101
|
Yang CT, Hattiholi A, Selvan ST, Yan SX, Fang WW, Chandrasekharan P, Koteswaraiah P, Herold CJ, Gulyás B, Aw SE, He T, Ng DCE, Padmanabhan P. Gadolinium-based bimodal probes to enhance T1-Weighted magnetic resonance/optical imaging. Acta Biomater 2020; 110:15-36. [PMID: 32335310 DOI: 10.1016/j.actbio.2020.03.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/29/2022]
Abstract
Gd3+-based contrast agents have been extensively used for signal enhancement of T1-weighted magnetic resonance imaging (MRI) due to the large magnetic moment and long electron spin relaxation time of the paramagnetic Gd3+ ion. The key requisites for the development of Gd3+-based contrast agents are their relaxivities and stabilities which can be achieved by chemical modifications. These modifications include coordinating Gd3+ with a chelator such as diethylenetriamine pentaacetic acid (DTPA) or 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), encapsulating Gd3+ in nanoparticles, conjugation to biomacromolecules such as polymer micelles and liposomes, or non-covalent binding to plasma proteins. In order to have a coherent diagnostic and therapeutic approach and to understand diseases better, the combination of MRI and optical imaging (OI) techniques into one technique entity has been developed to overcome the conventional boundaries of either imaging modality used alone through bringing the excellent spatial resolution of MRI and high sensitivity of OI into full play. Novel MRI and OI bimodal probes have been extensively studied in this regard. This review is an attempt to shed some light on the bimodal imaging probes by summarizing all recent noteworthy publications involving Gd3+ containing MR-optical imaging probes. The several key elements such as novel synthetic strategy, high sensitivity, biocompatibility, and targeting of the probes are highlighted in the review. STATEMENT OF SIGNIFICANCE: The present article aims at giving an overview of the existing bimodal MRI and OI imaging probes. The review structured as a series of examples of paramagnetic Gd3+ ions, either as ions in the crystalline structure of inorganic materials or chelates for contrast enhancement in MRI, while they are used as optical imaging probes in different modes. The comprehensive review focusing on the synthetic strategies, characterizations and properties of these bimodal imaging probes will be helpful in a way to prepare related work.
Collapse
Affiliation(s)
- Chang-Tong Yang
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore; Duke-NUS Medical School, 8 College Road, 169857, Singapore.
| | - Aishwarya Hattiholi
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore; School of Biological Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Subramanian Tamil Selvan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore
| | - Sean Xuexian Yan
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore; Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Wei-Wei Fang
- School of Chemistry and Chemical Engineering, HeFei University of Technology, HeFei, AnHui 230009, PR China
| | | | - Podili Koteswaraiah
- School of Biological Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Christian J Herold
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna General Hospital, Austria
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore; Karolinska Institutet, Department of Clinical Neuroscience, S-171 76, Stockholm, Sweden
| | - Swee Eng Aw
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore
| | - Tao He
- School of Chemistry and Chemical Engineering, HeFei University of Technology, HeFei, AnHui 230009, PR China
| | - David Chee Eng Ng
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore; Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore
| |
Collapse
|
102
|
Relaxometric Studies of Gd-Chelate Conjugated on the Surface of Differently Shaped Gold Nanoparticles. NANOMATERIALS 2020; 10:nano10061115. [PMID: 32516931 PMCID: PMC7353348 DOI: 10.3390/nano10061115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 01/13/2023]
Abstract
Nowadays, magnetic resonance imaging (MRI) is one of the key, noninvasive modalities to detect and stage cancer which benefits from contrast agents (CA) to differentiate healthy from tumor tissue. An innovative class of MRI CAs is represented by Gd-loaded gold nanoparticles. The size, shape and chemical functionalization of Gd-loaded gold nanoparticles appear to affect the observed relaxation enhancement of water protons in their suspensions. The herein reported results shed more light on the determinants of the relaxation enhancement brought by Gd-loaded concave cube gold nanoparticles (CCGNPs). It has been found that, in the case of nanoparticles endowed with concave surfaces, the relaxivity is remarkably higher compared to the corresponding spherical (i.e., convex) gold nanoparticles (SPhGNPs). The main determinant for the observed relaxation enhancement is represented by the occurrence of a large contribution from second sphere water molecules which can be exploited in the design of high-efficiency MRI CA.
Collapse
|
103
|
Kukreja A, Kang B, Han S, Shin MK, Son HY, Choi Y, Lim EK, Huh YM, Haam S. Inner structure- and surface-controlled hollow MnO nanocubes for high sensitive MR imaging contrast effect. NANO CONVERGENCE 2020; 7:16. [PMID: 32394133 PMCID: PMC7214580 DOI: 10.1186/s40580-020-00227-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/29/2020] [Indexed: 05/03/2023]
Abstract
Manganese oxide (MnO) nanocubes were fabricated and their surface were modified by ligand encapsulation or ligand exchange, to render them water-soluble. And then, MnO formed the hollow structure by etching using acidic solution (phthalate buffer, pH 4.0). Depending on the ligand of the MnO surface, it increases the interaction between MnO and water molecules. Also, the hollow structure of MnO, as well as the ligand, can greatly enhance the accessibility of water molecules to metal ions by surface area-to-volume ratio. These factors provide high R1 relaxation, leading to strong T1 MRI signal. We have confirmed T1-weighted MR contrast effect using 4-kinds of MnO nanocubes (MnOEn, MnOEnHo, MnOEx and MnOExHo). They showed enough a MR contrast effect and biocompatibility. Especially, among them, MnOExHo exhibited high T1 relaxivity (r1) (6.02 mM-1 s-1), even about 1.5 times higher sensitivity than commercial T1 MR contrast agents. In vitro/in vivo studies have shown that MnOExHo provides highly sensitive T1-weighted MR imaging, thereby improving diagnostic visibility at the disease site.
Collapse
Affiliation(s)
- Aastha Kukreja
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Byunghoon Kang
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Seungmin Han
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona, Tucson, AZ 85724 USA
| | - Moo-Kwang Shin
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Hye Young Son
- Department of Radiology, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Yuna Choi
- Department of Radiology, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Eun-Kyung Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- YUHS-KRIBB Medical Convergence Research Institute, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113 Republic of Korea
| | - Yong-Min Huh
- Department of Radiology, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
- YUHS-KRIBB Medical Convergence Research Institute, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| |
Collapse
|
104
|
Cellular internalization of targeted and non-targeted delivery systems for contrast agents based on polyamidoamine dendrimers. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2835-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
105
|
Guo H, Song S, Dai T, Sun K, Zhou G, Li M, Mann S, Dou H. Near-Infrared Fluorescent and Magnetic Resonance Dual-Imaging Coacervate Nanoprobes for Trypsin Mapping and Targeted Payload Delivery of Malignant Tumors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17302-17313. [PMID: 32212678 DOI: 10.1021/acsami.0c03433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trypsin-responsive near-infrared fluorescent (NIRF) and magnetic resonance (MR) dual-imaging composite nanoparticle/polypeptide coacervate nanoprobes with tunable sizes, have been constructed herein via electrostatic interaction-induced self-assembly. Considering the requirements of in vivo metabolism on nanoparticle size, three coacervate nanoprobes with diameters of around 100, 200, and 300 nm were fabricated with a polydispersity of around 0.2. These coacervate nanoprobes consist of Fe3O4 magnetic nanoparticles surface-decorated with poly acrylic acid and Cy5.5-modified poly-l-lysine (PLL-g-Cy5.5) serving as MR imaging and trypsin-responsive substrate/NIRF agents, respectively. The notable fluorescence signal from PLL-g-Cy5.5 is self-quenched due to the short distances between the fluorescent Cy5.5 molecules after construction of the coacervate nanoprobes. Remarkably, coacervate nanoprobes with a diameter of around 100 nm are selectively disintegrated into fragmented segments upon the hydrolysis of PLL by trypsin, resulting in an 18-fold amplification of the NIRF intensity in comparison with the self-assembled coacervate nanoprobes in the quenched state. Moreover, the MR imaging enhancement is also related to the disintegration of the coacervate nanoprobes. Cellular experiments and in vivo studies demonstrate that the coacervate nanoprobes exhibit remarkable trypsin-sensitive NIRF and MR dual-imaging capabilities and thus have excellent potential to serve as dual-imaging nanoprobes for the efficient mapping of malignant tumors in which trypsin is often overexpressed. In consideration of their excellent capability to enrich charged molecules, the coacervate nanoprobes provide a conceptually novel and promising platform toward in vivo trypsin mapping and controlled delivery of targeted payloads.
