101
|
Behera J, Pal A, Sahoo R, Das MC. Variation in Catalytic Efficacies of a 2D pH-Stable MOF by Altering Activation Methods. Chemistry 2024; 30:e202400375. [PMID: 38622985 DOI: 10.1002/chem.202400375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Although it is well-known that the Lewis acidity of Metal-Organic Frameworks (MOFs) can effectively enhance their catalytic activity in organic transformations, access to these Lewis-acidic sites remains a key hurdle to widespread applications of Lewis-acidic catalysis by MOFs. Easy accessibility of strong Lewis acidic sites onto 2D MOFs by using proper activation methods can be a cornerstone in attaining desired catalytic performance. Herein, we report a new 2D chemically stable MOF, IITKGP-60, which displayed excellent framework robustness over a wide pH range (2-12). Benefiting from the abundant open metal sites (OMSs) and framework robustness, the catalytic activity of the developed material was explored in one-pot three-component Strecker reaction and Knoevenagel condensation reaction. Moreover, the developed catalyst is superior in catalyzing the reactions involving sterically hindered substrate (1-naphthaldehyde) with high turnover number. A comparative catalytic study was conducted using different activation methods (chloroform and methanol exchanged activated samples), highlighting the significant effect of activation methods on its catalytic performances. The sustainable synthetic pathway under solvent-free conditions for a broad scope of substrates using low catalyst loading and excellent recyclability made the developed pH-stable framework a promising heterogeneous catalyst.
Collapse
Affiliation(s)
- Janaki Behera
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| | - Arun Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Rupam Sahoo
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| |
Collapse
|
102
|
Ismail UM, Vohra MS, Onaizi SA. Adsorptive removal of heavy metals from aqueous solutions: Progress of adsorbents development and their effectiveness. ENVIRONMENTAL RESEARCH 2024; 251:118562. [PMID: 38447605 DOI: 10.1016/j.envres.2024.118562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/11/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
Increased levels of heavy metals (HMs) in aquatic environments poses serious health and ecological concerns. Hence, several approaches have been proposed to eliminate/reduce the levels of HMs before the discharge/reuse of HMs-contaminated waters. Adsorption is one of the most attractive processes for water decontamination; however, the efficiency of this process greatly depends on the choice of adsorbent. Therefore, the key aim of this article is to review the progress in the development and application of different classes of conventional and emerging adsorbents for the abatement of HMs from contaminated waters. Adsorbents that are based on activated carbon, natural materials, microbial, clay minerals, layered double hydroxides (LDHs), nano-zerovalent iron (nZVI), graphene, carbon nanotubes (CNTs), metal organic frameworks (MOFs), and zeolitic imidazolate frameworks (ZIFs) are critically reviewed, with more emphasis on the last four adsorbents and their nanocomposites since they have the potential to significantly boost the HMs removal efficiency from contaminated waters. Furthermore, the optimal process conditions to achieve efficient performance are discussed. Additionally, adsorption isotherm, kinetics, thermodynamics, mechanisms, and effects of varying adsorption process parameters have been introduced. Moreover, heavy metal removal driven by other processes such as oxidation, reduction, and precipitation that might concurrently occur in parallel with adsorption have been reviewed. The application of adsorption for the treatment of real wastewater has been also reviewed. Finally, challenges, limitations and potential areas for improvements in the adsorptive removal of HMs from contaminated waters are identified and discussed. Thus, this article serves as a comprehensive reference for the recent developments in the field of adsorptive removal of heavy metals from wastewater. The proposed future research work at the end of this review could help in addressing some of the key limitations facing this technology, and create a platform for boosting the efficiency of the adsorptive removal of heavy metals.
Collapse
Affiliation(s)
- Usman M Ismail
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Muhammad S Vohra
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Construction and Building Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Sagheer A Onaizi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
103
|
Shano LB, Karthikeyan S, Kennedy LJ, Chinnathambi S, Pandian GN. MOFs for next-generation cancer therapeutics through a biophysical approach-a review. Front Bioeng Biotechnol 2024; 12:1397804. [PMID: 38938982 PMCID: PMC11208718 DOI: 10.3389/fbioe.2024.1397804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Metal-organic frameworks (MOFs) have emerged as promising nanocarriers for cancer treatment due to their unique properties. Featuring high porosity, extensive surface area, chemical stability, and good biocompatibility, MOFs are ideal for efficient drug delivery, targeted therapy, and controlled release. They can be designed to target specific cellular organelles to disrupt metabolic processes in cancer cells. Additionally, functionalization with enzymes mimics their catalytic activity, enhancing photodynamic therapy and overcoming apoptosis resistance in cancer cells. The controllable and regular structure of MOFs, along with their tumor microenvironment responsiveness, make them promising nanocarriers for anticancer drugs. These carriers can effectively deliver a wide range of drugs with improved bioavailability, controlled release rate, and targeted delivery efficiency compared to alternatives. In this article, we review both experimental and computational studies focusing on the interaction between MOFs and drug, explicating the release mechanisms and stability in physiological conditions. Notably, we explore the relationship between MOF structure and its ability to damage cancer cells, elucidating why MOFs are excellent candidates for bio-applicability. By understanding the problem and exploring potential solutions, this review provides insights into the future directions for harnessing the full potential of MOFs, ultimately leading to improved therapeutic outcomes in cancer treatment.
Collapse
Affiliation(s)
- Leon Bernet Shano
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Subramani Karthikeyan
- Centre for Healthcare Advancement, Innovation and Research, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Lourdusamy John Kennedy
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Shanmugavel Chinnathambi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| |
Collapse
|
104
|
Sarswat A, Bacsa J, Roy A, Marreiros J, Finn MG, Sholl DS, Lively RP. Investigating the Effect of Trace Levels of Manganese Ions During Solvothermal Synthesis of Massey University Framework-16 on CO 2 Uptake Capacity. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:5378-5387. [PMID: 38883436 PMCID: PMC11170933 DOI: 10.1021/acs.chemmater.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 06/18/2024]
Abstract
The effects of impurities on reaction precursors for metal-organic framework (MOF) synthesis have not been studied in extensive detail. The impact of these impurities can be an important factor while considering scale-up of these materials. In this work, we study the apparently positive impact of the presence of manganese ions for the synthesis of a Co-based MOF, Massey University Framework-16 (MUF-16). The presence of a trace amount of manganese in the reaction mixture led to consistently high CO2 uptake across multiple batches. Characterization including X-ray diffraction, scanning electron microscopy, Fourier transform infrared-attenuated total reflectance, ultraviolet-visible spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, and extended X-ray absorption fine structure spectroscopy led us to hypothesize that the differences in CO2 adsorption among materials with differing synthesis routes arise from variations in the local environment around the cobalt metal center. Aided by density functional theory calculations, we speculate that manganese ions get inserted into the structure during crystallization and act as catalysts for ligand substitution, improving the possibility for octahedral coordination of cobalt with the ligand, thus leading to Co-based pristine structures with higher CO2 uptakes.
Collapse
Affiliation(s)
- Akriti Sarswat
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - John Bacsa
- Crystallography Lab, Emory University, Atlanta, Georgia 30322, United States
| | - Ankana Roy
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Joao Marreiros
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - M G Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - David S Sholl
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Ryan P Lively
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
105
|
Song Y, Tan KB, Zhou SF, Zhan G. Biocompatible Copper-Based Nanocomposites for Combined Cancer Therapy. ACS Biomater Sci Eng 2024; 10:3673-3692. [PMID: 38717176 DOI: 10.1021/acsbiomaterials.4c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Copper (Cu) and Cu-based nanomaterials have received tremendous attention in recent years because of their unique physicochemical properties and good biocompatibility in the treatment of various diseases, especially cancer. To date, researchers have designed and fabricated a variety of integrated Cu-based nanocomplexes with distinctive nanostructures and applied them in cancer therapy, mainly including chemotherapy, radiotherapy (RT), photothermal therapy (PTT), chemodynamic therapy (CDT), photodynamic therapy (PDT), cuproptosis-mediated therapy, etc. Due to the limited effect of a single treatment method, the development of composite diagnostic nanosystems that integrate chemotherapy, PTT, CDT, PDT, and other treatments is of great significance and offers great potential for the development of the next generation of anticancer nanomedicines. In view of the rapid development of Cu-based nanocomplexes in the field of cancer therapy, this review focuses on the current state of research on Cu-based nanomaterials, followed by a discussion of Cu-based nanocomplexes for combined cancer therapy. Moreover, the current challenges and future prospects of Cu-based nanocomplexes in clinical translation are proposed to provide some insights into the design of integrated Cu-based nanotherapeutic platforms.
Collapse
Affiliation(s)
- Yibo Song
- College of Chemical Engineering, Academy of Advanced Carbon Conversion Technology, Huaqiao University, 668 Jimei Avenue, Xiamen, 361021 Fujian, P. R. China
| | - Kok Bing Tan
- College of Chemical Engineering, Academy of Advanced Carbon Conversion Technology, Huaqiao University, 668 Jimei Avenue, Xiamen, 361021 Fujian, P. R. China
| | - Shu-Feng Zhou
- College of Chemical Engineering, Academy of Advanced Carbon Conversion Technology, Huaqiao University, 668 Jimei Avenue, Xiamen, 361021 Fujian, P. R. China
| | - Guowu Zhan
- College of Chemical Engineering, Academy of Advanced Carbon Conversion Technology, Huaqiao University, 668 Jimei Avenue, Xiamen, 361021 Fujian, P. R. China
| |
Collapse
|
106
|
Li Q, Yan Y, Jiang Z, Chen T, Li Q. Three-Component Construction of Mesoporous Metal-Organic Frameworks and Their Incorporation into Solid Polymer Electrolytes for Li-Ion Conduction. Inorg Chem 2024; 63:10585-10593. [PMID: 38798023 DOI: 10.1021/acs.inorgchem.4c00937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Solid electrolytes with high ionic conductivity and satisfactory electrochemical stability are essential for the development of solid-state batteries. However, current strategies, including polymer (and polymer-based composite) electrolytes, still face challenges in meeting the bar set by real operations. We seek to improve the Li-ion conduction of the electrolytes by incorporating mesoporous metal-organic frameworks (MOFs) into the polymer matrix. Specifically, MOFs with pores larger than 3.0 nm are constructed by three-component reactions that involve the construction of both coordinative and dynamic imine linkages. The MOFs allow polymer penetration and amorphization and efficient lithium salt dissociation in the confined channels. Numerous metal sites and organic functionalities in the MOF backbone further assist the ion migration by providing strong interactions with the fluorinated polymer and the Li+. Remarkable ionic conductivity (0.95 mS cm-1) and a large lithium transference number (0.64) are achieved. Overall, the study fully utilizes both the MOF structural units with atomic precision and the encompassed space at the mesoscale for solid-state electrolyte development.
Collapse
Affiliation(s)
- Qingqing Li
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yu Yan
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Zhongwen Jiang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Tianhao Chen
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Qiaowei Li
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
107
|
Ye X, Bai C, Zhang P, Han F, Xia J, Gao X, Xu W, Guo L, Li J. Engineering the Activity and Stability of the Zn-MOF Catalyst via the Interaction of Doped Zr with Zn. Inorg Chem 2024; 63:10346-10357. [PMID: 38759228 DOI: 10.1021/acs.inorgchem.4c01253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Metallic atoms within metal-organic framework (MOF) materials exhibit a distinctive and adaptable coordination structure. The three-dimensional (3D) pore configuration of MOFs enables the complete exposure of metal active sites, rendering them prevalent in various catalytic reactions. In this study, zinc (Zn) atoms within Zn-based MOF materials, characterized by an abundance of valence electrons, are utilized for the transesterification of dimethyl carbonate (DMC). Additionally, the introduction of zirconium (Zr) effectively addresses the susceptibility of the MOFs' crystal structure to dissolution in organic solvents. The formulated catalyst, Zn-10%Zr-MOF(300), demonstrates remarkable catalytic performance with 91.5% DMC selectivity, 61.9% propylene carbonate (PC) conversion, and 56.6% DMC yield. Impressively, the catalyst maintains its high performance over five cycles. Results indicate that Zr interacts with Zn, forming new coordination bonds and enhancing the catalyst crystal structure stability. Moreover, electron transfer intensifies the alkalinity of the active Zn atoms, enhancing the overall catalyst performance. This research informs the development of transesterification heterogeneous catalysts and broadens the application scope of MOF catalysts.
