101
|
Harnett MM, Katz E, Ford CA. Differential signalling during B-cell maturation. Immunol Lett 2005; 98:33-44. [PMID: 15790506 DOI: 10.1016/j.imlet.2004.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 11/04/2004] [Accepted: 11/07/2004] [Indexed: 11/30/2022]
Abstract
The molecular mechanism by which the antigen receptors (BCR) on B cells can elicit differential maturation state-specific responses is one of the central problems in B-cell differentiation yet to be resolved. Indeed, many of the early signalling events detected following BCR ligation, such as activation of protein tyrosine kinases (PTK), phospholipase C (PLC), phosphoinositide-3-kinase (PI 3K), protein kinase C (PKC) and the RasMAPK (mitogen activating protein kinase) signalling cascades are observed throughout B-cell maturation. However, it is becoming clear that the differential functional responses of these BCR-coupled signals observed during B-cell maturation are dependent on a number of parameters including signal strength and duration, subcellular localisation of the signal, maturation-restricted expression of downstream signalling effector elements/isoforms and modulation of signal by co-receptors. Thus, the combined signature of BCR signalling is likely to dictate the functional response and act as a developmental checkpoint for B-cell maturation.
Collapse
Affiliation(s)
- Margaret M Harnett
- Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow G116NT, UK.
| | | | | |
Collapse
|
102
|
Yasuda T, Shirakata M, Iwama A, Ishii A, Ebihara Y, Osawa M, Honda K, Shinohara H, Sudo K, Tsuji K, Nakauchi H, Iwakura Y, Hirai H, Oda H, Yamamoto T, Yamanashi Y. Role of Dok-1 and Dok-2 in myeloid homeostasis and suppression of leukemia. ACTA ACUST UNITED AC 2005; 200:1681-7. [PMID: 15611294 PMCID: PMC2211997 DOI: 10.1084/jem.20041247] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dok-1 and Dok-2 are closely related rasGAP-associated docking proteins expressed preferentially in hematopoietic cells. Although they are phosphorylated upon activation of many protein tyrosine kinases (PTKs), including those coupled with cytokine receptors and oncogenic PTKs like Bcr-Abl, their physiological roles are largely unidentified. Here, we generated mice lacking Dok-1 and/or Dok-2, which included the double-deficient mice succumbed to myeloproliferative disease resembling human chronic myelogenous leukemia (CML) and chronic myelomonocytic leukemia. The double-deficient mice displayed medullary and extramedullary hyperplasia of granulocyte/macrophage progenitors with leukemic potential, and their myeloid cells showed hyperproliferation and hypo-apoptosis upon treatment and deprivation of cytokines, respectively. Consistently, the mutant myeloid cells showed enhanced Erk and Akt activation upon cytokine stimulation. Moreover, loss of Dok-1 and/or Dok-2 induced blastic transformation of chronic phase CML-like disease in mice carrying the bcr-abl gene, a cause of CML. These findings demonstrate that Dok-1 and Dok-2 are key negative regulators of cytokine responses and are essential for myeloid homeostasis and suppression of leukemia.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Cytokines/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Regulation, Leukemic/genetics
- Granulocyte Precursor Cells/metabolism
- Granulocyte Precursor Cells/pathology
- Homeostasis/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Lymphocyte Activation/genetics
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Myelopoiesis/genetics
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
Collapse
Affiliation(s)
- Tomoharu Yasuda
- Dept. of Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Lesourne R, Fridman WH, Daëron M. Dynamic interactions of Fc gamma receptor IIB with filamin-bound SHIP1 amplify filamentous actin-dependent negative regulation of Fc epsilon receptor I signaling. THE JOURNAL OF IMMUNOLOGY 2005; 174:1365-73. [PMID: 15661894 DOI: 10.4049/jimmunol.174.3.1365] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The engagement of high affinity receptors for IgE (FcepsilonRI) generates both positive and negative signals whose integration determines the intensity of mast cell responses. FcepsilonRI-positive signals are also negatively regulated by low affinity receptors for IgG (FcgammaRIIB). Although the constitutive negative regulation of FcepsilonRI signaling was shown to depend on the submembranous F-actin skeleton, the role of this compartment in FcgammaRIIB-dependent inhibition is unknown. We show in this study that the F-actin skeleton is essential for FcgammaRIIB-dependent negative regulation. It contains SHIP1, the phosphatase responsible for inhibition, which is constitutively associated with the actin-binding protein, filamin-1. After coaggregation, FcgammaRIIB and FcepsilonRI rapidly interact with the F-actin skeleton and engage SHIP1 and filamin-1. Later, filamin-1 and F-actin dissociate from FcR complexes, whereas SHIP1 remains associated with FcgammaRIIB. Based on these results, we propose a dynamic model in which the submembranous F-actin skeleton forms an inhibitory compartment where filamin-1 functions as a donor of SHIP1 for FcgammaRIIB, which concentrate this phosphatase in the vicinity of FcepsilonRI and thereby extinguish activation signals.
Collapse
MESH Headings
- Actins/antagonists & inhibitors
- Actins/metabolism
- Actins/physiology
- Animals
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Line, Tumor
- Contractile Proteins/metabolism
- Down-Regulation/immunology
- Filamins
- Immunoglobulin E/physiology
- Inositol Polyphosphate 5-Phosphatases
- Mast Cells/drug effects
- Mast Cells/enzymology
- Mast Cells/metabolism
- Membrane Microdomains/metabolism
- Mice
- Microfilament Proteins/metabolism
- Molecular Weight
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphoric Monoester Hydrolases/metabolism
- Phosphoric Monoester Hydrolases/physiology
- Protein Binding/immunology
- Protein Isoforms/metabolism
- Rats
- Receptor Aggregation/immunology
- Receptors, IgE/antagonists & inhibitors
- Receptors, IgE/metabolism
- Receptors, IgE/physiology
- Receptors, IgG/antagonists & inhibitors
- Receptors, IgG/metabolism
- Receptors, IgG/physiology
- Resting Phase, Cell Cycle/immunology
- Signal Transduction/immunology
- Thiazoles/pharmacology
- Thiazolidines
- Time Factors
Collapse
Affiliation(s)
- Renaud Lesourne
- Laboratoire d'Immunologie Cellulaire et Clinique, Institut National de la Santé et de la Recherche Médicale, Unité 255, Institut Biomédical des Cordeliers, Paris, France
| | | | | |
Collapse
|
104
|
Xu Y, Harder KW, Huntington ND, Hibbs ML, Tarlinton DM. Lyn tyrosine kinase: accentuating the positive and the negative. Immunity 2005; 22:9-18. [PMID: 15664155 DOI: 10.1016/j.immuni.2004.12.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 12/29/2004] [Accepted: 12/30/2004] [Indexed: 12/21/2022]
Abstract
Lyn, one of several Src-family tyrosine kinases in immune cells, is noted for its ability to negatively regulate signaling pathways through phosphorylation of inhibitory receptors, enzymes, and adaptors. Somewhat paradoxically, it is also a key mediator in several pathways of B cell activation, such as CD19 and CD180. Whether Lyn functions to promote or inhibit immune cell activation depends on the stimulus and the developmental state, meaning that the consequences of Lyn activity are context dependent. The importance of regulating Lyn activity is exemplified by the pathological conditions that develop in both lyn-/- and lyn gain-of-function mice (lynup/up), including lethal antibody-mediated autoimmune diseases and myeloid neoplasia. Here, we review the outcomes of altered Lyn activity within the framework of B cell development and differentiation and the circumstances that appear to dictate the outcome.
Collapse
Affiliation(s)
- Yuekang Xu
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3050, Australia
| | | | | | | | | |
Collapse
|
105
|
Hiragun T, Peng Z, Beaven MA. Dexamethasone up-regulates the inhibitory adaptor protein Dok-1 and suppresses downstream activation of the mitogen-activated protein kinase pathway in antigen-stimulated RBL-2H3 mast cells. Mol Pharmacol 2005; 67:598-603. [PMID: 15608142 DOI: 10.1124/mol.104.008607] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The glucocorticoid dexamethasone suppresses antigen-induced degranulation, cytokine production, and intermediate signaling events in RBL-2H3 mast cells, although the exact mechanisms are uncertain. By microarray analysis, we discovered that expression of the inhibitory adaptor protein, downstream of tyrosine kinase (Dok)-1, was up-regulated 4-fold in dexamethasone-treated RBL-2H3 cells. The up-regulation was apparent with as little as 1 to 10 nM dexamethasone. Treatment with dexamethasone also enhanced tyrosine phosphorylation of Dok-1, augmented recruitment of Ras GTPase-activating protein (RasGAP) by Dok-1, and inhibited activation of the mitogen-activated protein (MAP) kinase pathway in antigen-stimulated cells. The same effects were obtained by transient overexpression of Dok-1 but not by overexpression of Dok-1 that was mutated in RasGAP-binding domain. The negative regulatory role of Dok-1 was further validated by the expression of small interfering RNA directed against Dok-1, which enhanced activation of MAP kinase and subsequent release of arachidonic acid and tumor necrosis factor-alpha. These findings identify Dok-1 as mediator of the antiallergic actions of dexamethasone and as a negative regulator of the MAP kinase pathway and downstream release of inflammatory mediators.