Collapse
Affiliation(s)
- Heze Guo
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Sheng Song
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Tingting Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering National Tissue Engineering Centre of China, Shanghai 200011, P. R. China
| | - Kang Sun
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering National Tissue Engineering Centre of China, Shanghai 200011, P. R. China
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
106
|
Martínez-Banderas AI, Aires A, Plaza-García S, Colás L, Moreno JA, Ravasi T, Merzaban JS, Ramos-Cabrer P, Cortajarena AL, Kosel J. Magnetic core-shell nanowires as MRI contrast agents for cell tracking. J Nanobiotechnology 2020; 18:42. [PMID: 32164746 PMCID: PMC7069006 DOI: 10.1186/s12951-020-00597-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/27/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Identifying the precise location of cells and their migration dynamics is of utmost importance for achieving the therapeutic potential of cells after implantation into a host. Magnetic resonance imaging is a suitable, non-invasive technique for cell monitoring when used in combination with contrast agents. RESULTS This work shows that nanowires with an iron core and an iron oxide shell are excellent materials for this application, due to their customizable magnetic properties and biocompatibility. The longitudinal and transverse magnetic relaxivities of the core-shell nanowires were evaluated at 1.5 T, revealing a high performance as T2 contrast agents. Different levels of oxidation and various surface coatings were tested at 7 T. Their effects on the T2 contrast were reflected in the tailored transverse relaxivities. Finally, the detection of nanowire-labeled breast cancer cells was demonstrated in T2-weighted images of cells implanted in both, in vitro in tissue-mimicking phantoms and in vivo in mouse brain. Labeling the cells with a nanowire concentration of 0.8 μg of Fe/mL allowed the detection of 25 cells/µL in vitro, diminishing the possibility of side effects. This performance enabled an efficient labelling for high-resolution cell detection after in vivo implantation (~ 10 nanowire-labeled cells) over a minimum of 40 days. CONCLUSIONS Iron-iron oxide core-shell nanowires enabled the efficient and longitudinal cellular detection through magnetic resonance imaging acting as T2 contrast agents. Combined with the possibility of magnetic guidance as well as triggering of cellular responses, for instance by the recently discovered strong photothermal response, opens the door to new horizons in cell therapy and make iron-iron oxide core-shell nanowires a promising theranostic platform.
Collapse
Affiliation(s)
- Aldo Isaac Martínez-Banderas
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Antonio Aires
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain
| | - Sandra Plaza-García
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain
| | - Lorena Colás
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain
| | - Julián A Moreno
- Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Timothy Ravasi
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Jasmeen S Merzaban
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Pedro Ramos-Cabrer
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, Mª Díaz de Haro 3, 48013, Bilbao, Spain.
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, Mª Díaz de Haro 3, 48013, Bilbao, Spain.
- IMDEA Nanociencia and Nanobiotechnology Unit Associated to Centro Nacional de Biotecnología (CNB-CSIC), Campus Universitario de Cantoblanco, 28049, Madrid, Spain.
| | - Jürgen Kosel
- Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia.
| |
Collapse
|
107
|
Takata T. Switchable Polymer Materials Controlled by Rotaxane Macromolecular Switches. ACS CENTRAL SCIENCE 2020; 6:129-143. [PMID: 32123731 PMCID: PMC7047276 DOI: 10.1021/acscentsci.0c00002] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Indexed: 05/31/2023]
Abstract
The synthesis and dynamic nature of macromolecular systems controlled by rotaxane macromolecular switches are introduced to discuss the significance of rotaxane linking of polymer chains and its topological switching. Macromolecular switches have been synthesized from macromolecular [2]rotaxanes (M2Rs) using sec-ammonium salt/crown ether couples. The successful synthesis of M2Rs possessing a single polymer axle and one crown ether wheel, constituting a key component of the macromolecular switch, has allowed us to develop various unique applications such as the development of topology-transformable polymers. Polymer topological transformations (e.g., linear-star and linear-cyclic) are achieved using rotaxane-linked polymers and rotaxane macromolecular switches. The pronounced dynamic nature of these polymer systems is sufficiently interesting to design sophisticated stimuli-responsive molecules, polymers, and materials.
Collapse
Affiliation(s)
- Toshikazu Takata
- School of Materials and Chemical
Technology, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama 226-8503, Japan
| |
Collapse
|
108
|
Zhang C, Sun W, Wang Y, Xu F, Qu J, Xia J, Shen M, Shi X. Gd-/CuS-Loaded Functional Nanogels for MR/PA Imaging-Guided Tumor-Targeted Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9107-9117. [PMID: 32003962 DOI: 10.1021/acsami.9b23413] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The second near-infrared (NIR-II, 1000-1700 nm) light-based diagnosis and therapy have received extensive attention for neoplastic disease treatments because of the fact that light in the NIR-II window possesses less photon scattering along with deeper tissue penetration than that in the NIR-I (700-950 nm) window. Herein, we present a Gd- and copper sulfide (CuS)-integrated nanogel (NG) platform for magnetic resonance (MR)/photoacoustic (PA) imaging-guided tumor-targeted photothermal therapy (PTT). In our approach, we prepared cross-linked polyethylenimine (PEI) NGs via an inverse emulsion method, modified the PEI NGs with Gd chelates, targeting ligand folic acid (FA) through a polyethylene glycol (PEG) spacer and 1,3-propanesultone, and finally loaded CuS nanoparticles (NPs) within the functional NGs. The as-synthesized Gd/CuS@PEI-FA-PS NGs with a mean size of 85 nm exhibit a good water dispersibility and protein resistance property, admirable r1 relaxivity (11.66 mM-1 s-1), excellent NIR-II absorption feature, high photothermal conversion efficiency (26.7%), and FA-mediated targeting specificity to cancer cells overexpressing FA receptor (FAR). With these properties along with the good cytocompatibility, the developed Gd/CuS@PEI-FA-PS NGs enable MR/PA dual-mode imaging-guided targeted PTT of FAR-overexpressing tumors under the irradiation of an NIR-II (1064 nm) laser. The designed Gd/CuS@PEI-FA-PS NGs may be used as a promising theranostic agent for MR/PA dual-mode imaging-guided PTT of other FAR-expressing tumors.
Collapse
Affiliation(s)
- Changchang Zhang
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Wenjie Sun
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Yue Wang
- Department of Radiology , Shanghai Songjiang District Central Hospital , Shanghai 201600 , People's Republic of China
| | - Fang Xu
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Jiao Qu
- Department of Radiology , Shanghai Songjiang District Central Hospital , Shanghai 201600 , People's Republic of China
| | - Jindong Xia
- Department of Radiology , Shanghai Songjiang District Central Hospital , Shanghai 201600 , People's Republic of China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
- CQM-Centro de Quimica da Madeira , Universidade da Madeira , Campus da Penteada , 9020-105 Funchal , Portugal
| |
Collapse
|
109
|
Thanapandiyaraj R, Rajendran T, Mohammedgani PB. Performance Analysis of Various Nanocontrast Agents and CAD Systems for Cancer Diagnosis. Curr Med Imaging 2020; 15:831-852. [PMID: 32008531 DOI: 10.2174/1573405614666180924124736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/30/2018] [Accepted: 08/19/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is a disease which involves the abnormal cell growth that has the potential of dispersal to other parts of the body. Among various conventional anatomical imaging techniques for cancer diagnosis, Magnetic Resonance Imaging (MRI) provides the best spatial resolution and is noninvasive. Current efforts are directed at enhancing the capabilities of MRI in oncology by adding contrast agents. DISCUSSION Recently, the superior properties of nanomaterials (extremely smaller in size, good biocompatibility and ease in chemical modification) allow its application as a contrast agent for early and specific cancer detection through the MRI. The precise detection of cancer region from any imaging modality will lead to a thriving treatment for cancer patients. The better localization of radiation dose can be attained from MRI by using suitable image processing algorithms. As there are many works that have been proposed for automatic detection for cancers, the effort is also put in to provide an effective survey of Computer Aided Diagnosis (CAD) system for different types of cancer detection with increased efficiency based on recent research works. Even though there are many surveys on MRI contrast agents, they only focused on a particular type of cancer. This study deeply presents the use of nanocontrast agents in MRI for different types of cancer diagnosis. CONCLUSION The main aim of this paper is to critically review the available compounds used as nanocontrast agents in MRI modality for different types of cancers. It also includes the review of different methods for cancer cell detection and classification. A comparative analysis is performed to analyze the effect of different CAD systems.
Collapse
Affiliation(s)
- Ruba Thanapandiyaraj
- Department of Electronics and Communication Engineering, Sethu Institute of Technology, Pullur, Tamilnadu-626115, India
| | - Tamilselvi Rajendran
- Department of Electronics and Communication Engineering, Sethu Institute of Technology, Pullur, Tamilnadu-626115, India
| | - Parisa Beham Mohammedgani
- Department of Electronics and Communication Engineering, Sethu Institute of Technology, Pullur, Tamilnadu-626115, India
| |
Collapse
|
110
|
Urbanovský P, Kotek J, Císařová I, Hermann P. The solid-state structures and ligand cavity evaluation of lanthanide(iii) complexes of a DOTA analogue with a (dibenzylamino)methylphosphinate pendant arm. Dalton Trans 2020; 49:1555-1569. [PMID: 31932828 DOI: 10.1039/c9dt04056k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A series of lanthanide(iii) complexes of a monophosphinate analogue of H4dota, 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic-10-methyl[(N,N-dibenzylamino)methyl]phosphinic acid (H4do3apDBAm = H4L1), were prepared and their solid-state structures were studied using single-crystal X-ray diffraction. In all structures, the ligand anion was octadentately coordinated to the Ln(iii) or Sc(iii) ions similarly to other DOTA-like ligands, i.e. forming parallel N4- and O4-planes. The lighter lanthanide(iii) complexes (till dysprosium) were nonacoordinated in the twisted square-antiprismatic (TSA) configuration with the apical coordination of water molecules or oxygen atoms from the neighbouring complex unit. The heavier lanthanide(iii) complexes (from terbium) were found as the "anhydrous" octacoordinated twisted square-antiprismatic (TSA') isomer. For the terbium(iii) ion, both forms were structurally characterized. The structural data of the Ln(iii)-H4L1 complexes and complexes of several related DOTA-like ligands were analysed. It clearly showed that the structural parameters for the square-antiprismatic (SA) isomers were clustered in a small range while those for the TSA/TSA' isomers were significantly more spread. The analysis also gave useful information about the influence of various pendant arms on the structure of the complexes of the DOTA-like ligands. The twist angle (torsion) of the chelate ring containing a larger phosphorus atom was similar to those of the remaining three acetate pendants. It led to a larger separation of the N4O4 planes and to smaller trans-O-Ln-O angles than the parameters found in the complexes of H4dota and its tetraamide derivatives dotam(R). It resulted in a relatively long bond between the metal ion and the coordinated water molecule. It led, together with the negative charge of the oxygen atoms forming the O4-plane, to an extremely fast water exchange rate reported for the Gd(iii)-H4L1 complex and, generally, to a fast water exchange of Gd(iii) complexes with the monophosphorus acid analogues of H4dota, H5do3ap/H4do3apR.
