101
|
Sizochenko N, Mikolajczyk A, Syzochenko M, Puzyn T, Leszczynski J. Zeta potentials (ζ) of metal oxide nanoparticles: A meta-analysis of experimental data and a predictive neural networks modeling. NANOIMPACT 2021; 22:100317. [PMID: 35559974 DOI: 10.1016/j.impact.2021.100317] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 06/15/2023]
Abstract
Zeta potential is usually measured to estimate the surface charge and the stability of nanomaterials, as changes in these characteristics directly influence the biological activity of a given nanoparticle. Nowadays, theoretical methods are commonly used for a pre-screening safety assessments of nanomaterials. At the same time, the consistency of data on zeta potential measurements in the context of environmental impact is an important challenge. The inconsistency of data measurements leads to inaccuracies in predictive modeling. In this article, we report a new curated dataset of zeta potentials measured for 208 silica- and metal oxide nanoparticles in different media. We discuss the data curation framework for zeta potentials designed to assess the quality and usefulness of the literature data for further computational modeling. We also provide an analysis of specific trends for the datapoints harvested from different literature sources. In addition to that, we present for the first time a structure-property relationship model for nanoparticles (nano-SPR) that predicts values of zeta potential values measured in different environmental conditions (i.e., biological media and pH).
Collapse
Affiliation(s)
- Natalia Sizochenko
- Department of Informatics, Postdoctoral Institute for Computational Studies, Enfield, NH, USA; School of Informatics and Engineering, Blanchardstown Campus, Technological University Dublin, Blanchardstown, Ireland.
| | - Alicja Mikolajczyk
- Department of Informatics, Postdoctoral Institute for Computational Studies, Enfield, NH, USA; Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland; QSAR Lab Ltd, Gdansk, Poland
| | - Michael Syzochenko
- Department of Informatics, Postdoctoral Institute for Computational Studies, Enfield, NH, USA
| | - Tomasz Puzyn
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland; QSAR Lab Ltd, Gdansk, Poland
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, USA
| |
Collapse
|
102
|
Improved osteogenesis and angiogenesis of theranostic ions doped calcium phosphates (CaPs) by a simple surface treatment process: A state-of-the-art study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112082. [PMID: 33947573 DOI: 10.1016/j.msec.2021.112082] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022]
Abstract
Surface treatment of biomaterials could enable reliable and quick cellular responses and accelerate the healing of the host tissue. Here, a series of calcium phosphates (CaPs) were surface treated by hydrogen peroxide (H2O2) and the treatment effects were physicochemically and biologically evaluated. For this aim, as-synthesized CaPs doped with strontium (Sr2+), iron (Fe2+), silicon (Si4+), and titanium (Ti4+) ions were sonicated in H2O2 media. The results showed that the specific surface area and zeta potential values of the surface-treated CaPs were increased by ~50% and 25%, respectively. Moreover, the particle size and the band-gap (Eg) values of the surface-treated CaPs were decreased by ~25% and ~2-10%, respectively. The concentration of oxygen vacancies was increased in the surface-treated samples, which was confirmed by the result of ultraviolet (UV), photoluminescence (PL), Commission Internationale de l'éclairage (CIE 1931), and X-ray photoelectron spectroscopy (XPS) analyses. In vitro cellular assessments of surface-treated CaPs exhibited an improvement in cytocompatibility, reactive oxygen species generation (ROS) capacity, bone nodule formation, and the migration of cells up to ~8%, 20%, 35%, and 13%, respectively. Based on the obtained data, it can be stated that improved physicochemical properties of H2O2-treated CaPs could increase the ROS generation and subsequently enhance the biological activities. In summary, the results demonstrate the notable effect of the H2O2 surface treatment method on improving surface properties and biological performance of CaPs.