Collapse
Affiliation(s)
- Takaaki Hiragun
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1760, USA
| | | | | |
Collapse
|
106
|
Viertlboeck BC, Crooijmans RPMA, Groenen MAM, Göbel TWF. Chicken Ig-like receptor B2, a member of a multigene family, is mainly expressed on B lymphocytes, recruits both Src homology 2 domain containing protein tyrosine phosphatase (SHP)-1 and SHP-2, and inhibits proliferation. THE JOURNAL OF IMMUNOLOGY 2005; 173:7385-93. [PMID: 15585863 DOI: 10.4049/jimmunol.173.12.7385] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ig-like inhibitory receptors have been the focus of intensive research particularly in mouse and human. We report the cloning and characterization of three novel inhibitory chicken Ig-like receptors (CHIR) that display a two Ig-domain extracellular structure, a transmembrane region lacking charged residues and a cytoplasmic domain containing two ITIM. The localization of all receptors to a small genomic region and the hybridization pattern indicated that they belong to a multigene family. The genomic structure of the extracellular domain with two exons encoding the signal peptide and single exons for each Ig domain resembled that of all human leukocyte Ig-like receptors and killer cell Ig-like receptors, whereas the exons encoding the C terminus displayed a structure closely resembling killer cell Ig-like receptor genes. A mAb generated against one receptor designated CHIR-B2 reacted with all B cells and a small T cell subset, but not with monocytes, thrombocytes, or various leukocyte-derived cell lines. The mAb immunoprecipitated a 46-kDa protein from bursal cells and transfected cells. The Src homology 2 domain containing protein tyrosine phosphatase (SHP)-2 bound to CHIR-B2 even in unstimulated cells, whereas pervanadate treatment induced the tyrosine phosphorylation and recruitment of several CHIR-B2-associated proteins including SHP-1 and increased levels of SHP-2. Moreover, mAb cross-linking of CHIR-B2 reduced the proliferation of a stable transfected cell line. Together, we have identified a multigene family containing multiple CHIR including one receptor designated CHIR-B2 that is mainly expressed on B lymphocytes and inhibits cellular proliferation by recruitment of SHP-1 and SHP-2.
Collapse
|
107
|
Shinohara H, Yasuda T, Yamanashi Y. Dok-1 tyrosine residues at 336 and 340 are essential for the negative regulation of Ras-Erk signalling, but dispensable for rasGAP-binding. Genes Cells 2005; 9:601-7. [PMID: 15189452 DOI: 10.1111/j.1356-9597.2004.00748.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dok-1 is a common substrate of many protein tyrosine kinases (PTKs). It recruits rasGAP and other SH2-containing proteins and negatively regulates Ras-Erk signalling downstream of PTKs. However, the mechanisms of its inhibitory effect are yet unclear. Here, a series of C-terminal deletion mutants of Dok-1 delineated the core domain for the inhibition of Erk from 334 to 346 amino acid, which contains two SH2-binding motifs having Tyr-336 or Tyr-340. The Dok-1 mutants having tyrosine-to-phenylalanine (YF) substitution(s) at Tyr-336 and/or Tyr-340 lost their inhibitory effect on Ras and Erk downstream of Src-like PTK, Lyn or Fyn, whereas the rasGAP-binding of each mutant remained intact. However, the Dok-1 mutant having YF substitutions at the rasGAP-binding sites (Tyr-295 and Tyr-361) also showed incapability of Ras and Erk inhibition. Moreover, the Dok-1 mutant having YF substitutions at Tyr-336 and Tyr-340 showed an impaired inhibitory effect on v-Abl-induced transformation of NIH-3T3 cells. These results demonstrate that Tyr-336 and Tyr-340 of Dok-1 are dispensable for rasGAP-binding but essential for inhibition of Ras-Erk signalling and cellular transformation downstream of PTKs. Thus, Dok-1 probably recruits as yet unidentified molecule(s), which, in concert with rasGAP, negatively regulate Ras-Erk signalling.
Collapse
Affiliation(s)
- Hisaaki Shinohara
- Department of Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | |
Collapse
|
108
|
Abstract
The ability of activating immune recognition receptors on lymphocytes to regulate cellular activation and function can be profoundly altered by co-stimulation with inhibitory receptors. Inhibitory receptors, such as the MHC-recognizing inhibitory receptors expressed on NK cells and subpopulations of activated T cells, can fully block the generation of any cytotoxic function by targeting proximal signals. Inhibitory Fc receptors on B cells, macrophages and mast cells can influence their threshold for activation, but the induction of inhibitory Fc receptors also appears to play a major role in the attenuation of ongoing responses. The three identified groups of inhibitory B7-recognizing receptors (CTLA-4, PD-1 and BTLA) are only expressed on activated hematopoietic cells, thus exclusively regulating ongoing immune responses in lymphoid organs and the periphery. In each case, the integrated positive and negative regulatory events determine the nature of the functional response.
Collapse
Affiliation(s)
- Paul J Leibson
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
109
|
Tomlinson MG, Heath VL, Turck CW, Watson SP, Weiss A. SHIP Family Inositol Phosphatases Interact with and Negatively Regulate the Tec Tyrosine Kinase. J Biol Chem 2004; 279:55089-96. [PMID: 15492005 DOI: 10.1074/jbc.m408141200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Tec family of protein-tyrosine kinases (PTKs), that includes Tec, Itk, Btk, Bmx, and Txk, plays an essential role in phospholipase Cgamma (PLCgamma) activation following antigen receptor stimulation. This function requires activation of phosphatidylinositol 3-kinase (PI 3-kinase), which promotes Tec membrane localization through phosphatidylinositol 3,4,5-trisphosphate (PtdIns 3,4,5-P(3)) generation. The mechanism of negative regulation of Tec family PTKs is poorly understood. In this study, we show that the inositol 5' phosphatases SHIP1 and SHIP2 interact preferentially with Tec, compared with other Tec family members. Four lines of evidence suggest that SHIP phosphatases are negative regulators of Tec. First, SHIP1 and SHIP2 are potent inhibitors of Tec activity. Second, inactivation of the Tec SH3 domain, which is necessary and sufficient for SHIP binding, generates a hyperactive form of Tec. Third, SHIP1 inhibits Tec membrane localization. Finally, constitutively targeting Tec to the membrane relieves SHIP1-mediated inhibition. These data suggest that SHIP phosphatases can interact with and functionally inactivate Tec by de-phosphorylation of local PtdIns 3,4,5-P(3) and inhibition of Tec membrane localization.
Collapse
Affiliation(s)
- Michael G Tomlinson
- Department of Medicine and Howard Hughes Medical Institute, University of California-San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
110
|
Lee S, Andrieu C, Saltel F, Destaing O, Auclair J, Pouchkine V, Michelon J, Salaun B, Kobayashi R, Jurdic P, Kieff ED, Sylla BS. IkappaB kinase beta phosphorylates Dok1 serines in response to TNF, IL-1, or gamma radiation. Proc Natl Acad Sci U S A 2004; 101:17416-21. [PMID: 15574499 PMCID: PMC536032 DOI: 10.1073/pnas.0408061101] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dok1 is an abundant Ras-GTPase-activating protein-associated tyrosine kinase substrate that negatively regulates cell growth and promotes migration. We now find that IkappaB kinase beta (IKKbeta) associated with and phosphorylated Dok1 in human epithelial cells and B lymphocytes. IKKbeta phosphorylation of Dok1 depended on Dok1 S(439), S(443), S(446), and S(450). Recombinant IKKbeta also phosphorylated Dok1 or Dok1 amino acids 430-481 in vitro. TNF-alpha, IL-1, gamma radiation, or IKKbeta overexpression phosphorylated Dok1 S(443), S(446), and S(450) in vivo, as detected with Dok1 phospho-S site-specific antisera. Moreover, Dok1 with S(439), S(443), S(446), and S(450) mutated to A was not phosphorylated by IKKbeta in vivo. Surprisingly, mutant Dok1 A(439), A(443), A(446), and A(450) differed from wild-type Dok1 in not inhibiting platelet-derived growth factor-induced extracellular signal-regulated kinase 1/2 phosphorylation or cell growth. Mutant Dok1 A(439), A(443), A(446), and A(450) also did not promote cell motility, whereas wild-type Dok1 promoted cell motility, and Dok1 E(439), E(443), E(446), and E(450) further enhanced cell motility. These data indicate that IKKbeta phosphorylates Dok1 S(439)S(443) and S(446)S(450) after TNF-alpha, IL-1, or gamma-radiation and implicate the critical Dok1 serines in Dok1 effects after tyrosine kinase activation.
Collapse
Affiliation(s)
- Sanghoon Lee
- International Agency for Research on Cancer, 150 Cours Albert Thomas, 69008 Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Isnardi I, Lesourne R, Bruhns P, Fridman WH, Cambier JC, Daëron M. Two Distinct Tyrosine-based Motifs Enable the Inhibitory Receptor FcγRIIB to Cooperatively Recruit the Inositol Phosphatases SHIP1/2 and the Adapters Grb2/Grap. J Biol Chem 2004; 279:51931-8. [PMID: 15456754 DOI: 10.1074/jbc.m410261200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FcgammaRIIB are low-affinity receptors for IgG that contain an immunoreceptor tyrosine-based inhibition motif (ITIM) and inhibit immunoreceptor tyrosine-based activation motif (ITAM)-dependent cell activation. When coaggregated with ITAM-bearing receptors, FcgammaRIIB become tyrosyl-phosphorylated and recruit the Src homology 2 (SH2) domain-containing inositol 5'-phosphatases SHIP1 and SHIP2, which mediate inhibition. The FcgammaRIIB ITIM was proposed to be necessary and sufficient for recruiting SHIP1/2. We show here that a second tyrosine-containing motif in the intracytoplasmic domain of FcgammaRIIB is required for SHIP1/2 to be coprecipitated with the receptor. This motif functions as a docking site for the SH2 domain-containing adapters Grb2 and Grap. These adapters interact via their C-terminal SH3 domain with SHIP1/2 to form a stable receptor-phosphatase-adapter trimolecular complex. Both Grb2 and Grap are required for an optimal coprecipitation of SHIP with FcgammaRIIB, but one adapter is sufficient for the phosphatase to coprecipitate in a detectable manner with the receptors. In addition to facilitating the recruitment of SHIPs, the second tyrosine-based motif may confer upon FcgammaRIIB the properties of scaffold proteins capable of altering the composition and stability of the signaling complexes generated following receptor engagement.