Collapse
Affiliation(s)
- Peter Urbanovský
- Universita Karlova (Charles University), Department of Inorganic Chemistry, Hlavova 2030, 128 43 Prague 2, Czech Republic.
| | | | | | | |
Collapse
|
111
|
Joraid AA, Okasha RM, Al-Maghrabi MA, Afifi TH, Agatemor C, Abd-El-Aziz AS. Thermal Degradation Behavior of a New Family of Organometallic Dendrimer. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01444-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
112
|
Tang X, Gong X, Li A, Lin H, Peng C, Zhang X, Chen X, Gao J. Cascaded Multiresponsive Self-Assembled 19F MRI Nanoprobes with Redox-Triggered Activation and NIR-Induced Amplification. NANO LETTERS 2020; 20:363-371. [PMID: 31838855 DOI: 10.1021/acs.nanolett.9b04016] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Molecular probes featuring promising capabilities including specific targeting, high signal-to-noise ratio, and in situ visualization of deep tissues are in great demand for tumor diagnosis and therapy. 19F magnetic resonance imaging (MRI) techniques incorporating stimuli-responsive probes are anticipated to be highly beneficial for specific detection and imaging of tumors because of negligible background and deep tissue penetration. Herein, we report a cascaded multiresponsive self-assembled nanoprobe, which enables sequential redox-triggered and near-infrared (NIR) irradiation-induced 19F MR signal activation/amplification for sensing and imaging. Specifically, we designed and synthesized a cascaded multiresponsive 19F-bearing nanoprobe based on the self-assembly of amphiphilic redox-responsive 19F-containing polymers and NIR-absorbing indocyanine green (ICG) molecules. It could realize the activation of 19F signals in the reducing tumor microenvironment and subsequent signal amplification via the photothermal process. This stepwise two-stage activation/amplification of 19F signals was validated by 19F NMR and MRI both in vitro and in vivo. The multiresponsive 19F nanoprobes capable of cascaded 19F signal activation/amplification and photothermal effect exertion can provide accurate sensing and imaging of tumors.
Collapse
Affiliation(s)
- Xiaoxue Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Xuanqing Gong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Ao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Chenyu Peng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361005 , China
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361005 , China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| |
Collapse
|
113
|
Nanomaterials and nanocomposite applications in veterinary medicine. MULTIFUNCTIONAL HYBRID NANOMATERIALS FOR SUSTAINABLE AGRI-FOOD AND ECOSYSTEMS 2020. [PMCID: PMC7252256 DOI: 10.1016/b978-0-12-821354-4.00024-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nowadays, nanotechnology has made huge, significant advancements in biotechnology and biomedicine related to human and animal science, including increasing health safety, production, and the elevation of national income. There are various fields of nanomaterial applications in veterinary medicine such as efficient diagnostic and therapeutic tools, drug delivery, animal nutrition, breeding and reproduction, and valuable additives. Additional benefits include the detection of pathogens, protein, biological molecules, antimicrobial agents, feeding additives, nutrient delivery, and reproductive aids. There are many nanomaterials and nanocomposites that can be used in nanomedicine such as metal nanoparticles, liposomes, carbon nanotubes, and quantum dots. In the near future, nanotechnology research will have the ability to produce novel tools for improving animal health and production. Therefore, this chapter was undertaken to spotlight novel methods created by nanotechnology for application in the improvement of animal health and production. In addition, the toxicity of nanomaterials is fully discussed to avoid the suspected health hazards of toxicity for animal health safety.
Collapse
|
114
|
Peng Y, Ye C, Yan R, Lei Y, Ye D, Hong H, Cai T. Activatable Core-Shell Metallofullerene: An Efficient Nanoplatform for Bimodal Sensing of Glutathione. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46637-46644. [PMID: 31747242 DOI: 10.1021/acsami.9b18807] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metallofullerenes have attracted considerable attention as potential novel noninvasive high-relaxivity magnetic resonance contrast agents. However, the applications of metallofullerenes as stimuli-responsive biosensors to monitor biological processes are still scarce. Herein, manganese-fullerenes core-shell nanocomposites are prepared via a facile one-pot approach to achieve GSH-activatable magnetic resonance/fluorescence bimodal imaging functions. The nanocomposites initially have a FRET-induced quenched fluorescence, and water-resisting stimulated low T1-MRI contrast. Upon exposure to GSH, collapse of the outer MnO2 shell led to reconstruction of the nanoprobes and subsequently resulted in multicolor fluorescence recovery and longitudinal (T1) relaxivity enhancement (r1 value up to 29.8 mM-1 s-1 at 0.5 T based on Mn ion). Our work demonstrates feasibility of using fullerenes to fabricate activatable probes for molecular imaging of GSH, which may promote the development of new fullerene-based stimuli-responsive multimodal probes for the detection and regulation of particular biological processes in vivo.
Collapse
Affiliation(s)
- Yayun Peng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics , China Pharmaceutical University , Nanjing 210009 , China
| | - Chao Ye
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics , China Pharmaceutical University , Nanjing 210009 , China
| | - Runqi Yan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Yuzhu Lei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics , China Pharmaceutical University , Nanjing 210009 , China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Hao Hong
- School of Medicine , Nanjing University , Nanjing 210093 , China
| | - Ting Cai
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics , China Pharmaceutical University , Nanjing 210009 , China
| |
Collapse
|
115
|
Pinho SLC, Sereno J, Abrunhosa AJ, Delville MH, Rocha J, Carlos LD, Geraldes CFGC. Gd- and Eu-Loaded Iron Oxide@Silica Core–Shell Nanocomposites as Trimodal Contrast Agents for Magnetic Resonance Imaging and Optical Imaging. Inorg Chem 2019; 58:16618-16628. [DOI: 10.1021/acs.inorgchem.9b02655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Sonia L. C. Pinho
- Center for Neurosciences and Cell Biology, University of Coimbra, 3001-401 Coimbra, Portugal
- Departments of Chemistry and Physics, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- CIVG- Vasco da Gama Research Center, Vasco da Gama University School, Av. José R. Sousa Fernandes 197 Lordemão, 3020-210, Coimbra, Portugal
| | - José Sereno
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde. Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Antero J. Abrunhosa
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde. Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Marie-Hélène Delville
- CNRS, Universite de Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 87 avenue du Dr. A. Schweitzer, Pessac, F-33608, France
| | - João Rocha
- Departments of Chemistry and Physics, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luís D. Carlos
- Departments of Chemistry and Physics, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos F. G. C. Geraldes
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde. Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Calçada Martim de Freitas, 3000-393 Coimbra, Portugal
- Chemistry Center, Rua Larga, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
116
|
Synthesis and Relaxometric Characterization of New Poly[
N
,
N
‐bis(3‐aminopropyl)glycine] (PAPGly) Dendrons Gd‐Based Contrast Agents and Their
in Vivo
Study by Using the Dynamic Contrast‐Enhanced MRI Technique at Low Field (1 T). Chem Biodivers 2019; 16:e1900322. [DOI: 10.1002/cbdv.201900322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022]
|
117
|
Li X, Cai Z, Jiang LP, He Z, Zhu JJ. Metal–Ligand Coordination Nanomaterials for Biomedical Imaging. Bioconjug Chem 2019; 31:332-339. [DOI: 10.1021/acs.bioconjchem.9b00642] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiangli Li
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing 210023, P. R. China
| | - Zheng Cai
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing 210023, P. R. China
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing 210023, P. R. China
| | - Zhimei He
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing 210023, P. R. China
| |
Collapse
|
118
|
Böll K, Zimpel A, Dietrich O, Wuttke S, Peller M. Clinically Approved MRI Contrast Agents as Imaging Labels for a Porous Iron‐Based MOF Nanocarrier: A Systematic Investigation in a Clinical MRI Setting. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Konstantin Böll
- Department of RadiologyUniversity Hospital, LMU Munich 81377 Munich Germany
| | - Andreas Zimpel
- Department of Chemistry and Center for NanoScience (CeNS)LMU Munich 81377 Munich Germany
| | - Olaf Dietrich
- Department of RadiologyUniversity Hospital, LMU Munich 81377 Munich Germany
| | - Stefan Wuttke
- Department of Chemistry and Center for NanoScience (CeNS)LMU Munich 81377 Munich Germany
- BCMaterials, Basque Center for MaterialsUPV/EHU Science Park 48940 Leioa Spain
- IkerbasqueBasque Foundation for Science 48013 Bilbao Spain
| | - Michael Peller
- Department of RadiologyUniversity Hospital, LMU Munich 81377 Munich Germany
| |
Collapse
|
119
|
Yon M, Billotey C, Marty JD. Gadolinium-based contrast agents: From gadolinium complexes to colloidal systems. Int J Pharm 2019; 569:118577. [DOI: 10.1016/j.ijpharm.2019.118577] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/16/2019] [Accepted: 07/25/2019] [Indexed: 01/22/2023]
|
120
|
He L, Wu D, Tong M. The influence of different charged poly (amido amine) dendrimer on the transport and deposition of bacteria in porous media. WATER RESEARCH 2019; 161:364-371. [PMID: 31220762 DOI: 10.1016/j.watres.2019.06.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
The influence of dendrimer on the bacterial transport and deposition behaviors in saturated porous media (quartz sand) was investigated in both NaCl (10 and 25 mM) and CaCl2 solutions (1.2 and 5 mM). 3.5G and 4G poly (amido amine) (PAMAM) dendrimer was employed as negatively and positively charged dendrimer, respectively. Three dendrimer concentrations (10 μg/L, 1 and 10 mg/L) were considered in present study. We found that regardless of the solution chemistry (ionic strength and ion types) and dendrimer concentrations, the presence of negatively charged PAMAM 3.5G in suspensions enhanced bacterial transport and inhibited their deposition in quartz sand; while the presence of positive charged PAMAM 4G yet induced the opposite effects (decreased bacterial transport and increased their deposition in quartz sand). The increased repulsive force between cell and quartz sand due to the adsorption of PAMAM 3.5G onto both cell and sand surfaces, the competition deposition sites as well as the steric repulsion via the suspended PAMAM 3.5G drove to the increased bacterial transport with PAMAM 3.5G copresent in suspensions in quartz sand. While the reduced repulsive force between cell and quartz sand induced by the chemical heterogeneity on both cell and sand surfaces (due to the adsorption of positive charged PAMAM 4G) increased bacterial retention in quartz sand with copresence of PAMAM 4G (10 μg/L and 1 mg/L) in suspensions. Steric repulsion due to the presence of great amount of suspended PAMAM 4G yet lead to the enhanced bacterial transport with furthering increasing PAMAM 4G to 10 mg/L relative to the lower PAMAM 4G concentration.
