101
|
Chen Y, Georgi A, Zhang W, Kopinke FD, Yan J, Saeidi N, Li J, Gu M, Chen M. Mechanistic insights into fast adsorption of perfluoroalkyl substances on carbonate-layered double hydroxides. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124815. [PMID: 33370694 DOI: 10.1016/j.jhazmat.2020.124815] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/06/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Layered double hydroxide (LDH) with the metal composition of Cu(II)Mg(II)Fe(III) was prepared as an adsorbent for fast adsorption of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA). 84% of PFOS and 48% of PFOA in relation to the equilibrium state were adsorbed in the first minutes of contact with 0.1 g/L of suspended µm-sized LDH particles. The adsorption mechanisms of PFOS and PFOA on the CuMgFe-LDH were interpreted. Hydrophobic interactions were primarily responsible for the adsorption of these compounds in accordance with the different adsorption affinities of long-chain (C8, Kd = 105 L/kg) and short-chain (C4, Kd = 102 L/kg) perfluorinated carboxylic acids. PFOA adsorption on CuMgFe-LDH was strongly suppressed under alkaline conditions while PFOS uptake was only slightly affected in the pH range from 4.3 to 10.7, indicating a significant role of electrostatic interactions for PFOA adsorption. The adsorption of PFOS and PFOA was rather insensitive to competition by monovalent anions. The previously reported 'memory effect' of calcined CuMgFe-LDH for sorption of organic anions was not confirmed in the present study. Spent CuMgFe-LDH could be easily regenerated by extraction with 50 vol% methanol in water within 1 h and maintained a high PFOS removal in subsequent usage cycles.
Collapse
Affiliation(s)
- Yun Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, D-04318 Leipzig, Germany
| | - Anett Georgi
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, D-04318 Leipzig, Germany.
| | - Wenying Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Frank-Dieter Kopinke
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, D-04318 Leipzig, Germany
| | - Jingchun Yan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Navid Saeidi
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, D-04318 Leipzig, Germany
| | - Jing Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mingyue Gu
- Nanjing Kaiye Environmental Technology Co. Ltd., Nanjing University Science Park, Nanjing 210034, China
| | - Mengfang Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
102
|
Wang Q, Zhao Z, Ruan Y, Hua X, Chen H, Wang Y, Jin L, Tsui MMP, Yao Y, Lam PKS, Sun H. Occurrence and seasonal distribution of legacy and emerging per- and polyfluoroalkyl substances (PFASs) in different environmental compartments from areas around ski resorts in northern China. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124400. [PMID: 33168314 DOI: 10.1016/j.jhazmat.2020.124400] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/12/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
Skiing is an important direct input route of per- and polyfluoroalkyl substances (PFASs) to the environment. However, there has been no study on the occurrence of PFASs in Chinese ski area. In this study, 27 neutral PFASs (n-PFASs) and ionic PFASs (i-PFASs), including 4 emerging PFASs, were analyzed in the multimedia samples collected from areas around six ski resorts in Zhangjiakou and Shenyang to investigate the occurrence and seasonal distribution of PFASs. Both i-PFASs and n-PFASs were found in the air (13.2 ± 9.5 pg/m3 and 167 ± 173 pg/m3, respectively) and pine needles [1.44 ± 0.96 ng/g dry weight (dw) and 0.983 ± 0.590 ng/g dw], whereas only i-PFASs were found in the soil (0.755 ± 0.281 ng/g dw) and snow (3.30 ± 2.66 ng/kg). i-PFASs were significantly higher in samples collected around ski resorts than those from rural sites (n = 105, p < 0.05). Significantly higher perfluorooctanoate concentrations were found in the air around the ski resorts in winter (n = 33, p < 0.05). The i-PFASs were stable in the needle, and the short-chain PFASs in the needle could be ascribed to both air and root uptake. More attention should be paid to PFASs emissions in Zhangjiakou with the approaching 2022 Winter Olympic Games.
Collapse
Affiliation(s)
- Qi Wang
- MOE Key Laboratory of Pollution Processes and Environment Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Zhen Zhao
- MOE Key Laboratory of Pollution Processes and Environment Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Xia Hua
- MOE Key Laboratory of Pollution Processes and Environment Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environment Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environment Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Litao Jin
- MOE Key Laboratory of Pollution Processes and Environment Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mirabelle M P Tsui
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environment Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environment Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
103
|
Fiedler H, Kennedy T, Henry BJ. A Critical Review of a Recommended Analytical and Classification Approach for Organic Fluorinated Compounds with an Emphasis on Per- and Polyfluoroalkyl Substances. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2021; 17:331-351. [PMID: 33009873 PMCID: PMC7898881 DOI: 10.1002/ieam.4352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/21/2019] [Accepted: 08/18/2020] [Indexed: 05/26/2023]
Abstract
Organic fluorinated compounds have been detected in various environmental media and biota. Some of these compounds are regulated locally (e.g., perfluorononanoic acid maximum contaminant level in drinking water by the New Jersey Dept. of Environmental Protection), nationally (e.g., perfluorooctanoic acid maximum acceptable concentration in drinking water by Health Canada), or internationally (e.g., Stockholm Convention on Persistent Organic Pollutants). Globally, regulators and researchers seek to identify the organic fluorinated compounds associated with potential adverse effects, bioaccumulation, mobility, and persistence to manage their risks, and, to understand the beneficial attributes they bring to products such as first responder gear, etc. Clarity is needed to determine the best analytical method for the goal of the analyses (e.g., pure research or analysis to determine the extent of an accidental release, monitoring groundwater for specific compounds to determine regulatory compliance, and establish baseline levels in a river of organic fluorinated substances associated with human health risk prior to a clean-up effort). Analytical techniques that identify organic fluorine coupled together with targeted chemical analysis will yield information sufficient to identify public health or environmental hazards. Integr Environ Assess Manag 2021;17:331-351. © 2020. W.L. Gore & Associates Inc. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Heidelore Fiedler
- MTM Research Centre, School of Science and TechnologyÖrebro UniversityÖrebroSweden
| | | | | |
Collapse
|
104
|
Scheurer M, Nödler K. Ultrashort-chain perfluoroalkyl substance trifluoroacetate (TFA) in beer and tea - An unintended aqueous extraction. Food Chem 2021; 351:129304. [PMID: 33657499 DOI: 10.1016/j.foodchem.2021.129304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/29/2020] [Accepted: 02/03/2021] [Indexed: 02/08/2023]
Abstract
Trifluoroacetate (TFA) is an ultrashort-chain perfluoroalkyl substance, which is ubiquitously present in the aqueous environment. Due to its high mobility, it accumulates in plant material. The study presented here shows for the first time that TFA is a widely spread contaminant in beer and tea / herbal infusions. In 104beer samples from 23countries, TFA was detected up to 51 µg/L with a median concentration of 6.1 µg/L. An indicative brewing test and a correlation approach with potassium (K) indicate that the main source of TFA in beer is most likely the applied malt. It could be proven that the impact of the applied water is negligible in terms of TFA, which was supported by the analysis of numerous tap water samples from different countries. The unintended extraction of TFA was also demonstrated for tea / herbal infusions with a median concentration of 2.4 µg/L.
Collapse
Affiliation(s)
- Marco Scheurer
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, 76139 Karlsruhe, Germany.
| | - Karsten Nödler
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, 76139 Karlsruhe, Germany.
| |
Collapse
|
105
|
Li D, Yao Y, Sun H. Emission and Mass Load of Artificial Sweeteners from a Pig Farm to Its Surrounding Environment: Contribution of Airborne Pathway and Biomonitoring Potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2307-2315. [PMID: 33539083 DOI: 10.1021/acs.est.0c05326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An investigation was conducted by determining artificial sweeteners (ASs) in 80 samples from various environmental matrices, including dry deposition, rainfall, soil, leaf, and bark samples around a pig farm in Tianjin, China. Saccharin, cyclamate, and acesulfame were predominant in dry deposition and rainfall samples. Spatially, the distribution of ASs showed a consistent trend of farm center > downwind sites > upwind sites > reference site. The annual total mass loads of saccharin (70%), cyclamate (25%), and acesulfame (5%) via dry deposition and precipitation within a 5 km radius of the pig farm were estimated at 3.9 and 6.2 kg in the average-case and worst-case scenarios, respectively, accounting for 12-18% of the overall emission, indicating that pig farms are a significant source of ASs to the atmosphere and to the vicinal environment via dry and wet deposition. The distribution trends of ASs in tree bark and leaves were similar and tree bark performed better in passively biomonitoring the AS contamination. Overall, pig farms were predicted to release 65-114, 22-38, 2.0-3.5, and 0.6-1.1 tons by feed application in China, Europe, Latin America, and North America, respectively, to the vicinal environment via dry deposition and precipitation.
Collapse
Affiliation(s)
- Dandan Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
106
|
D’Ambro EL, Pye HOT, Bash JO, Bowyer J, Allen C, Efstathiou C, Gilliam RC, Reynolds L, Talgo K, Murphy BN. Characterizing the Air Emissions, Transport, and Deposition of Per- and Polyfluoroalkyl Substances from a Fluoropolymer Manufacturing Facility. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:862-870. [PMID: 33395278 PMCID: PMC7887699 DOI: 10.1021/acs.est.0c06580] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have been released into the environment for decades, yet contributions of air emissions to total human exposure, from inhalation and drinking water contamination via deposition, are poorly constrained. The atmospheric transport and fate of a PFAS mixture from a fluoropolymer manufacturing facility in North Carolina were investigated with the Community Multiscale Air Quality (CMAQ) model applied at high resolution (1 km) and extending ∼150 km from the facility. Twenty-six explicit PFAS compounds, including GenX, were added to CMAQ using current best estimates of air emissions and relevant physicochemical properties. The new model, CMAQ-PFAS, predicts that 5% by mass of total emitted PFAS and 2.5% of total GenX are deposited within ∼150 km of the facility, with the remainder transported out. Modeled air concentrations of total GenX and total PFAS around the facility can reach 24.6 and 8500 ng m-3 but decrease to ∼0.1 and ∼10 ng m-3 at 35 km downwind, respectively. We find that compounds with acid functionality have higher deposition due to enhanced water solubility and pH-driven partitioning to aqueous media. To our knowledge, this is the first modeling study of the fate of a comprehensive, chemically resolved suite of PFAS air emissions from a major manufacturing source.