Collapse
|
103
|
Green Synthesis and Biomedical Applications of ZnO Nanoparticles: Role of PEGylated-ZnO Nanoparticles as Doxorubicin Drug Carrier against MDA-MB-231(TNBC) Cells Line. CRYSTALS 2021. [DOI: 10.3390/cryst11040344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present study aimed to develop the synthesis of zinc oxide nanoparticles (ZnO-NPs) using the green method, with Aloe barbadensis leaf extract as a stabilizing and capping agent. In vitro antitumor cytotoxic activity, as well as the surface-functionalization of ZnO-NPs and their drug loading capacity against doxorubicin (DOX) and gemcitabine (GEM) drugs, were also studied. Morphological and structural properties of the produced ZnO-NPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersion X-ray diffraction (EDX), UV-Vis spectrophotometry, Fourier-transform infrared analysis (FTIR), and X-ray diffraction (XRD). The prepared ZnO-NPs had a hexagonal shape and average particle size of 20–40 nm, with an absorption peak at 325 nm. The weight and atomic percentages of zinc (50.58% and 28.13%) and oxygen (26.71% and 60.71%) were also determined by EDAX (energy dispersive x-ray analysis) compositional analysis. The appearance of the FTIR peak at 3420 m–1 confirmed the synthesis of ZnO-NPs. The drug loading efficiency (LE) and loading capacity (LC) of unstabilized and PEGylated ZnO-NPs were determined by doxorubicin (DOX) and gemcitabine (GEM) drugs. DOX had superior LE 65% (650 mg/g) and higher LC 32% (320 mg/g) than GEM LE 30.5% (30 mg/g) and LC 16.25% (162 mg/g) on ZnO-NPs. Similar observation was observed in the case of PEG-ZnO-NPs, where DOX had enhanced LE 68% (680 mg/g) and LC 35% (350) mg/g in contrast to GEM, which had LE and LC values of 35% (350 mg/g) and 19% (190 mg/g), respectively. Therefore, DOX was chosen to encapsulate nanoparticles, along with the untreated nanoparticles, to check their in vitro antiproliferative potential against the triple-negative breast cancer (TNBC) cell line (MDA-MB-231) through the MTT (3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide) assay. This drug delivery strategy implies that the PEGylated biogenically synthesized ZnO-NPs occupy an important position in chemotherapeutic drug loading efficiency and can improve the therapeutic techniques of triple breast cancer.
Collapse
|
104
|
Rong J, He Y, Tang J, Qiao R, Lin S. "Fishing" nano-bio interactions at the key biological barriers. NANOSCALE 2021; 13:5954-5964. [PMID: 33734277 DOI: 10.1039/d1nr00328c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding nano-bio interactions is pivotal to the safe implementation of nanotechnology for both biological and environmental applications. Zebrafish as a model organism provides unique opportunities to dissect nano-bio interactions occurring at different biological barriers. In this review, we focus on four key biological barriers, namely cell membrane, blood-brain barrier (BBB), skin and gill epithelia, and gastrointestinal tract (GIT), and highlight recent advancement achieved by using zebrafish to conduct both visualized observations and mechanistic investigations on a diversity of nano-bio interactions.
Collapse
Affiliation(s)
- Jinyu Rong
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China.
| | | | | | | | | |
Collapse
|
105
|
The predictive model for band gap prediction of metal oxide nanoparticles based on quasi-SMILES. Struct Chem 2021. [DOI: 10.1007/s11224-021-01748-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
106
|
Chang CH, Lee YH, Liao ZH, Chen MHC, Peng FC, Lin JJ. Composition of nanoclay supported silver nanoparticles in furtherance of mitigating cytotoxicity and genotoxicity. PLoS One 2021; 16:e0247531. [PMID: 33630913 PMCID: PMC7906337 DOI: 10.1371/journal.pone.0247531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/09/2021] [Indexed: 11/30/2022] Open
Abstract