Collapse
Affiliation(s)
- Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Dan Wu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China; Beijing Institute of Metrology, Beijing, 100029, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
121
|
Ndiaye M, Malytskyi V, Vangijzegem T, Sauvage F, Wels M, Cadiou C, Moreau J, Henoumont C, Boutry S, Muller RN, Harakat D, Smedt SD, Laurent S, Chuburu F. Comparison of MRI Properties between Multimeric DOTAGA and DO3A Gadolinium-Dendron Conjugates. Inorg Chem 2019; 58:12798-12808. [DOI: 10.1021/acs.inorgchem.9b01747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Maleotane Ndiaye
- Laboratoire de RMN et d’Imagerie Moléculaire, Université de Mons, B-7000 Mons, Belgium
| | - Volodymyr Malytskyi
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne URCA, F-51685 Reims Cedex 2, France
| | - Thomas Vangijzegem
- Laboratoire de RMN et d’Imagerie Moléculaire, Université de Mons, B-7000 Mons, Belgium
| | - Félix Sauvage
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Mike Wels
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Cyril Cadiou
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne URCA, F-51685 Reims Cedex 2, France
| | - Juliette Moreau
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne URCA, F-51685 Reims Cedex 2, France
| | - Céline Henoumont
- Laboratoire de RMN et d’Imagerie Moléculaire, Université de Mons, B-7000 Mons, Belgium
| | - Sébastien Boutry
- Center for Microscopy and Molecular Imaging, Rue Adrienne Bolland 8, B-6041 Charleroi, Belgium
| | - Robert N. Muller
- Laboratoire de RMN et d’Imagerie Moléculaire, Université de Mons, B-7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging, Rue Adrienne Bolland 8, B-6041 Charleroi, Belgium
| | - Dominique Harakat
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne URCA, F-51685 Reims Cedex 2, France
| | - Stefaan De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Sophie Laurent
- Laboratoire de RMN et d’Imagerie Moléculaire, Université de Mons, B-7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging, Rue Adrienne Bolland 8, B-6041 Charleroi, Belgium
| | - Françoise Chuburu
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne URCA, F-51685 Reims Cedex 2, France
| |
Collapse
|
122
|
Marasini R, Thanh Nguyen TD, Aryal S. Integration of gadolinium in nanostructure for contrast enhanced-magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1580. [PMID: 31486295 DOI: 10.1002/wnan.1580] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/18/2019] [Accepted: 07/24/2019] [Indexed: 01/10/2023]
Abstract
Magnetic resonance imaging (MRI) is a routinely used imaging technique in medical diagnostics, which is further enhanced with the use of contrast agents (CAs). The most commonly used CAs are gadolinium-based contrast agents (GBCAs), in which gadolinium (Gd) is chelated with organic chelating agents (linear or cyclic). However, the use of GBCA is related to toxic side effect due to the release of free Gd3+ ions from the chelating agents. The repeated use of GBCAs has led to Gd deposition in various major organs including bone, brain, and kidneys. As a result, the use of GBCA has been linked to the development of nephrogenic systemic fibrosis (NSF). Due to the GBCA associated toxicities, some clinically approved GBCAs have been limited or revoked recently. Therefore, there is an urgent need for the development of new strategies to chelate and stabilize Gd3+ ions for contrast enhancement, safety profile, and selective imaging of a pathological site. Toward this endeavor, GBCAs have been engineered using different nanoparticulate systems to improve their stability, biocompatibility, and pharmacokinetics. Throughout this review, some of the important strategies for engineering small molecular Gd3+ chelates into a nanoconstruct is discussed. We focus on the development of GBCAs as liposomes, mesoporous silica nanoparticles (MSNs), polymeric nanocarriers, and plasmonic nanoparticles-based design strategies to improve safety and contrast enhancement for contrast enhanced-magnetic resonance imaging (Ce-MRI). We also discuss the in-vitro/in-vivo properties of strategically designed nanoscale MRI CAs, its potentials, and limitations. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Diagnostic Tools > Diagnostic Nanodevices Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Ramesh Marasini
- Department of Chemistry, Kansas State University, Manhattan, Kansas.,Nanotechnology Innovation Center of Kansas State (NICKS), Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Tuyen Duong Thanh Nguyen
- Department of Chemistry, Kansas State University, Manhattan, Kansas.,Nanotechnology Innovation Center of Kansas State (NICKS), Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Santosh Aryal
- Department of Chemistry, Kansas State University, Manhattan, Kansas.,Nanotechnology Innovation Center of Kansas State (NICKS), Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
123
|
Immobilization of Pt nanoparticles on magnetite–poly (epoxyamine) nanocomposite for the reduction of p-nitrophenol. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1137-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
124
|
Shin HW, Sohn H, Jeong YH, Lee SM. Construction of Paramagnetic Manganese-Chelated Polymeric Nanoparticles Using Pyrene-End-Modified Double-Hydrophilic Block Copolymers for Enhanced Magnetic Resonance Relaxivity: A Comparative Study with Cisplatin Pharmacophore. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6421-6428. [PMID: 30998363 DOI: 10.1021/acs.langmuir.9b00406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cationic metal-mediated self-assembly of double-hydrophilic block copolymers (DHBCs) has been of great interest for the preparation of hybrid nanoparticles for versatile applications. Among many functional transition-metal ions, manganese (MnII) is a highly attractive element due to its paramagnetic property with a high coordination number. However, MnII does not lead to the efficient self-assembly of DHBCs because of the relatively high aqueous solubility of coordinated MnII. This article reports a facile method for direct conjugation of MnII ions inside sterically stabilized polymer assemblies, composed of pyrene-end-modified DHBCs. Nitroxide-mediated radical polymerization was used to prepare the poly(ethylene glycol)- b-poly(acrylate) DHBC precursor, followed by the end-modification with pyrene maleimide via the radical-exchange reaction. Employing the self-associated DHBC as the nanoscale template, the simple addition of MnII enables a large number of polyvalent MnII ions to be immobilized at the chelating blocks of DHBCs, which can be readily monitored by the excimeric fluorescence emission change of the terminal pyrene fluorophore. The resulting MnII-loaded polymeric nanoparticles (MnII-PNPs) possess nanogel-like scaffolds, which allow for efficient water permeation at the MnII-incorporated interior for enhanced magnetic resonance contrasting effect. Additionally, by comparing the coordination properties of MnII and cisplatin, we endeavor to understand the internal structures and the relevant physicochemical features of metal-chelated nanoparticles.
