge of the nicotinamide ring in the coenzyme further lowers the pKa values and generates a strong base in the two negatively charged residues Ser138 and Tyr151. With the OH group of an alcohol close to the Ser138 residue, an alcoholate anion is formed in the ternary enzyme NAD(+) alcohol transition state complex. In the catalytic triad, along with their effect on Ser138, both Lys155 and Tyr151 also appear to bind and orient the oxidized coenzyme.
Collapse
Affiliation(s)
- J O Winberg
- Department of Biochemistry, Institute of Medical Biology, University of Tromsø, Norway.
| | | | | | | | | |
Collapse
|
142
|
Mulichak AM, Theisen MJ, Essigmann B, Benning C, Garavito RM. Crystal structure of SQD1, an enzyme involved in the biosynthesis of the plant sulfolipid headgroup donor UDP-sulfoquinovose. Proc Natl Acad Sci U S A 1999; 96:13097-102. [PMID: 10557279 PMCID: PMC23906 DOI: 10.1073/pnas.96.23.13097] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The SQD1 enzyme is believed to be involved in the biosynthesis of the sulfoquinovosyl headgroup of plant sulfolipids, catalyzing the transfer of SO(3)(-) to UDP-glucose. We have determined the structure of the complex of SQD1 from Arabidopsis thaliana with NAD(+) and the putative substrate UDP-glucose at 1.6-A resolution. Both bound ligands are completely buried within the binding cleft, along with an internal solvent cavity which is the likely binding site for the, as yet, unidentified sulfur-donor substrate. SQD1 is a member of the short-chain dehydrogenase/reductase (SDR) family of enzymes, and its structure shows a conservation of the SDR catalytic residues. Among several highly conserved catalytic residues, Thr-145 forms unusually short hydrogen bonds with both susceptible hydroxyls of UDP-glucose. A His side chain may also be catalytically important in the sulfonation.
Collapse
Affiliation(s)
- A M Mulichak
- Department of Biochemistry, Michigan State University, East Lansing, MI 48824-1319, USA
| | | | | | | | | |
Collapse
|
143
|
Abstract
The myxobacterium Myxococcus xanthus has a life cycle that is dominated by social behavior. During vegetative growth, cells prey on other bacteria in large groups that have been likened to wolf packs. When faced with starvation, cells form a macroscopic fruiting body containing thousands of spores. The social systems that guide fruiting body development have been examined through the isolation of conditional developmental mutants that can be stimulated to develop in the presence of wild-type cells. Extracellular complementation is due to the transfer of soluble and cell contact-dependent intercellular signals. This review describes the current state of knowledge concerning cell-cell signaling during development.
Collapse
Affiliation(s)
- L J Shimkets
- Department of Microbiology, University of Georgia, Athens 30602, USA
| |
Collapse
|
144
|
Menon S, Stahl M, Kumar R, Xu GY, Sullivan F. Stereochemical course and steady state mechanism of the reaction catalyzed by the GDP-fucose synthetase from Escherichia coli. J Biol Chem 1999; 274:26743-50. [PMID: 10480878 DOI: 10.1074/jbc.274.38.26743] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently the genes encoding the human and Escherichia coli GDP-mannose dehydratase and GDP-fucose synthetase (GFS) protein have been cloned and it has been shown that these two proteins alone are sufficient to convert GDP mannose to GDP fucose in vitro. GDP-fucose synthetase from E. coli is a novel dual function enzyme in that it catalyzes epimerizations and a reduction reaction at the same active site. This aspect separates fucose biosynthesis from that of other deoxy and dideoxy sugars in which the epimerase and reductase activities are present on separate enzymes encoded by separate genes. By NMR spectroscopy we have shown that GFS catalyzes the stereospecific hydride transfer of the ProS hydrogen from NADPH to carbon 4 of the mannose sugar. This is consistent with the stereospecificity observed for other members of the short chain dehydrogenase reductase family of enzymes of which GFS is a member. Additionally the enzyme is able to catalyze the epimerization reaction in the absence of NADP or NADPH. The kinetic mechanism of GFS as determined by product inhibition and fluorescence binding studies is consistent with a random mechanism. The dissociation constants determined from fluorescence studies indicate that the enzyme displays a 40-fold stronger affinity for the substrate NADPH as compared with the product NADP and utilizes NADPH preferentially as compared with NADH. This study on GFS, a unique member of the short chain dehydrogenase reductase family, coupled with that of its recently published crystal structure should aid in the development of antimicrobial or anti-inflammatory compounds that act by blocking selectin-mediated cell adhesion.