Collapse
Affiliation(s)
- Isabelle Isnardi
- Laboratoire d'Immunologie Cellulaire et Clinique, INSERM U255, Institut de Recherches Biomédicales des Cordeliers, 75006 Paris, France
| | | | | | | | | | | |
Collapse
|
112
|
Zhang S, Cherwinski H, Sedgwick JD, Phillips JH. Molecular Mechanisms of CD200 Inhibition of Mast Cell Activation. THE JOURNAL OF IMMUNOLOGY 2004; 173:6786-93. [PMID: 15557172 DOI: 10.4049/jimmunol.173.11.6786] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CD200 and its receptor CD200R are both type I membrane glycoproteins that contain two Ig-like domains. Engagement of CD200R by CD200 inhibits activation of myeloid cells. Unlike the majority of immune inhibitory receptors, CD200R lacks an ITIM in the cytoplasmic domain. The molecular mechanism of CD200R inhibition of myeloid cell activation is unknown. In this study, we examined the CD200R signaling pathways that control degranulation of mouse bone marrow-derived mast cells. We found that upon ligand binding, CD200R is phosphorylated on tyrosine and subsequently binds to adapter proteins Dok1 and Dok2. Upon phosphorylation, Dok1 binds to SHIP and both Dok1 and Dok2 recruit RasGAP, which mediates the inhibition of the Ras/MAPK pathways. Activation of ERK, JNK, and p38 MAPK are all inhibited by CD200R engagement. The reduced activation of these MAPKs is responsible for the observed inhibition of mast cell degranulation and cytokine production. Similar signaling events were also observed upon CD200R engagement in mouse peritoneal cells. These data define a novel inhibitory pathway used by CD200R in modulating mast cell function and help to explain how engagement of this receptor in vivo regulates myeloid cell function.
Collapse
Affiliation(s)
- Shuli Zhang
- DNAX Research Institute, Palo Alto, CA 94304, USA
| | | | | | | |
Collapse
|
113
|
Brown KS, Blair D, Reid SD, Nicholson EK, Harnett MM. FcgammaRIIb-mediated negative regulation of BCR signalling is associated with the recruitment of the MAPkinase-phosphatase, Pac-1, and the 3'-inositol phosphatase, PTEN. Cell Signal 2004; 16:71-80. [PMID: 14607277 DOI: 10.1016/s0898-6568(03)00113-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The low-affinity receptor for IgG, FcgammaRIIb, negatively regulates B cell antigen receptor (BCR)-mediated proliferative signalling. FcgammaRIIb has been reported to mediate this inhibition by uncoupling the BCR from the RasMAPkinase pathway. We now show that FcgammaRIIb-mediated negative feedback inhibition also correlates with induction of an Erk-associated phosphatase activity that reflects the rapid association of Erk and the MAPkinase phosphatase, Pac-1, and dephosphorylation and inactivation of ErkMAPkinase. This mechanism of abrogating ongoing ErkMAPkinase signalling therefore provides a rationale for rapid immune-complex-mediated feedback inhibition of active antigen-driven B cell responses. In addition, FcgammaRIIb signalling also induces the recruitment and activation of the 3'-inositol phosphatase, PTEN, which by antagonising PI 3kinase activity and inhibiting BCR-coupling to the anti-apoptotic kinase, Akt, provides an additional mechanism for FcgammaRIIb-mediated negative regulation of BCR-coupling to ErkMAPkinase, cell survival and proliferation.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Apoptosis/immunology
- B-Lymphocytes/drug effects
- B-Lymphocytes/enzymology
- B-Lymphocytes/immunology
- Cell Division/genetics
- Cell Division/immunology
- Cell Survival/genetics
- Cell Survival/immunology
- Cells, Cultured
- Down-Regulation/genetics
- Down-Regulation/immunology
- Dual Specificity Phosphatase 2
- Feedback, Physiological/genetics
- Feedback, Physiological/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- PTEN Phosphohydrolase
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Protein Phosphatase 2
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Kirsty S Brown
- Division of Immunology, Infection and Inflammation, University of Glasgow, Western Infirmary, Dumbarton Road, Glasgow G11 6NT, Scotland, UK
| | | | | | | | | |
Collapse
|
114
|
Zouali M, Sarmay G. B lymphocyte signaling pathways in systemic autoimmunity: implications for pathogenesis and treatment. ACTA ACUST UNITED AC 2004; 50:2730-41. [PMID: 15457440 DOI: 10.1002/art.20487] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Moncef Zouali
- Institut National de Santé et de Recherche Médicale, Paris, France.
| | | |
Collapse
|
115
|
Nakamura A, Takai T. A role of FcgammaRIIB in the development of collagen-induced arthritis. Biomed Pharmacother 2004; 58:292-8. [PMID: 15194165 DOI: 10.1016/j.biopha.2004.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Indexed: 11/30/2022] Open
Abstract
Immune inhibitory receptors play an important role in the maintenance of adequate activation threshold of various cells in our immune system. The inhibitory Fc receptor, type IIB Fc receptor for IgG (FcgammaRIIB), is one of the critical molecules for the regulation of immune responses through antibodies. Analysis of murine models indicates that FcgammaRIIB plays an essential role in the suppression of various autoimmune disorders. Recent studies reveal the novel regulatory role of FcgammaR in the development of collagen-induced arthritis (CIA), an animal model relevant to human rheumatoid arthritis (RA). This review provides an overview of FcgammaRIIB-mediated immune regulation, highlighting the implication of FcgammaRIIB in the selection of peripheral B cell development during the CIA course.
Collapse
Affiliation(s)
- Akira Nakamura
- Department of Experimental Immunology and CREST program of Japan Science and Technology Agency, Institute of Development, Aging and Cancer, Tohoku University, Seiryo 4-1, Sendai 980-8575, Japan
| | | |
Collapse
|
116
|
Crowder RJ, Enomoto H, Yang M, Johnson EM, Milbrandt J. Dok-6, a Novel p62 Dok family member, promotes Ret-mediated neurite outgrowth. J Biol Chem 2004; 279:42072-81. [PMID: 15286081 DOI: 10.1074/jbc.m403726200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Activation of Ret, the receptor-tyrosine kinase for the glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs), results in the recruitment and assembly of adaptor protein complexes that function to transduce signals downstream of the receptor. Here we identify Dok-6, a novel member of the Dok-4/5 subclass of the p62 Dok family of intracellular adaptor molecules, and characterize its interaction with Ret. Expression analysis reveals that Dok-6 is highly expressed in the developing central nervous system and is co-expressed with Ret in several locations, including sympathetic, sensory, and parasympathetic ganglia, as well as in the ureteric buds of the developing kidneys. Pull-down assays using the Dok-6 phosphotyrosine binding (PTB) domain and GDNF-activated Ret indicate that Dok-6 binds to the phosphorylated Ret Tyr(1062) residue. Moreover, ligand activation of Ret resulted in phosphorylation of tyrosine residue(s) located within the unique C terminus of Dok-6 predominantly through a Src-dependent mechanism, indicating that Dok-6 is a substrate of the Ret-Src signaling pathway. Interestingly, expression of Dok-6 potentiated GDNF-induced neurite outgrowth in GDNF family receptor alpha1 (GFRalpha1)-expressing Neuro2A cells that was dependent upon the C-terminal residues of Dok-6. Taken together, these data identify Dok-6 as a novel Dok-4/5-related adaptor molecule that may function in vivo to transduce signals that regulate Ret-mediated processes such as axonal projection.
Collapse
Affiliation(s)
- Robert J Crowder
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
117
|
Tam SW, Demissie S, Thomas D, Daëron M. A bispecific antibody against human IgE and human FcgammaRII that inhibits antigen-induced histamine release by human mast cells and basophils. Allergy 2004; 59:772-80. [PMID: 15180766 DOI: 10.1111/j.1398-9995.2004.00332.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND FcgammaRIIB are low-affinity immunoglobulin (Ig)G receptors that we previously demonstrated to negatively regulate IgE-induced mast cell activation when coaggregated with FcepsilonRI. Here, we engineered and characterized a bispecific reagent capable of coaggregating FcgammaRIIB with FcepsilonRI on human mast cells and basophils. METHODS A bispecific antibody was constructed by chemically crosslinking one Fab' fragment against human IgE and one Fab' fragment against human FcgammaRII. This molecule was used to coaggregate FcepsilonRI with FcgammaRII on human mast cells and basophils sensitized with human IgE antibodies, and the effect of coaggregation was examined on mediator release upon challenge with specific antigen. RESULTS When used under these conditions, this bispecific antibody not only failed to trigger the release of histamine by IgE-sensitized cells, but it also prevented specific antigen from triggering histamine release. Comparable inhibitions were observed with mast cells and basophils derived in vitro from cord blood cells and with peripheral blood basophils. CONCLUSIONS The bispecific antibody described here is the prototype of similar molecules that could be used in new therapeutic approaches of allergic diseases based on the coaggregation of activating receptors, such as FcepsilonRI, with inhibitory receptors, such as FcgammaRIIB, that are constitutively expressed by mast cells and basophils.
Collapse
Affiliation(s)
- S W Tam
- Tanox Inc., Houston, TX, USA
| | | | | | | |
Collapse
|
118
|
Fang H, Pengal RA, Cao X, Ganesan LP, Wewers MD, Marsh CB, Tridandapani S. Lipopolysaccharide-Induced Macrophage Inflammatory Response Is Regulated by SHIP. THE JOURNAL OF IMMUNOLOGY 2004; 173:360-6. [PMID: 15210794 DOI: 10.4049/jimmunol.173.1.360] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
LPS stimulates monocytes/macrophages through TLR4, resulting in the activation of a series of signaling events that potentiate the production of inflammatory mediators. Recent reports indicated that the inflammatory response to LPS is diminished by PI3K, through the activation of the serine/threonine kinase Akt. SHIP is an inositol phosphatase that can reverse the activation events initiated by PI3K, including the activation of Akt. However, it is not known whether SHIP is involved in TLR4 signaling. In this study, we demonstrate that LPS stimulation of Raw 264.7 mouse macrophage cells induces the association of SHIP with lipid rafts, along with IL-1R-associated kinase. In addition, SHIP is tyrosine phosphorylated upon LPS stimulation. Transient transfection experiments analyzing the function of SHIP indicated that overexpression of a wild-type SHIP, but not the SHIP Src homology 2 domain-lacking catalytic activity, up-regulates NF-kappaB-dependent gene transcription in response to LPS stimulation. These results suggest that SHIP positively regulates LPS-induced activation of Raw 264.7 cells. To test the validity of these observations in primary macrophages, LPS-induced events were compared in bone marrow macrophages derived from SHIP(+/+) and SHIP(-/-) mice. Results indicated that LPS-induced MAPK phosphorylation is enhanced in SHIP(+/+) cells, whereas Akt phosphorylation is enhanced in SHIP(-/-) cells compared with SHIP(+/+) cells. Finally, LPS-induced TNF-alpha and IL-6 production was significantly lower in SHIP(-/-) bone marrow-derived macrophages. These results are the first to demonstrate a role for SHIP in TLR4 signaling, and propose that SHIP is a positive regulator of LPS-induced inflammation.