Collapse
Affiliation(s)
- Hyeon-Woo Shin
- Department of Chemistry , The Catholic University of Korea , Bucheon , Gyeonggi-do 14662 , Korea
| | - Hyerin Sohn
- Department of Chemistry , The Catholic University of Korea , Bucheon , Gyeonggi-do 14662 , Korea
| | - Yun-Ho Jeong
- Department of Chemistry , The Catholic University of Korea , Bucheon , Gyeonggi-do 14662 , Korea
| | - Sang-Min Lee
- Department of Chemistry , The Catholic University of Korea , Bucheon , Gyeonggi-do 14662 , Korea
| |
Collapse
|
125
|
Pellico J, Ellis CM, Davis JJ. Nanoparticle-Based Paramagnetic Contrast Agents for Magnetic Resonance Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:1845637. [PMID: 31191182 PMCID: PMC6525923 DOI: 10.1155/2019/1845637] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/04/2019] [Indexed: 12/31/2022]
Abstract
Magnetic resonance imaging (MRI) is a noninvasive medical imaging modality that is routinely used in clinics, providing anatomical information with micron resolution, soft tissue contrast, and deep penetration. Exogenous contrast agents increase image contrast by shortening longitudinal (T 1) and transversal (T 2) relaxation times. Most of the T 1 agents used in clinical MRI are based on paramagnetic lanthanide complexes (largely Gd-based). In moving to translatable formats of reduced toxicity, greater chemical stability, longer circulation times, higher contrast, more controlled functionalisation and additional imaging modalities, considerable effort has been applied to the development of nanoparticles bearing paramagnetic ions. This review summarises the most relevant examples in the synthesis and biomedical applications of paramagnetic nanoparticles as contrast agents for MRI and multimodal imaging. It includes the most recent developments in the field of production of agents with high relaxivities, which are key for effective contrast enhancement, exemplified through clinically relevant examples.
Collapse
Affiliation(s)
- Juan Pellico
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Connor M. Ellis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Jason J. Davis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|
126
|
Lesniak WG, Boinapally S, Banerjee SR, Behnam Azad B, Foss CA, Shen C, Lisok A, Wharram B, Nimmagadda S, Pomper MG. Evaluation of PSMA-Targeted PAMAM Dendrimer Nanoparticles in a Murine Model of Prostate Cancer. Mol Pharm 2019; 16:2590-2604. [DOI: 10.1021/acs.molpharmaceut.9b00181] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wojciech G. Lesniak
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Srikanth Boinapally
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Sangeeta Ray Banerjee
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Babak Behnam Azad
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Catherine A. Foss
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Chentian Shen
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland 21287, United States
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Ala Lisok
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Bryan Wharram
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Sridhar Nimmagadda
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Martin G. Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland 21287, United States
| |
Collapse
|
127
|
Sun X, Cai Y, Xu Z, Zhu D. Preparation and Properties of Tumor-Targeting MRI Contrast Agent Based on Linear Polylysine Derivatives. Molecules 2019; 24:E1477. [PMID: 30991689 PMCID: PMC6515188 DOI: 10.3390/molecules24081477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/10/2019] [Accepted: 04/14/2019] [Indexed: 12/20/2022] Open
Abstract
We developed a tumor-targeted contrast agent based on linear polylysine (PLL) by conjugating a small molecular imaging agent, fluorescent molecule and targeting agent amino phenylboronic acid onto the amino groups of polylysine, which can specifically target monosaccharide sialic acid residues overexpressing on the surface of tumor cell membranes. Further, 3,4,5,6-Tetrahydrophthalic anhydride (DCA) was attached to the free amino groups of the polylysine to change to a negative charge at physiology pH to lower the cytotoxicity, but it soon regenerated to a positive charge again once reaching the acidic intratumoral environment and therefore increased cell uptake. Laser confocal microscopy images showed that most of the polymeric contrast agents were bound to the cancer cell membrane. Moreover, the tumor targeting contrast agent showed the same magnetic resonance imaging (MRI) contrasting performance in vitro as the small molecule contrast agent used in clinic, which made it a promising tumor-targeting polymeric contrast agent for cancer diagnosis.
Collapse
Affiliation(s)
- Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Zhuomin Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Dabu Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
128
|
Smeijers AF, Pieterse K, Hilbers PAJ, Markvoort AJ. Multivalency in a Dendritic Host-Guest System. Macromolecules 2019; 52:2778-2788. [PMID: 30983632 PMCID: PMC6458993 DOI: 10.1021/acs.macromol.8b02357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/06/2019] [Indexed: 01/26/2023]
Abstract
![]()
Multivalency is an important instrument
in the supramolecular chemistry
toolkit for the creation of strong specific interactions. In this
paper we investigate the multivalency effect in a dendritic host–guest
system using molecular dynamics simulations. Specifically, we consider
urea–adamantyl decorated poly(propyleneimine) dendrimers that
together with compatible mono-, bi-, and tetravalent ureidoacetic
acid guests can form dynamic patchy nanoparticles. First, we simulate
the self-assembly of these particles into macromolecular nanostructures,
showing guest-controlled reduction of dendrimer aggregation. Subsequently,
we systematically study guest concentration dependent multivalent
binding. At low guest concentrations multivalency of the guests clearly
increases relative binding as tethered headgroups bind more often
than free guests’ headgroups. We find that despite an abundance
of binding sites, most of the tethered headgroups bind in close proximity,
irrespective of the spacer length; nevertheless, longer spacers do
increase binding. At high guest concentrations the dendrimer becomes
saturated with bound headgroups, independent of guest valency. However,
in direct competition the tetravalent guests prevail over the monovalent
ones. This demonstrates the benefit of multivalency at high as well
as low concentrations.
Collapse
Affiliation(s)
- A F Smeijers
- Computational Biology Group, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Koen Pieterse
- Computational Biology Group, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Peter A J Hilbers
- Computational Biology Group, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Albert J Markvoort
- Computational Biology Group, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
129
|
Linscheid MW. Molecules and elements for quantitative bioanalysis: The allure of using electrospray, MALDI, and ICP mass spectrometry side-by-side. MASS SPECTROMETRY REVIEWS 2019; 38:169-186. [PMID: 29603315 DOI: 10.1002/mas.21567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
To understand biological processes, not only reliable identification, but quantification of constituents in biological processes play a pivotal role. This is especially true for the proteome: protein quantification must follow protein identification, since sometimes minute changes in abundance tell the real tale. To obtain quantitative data, many sophisticated strategies using electrospray and MALDI mass spectrometry (MS) have been developed in recent years. All of them have advantages and limitations. Several years ago, we started to work on strategies, which are principally capable to overcome some of these limits. The fundamental idea is to use elemental signals as a measure for quantities. We began by replacing the radioactive 32 P with the "cold" natural 31 P to quantify modified nucleotides and phosphorylated peptides and proteins and later used tagging strategies for quantification of proteins more generally. To do this, we introduced Inductively Coupled Plasma Mass Spectrometry (ICP-MS) into the bioanalytical workflows, allowing not only reliable and sensitive detection but also quantification based on isotope dilution absolute measurements using poly-isotopic elements. The detection capability of ICP-MS becomes particularly attractive with heavy metals. The covalently bound proteins tags developed in our group are based on the well-known DOTA chelate complex (1,4,7,10-tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid) carrying ions of lanthanoides as metal core. In this review, I will outline the development of this mutual assistance between molecular and elemental mass spectrometry and discuss the scope and limitations particularly of peptide and protein quantification. The lanthanoide tags provide low detection limits, but offer multiplexing capabilities due to the number of very similar lanthanoides and their isotopes. With isotope dilution comes previously unknown accuracy. Separation techniques such as electrophoresis and HPLC were used and just slightly adapted workflows, already in use for quantification in bioanalysis. Imaging mass spectrometry (MSI) with MALDI and laser ablation ICP-MS complemented the range of application in recent years.
Collapse
MESH Headings
- Animals
- Chelating Agents/chemistry
- Chromatography, High Pressure Liquid/instrumentation
- Chromatography, High Pressure Liquid/methods
- Heterocyclic Compounds, 1-Ring/chemistry
- Humans
- Lanthanoid Series Elements/chemistry
- Nucleotides/analysis
- Proteins/analysis
- Spectrometry, Mass, Electrospray Ionization/instrumentation
- Spectrometry, Mass, Electrospray Ionization/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
- Workflow
Collapse
|
130
|
Takata T. Stimuli-Responsive Molecular and Macromolecular Systems Controlled by Rotaxane Molecular Switches. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180330] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Toshikazu Takata
- Department of Chemical Science and Engineering and Research Institute of Polymer Science and Technology (RIPST), Tokyo Institute of Technology, and JST-CREST, Ookayama, Meguro, Tokyo 152-8552, Japan
| |
Collapse
|
131
|
Harris M, Laskaratou D, Elst LV, Mizuno H, Parac-Vogt TN. Amphiphilic Nanoaggregates with Bimodal MRI and Optical Properties Exhibiting Magnetic Field Dependent Switching from Positive to Negative Contrast Enhancement. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5752-5761. [PMID: 30640430 DOI: 10.1021/acsami.8b18456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mixed micelles based on amphiphilic gadolinium(III)-DOTA and europium(III)-DTPA complexes were synthesized and evaluated for their paramagnetic and optical properties as potential bimodal contrast agents. Amphiphilic folate molecule for targeting the folate receptor protein, which is commonly expressed on the surface of many human cancer cells, was used in the self-assembly process in order to create nanoaggregates with targeting properties. Both targeted and nontargeted nanoaggregates formed monodisperse micelles having distribution maxima of 10 nm. The micelles show characteristic europium(III) emission with quantum yields of 2% and 1.1% for the nontargeted and targeted micelles, respectively. Fluorescence microscopy using excitation at 405 nm and emission at 575-675 nm was employed to visualize the nanoaggregates in cultured HeLa cells. The uptake of folate-targeted and nontargeted micelles is already visible after 5 h of incubation and was characterized with the europium(III) emission, which is clearly observable in the cytoplasm of the cells. The very fast longitudinal relaxivity r1 of ca. 26 s-1 mM-1 per gadolinium(III) ion was observed for both micelles at 60 MHz and 310 K. Upon increasing the magnetic field to 300 MHz, the nanoaggregates exhibited a large switching to transversal relaxivity with r2 value of ca. 52 s-1 mM-1 at 310 K. Theoretical fitting of the 1H NMRD profiles indicate that the efficient T1 and T2 relaxations are sustained by the favorable magnetic and electron-configuration properties of the gadolinium(III) ion, rotational correlation time, and coordinated water molecule. These nanoaggregates could have versatile application as a positive contrast agent at the currently used magnetic imaging field strengths and a negative contrast agent in higher field applications, while at the same time offering the possibility for the loading of hydrophobic therapeutics or targeting molecules.