Collapse
Affiliation(s)
- Xue Ye
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Chenxi Bai
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Peipei Zhang
- CNOOC Institute of Chemicals & Advanced Materials, Beijing 102209, China
| | - Fuyuan Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Junyu Xia
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Xinhua Gao
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Wenlin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Lisheng Guo
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230061, China
| | - Jie Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
108
|
Hubab M, Al-Ghouti MA. Recent advances and potential applications for metal-organic framework (MOFs) and MOFs-derived materials: Characterizations and antimicrobial activities. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 42:e00837. [PMID: 38577654 PMCID: PMC10992724 DOI: 10.1016/j.btre.2024.e00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/02/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
Microbial infections, particularly those caused by antibiotic-resistant pathogens, pose a critical global health threat. Metal-Organic Frameworks (MOFs), porous crystalline structures built from metal ions and organic linkers, initially developed for gas adsorption, have emerged as promising alternatives to traditional antibiotics. This review, covering research up to 2023, explores the potential of MOFs and MOF-based materials as broad-spectrum antimicrobial agents against bacteria, viruses, fungi, and even parasites. It delves into the historical context of antimicrobial agents, recent advancements in MOF research, and the diverse synthesis techniques employed for their production. Furthermore, the review comprehensively analyzes the mechanisms of action by which MOFs combat various microbial threats. By highlighting the vast potential of MOFs, their diverse synthesis methods, and their effectiveness against various pathogens, this study underscores their potential as a novel solution to the growing challenge of antibiotic resistance.
Collapse
Affiliation(s)
- Muhammad Hubab
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, State of Qatar, Doha, P.O. Box: 2713, Qatar
| | - Mohammad A. Al-Ghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, State of Qatar, Doha, P.O. Box: 2713, Qatar
| |
Collapse
|
109
|
Gorgani L, Mohammadi M, Najafpour Darzi G, Raoof JB. Metal-organic framework (MOF)-based biosensors for miRNA detection. Talanta 2024; 273:125854. [PMID: 38447342 DOI: 10.1016/j.talanta.2024.125854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/31/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
MicroRNAs (miRNAs) play several crucial roles in the physiological and pathological processes of the human body. They are considered as important biomarkers for the diagnosis of various disorders. Thus, rapid, sensitive, selective, and affordable detection of miRNAs is of great importance. However, the small size, low abundance, and highly similar sequences of miRNAs impose major challenges to their accurate detection in biological samples. In recent years, metal-organic frameworks (MOFs) have been applied as promising sensing materials for the fabrication of different biosensors due to their distinctive characteristics, such as high porosity and surface area, tunable pores, outstanding adsorption affinities, and ease of functionalization. In this review, the applications of MOFs and MOF-derived materials in the fabrication of fluorescence, electrochemical, chemiluminescence, electrochemiluminescent, and photoelectrochemical biosensors for the detection of miRNAs and their detection principle and analytical performance are discussed. This paper attempts to provide readers with a comprehensive knowledge of the fabrication and sensing mechanisms of miRNA detection platforms.
Collapse
Affiliation(s)
- Leila Gorgani
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran
| | - Maedeh Mohammadi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran; School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| | - Ghasem Najafpour Darzi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
110
|
Tang S, Wang Y, He P, Wang Y, Wei G. Recent Advances in Metal-Organic Framework (MOF)-Based Composites for Organic Effluent Remediation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2660. [PMID: 38893925 PMCID: PMC11173850 DOI: 10.3390/ma17112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Environmental pollution caused by organic effluents emitted by industry has become a worldwide issue and poses a serious threat to the public and the ecosystem. Metal-organic frameworks (MOFs), comprising metal-containing clusters and organic bridging ligands, are porous and crystalline materials, possessing fascinating shape and size-dependent properties such as high surface area, abundant active sites, well-defined crystal morphologies, and huge potential for surface functionalization. To date, numerous well designated MOFs have emerged as critical functional materials to solve the growing challenges associated with water environmental issues. Here we present the recent progress of MOF-based materials and their applications in the treatment of organic effluents. Firstly, several traditional and emerging synthesis strategies for MOF composites are introduced. Then, the structural and functional regulations of MOF composites are presented and analyzed. Finally, typical applications of MOF-based materials in treating organic effluents, including chemical, pharmaceutical, textile, and agricultural wastewaters are summarized. Overall, this review is anticipated to tailor design and regulation of MOF-based functional materials for boosting the performance of organic effluent remediation.
Collapse
Affiliation(s)
| | | | | | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (S.T.); (Y.W.); (P.H.)
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (S.T.); (Y.W.); (P.H.)
| |
Collapse
|
111
|
Kempasiddaiah M, Samanta R, Panigrahy S, Trivedi RK, Chakraborty B, Barman S. Electrochemical reconstruction of a 1D Cu(PyDC)(H 2O) MOF into in situ formed Cu-Cu 2O heterostructures on carbon cloth as an efficient electrocatalyst for CO 2 conversion. NANOSCALE 2024; 16:10458-10473. [PMID: 38757357 DOI: 10.1039/d4nr00824c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Electrochemical carbon dioxide (CO2) conversion has enormous potential for reducing high atmospheric CO2 levels and producing valuable products simultaneously; however the development of inexpensive catalysts remains a great challenge. In this work, we successfully synthesised a 1D Cu-based metal-organic framework [Cu(PyDC)(H2O)], which crystallizes in an orthorhombic system with the Pccn space group, by the hydrothermal method. Among the different catalysts utilized, the heterostructures of cathodized Cu-Cu2O@CC demonstrate increased efficiency in producing CH3OH and C2H4, achieving maximum FE values of 37.4% and 40.53%, respectively. Also, the product formation rates of CH3OH and C2H4 reach up to 667 and 1921 μmol h-1 cm-2. On the other side, Cu-Cu2O/NC-700 carbon composites simultaneously produced C1-C3 products with a total FE of 23.27%. Furthermore, a comprehensive study involving detailed DFT simulations is used to calculate the energetic stability and catalytic activity towards the CO2 reduction of Cu(111), Cu2O(111), and Cu@Cu2O(111) surfaces. During the early phase of electrochemical treatment, Cu(II) carboxylate nodes (Cu-O) in the Cu(PyDC)(H2O) MOF were reduced to Cu and Cu2O, with a possible synergistic enhancement from the PyDC ligands. Thus, the improved activity and product enhancement are closely associated with the cathodized reconstruction of Cu-Cu2O@CC heterostructures on carbon cloth. Hence, this study provides efficient derivatives of Cu-based MOFs for notable electrocatalytic activity in CO2 reduction and gives valuable insights towards the advancement of practical CO2 conversion technology.
Collapse
Affiliation(s)
- Manjunatha Kempasiddaiah
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar-752050, Orissa, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai-400094, India
| | - Rajib Samanta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar-752050, Orissa, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai-400094, India
| | - Sonali Panigrahy
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar-752050, Orissa, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai-400094, India
| | - Ravi Kumar Trivedi
- Department of Physics, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
- Centre for Computational Physics, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Brahmananda Chakraborty
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai-400094, India
- High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.
| | - Sudip Barman
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar-752050, Orissa, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai-400094, India
| |
Collapse
|
112
|
Otaif KD, Badjah-Hadj-Ahmed AY, ALOthman ZA. Preparation of UiO-66 MOF-Bonded Porous-Layer Open-Tubular Columns Using an In Situ Growth Approach for Gas Chromatography. Molecules 2024; 29:2505. [PMID: 38893383 PMCID: PMC11173385 DOI: 10.3390/molecules29112505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/21/2024] Open
Abstract
The thermally stable zirconium-based MOF, UiO-66, was employed for the preparation of bonded porous-layer open-tubular (PLOT) GC columns. The synthesis included the in situ growth of the UiO-66 film on the inner wall of the capillary through a one-step solvothermal procedure. SEM-EDX analysis revealed the formation of a thin, continuous, uniform, and compact layer of UiO-66 polycrystals on the functionalized inner wall of the column. The average polarity (ΔIav = 700) and the McReynolds constants reflected the polar nature of the UiO-66 stationary phase. Several mixtures of small organic compounds and real samples were used to evaluate the separation performance of the fabricated columns. Linear alkanes from n-pentane to n-decane were baseline separated within 1.35 min. Also, a series of six n-alkylbenzenes (C3-C8) were separated within 3 min with a minimum resolution of 3.09, whereas monohalobenzene mixtures were separated at 220 °C within 14s. UiO-66 PLOT columns are ideally suited for the isothermal separation of chlorobenzene structural isomers at 210 °C within 45 s with Rs ≥ 1.37. The prepared column featured outstanding thermal stability (up to 450 °C) without any observed bleeding or significant impact on its performance. This feature enabled the analysis of various petroleum-based samples.
Collapse
Affiliation(s)
- Khadejah D. Otaif
- Department of Chemistry, College of Science, Jazan University, Jazan 82843, Saudi Arabia
| | - Ahmed-Yacine Badjah-Hadj-Ahmed
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Zeid Abdullah ALOthman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
113
|
Ghosh D, Coulter SM, Laverty G, Holland C, Doutch JJ, Vassalli M, Adams DJ. Metal Cross-Linked Supramolecular Gel Noodles: Structural Insights and Antibacterial Assessment. Biomacromolecules 2024; 25:3169-3177. [PMID: 38684138 PMCID: PMC11094724 DOI: 10.1021/acs.biomac.4c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Achieving precise control over gelator alignment and morphology is crucial for crafting tailored materials and supramolecular structures with distinct properties. We successfully aligned the self-assembled micelles formed by a functionalized dipeptide 2NapFF into long 1-D "gel noodles" by cross-linking with divalent metal chlorides. We identify the most effective cross-linker for alignment, enhancing mechanical stability, and imparting functional properties. Our study shows that Group 2 metal ions are particularly suited for creating mechanically robust yet flexible gel noodles because of their ionic and nondirectional bonding with carboxylate groups. In contrast, the covalent nature and high directional bonds of d-block metal ions with carboxylates tend to disrupt the self-assembly of 2NapFF. Furthermore, the 2NapFF-Cu noodles demonstrated selective antibacterial activity, indicating that the potent antibacterial property of the copper(II) ion is preserved within the cross-linked system. By merging insights into molecular alignment, gel extrusion processing, and integrating specific functionalities, we illustrate how the versatility of dipeptide-based gels can be utilized in creating next-generation soft materials.