Collapse
Affiliation(s)
- Huiqing Fang
- Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
119
|
Kepley CL, Taghavi S, Mackay G, Zhu D, Morel PA, Zhang K, Ryan JJ, Satin LS, Zhang M, Pandolfi PP, Saxon A. Co-aggregation of FcgammaRII with FcepsilonRI on human mast cells inhibits antigen-induced secretion and involves SHIP-Grb2-Dok complexes. J Biol Chem 2004; 279:35139-49. [PMID: 15151996 DOI: 10.1074/jbc.m404318200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Signaling through the high affinity IgE receptor FcepsilonRI on human basophils and rodent mast cells is decreased by co-aggregating these receptors to the low affinity IgG receptor FcgammaRII. We used a recently described fusion protein, GE2, which is composed of key portions of the human gamma1 and the human epsilon heavy chains, to dissect the mechanisms that lead to human mast cell and basophil inhibition through co-aggregation of FcgammaRII and FcepsilonRI. Unstimulated human mast cells derived from umbilical cord blood express the immunoreceptor tyrosine-based inhibitory motif-containing receptor FcgammaRII but not FcgammaRI or FcgammaRIII. Interaction of the mast cells with GE2 alone did not cause degranulation. Co-aggregating FcepsilonRI and FcgammaRII with GE2 1) significantly inhibited IgE-mediated histamine release, cytokine production, and Ca(2+) mobilization, 2) reduced the antigen-induced morphological changes associated with mast cell degranulation, 3) reduced the tyrosine phosphorylation of several cellular substrates, and 4) increased the tyrosine phosphorylation of the adapter protein downstream of kinase 1 (p62(dok); Dok), growth factor receptor-bound protein 2 (Grb2), and SH2 domain containing inositol 5-phosphatase (SHIP). Tyrosine phosphorylation of Dok was associated with increased binding to Grb2. Surprisingly, in non-stimulated cells, there were complexes of phosphorylated SHIP-Grb2-Dok that were lost upon IgE receptor activation but retained under conditions of Fcepsilon-Fcgamma co-aggregation. Finally, studies using mast cells from Dok-1 knock-out mice showed that IgE alone triggers degranulation supporting an inhibitory role for Dok degranulation. Our results demonstrate how human FcepsilonRI-mediated responses can be inhibited by co-aggregation with FcgammaRIIB and implicate Dok, SHIP, and Grb2 as key intermediates in regulating antigen-induced mediator release.
Collapse
Affiliation(s)
- Christopher L Kepley
- Department of Internal Medicine, Virginia Commonwealth University Health Systems, Richmond, Virginia 23298, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
|
121
|
Lee S, Roy F, Galmarini CM, Accardi R, Michelon J, Viller A, Cros E, Dumontet C, Sylla BS. Frameshift mutation in the Dok1 gene in chronic lymphocytic leukemia. Oncogene 2004; 23:2287-97. [PMID: 14730347 DOI: 10.1038/sj.onc.1207385] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) is a malignant disease characterized by an accumulation of monoclonal CD5+ mature B cells, with a high percentage of cells arrested in the G0/G1 phase of the cell cycle, and a particular resistance toward apoptosis-inducing agents. Dok1 (downstream of tyrosine kinases) is an abundant Ras-GTPase-activating protein (Ras-GAP)-associated tyrosine kinase substrate, which negatively regulates cell proliferation, downregulates MAP kinase activation and promotes cell migration. The gene encoding Dok1 maps to human chromosome 2p13, a region previously found to be rearranged in B-CLL. We have screened the Dok1 gene for mutations from 46 individuals with B-CLL using heteroduplex analysis. A four-nucleotide GGCC deletion in the coding region was found in the leukemia cells from one patient. This mutation causes a frameshift leading to protein truncation at the carboxyl-terminus, with the acquisition of a novel amino-acid sequence. In contrast to the wild-type Dok1 protein, which has cytoplasmic/membrane localization, the mutant Dok1 is a nuclear protein containing a functional bipartite nuclear localization signal. Whereas overexpression of wild-type Dok1 inhibited PDGF-induced MAP kinase activation, this inhibition was not observed with the mutant Dok1. Furthermore the mutant Dok1 forms heterodimers with Dok1 wild type and the association can be enhanced by Lck-mediated tyrosine-phosphorylation. This is the first example of a Dok1 mutation in B-CLL and the data suggest that Dok1 might play a role in leukemogenesis.
Collapse
Affiliation(s)
- Sanghoon Lee
- International Agency for Research on Cancer, 150 Cours Albert-Thomas, Lyon 69008, France
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Robson JD, Davidson D, Veillette A. Inhibition of the Jun N-terminal protein kinase pathway by SHIP-1, a lipid phosphatase that interacts with the adaptor molecule Dok-3. Mol Cell Biol 2004; 24:2332-43. [PMID: 14993273 PMCID: PMC355862 DOI: 10.1128/mcb.24.6.2332-2343.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dok-3 is a Dok-related adaptor expressed in B cells and macrophages. Previously, we reported that Dok-3 is an inhibitor of B-cell activation in A20 B cells and that it associates with SHIP-1, a 5' inositol-specific lipid phosphatase, as well as Csk, a negative regulator of Src kinases. Here, we demonstrate that Dok-3 suppresses B-cell activation by way of its interaction with SHIP-1, rather than Csk. Our biochemical analyses showed that the Dok-3-SHIP-1 complex acts by selectively inhibiting the B-cell receptor (BCR)-evoked activation of the Jun N-terminal protein kinase (JNK) cascade without affecting overall protein tyrosine phosphorylation or activation of previously described SHIP-1 targets like Btk and Akt/PKB. Studies of B cells derived from SHIP-1-deficient mice showed that BCR-triggered activation of JNK is enhanced in the absence of SHIP-1, implying that the Dok-3-SHIP-1 complex (or a related mechanism) is a physiological negative regulator of the JNK cascade in normal B cells. Together, these data elucidate the mechanism by which Dok-3 inhibits B-cell activation. Furthermore, they provide evidence that SHIP-1 can be a negative regulator of JNK signaling in B cells.
Collapse
Affiliation(s)
- Jeffrey D Robson
- Laboratory of Molecular Oncology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada H2W 1R7
| | | | | |
Collapse
|
123
|
Bedirian A, Baldwin C, Abe JI, Takano T, Lemay S. Pleckstrin Homology and Phosphotyrosine-binding Domain-dependent Membrane Association and Tyrosine Phosphorylation of Dok-4, an Inhibitory Adapter Molecule Expressed in Epithelial Cells. J Biol Chem 2004; 279:19335-49. [PMID: 14963042 DOI: 10.1074/jbc.m310689200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dok-like adapter molecules represent an expanding family of pleckstrin homology (PH) and phosphotyrosine-binding (PTB) domain-containing tyrosine kinase substrates with negative regulatory functions in hematopoietic cell signaling. In a search for nonhematopoietic counterparts to Dok molecules, we identified and characterized Dok-4, a recently cloned member of the family. dok-4 mRNA was strongly expressed in nonhematopoietic organs, particularly the intestine, kidney, and lung, whereas both mRNA and protein were expressed at high levels in cells of epithelial origin. In Caco-2 human colon cancer cells, endogenous Dok-4 underwent tyrosine phosphorylation in response to pervanadate stimulation. In transfected COS cells, Dok-4 was a substrate for the cytosolic tyrosine kinases Src and Fyn as well as for Jak2. Dok-4 could also be phosphorylated by the receptor tyrosine kinase Ret but not by platelet-derived growth factor receptor-beta or IGF-IR. In both mammalian cells and yeast, Dok-4 was constitutively localized at the membrane in a manner that required both its PH and PTB domains. The PH and PTB domains of Dok-4 were also required for tyrosine phosphorylation of Dok-4 by Fyn and Ret. Finally, wild type Dok-4 strongly inhibited activation of Elk-1 induced by either Ret or Fyn. The attenuation of this inhibitory effect by deletion of the PH domain and its restoration by the addition of a myristoylation signal suggested an important role for constitutive membrane localization of Dok-4. In summary, Dok-4 is a constitutively membrane-localized adapter molecule that may function as an inhibitor of tyrosine kinase signaling in epithelial cells.
Collapse
Affiliation(s)
- Arda Bedirian
- Department of Medicine, Division of Nephrology, McGill University Health Centre, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
124
|
Kalesnikoff J, Sly LM, Hughes MR, Büchse T, Rauh MJ, Cao LP, Lam V, Mui A, Huber M, Krystal G. The role of SHIP in cytokine-induced signaling. Rev Physiol Biochem Pharmacol 2004; 149:87-103. [PMID: 12692707 DOI: 10.1007/s10254-003-0016-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The phosphatidylinositol (PI)-3 kinase (PI3K) pathway plays a central role in regulating many biological processes via the generation of the key second messenger PI-3,4,5-trisphosphate (PI-3,4,5-P3). This membrane-associated phospholipid, which is rapidly, albeit transiently, synthesized from PI-4,5-P2 by PI3K in response to a diverse array of extracellular stimuli, attracts pleckstrin homology (PH) domain-containing proteins to membranes to mediate its many effects. To ensure that the activation of this pathway is appropriately suppressed/terminated, the ubiquitously expressed tumor suppressor PTEN hydrolyzes PI-3,4,5-P3 back to PI-4,5-P2 while the 145-kDa hemopoietic-restricted SH2-containing inositol 5'- phosphatase, SHIP (also known as SHIP1), the 104-kDa stem cell-restricted SHIP (sSHIP) and the more widely expressed 150-kDa SHIP2 hydrolyze PI-3,4,5-P3 to PI-3,4-P2. In this review we will concentrate on the properties of the three SHIPs, with special emphasis being placed on the role that SHIP plays in cytokine-induced signaling.