Collapse
Affiliation(s)
- Michael Harris
- Department of Chemistry , KU Leuven , 3001 Leuven , Belgium
| | - Danai Laskaratou
- Department of Chemistry, Biochemistry, Molecular and Structural Biology Section, Laboratory of Biomolecular Network Dynamics , KU Leuven , 3001 Leuven , Belgium
| | - Luce Vander Elst
- Department of General, Organic, and Biomedical Chemistry, NMR and Molecular Imaging Laboratory , University of Mons , 7000 Mons , Belgium
| | - Hideaki Mizuno
- Department of Chemistry, Biochemistry, Molecular and Structural Biology Section, Laboratory of Biomolecular Network Dynamics , KU Leuven , 3001 Leuven , Belgium
| | | |
Collapse
|
132
|
Cai Y, Wang Y, Xu H, Cao C, Zhu R, Tang X, Zhang T, Pan Y. Positive magnetic resonance angiography using ultrafine ferritin-based iron oxide nanoparticles. NANOSCALE 2019; 11:2644-2654. [PMID: 30575840 DOI: 10.1039/c8nr06812g] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Iron oxide nanoparticles with good biocompatibility can serve as safe magnetic resonance imaging contrast agents. Herein, we report that ultrafine ferritin-based iron oxide (hematite/maghemite) nanoparticles synthesized by controlled biomimetic mineralization using genetically recombinant human H chain ferritin can be used as a positive contrast agent in magnetic resonance angiography. The synthesized magnetoferritin with an averaged core size of 2.2 ± 0.7 nm (hereafter named M-HFn-2.2) shows a r1 value of 0.86 mM-1 s-1 and a r2/r1 ratio of 25.1 at a 7 T magnetic field. Blood pool imaging on mice using the M-HFn-2.2 nanoparticles that were injected through a tail vein by single injection at a dose of 0.54 mM Fe per kg mouse body weight enabled detecting detailed vascular nets at 3 minutes post-injection; the MR signal intensity continuously enhanced up to 2 hours post-injection, which is much longer than that of the commercial magnevist (Gd-DTPA) contrast. Moreover, biodistribution examination indicates that organs such as liver, spleen and kidney safely cleared the injected nanoparticles within one day after the injection, demonstrating no risk of iron overload in test mice. Therefore, this study sheds light on developing high-performance gadolinium free positive magnetic resonance contrast agents for biomedical applications.
Collapse
Affiliation(s)
- Yao Cai
- Biogeomagnetism Group, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Zhou Z, Yang L, Gao J, Chen X. Structure-Relaxivity Relationships of Magnetic Nanoparticles for Magnetic Resonance Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804567. [PMID: 30600553 PMCID: PMC6392011 DOI: 10.1002/adma.201804567] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/17/2018] [Indexed: 05/17/2023]
Abstract
Magnetic nanoparticles (MNPs) have been extensively explored as magnetic resonance imaging (MRI) contrast agents. With the increasing complexity in the structure of modern MNPs, the classical Solomon-Bloembergen-Morgan and the outer-sphere quantum mechanical theories established on simplistic models have encountered limitations for defining the emergent phenomena of relaxation enhancement in MRI. Recent progress in probing MRI relaxivity of MNPs based on structural features at the molecular and atomic scales is reviewed, namely, the structure-relaxivity relationships, including size, shape, crystal structure, surface modification, and assembled structure. A special emphasis is placed on bridging the gaps between classical simplistic models and modern MNPs with elegant structural complexity. In the pursuit of novel MRI contrast agents, it is hoped that this review will spur the critical thinking for design and engineering of novel MNPs for MRI applications across a broad spectrum of research fields.
Collapse
Affiliation(s)
- Zijian Zhou
- † State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- ‡ Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lijiao Yang
- † State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinhao Gao
- † State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoyuan Chen
- ‡ Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
134
|
Tao C, Zheng Q, An L, He M, Lin J, Tian Q, Yang S. T₁-Weight Magnetic Resonance Imaging Performances of Iron Oxide Nanoparticles Modified with a Natural Protein Macromolecule and an Artificial Macromolecule. NANOMATERIALS 2019; 9:nano9020170. [PMID: 30704072 PMCID: PMC6409807 DOI: 10.3390/nano9020170] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 12/12/2022]
Abstract
To optimize the iron oxide nanoparticles as T₁-weight contrast for in vivo magnetic resonance imaging (MRI), numbers of macromolecule ligands have been explored with considerable effort. However, reports refer to the comparison of the T₁-weight contrast performances of iron oxide nanoparticles modified with natural and artificial macromolecule ligands are still limited. In this work, we used a typical natural protein macromolecule (bovine serum albumin, BSA) and an artificial macromolecule (poly(acrylic acid)-poly(methacrylic acid), PMAA-PTTM) as surface ligands to fabricate Fe₃O₄-BSA and Fe₃O₄-PMAA-PTTM nanoparticles with similar size and magnetization by the coprecipitation method and compared their MRI performances. In vitro and in vivo experiments revealed that Fe₃O₄-BSA with lower cytotoxicity exhibited higher r₂/r₁ ratio in solution and darkening contrast enhancement for liver and kidney sites of mice under T₁-weight imaging, while Fe₃O₄-PMAA-PTTM displayed much lower r₂/r₁ ratio in solution and brighter contrast enhancement for liver and kidney sites. These remarkably different MRI behaviors demonstrated that the surface ligands play an important role for optimizing the MRI performance of Fe₃O₄ nanoparticles. We expect these results may facilitate the design of macromolecule ligands for developing an iron oxide⁻based T₁-weight contrast agent.
Collapse
Affiliation(s)
- Cheng Tao
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China.
| | - Qiang Zheng
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China.
| | - Lu An
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China.
| | - Meie He
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China.
| | - Jiaomin Lin
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China.
| | - Qiwei Tian
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China.
| | - Shiping Yang
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
135
|
Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem Rev 2019; 119:957-1057. [PMID: 30350585 PMCID: PMC6516866 DOI: 10.1021/acs.chemrev.8b00363] [Citation(s) in RCA: 953] [Impact Index Per Article: 158.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tens of millions of contrast-enhanced magnetic resonance imaging (MRI) exams are performed annually around the world. The contrast agents, which improve diagnostic accuracy, are almost exclusively small, hydrophilic gadolinium(III) based chelates. In recent years concerns have arisen surrounding the long-term safety of these compounds, and this has spurred research into alternatives. There has also been a push to develop new molecularly targeted contrast agents or agents that can sense pathological changes in the local environment. This comprehensive review describes the state of the art of clinically approved contrast agents, their mechanism of action, and factors influencing their safety. From there we describe different mechanisms of generating MR image contrast such as relaxation, chemical exchange saturation transfer, and direct detection and the types of molecules that are effective for these purposes. Next we describe efforts to make safer contrast agents either by increasing relaxivity, increasing resistance to metal ion release, or by moving to gadolinium(III)-free alternatives. Finally we survey approaches to make contrast agents more specific for pathology either by direct biochemical targeting or by the design of responsive or activatable contrast agents.
Collapse
Affiliation(s)
- Jessica Wahsner
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Aurora Rodríguez-Rodríguez
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
136
|
Yang Y, Chen S, Li H, Yuan Y, Zhang Z, Xie J, Hwang DW, Zhang A, Liu M, Zhou X. Engineered Paramagnetic Graphene Quantum Dots with Enhanced Relaxivity for Tumor Imaging. NANO LETTERS 2019; 19:441-448. [PMID: 30560672 DOI: 10.1021/acs.nanolett.8b04252] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nano contrast agents (Nano CA) are nanomaterials used to increase contrast in the medical magnetic resonance imaging (MRI). However, the related relaxation mechanism of the Nano CA is not clear yet and little significant breakthrough in relaxivity enhancement has been achieved. Herein, a new hydrophilic Gd-DOTA complex functionalized with different chain length of PEG was synthesized and incorporated into graphene quantum dots (GQD) to obtain paramagnetic graphene quantum dots (PGQD). We performed a variable-temperature and variable-field intensity NMR study in aqueous solution on the water exchange and rotational dynamics of three different chain lengths of PGQD. The optimal GQD with paramagnetic chain length shows a great improvement in performance on 1H NMR relaxometric studies. In vitro results demonstrated that the relaxivity of the designed PGQD could be controlled by regulating the PEG length, and its relaxivity was ∼16 times higher than that of current commercial MRI contrast agents (e.g., Gd-DTPA), on a "per Gd" basis. The relaxivity of the Nano CA can be rationally tuned to obtain unmatched potentials in MR imaging, exemplified by preparation of the paramagnetic GQD with the enhanced T1 relaxivity. The fabricated PGQDs with suitable PEG length got the best relaxivity at 1.5 T. After intravenous injection, its feeding process by solid tumor could even be monitored by clinically used 1.5 T MRI scanners. This research will also provide an excellent platform for the design and synthesis of highly effective MR contrast agents.