Collapse
Affiliation(s)
- S Menon
- Wyeth Research, Cambridge, Massachusetts 02140, USA.
| | | | | | | | | |
Collapse
|
145
|
van der Werf MJ, van der Ven C, Barbirato F, Eppink MH, de Bont JA, van Berkel WJ. Stereoselective carveol dehydrogenase from Rhodococcus erythropolis DCL14. A novel nicotinoprotein belonging to the short chain dehydrogenase/reductase superfamily. J Biol Chem 1999; 274:26296-304. [PMID: 10473585 DOI: 10.1074/jbc.274.37.26296] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel nicotinoprotein, catalyzing the dichlorophenolindophenol-dependent oxidation of carveol to carvone, was purified to homogeneity from Rhodococcus erythropolis DCL14. The enzyme is specifically induced after growth on limonene and carveol. Dichlorophenolindophenol-dependent carveol dehydrogenase (CDH) is a homotetramer of 120 kDa with each subunit containing a tightly bound NAD(H) molecule. The enzyme is optimally active at pH 5.5 and 50 degrees C and displays a broad substrate specificity with a preference for substituted cyclohexanols. When incubated with a diastereomeric mixture of (4R)- or (4S)-carveol, CDH stereoselectively catalyzes the conversion of the (6S)-carveol stereoisomers only. Kinetic studies with pure stereoisomers showed that this is due to large differences in V(max)/K(m) values and simultaneous product inhibition by (R)- or (S)-carvone. The R. erythropolis CDH gene (limC) was identified in an operon encoding the enzymes involved in limonene degradation. The CDH nucleotide sequence revealed an open reading frame of 831 base pairs encoding a 277-amino acid protein with a deduced mass of 29,531 Da. The CDH primary structure shares 10-30% sequence identity with members of the short chain dehydrogenase/reductase superfamily. Structure homology modeling with trihydroxynaphthalene reductase from Magnaporthe grisea suggests that CDH from R. erythropolis DCL14 is an alpha/beta one-domain protein with an extra loop insertion involved in NAD binding and a flexible C-terminal part involved in monoterpene binding.
Collapse
Affiliation(s)
- M J van der Werf
- Division of Industrial Microbiology, Department of Food Technology and Nutritional Sciences, Wageningen University, Bomenweg 2, 6703 HD Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
146
|
Fan F, Plapp BV. Probing the affinity and specificity of yeast alcohol dehydrogenase I for coenzymes. Arch Biochem Biophys 1999; 367:240-9. [PMID: 10395740 DOI: 10.1006/abbi.1999.1242] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Yeast (Saccharomyces cerevisiae) alcohol dehydrogenase I (SceADH) binds NAD+ and NADH less tightly and turns over substrates more rapidly than does horse (Equus caballus) liver alcohol dehydrogenase E isoenzyme (EcaADH), and neither enzyme uses NADP efficiently. Amino acid residues in the proposed adenylate binding pocket of SceADH were substituted in attempts to improve affinity for coenzymes or reactivity with NADP. Substitutions in SceADH (Gly202Ile or Ser246Ile) with the corresponding residues in the adenine binding site of the homologous EcaADH have modest effects on coenzyme binding and other kinetic constants, but the Ser246Ile substitution decreases turnover numbers by 350-fold. The Ser176Phe substitution (also near adenine site) significantly decreases affinity for coenzymes and turnover numbers. In the consensus nucleotide-binding betaalphabeta fold sequence, SceADH has two alanine residues (177-GAAGGLG-183) instead of the Leu200 in EcaADH (199-GLGGVG-204); the Ala178-Ala179 to Leu substitution significantly decreases affinity for coenzymes and turnover numbers. Some NADP-dependent enzymes have an Ala corresponding to Gly183 in SceADH; the Gly183Ala substitution significantly decreases affinity for coenzymes and turnover numbers. NADP-dependent enzymes usually have a neutral residue instead of the Asp (Asp201 in SceADH) that interacts with the hydroxyl groups of the adenosine ribose, along with a basic residue (at position 202 or 203) to stabilize the 2'-phosphate of NADP. The Gly203Arg change in SceADH does not significantly affect the kinetics. The Gly183Ala or Gly203Arg substitutions do not enable SceADH to use NADP+ as coenzyme. SceADH with the single Asp201Gly or double Asp201Gly:Gly203Arg substitutions have similar, low activity with NADP+. The results suggest that several of the amino acid residues participate in coenzyme binding and that conversion of specificity for coenzyme requires multiple substitutions.