Collapse
Affiliation(s)
- J Kalesnikoff
- The Terry Fox Laboratory, BC Cancer Agency, Vancouver, V5Z 1L3, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Sly LM, Rauh MJ, Kalesnikoff J, Büchse T, Krystal G. SHIP, SHIP2, and PTEN activities are regulated in vivo by modulation of their protein levels: SHIP is up-regulated in macrophages and mast cells by lipopolysaccharide. Exp Hematol 2004; 31:1170-81. [PMID: 14662322 DOI: 10.1016/j.exphem.2003.09.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The phosphatidylinositol-3 kinase (PI3K) pathway plays a central role in regulating numerous biologic processes, including survival, adhesion, migration, metabolic activity, proliferation, differentiation, and end cell activation through the generation of the potent second messenger PI-3,4,5-trisphosphate (PI-3,4,5-P(3)). To ensure that activation of this pathway is appropriately suppressed/terminated, the ubiquitously expressed 54-kDa tumor suppressor PTEN hydrolyzes PI-3,4,5-P(3) to PI-4,5-P(2), whereas the 145-kDa hematopoietic-restricted SH2-containing inositol 5'-phosphatase SHIP (also known as SHIP1), the 104-kDa stem cell-restricted SHIP sSHIP, and the more widely expressed 150-kDa SHIP2 break it down to PI-3,4-P(2). In this review, we focus on the properties of these phospholipid phosphatases and summarize recent data showing that the activities of these negative regulators often are modulated by simply altering their protein levels. We also highlight the critical role that SHIP plays in lipopolysaccharide-induced macrophage activation and in endotoxin tolerance.
Collapse
Affiliation(s)
- Laura M Sly
- The Terry Fox Laboratory, British Columbia Cancer Agency, 601 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | | | | | | | | |
Collapse
|
126
|
Oh-hora M, Johmura S, Hashimoto A, Hikida M, Kurosaki T. Requirement for Ras guanine nucleotide releasing protein 3 in coupling phospholipase C-gamma2 to Ras in B cell receptor signaling. ACTA ACUST UNITED AC 2004; 198:1841-51. [PMID: 14676298 PMCID: PMC2194160 DOI: 10.1084/jem.20031547] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two important Ras guanine nucleotide exchange factors, Son of sevenless (Sos) and Ras guanine nucleotide releasing protein (RasGRP), have been implicated in controlling Ras activation when cell surface receptors are stimulated. To address the specificity or redundancy of these exchange factors, we have generated Sos1/Sos2 double- or RasGRP3-deficient B cell lines and determined their ability to mediate Ras activation upon B cell receptor (BCR) stimulation. The BCR requires RasGRP3; in contrast, epidermal growth factor receptor is dependent on Sos1 and Sos2. Furthermore, we show that BCR-induced recruitment of RasGRP3 to the membrane and the subsequent Ras activation are significantly attenuated in phospholipase C-gamma2-deficient B cells. This defective Ras activation is suppressed by the expression of RasGRP3 as a membrane-attached form, suggesting that phospholipase C-gamma2 regulates RasGRP3 localization and thereby Ras activation.
Collapse
Affiliation(s)
- Masatsugu Oh-hora
- Dept. of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi 570-8506, Japan
| | | | | | | | | |
Collapse
|
127
|
Smith A, Wang J, Cheng CM, Zhou J, Weickert CS, Bondy CA. High-level expression of Dok-1 in neurons of the primate prefrontal cortex and hippocampus. J Neurosci Res 2004; 75:218-224. [PMID: 14705142 DOI: 10.1002/jnr.10842] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The docking protein p62Dok-1 (Dok-1) has a central role in cell signaling mediated by a wide range of protein tyrosine kinases, including intrinsic membrane kinases, such as the insulin-like growth factor-1 (IGF-1) receptor. To elucidate potential IGF signaling mechanisms, we used DNA array technology to investigate novel kinase targets expressed in the primate dorsolateral prefrontal cortex (DLPFC). Dok-1 transcripts were among the most abundant found in this structure. Because Dok-1 expression has not been characterized in brain, we evaluated its expression pattern using immunoblotting, in situ hybridization, and immunohistochemistry in the rhesus monkey prefrontal cortex and hippocampal formation. Dok-1 antibodies identified a 62-kDa band in lysates from the DLPFC, consistent with the known size for Dok-1. In situ hybridization showed that Dok-1 mRNA was expressed in all layers of the DLPFC and in all neuronal subregions of the hippocampal formation. Immunohistochemical analysis showed Dok-1 immunoreactivity concentrated in pyramidal neurons of cortical layers IV-V and throughout Ammon's horn and in granule neurons of the dentate gyrus. Dok-1 expression was also identified in endothelial cells of cerebral blood vessels. These expression patterns are very similar to those of the IGF-1 receptor and suggest that Dok-1 could be among the downstream targets of IGF signaling in areas of the primate brain involved in learning and memory.
Collapse
Affiliation(s)
- A Smith
- Developmental Endocrinology Branch, National Institute of Child Health, National Institutes of Health, Bethesda, Maryland
| | - J Wang
- Developmental Endocrinology Branch, National Institute of Child Health, National Institutes of Health, Bethesda, Maryland
| | - C M Cheng
- Developmental Endocrinology Branch, National Institute of Child Health, National Institutes of Health, Bethesda, Maryland
| | - J Zhou
- Developmental Endocrinology Branch, National Institute of Child Health, National Institutes of Health, Bethesda, Maryland
| | - C S Weickert
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - C A Bondy
- Developmental Endocrinology Branch, National Institute of Child Health, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
128
|
Helgason CD, Antonchuk J, Bodner C, Humphries RK. Homeostasis and regeneration of the hematopoietic stem cell pool are altered in SHIP-deficient mice. Blood 2003; 102:3541-7. [PMID: 12855581 DOI: 10.1182/blood-2002-12-3939] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
SH2-containing inositol 5-phosphatase (SHIP) is an important negative regulator of cytokine and immune receptor signaling. SHIP-deficient mice have a number of hematopoietic perturbations, including enhanced cytokine responsiveness. Because cytokines play an important role in the maintenance/expansion of the primitive hematopoietic cell pool, we investigated the possibility that SHIP also regulates the properties of cells in these compartments. Primitive hematopoietic cells were evaluated in SHIP-deficient mice and wild-type littermate controls using the colony-forming unit-spleen (CFU-S) and competitive repopulating unit (CRU) assays for multipotent progenitors and long-term lympho-myeloid repopulating cells, respectively. Absence of SHIP was found to affect homeostasis of CFU-S and CRU compartments. Numbers of primitive cells were increased in extramedullary sites such as the spleen of SHIP-deficient mice, although total body numbers were not significantly changed. In vivo cell cycle status of the CRU compartment was further evaluated using 5-fluorouracil (5-FU). SHIP-deficient CRUs were more sensitive to 5-FU killing, indicating a higher proliferative cell fraction. More strikingly, SHIP was found to regulate the ability of primitive cells to regenerate in vivo, as CRU recovery was approximately 30-fold lower in mice that received transplants of SHIP-deficient cells compared with controls. These results support a major role for SHIP in modulating pathways important in homeostasis and regeneration of hematopoietic stem cells, and emphasize the importance of negative cytokine regulation at the earliest stages of hematopoiesis.
Collapse
Affiliation(s)
- Cheryl D Helgason
- Department of Cancer Endocrinology, British Columbia Cancer Agency, 601 W 10th Ave, Vancouver, British Columbia Canada V5Z 1L3.
| | | | | | | |
Collapse
|
129
|
Ehrhardt GRA, Davis RS, Hsu JT, Leu CM, Ehrhardt A, Cooper MD. The inhibitory potential of Fc receptor homolog 4 on memory B cells. Proc Natl Acad Sci U S A 2003; 100:13489-94. [PMID: 14597715 PMCID: PMC263841 DOI: 10.1073/pnas.1935944100] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fc receptor homolog 4 (FcRH4) is a B cell-specific member of the recently identified family of FcRHs whose intracellular domain contains three potential immunoreceptor tyrosine-based inhibitory motifs (ITIMs). The signaling potential of this receptor, shown here to be preferentially expressed by memory B cells, was compared with the inhibitory receptor FcgammaRIIb in B cells expressing either WT FcgammaRIIb or chimeric proteins in which the intracellular domain of FcRH4 was fused to the transmembrane and extracellular domains of FcgammaRIIb. Coligation of the FcgammaRIIb/FcRH4 chimeric protein with the B cell receptor (BCR) led to tyrosine phosphorylation of the two membrane-distal tyrosines and profound inhibition of BCR-mediated calcium mobilization, whole cell tyrosine phosphorylation, and mitogen-activated protein (MAP)-kinase activation. Mutational analysis of the FcRH4 cytoplasmic region indicated that the two membrane-distal ITIMs are essential for this inhibitory potential. Phosphopeptides corresponding to these ITIMs could bind the Src homology 2 (SH2) domain-containing tyrosine phosphatases SHP-1 and SHP-2, which associated with the WT FcRH4 and with mutants having inhibitory capability. These findings indicate the potential for FcRH4 to abort B cell receptor signaling by recruiting SHP-1 and SHP-2 to its two membrane distal ITIMs.
Collapse
Affiliation(s)
- Gotz R A Ehrhardt
- Divisions of Developmental and Clinical Immunology and Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
130
|
Abstract
Adaptor proteins are unique, as they contain modular domains and lack intrinsic enzymatic activity. These proteins are scaffolds for the organization of macromolecular complexes and they recruit other proteins for correct localization during molecular signal transduction. Numerous recent advances have been made through the elucidation of new adaptor proteins and the recognition of novel functions for previously identified molecules. In addition, the roles of adaptors in both the positive and negative regulation of lymphocyte activation have been further clarified.