Collapse
Affiliation(s)
- Emma L. D’Ambro
- Oak Ridge Institute for Science Education, Oak Ridge, TN
- Center for Environmental Measurement and Modeling, U.S. EPA, Research Triangle Park, NC
| | - Havala O. T. Pye
- Center for Environmental Measurement and Modeling, U.S. EPA, Research Triangle Park, NC
| | - Jesse O. Bash
- Center for Environmental Measurement and Modeling, U.S. EPA, Research Triangle Park, NC
| | - James Bowyer
- North Carolina Division of Air Quality, NC DEQ, Raleigh, NC
| | - Chris Allen
- General Dynamics Information Technology, Research Triangle Park, NC
| | | | - Robert C. Gilliam
- Center for Environmental Measurement and Modeling, U.S. EPA, Research Triangle Park, NC
| | - Lara Reynolds
- General Dynamics Information Technology, Research Triangle Park, NC
| | - Kevin Talgo
- General Dynamics Information Technology, Research Triangle Park, NC
| | - Benjamin N. Murphy
- Center for Environmental Measurement and Modeling, U.S. EPA, Research Triangle Park, NC
| |
Collapse
|
107
|
Xu C, Liu Z, Song X, Ding X, Ding D. Legacy and emerging per- and polyfluoroalkyl substances (PFASs) in multi-media around a landfill in China: Implications for the usage of PFASs alternatives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141767. [PMID: 32889473 DOI: 10.1016/j.scitotenv.2020.141767] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/16/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
To date, per- and polyfluoroalkyl substances (PFASs) in environmental media surrounding landfills have not attracted much attention. In this study, six legacy PFASs, six short-chain analogues and five emerging alternatives were investigated in groundwater, surface water and sediment samples taken in the vicinity of a valley-type landfill, which had been in operation for over 20 years. Total PFAS concentrations of 110-236 ng/L, 17.3-163 ng/L and 7.91-164 ng/g dw were detected in the surface water, groundwater and sediment samples, respectively. Overall, perfluorooctanoic acid (PFOA) was the dominant PFAS in surface water, but elevated concentrations of perfluorobutanoic acid (PFBA) and perfluoropentanoic acid (PFPeA) were detected in the surface water samples taken adjacent to the landfill, suggesting that the landfill contributed to these compounds. PFBA was the dominant PFAS in the groundwater and sediments. The concentrations of long-chain perfluoroalkyl carboxylic acids (PFCAs) (C8-C12) in the sediment samples correlated significantly with the TOC, Al2O3 and Fe2O3 contents. The partitioning behaviors of PFCAs in the water-sediment system varied depending on the CF2 moiety units. For the long-chain PFCAs, positive correlations between the average LogKd and the number of CF2 moieties were found to be statistically significant, whereas negative correlations were observed for the short-chain PFCAs (C4-C7). The ratios of short-chain analogues and emerging alternatives versus their respective legacy PFOA and perfluorooctane sulfonate (PFOS) in surface water suggested an increasing trend of short-chain analogues, such as PFBA. The potential health risks of PFOS and PFOA, determined by calculating the estimated daily intake (EDI), were found to be negligible via the drinking groundwater exposure pathway, but more comprehensive studies on the human health risks of PFASs from landfills are essential.
Collapse
Affiliation(s)
- Chang Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoyang Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoyan Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
108
|
Zhao N, Zhao M, Liu W, Jin H. Atmospheric particulate represents a source of C 8-C 12 perfluoroalkyl carboxylates and 10:2 fluorotelomer alcohol in tree bark. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116475. [PMID: 33465649 DOI: 10.1016/j.envpol.2021.116475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
In this study, we analyzed 30 legacy and emerging poly- and perfluoroalkyl substances (PFASs) in paired atmospheric particulate and bark samples collected around a Chinese fluorochemical manufacturing park (FMP), with the aim to explore the sources of PFASs in tree bark. The results showed that PFASs in atmospheric particulate and tree bark samples were consistently dominated by perfluorooctanoate (mean 73 ng/g; 44 pg/m3), perfluorohexanoate (47 ng/g; 36 pg/m3), perfluorononanoate (9.1 ng/g; 8.8 pg/m3), and 10:2 fluorotelomer alcohol (10:2 FTOH; 5.6 ng/g; 12 pg/m3). Spatially, concentrations of C8-C12 perfluoroalkyl carboxylates (PFCAs) and 10:2 FTOH all showed a similar and exponentially decreased trend in both bark and atmospheric particulate samples with the increasing distance from the FMP. For the first time, we observed strongly significant (Spearman's correlation coefficient = 0.53-0.79, p < 0.01) correlations between bark and atmospheric particulate concentrations for C8-C12 PFCAs and 10:2 FTOH over 1-2 orders of magnitude, suggesting that the continues trapping of atmospheric particulates resulted in the accumulation of these compounds in bark. Overall, this study provides the first evidence that atmospheric particulate is an obvious source of C8-C12 PFCAs and 10:2 FTOH in tree bark. This result may further contribute to the application of tree bark as an indicator of certain PFASs in atmospheric particulate.
Collapse
Affiliation(s)
- Nan Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Weiping Liu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China.
| |
Collapse
|
109
|
Li XQ, Hua ZL. Multiphase distribution and spatial patterns of perfluoroalkyl acids (PFAAs) associated with catchment characteristics in a plain river network. CHEMOSPHERE 2021; 263:128284. [PMID: 33297228 DOI: 10.1016/j.chemosphere.2020.128284] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 06/12/2023]
Abstract
Perfluoroalkyl acids (PFAAs) have emerged as global concerning contaminants because of their persistence, bioaccumulation, and toxicological effects. The transport and fate of PFAAs on dimension of plain river networks (PRNs) are difficult to model due to the unique regional characteristics (i.e., undirectional flows, low slope, complicated structure and connectivity) and the lack of data on PFAAs concentrations and compositions. A typical PRN (Taihu Basin, China) was selected to elucidate the spatial patterns of PFAAs in multi-matrices, including colloidal phase, soluble phase, suspended particles, and sediment. PFAAs were ubiquitously detected in plain rivers with total concentrations of 18.48-1220 ng/L in colloids, 139.07-721.37 ng/L in soluble phase, 97.69-2247 ng/g dw in suspended particles, and <72.04-178.12 ng/g dw in sediment. PFAAs were more likely to transport via dissolved phase and accumulate into sediment. Colloids carried 45.46-62.59% of ∑PFAAs in overlying water, while suspended particles contained <36.63% of ∑PFAAs, suggesting the important role of colloids in preloading PFAAs. Moreover, PFAAs variability was correlated with indicators of the structure and connectivity of river network by gray relational analysis. The mean gray relational degrees can be sorted as edge-node ratio (0.7609) > network connectivity (0.7191) > river density (0.7012) > water surface ratio (0.6887) > river development coefficient (0.6504) > functional connectivity (0.4780). These results suggested that the effects of catchment characteristics should be taken into account in understanding PFAAs fate in the PRNs.
Collapse
Affiliation(s)
- Xiao-Qing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China.
| |
Collapse
|
110
|
Xie LN, Wang XC, Dong XJ, Su LQ, Zhu HJ, Wang C, Zhang DP, Liu FY, Hou SS, Dong B, Shan GQ, Zhang X, Zhu Y. Concentration, spatial distribution, and health risk assessment of PFASs in serum of teenagers, tap water and soil near a Chinese fluorochemical industrial plant. ENVIRONMENT INTERNATIONAL 2021; 146:106166. [PMID: 33068851 DOI: 10.1016/j.envint.2020.106166] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/17/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Discharges released from fluorochemical industrial plants lead to severe contamination of the environment with per- and polyfluoroalkyl substances (PFASs), which may pose risks to human health. In this study, 187 serum samples from teenagers (age = 14 years), 22 tap water samples and 40 soil samples were collected in areas within 0-11 km of a fluorochemical industrial plant in Huantai County, Shandong Province, and concentrations of 18 PFASs were quantified by UPLC-MS/MS. Perfluorooctanoic acid (PFOA) was found to be predominant, concentrations of which ranged from 40.4 to 845 ng/mL in serum, from 2.88 to 19.3 ng/L in tap water, from 4.40 to 189 ng/g in soil, and accounting for 84.1-98.6%, 15.9-79.8%, and 73.8-96.7% of the total PFASs, respectively. Statistical analysis demonstrated that concentrations of perfluorinated carboxylic acids (PFCAs) in soil (C5-C9) and serum (C8-C10) were associated with the industrial plant. And PFOA concentrations in tap water were not relevant to the industrial plant, which were comparable with the non-contaminated area and lower than the threshold value recommended by U.S. EPA (70 ng/mL), indicating that the contribution to the high concentration of serum PFOA of local teenagers by drinking water was limited. Moreover, PFCAs in soil only made a limited contribution to the serum PFCAs of local residents by direct inhalation and dermal exposure, but the potential health risk by the soil via food chain should be paid attention to. Furthermore, health risk assessment demonstrated that high concentrations of PFOA in serum could pose potential health risk to local teenagers. Therefore, effective measures should be taken to attenuate the health risks caused by the industrial plant to local residents, and further epidemiological studies should be carried out in the future.