Collapse
Affiliation(s)
- Yuqi Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan , 430071 , P.R. China
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan , 430071 , P.R. China
| | - Haidong Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan , 430071 , P.R. China
| | - Yaping Yuan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan , 430071 , P.R. China
| | - Zhiying Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan , 430071 , P.R. China
| | - Junshuai Xie
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan , 430071 , P.R. China
| | - Dennis W Hwang
- Department of Chemistry and Biochemistry , National Chung-Cheng University , 168 University Road , Min-Hsiung, Chiayi 621 , Taiwan
| | - Aidong Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , P.R. China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan , 430071 , P.R. China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan , 430071 , P.R. China
| |
Collapse
|
137
|
Zhou R, Zhu S, Gong L, Fu Y, Gu Z, Zhao Y. Recent advances of stimuli-responsive systems based on transition metal dichalcogenides for smart cancer therapy. J Mater Chem B 2019; 7:2588-2607. [DOI: 10.1039/c8tb03240h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A comprehensive overview of the development of stimuli-responsive TMDC-based nanoplatforms for “smart” cancer therapy is presented to demonstrate a more intelligent and better controllable therapeutic strategy.
Collapse
Affiliation(s)
- Ruxin Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Linji Gong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Yanyan Fu
- State Key Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| |
Collapse
|
138
|
Zhang B, Cheng L, Duan B, Tang W, Yuan Y, Ding Y, Hu A. Gadolinium complexes of diethylenetriamine-N-oxide pentaacetic acid-bisamide: a new class of highly stable MRI contrast agents with a hydration number of 3. Dalton Trans 2019; 48:1693-1699. [DOI: 10.1039/c8dt04478c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diethylenetriamine-N-oxide pentaacetic acid-bisamide-based Gd(iii) complexes with 3 coordinated water molecules have been synthesized to achieve high stability and over three times of the relaxivities of commercial MRI contrast agents.
Collapse
Affiliation(s)
- BeiBei Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Likun Cheng
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Bing Duan
- The State Key Laboratory of Bioreactor Engineering East China University of Science and Technology
- Shanghai
- China
| | - Weijun Tang
- Department of Radiology
- Huashan Hospital Affiliated to Fudan University
- Shanghai
- China
| | - Yuan Yuan
- The State Key Laboratory of Bioreactor Engineering East China University of Science and Technology
- Shanghai
- China
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Aiguo Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|
139
|
Miao T, Floreani RA, Liu G, Chen X. Nanotheranostics-Based Imaging for Cancer Treatment Monitoring. Bioanalysis 2019. [DOI: 10.1007/978-3-030-01775-0_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
140
|
Carniato F, Alberti D, Lapadula A, Martinelli J, Isidoro C, Geninatti Crich S, Tei L. Multifunctional Gd-based mesoporous silica nanotheranostic for anticancer drug delivery. J Mater Chem B 2019. [DOI: 10.1039/c9tb00375d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A theranostic MRI nanoprobe based on mesoporous silica nanoparticles with attached stable Gd-complexes with high relaxivity, rhodamine dyes, PEG and cyclooctyne moieties was synthesized and loaded with mitoxantrone for bio-orthogonal targeted anticancer drug delivery.
Collapse
Affiliation(s)
- Fabio Carniato
- Department of Science and Technological Innovation
- Università del Piemonte Orientale
- 15121 Alessandria
- Italy
| | - Diego Alberti
- Department of Molecular Biotechnology and Health Science
- University of Turin
- 10126 Torino
- Italy
| | - Angelica Lapadula
- Department of Molecular Biotechnology and Health Science
- University of Turin
- 10126 Torino
- Italy
- Department of Health Sciences
| | - Jonathan Martinelli
- Department of Science and Technological Innovation
- Università del Piemonte Orientale
- 15121 Alessandria
- Italy
| | - Ciro Isidoro
- Department of Health Sciences
- Università del Piemonte Orientale
- Novara
- Italy
| | | | - Lorenzo Tei
- Department of Science and Technological Innovation
- Università del Piemonte Orientale
- 15121 Alessandria
- Italy
| |
Collapse
|
141
|
Xu X, Liu K, Wang Y, Zhang C, Shi M, Wang P, Shen L, Xia J, Ye L, Shi X, Shen M. A multifunctional low-generation dendrimer-based nanoprobe for the targeted dual mode MR/CT imaging of orthotopic brain gliomas. J Mater Chem B 2019. [DOI: 10.1039/c9tb00416e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An RGD peptide-targeted low-generation dendrimer nanoprobe can cross the blood-brain barrier for dual-modal MR/CT imaging of an orthotopic brain glioma.
Collapse
|
142
|
Chen Y, Li N, Wang J, Zhang X, Pan W, Yu L, Tang B. Enhancement of mitochondrial ROS accumulation and radiotherapeutic efficacy using a Gd-doped titania nanosensitizer. Theranostics 2019; 9:167-178. [PMID: 30662560 PMCID: PMC6332802 DOI: 10.7150/thno.28033] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy is an extensively used treatment modality in the clinic and can kill malignant cells by generating cytotoxic reactive oxygen species (ROS). Unfortunately, excessive dosages of radiation are typically required because only a small proportion of the radiative energy is adsorbed by the soft tissues of a tumor, which results in the nonselective killing of normal cells and severe systemic side effects. An efficient nanosensitizer that makes cancer cells more sensitive to radiotherapy under a relatively low radiation dose would be highly desirable. Methods: In this study, we developed a Gd-doped titania nanosensitizer that targets mitochondria to achieve efficient radiotherapy. Upon X-ray irradiation, the nanosensitizer triggers a “domino effect” of ROS accumulation in mitochondria. This overabundance of ROS leads to mitochondrial permeability transition and ultimately irreversible cell apoptosis. Confocal laser imaging, western blotting and flow cytometry analysis were used to explore the biological process of intrinsic apoptosis induced by the nanosensitizer. Clonogenic survival assay, cell migration and invasion experiments were employed to evaluate the radiosensitizing effect of the nanosensitizer in vitro. Finally, to evaluate the therapeutic outcome of the nanosensitizer in vivo, MCF-7 tumor model was used. Results: Confocal laser images and western blotting data demonstrated that the nanosensitizer in conjunction with X-ray irradiation could induce cell apoptosis in ROS-mediated apoptotic signal pathways. A clonogenic survival assay revealed that cells treated with the prepared nanosensitizer exhibited a lower number of viable cell colonies than that of the nontargeted group under X-ray irradiation. Notably, with only a single dose of radiotherapy, the mitochondria-targeted nanosensitizer elicited the complete ablation of tumors in a mouse model. Conclusion: The designed nanosensitizer in combination with X-ray radiation exposure could be used for radiotherapy against cancer in living cells and in vivo. Moreover, the nanosensitizer with mitochondria targeting played a pivotal role in triggering a “domino effect” of ROS and cell apoptosis. The current strategy could provide new opportunities in designing efficient radiosensitizers for future cancer therapy.
Collapse
|
143
|
Affiliation(s)
- Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; Viale T. Michel 11 15121 Alessandria Italy
| | - Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; Viale T. Michel 11 15121 Alessandria Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; Viale T. Michel 11 15121 Alessandria Italy
| |
Collapse
|
144
|
Suárez-García S, Arias-Ramos N, Frias C, Candiota AP, Arús C, Lorenzo J, Ruiz-Molina D, Novio F. Dual T 1/ T 2 Nanoscale Coordination Polymers as Novel Contrast Agents for MRI: A Preclinical Study for Brain Tumor. ACS APPLIED MATERIALS & INTERFACES 2018; 10:38819-38832. [PMID: 30351897 DOI: 10.1021/acsami.8b15594] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
In the last years, extensive attention has been paid on designing and developing functional imaging contrast agents for providing accurate noninvasive evaluation of pathology in vivo. However, the issue of false-positives or ambiguous imaging and the lack of a robust strategy for simultaneous dual-mode imaging remain to be fully addressed. One effective strategy for improving it is to rationally design magnetic resonance imaging (MRI) contrast agents (CAs) with intrinsic T1/ T2 dual-mode imaging features. In this work, the development and characterization of one-pot synthesized nanostructured coordination polymers (NCPs) which exhibit dual mode T1/ T2 MRI contrast behavior is described. The resulting material comprises the combination of different paramagnetic ions (Fe3+, Gd3+, Mn2+) with selected organic ligands able to induce the polymerization process and nanostructure stabilization. Among them, the Fe-based NCPs showed the best features in terms of colloidal stability, low toxicity, and dual T1/ T2 MRI contrast performance overcoming the main drawbacks of reported CAs. The dual-mode CA capability was evaluated by different means: in vitro phantoms, ex vivo and in vivo MRI, using a preclinical model of murine glioblastoma. Interestingly, the in vivo MRI of Fe-NCPs show T1 and T2 high contrast potential, allowing simultaneous recording of positive and negative contrast images in a very short period of time while being safer for the mouse. Moreover, the biodistribution assays reveals the persistence of the nanoparticles in the tumor and subsequent gradual clearance denoting their biodegradability. After a comparative study with commercial CAs, the results suggest these nanoplatforms as promising candidates for the development of dual-mode MRI CAs with clear advantages.