Collapse
Affiliation(s)
- Erin Janssen
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
131
|
Jones N, Chen SH, Sturk C, Master Z, Tran J, Kerbel RS, Dumont DJ. A unique autophosphorylation site on Tie2/Tek mediates Dok-R phosphotyrosine binding domain binding and function. Mol Cell Biol 2003; 23:2658-68. [PMID: 12665569 PMCID: PMC152553 DOI: 10.1128/mcb.23.8.2658-2668.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tie2/Tek is an endothelial cell receptor tyrosine kinase that induces signal transduction pathways involved in cell migration upon angiopoietin-1 (Ang1) stimulation. To address the importance of the various tyrosine residues of Tie2 in signal transduction, we generated a series of Tie2 mutants and examined their signaling properties. Using this approach in conjunction with a phosphorylation state-specific antibody, we identified tyrosine residue 1106 on Tie2 as an Ang1-dependent autophosphorylation site that mediates binding and phosphorylation of the downstream-of-kinase-related (Dok-R) docking protein. This tyrosine residue is contained within a unique interaction motif for the phosphotyrosine binding domain of Dok-R, and the pleckstrin homology domain of Dok-R further contributes to Tie2 binding in a phosphatidylinositol 3'-kinase-dependent manner. Introduction of a Tie2 mutant lacking tyrosine residue 1106 into endothelial cells interferes with Dok-R phosphorylation in response to Ang1. Furthermore, this mutant is unable to restore the migration potential of endothelial cells derived from mice lacking Tie2. Together, these findings demonstrate that tyrosine residue 1106 on Tie2 is critical for coupling downstream cell migration signal transduction pathways with Ang1 stimulation in endothelial cells.
Collapse
Affiliation(s)
- Nina Jones
- Division of Molecular and Cellular Biology Research, Sunnybrook and Women's College Research Institute, Toronto, Ontario M4N 3M5, Canada
| | | | | | | | | | | | | |
Collapse
|
132
|
Jordan MS, Singer AL, Koretzky GA. Adaptors as central mediators of signal transduction in immune cells. Nat Immunol 2003; 4:110-6. [PMID: 12555096 DOI: 10.1038/ni0203-110] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adaptors are molecular scaffolds that recruit effectors, which are critical for immune cell activation. Recent work has underscored the requirement for adaptors in propagating stimulatory signals as well as their ability to inhibit immune cell function. The mechanisms by which adaptors function rely not only on the intermolecular interactions they mediate, but also on where they are localized within the cell. The use of sophisticated genetic, biochemical, cellular and imaging approaches has provided important new insights into the biology of adaptor protein function. Here we focus on T lymphocytes as a model to illustrate the critical roles adaptors play as regulators of cellular activation.
Collapse
Affiliation(s)
- Martha S Jordan
- Signal Transduction Program, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
133
|
Favre C, Gérard A, Clauzier E, Pontarotti P, Olive D, Nunès JA. DOK4 and DOK5: new Dok-related genes expressed in human T cells. Genes Immun 2003; 4:40-5. [PMID: 12595900 DOI: 10.1038/sj.gene.6363891] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dok proteins are adapter proteins involved in signal transduction. Several intracellular proteins expressed in lymphocytes meet the criteria of membrane-associated adapter proteins such as members of the Dok family. To understand the role and the formation of multiprotein networks involving Dok proteins in T lymphocytes, we search for potential additional members of this family. Here, we describe the two new human dok-related genes DOK4 and DOK5 and present data showing the expression of DOK4 and DOK5 genes in T cells. These genes are the orthologues of mouse Dok4 and Dok5 genes. Based on analysis of phylogenetic trees and exon/intron structure of Dok family members, DOK4 and DOK5 define a subfamily within dok genes distinct from DOK1, DOK2 and DOK3. So, Dok-4 and Dok-5 molecules constitute a new group of adapter proteins in T cells, requiring further functional analysis.
Collapse
Affiliation(s)
- C Favre
- U11 INSERM, Institut de Cancérologie et d'Immunologie de Marseille, Université de la Méditerranée, Marseille, France
| | | | | | | | | | | |
Collapse
|
134
|
Abstract
Recent studies of the major cell types involved in the initiation and progression of allergic inflammation have revealed that they express an unexpectedly large number of surface receptors that inhibit the release of proinflammatory mediators from mast cells and basophils in vitro. Moreover, analyses of animals deficient in some of these receptors, for example, Fc(gamma)RIIB, gp49B1 and paired Ig-like receptor (PIR)-B, have shown that the molecules indeed suppress allergic responses driven by the adaptive immune response in vivo. These findings support the emerging concept that allergic diseases are caused not only by excessive activation of cells but also from deficiencies in receptors that suppress these activation responses.
Collapse
Affiliation(s)
- Howard R Katz
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
135
|
Abstract
There is now renewed interest in the role of antibodies in autoimmunity. Recent compelling evidence indicates that autoantibodies and the effector mechanisms they induce, for example, Fc receptor activation of leukocytes and/or the complement cascade, are central players in the development of autoimmunity, by perpetuating inflammation and perhaps even regulating the process itself. Of increasing interest are Fc receptors, which have been more closely investigated in the past decade using recombinant proteins, gene deficient mice and mouse models of human disease. These analyses point towards major roles of Fc receptors in antibody hypersensitivity reactions and by extension autoimmune disease, and they reveal opportunities in the development of novel therapeutic approaches in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- P Mark Hogarth
- Helen McPherson-Smith Laboratory, Austin Research Institute, Heidelberg, VIC, Australia.
| |
Collapse
|
136
|
Feldhahn N, Schwering I, Lee S, Wartenberg M, Klein F, Wang H, Zhou G, Wang SM, Rowley JD, Hescheler J, Krönke M, Rajewsky K, Küppers R, Müschen M. Silencing of B cell receptor signals in human naive B cells. J Exp Med 2002; 196:1291-305. [PMID: 12438421 PMCID: PMC2193982 DOI: 10.1084/jem.20020881] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
To identify changes in the regulation of B cell receptor (BCR) signals during the development of human B cells, we generated genome-wide gene expression profiles using the serial analysis of gene expression (SAGE) technique for CD34(+) hematopoietic stem cells (HSCs), pre-B cells, naive, germinal center (GC), and memory B cells. Comparing these SAGE profiles, genes encoding positive regulators of BCR signaling were expressed at consistently lower levels in naive B cells than in all other B cell subsets. Conversely, a large group of inhibitory signaling molecules, mostly belonging to the immunoglobulin superfamily (IgSF), were specifically or predominantly expressed in naive B cells. The quantitative differences observed by SAGE were corroborated by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry. In a functional assay, we show that down-regulation of inhibitory IgSF receptors and increased responsiveness to BCR stimulation in memory as compared with naive B cells at least partly results from interleukin (IL)-4 receptor signaling. Conversely, activation or impairment of the inhibitory IgSF receptor LIRB1 affected BCR-dependent Ca(2+) mobilization only in naive but not memory B cells. Thus, LIRB1 and IL-4 may represent components of two nonoverlapping gene expression programs in naive and memory B cells, respectively: in naive B cells, a large group of inhibitory IgSF receptors can elevate the BCR signaling threshold to prevent these cells from premature activation and clonal expansion before GC-dependent affinity maturation. In memory B cells, facilitated responsiveness upon reencounter of the immunizing antigen may result from amplification of BCR signals at virtually all levels of signal transduction.
Collapse
Affiliation(s)
- Niklas Feldhahn
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, 50931 Köln, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Kawakami T, Galli SJ. Regulation of mast-cell and basophil function and survival by IgE. Nat Rev Immunol 2002; 2:773-86. [PMID: 12360215 DOI: 10.1038/nri914] [Citation(s) in RCA: 447] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mast cells and basophils are important effector cells in T helper 2 (T(H)2)-cell-dependent, immunoglobulin-E-associated allergic disorders and immune responses to parasites. The crosslinking of IgE that is bound to the high-affinity receptor Fc epsilon RI with multivalent antigen results in the aggregation of Fc epsilon RI and the secretion of products that can have effector, immunoregulatory or autocrine effects. This response can be enhanced markedly in cells that have been exposed to high levels of IgE, which results in the increased surface expression of Fc epsilon RI. Moreover, recent work indicates that monomeric IgE (in the absence of crosslinking) can render mast cells resistant to apoptosis induced by growth-factor deprivation in vitro and, under certain circumstances, can induce the release of cytokines. So, the binding of IgE to Fc epsilon RI might influence mast-cell and basophil survival directly or indirectly, and can also regulate cellular function.
Collapse
Affiliation(s)
- Toshiaki Kawakami
- Division of Allergy, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, California 92121, USA
| | | |
Collapse
|
138
|
Ehrhardt A, Ehrhardt GRA, Guo X, Schrader JW. Ras and relatives--job sharing and networking keep an old family together. Exp Hematol 2002; 30:1089-106. [PMID: 12384139 DOI: 10.1016/s0301-472x(02)00904-9] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Many members of the Ras superfamily of GTPases have been implicated in the regulation of hematopoietic cells, with roles in growth, survival, differentiation, cytokine production, chemotaxis, vesicle-trafficking, and phagocytosis. The well-known p21 Ras proteins H-Ras, N-Ras, K-Ras 4A, and K-Ras 4B are also frequently mutated in human cancer and leukemia. Besides the four p21 Ras proteins, the Ras subfamily of the Ras superfamily includes R-Ras, TC21 (R-Ras2), M-Ras (R-Ras3), Rap1A, Rap1B, Rap2A, Rap2B, RalA, and RalB. They exhibit remarkable overall amino acid identities, especially in the regions interacting with the guanine nucleotide exchange factors that catalyze their activation. In addition, there is considerable sharing of various downstream effectors through which they transmit signals and of GTPase activating proteins that downregulate their activity, resulting in overlap in their regulation and effector function. Relatively little is known about the physiological functions of individual Ras family members, although the presence of well-conserved orthologs in Caenorhabditis elegans suggests that their individual roles are both specific and vital. The structural and functional similarities have meant that commonly used research tools fail to discriminate between the different family members, and functions previously attributed to one family member may be shared with other members of the Ras family. Here we discuss similarities and differences in activation, effector usage, and functions of different members of the Ras subfamily. We also review the possibility that the differential localization of Ras proteins in different parts of the cell membrane may govern their responses to activation of cell surface receptors.