Collapse
Affiliation(s)
- Dipankar Ghosh
- School
of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Sophie M. Coulter
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, U.K.
| | - Garry Laverty
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, U.K.
| | - Chris Holland
- Department
of Materials Science and Engineering, Sheffield
University, Mappin Street, Sheffield S1 3JD, U.K.
| | - James J. Doutch
- ISIS
Pulsed Neutron and Muon Source, Harwell
Science and Innovation Campus, Didcot OX11 0QX, U.K.
| | - Massimo Vassalli
- Centre
for the Cellular Microenvironment, University of Glasgow, Glasgow G12 8LT, U.K.
| | - Dave J. Adams
- School
of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| |
Collapse
|
114
|
Zhou J, Wang X, Fu J, Chen L, Wei X, Jia R, Shi L. A 3D Cross-Linked Metal-Organic Framework (MOF)-Derived Polymer Electrolyte for Dendrite-Free Solid-State Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309317. [PMID: 38095442 DOI: 10.1002/smll.202309317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/19/2023] [Indexed: 05/03/2024]
Abstract
Lithium metal batteries (LMBs) with high energy density have received widespread attention; however, there are usually issues with lithium dendrite growth and safety. Therefore, there is a demand for solid electrolytes with high mechanical strength, room-temperature ionic conductivity, and good interface performance. Herein, a 3D cross-linked metal-organic framework (MOF)-derived polymer solid electrolyte exhibits good mechanical and ionic conductive properties simultaneously, in which the MOF with optimized pore size and strong imidazole cation sites can restrict the migration of anions, resulting in a uniform Li+ flux and a high lithium-ion transference number (0.54). Moreover, the MOF-derived polymer solid electrolytes with the 3D cross-linked network can promote the rapid movement of Li+ and inhibit the growth of lithium dendrites. Lithium symmetric batteries assembled with the 3D MOF-derived polymer solid electrolytes are subjected to lithium plating/stripping and cycled over 2000 h at a current density of 0.1 mA cm-2 and over 800 h at a current density of 0.2 mA cm-2. The Li/P-PETEA-MOF/LiFePO4 batteries exhibit excellent long-cycle stability and cycle reversibility.
Collapse
Affiliation(s)
- Jia Zhou
- Nano-Science & Technology Research Center, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Xiao Wang
- Nano-Science & Technology Research Center, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Jifang Fu
- Nano-Science & Technology Research Center, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Liya Chen
- Nano-Science & Technology Research Center, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Xiangrong Wei
- Nano-Science & Technology Research Center, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Rongrong Jia
- Nano-Science & Technology Research Center, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Liyi Shi
- Nano-Science & Technology Research Center, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| |
Collapse
|
115
|
Sung YH, Senthil Raja D, Huang JH, Tsai DH. Microfluidic-Aerosol Hyphenated Synthesis of Metal-Organic Framework-Derived Hybrid Catalysts for CO 2 Utilization. SMALL METHODS 2024; 8:e2301435. [PMID: 38161255 DOI: 10.1002/smtd.202301435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/19/2023] [Indexed: 01/03/2024]
Abstract
A new and efficient technique is developed by combining the hyphenated microfluidic- and aerosol-based synthesis with the coupled differential mobility analysis for the effective and continuous synthesis and simultaneous analysis of metal-organic frameworks (MOFs)-derived hybrid nanostructured products. HKUST-1, a copper-based MOF, is chosen as the representative to fabricate Cu-based hybrid catalysts for reverse water-gas shift (RWGS) reaction, an effective route for CO2 utilization. The effect of precursor concentration and carrier selection on the properties of the resulting products, including mobility size distribution, crystallization degree, surface area, and metal dispersion are investigated, as well as the correlation between the material properties of the synthesized catalysts and their catalytic performance in RWGS reaction in terms of conversion ratio/rate, selectivity, and operational stability. The results indicate that the continuous microfluidic droplet system can successfully synthesize MOF colloids, followed by the continuous production of MOF-derived hybrid materials through the tandem aerosol spray-drying-reaction system. High catalytic activity and low initiate temperature toward RWGS (turnover frequency = 0.0074 s-1; 450 °C) are achievable. The work facilitates the production and the designed concept of relevant MOF-derived hybrid nanostructured catalysts in the continuous synthesis system and the enhancement of applications in CO2 capture and utilization.
Collapse
Affiliation(s)
- Yi-Hsuan Sung
- Department of Chemical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu City, Taiwan, 300044, Republic of China
| | - Duraisamy Senthil Raja
- Department of Chemical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu City, Taiwan, 300044, Republic of China
| | - Jen-Huang Huang
- Department of Chemical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu City, Taiwan, 300044, Republic of China
| | - De-Hao Tsai
- Department of Chemical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu City, Taiwan, 300044, Republic of China
| |
Collapse
|
116
|
Zhang Q, Zhang Y, Chen H, Sun LN, Zhang B, Yue DS, Wang CL, Zhang ZF. Injectable hydrogel with doxorubicin-loaded ZIF-8 nanoparticles for tumor postoperative treatments and wound repair. Sci Rep 2024; 14:9983. [PMID: 38693143 PMCID: PMC11063161 DOI: 10.1038/s41598-024-57664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/20/2024] [Indexed: 05/03/2024] Open
Abstract
The need for tumor postoperative treatments aimed at recurrence prevention and tissue regeneration have raised wide considerations in the context of the design and functionalization of implants. Herein, an injectable hydrogel system encapsulated with anti-tumor, anti-oxidant dual functional nanoparticles has been developed in order to prevent tumor relapse after surgery and promote wound repair. The utilization of biocompatible gelatin methacryloyl (GelMA) was geared towards localized therapeutic intervention. Zeolitic imidazolate framework-8@ceric oxide (ZIF-8@CeO2, ZC) nanoparticles (NPs) were purposefully devised for their proficiency as reactive oxygen species (ROS) scavengers. Furthermore, injectable GelMA hydrogels loaded with ZC NPs carrying doxorubicin (ZC-DOX@GEL) were tailored as multifunctional postoperative implants, ensuring the efficacious eradication of residual tumor cells and alleviation of oxidative stress. In vitro and in vivo experiments were conducted to substantiate the efficacy in cancer cell elimination and the prevention of tumor recurrence through the synergistic chemotherapy approach employed with ZC-DOX@GEL. The acceleration of tissue regeneration and in vitro ROS scavenging attributes of ZC@GEL were corroborated using rat models of wound healing. The results underscore the potential of the multifaceted hydrogels presented herein for their promising application in tumor postoperative treatments.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin Lung Cancer Center, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yu Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin Lung Cancer Center, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hui Chen
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin Lung Cancer Center, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lei-Na Sun
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin Lung Cancer Center, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Bin Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin Lung Cancer Center, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Dong-Sheng Yue
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin Lung Cancer Center, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chang-Li Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin Lung Cancer Center, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhen-Fa Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Tianjin Lung Cancer Center, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
117
|
Gurbanov AV, Firoozbakht F, Pourshirband N, Sharafi-Badr P, Hayati P, Souri B, Eshghi F, Kaminsky W, Mahmoudi G, Verpoort F, Mehrabadi Z. A new 1D Mn(II) coordination polymer: Synthesis, crystal structure, hirshfeld surface analysis and molecular docking studies. Heliyon 2024; 10:e29565. [PMID: 38699722 PMCID: PMC11063412 DOI: 10.1016/j.heliyon.2024.e29565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024] Open
Abstract
The synthesis of novel metal-organic coordination polymers (MOCP) with the chemical formula [Mn2L (SCN)2(OH)2]3·CH3OH [L = 1,5-bis(pyridine-4-ylmethylene) carbonohydrazide] {1} was accomplished using two different techniques: solvothermal and sonochemical ultrasonic-assisted. An investigation was carried out to examine the impact of various factors such as reaction time, sonication power, temperature, and reactant concentration on the morphology and size of the crystals. Interestingly, it was found that sonication power and temperature did not affect the crystals' morphology and size. To further analyze the prepared microcrystals of MOCPs, SEM was utilized to examine their surface morphology, and XRD, elemental evaluation composition. The identification of the functional groups present in the prepared Mn-MOCPs was accomplished through the utilization of FT-IR spectroscopy. Subsequently, the calcination of 1 in an air atmosphere at 650 °C led to the formation of Mn3O4 nanoparticles. The geometric and electronic structure of the MOCPs was evaluated using density functional theory (DFT). The utilization of molecular docking methodologies demonstrated that the best cavity of the human androgen receptor possessed an interaction energy of -116.3 kJ mol-1. This energy encompassed a combination of both bonding and non-bonding interactions. The Results showed that steric interaction and electrostatic potential are the main interactions in AR polymer and Mn(II). These interactions in the defined cavity indicated that this polymer could be an effective anti-prostate candidate, because AR is involved in the growth of prostate cancer cells, and these interactions indicated the inhibition of prostate cancer cell growth.
Collapse
Affiliation(s)
- Atash V. Gurbanov
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Excellence Center, Baku State University, Z. Khalilov Str. 23, AZ 1148 Baku, Azerbaijan
- Western Caspian University, Istiqlaliyyat Street 31, AZ 1001, Baku, Azerbaijan
| | - Fateme Firoozbakht
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Nafiseh Pourshirband
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Paria Sharafi-Badr
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Payam Hayati
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO Box 16846-13114, Tehran, Iran
| | - Bagher Souri
- Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Iran
| | - Fazlolah Eshghi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Werner Kaminsky
- X-ray Crystallography Laboratory, University of Washington, United States
| | - Ghodrat Mahmoudi
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55136-83111, Maragheh, Iran
- Chemistry Department, Faculty of Engineering and Natural Sciences, Istinye University, Sarıyer, Istanbul 34396, Turkey
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zohreh Mehrabadi
- Department of Chemistry, Firoozabad Branch, Islamic Azad University, Firoozabad, Iran
| |
Collapse
|
118
|
Letwaba J, Uyor UO, Mavhungu ML, Achuka NO, Popoola PA. A review on MOFs synthesis and effect of their structural characteristics for hydrogen adsorption. RSC Adv 2024; 14:14233-14253. [PMID: 38690110 PMCID: PMC11058478 DOI: 10.1039/d4ra00865k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Climate change is causing a rise in the need to transition from fossil fuels to renewable and clean energy such as hydrogen as a sustainable energy source. The issue with hydrogen's practical storage, however, prevents it from being widely used as an energy source. Current solutions, such as liquefied and compressed hydrogen storage, are insufficient to meet the U.S. Department of Energy's (US DOE) extensive on-board application requirements. Thus, a backup strategy involving material-based storage is required. Metal organic frameworks (MOFs) belong to the category of crystalline porous materials that have seen rapid interest in the field of energy storage due to their large surface area, high pore volume, and modifiable structure. Therefore, advanced technologies employed in the construction of MOFs, such as solvothermal, mechanochemical, microwave assisted, and sonochemical methods are reviewed. Finally, this review discussed the selected factors and structural characteristics of MOFs, which affect the hydrogen capacity.
Collapse
Affiliation(s)
- John Letwaba
- Department of Chemical, Metallurgical & Materials Engineering, Tshwane University of Technology P.M.B X680 Pretoria 0001 South Africa
| | - Uwa Orji Uyor
- Department of Chemical, Metallurgical & Materials Engineering, Tshwane University of Technology P.M.B X680 Pretoria 0001 South Africa
- Department of Metallurgical and Materials Engineering, University of Nigeria, Nsukka Private Bag 0004 Nsukka Enugu State Nigeria
| | - Mapula Lucey Mavhungu
- Department of Chemical, Metallurgical & Materials Engineering, Tshwane University of Technology P.M.B X680 Pretoria 0001 South Africa
| | - Nwoke Oji Achuka
- Department of Agricultural and Bioresources Engineering, University of Nigeria, Nsukka Private Bag 0004 Nsukka Enugu State Nigeria
| | - Patricia Abimbola Popoola
- Department of Chemical, Metallurgical & Materials Engineering, Tshwane University of Technology P.M.B X680 Pretoria 0001 South Africa
| |
Collapse
|
119
|
Zhu Z, Wang L, Yan S, Zhang Q, Yang H. Enhanced water permeation through the terahertz-induced phase and diffusion transition in metal-organic framework membranes. Phys Chem Chem Phys 2024; 26:11686-11694. [PMID: 38563417 DOI: 10.1039/d3cp05988j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Freshwater scarcity is a pressing global concern, and water desalination has emerged as a promising solution. Metal-organic framework (MOF) membranes have demonstrated exceptional potential in this regard. However, previous efforts to improve the permeability of MOFs have primarily focused on chemical modifications and synthesis rather than exploring physical methods. Using molecular dynamics simulations, we propose that the use of terahertz waves at a specific frequency of 7.5 ± 1.0 THz significantly enhances water permeability across MOF membranes, up to 27-fold, while maintaining effective ion rejection capabilities throughout the process. The mechanism behind this enhancement involves the resonance between the terahertz wave and the hydrogen bond vibrations of water within the MOF. This resonance amplifies the rotational kinetic energy of water molecules, disrupting the hydrogen bonds and causing a phase transition from quasi 1D square ice to a gas-like phase. Additionally, the diffusion behavior shifts from Fickian diffusion to sub-diffusion, resulting in improved water permeation across the MOF membrane. This study highlights the potential of terahertz waves as a physical tool to enhance the permeability of MOFs in water desalination, providing new avenues for efficient water treatment and resource sustainability.