Collapse
Affiliation(s)
- F Fan
- Department of Biochemistry, The University of Iowa, Iowa City, Iowa, 52242, USA
| | | |
Collapse
|
147
|
Yamashita A, Kato H, Wakatsuki S, Tomizaki T, Nakatsu T, Nakajima K, Hashimoto T, Yamada Y, Oda J. Structure of tropinone reductase-II complexed with NADP+ and pseudotropine at 1.9 A resolution: implication for stereospecific substrate binding and catalysis. Biochemistry 1999; 38:7630-7. [PMID: 10387002 DOI: 10.1021/bi9825044] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tropinone reductase-II (TR-II) catalyzes the NADPH-dependent reduction of the carbonyl group of tropinone to a beta-hydroxyl group. The crystal structure of TR-II complexed with NADP+ and pseudotropine (psi-tropine) has been determined at 1.9 A resolution. A seven-residue peptide near the active site, disordered in the unliganded structure, is fixed in the ternary complex by participation of the cofactor and substrate binding. The psi-tropine molecule is bound in an orientation which satisfies the product configuration and the stereochemical arrangement toward the cofactor. The substrate binding site displays a complementarity to the bound substrate (psi-tropine) in its correct orientation. In addition, electrostatic interactions between the substrate and Glu156 seem to specify the binding position and orientation of the substrate. A comparison between the active sites in TR-II and TR-I shows that they provide different van der Waals surfaces and electrostatic features. These differences likely contribute to the correct binding mode of the substrates, which are in opposite orientations in TR-II and TR-I, and to different reaction stereospecificities. The active site structure in the TR-II ternary complex also suggests that the arrangement of the substrate, cofactor, and catalytic residues is stereoelectronically favorable for the reaction.
Collapse
Affiliation(s)
- A Yamashita
- Institute for Chemical Research, Kyoto University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Benach J, Atrian S, Gonzàlez-Duarte R, Ladenstein R. The catalytic reaction and inhibition mechanism of Drosophila alcohol dehydrogenase: observation of an enzyme-bound NAD-ketone adduct at 1.4 A resolution by X-ray crystallography. J Mol Biol 1999; 289:335-55. [PMID: 10366509 DOI: 10.1006/jmbi.1999.2765] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Drosophila alcohol dehydrogenase (DADH) is an NAD+-dependent enzyme that catalyzes the oxidation of alcohols to aldehydes/ketones. DADH is the member of the short-chain dehydrogenases/reductases family (SDR) for which the largest amount of biochemical data has been gathered during the last three decades. The crystal structures of one binary form (NAD+) and three ternary complexes with NAD+.acetone, NAD+.3-pentanone and NAD+.cyclohexanone were solved at 2.4, 2.2, 1. 4 and 1.6 A resolution, respectively. From the molecular interactions observed, the reaction mechanism could be inferred. The structure of DADH undergoes a conformational change in order to bind the coenzyme. Furthermore, upon binding of the ketone, a region that was disordered in the apo form (186-191) gets stabilized and closes the active site cavity by creating either a small helix (NAD+. acetone, NAD+.3-pentanone) or an ordered loop (NAD+.cyclohexanone). The active site pocket comprises a hydrophobic bifurcated cavity which explains why the enzyme is more efficient in oxidizing secondary aliphatic alcohols (preferably R form) than primary ones. Difference Fourier maps showed that the ketone inhibitor molecule has undergone a covalent reaction with the coenzyme in all three ternary complexes. Due to the presence of the positively charged ring of the coenzyme (NAD+) and the residue Lys155, the amino acid Tyr151 is in its deprotonated (tyrosinate) state at physiological pH. Tyr151 can subtract a proton from the enolic form of the ketone and catalyze a nucleophilic attack of the Calphaatom to the C4 position of the coenzyme creating an NAD-ketone adduct. The binding of these NAD-ketone adducts to DADH accounts for the inactivation of the enzyme. The catalytic reaction proceeds in a similar way, involving the same amino acids as in the formation of the NAD-ketone adduct. The p Kavalue of 9-9.5 obtained by kinetic measurements on apo DADH can be assigned to a protonated Tyr151 which is converted to an unprotonated tyrosinate (p Ka7.6) by the influence of the positively charged nicotinamide ring in the binary enzyme-NAD+form. pH independence during the release of NADH from the binary complex enzyme-NADH can be explained by either a lack of electrostatic interaction between the coenzyme and Tyr151 or an apparent p Kavalue for this residue higher than 10.0.