Collapse
Affiliation(s)
- Annette Ehrhardt
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
139
|
Kalesnikoff J, Lam V, Krystal G. SHIP represses mast cell activation and reveals that IgE alone triggers signaling pathways which enhance normal mast cell survival. Mol Immunol 2002; 38:1201-6. [PMID: 12217384 DOI: 10.1016/s0161-5890(02)00064-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hemopoietic specific, Src homology 2-containing inositol 5' phosphatase (SHIP) hydrolyzes the phosphatidylinositol (PI)-3-kinase generated second messenger, PI-3,4,5-trisphosphate (PIP(3)), to PI-3,4-bisphosphate (PI-3,4-P(2)) in normal bone marrow derived mast cells (BMMCs). As a consequence, SHIP negatively regulates IgE+antigen (Ag)-induced degranulation as well as leukotriene and inflammatory cytokine production. Interestingly, in the absence of SHIP, BMMCs degranulate extensively with IgE alone, i.e. without Ag, suggesting that IgE alone is capable of stimulating signaling in normal BMMCs and that SHIP prevents this signaling from progressing to degranulation. To test this, we compared signaling events triggered by monomeric IgE versus IgE+Ag in normal BMMCs and found that multiple pathways are triggered by monomeric IgE alone and, while they are in general weaker than those stimulated by IgE+Ag, they are more prolonged. Moreover, while SHIP prevents this IgE-induced signalling from progressing to degranulation or leukotriene production it allows sufficient production of autocrine acting cytokines, in part by activation of NFkappaB, to enhance BMMC survival. Interestingly, the activation of NFkappaB and the level of cytokines produced are far higher with IgE than with IgE+Ag. Moreover, IgE alone maintains Bcl-X(L) levels and enhances the adhesion of BMMCs to fibronectin and this likely enhances their survival still further.
Collapse
Affiliation(s)
- Janet Kalesnikoff
- Terry Fox Laboratory, BC Cancer Agency, 601 West, 10th Avenue, BC, V5Z 1L3, Vancouver, Canada
| | | | | |
Collapse
|
140
|
Malbec O, Attal JP, Fridman WH, Daëron M. Negative regulation of mast cell proliferation by FcgammaRIIB. Mol Immunol 2002; 38:1295-9. [PMID: 12217398 DOI: 10.1016/s0161-5890(02)00078-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
FcgammaRIIB are single-chain low-affinity receptors for the Fc portion of IgG antibodies that are widely expressed by hematopoietic cells including mast cells. We previously demonstrated that FcgammaRIIB negatively regulate cell activation triggered by receptors that possess Immunoreceptor Tyrosine-based Activation Motifs (ITAMs) including high-affinity IgE receptors (FcepsilonRI). FcgammaRIIB possess an Immunoreceptor Tyrosine-based Inhibition Motif (ITAM) whose deletion or mutation abolishes inhibition. When coaggregated with FcepsilonRI, the FcgammaRIIB ITIM is tyrosyl-phosphorylated by the src family protein tyrosine kinase lyn, and recruits the SH2 domain-containing inositol 5-phosphatase SHIP that accounts for inhibition of cell activation. We found recently that, when coaggregated with Kit, FcgammaRIIB can also inhibit mast cell proliferation: thymidine incorporation is inhibited, cells do not enter the G1 phase of the cell cycle, the induction of cyclins D2, D3 and A is inhibited, the activation of the MAP kinases Erk1/2, JNK and p38 is decreased, Akt phosphorylation is inhibited, and SHIP coprecipitates with FcgammaRIIB. Although inhibition of Akt phosphorylation and Erk activation was abrogated in SHIP(-/-) cells, inhibition of thymidine incorporation was only partially reduced. FcgammaRIIB-dependent inhibition of Kit-mediated mast cell proliferation was however mimicked by FcgammaRIIB whose intracytoplasmic domain was replaced by the catalytic domain of SHIP. We also found that FcgammaRIIB can inhibit the proliferation of cells whose proliferation was rendered growth factor-independent because they express a mutated form of Kit that renders this RTK constitutively activated. Based on these results we developed models aiming at using FcgammaRIIB as targets for new therapeutic approaches of disease associated with mast cell activation such as allergies and diseases associated with mast cell proliferation such as mastocytosis, mastocytomas or mast cell leukemias.
Collapse
Affiliation(s)
- Odile Malbec
- Laboratoire d'Immunologie Cellulaire et Clinique, INSERM U.255, Institut Biomédical des Cordeliers, 15 rue de l'Ecole de Médecine, 75006, Paris, France
| | | | | | | |
Collapse
|
141
|
Affiliation(s)
- Toshiyuki Takai
- Department of Experimental Immunology, Japan Science and Technology Corporation, Institute of Development, Ageing and Cancer, Tohoku University, Seiryo, Sendai, Japan.
| |
Collapse
|
142
|
Kurosaki T, Okada T. Regulation of phospholipase C-gamma2 and phosphoinositide 3-kinase pathways by adaptor proteins in B lymphocytes. Int Rev Immunol 2002; 20:697-711. [PMID: 11913946 DOI: 10.3109/08830180109045586] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The importance of phosphoinositide 3-kinase (PI3K) and phospholipase C (PLC)-gamma2 in B cell function and development has been highlighted by gene targeting experiments in mice. In fact, these knockout mice exhibit a profound inhibition of proliferative responses upon B cell receptor (BCR) engagement. The molecular connections between these effectors and upstream tyrosine kinases such as Syk have been studied intensively in the past few years. This mechanism involves the action of cytoplasmic adaptor molecules, which participate in forming multicomponent signaling complexes, thereby directing the appropriate subcellular localization of effector enzymes. In addition to these cytoplasmic adaptor proteins, cell surface coreceptors can be viewed as transmembrane adaptor proteins, because coreceptors can also change the localization of effector enzymes, which in turn modulates the BCR-initiated signals.
Collapse
Affiliation(s)
- T Kurosaki
- Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi, Japan.
| | | |
Collapse
|
143
|
Suzu S, Motoyoshi K. Signal transduction in macrophages: negative regulation for macrophage colony-stimulating factor receptor signaling. Int J Hematol 2002; 76:1-5. [PMID: 12138890 DOI: 10.1007/bf02982712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The receptor for macrophage colony-stimulating factor (M-CSF) is expressed in monocytes/macrophages and their progenitor cells and stimulates both the growth and development of the blood-cell lineage. Although the specific components positively regulating M-CSF receptor signaling have been relatively well defined, it is now clear that important mechanisms to control the signaling cascades also exist. This review discusses the most recent results concerning the negative regulatory molecules for M-CSF receptor signaling. In particular, we focus on negative molecules for both proliferation of monocytes/macrophages and differentiation into mature cells.
Collapse
Affiliation(s)
- Shinya Suzu
- Biochemical Research Laboratory, Morinaga Milk Industry, Kanagawa, Japan
| | | |
Collapse
|
144
|
Suzuki T, Coustan-Smith E, Mihara K, Campana D. Signals mediated by FcgammaRIIA suppress the growth of B-lineage acute lymphoblastic leukemia cells. Leukemia 2002; 16:1276-84. [PMID: 12094251 DOI: 10.1038/sj.leu.2402523] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2001] [Accepted: 02/18/2002] [Indexed: 11/08/2022]
Abstract
We examined Fc receptor expression and function in normal and leukemic human immature B cells. Fc receptor expression increased with normal B cell maturation: CD32(+) cells composed 8.1% +/- 1.2% (mean +/- s.d.) of the least mature (CD34(+)CD10(+)), 19.2% +/- 5.7% of intermediate (CD34(-)CD10(+)), and 82.4% +/- 5.0% of mature (CD34(-)CD10(-)) bone marrow CD19(+) B cells. Forty-five of 57 primary B-lineage acute lymphoblastic leukemia samples and all six cell lines studied expressed Fc receptors. By RT-PCR and antibody staining, FcgammaRIIA was the Fc receptor predominantly expressed in these cells. FcgammaRIIA ligation in RS4;11 and 380 cells induced tyrosine phosphorylation of CD32, CD19, CBL, SYK, P13-K p85 and SHIP, as well as RasGAP association with tyrosine-phosphorylated p62(dok). These signalling events resulted in a marked suppression of leukemia cell growth. After a 7-day exposure to anti-CD32, the recovery of ALL cells cocultured with stroma was reduced to 5.5% +/- 2.8% of control values in 380 cells (n = 14), 19.4% +/- 6.1% (n = 8) in RS4;11, and 4.0% +/- 1.3% (n = 6) in KOPN55bi. CD32 ligation also reduced cell recovery in five of seven CD32(+) primary leukemia samples. Thus, FcgammaRIIA mediates signals that suppress the growth of lymphoid leukemia cells.
Collapse
Affiliation(s)
- T Suzuki
- Department of Hematology-Oncology, St Jude Children's Research Hospital, Memphis, TN 38105-2794, USA
| | | | | | | |
Collapse
|
145
|
Abstract
Immune cells are activated as a result of productive interactions between ligands and various receptors known as immunoreceptors. These receptors function by recruiting cytoplasmic protein tyrosine kinases, which trigger a unique phosphorylation signal leading to cell activation. In the recent past, there has been increasing interest in elucidating the processes involved in the negative regulation of immunoreceptor-mediated signal transduction. Evidence is accumulating that immunoreceptor signaling is inhibited by complex and highly regulated mechanisms that involve receptors, protein tyrosine kinases, protein tyrosine phosphatases, lipid phosphatases, ubiquitin ligases, and inhibitory adaptor molecules. Genetic evidence indicates that this inhibitory machinery is crucial for normal immune cell homeostasis.
Collapse
Affiliation(s)
- André Veillette
- Laboratory of Molecular Oncology, IRCM, 110 Pine Avenue West, Montréal, Québec, Canada H2W 1R7.
| | | | | |
Collapse
|
146
|
Huber M, Kalesnikoff J, Reth M, Krystal G. The role of SHIP in mast cell degranulation and IgE-induced mast cell survival. Immunol Lett 2002; 82:17-21. [PMID: 12008029 DOI: 10.1016/s0165-2478(02)00012-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Atopic disorders are on the increase in the Western world and are due, at least in part, to an overactive mast cell response. A better understanding of the intracellular signalling pathways that regulate both mast cell degranulation and the secretion of arachidonic acid metabolites and inflammatory cytokines could help in the treatment of these disorders. The src homology 2-containing inositol-polyphosphate 5'-phosphatase, SHIP, has been shown to be a key 'gatekeeper' of mast cell degranulation. SHIP prevents degranulation from occuring when IgE alone binds to the high-affinity receptor for IgE (FcvarepsilonR1), SHIP restrains it when IgE-bound FcvarepsilonR1 are engaged by multivalent allergens, and SHIP inhibits it when an IgG against the same allergen co-clusters the inhibitory low-affinity receptor for IgG (FcgammaRIIB) with the IgE receptor. SHIP acts as a negative regulator of degranulation by hydrolyzing phosphatidylinositol-3,4,5-trisphosphate, a second messenger generated in activated cells by phosphatidylinositol 3-kinase. Our finding that binding of only IgE to the FcvarepsilonR1 of SHIP-deficient mast cells results in massive degranulation, led us to investigate the signalling pathways that are triggered in normal murine bone marrow-derived mast cells by monomeric IgE. We report here that monomeric IgE activates signalling pathways resulting in mast cell survival, without stimulating degranulation or proliferation. These studies demonstrate that mast cell sensitization by IgE is an active rather than a passive process.