Collapse
Affiliation(s)
- Zhi Zhu
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lei Wang
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shaojian Yan
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qilin Zhang
- School of Mathematics-Physics and Finance, Anhui Polytechnic University, Wuhu 241000, China.
| | - Hui Yang
- The Medical Instrumentation College of Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| |
Collapse
|
120
|
Picchi D, Biglione C, Horcajada P. Nanocomposites Based on Magnetic Nanoparticles and Metal-Organic Frameworks for Therapy, Diagnosis, and Theragnostics. ACS NANOSCIENCE AU 2024; 4:85-114. [PMID: 38644966 PMCID: PMC11027209 DOI: 10.1021/acsnanoscienceau.3c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 04/23/2024]
Abstract
In the last two decades, metal-organic frameworks (MOFs) with highly tunable structure and porosity, have emerged as drug nanocarriers in the biomedical field. In particular, nanoscaled MOFs (nanoMOFs) have been widely investigated because of their potential biocompatibility, high drug loadings, and progressive release. To enhance their properties, MOFs have been combined with magnetic nanoparticles (MNPs) to form magnetic nanocomposites (MNP@MOF) with additional functionalities. Due to the magnetic properties of the MNPs, their presence in the nanosystems enables potential combinatorial magnetic targeted therapy and diagnosis. In this Review, we analyze the four main synthetic strategies currently employed for the fabrication of MNP@MOF nanocomposites, namely, mixing, in situ formation of MNPs in presynthesized MOF, in situ formation of MOFs in the presence of MNPs, and layer-by-layer methods. Additionally, we discuss the current progress in bioapplications, focusing on drug delivery systems (DDSs), magnetic resonance imaging (MRI), magnetic hyperthermia (MHT), and theragnostic systems. Overall, we provide a comprehensive overview of the recent advances in the development and bioapplications of MNP@MOF nanocomposites, highlighting their potential for future biomedical applications with a critical analysis of the challenges and limitations of these nanocomposites in terms of their synthesis, characterization, biocompatibility, and applicability.
Collapse
Affiliation(s)
| | - Catalina Biglione
- Advanced Porous Materials
Unit, IMDEA Energy Institute, Móstoles, 28935 Madrid, Spain
| | - Patricia Horcajada
- Advanced Porous Materials
Unit, IMDEA Energy Institute, Móstoles, 28935 Madrid, Spain
| |
Collapse
|
121
|
Chen J, Li M, Yang Y, Liu H, Zhao B, Ozaki Y, Song W. In-situ surface enhanced Raman spectroscopy revealing the role of metal-organic frameworks on photocatalytic reaction selectivity on highly sensitive and durable Cu-CuBr substrate. J Colloid Interface Sci 2024; 660:669-680. [PMID: 38271803 DOI: 10.1016/j.jcis.2024.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
Photocatalytic reactions using copper-based nanomaterials have emerged as a new paradigm in green technology. Selective photocatalysis is very important for improving energy utilization efficiency, and in order to directional improve catalytic selectivity, it is necessary to understand the mechanism of interfacial reactions at the molecular level. Therefore, a unique bifunctional Cu-CuBr substrate is first fabricated via an electrochemical method, which overcomes the instability of traditional copper-based materials and endows high surface-enhanced Raman spectroscopy (SERS) sensitivity and photocatalytic performance and can be stored stably for more than a year. Further modification of the surface with Metal-Organic Frameworks (MOFs) containing carboxyl functional groups can significantly tune the surface properties of the substrate. This increases the adsorption of cationic dyes to improve the SERS effect, and 10-10 M methylene blue can easily be detected with this substrate. Surprisingly, in-situ SERS monitoring of the interfacial photocatalytic dehalogenation reaction of aromatic halides through its intrinsic SERS effect reveal two competing selective reaction pathways, self-coupling and hydrogenation. Typically, the SERS spectra reveal that the latter's selectivity was greatly enhanced after MOFs modification, and the yield rate of the hydrogenated product increased from 27.6 % to 46.9 % (selectivity increased from 32.7 % to 51.5 %). This proves that the surface properties of catalysts, especially the affinity for reaction intermediates, can effectively regulate catalytic selectivity.
Collapse
Affiliation(s)
- Junjie Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Mengyuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yumei Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Hao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yukihiro Ozaki
- School of Biological and Environmatal Sciences, Kwansei Gakuin University, 1-Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
122
|
Darvishi S, Sadjadi S, Monflier E, Heydari A, Heravi MM. Sulfonic acid-functionalized k-carrageenan/Cr-based metal-organic framework: An efficient and recyclable catalyst for fructose conversion to 5-hydroxymethylfurfural. Int J Biol Macromol 2024; 264:130555. [PMID: 38430997 DOI: 10.1016/j.ijbiomac.2024.130555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/12/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
A novel bio-based catalyst was developed by in-situ forming Chromium(III) (Cr)-based metal-organic framework, MIL-101(Cr), in the presence of k-carrageenan (k-Car) and followed by a post-synthetic modification to introduce additional -SO3H functional groups into the composite structure of k-Car/MIL-101(Cr). Different analyses were conducted to confirm the successful catalyst formation. The catalyst performance was evaluated in the solid acid catalyzed dehydration of fructose to 5-hydroxymethylfurfural. The Response Surface Method (RSM) optimization determined that employing 33 wt% of the catalyst at 105 °C for 40 min resulted in a remarkable 97.8 % yield. The catalyst demonstrated suitable recyclability, maintaining its catalytic efficiency over four cycles. Comparative studies with k-Car and the non-sulfonated composite highlighted the superior activity of the catalyst, emphasizing the synergy between the k-Car, MIL-101(Cr) and the influence of -SO3H post-functionalizing on the catalytic performance.
Collapse
Affiliation(s)
- Sima Darvishi
- Department of Chemistry, School of physic and chemistry, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran
| | - Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, PO Box 14975-112, Tehran, Iran.
| | - Eric Monflier
- Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181, Unite de Catalyse et de Chimie du Solide (UCCS), 62300 Lens, France
| | - Abolfazl Heydari
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Majid M Heravi
- Department of Chemistry, School of physic and chemistry, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran
| |
Collapse
|
123
|
Wang Y, Li J, Ma P, Gao D, Song D. Synthesis of in-situ magnetized MOF-cellulose membranes for high-efficiency enrichment of diamide insecticides in vegetables and determination by LC-MS/MS. Talanta 2024; 270:125626. [PMID: 38211354 DOI: 10.1016/j.talanta.2024.125626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
This study presents a novel, eco-friendly composite adsorbent material designed for the magnetic solid-phase extraction of diamide insecticides from vegetable samples. The membrane, denoted as Fe-MMm, was incorporated with a cellulose framework embedded with Metal-Organic Frameworks (MOFs) and Multi-Walled Carbon Nanotubes (MWCNTs) magnetized with Fe3O4. This innovative material streamlined the conventional solid-phase extraction process, simplifying the sample pre-treatment. By combining it with liquid chromatography tandem mass spectrometry (LC-MS/MS), the method achieves significantly enhanced extraction efficiency through systematic optimization of experimental parameters, including adsorbent selection, pH, ionic strength, adsorption time, and elution time. The method had a wide linear range of 0.1-1000 ng/mL and an exceptionally low detection limit ranging from 0.023 to 0.035 ng/mL. The successful identification of diamide insecticides in vegetable samples underscores the potential of Fe-MMm as a robust material for sample pretreatment in analytical applications.
Collapse
Affiliation(s)
- Yuning Wang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street, 2699, Changchun, China
| | - Jingkang Li
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street, 2699, Changchun, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street, 2699, Changchun, China
| | - Dejiang Gao
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street, 2699, Changchun, China.
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street, 2699, Changchun, China.
| |
Collapse
|
124
|
Amani A, Farajollahi AH. Drug Delivery Angle for Various Atherosclerosis and Aneurysm Percentages of the Carotid Artery. Mol Pharm 2024; 21:1777-1793. [PMID: 38478900 DOI: 10.1021/acs.molpharmaceut.3c01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Stroke is the second cause of mortality among adult males and the first cause of death in adult females all around the world. It is also recognized as one of the most important causes of morbidity and dementia in adults. Stenosis or rupture of the only channels of the blood supply from the heart to the brain (carotid arteries) is among the main causes of stroke. In this regard, treatment of the lesions of carotid arteries, including atherosclerosis and aneurysm, could be a huge step in preventing stroke and improving brain performance. Targeted drug delivery by drug-carrying nanoparticles is the latest method for optimal delivery of drug to the damaged parts of the artery. In this study, a wide range of carotid artery lesions, including different percentages of atherosclerosis and aneurysm, were considered. After analyzing the dynamics of the fluid flow in different damaged regions and selecting the magnetic framework with proper ligand (Fe3O4@MOF) as the drug carrier, the size of the particles and their number per cycle were analyzed. Based on the results, the particle size of 100 nm and the use of 300 particles per injection at each cardiac cycle can result in maximum drug delivery to the target site. Then, the effect of the hospital bed angle on drug delivery was investigated. The results showed a unique optimal drug delivery angle for each extent of atherosclerosis or aneurysm. For example, in a 50% aneurysm, drug delivery at an angle of 30° is about 387% higher than that at an angle of 15°. Finally, simulation of real geometry indicated the effectiveness of simple geometry instead of real geometry for the simulation of carotid arteries, which can remarkably decrease the computational time and costs.
Collapse
Affiliation(s)
- Ali Amani
- School of Mechanical Engineering, Sharif University of Technology, Tehran 11155-9466, Iran
| | | |
Collapse
|
125
|
Bondarenko L, Baimuratova R, Reindl M, Zach V, Dzeranov A, Pankratov D, Kydralieva K, Dzhardimalieva G, Kolb D, Wagner FE, Schwaminger SP. Dramatic change in the properties of magnetite-modified MOF particles depending on the synthesis approach. Heliyon 2024; 10:e27640. [PMID: 38524575 PMCID: PMC10958221 DOI: 10.1016/j.heliyon.2024.e27640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024] Open
Abstract
Iron-containing metal-organic frameworks are promising Fenton catalysts. However, the absence of additional modifiers has proven difficult due to the low reaction rates and the inability to manipulate the catalysts. We hypothesize that the production of iron oxide NPs in the presence of a metal-organic framework will increase the rate of the Fenton reaction and lead to the production of particles that can be magnetically manipulated without changing the structure of the components. A comprehensive approach lead to a metal organic framework using the example of MIL-88b (Materials of Institute Lavoisier) modified with iron oxides NPs: formulation of iron oxide in the presence of MIL-88b and vice versa. The synthesis of MIL-88b consists of preparing a complexation compound with the respective structure and addition of terephthalic acid. The synthesis of MIL-88b facilitates to control the topology of the resulting material. Both methods for composite formulation lead to the preservation of the structure of iron oxide, however, a more technologically complex approach to obtaining MIL-88b in the presence of Fe3O4 suddenly turned out to be the more efficient for the release of iron ions.