Collapse
Affiliation(s)
- Lin-Na Xie
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiao-Chen Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiao-Jie Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Li-Qin Su
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hui-Juan Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Cong Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dian-Ping Zhang
- Department of Environmental Hygiene, Zibo Center for Disease Control and Prevention, Zibo 255026, China
| | - Fang-Ying Liu
- Department of Environmental Hygiene, Zibo Center for Disease Control and Prevention, Zibo 255026, China
| | - Sha-Sha Hou
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Bing Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Guo-Qiang Shan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xu Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ying Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
111
|
Joerss H, Schramm TR, Sun L, Guo C, Tang J, Ebinghaus R. Per- and polyfluoroalkyl substances in Chinese and German river water - Point source- and country-specific fingerprints including unknown precursors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115567. [PMID: 33254683 DOI: 10.1016/j.envpol.2020.115567] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
This study aimed at comparing source-specific fingerprints of per- and polyfluoroalkyl substances (PFASs) in river water from China and Germany, selected as countries with different histories of PFAS production. Samples were collected from up- and downstream of seven suspected point sources in autumn 2018. Amongst the 29 analyzed legacy and emerging PFASs, 24 were detected, with a sum ranging from 2.7 ng/L (Alz River) to 420,000 ng/L (Xiaoqing River). While mass flow estimates for the Xiaoqing River and Yangtze River (mean: 20 and 43 t/y, respectively) indicated ongoing high emissions of the legacy compound PFOA in China, its ether-based replacements HFPO-DA and DONA showed the highest contribution downstream of a German fluoropolymer manufacturing site (50% and 40% of ΣPFASs measured, respectively). In river water impacted by manufacturing sites for pharmaceutical and pesticide intermediates, the short-chain compound PFBS was the most prevalent substance in both countries. The German Ruhr River, receiving discharges from the electroplating industry, was characterized by the PFOS replacement 6:2 FTSA. Isomer profiling revealed a higher proportion of branched isomers in the Chinese Xi River and Xiaoqing River than in other rivers. This points to different synthesis routes and underlines the importance of differentiating between linear and branched isomers in risks assessments. Upon oxidative conversion in the total oxidizable precursor (TOP) assay, the increase of the short-chain compound PFBA was higher in German samples than in Chinese samples (88 ± 30% versus 12 ± 14%), suggesting the presence of a higher proportion of unknown precursors to PFBA in the German environment. Amongst the ether-based replacements, DONA and 6:2 Cl-PFESA were fully or partially degraded to non-targeted oxidation products, whereas HFPO-DA showed no degradation. This indicates that the inclusion of ether-based PFASs and their oxidation products in the TOP assay can help in capturing a larger amount of the unknown PFAS fraction.
Collapse
Affiliation(s)
- Hanna Joerss
- Helmholtz-Zentrum Geesthacht, Institute of Coastal Research, 21502, Geesthacht, Germany; Universität Hamburg, Institute of Inorganic and Applied Chemistry, 20146, Hamburg, Germany.
| | - Thekla-Regine Schramm
- Helmholtz-Zentrum Geesthacht, Institute of Coastal Research, 21502, Geesthacht, Germany.
| | - Linting Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chao Guo
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jianhui Tang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Ralf Ebinghaus
- Helmholtz-Zentrum Geesthacht, Institute of Coastal Research, 21502, Geesthacht, Germany.
| |
Collapse
|
112
|
Wang W, Rhodes G, Ge J, Yu X, Li H. Uptake and accumulation of per- and polyfluoroalkyl substances in plants. CHEMOSPHERE 2020; 261:127584. [PMID: 32717507 DOI: 10.1016/j.chemosphere.2020.127584] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a class of persistent organic contaminants that are ubiquitous in the environment and have been found to be accumulated in agricultural products. Consumption of PFAS-contaminated agricultural products represents a feasible pathway for the trophic transfer of these toxic chemicals along food chains/webs, leading to risks associated with human and animal health. Recently, studies on plant uptake and accumulation of PFASs have rapidly increased; consequently, a review to summarize the current knowledge and highlight future research is needed. Analysis of the publications indicates that a large variety of plant species can take up PFASs from the environment. Vegetables and grains are the most commonly investigated crops, with perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) as the most studied PFASs. The potential sources of PFASs for plant uptake include industrial emissions, irrigation with contaminated water, land application of biosolids, leachates from landfill sites, and pesticide application. Root uptake is the predominant pathway for the accumulation of PFASs in agricultural crops, and uptake by plant aboveground portions from the ambient atmosphere could play a minor role in the overall PFAS accumulation. PFAS uptake by plants is influenced by physicochemical properties of compounds (e.g., perfluorocarbon chain length, head group functionality, water solubility, and volatility), plant physiology (e.g., transpiration rate, lipid and protein content), and abiotic factors (e.g., soil organic matters, pH, salinity, and temperature). Based on literature analysis, the current knowledge gaps are identified, and future research prospects are suggested.
Collapse
Affiliation(s)
- Wenfeng Wang
- Jiangsu Key Laboratory for Food Quality and Safety/State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China; Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Geoff Rhodes
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Jing Ge
- Jiangsu Key Laboratory for Food Quality and Safety/State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China; Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
| | - Xiangyang Yu
- Jiangsu Key Laboratory for Food Quality and Safety/State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China; Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China.
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
113
|
Chen H, Munoz G, Duy SV, Zhang L, Yao Y, Zhao Z, Yi L, Liu M, Sun H, Liu J, Sauvé S. Occurrence and Distribution of Per- and Polyfluoroalkyl Substances in Tianjin, China: The Contribution of Emerging and Unknown Analogues. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14254-14264. [PMID: 33155469 DOI: 10.1021/acs.est.0c00934] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tianjin, located in Bohai Bay, China, constitutes a relevant study area to investigate emerging per- and polyfluoroalkyl substances (PFASs) due to its high population density, clustering of chemical and aircraft industries, as well as international airports, harbors, and oil rigs. In this study, 53 anionic, zwitterionic, and cationic PFASs were monitored in river surface water, groundwater, seawater, and sediments in this area (overall n = 226). 6:2 chlorinated polyfluorinated ether sulfonic acid (Cl-PFESA), perfluorooctanoic acid, and perfluorooctane sulfonic acid were generally the predominant PFASs. 6:2 fluorotelomer sulfonamidoalkyl betaine (6:2 FTAB) was also widespread (occurrence >86%), with the highest concentration (1300 ng/L) detected at contamination hot spots impacted by wastewater effluents. The aqueous film-forming foam (AFFF)-related PFASs with sulfonamide betaine, amine oxide, amine, or quaternary ammonium moieties are also reported for the first time in river water and seawater samples. Fifteen classes of infrequently reported PFASs, including n:2 FTABs and n:2 fluorotelomer sulfonamide amines, hydrogen-substituted PFESA homologues, and p-perfluorous nonenoxybenzenesulfonate (OBS), were also identified in the water and sediment samples using suspect screening. Field-derived sediment-water distribution coefficients (Kd) of these emerging PFASs are provided for the first time, confirming that cationic and zwitterionic PFASs tend to be strongly associated with sediments.
Collapse
Affiliation(s)
- Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Lu Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zhen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lixin Yi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Min Liu
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
114
|
Paragot N, Bečanová J, Karásková P, Prokeš R, Klánová J, Lammel G, Degrendele C. Multi-year atmospheric concentrations of per- and polyfluoroalkyl substances (PFASs) at a background site in central Europe. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114851. [PMID: 32474357 PMCID: PMC7585738 DOI: 10.1016/j.envpol.2020.114851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/11/2020] [Accepted: 05/20/2020] [Indexed: 05/29/2023]
Abstract
A total of 74 high volume air samples were collected at a background site in Czech Republic from 2012 to 2014 in which the concentrations of 20 per- and polyfluoroalkyl substances (PFASs) were investigated. The total concentrations (gas + particle phase) ranged from 0.03 to 2.08 pg m-3 (average 0.52 pg m-3) for the sum of perfluoroalkyl carboxylic acids (∑PFCAs), from 0.02 to 0.85 pg m-3 (average 0.28 pg m-3) for the sum of perfluoroalkyl sulfonates (ΣPFSAs) and from below detection to 0.18 pg m-3 (average 0.05 pg m-3) for the sum of perfluorooctane sulfonamides and sulfonamidoethanols (ΣFOSA/Es). The gas phase concentrations of most PFASs were not controlled by temperature dependent sources but rather by long-range atmospheric transport. Air mass backward trajectory analysis showed that the highest concentrations of PFASs were mainly originating from continental areas. The average particle fractions (θ) of ΣPFCAs (θ = 0.74 ± 0.26) and ΣPFSAs (θ = 0.78 ± 0.22) were higher compared to ΣFOSA/Es (θ = 0.31 ± 0.35). However, they may be subject to sampling artefacts. This is the first study ever reporting PFASs concentrations in air samples collected over consecutive years. Significant decreases in 2012-2014 for PFOA, MeFOSE, EtFOSE and ∑PFCAs were observed with apparent half-lives of 1.01, 0.86, 0.92 and 1.94 years, respectively.