Collapse
Affiliation(s)
- Michael Huber
- Department of Molecular Immunology, Biology III, University of Freiburg and Max-Planck-Institute for Immunobiology, Freiburg, Germany.
| | | | | | | |
Collapse
|
147
|
Abramson J, Pecht I. Clustering the mast cell function-associated antigen (MAFA) leads to tyrosine phosphorylation of p62Dok and SHIP and affects RBL-2H3 cell cycle. Immunol Lett 2002; 82:23-8. [PMID: 12008030 DOI: 10.1016/s0165-2478(02)00013-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mast cell function-associated antigen (MAFA) is a type II membranal glycoprotein expressed by rat mast cells and basophils. MAFA clustering by its specific monoclonal antibody, (mAb) G63, efficiently inhibits the FcvarepsilonRI induced secretory response of mucosal-type mast cells of the RBL-2H3 line, as well as bone marrow-derived mast cells. Here we present results which suggest that MAFA has also a capacity of modulating the cell cycle of the RBL-2H3 line. We found that MAFA clustering, by mAb G63 or by its F(ab')2 fragments, reduces the cell proliferation rate. Cell cycle analysis by flow cytometry revealed that the number of cells in sub-G phase is considerably higher for cells on which MAFA was clustered. Results of biochemical experiments established that MAFA clustering leads to a marked increase in the transient tyrosine phosphorylation of the adaptor protein p62(Dok) and the inositol phosphatase SHIP. Concomitantly, their respective binding to RasGAP and Shc was increased. Furthermore, the GTP binding protein Sos1 was found to dissociate from Shc upon MAFA clustering, suggesting that SHIP and Sos1 compete for Shc binding. We therefore suggest that MAFA has also a role in regulating RBL-2H3 cell proliferation rate by inhibiting RasGTP formation in the Ras signaling pathway.
Collapse
Affiliation(s)
- Jakub Abramson
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
148
|
Leitges M, Gimborn K, Elis W, Kalesnikoff J, Hughes MR, Krystal G, Huber M. Protein kinase C-delta is a negative regulator of antigen-induced mast cell degranulation. Mol Cell Biol 2002; 22:3970-80. [PMID: 12024011 PMCID: PMC133855 DOI: 10.1128/mcb.22.12.3970-3980.2002] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation of mast cell degranulation is dependent on the subtle interplay of cellular signaling proteins. The Src homology 2 (SH2) domain-containing inositol-5'-phosphatase (SHIP), which acts as the gatekeeper of degranulation, binds via both its SH2 domain and its phosphorylated NPXY motifs to the adapter protein Shc via the latter's phosphorylated tyrosines and phosphotyrosine-binding domain, respectively. This theoretically leaves Shc's SH2 domain available to bind proteins, which might be part of the SHIP/Shc complex. In a search for such proteins, protein kinase C-delta (PKC-delta) was found to coprecipitate in mast cells with Shc and to interact with Shc's SH2 domain following antigen or pervanadate stimulation. Phosphorylation of PKC-delta's Y(332), most likely by Lyn, was found to be responsible for PKC-delta's binding to Shc's SH2 domain. Using PKC-delta(-/-) bone marrow-derived mast cells (BMMCs), we found that the antigen-induced tyrosine phosphorylation of Shc was similar to that in wild-type (WT) BMMCs while that of SHIP was significantly increased. Moreover, increased translocation of PKC-delta to the membrane, as well as phosphorylation at T505, was observed in SHIP(-/-) BMMCs, demonstrating that while PKC-delta regulates SHIP phosphorylation, SHIP regulates PKC-delta localization and activation. Interestingly, stimulation of PKC-delta(-/-) BMMCs with suboptimal doses of antigen yielded a more sustained calcium mobilization and a significantly higher level of degranulation than that of WT cells. Altogether, our data suggest that PKC-delta is a negative regulator of antigen-induced mast cell degranulation.
Collapse
Affiliation(s)
- Michael Leitges
- Max Planck Institute for Experimental Endocrinology, 30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
149
|
Ott VL, Tamir I, Niki M, Pandolfi PP, Cambier JC. Downstream of kinase, p62(dok), is a mediator of Fc gamma IIB inhibition of Fc epsilon RI signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4430-9. [PMID: 11970986 DOI: 10.4049/jimmunol.168.9.4430] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The low-affinity receptor for IgG, Fc gamma RIIB, is expressed widely in the immune system and functions to attenuate Ag-induced immune responses. In mast cells, coaggregation of Fc gamma RIIB with the high-affinity IgE receptor, Fc epsilon RI, leads to inhibition of Ag-induced degranulation and cytokine production. Fc gamma RIIB inhibitory activity requires a conserved motif within the Fc gamma RIIB cytoplasmic domain termed the immunoreceptor tyrosine-based inhibition motif. When coaggregated with an activating receptor (e.g., Fc epsilon RI, B cell Ag receptor), Fc gamma RIIB is rapidly phosphorylated on tyrosine and recruits the SH2 domain-containing inositol 5-phosphatase (SHIP). However, the mechanisms by which SHIP mediates Fc gamma RIIB inhibitory function in mast cells remain poorly defined. In this report we demonstrate that Fc gamma RIIB coaggregation with Fc epsilon RI stimulates enhanced SHIP tyrosine phosphorylation and association with Shc and p62(dok). Concurrently, enhanced p62(dok) tyrosine phosphorylation and association with RasGAP are observed, suggesting that SHIP may mediate Fc gamma RIIB inhibitory function in mast cells via recruitment of p62(dok) and RasGAP. Supporting this hypothesis, recruitment of p62(dok) to Fc epsilon RI is sufficient to inhibit Fc epsilon RI-induced calcium mobilization and extracellular signal-regulated kinase 1/2 activation. Interestingly, both the amino-terminal pleckstrin homology and phosphotyrosine binding domains and the carboxyl-terminal proline/tyrosine-rich region of p62(dok) can mediate inhibition, suggesting activation of parallel downstream signaling pathways that converge at extracellular signal-regulated kinase 1/2 activation. Finally, studies using gene-ablated mice indicate that p62(dok) is dispensable for Fc gamma RIIB inhibitory signaling in mast cells. Taken together, these data suggest a role for p62(dok) as a mediator of Fc gamma RIIB inhibition of Fc epsilon RI signal transduction in mast cells.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Animals
- Antigens, CD/metabolism
- Calcium/metabolism
- Cell Membrane/metabolism
- Cells, Cultured
- DNA-Binding Proteins
- Mast Cells/immunology
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinases/metabolism
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphoproteins/genetics
- Phosphoproteins/physiology
- Phosphoric Monoester Hydrolases/metabolism
- Phosphorylation
- Phosphotyrosine/metabolism
- Proteins/metabolism
- RNA-Binding Proteins
- Rats
- Receptor Aggregation
- Receptors, IgE/antagonists & inhibitors
- Receptors, IgG/metabolism
- Shc Signaling Adaptor Proteins
- Signal Transduction
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Tumor Cells, Cultured
- ras GTPase-Activating Proteins/metabolism
Collapse
Affiliation(s)
- Vanessa L Ott
- Integrated Department of Immunology, National Jewish Medical and Research Center and University of Colorado Health Sciences Center, Denver, CO 80206, USA
| | | | | | | | | |
Collapse
|
150
|
Kalesnikoff J, Baur N, Leitges M, Hughes MR, Damen JE, Huber M, Krystal G. SHIP negatively regulates IgE + antigen-induced IL-6 production in mast cells by inhibiting NF-kappa B activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4737-46. [PMID: 11971024 DOI: 10.4049/jimmunol.168.9.4737] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We demonstrate in this study that IgE + Ag-induced proinflammatory cytokine production is substantially higher in Src homology-2-containing inositol 5'-phosphatase (SHIP)(-/-) than in SHIP(+/+) bone marrow-derived mast cells (BMMCs). Focusing on IL-6, we found that the repression of IL-6 mRNA and protein production in SHIP(+/+) BMMCs requires the enzymatic activity of SHIP, because SHIP(-/-) BMMCs expressing wild-type, but not phosphatase-deficient (D675G), SHIP revert the IgE + Ag-induced increase in IL-6 mRNA and protein down to levels seen in SHIP(+/+) BMMCs. Comparing the activation of various signaling pathways to determine which ones might be responsible for the elevated IL-6 production in SHIP(-/-) BMMCs, we found the phosphatidylinositol 3-kinase/protein kinase B (PKB), extracellular signal-related kinase (Erk), p38, c-Jun N-terminal kinase, and protein kinase C (PKC) pathways are all elevated in IgE + Ag-induced SHIP(-/-) cells. Moreover, inhibitor studies suggested that all these pathways play an essential role in IL-6 production. Looking downstream, we found that IgE + Ag-induced IL-6 production is dependent on the activity of NF-kappa B and that I kappa B phosphorylation/degradation and NF-kappa B translocation, DNA binding and transactivation are much higher in SHIP(-/-) BMMCs. Interestingly, using various pathway inhibitors, it appears that the phosphatidylinositol 3-kinase/PKB and PKC pathways elevate IL-6 mRNA synthesis, at least in part, by enhancing the phosphorylation of I kappa B and NF-kappa B DNA binding while the Erk and p38 pathways enhance IL-6 mRNA synthesis by increasing the transactivation potential of NF-kappa B. Taken together, our data are consistent with a model in which SHIP negatively regulates NF-kappa B activity and IL-6 synthesis by reducing IgE + Ag-induced phosphatidylinositol-3,4,5-trisphosphate levels and thus PKB, PKC, Erk, and p38 activation.
Collapse
Affiliation(s)
- Janet Kalesnikoff
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|