Collapse
Affiliation(s)
- Lyubov Bondarenko
- Moscow Aviation Institute (National Research University), Moscow, 125993, Russia
| | - Rose Baimuratova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region, 119991, Russia
| | - Marco Reindl
- Division of Medicinal Chemistry, Otto-Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Verena Zach
- Division of Medicinal Chemistry, Otto-Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Artur Dzeranov
- Moscow Aviation Institute (National Research University), Moscow, 125993, Russia
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region, 119991, Russia
| | - Denis Pankratov
- Department of Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Kamila Kydralieva
- Moscow Aviation Institute (National Research University), Moscow, 125993, Russia
| | - Gulzhian Dzhardimalieva
- Moscow Aviation Institute (National Research University), Moscow, 125993, Russia
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region, 119991, Russia
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Center for Medical Research, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Friedrich E. Wagner
- Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
| | - Sebastian P. Schwaminger
- Division of Medicinal Chemistry, Otto-Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
126
|
Jeevananthan V, Senadi GC, Muthu K, Arumugam A, Shanmugan S. Construction of Indium(III)-Organic Framework Based on a Flexible Cyclotriphosphazene-Derived Hexacarboxylate as a Reusable Green Catalyst for the Synthesis of Bioactive Aza-Heterocycles. Inorg Chem 2024; 63:5446-5463. [PMID: 38456408 DOI: 10.1021/acs.inorgchem.3c04117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The constant demand for eco-friendly methods of synthesizing complex organic compounds inspired researchers to design and develop modern, highly efficient heterogeneous catalytic systems. Herein, In-HCPCP metal-organic framework (SRMIST-1), a heterogeneous Lewis acid catalyst containing less toxic indium and eco-friendly robust cyclotriphosphazene and exhibiting notable chemical and thermal stability, durable catalytic activity, and exceptional reusability was produced through the reaction between indium(III) nitrate hydrate and hexakis(4-carboxylatophenoxy)-cyclotriphosphazene. In the SRMIST-1 structure, secondary building units {InO7} are assembled by a connection of η2- and η1-carboxylic oxo atoms from different HCPCP ligands, forming a three-dimensional network. The occurrence of regularly distributed In(III) sites in SRMIST-1 confers superior reactivity on the catalyst toward the synthesis of 2,3-dihydroquinazolin-4(1H)-ones and 3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxides by the cyclization reaction of 2-aminobenzamides and 2-aminobenzenesulphonamides with aldehydes under optimized reaction conditions, respectively. The notable features of this method include broad functional group compatibility, low catalyst loading (1-5 mol %), mild reaction conditions, easy workup procedures, good to excellent reaction yields, ethanol as a green solvent, reusability of the catalyst (five cycles), and economic attractiveness, which is mainly due to sustainability of SRMIST-1 as a reusable green catalyst. Our findings demonstrate that the highly reactive and reusable green catalyst finds widespread applications in medicinal chemistry.
Collapse
Affiliation(s)
- Velusamy Jeevananthan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Gopal Chandru Senadi
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Kesavan Muthu
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ajithkumar Arumugam
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Swaminathan Shanmugan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
127
|
Suebphanpho J, Boonmak J. Luminescence turn-on sensor for the selective detection of trace water and methanol based on a Zn(ii) coordination polymer with 2,5-dihydroxyterephthalate. RSC Adv 2024; 14:9781-9790. [PMID: 38528928 PMCID: PMC10961681 DOI: 10.1039/d4ra00500g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/16/2024] [Indexed: 03/27/2024] Open
Abstract
A highly selective detection of trace water in organic solvents is urgently required for the chemical industry. In this work, the simple sonochemical method was used for producing a luminescent sensor, [Zn(H2dhtp)(2,2'-bpy)(H2O)]n (Zn-CP) (H2dhtp2- = 2,5-dihydroxyterephthalate and 2,2'-bpy = 2,2'-bipyridine). Zn-CP exhibits reversible thermally-induced and methanol-mediated structural transformation. Importantly, Zn-CP has exceptional water sensing performance in both dry methanol and dry ethanol, with high selectivity, wide linear ranges, and a low limit of detection (LOD) of 0.08% (v/v). Upon the incremental addition of water, the luminescent intensities enhanced and shifted, along with the emission color changing from green to greenish yellow. In addition, Zn-CP can detect methanol selectively through turn-on luminescence intensity with LODs of 0.28, 0.52, and 0.35% (v/v) in dry ethanol, dry n-propanol, and dry n-butanol, respectively. The excited-state proton transfer of linker H2dhtp2-via enol-keto tautomerism and collaboration with structural transformation could be attributed to the sensing mechanism.
Collapse
Affiliation(s)
- Jitti Suebphanpho
- Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Jaursup Boonmak
- Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| |
Collapse
|
128
|
Darvishi S, Sadjadi S, Heravi MM. Sulfonic acid-functionalized chitosan-metal-organic framework composite for efficient and rapid conversion of fructose to 5-hydroxymethylfurfural. Sci Rep 2024; 14:5834. [PMID: 38461340 PMCID: PMC10925054 DOI: 10.1038/s41598-024-56592-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/08/2024] [Indexed: 03/11/2024] Open
Abstract
In pursuit of designing a bio-based catalyst for the dehydration of biomass (i.e., fructose) to 5-hydroxymethylfurfural, a novel catalytic composite was prepared by in-situ formation of an Al-based metal-organic framework in the presence of chitosan. To enhance the acidity of the as-prepared catalyst, it was sulfonated with chlorosulfonic acid. Various characterization techniques, including XRD, XPS, FTIR, SEM/EDX, TGA, and elemental mapping analysis were applied to validate the formation of the acidic composite. Fructose dehydration conditions were also optimized using Response Surface Method (RSM) and it was found that reaction in the presence of catalyst (23 wt%) in DMSO, at 110 °C for 40 min led to the formation of HMF in 97.1%. Noteworthy, the catalyst was recyclable and stable up to five runs with a minor reduction in its activity.
Collapse
Affiliation(s)
- Sima Darvishi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran
| | - Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, PO Box 14975-112, Tehran, Iran.
| | - Majid M Heravi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran
| |
Collapse
|
129
|
Zhang H, Yang L, Li X, Ping Y, Han J, Chen S, He C. Morphology regulation of conductive metal-organic frameworks in situ grown on graphene oxide for high-performance supercapacitors. Dalton Trans 2024; 53:4680-4688. [PMID: 38358381 DOI: 10.1039/d3dt04249a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
In this work, nickel-catecholate (Ni-CAT) nanorods were in situ compounded on graphene oxide (GO) to form a composite Ni-CAT@GO (NCG) with a special "blanket-shape" structure, which was used as an electrode material for supercapacitors. The morphology of Ni-CATs in situ grown on GO was modulated by introducing various contents of GO. With increasing GO, the length of nanorods of Ni-CATs is obviously shortened, and the charge transfer resistance of NCG is significantly reduced as the GO content is relatively low while it increases with further addition of GO, because excessive GO in NCG results in smaller crystal sizes accompanied by smaller stacking pores. Both the over-long Ni-CAT nanorods and the smaller stacking pores can restrict the accessible surface areas for the electrolyte. Optimal nanorod sizes are crucial to achieve good electrochemical performance for electrode materials. Galvanostatic charge-discharge analysis of NCG electrodes shows that their capacity initially increases and then decreases with the addition of more and more GO, and Ni-CAT@GO-0.5 (NCG0.5) with minimal charge transfer resistance exhibits the best electrochemical performance. The results demonstrate that the NCG0.5 electrode with optimal morphology possesses an excellent capacitance of 563.8 F g-1 at 0.5 A g-1 and a good rate performance of 61.9% at 10 A g-1, indicating that Ni-CAT@GO is a new type of promising electrode material for supercapacitors based on conductive metal-organic frameworks.
Collapse
Affiliation(s)
- Haoliang Zhang
- Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Lan Yang
- Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Xu Li
- Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Yunjie Ping
- Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Jinzhao Han
- Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Si Chen
- Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Chunqing He
- Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
130
|
Sharma A, Eadi SB, Noothalapati H, Otyepka M, Lee HD, Jayaramulu K. Porous materials as effective chemiresistive gas sensors. Chem Soc Rev 2024; 53:2530-2577. [PMID: 38299314 DOI: 10.1039/d2cs00761d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Chemiresistive gas sensors (CGSs) have revolutionized the field of gas sensing by providing a low-power, low-cost, and highly sensitive means of detecting harmful gases. This technology works by measuring changes in the conductivity of materials when they interact with a testing gas. While semiconducting metal oxides and two-dimensional (2D) materials have been used for CGSs, they suffer from poor selectivity to specific analytes in the presence of interfering gases and require high operating temperatures, resulting in high signal-to-noise ratios. However, nanoporous materials have emerged as a promising alternative for CGSs due to their high specific surface area, unsaturated metal actives, and density of three-dimensional inter-connected conductive and pendant functional groups. Porous materials have demonstrated excellent response and recovery times, remarkable selectivity, and the ability to detect gases at extremely low concentrations. Herein, our central emphasis is on all aspects of CGSs, with a primary focus on the use of porous materials. Further, we discuss the basic sensing mechanisms and parameters, different types of popular sensing materials, and the critical explanations of various mechanisms involved throughout the sensing process. We have provided examples of remarkable performance demonstrated by sensors using these materials. In addition to this, we compare the performance of porous materials with traditional metal-oxide semiconductors (MOSs) and 2D materials. Finally, we discussed future aspects, shortcomings, and scope for improvement in sensing performance, including the use of metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and porous organic polymers (POPs), as well as their hybrid counterparts. Overall, CGSs using porous materials have the potential to address a wide range of applications, including monitoring water quality, detecting harmful chemicals, improving surveillance, preventing natural disasters, and improving healthcare.
Collapse
Affiliation(s)
- Akashdeep Sharma
- Hybrid Porous Materials Laboratory, Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India.
| | - Sunil Babu Eadi
- Department of Electronics Engineering, Chungnam National University, Daejeon, South Korea.
| | - Hemanth Noothalapati
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, 690-8504, Japan
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- IT4Innovations, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Hi-Deok Lee
- Department of Electronics Engineering, Chungnam National University, Daejeon, South Korea.
- Korea Sensor Lab, Department of Electronics Engineering, Chungnam National University, Daejeon, South Korea
| | - Kolleboyina Jayaramulu
- Hybrid Porous Materials Laboratory, Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India.
| |
Collapse
|
131
|
Deng Y, Jiang S, Yan Z, Chu Y, Wu W, Xiao H. Fluorescent Eu-MOF@nanocellulose-based nanopaper for rapid and sensitive detection of uranium (Ⅵ). Anal Chim Acta 2024; 1292:342211. [PMID: 38309843 DOI: 10.1016/j.aca.2024.342211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Radioactive uranium leaks into natural water bodies mainly in the form of uranyl ions (UO22+), posing ecological and human health risks. Fluorescent europium-based metal-organic frameworks (Eu-MOFs) have been demonstrated to be effective fluorescent sensors for UO22+, but the large size, powder state and poor dispersity limit their further application. In this work, fluorescent Eu-MOFs were in-situ grown on TEMPO-oxidized cellulose nanofibers (TOCNFs), which is the first time that spherical Eu-MOF crystals with sizes below 10 nm were prepared. Fluorescence spectral analysis revealed a nine-fold increase in the fluorescence intensity of TOCNF@Eu-MOF compared to Eu-MOF. The nanocomposites achieved rapid and sensitive fluorescence quenching to UO22+ through the "antenna effect" and unsaturated Lewis basic sites on the ligands binding with UO22+. Moreover, TOCNF@Eu-MOF demonstrated excellent selectivity and anti-interference for UO22+ detection. For the nanopaper-based sensor made from TOCNF@Eu-MOF, the Stern-Volmer quenching constant (KSV) was calculated as 8.21 × 104 M-1, and the lowest limit of detection (LOD) was 6.6 × 10-7 M, significantly lower than the 1.32 × 10-6 M of Eu-MOFs. In addition, the nanopaper exhibited good fluorescence stability and cyclic detection performance, enabling the rapid and convenient detection of UO22+ in the aqueous phase within 30 s by simple dipping.