Collapse
Affiliation(s)
- Nils Paragot
- Masaryk University, RECETOX Centre, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jitka Bečanová
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, 02882, USA
| | - Pavlína Karásková
- Masaryk University, RECETOX Centre, Kamenice 5, 625 00, Brno, Czech Republic
| | - Roman Prokeš
- Masaryk University, RECETOX Centre, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jana Klánová
- Masaryk University, RECETOX Centre, Kamenice 5, 625 00, Brno, Czech Republic
| | - Gerhard Lammel
- Masaryk University, RECETOX Centre, Kamenice 5, 625 00, Brno, Czech Republic
| | - Céline Degrendele
- Masaryk University, RECETOX Centre, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
115
|
Zhu H, Kannan K. Total oxidizable precursor assay in the determination of perfluoroalkyl acids in textiles collected from the United States. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114940. [PMID: 32540590 DOI: 10.1016/j.envpol.2020.114940] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/16/2020] [Accepted: 06/01/2020] [Indexed: 05/06/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are used in specialty/functional textiles to impart oil, water, and stain repellency. Little is known, however, with regard to the occurrence of PFASs in textiles including infant clothing. In this study, 13 perfluoroalkyl acids (PFAAs), comprising four perfluoroalkyl sulfonic acids (PFSAs; C4-C10) and nine perfluoroalkyl carboxylic acids (PFCAs; C4-C12) were determined in 160 textile samples collected from the United States. Two extraction methods, one involving a simple solvent extraction (i.e., before oxidation) and the other with an oxidative treatment (i.e., after oxidation) of textile extracts, were used. The sum concentrations of 13 PFAAs (i.e., ∑PFAA) in textile extracts before oxidation ranged from <LOD to 63.7 μg/m2 (<LOD-285 ng/g), with a mean value of 3.18 μg/m2 (14.2 ng/g). ∑PFAA concentrations were the highest in flame retarded textiles (n = 23; mean: 13.3 μg/m2; 59.4 ng/g), followed by water repellent textiles (n = 56; 2.88 μg/m2; 12.9 ng/g) and infant clothes (n = 81; 0.521 μg/m2; 2.33 ng/g). C4-C10 PFCAs accounted for at least three-quarters of the ∑PFAA content in our textile samples. Textile extracts analyzed after oxidative treatment exhibited ∑PFAA concentrations 10-fold higher than those in extracts analyzed prior to oxidation, which suggested that PFAA precursors are used in textiles. Precursors that generated C4-C5 PFCAs, upon oxidation, were more prevalent than those that yielded PFOA. The calculated dermal exposure doses in infants of PFAAs present in clothes were at least 1-2 orders of magnitude below the reference doses proposed by the United States Environmental Protection Agency. This is the first time that the oxidative treatment was applied in the analysis of PFASs in textiles, and our results suggest the existence of PFCA precursors in textiles.
Collapse
Affiliation(s)
- Hongkai Zhu
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10016, United States
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10016, United States.
| |
Collapse
|
116
|
Han T, Gao L, Chen J, He X, Wang B. Spatiotemporal variations, sources and health risk assessment of perfluoroalkyl substances in a temperate bay adjacent to metropolis, North China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115011. [PMID: 32563144 DOI: 10.1016/j.envpol.2020.115011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 05/28/2023]
Abstract
Fourteen perfluoroalkyl substances (PFASs) in fishery organism, surface seawater, river water, rainwater, and wastewater samples collected from Jiaozhou Bay (JZB) in China and its surrounding area were determined to understand their contamination status, sources, health risk, and causes of spatiotemporal variations in the aquatic environment of a temperate bay adjacent to a metropolis. The total concentration of PFASs in 14 species of fishery organisms ranged from 1.77 ng/g to 31.09 ng/g wet weight, and perfluorooctane sulfonate (PFOS) was the dominant PFAS. ∑PFASs concentration in surface seawater ranged from 5.54 ng/L to 48.27 ng/L over four seasons, and dry season (winter and spring) had higher levels than wet season (summer and autumn). Perfluorooctanoic acid (PFOA) was the predominant individual PFAS in seawater, indicating that notorious C8 homologs remained the major PFASs in this region. The seasonal variation in seawater concentrations of three major PFASs, namely, PFOA, perfluoroheptanoic acid, and perfluorononanoic acid, was similar to that of ∑PFASs. However, the seasonal variation of PFOS concentration was different from that of ∑PFASs, with the lowest in winter and the highest in spring. In general, seasonal variations of terrigenous input and water exchange capacity were the main reasons for the spatiotemporal variation of PFASs in the aquatic environment of JZB. Moreover, bioselective enrichment for individual PFAS affected the partition of PFASs in different environment medium. Wet precipitation, sewage discharge, and surface runoff were the main sources of PFASs in this area. Nevertheless, the contribution of different sources to individual PFAS indicated a clear difference, and wastewater and river water were not consistently the most important source for every PFAS. Preliminary risk assessment revealed that the consumption of seafood, especially fish, from JZB might pose a certain extent of health risk to local consumers based on their estimated daily intake of PFASs.
Collapse
Affiliation(s)
- Tongzhu Han
- Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Liyuan Gao
- Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Junhui Chen
- Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China.
| | - Xiuping He
- Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| | - Baodong Wang
- Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| |
Collapse
|
117
|
Fang S, Sha B, Yin H, Bian Y, Yuan B, Cousins IT. Environment occurrence of perfluoroalkyl acids and associated human health risks near a major fluorochemical manufacturing park in southwest of China. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122617. [PMID: 32298866 DOI: 10.1016/j.jhazmat.2020.122617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/21/2020] [Accepted: 03/29/2020] [Indexed: 05/15/2023]
Abstract
Despite China being the largest global manufacturer of perfluoroalkyl acids (PFAAs), few studies have been carried out on the environmental occurrence and associated human health risks of PFAAs emitted from manufacturing sites in China. Here, river water, tap water, soil and leaf samples were collected around a major fluorochemical manufacturing park (FMP) in the southwest of China in 2019. High ΣPFAA concentrations (sum of 12 PFAAs) of 3817 ng/L, 3254 ng/L, 322-476 ng/g dw and 23401-33749 ng/g dw were measured near the FMP in river water, tap water, soil and leaves, respectively, indicating that the FMP is a point source of PFAAs. PFOA was the predominant PFAA in all samples (58.5-98.6 %) indicating the production or use of PFOA at the FMP. PFOA concentrations in most tap water samples (> 300 ng/L in 31 of 38 samples) exceeded the U.S. EPA health advisory. Proportions of branched PFOA isomers in all samples were in 5.9-47.4 %, suggesting the production or use of PFOA manufactured by electrochemical fluorination at the FMP. It is recommended to focus more attention on branched PFOA isomers in the future because otherwise health risks may be underestimated due to their relatively high proportions in China.
Collapse
Affiliation(s)
- Shuhong Fang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China; Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-10691 Stockholm, Sweden.
| | - Bo Sha
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-10691 Stockholm, Sweden
| | - Hongling Yin
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China
| | - Yuxia Bian
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China
| | - Bo Yuan
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-10691 Stockholm, Sweden
| | - Ian T Cousins
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
118
|
Gao L, Liu J, Bao K, Chen N, Meng B. Multicompartment occurrence and partitioning of alternative and legacy per- and polyfluoroalkyl substances in an impacted river in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138753. [PMID: 32375068 DOI: 10.1016/j.scitotenv.2020.138753] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are emerging global environmental contaminants. Exploring the occurrence and environmental behavior of PFASs in the aquatic environment is a key step in solving global fluorine chemical pollution problems. In this study, surface water, pore water, and sediment were collected from the main tributary and the middle and lower reaches of the Daling River, adjacent to the Fuxin fluorochemical manufacturing facilities in Liaoning Province in China, to elucidate the occurrence and partition behavior of PFASs. The total concentrations of PFASs ranged from 48.4 to 4578 ng/L in the overlying water, from 173 to 9952 ng/L in the pore water, and from 2.16 to 40.3 ng/g dw in the sediment fraction. Generally, perfluorobutanoic acid (PFBA) and perfluorobutane sulfonate (PFBS) were the predominant congeners in the samples, with the mean relative content fractions being almost consistently >40% in the dissolved phase and >25% in the sediment. Hexafluoropropylene oxide dimer acid (HFPO-DA) and chlorinated polyfluorinated ether sulfonic acid (6:2 Cl-PFESA) were detected, albeit at low levels. In addition, the detection frequency and the contribution of legacy long-chain PFASs in sediment were higher than those in the overlying water and pore water. Except for perfluorohexane sulfonate (PFHxS), the concentrations of the alternative PFASs in the pore water were higher than in the overlying water. The organic carbon fraction was a more important controlling factor for PFAS sediment levels than cations content. As with legacy long-chain PFASs, HFPO-DA and 6:2 Cl-PFESA tended to partition into the solid phase, whereas short-chain PFASs were readily distributed in the aqueous phase. Such research results will be helpful in modeling the transport and fate of PFASs released by point sources into coastal waters through rivers and in developing effective risk assessment and management strategies for the control of PFAS pollution.
Collapse
Affiliation(s)
- Lijuan Gao
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Jingling Liu
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China.
| | - Kun Bao
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Nannan Chen
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Bo Meng
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| |
Collapse
|
119
|
Lan Z, Yao Y, Xu J, Chen H, Ren C, Fang X, Zhang K, Jin L, Hua X, Alder AC, Wu F, Sun H. Novel and legacy per- and polyfluoroalkyl substances (PFASs) in a farmland environment: Soil distribution and biomonitoring with plant leaves and locusts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114487. [PMID: 32259741 DOI: 10.1016/j.envpol.2020.114487] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
The occurrence of legacy and novel per- and polyfluoroalkyl substances (PFASs) in multiple matrices from a farmland environment was investigated in the Beijing-Tianjin-Hebei core area of northern China. PFASs were ubiquitously detected in farmland soils, and the detection frequency of 6:2 chlorinated polyfluoroalkyl ether sulfonic acid (6:2 Cl-PFESA) was higher than that of perfluorooctane sulfonic acid (98% vs. 83%). Long-chain PFASs, including 6:2 Cl-PFESA, showed a centered distribution pattern around the metropolis of Tianjin, probably due to the local intensive industrial activity, while trifluoroacetic acid (TFA) showed a decreasing trend from the coast to the inland area. Other than soil, TFA was also found at higher levels than other longer-chain PFASs in dust, maize (Zea mays), poplar (Populus alba) leaf and locust (Locusta migratoria manilens) samples. Both poplar leaves and locusts can be used as promising biomonitoring targets for PFASs in farmland environments, and their accumulation potential corresponds with protein and lipid contents. Apart from being exposed to PFASs via food intake, locusts were likely exposed via uptake from soil and precipitated dust in farmland environments. The biomonitoring of locusts may be more relevant to insectivores, which is important to conducting a comprehensive ecological risk assessment of farmland environments.