Collapse
Affiliation(s)
- S Suárez-García
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST , Campus UAB, Bellaterra , 08193 Barcelona , Spain
| | - N Arias-Ramos
- Departament de Bioquímica i Biologia Molecular , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Spain
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina , 08193 Cerdanyola del Vallès , Spain
| | - C Frias
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST , Campus UAB, Bellaterra , 08193 Barcelona , Spain
| | - A P Candiota
- Departament de Bioquímica i Biologia Molecular , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Spain
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina , 08193 Cerdanyola del Vallès , Spain
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Barcelona , Spain
| | - C Arús
- Departament de Bioquímica i Biologia Molecular , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Spain
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina , 08193 Cerdanyola del Vallès , Spain
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Barcelona , Spain
| | - J Lorenzo
- Departament de Bioquímica i Biologia Molecular , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Spain
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Barcelona , Spain
| | - D Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST , Campus UAB, Bellaterra , 08193 Barcelona , Spain
| | - F Novio
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST , Campus UAB, Bellaterra , 08193 Barcelona , Spain
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Barcelona , Spain
| |
Collapse
|
145
|
Mondjinou YA, Loren BP, Collins CJ, Hyun SH, Demoret A, Skulsky J, Chaplain C, Badwaik V, Thompson DH. Gd 3+:DOTA-Modified 2-Hydroxypropyl-β-Cyclodextrin/4-Sulfobutyl Ether-β-Cyclodextrin-Based Polyrotaxanes as Long Circulating High Relaxivity MRI Contrast Agents. Bioconjug Chem 2018; 29:3550-3560. [PMID: 30403467 DOI: 10.1021/acs.bioconjchem.8b00525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A family of five water-soluble Gd3+:1,4,7,10-tetraazacyclododecane-1,4,7-tetraacetic acid-modified polyrotaxane (PR) magnetic resonance contrast agents bearing mixtures of 2-hydroxypropyl-β-cyclodextrin and 4-sulfobutylether-β-cyclodextrin macrocycles threaded onto Pluronic cores were developed as long circulating magnetic resonance contrast agents. Short diethylene glycol diamine spacers were utilized for linking the macrocyclic chelator to the PR scaffold prior to Gd3+ chelation. The PR products were characterized by 1H NMR, gel permeation chromatography/multiangle light scattering, dynamic light scattering, and analytical ultracentrifugation. Nuclear magnetic relaxation dispersion and molar relaxivity measurements at 23 °C revealed that all the PR contrast agents displayed high spin-spin T1 relaxation and spin-lattice T2 relaxation rates relative to a DOTAREM control. When injected at 0.05 mmol Gd/kg body weight in BALB/c mice, the PR contrast agents increased the T1-weighted MR image intensities with longer circulation times in the blood pool than DOTAREM. Excretion of the agents occurred predominantly via the renal or biliary routes depending on the polyrotaxane structure, with the longest circulating L81 Pluronic-based agent showing the highest liver uptake. Proteomic analysis of PR bearing different β-cyclodextrin moieties indicated that lipoproteins were the predominant component associated with these materials after serum exposure, comprising as much as 40% of the total protein corona. We infer from these findings that Gd(III)-modified PR contrast agents are promising long-circulating candidates for blood pool analysis by MRI.
Collapse
|
146
|
Zhang J, Mu YL, Ma ZY, Han K, Han HY. Tumor-triggered transformation of chimeric peptide for dual-stage-amplified magnetic resonance imaging and precise photodynamic therapy. Biomaterials 2018; 182:269-278. [DOI: 10.1016/j.biomaterials.2018.08.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 12/17/2022]
|
147
|
Badrigilan S, Shaabani B, Gharehaghaji N, Mesbahi A. Iron oxide/bismuth oxide nanocomposites coated by graphene quantum dots: "Three-in-one" theranostic agents for simultaneous CT/MR imaging-guided in vitro photothermal therapy. Photodiagnosis Photodyn Ther 2018; 25:504-514. [PMID: 30385298 DOI: 10.1016/j.pdpdt.2018.10.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND The all-in-one nanoprobes (NPs) have drawn biomedical attention in the cancer therapy field due to simultaneously combing the capabilities of therapeutic and diagnostic methods into a single nanoprobe. METHOD In this study, we developed a theranostic probe based on superparamagnetic iron oxide (SPIO) and bismuth oxide (Bi2O3) with graphene quantum dots (GQDs) coating to investigate the physical properties for in vitro CT/MR dual-modal biomedical imaging and cancer-specific photothermal therapy (PTT). RESULT The GQDs-Fe/Bi nanocomposites showed strong light absorbance profile with wide-band in the near-infrared region, without any sharp peak or decline. The highest photo-to-thermal conversion efficacy (η), was found to be 31.8% with the high photostability upon the irradiation of NIR 808-nm laser. The results of in vitro photothermal ablation of cancerous cells demonstrated that the cells significantly killed in the presence of NPs (∼53.4%) with a dose-dependent manner in comparison to only laser group (3.0%). In GQDs-Fe/Bi nanocomposites, Bi with a high atomic number (Z = 83) exhibited a superior X-ray attenuation capability (175%) than the clinical CT agent-used dotarem, also, SPIO with excellent magnetization property showed strong T2-relaxation shortening capability (r2 = 62.34 mM-1.s-1) as a contrast agent for CT/MR imaging. CONCLUSION Our results demonstrate that the developed NPs can incorporate dual-modality imaging capability into a photo absorber for CT/MR imaging-guided tumor PTT.
Collapse
Affiliation(s)
- Samireh Badrigilan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Physics, Faculty of Medical, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrouz Shaabani
- Department of Inorganic Chemistry, Faculty of Chemistry, Tabriz University, Tabriz, Iran
| | - Nahideh Gharehaghaji
- Department of Radiology, Faculty of Paramedical, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asghar Mesbahi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
148
|
Wei R, Zhou T, Sun C, Lin H, Yang L, Ren BW, Chen Z, Gao J. Iron-oxide-based twin nanoplates with strong T 2 relaxation shortening for contrast-enhanced magnetic resonance imaging. NANOSCALE 2018; 10:18398-18406. [PMID: 30256373 DOI: 10.1039/c8nr04995e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Iron oxide nanomaterials have been intensively investigated over the past few decades as magnetic resonance imaging (MRI) contrast agents (CAs) due to their favorable magnetism and excellent biocompatibility. However, commercial iron-oxide-nanoparticle-based CAs suffer from low T2 relaxivity, which significantly limits their applications in the biomedical field. Herein, we report a new type of iron oxide nanoplate (IOP) with an interesting twinning plane, which is fabricated via seed growth. Compared with the conventional iron oxide (IO) spherical nanoparticles, iron oxide twin nanoplates (IOP-13) have a larger effective radius, higher saturation magnetization, and greater anisotropy, resulting in their superior T2 relaxivity of 571.21 mM-1 s-1 at 0.5 T, which is about six times higher than that of commercial IO nanoparticles. In vivo MR imaging demonstrated that IOP-13 could be used for liver imaging and liver tumor diagnosis with high sensitivity and accuracy, revealing the great potential of IOP-13 as a next-generation CA. This work provides a novel strategy of structure tuning to devise high-performance T2 contrast agents, which expands the applications of iron oxide nanoparticles in biology and materials.
Collapse
Affiliation(s)
- Ruixue Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Chen Y, Ding X, Zhang Y, Natalia A, Sun X, Wang Z, Shao H. Design and synthesis of magnetic nanoparticles for biomedical diagnostics. Quant Imaging Med Surg 2018; 8:957-970. [PMID: 30505724 DOI: 10.21037/qims.2018.10.07] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Sensitive and quantitative characterization of clinically relevant biomarkers can facilitate disease diagnosis and treatment evaluation. Magnetic nanomaterials and their biosensing strategies have recently received considerable attention. Magnetic signals experience little interference from native biological background as most biological molecules have negligible magnetic susceptibilities and thus appear transparent to external magnetic fields. Because of this unique property, magnetic sensing can be applied to both in vivo deep tissue imaging as well as ex vivo point-of-care diagnostics. To exploit this mode of magnetic detection, new advancements in both magnetic material syntheses and sensing technologies have been made. This review focuses on recent developments of magnetic nanomaterials as image contrast agents and diagnostic sensors. These developments have not only enabled precise control of magnetic nanomaterial properties but also expanded the reach of magnetic detection for biomedical diagnostics.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117599, Singapore.,Biomedical Institute for Global Health Research and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Xianguang Ding
- Biomedical Institute for Global Health Research and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Yan Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117599, Singapore.,Biomedical Institute for Global Health Research and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Auginia Natalia
- Biomedical Institute for Global Health Research and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Xuecheng Sun
- Biomedical Institute for Global Health Research and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Zhigang Wang
- Biomedical Institute for Global Health Research and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Huilin Shao
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117599, Singapore.,Biomedical Institute for Global Health Research and Technology, National University of Singapore, Singapore 117599, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
150
|
Aime S, Botta M, Esteban-Gómez D, Platas-Iglesias C. Characterisation of magnetic resonance imaging (MRI) contrast agents using NMR relaxometry. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1516898] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Silvio Aime
- Department of Molecular Biotechnologies and Health Sciences, Molecular Imaging Center, University of Torino, Torino, Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale ‘A. Avogadro’, Alessandria, Italy
| | - David Esteban-Gómez
- Departamento de Química, Facultade de Ciencias & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, A Coruña, Spain
| | - Carlos Platas-Iglesias
- Departamento de Química, Facultade de Ciencias & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, A Coruña, Spain
| |
Collapse
|