Collapse
Affiliation(s)
- Yuqing Deng
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China; School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing, 210094, China
| | - Shan Jiang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zifei Yan
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Youlu Chu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Weibing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada.
| |
Collapse
|
132
|
Li B, Ashrafizadeh M, Jiao T. Biomedical application of metal-organic frameworks (MOFs) in cancer therapy: Stimuli-responsive and biomimetic nanocomposites in targeted delivery, phototherapy and diagnosis. Int J Biol Macromol 2024; 260:129391. [PMID: 38242413 DOI: 10.1016/j.ijbiomac.2024.129391] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
The nanotechnology is an interdisciplinary field that has become a hot topic in cancer therapy. Metal-organic frameworks (MOFs) are porous materials and hybrid composites consisted of organic linkers and metal cations. Despite the wide application of MOFs in other fields, the potential of MOFs for purpose of cancer therapy has been revealed by the recent studies. High surface area and porosity, significant drug loading and encapsulation efficiency are among the benefits of using MOFs in drug delivery. MOFs can deliver genes/drugs with selective targeting of tumor cells that can be achieved through functionalization with ligands. The photosensitizers and photo-responsive nanostructures including carbon dots and gold nanoparticles can be loaded in/on MOFs to cause phototherapy-mediated tumor ablation. The immunogenic cell death induction and increased infiltration of cytotoxic CD8+ and CD4+ T cells can be accelerated by MOF platforms in providing immunotherapy of tumor cells. The stimuli-responsive MOF platforms responsive to pH, redox, enzyme and ion can accelerate release of therapeutics in tumor site. Moreover, MOF nanocomposites can be modified ligands and green polymers to improve their selectivity and biocompatibility for cancer therapy. The application of MOFs for the detection of cancer-related biomarkers can participate in the early diagnosis of patients.
Collapse
Affiliation(s)
- Beixu Li
- School of Policing Studies, Shanghai University of Political Science and Law, Shanghai 201701, China; Shanghai Fenglin Forensic Center, Shanghai 200231, China; State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Pathology, University of Maryland, Baltimore, MD 21201, USA
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.
| | - Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, 155 North Nanjing St, Shenyang 110001, China.
| |
Collapse
|
133
|
K AK, Mahesh Y, Panwar J, Gupta S. Remediation of multifarious metal ions and molecular docking assessment for pathogenic microbe disinfection in aqueous solution by waste-derived Ca-MOF. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21545-21567. [PMID: 38393560 DOI: 10.1007/s11356-024-32311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
The present study demonstrates an eco-friendly and cost-effective synthesis of calcium terephthalate metal-organic frameworks (Ca-MOF). The Ca-MOF were composed of metal ions (Ca2+) and organic ligands (terephthalic acid; TPA); the former was obtained from egg shells, and the latter was obtained from processing waste plastic bottles. Detailed characterization using standard techniques confirmed the synthesis of Ca-MOF with an average particle size of 461.9 ± 15 nm. The synthesized Ca-MOF was screened for its ability to remove multiple metal ions from an aqueous solution. Based on the maximum sorption capacity, Pb2+, Cd2+, and Cu2+ ions were selected for individual parametric batch studies. The obtained results were interpreted using standard isotherms and kinetic models. The maximum sorption capacity (qm) obtained from the Langmuir model was found to be 644.07 ± 47, 391.4 ± 26, and 260.5 ± 14 mg g-1 for Pb2+, Cd2+, and Cu2+, respectively. Moreover, Ca-MOF also showed an excellent ability to remove all three metal ions simultaneously from a mixed solution. The metal nodes and bonded TPA from Ca-MOF were dissociated by the acid dissolution method, which protonated and isolated TPA for reuse. Further, the crystal structure of Ca-MOF was prepared and docked with protein targets of selected pathogenic water-borne microbes, which showed its disinfection potential. Overall, multiple metal sorption capability, regeneration studies, and broad-spectrum antimicrobial activity confirmed the versatility of synthesized Ca-MOF for industrial wastewater treatment.
Collapse
Affiliation(s)
- Anil Kumar K
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, 333031, India
| | - Yeshwanth Mahesh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jitendra Panwar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, India
| | - Suresh Gupta
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, 333031, India.
| |
Collapse
|
134
|
Qi J, Li J, Wan Y, Li Y, Pi F. A fluorescence and SERS dual-mode sensing on tetracycline antibiotics based on Ag@NH 2-MIL-101(Al) nanoprobe. Food Chem 2024; 435:137586. [PMID: 37774622 DOI: 10.1016/j.foodchem.2023.137586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/05/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Antibiotic residues are becoming more and more concern due to the increasingly serious resistance from bacteria to organism. On-site and accurate evaluation on antibiotics is necessary and urgent to effectively solve such public issue. To provide point-of-care-test (POCT) ideas for antibiotic accurate evaluation, a fluorescence (FL)-surface-enhanced Raman scattering (SERS) dual-mode detection of tetracycline antibiotic (TCs) was realized for the first time. Based on the inner filter effect in Ag@NH2-MIL-101(Al) nanoprobe, the fluorescence quenching was induced and the SERS signal was swiftly turn on through π-π interaction and hydrogen bonding in the presence of TCs. This FL-SERS dual mode sensor displayed excellent detection limits (FL in ∼10-3 ppm, SERS in ∼10-5 ppm), and achieved a reliable detection of TCs in honey with a recovery rate of 84.45%-112.08%. This method combines the advantages of FL and SERS detection, meanwhile, two techniques verified against each other to achieve highly sensitive and specific FL-SERS dual-mode sensor for TCs. We believe that such antibody-or aptamer-independent FL and SERS complementary nanoprobe can be applied to fast, direct and multiple sensing in environment and food hazards.
Collapse
Affiliation(s)
- Junjie Qi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jingkun Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yuqi Wan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yu Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
135
|
Araújo-Cordero AM, Caddeo F, Mahmoudi B, Bron M, Wouter Maijenburg A. Direct Electrochemical Synthesis of Metal-Organic Frameworks: Cu 3 (BTC) 2 and Cu(TCPP) on Copper Thin films and Copper-Based Microstructures. Chempluschem 2024; 89:e202300378. [PMID: 37997644 DOI: 10.1002/cplu.202300378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
Cu thin films and Cu2 O microstructures were partially converted to the Metal-Organic Frameworks (MOFs) Cu3 (BTC)2 or Cu(TCPP) using an electrochemical process with a higher control and at milder conditions compared to the traditional solvothermal MOF synthesis. Initially, either a Cu thin film was sputtered, or different kinds of Cu or Cu2 O microstructures were electrochemically deposited onto a conductive ITO glass substrate. Then, these Cu thin films or Cu-based microstructures were subsequently coated with a thin layer of either Cu3 (BTC)2 or Cu(TCPP) by controlled anodic dissolution of the Cu-based substrate at room temperature and in the presence of the desired organic linker molecules: 1,3,5-benzenetricarboxylic acid (BTC) or photoactive 4,4',4'',4'''-(Porphine-5,10,15,20-tetrayl) tetrakis(benzoic acid) (TCPP) in the electrolyte. An increase in size of the Cu micro cubes with exposed planes [100] of 38,7 % for the Cu2 O@Cu3 (BTC)2 and a 68,9 % increase for the Cu2 O@Cu(TCPP) was roughly estimated. Finally, XRD, Raman spectroscopy and UV-vis absorption spectroscopy were used to characterize the initial Cu films or Cu-based microstructures, and the obtained core-shell Cu2 O@Cu(BTC) and Cu2 O@Cu(TCPP) microstructures.
Collapse
Affiliation(s)
- Ana María Araújo-Cordero
- Center for Innovation Competence SiLi-nano, Martin-Luther-Universität Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Straße 3, 06120, Halle, Germany
- Institut für Chemie, Technische Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120, Halle, Germany
| | - Francesco Caddeo
- Center for Innovation Competence SiLi-nano, Martin-Luther-Universität Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Straße 3, 06120, Halle, Germany
- Institute for Nanostructures and Solid State Physics, University of Hamburg, Luruper Chaussee 149, Bld. 600, Room 2.59, 22761, Hamburg, Germany
| | - Behzad Mahmoudi
- Center for Innovation Competence SiLi-nano, Martin-Luther-Universität Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Straße 3, 06120, Halle, Germany
| | - Michael Bron
- Institut für Chemie, Technische Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120, Halle, Germany
| | - A Wouter Maijenburg
- Center for Innovation Competence SiLi-nano, Martin-Luther-Universität Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Straße 3, 06120, Halle, Germany
| |
Collapse
|
136
|
Ryu U, Chien PN, Jang S, Trinh XT, Lee HS, Van Anh LT, Zhang XR, Giang NN, Van Long N, Nam SY, Heo CY, Choi KM. Zirconium-Based Metal-Organic Framework Capable of Binding Proinflammatory Mediators in Hydrogel Form Promotes Wound Healing Process through a Multiscale Adsorption Mechanism. Adv Healthc Mater 2024; 13:e2301679. [PMID: 37931928 DOI: 10.1002/adhm.202301679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/30/2023] [Indexed: 11/08/2023]
Abstract
The regulation of proinflammatory mediators has been explored to promote natural healing without abnormal inflammation or autoimmune response induced by their overproduction. However, most efforts to control these mediators have relied on pharmacological substances that are directly engaged in biological cycles. It is believed that functional porous materials removing target mediators provide a new way to promote the healing process using their adsorption mechanisms. In this study, the Zr-based metal-organic frameworks (MOF)-808 (Zr6 O4 (OH)4 (BTC)2 (HCOO)6 ) crystals are found to be effective at removing proinflammatory mediators, such as nitric oxide (NO), cytokines, and reactive oxygen species (ROS) in vitro and in vivo, because of their porous structure and surface affinity. The MOF-808 crystals are applied to an in vivo skin wound model as a hydrogel dispersion. Hydrogel containing 0.2 wt% MOF-808 crystals shows significant improvement in terms of wound healing efficacy and quality over the corresponding control. It is also proven that the mode of action is to remove the proinflammatory mediators in vivo. Moreover, the application of MOF-808-containing hydrogels promotes cell activation, proliferation and inhibits chronic inflammation, leading to increased wound healing quality. These findings suggest that Zr-based MOFs may be a promising drug-free solution for skin problems related to proinflammatory mediators.