Collapse
Affiliation(s)
- Zhonghui Lan
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yiming Yao
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - JiaYao Xu
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Hao Chen
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Chao Ren
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiangguang Fang
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Kai Zhang
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Litao Jin
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xia Hua
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Alfredo C Alder
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Eawag, Swiss Federal Institute for Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, 100012, Beijing, China
| | - Hongwen Sun
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
120
|
Jin Q, Liu H, Wei X, Li W, Chen J, Yang W, Qian S, Yao J, Wang X. Dam operation altered profiles of per- and polyfluoroalkyl substances in reservoir. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122523. [PMID: 32197204 DOI: 10.1016/j.jhazmat.2020.122523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/07/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
Information on the impact of dam operation on per- and polyfluoroalkyl substances (PFASs) distribution in reservoirs is very limited. In the present study, water, riparian soils and floating wastes samples were collected from the Three Gorges Reservoir, China during the storage and the discharge periods to characterize the PFASs distribution. The total PFASs concentrations of water samples in the storage period (50.4-146 ng/L) were 4.7 times higher than those in the discharge period (1.40-38.6 ng/L). The main types of PFASs in water samples changed from PFOA in the discharge period to short-chain species in the storage period. The main analogues in riparian soils and floating wastes were PFOA and PFOS. Wastes contributed little to PFASs mass in the reservoir, while PFASs accumulated in soils accounted for 49.7 % of the total mass when the riparian zone was submerged during the storage period. Changes in profiles of PFASs caused by dam operation suggested that the potential water safety and the shift of riparian soils between source and sink of PFASs may vary with the annual operation cycle of dam. The water resources protection in reservoirs needs strategies that consider the variation of dam operation cycle.
Collapse
Affiliation(s)
- Qiu Jin
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Huazu Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Ecological Sciences and Engineering, Chongqing University, Chongqing 400045, China
| | - Xiaoxiao Wei
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Environmental Engineering, Chongqing University, Chongqing 400045, China
| | - Wei Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Ecological Sciences and Engineering, Chongqing University, Chongqing 400045, China.
| | - Jing Chen
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Wei Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Ecological Sciences and Engineering, Chongqing University, Chongqing 400045, China
| | - Shenhua Qian
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Ecological Sciences and Engineering, Chongqing University, Chongqing 400045, China
| | - Jingmei Yao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Ecological Sciences and Engineering, Chongqing University, Chongqing 400045, China
| | - Xiaoming Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Environmental Engineering, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
121
|
Galloway JE, Moreno AVP, Lindstrom AB, Strynar MJ, Newton S, May AA, Weavers LK. Evidence of Air Dispersion: HFPO-DA and PFOA in Ohio and West Virginia Surface Water and Soil near a Fluoropolymer Production Facility. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7175-7184. [PMID: 32458687 PMCID: PMC8015386 DOI: 10.1021/acs.est.9b07384] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Perfluorooctanoic acid (PFOA) was used as a fluoropolymer manufacturing aid at a fluoropolymer production facility in Parkersburg, WV from 1951 to 2013. The manufacturer introduced a replacement surfactant hexafluoropropylene oxide dimer acid (HFPO-DA) that has been in use at this site since 2013. Historical releases of PFOA and related epidemiological work in this area has been primarily focused on communities downstream. To provide an update on the ongoing impacts from this plant, 94 surface water samples and 13 soil samples were collected mainly upstream and downwind of this facility. PFOA was detected in every surface water sample with concentrations exceeding 1000 ng/L at 13 sample sites within an 8 km radius of the plant. HFPO-DA was also found to be widespread with the highest levels (>100 ng/L) found in surface water up to 6.4 km north of the plant. One sample site, 28 km north of the plant, had PFOA at 143 ng/L and HFPO-DA at 42 ng/L. Sites adjacent to landfills containing fluorochemical waste had PFOA concentrations ranging up to >1000 ng/L. These data indicate that downwind atmospheric transport of both compounds has occurred and that the boundaries of the impact zone have yet to be fully delineated.
Collapse
Affiliation(s)
- Jason E Galloway
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Anjelica V P Moreno
- Environmental Science Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andrew B Lindstrom
- U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Mark J Strynar
- Center for Environmental Measurement and Modeling (CEMM), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Seth Newton
- U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Andrew A May
- Environmental Science Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, 2070 Neil Avenue, Columbus, Ohio 43210, United States
| | - Linda K Weavers
- Environmental Science Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, 2070 Neil Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
122
|
Zeeshan M, Yang Y, Zhou Y, Huang W, Wang Z, Zeng XY, Liu RQ, Yang BY, Hu LW, Zeng XW, Sun X, Yu Y, Dong GH. Incidence of ocular conditions associated with perfluoroalkyl substances exposure: Isomers of C8 Health Project in China. ENVIRONMENT INTERNATIONAL 2020; 137:105555. [PMID: 32059142 DOI: 10.1016/j.envint.2020.105555] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/10/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
The detrimental effects of perfluoroalkyl substances (PFASs) on several physiological systems have been reported, but the association of PFASs with eye, one of the most sensitive and exposed organ, has never been explored. To investigate the association between eye diseases including visual impairment (VI) and PFASs isomers, a cross-sectional stratified study was conducted in 1202 Chinese population, aged 22-96 years, from Shenyang, China. A standard protocol including Snellen vision chart, slit-lamp microscopy and direct ophthalmoscopy was used to examine eye diseases/conditions relating to anterior and posterior segment of eyes. In addition, we measured the blood concentrations of 19 linear and branched PFASs at one-time point. Results indicated that blood levels of PFASs were significantly higher in eye disease group than normal group. PFASs exposure were positively associated with both combined eye diseases and individual eye diseases. Among other PFASs, linear perfluorooctane sulfonate (n-PFOS; odds ratio [OR] = 3.37, 95% confidence interval [CI]: 2.50, 4.56), branched perfluorooctane sulfonate (Br-PFOS; OR = 2.25, 95% CI: 1.72, 2.93) and linear perfluorooctanoic acid (n-PFOA; OR = 1.79, 95% CI: 1.36, 2.37) significantly increases the odds of VI. Vitreous disorder was adversely associated with long-chain PFASs exposure. For example, perfluorotridecanoic acid (PFTrDA; OR = 1.86, 95% CI: 1.51, 2.29) and perfluorodecanoic acid (PFDA; OR = 1.79, 95% CI: 1.36, 2.36) showed the most significant association. In conclusion, this study suggests higher serum PFASs levels were associated with increase odds of VI and vitreous disorder in Chinese adults.
Collapse
Affiliation(s)
- Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yunqing Yang
- Department of Preventive Medicine, Guangzhou Institute of Dermatology, Guangzhou 510095, China
| | - Yang Zhou
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenzhong Huang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhibin Wang
- Department of Environmental Health Sciences, Laboratory of Human Environmental Epigenomes, Bloomberg School of Public Health, Johns Hopkins University, Baltimore 21205, USA
| | - Xiao-Yun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao Sun
- Department of Internal Medicine, Shenyang Women's and Children's Hospital. No.87 Danan Street, Shenhe District, Shenyang 110011, China.
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
123
|
Lampic A, Parnis JM. Property Estimation of Per- and Polyfluoroalkyl Substances: A Comparative Assessment of Estimation Methods. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:775-786. [PMID: 32022323 DOI: 10.1002/etc.4681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/30/2019] [Accepted: 02/03/2020] [Indexed: 05/26/2023]
Abstract
To accurately predict the environmental fate of per- and polyfluoroalkyl substances (PFAS), high-quality physicochemical property data are required. Because such data are often not available from experiments, assessment of the accuracy of existing property estimation models is essential. The quality of predicted physicochemical property data for a set of 25 PFAS was examined using COSMOtherm, EPI Suite, the estimation models accessible through the US Environmental Protection Agency's CompTox Chemicals Dashboard, and Linear Solvation Energy Relationships (LSERs) available through the UFZ-LSER Database. The results showed that COSMOtherm made the most accurate acid dissociation constant and air-water partition ratio estimates compared with literature data. The OPEn structure-activity/property Relationship App (OPERA; developed through the CompTox Chemicals Dashboard) estimates of vapor pressure and dry octanol-air partition ratios were the most accurate compared with other models of interest. Wet octanol-water partition ratios were comparably predicted by OPERA and EPI Suite, and the organic carbon soil coefficient and solubility were well predicted by OPERA and COSMOtherm. Acid dissociation of the perfluoroalkyl acids has a significant impact on their physicochemical properties, and corrections for ionization were included where applicable. Environ Toxicol Chem 2020;39:775-786. © 2020 SETAC.