Collapse
Affiliation(s)
- J Benach
- Karolinska Institutet, Novum, Center for Structural Biochemistry, Huddinge, S-14157, Sweden
| | | | | | | |
Collapse
|
149
|
Fujimoto K, Ichinose H, Nagatsu T, Nonaka T, Mitsui Y, Katoh S. Functionally important residues tyrosine-171 and serine-158 in sepiapterin reductase. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1431:306-14. [PMID: 10350607 DOI: 10.1016/s0167-4838(99)00054-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The active site of sepiapterin reductase (SPR), which is a member of the NADP(H)-preferring short-chain dehydrogenase/reductase (SDR) family and acts as the terminal enzyme in the biosynthetic pathway of tetrahydrobiopterin cofactor (BH4), was investigated by truncation and site-directed mutagenesis. The truncation mutants showed that N-terminal and C-terminal residues contribute to bind coenzyme and substrate, respectively. The mutant rSPRA29V showed decreased activity; however, the A-X-L-L-S sequence, which has been reported as a putative pterin binding site, was estimated to preferably work as a component in the region for binding coenzyme rather than substrate. Site-directed mutants of rSPRS158D, rSPRY171V, and rSPRK175I showed low, but significant, activity having similar Km values and kcat/Km values less than 25%, for both sepiapterin and NADPH. Both amino acids Tyr-171 and Ser-158 are located within a similar distance to the carbonyl group of the substrate in the crystal structure of mouse SPR, and the double point mutant rSPRY171V+S158D was indicated to be inactive. These results showed that Ser-158, Tyr-171, and Lys-175 contributed to the catalytic activity of SPR, and both Tyr-171 and Ser-158 are simultaneously necessary on proton transfer to the carbonyl functional groups of substrate.
Collapse
Affiliation(s)
- K Fujimoto
- Department of Biochemistry, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan.
| | | | | | | | | | | |
Collapse
|
150
|
Kaaber Brendskag M, McKinley-McKee JS, Winberg JO. Drosophila lebanonensis alcohol dehydrogenase: pH dependence of the kinetic coefficients. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1431:74-86. [PMID: 10209281 DOI: 10.1016/s0167-4838(99)00028-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The alcohol dehydrogenase (ADH) from Drosophila lebanonensis shows 82% positional identity to the alcohol dehydrogenases from Drosophila melanogaster. These insect ADHs belong to the short-chain dehydrogenase/reductase family which lack metal ions in their active site. In this family, it appears that the function of zinc in medium chain dehydrogenases has been replaced by three amino acids, Ser138, Tyr151 and Lys155. The present work on D. lebanonensis ADH has been performed in order to obtain information about reaction mechanism, and possible differences in topology and electrostatic properties in the vicinity of the catalytic residues in ADHs from various species of Drosophila. Thus the pH dependence of various kinetic coefficients has been studied. Both in the oxidation of alcohols and in the reduction of aldehydes, the reaction mechanism of D. lebanonensis ADH in the pH 6-10 region was consistent with a compulsory ordered pathway, with the coenzymes as the outer substrates. Over the entire pH region, the rate limiting step for the oxidation of secondary alcohols such as propan-2-ol was the release of the coenzyme product from the enzyme-NADH complex. In the oxidation of ethanol at least two steps were rate limiting, the hydride transfer step and the dissociation of NADH from the binary enzyme-NADH product complex. In the reduction of acetaldehyde, the rate limiting step was the dissociation of NAD+ from the binary enzyme-NAD+ product complex. The pH dependences of the kon velocity curves for the two coenzymes were the opposite of each other, i.e. kon increased for NAD+ and decreased for NADH with increasing pH. The two curves appeared complex and the kon velocity for the two coenzymes seemed to be regulated by several groups in the free enzyme. The kon velocity for ethanol and the ethanol competitive inhibitor pyrazole increased with pH and was regulated through the ionization of a single group in the binary enzyme-NAD+ complex, with a pKa value of 7.1. The kon velocity for acetaldehyde was pH independent and showed that in the enzyme-NADH complex, the pKa value of the catalytic residue must be above 10. The koff velocity of NAD+ appeared to be partly regulated by the catalytic residue, and protonation resulted in an increased dissociation rate. The koff velocity for NADH and the hydride transfer step was pH independent. In D. lebanonensis ADH, the pKa value of the catalytic residue was 0.5 pH units lower than in the ADHS alleloenzyme from D. melanogaster. Thus it can be concluded that while most of the topology of the active site is mainly conserved in these two distantly related enzymes, the microenvironment and electrostatic properties around the catalytic residues differ.
Collapse
Affiliation(s)
- M Kaaber Brendskag
- Department of Biochemistry, Institute of Medical Biology, University of Tromso, 9037, Tromso, Norway
| | | | | |
Collapse
|