Collapse
Affiliation(s)
- UnJin Ryu
- Industry Collaboration Center, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Pham Ngoc Chien
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Suin Jang
- Department of Chemical and Biological Engineering & Institute of Advanced Materials & Systems, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Xuan-Tung Trinh
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Hyeon Shin Lee
- R&D Center, LabInCube Co. Ltd., Cheongju, 28116, Republic of Korea
| | - Le Thi Van Anh
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Xin Rui Zhang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Nguyen Ngan Giang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Nguyen Van Long
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Sun-Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Chan Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Kyung Min Choi
- Department of Chemical and Biological Engineering & Institute of Advanced Materials & Systems, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| |
Collapse
|
137
|
Xing F, Xu J, Zhou Y, Yu P, Zhe M, Xiang Z, Duan X, Ritz U. Recent advances in metal-organic frameworks for stimuli-responsive drug delivery. NANOSCALE 2024; 16:4434-4483. [PMID: 38305732 DOI: 10.1039/d3nr05776c] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
After entering the human body, drugs for treating diseases, which are prone to delivery and release in an uncontrolled manner, are affected by various factors. Based on this, many researchers utilize various microenvironmental changes encountered during drug delivery to trigger drug release and have proposed stimuli-responsive drug delivery systems. In recent years, metal-organic frameworks (MOFs) have become promising stimuli-responsive agents to release the loaded therapeutic agents at the target site to achieve more precise drug delivery due to their high drug loading, excellent biocompatibility, and high stimuli-responsiveness. The MOF-based stimuli-responsive systems can respond to various stimuli under pathological conditions at the site of the lesion, releasing the loaded therapeutic agent in a controlled manner, and improving the accuracy and safety of drug delivery. Due to the changes in different physical and chemical factors in the pathological process of diseases, the construction of stimuli-responsive systems based on MOFs has become a new direction in drug delivery and controlled release. Based on the background of the rapidly increasing attention to MOFs applied in drug delivery, we aim to review various MOF-based stimuli-responsive drug delivery systems and their response mechanisms to various stimuli. In addition, the current challenges and future perspectives of MOF-based stimuli-responsive drug delivery systems are also discussed in this review.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Jiawei Xu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Germany
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhou Xiang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Xin Duan
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
- Department of Orthopedic Surgery, The Fifth People's Hospital of Sichuan Province, Chengdu, China
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
138
|
Patra R, Sarma D. Silver Nanoparticle-Functionalized Postsynthetically Modified Thiol MOF UiO-66-NH-SH for Efficient CO 2 Fixation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10196-10210. [PMID: 38359330 DOI: 10.1021/acsami.3c18549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Thiols are essential functional groups imparting unique properties, such as reactivity and selectivity, to many vital enzymes and biomolecules. The integration of electronically soft thiol groups within metal-organic frameworks (MOFs) yields elevated reactivity and a pronounced affinity for soft metal ions. However, the scarcity of thiol-based ligands and synthetic challenges hinder the advancement of thiol-based MOFs. To bypass the difficulties of synthesizing thiol MOFs by a direct reaction between thiol-based ligands and corresponding metal salts, postsynthetic modification (PSM) of MOFs is an efficient strategy to introduce thiol functionality. Herein, we have introduced Ag nanoparticles in postsynthetically modified thiol MOFs UiO-66-NH-SH (1) (synthesized by reaction between UiO-66-NH2 and thioglycolic acid) and UiO-66-NH-SH (2) (synthesized by reaction between UiO-66-NH2 and 3-mercaptopropionic acid) to synthesize a series of heterogeneous catalysts for CO2 fixation. Catalysts Cat 1-2 and Cat 3 - 4 were synthesized from UiO-66-NH-SH (1) and UiO-66-NH-SH (2), respectively, by using varying concentrations of silver (AgNO3). Catalyst Ag@UiO-66-NH-SH (1) (Ag = 3.45%; namely Cat 2) shows the highest efficiency for the catalytic conversion of propargylic alcohol and terminal epoxide to the corresponding cyclic carbonates. Finally, a rationalized reaction mechanism is proposed by correlating our results with the current literature. This work presents a viable strategy to utilize the thiol functionality of MOFs (avoiding the complexities associated with synthesizing thiol MOFs directly from thiol ligands) as a platform for introducing catalytically active metal centers and applying them as a heterogeneous catalyst for CO2 fixation reactions.
Collapse
Affiliation(s)
- Rajesh Patra
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India
| | - Debajit Sarma
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India
| |
Collapse
|
139
|
Kumar S, Lis T, Bury W, Chmielewski PJ, Garbicz M, Stępień M. Hierarchical Self-Assembly of Curved Aromatics: From Donor-Acceptor Porphyrins to Triply Periodic Minimal Surfaces. Angew Chem Int Ed Engl 2024; 63:e202316243. [PMID: 38198178 DOI: 10.1002/anie.202316243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/16/2023] [Accepted: 01/08/2024] [Indexed: 01/11/2024]
Abstract
A saddle-shaped π-extended zinc porphyrin containing a peripheral pyridyl ligand undergoes quantitative self-assembly into a cyclic trimer. The trimer has a prismatic structure with negatively curved side walls, which promote the formation of supramolecular organic frameworks stabilized by dispersion interactions. The first framework type, UWr-1, has the npo topology, with a hexagonal structure analogous to the Schwartz H triply periodic minimal surface. Co-crystallization of the trimer with either C60 and C70 produces the isomorphous cubic UWr-2 and UWr-3 phases, characterized by the ctn network topology and a structural relationship to the Fischer-Koch minimal surface S. All three phases contain complex labyrinths of solvent-filled channels, corresponding to very large probe-accessible volumes (68 % to 76 %). The UWr-2 network could be partly desolvated while retaining its long range dimensional order, indicating remarkable strength of the dispersion interactions in the crystal. A theoretical analysis of noncovalent interactions shows the role of geometrical matching between the negatively curved porphyrin units and positively curved fullerenes.
Collapse
Affiliation(s)
- Sunit Kumar
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Tadeusz Lis
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Wojciech Bury
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Piotr J Chmielewski
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Mateusz Garbicz
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
140
|
Sun Y, Ma J, Ahmad F, Xiao Y, Guan J, Shu T, Zhang X. Bimetallic Coordination Polymers: Synthesis and Applications in Biosensing and Biomedicine. BIOSENSORS 2024; 14:117. [PMID: 38534224 DOI: 10.3390/bios14030117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 03/28/2024]
Abstract
Bimetallic coordination polymers (CPs) have two different metal ions as connecting nodes in their polymer structure. The synthesis methods of bimetallic CPs are mainly categorized into the one-pot method and post-synthesis modifications according to various needs. Compared with monometallic CPs, bimetallic CPs have synergistic effects and excellent properties, such as higher gas adsorption rate, more efficient catalytic properties, stronger luminescent properties, and more stable loading platforms, which have been widely applied in the fields of gas adsorption, catalysis, energy storage as well as conversion, and biosensing. In recent years, the study of bimetallic CPs synergized with cancer drugs and functional nanomaterials for the therapy of cancer has increasingly attracted the attention of scientists. This review presents the research progress of bimetallic CPs in biosensing and biomedicine in the last five years and provides a perspective for their future development.
Collapse
Affiliation(s)
- Yanping Sun
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Jianxin Ma
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Faisal Ahmad
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yelan Xiao
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Jingyang Guan
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Tong Shu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xueji Zhang
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
141
|
Mitchell E, Hernandez D, Deatherage A, Coull M, Altoé MV, Klivansky L, Witman M, Sun DT. Cotinuous precision separation of gold using a metal-organic framework/polymer composite. NANOTECHNOLOGY 2024; 35:195706. [PMID: 38081077 DOI: 10.1088/1361-6528/ad1447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/10/2023] [Indexed: 02/21/2024]
Abstract
Critical metals of environmental and economic relevance can be found within complex mixtures, such as mine tailings, electronic waste and wastewater, at trace amounts. Specifically, gold is a critical metal that carries desired redox active properties in various applications, including modern electronics, medicine and chemical catalysis. Here we report the structuring of sub-micron Fe-BTC/PpPDA crystallites into larger 250μm or 500μm granules for continuous packed bed experiments for the precision separation of gold. The Structured Fe-BTC/PpPDA is highly crystalline and porous with a BET surface area of 750 m2g-1. Further, the hybrid nanocomposite material maintains its selectivity for gold ions over common inorganic interferents. The structuring approach reported prevents excessive pressure drop and ensures stability over time and operation in a packed bed column. Further, we demonstrate that the Structured Fe-BTC/PpPDA can concentrate at least 42 wt% of gold under a dynamic continuous flow operation. These findings highlight the potential of Structured Fe-BTC/PpPDA for practical applications in industry, particularly in the selective capture of gold from complex mixtures.
Collapse
Affiliation(s)
- Emily Mitchell
- Sunchem Inc., 395 South Van Ness Ave, San Francisco, CA 94103, United States of America
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States of America
| | - Dana Hernandez
- Sunchem Inc., 395 South Van Ness Ave, San Francisco, CA 94103, United States of America
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States of America
| | - Ashlin Deatherage
- Sunchem Inc., 395 South Van Ness Ave, San Francisco, CA 94103, United States of America
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States of America
| | - Martin Coull
- Sunchem Inc., 395 South Van Ness Ave, San Francisco, CA 94103, United States of America
| | - M Virginia Altoé
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States of America
| | - Liana Klivansky
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States of America
| | - Matthew Witman
- Sunchem Inc., 395 South Van Ness Ave, San Francisco, CA 94103, United States of America
| | - Daniel T Sun
- Sunchem Inc., 395 South Van Ness Ave, San Francisco, CA 94103, United States of America
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States of America
| |
Collapse
|
142
|
Wang Q, Du H, Tang R, Wang X, Xie L, Liu J, Sun K, Li Z, Deng G. Boron difluoride modified zinc metal-organic framework-based "off-on" fluorescence sensor for tetracycline and Al 3+ detection. Mikrochim Acta 2024; 191:144. [PMID: 38372819 DOI: 10.1007/s00604-024-06211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024]
Abstract
A novel fluorescence "off-on" probe was developed using a boron difluoride-modified zinc metal-organic framework (Zn-MOF3) for sensitive determination of tetracycline (TC) and Al3+. The Zn-MOF3 has excellent optical property and good applicability in aqueous phase. The fluorescence recorded at 436 nm was quenched at the excitation wavelength of 336 nm. Signal-off detection of tetracycline via fluorescence quenching of Zn-MOF3 is based on the inner filter effect. Fluorescence on-off-on detection of Al3+ occurs via the specific binding between tetracycline and Al3+. The limits of detection for TC and Al3+ were 28.4 nM and 106.7 nM, respectively. This probe exhibited high selectivity which was used for the determination of TC and Al3+ with satisfied recoveries (89.8 to 105.6% for TC, 90.0 to 110.4% for Al3+) and good precision (< 5%) in milk. The developed sensor represents the first "off-on" system for fluorescence detection of TC and Al3+ based on Zn-MOF3 with a better aspect of the innovation.
Collapse
Affiliation(s)
- Qihui Wang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China.
| | - Haochen Du
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Rui Tang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Xiaohui Wang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Lei Xie
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Jun Liu
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Kang Sun
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Zhonghui Li
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Guowei Deng
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China.
| |
Collapse
|
143
|
Roy N, Das C, Paul M, Im J, Biswas G. Adsorptive Elimination of a Cationic Dye and a Hg (II)-Containing Antiseptic from Simulated Wastewater Using a Metal Organic Framework. Molecules 2024; 29:886. [PMID: 38398637 PMCID: PMC10892504 DOI: 10.3390/molecules29040886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Several types of pollutants have acute adverse effects on living bodies, and the effective removal of these pollutants remains a challenge. Safranin O (a biological dye) and merbromin (a topical mercury-containing antiseptic) are considered organic pollutants, and there are only a few reports on their removal. Synthesized and well-characterized (through PXRD, FTIR, FESEM, and EDS analysis) MOF-5 was used for the first time in the removal of safranin O and merbromin from simulated wastewater and real wastewater. In both cases, MOF-5 effectively removed contaminants. We found that in simulated wastewater, the highest efficiency of removal of safranin O was 53.27% (for 15 mg/L) at pH 10, and for merbromin, it was 41.49% (for 25 mg/L) at pH 6. In the case of real wastewater containing natural ions (Na+, K+, F-, Cl-, SO42-, PO43-, Mg2+, and Ca2+) and other molecules, the removal efficiencies of these two dyes decreased (34.00% and 26.28% for safranin O and merbromin, respectively) because of the presence of other ions and molecules. A plausible mechanism for the removal of these pollutants using MOF-5 was proposed.