Collapse
Affiliation(s)
- Alina Lampic
- Chemical Properties Research Group (Canadian Environmental Modelling Centre), Department of Chemistry, Trent University, Peterborough, Ontario, Canada
| | - J Mark Parnis
- Chemical Properties Research Group (Canadian Environmental Modelling Centre), Department of Chemistry, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
124
|
Wang B, Yao Y, Chen H, Chang S, Tian Y, Sun H. Per- and polyfluoroalkyl substances and the contribution of unknown precursors and short-chain (C2-C3) perfluoroalkyl carboxylic acids at solid waste disposal facilities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135832. [PMID: 31831231 DOI: 10.1016/j.scitotenv.2019.135832] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 05/06/2023]
Abstract
The emission of per- and polyfluoroalkyl substances (PFASs) from municipal solid wastes (MSW) disposal raises concerns for their potential of long-term release and risks. In this study, the occurrence of PFASs was investigated in ambient air and leachate from seven MSW disposal facilities including three landfills, two incineration plants, and two MSW transfer stations in Tianjin, China. Mass loads of PFASs (≥C4) released to the atmosphere were estimated at 0.007-0.97 kg/y/site, which were much lower than those to leachate (0.04-1.3 kg/y/site), while emission to the atmosphere at landfills was more considerable. With total oxidizable precursor (TOP) assay, unknown C4-C12 perfluoroalkyl acids (PFAAs)-precursors were found contributing 10-97 mol% in leachate and accounting for additional 15%-43% mass loads. Using IC-Ba/Ag/H cartridges, trifluoroacetic acid (C2) and perfluoropropionic acid (C3) were recovered in leachate for TOP assay (62%-78%) and determined at dominant levels of 19-81 μg/L, which accounted for mass loads of 0.08-2.6 kg/y/site. Unknown C2-C3 PFAA-precursors contributed 12-93 mol% with mass loads of 0.10-3.0 kg/y/site. Overall, unknown C2-C12 PFAA-precursors remained contributing 0.35-68 mol% in biochemically treated leachate. This study emphasizes that the profiles of unknown PFAA-precursors released during MSW disposal are to be identified, which is essential for their environmental risk assessment.
Collapse
Affiliation(s)
- Bin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Shuai Chang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ying Tian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
125
|
Ke Y, Chen J, Hu X, Tong T, Huang J, Xie S. Emerging perfluoroalkyl substance impacts soil microbial community and ammonia oxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113615. [PMID: 31759679 DOI: 10.1016/j.envpol.2019.113615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Legacy perfluoroalkyl and poly-fluoroalkyl substances (PFASs) are gradually phased out because of their persistence, bioaccumulation, toxicity, long-distance transport and ubiquity in the environment. Alternatively, emerging PFASs are manufactured and released into the environment. It is accepted that PFASs can impact microbiota, although it is still unclear whether emerging PFASs are toxic towards soil microbiota. However, it could be assumed that OBS could impact soil microorganisms because it had similar chemical properties (toxicity and persistence) as legacy PFASs. The present study aimed to explore the influences of an emerging PFAS, namely sodium p-perfluorous nonenoxybenzene sulfonate (OBS), on archaeal, bacterial, and ammonia-oxidizing archaea (AOA) and bacteria (AOB) communities and ammonia oxidation. Grassland soil was amended with OBS at different dosages (0, 1, 10 and 100 mg/kg). After OBS amendment, tolerant microorganisms (e.g., archaea and AOA) were promoted, while susceptive microorganisms (e.g., bacteria and AOB) were inhibited. OBS amendment greatly changed microbial structure. Potential nitrifying activity was inhibited by OBS in a dose-dependent manner during the whole incubation. Furthermore, AOB might play a more important role in ammonia oxidation than AOA. Overall, OBS influenced ammonia oxidation by regulating the activity, abundance and structure of ammonia-oxidizing microorganisms, and could also exert influences on total bacterial and archaeal populations.
Collapse
Affiliation(s)
- Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xiaoyan Hu
- Zhejiang Environmental Monitoring Center, Hangzhou, 310012, China
| | - Tianli Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jun Huang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing, 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
126
|
Schultes L, Sandblom O, Broeg K, Bignert A, Benskin JP. Temporal Trends (1981-2013) of Per- and Polyfluoroalkyl Substances and Total Fluorine in Baltic cod (Gadus morhua). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:300-309. [PMID: 31610607 PMCID: PMC7065099 DOI: 10.1002/etc.4615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/30/2019] [Accepted: 10/10/2019] [Indexed: 05/23/2023]
Abstract
Temporal trends from 1981 to 2013 of 28 per- and polyfluoroalkyl substances (PFASs) were investigated in liver tissue of cod (Gadus morhua) sampled near southeast Gotland, in the Baltic Sea. A total of 10 PFASs were detected, with ∑28 PFAS geometric mean concentrations ranging from 6.03 to 23.9 ng/g ww. Perfluorooctane sulfonate (PFOS) was the predominant PFAS, which increased at a rate of 3.4% per year. Most long-chain perfluoroalkyl carboxylic acids increased at rates of 3.9 to 7.3% per year except for perfluorooctanoate (PFOA), which did not change significantly over time. The perfluoroalkyl acid precursors perfluorooctane sulfonamide (FOSA) and 6:2 fluorotelomer sulfonic acid were detected, of which the former (FOSA) declined at a rate of -4.4% per year, possibly reflecting its phase-out starting in 2000. An alternate time trend analysis from 2000 to 2013 produced slightly different results, with most compounds increasing at slower rates compared to the entire study period. An exception was perfluorohexane sulfonate (PFHxS), increasing at a faster rate of 3.7% measured from 2000 on, compared to the 3.0% per year measured starting from 1981. Analysis of the total fluorine content of the samples revealed large amounts of unidentified fluorine; however, its composition (organic or inorganic) remains unclear. Significant negative correlations were found between concentrations of individual PFASs (with the exception of PFOS) and liver somatic index. In addition, body length was negatively correlated with PFOA and perfluorononanoate, but positively correlated with perfluorododecanoate (PFDoDA) and FOSA. Additional studies on endocrine, immunological, and metabolic effects of PFAS in marine fish are essential to assess the environmental risk of these substances. Environ Toxicol Chem 2020;39:300-309. © 2019 SETAC.
Collapse
Affiliation(s)
- Lara Schultes
- Department of Environmental Science and Analytical ChemistryStockholm UniversityStockholmSweden
| | - Oskar Sandblom
- Department of Environmental Science and Analytical ChemistryStockholm UniversityStockholmSweden
| | - Katja Broeg
- Federal Maritime and Hydrographic AgencyHamburgGermany
| | - Anders Bignert
- Department of Environmental Research and MonitoringSwedish Museum of Natural HistoryStockholmSweden
| | - Jonathan P. Benskin
- Department of Environmental Science and Analytical ChemistryStockholm UniversityStockholmSweden
| |
Collapse
|
127
|
Duan Y, Sun H, Yao Y, Meng Y, Li Y. Distribution of novel and legacy per-/polyfluoroalkyl substances in serum and its associations with two glycemic biomarkers among Chinese adult men and women with normal blood glucose levels. ENVIRONMENT INTERNATIONAL 2020; 134:105295. [PMID: 31726357 DOI: 10.1016/j.envint.2019.105295] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/06/2019] [Accepted: 10/28/2019] [Indexed: 05/23/2023]
Abstract
In recent years, the occurrence of novel per-/polyfluoroalkyl substances (PFASs) such as polyfluoroalkyl ether sulfonates (PFAESs) in human samples have aroused attention due to the change in PFASs production profile, however, the data are still lacking. Furthermore, epidemiological studies have examined the associations of PFAS exposure with glucose homeostasis, but with inconsistent results. Therefore, in this study, fasting serum samples from 252 participants with an age range from 19 to 87 years old were collected in Tianjin, China. A total of 21 target PFASs were determined to analyze the levels and distribution of novel and legacy PFASs in serum and to further evaluate the cross-sectional associations of serum PFAS concentrations with two glycemic biomarkers (i.e., fasting glucose and glycated hemoglobin (HbA1c)). 6:2 chlorinated PFAES (6:2 Cl-PFAES) and trifluoroacetic acid (TFA) were widely detected novel PFASs (greater than90%) with relatively high median concentrations (8.64 ng/mL and 8.46 ng/mL, respectively), which were second only to the two dominant legacy PFASs, i.e., perfluorooctanoic acid (PFOA, 14.83 ng/mL) and perfluorooctane sulfonic acid (14.24 ng/mL). The percentage contributions to the total known PFASs were separately 17.6% and 17.2% for 6:2 Cl-PFAES and TFA. The levels of 6:2 Cl-PFAES were significantly correlated with age and BMI, and the concentrations of TFA were also significantly correlated with age. Furthermore, 1% increase in serum PFOA and perfluorononanoic acid (PFNA) was separately significantly associated with 0.018% [95% confidence interval (CI): 0.004%, 0.033%] and 0.022% (95% CI: 0.007%, 0.037%) increment in fasting glucose levels. Similarly, 1% increase in serum perfluorohexanoic acid, PFNA, and perfluorohexane sulfonic acid was significantly associated with 0.030% (95% CI: 0.010%, 0.051%), 0.018% (95% CI: 0.003%, 0.033%), 0.007% (95% CI: 0.003%, 0.011%) increment in HbA1c levels, respectively. These findings suggested that 6:2 Cl-PFAES and TFA showed greater contributions to PFASs in serum and supported an association of exposure to PFASs with fasting glucose and HbA1c.
Collapse
Affiliation(s)
- Yishuang Duan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China; Institute of Environment and Health, Jianghan University, Wuhan, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China.
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yue Meng
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yongcheng Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
128
|
Fang S, Li C, Zhu L, Yin H, Yang Y, Ye Z, Cousins IT. Spatiotemporal distribution and isomer profiles of perfluoroalkyl acids in airborne particulate matter in Chengdu City, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:1235-1243. [PMID: 31466162 DOI: 10.1016/j.scitotenv.2019.06.498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Airborne particulate matter (APM) was collected in four seasons at five different areas of the city of Chengdu, China to study the spatial and seasonal contamination pattern of perfluoroalkyl acids (PFAAs). The results showed that ∑PFAA concentrations in Downtown Chengdu (mean value: 297 ± 238 pg/m3) were higher than concentrations in suburban areas. The highest concentrations of PFAAs occurred during spring (97.5-709 pg/L; arithmetic mean concentration: 297 ± 191 pg/L) while the lowest concentration occurred during autumn (9.27-105 pg/L; arithmetic mean concentration 41.1 ± 24.8 pg/L). Perfluorooctanoic acid (PFOA) was the main PFAA quantified during winter, summer and autumn, and perfluorononanoic acid (PFNA) was the predominant PFAA in spring. Relative humidity (RH) and average daily precipitation (PRE) showed significant negative correlations with PFAA concentrations in winter and summer, suggesting that they played an important role in controlling PFAA concentrations in APM. The linear structural isomer of PFOA (n-PFOA) was the most abundant isomer in APM in Chengdu, with the average proportion of 85.6% ± 6.13%, higher than the proportion in ECF PFOA commercial products (74.3-77.6%). However, the consistent fingerprint of branched PFOA in the APM implies that ECF PFOA makes a significant contribution to the PFOA in APM. PFOS in the APM collected throughout the year had a mean proportion of 54.0 ± 8.81% of n-PFOS. This proportion of n-PFOS is lower than commercial ECF products (62.9-78.2%), suggesting an additional proportion of branched PFOS isomers in APM in Chengdu.
Collapse
Affiliation(s)
- Shuhong Fang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China.
| | - Cheng Li
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Hongling Yin
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China
| | - Yingchun Yang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China
| | - Zhixiang Ye
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China
| | - Ian T Cousins
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
129
|
Gewurtz SB, Bradley LE, Backus S, Dove A, McGoldrick D, Hung H, Dryfhout-Clark H. Perfluoroalkyl Acids in Great Lakes Precipitation and Surface Water (2006-2018) Indicate Response to Phase-outs, Regulatory Action, and Variability in Fate and Transport Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8543-8552. [PMID: 31339294 DOI: 10.1021/acs.est.9b01337] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The concentrations of perfluoroalkyl acids (PFAAs) were determined in precipitation from three locations across the Great Lakes between 2006 and 2018 and compared to those in surface water. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) concentrations generally decreased in precipitation, likely in response to phase-outs/regulatory actions. In comparison, concentrations of shorter-chained PFAA, which are not regulated in Canada did not decrease and those of perfluorohexanoate and perfluorobutanoate (PFBA) recently increased, which could be due to their use as replacements, as the longer-chained PFAAs are being phased-out by industry. PFOS and PFOA concentrations were greater in Lake Ontario precipitation than in precipitation from more remote locations. In comparison, PFBA concentrations were comparable across locations, suggesting greater atmospheric transport either through its more volatile precursors and/or directly in association with particles/aerosols. In Lake Ontario, the comparison of PFAAs in precipitation to those in surface water provides evidence of sources (e.g., street dust and wastewater effluent) in addition to wet deposition to surface water, whereas wet deposition appears to be dominant in Lakes Huron and Superior. Our results suggest that source control of shorter-chained PFAAs may be slow to be reflected in environmental concentrations due to emissions far from the location of detection and continued volatilization from existing in-use products and waste streams.
Collapse
Affiliation(s)
- Sarah B Gewurtz
- Water Quality Monitoring and Surveillance, Environment and Climate Change Canada , 867 Lakeshore Road , Burlington , Ontario L7S 1A1 , Canada
| | - Lisa E Bradley
- Water Quality Monitoring and Surveillance, Environment and Climate Change Canada , 867 Lakeshore Road , Burlington , Ontario L7S 1A1 , Canada
| | - Sean Backus
- Water Quality Monitoring and Surveillance, Environment and Climate Change Canada , 867 Lakeshore Road , Burlington , Ontario L7S 1A1 , Canada
| | - Alice Dove
- Water Quality Monitoring and Surveillance, Environment and Climate Change Canada , 867 Lakeshore Road , Burlington , Ontario L7S 1A1 , Canada
| | - Daryl McGoldrick
- Water Quality Monitoring and Surveillance, Environment and Climate Change Canada , 867 Lakeshore Road , Burlington , Ontario L7S 1A1 , Canada
| | - Hayley Hung
- Air Quality Processes Research Section, Environment and Climate Change Canada , 4905 Dufferin Street , Toronto , Ontario M3H 5T4 , Canada
| | - Helena Dryfhout-Clark
- Air Quality Processes Research Section, Environment and Climate Change Canada , 4905 Dufferin Street , Toronto , Ontario M3H 5T4 , Canada
| |
Collapse
|
130
|
Liu Z, Lu Y, Song X, Jones K, Sweetman AJ, Johnson AC, Zhang M, Lu X, Su C. Multiple crop bioaccumulation and human exposure of perfluoroalkyl substances around a mega fluorochemical industrial park, China: Implication for planting optimization and food safety. ENVIRONMENT INTERNATIONAL 2019; 127:671-684. [PMID: 30991223 DOI: 10.1016/j.envint.2019.04.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 05/27/2023]
Abstract
Perfluoroalkyl substances (PFASs) have become a recognized concern due to their mobility, persistence, ubiquity and health hazards in the environment. In this study, ten types of vegetables and three types of grain crops were collected in two open-air fields with different distances (0.3 km, 10 km) from a mega fluorochemical industrial park (FIP), China. Bioaccumulation characteristics of PFASs in light of crop types and organs were explored, followed by analyzing human exposure and risks to local residents with different age groups and dietary habits. Elevated levels of ∑PFASs were found nearby the FIP ranging from 79.9 ng/g to 200 ng/g in soils and from 58.8 ng/g to 8085 ng/g in crops. Perfluorooctanoic acid (PFOA) was the predominant PFAS component in soil; while shorter-chain perfluoroalkyl carboxylic acids (PFCAs), especially perfluorobutanoic acid (PFBA), were the major PFAS contaminants in multiple crops, resulting from their bioaccumulation preference. Depending on the crop types, the bioaccumulation factors (BAFs) of ∑PFASs for edible parts varied from 0.36 to 48.0, and the highest values were found in shoot vegetables compared with those in fruit vegetables, flower vegetables, root vegetables and grain crops. For typical grains, the BAFs of ∑PFASs decreased in the order of soybean (Glycine max (Linn.) Merr.), wheat (Triticum aestivum L.) and corn (Zea mays L.), possibly related to their protein and lipid content. Among specific organs in the whole plants, leaves exhibited the highest BAFs of ∑PFASs compared with corresponding roots, stems, husks or grains. With increasing carbon chain lengths of individual PFCAs (C4-C8), the logarithm of their BAFs for edible parts of various crops showed a linear decrease (0.1-1.16 log decrease per CF2 unit), and the largest decrease was observed in grains. Human exposure to PFOA via the consumption of contaminated crops represents a health risk for local residents, especially for low-age consumers or urban consumers with higher vegetable diet. Implications for planting optimization and food safety were provided aiming to reduce health hazards of PFASs.
Collapse
Affiliation(s)
- Zhaoyang Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Yonglong Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kevin Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Andrew J Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK; Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford Wallingford, Oxon, OX 10 8BB, UK
| | - Andrew C Johnson
- Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford Wallingford, Oxon, OX 10 8BB, UK
| | - Meng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaotian Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Su
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
131
|
Wen W, Xia X, Zhou D, Wang H, Zhai Y, Lin H, Chen J, Hu D. Bioconcentration and tissue distribution of shorter and longer chain perfluoroalkyl acids (PFAAs) in zebrafish (Danio rerio): Effects of perfluorinated carbon chain length and zebrafish protein content. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:277-285. [PMID: 30897467 DOI: 10.1016/j.envpol.2019.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/16/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are a class of emerging pollutants. However, the bioconcentration and tissue distribution of shorter chain PFAAs in aquatic animals are not well understood. Here, we investigated the effects of perfluorinated carbon chain length of PFAAs and protein content of tissues on the bioconcentration and tissue distribution of both shorter chain PFAAs (linear C-F = 3-6) and longer chain PFAAs (linear C-F = 7-11) in zebrafish. The results showed that the uptake rate constants (ku) and the bioconcentration factors (BCFss) of the shorter chain PFAAs (0.042-32 L·kgww-1·d-1 and 0.12-24 L·kgww-1, respectively) in tissues were significantly lower than those of the longer chain PFAAs (2.8-1.4 × 103 L·kgww-1·d-1 and 9.7-1.9 × 104 L·kgww-1, respectively). Moreover, the concentrations of both longer and shorter chain PFAAs were lowest in the muscle where the protein content was lowest, and they were highest in blood and liver where the protein content was highest among tissues except brain. The protein content of the brain was higher than that of the liver but the concentrations of PFAAs in the brain were significantly lower than those in the liver because of the blood-brain barrier. In addition, the ovary/blood and brain/blood ratios of concentrations for the shorter chain PFAAs were lower than those for the longer chain PFAAs. Generally, both log ku and log BCFss showed a significantly positive correlation with either perfluorinated carbon number of PFAAs or protein content of tissues (P < 0.05). Further nonlinear surface fitting revealed that the effect of perfluorinated carbon number was more significant than protein content on the PFAA bioconcentration in zebrafish tissues. These results suggest that there are differences in the bioconcentration and tissue distribution between longer and shorter chain PFAAs and the shorter chain PFAAs seem to be safe compared with the longer chain PFAAs.