Collapse
Affiliation(s)
- Nilanjan Roy
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar 736101, West Bengal, India; (N.R.); (C.D.)
| | - Chanchal Das
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar 736101, West Bengal, India; (N.R.); (C.D.)
| | - Mohuya Paul
- Department of Electronic Materials, Devices and Equipment Engineering, Soonchunhyang University, Asan 31538, Republic of Korea;
| | - Jungkyun Im
- Department of Electronic Materials, Devices and Equipment Engineering, Soonchunhyang University, Asan 31538, Republic of Korea;
- Department of Chemical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar 736101, West Bengal, India; (N.R.); (C.D.)
| |
Collapse
|
144
|
Fang X, Zhang D, Chang Z, Li R, Meng S. Phosphorus removal from water by the metal-organic frameworks (MOFs)-based adsorbents: A review for structure, mechanism, and current progress. ENVIRONMENTAL RESEARCH 2024; 243:117816. [PMID: 38056614 DOI: 10.1016/j.envres.2023.117816] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Efficacious phosphate removal is essential for mitigating eutrophication in aquatic ecosystems and complying with increasingly stringent phosphate emission regulations. Chemical adsorption, characterized by simplicity, prominent treatment efficiency, and convenient recovery, is extensively employed for profound phosphorus removal. Metal-organic frameworks (MOFs)-derived metal/carbon composites, surpassing the limitations of separate components, exhibit synergistic effects, rendering them tremendously promising for environmental remediation. This comprehensive review systematically summarizes MOFs-based materials' properties and their structure-property relationships tailored for phosphate adsorption, thereby enhancing specificity towards phosphate. Furthermore, it elucidates the primary mechanisms influencing phosphate adsorption by MOFs-based composites. Additionally, the review introduces strategies for designing and synthesizing efficacious phosphorus capture and regeneration materials. Lastly, it discusses and illuminates future research challenges and prospects in this field. This summary provides novel insights for future research on superlative MOFs-based adsorbents for phosphate removal.
Collapse
Affiliation(s)
- Xiaojie Fang
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Di Zhang
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Black Soil Protection and Restoration, Harbin, Heilongjiang, 150030, China.
| | - Zhenfeng Chang
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Ruoyan Li
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Shuangshuang Meng
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| |
Collapse
|
145
|
Shelonchik O, Lemcoff N, Shimoni R, Biswas A, Yehezkel E, Yesodi D, Hod I, Weizmann Y. Light-induced MOF synthesis enabling composite photothermal materials. Nat Commun 2024; 15:1154. [PMID: 38326307 PMCID: PMC10850081 DOI: 10.1038/s41467-024-45333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024] Open
Abstract
Metal-organic frameworks (MOFs) are a class of porous materials known for their large surface areas. Thus, over the past few decades the development of MOFs and their applications has been a major topic of interest throughout the scientific community. However, many current conventional syntheses of MOFs are lengthy solvothermal processes carried out at elevated temperatures. Herein, we developed a rapid light-induced synthesis of MOFs by harnessing the plasmonic photothermal abilities of bipyramidal gold nanoparticles (AuBPs). The generality of the photo-induced method was demonstrated by synthesizing four different MOFs utilizing three different wavelengths (520 nm, 660 nm and 850 nm). Furthermore, by regulating light exposure, AuBPs could be embedded in the MOF or maintained in the supernatant. Notably, the AuBPs-embedded MOF (AuBP@UIO-66) retained its plasmonic properties along with the extraordinary surface area typical to MOFs. The photothermal AuBP@UIO-66 demonstrated a significant light-induced heating response that was utilized for ultrafast desorption and MOF activation.
Collapse
Affiliation(s)
- Ofir Shelonchik
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Nir Lemcoff
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Ran Shimoni
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Aritra Biswas
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Elad Yehezkel
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Doron Yesodi
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Idan Hod
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Ilse Katz Institute for Nanotechnology Science, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Yossi Weizmann
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
- Ilse Katz Institute for Nanotechnology Science, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
- Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
146
|
Datta S, Dey S, Sinha C, Dutta B, Banerjee P, Mir MH. Exploitation of a 1D coordination polymer as a portable kit for an eye-catching fluorometric response towards sensing of trivalent cations. Dalton Trans 2024; 53:2859-2866. [PMID: 38231529 DOI: 10.1039/d3dt03939k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The development and utilization of coordination polymers (CPs) have drawn interest for potential applications in different fields. Detection of metal ions in efficient and selective manners is an important field of research. It paves the way to protect human health by balancing toxic metal ions and biologically active metal ions in the atmosphere. In this regard, a new one-dimensional (1D) 4-(1-naphthylvinyl)pyridine (4-nvp) based CP [Cd(NCS)2(4-nvp)2]n (1) was synthesized and characterized structurally by single-crystal X-ray diffraction. Interestingly, this 1D CP underwent supramolecular aggregation via π⋯π stacking interactions, which specifically generated an environment for a potent "turn on" response in the presence of trivalent cations (Fe3+, Al3+, and Cr3+) in the nanomolar range but remained silent in the presence of other metal ions. Density functional theory (DFT) computations and X-ray photoelectron spectroscopy (XPS) were performed to establish the sensing phenomena. Fascinatingly, utilizing the sensitivity of 1 in an aqueous medium, a hands-on portable cotton swab kit was developed for instant identification of these three important trivalent metal cations.
Collapse
Affiliation(s)
- Sourav Datta
- Department of Chemistry, Aliah University, New Town, Kolkata 700 160, India.
- Electric Mobility & Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713 209, India.
| | - Sunanda Dey
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | | | - Basudeb Dutta
- Department of Chemistry, Aliah University, New Town, Kolkata 700 160, India.
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Priyabrata Banerjee
- Electric Mobility & Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713 209, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | | |
Collapse
|
147
|
Sugamata K, Zhang Y, Amanokura N, Shirai A, Minoura M. Alkoxy-Functionalized Hydroxamate/Zinc Metal-Organic Frameworks and the Effects of Substituents and Acid Addition on Their Structures. Inorg Chem 2024; 63:2454-2459. [PMID: 38276883 DOI: 10.1021/acs.inorgchem.3c03438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Single crystals of alkoxy-functionalized hydroxamate/zinc metal-organic frameworks (MOFs) were obtained by fixating the hydroxamate moiety via intramolecular hydrogen bonding. The resulting MOF structures depend on the steric demand of the alkoxy groups, whereby the incorporation of bulky isopropyl groups affords porous hydroxamate/zinc MOFs. The topological structures of the isopropyl-substituted MOFs could be controlled by adding acid.
Collapse
Affiliation(s)
- Koh Sugamata
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Yanhua Zhang
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Natsuki Amanokura
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
- Nippon Soda Co. LTD., 2-7-2 Marunouchi, Chiyoda-ku, Tokyo 100-7010, Japan
| | - Akihiro Shirai
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
- Nippon Soda Co. LTD., 2-7-2 Marunouchi, Chiyoda-ku, Tokyo 100-7010, Japan
| | - Mao Minoura
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
148
|
Wang B, Fu Y, Xu F, Lai C, Zhang M, Li L, Liu S, Yan H, Zhou X, Huo X, Ma D, Wang N, Hu X, Fan X, Sun H. Copper Single-Atom Catalysts-A Rising Star for Energy Conversion and Environmental Purification: Synthesis, Modification, and Advanced Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306621. [PMID: 37814375 DOI: 10.1002/smll.202306621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Future renewable energy supply and green, sustainable environmental development rely on various types of catalytic reactions. Copper single-atom catalysts (Cu SACs) are attractive due to their distinctive electronic structure (3d orbitals are not filled with valence electrons), high atomic utilization, and excellent catalytic performance and selectivity. Despite numerous optimization studies are conducted on Cu SACs in terms of energy conversion and environmental purification, the coupling among Cu atoms-support interactions, active sites, and catalytic performance remains unclear, and a systematic review of Cu SACs is lacking. To this end, this work summarizes the recent advances of Cu SACs. The synthesis strategies of Cu SACs, metal-support interactions between Cu single atoms and different supports, modification methods including modification for carriers, coordination environment regulating, site distance effect utilizing, and dual metal active center catalysts constructing, as well as their applications in energy conversion and environmental purification are emphatically introduced. Finally, the opportunities and challenges for the future Cu SACs development are discussed. This review aims to provide insight into Cu SACs and a reference for their optimal design and wide application.
Collapse
Affiliation(s)
- Biting Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Fuhang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Huchuan Yan
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Xiuqin Huo
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Dengsheng Ma
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Neng Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Xiaorui Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Xing Fan
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Hao Sun
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
149
|
Hu DD, Guo RT, Yan JS, Guo SH, Pan WG. Metal-organic frameworks (MOFs) for photoelectrocatalytic (PEC) reducing carbon dioxide (CO 2) to hydrocarbon fuels. NANOSCALE 2024; 16:2185-2219. [PMID: 38226715 DOI: 10.1039/d3nr05664c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
MOF-based photoelectrocatalysis (PEC) using CO2 as an electron donor offers a green, clean, and extensible way to make hydrocarbon fuels under more tolerant conditions. Herein, basic principles of PEC reduction of CO2 and the preparation methods and characterization techniques of MOF-based materials are summarized. Furthermore, three applications of MOFs for improving the photoelectrocatalytic performance of CO2 reduction are described: (i) as photoelectrode alone; (ii) as a co-catalyst of semiconductor photoelectrode or as a substrate for loading dyes, quantum dots, and other co-catalysts; (iii) as one of the components of heterojunction structure. Challenges and future wave surrounding the development of robust PEC CO2 systems based on MOF materials are also discussed briefly.
Collapse
Affiliation(s)
- Dou-Dou Hu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai 200090, People's Republic of China.
| | - Ji-Song Yan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Sheng-Hui Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai 200090, People's Republic of China.
| |
Collapse
|
150
|
Li XG, Chen J, Wang X, Rao L, Zhou R, Yu F, Ma J. Perspective into ion storage of pristine metal-organic frameworks in capacitive deionization. Adv Colloid Interface Sci 2024; 324:103092. [PMID: 38325008 DOI: 10.1016/j.cis.2024.103092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/05/2024] [Accepted: 01/21/2024] [Indexed: 02/09/2024]
Abstract
Metal-organic frameworks (MOFs), featuring tunable conductivity, tailored pore/structure and high surface area, have emerged as promising electrode nanomaterials for ion storage in capacitive deionization (CDI) and garnered tremendous attention in recent years. Despite the many advantages, the perspective from which MOFs should be designed and prepared for use as CDI electrode materials still faces various challenges that hinder their practical application. This summary proposes design principles for the pore size, pore environment, structure and dimensions of MOFs to precisely tailor the surface area, selectivity, conductivity, and Faradaic activity of electrode materials based on the ion storage mechanism in the CDI process. The account provides a new perspective to deepen the understanding of the fundamental issues of MOFs electrode materials to further meet the practical applications of CDI.
Collapse
Affiliation(s)
- Xin-Gui Li
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Jinfeng Chen
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xinyu Wang
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Liangmei Rao
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Runhong Zhou
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Fei Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Jie Ma
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; School of Civil Engineering, Kashi University, Kashi 844008, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|