Collapse
Affiliation(s)
- Wu Wen
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Xinghui Xia
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China.
| | - Dong Zhou
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Haotian Wang
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Yawei Zhai
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Hui Lin
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Jian Chen
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Diexuan Hu
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| |
Collapse
|
132
|
Occurrence, Removal and Bioaccumulation of Perfluoroalkyl Substances in Lake Chaohu, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16101692. [PMID: 31091789 PMCID: PMC6572331 DOI: 10.3390/ijerph16101692] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/02/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023]
Abstract
The perfluoroalkyl substances (PFAAs) have received growing attention in recent years as emerging contaminants in the aquatic environment. The occurrence, removal and bioaccumulation of fourteen PFAAs (C4-C14 carboxylate; C4, C6, C8 sulfonates) were investigated in Lake Chaohu, China. The concentrations of the selected PFAAs in inflowing river, lake water and sewage treatment plant (STP) samples were analyzed by ultra performance liquid chromatograph (UPLC-MS/MS). The results showed that perfluorohexanesulfonic acid (PFHxS), perfluorobutane sulfonate (PFBS), perfluorobutyric acid (PFBA) and perfluoropentanoic acid (PFPeA), instead of perfluorooctanoic acid (PFOA), were predominant PFAAs in the inflowing river and lake water with maximum concentrations in the ranges of 52.2-1866 and 27-236 ng L-1, respectively. The highest concentrations of total PFAAs were detected in the western rivers. The effluents from seven STPs were likely important sources of PFAAs in surface water, and the amount of the daily fluxes in the effluent were 132 g for short-chain PFAAs and 109 g for long-chain PFAAs. PFAAs were widely detected in Chinese icefish (Neosalanx tangkahkeii taihuensis) collected from Lake Chaohu, with maximal concentrations ranging from 1.79 ng g-1 to 50.9 ng g-1. The logarithmic bioaccumulation factors of perfluorodecanoic acid (PFDA, 3.5), perfluorooctane sulfonate (PFOS, 3.35) and perfluorononanoic acid (PFNA, 3.31) indicated the bioaccumulation of these long-chain PFAAs. This study is useful for enhancing our understanding of the pollution profiles of PFAAs and their environmental health risk in the freshwater lake.
Collapse
|
133
|
Chen H, Zhang L, Li M, Yao Y, Zhao Z, Munoz G, Sun H. Per- and polyfluoroalkyl substances (PFASs) in precipitation from mainland China: Contributions of unknown precursors and short-chain (C2C3) perfluoroalkyl carboxylic acids. WATER RESEARCH 2019; 153:169-177. [PMID: 30711792 DOI: 10.1016/j.watres.2019.01.019] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/02/2019] [Accepted: 01/05/2019] [Indexed: 05/26/2023]
Abstract
A nationwide survey was conducted on per- and polyfluoroalkyl substances (PFASs) in precipitation across mainland China. Twenty-two PFASs, including precursors to perfluoroalkyl acids (pre-PFAAs), were investigated in thirty-nine precipitation samples collected from twenty-eight cities. Trifluoroacetate (TFA), perfluorooctanoic acid, and perfluorooctane sulfonic acid (PFOS) were ubiquitous in precipitation. TFA displayed the highest concentrations (8.8-1.8 × 103 ng/L), which were particularly elevated in coastal cities. 6:2 chlorinated polyfluorinated ether sulfonic acid, an alternative to PFOS, was detected for the first time in precipitation at a frequency of 43%. Polyfluoroalkyl phosphoric acid diesters and 6:2 fluorotelomer sulfonic acid were also occasionally detected. PFAS fluxes in the northeastern area (C4C12; 2.0 × 102-3.4 × 103 ng/m2/d) with major PFAS manufacturing facilities were higher than those in the southwestern area (63-1.7 × 103 ng/m2/d). Using total oxidizable precursor (TOP) assay, the occurrence of unknown pre-PFAAs was for the first time uncovered in precipitation with maximum estimated fluxes of C6 and C8 pre-PFAAs at 3.1 × 103 and 4.3 × 103 ng/m2/d, respectively. The relative contribution of ultrashort-chain PFCAs (C2C3) ranged from 22% to 91% of ∑PFASs, while unknown pre-PFAAs accounted for 6%-56% of the total molar concentrations of PFASs. This bears critical concerns on underestimation of PFAS mass load from precipitation to surface environment ascribed to monitoring data solely on known PFASs. Unknown precursors of PFAAs in the atmosphere are yet to be identified for their chemical structures and relevant environmental risks as well.
Collapse
Affiliation(s)
- Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Lu Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Mengqi Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
134
|
Bentel MJ, Yu Y, Xu L, Li Z, Wong BM, Men Y, Liu J. Defluorination of Per- and Polyfluoroalkyl Substances (PFASs) with Hydrated Electrons: Structural Dependence and Implications to PFAS Remediation and Management. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3718-3728. [PMID: 30874441 DOI: 10.1021/acs.est.8b06648] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This study investigates critical structure-reactivity relationships within 34 representative per- and polyfluoroalkyl substances (PFASs) undergoing defluorination with UV-generated hydrated electrons. While C nF2 n+1-COO- with variable fluoroalkyl chain lengths ( n = 2 to 10) exhibited a similar rate and extent of parent compound decay and defluorination, the reactions of telomeric C nF2 n+1-CH2CH2-COO- and C nF2 n+1-SO3- showed an apparent dependence on the length of the fluoroalkyl chain. Cross comparison of experimental results, including different rates of decay and defluorination of specific PFAS categories, the incomplete defluorination from most PFAS structures, and the surprising 100% defluorination from CF3COO-, leads to the elucidation of new mechanistic insights into PFAS degradation. Theoretical calculations on the C-F bond dissociation energies (BDEs) of all PFAS structures reveal strong relationships among (i) the rate and extent of decay and defluorination, (ii) head functional groups, (iii) fluoroalkyl chain length, and (iv) the position and number of C-F bonds with low BDEs. These relationships are further supported by the spontaneous cleavage of specific bonds during calculated geometry optimization of PFAS structures bearing one extra electron, and by the product analyses with high-resolution mass spectrometry. Multiple reaction pathways, including H/F exchange, dissociation of terminal functional groups, and decarboxylation-triggered HF elimination and hydrolysis, result in the formation of variable defluorination products. The selectivity and ease of C-F bond cleavage highly depends on molecular structures. These findings provide critical information for developing PFAS treatment processes and technologies to destruct a wide scope of PFAS pollutants and for designing fluorochemical formulations to avoid releasing recalcitrant PFASs into the environment.
Collapse
Affiliation(s)
- Michael J Bentel
- Department of Chemical & Environmental Engineering and ‡Materials Science & Engineering Program , University of California , Riverside , California 92521 , United States
| | - Yaochun Yu
- Department of Civil & Environmental Engineering , ∥Metabolomics Lab of Roy J. Carver Biotechnology Center , and ⊥Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Lihua Xu
- Department of Chemical & Environmental Engineering and ‡Materials Science & Engineering Program , University of California , Riverside , California 92521 , United States
| | | | - Bryan M Wong
- Department of Chemical & Environmental Engineering and ‡Materials Science & Engineering Program , University of California , Riverside , California 92521 , United States
| | - Yujie Men
- Department of Civil & Environmental Engineering , ∥Metabolomics Lab of Roy J. Carver Biotechnology Center , and ⊥Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Jinyong Liu
- Department of Chemical & Environmental Engineering and ‡Materials Science & Engineering Program , University of California , Riverside , California 92521 , United States
| |
Collapse
|
135
|
Kong B, Wang X, He B, Wei L, Zhu J, Jin Y, Fu Z. 8:2 fluorotelomer alcohol inhibited proliferation and disturbed the expression of pro-inflammatory cytokines and antigen-presenting genes in murine macrophages. CHEMOSPHERE 2019; 219:1052-1060. [PMID: 30558807 DOI: 10.1016/j.chemosphere.2018.12.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/23/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Fluorotelomer alcohols (FTOHs, F(CF2)nCH2CH2OH) are members of per- and polyfluoroalkyl substances (PFASs) and are increasingly used in surfactant and polymer industries. FTOHs pose hepatotoxicity, nephrotoxicity and endocrine-disrupting risks. Nevertheless, there is limited research on the immunotoxic effects of FTOHs. In this study, we examined the immunotoxicity of 8:2 FTOH (n = 8) on murine macrophage cell line RAW 264.7. The results showed that 8:2 FTOH exposure reduced cell viability in dose- and time-dependent manners, inhibited cell proliferation and caused cell cycle arrest. Exposure to 8:2 FTOH downregulated the mRNA expression of some cell cycle-related genes, including Cdk4, Ccnd1, Ccne1, and p53, but also upregulated the mRNA expression of other cell cycle related genes, including Ccna2, p21, and p27. Additionally, exposure to 8:2 FTOH under unstimulated and LPS-stimulated conditions downregulated the mRNA expression of pro-inflammatory genes, including Il1b, Il6, Cxcl1, and Tnfa, and secreted levels of IL-6 and TNF-α. Treatment with 8:2 FTOH upregulated the mRNA expression of antigen-presenting-related genes, including H2-K1, H2-Ka, Cd80, and Cd86. The abovementioned immunotoxic effects caused by 8:2 FTOH in RAW 264.7 cells were partially or completely blocked by co-treatment with hydralazine hydrochloride (Hyd), a reactive carbonyl species (RCS) scavenger. However, exposure to 8:2 FTOH did not exhibit any effects on intracellular reactive oxygen species (ROS) level with or without LPS stimulation. Taken together, these results suggest that 8:2 FTOH may have immunotoxic effects on macrophages and RCS may underlie the responsible mechanism. The present study aids in understanding the health risks caused by FTOHs.
Collapse
Affiliation(s)
- Baida Kong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lai Wei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianbo Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|