Silver nanoparticle (Ag-NP) is well known for its high antibacterial efficacy. However, its toxicity toward mammalian cells is still a concern in clinical applications. The aim of our study was to evaluate the composition effects of Ag-NP supported by silicate nanoplatelet (NSP) with respect to the cytotoxicity and genotoxicity, and was in reference to the poly (styrene-co-maleic anhydride)-supported Ag-NP (Ag-NP/SMA). The NSP at the geometric dimension of averaged 80 x 80 x 1 nm3 was prepared from the exfoliation of natural clays and used to support different weight ratio of Ag-NP. The supporting limitation of NSP on Ag-NP was below the weight ratio of 15/85 (Ag-NP to NSP), and the detached Ag-NP from the Ag-NP/NSP (30/70) and Ag-NP/SMA hybrids were observed by TEM. Ames test was performed to assess the mutagenic potential of different compositions of Ag-NP/NSP, only Ag-NP/NSP (30/70) and Ag-NP/SMA hybrids exhibited mutagenicity when the concentration was 1.09 ppm or higher. In viewing of cytotoxicity using MTT tests toward HaCaT cells, the IC30 of Ag-NP/NSP (1/99, 7/93 and 15/85) were 1416.7, 243.6, and 148.9 ppm respectively, while Ag-NP/SMA was 64.8 ppm. The IC30 of Ag-NP/NSP (1/99, 7/93 and 15/85) were at least 833, 78 and 7 folds higher than their corresponding minimum inhibitory concentrations (MIC) respectively, and whereas Ag-NP/SMA was 6.4 folds. The Ag-NP/NSP and Ag-NP/SMA hybrids had been further investigated for genotoxicity by chromosomal aberrations and in vivo micronucleus assay within the concentration at IC10 and IC30, only Ag-NP/SMA showed a higher frequency of chromosomal aberrations. Our findings indicated that the viability of utilizing the NSP to maintain Ag-NP for antimicrobial activity, and the high-surface area of NSP served as an excellent support for associating Ag-NP and consequently rendering the mitigation of the inherent toxicity of Ag-NP in clinical uses.
Collapse
Affiliation(s)
- Chih-Hao Chang
- Department of Orthopedics Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Hsuan Lee
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Zhen-Hao Liao
- Department of Orthopedics Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Mark Hung-Chih Chen
- Department of Orthopedics Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Fu-Chuo Peng
- Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jiang-Jen Lin
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
107
|
Izci M, Maksoudian C, Manshian BB, Soenen SJ. The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors. Chem Rev 2021; 121:1746-1803. [PMID: 33445874 PMCID: PMC7883342 DOI: 10.1021/acs.chemrev.0c00779] [Citation(s) in RCA: 216] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 02/08/2023]
Abstract
Nanomaterial (NM) delivery to solid tumors has been the focus of intense research for over a decade. Classically, scientists have tried to improve NM delivery by employing passive or active targeting strategies, making use of the so-called enhanced permeability and retention (EPR) effect. This phenomenon is made possible due to the leaky tumor vasculature through which NMs can leave the bloodstream, traverse through the gaps in the endothelial lining of the vessels, and enter the tumor. Recent studies have shown that despite many efforts to employ the EPR effect, this process remains very poor. Furthermore, the role of the EPR effect has been called into question, where it has been suggested that NMs enter the tumor via active mechanisms and not through the endothelial gaps. In this review, we provide a short overview of the EPR and mechanisms to enhance it, after which we focus on alternative delivery strategies that do not solely rely on EPR in itself but can offer interesting pharmacological, physical, and biological solutions for enhanced delivery. We discuss the strengths and shortcomings of these different strategies and suggest combinatorial approaches as the ideal path forward.
Collapse
Affiliation(s)
- Mukaddes Izci
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Christy Maksoudian
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Bella B. Manshian
- Translational
Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Stefaan J. Soenen
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| |
Collapse
|
108
|
Multiscale Metal Oxide Particles to Enhance Photocatalytic Antimicrobial Activity against Escherichia coli and M13 Bacteriophage under Dual Ultraviolet Irradiation. Pharmaceutics 2021; 13:pharmaceutics13020222. [PMID: 33561936 PMCID: PMC7914579 DOI: 10.3390/pharmaceutics13020222] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial activity of multiscale metal oxide (MO) particles against Escherichia coli (E. coli) and M13 bacteriophage (phage) was investigated under dual ultraviolet (UV) irradiation. Zinc oxide (ZnO), magnesium oxide (MgO), cuprous oxide (Cu2O), and cupric oxide (CuO) were selected as photocatalytic antimicrobials in MO particles. Physicochemical properties including morphology, particle size/particle size distribution, atomic composition, crystallinity, and porosity were evaluated. Under UV-A and UV-C irradiation with differential UV-C intensities, the antimicrobial activity of MO particles was monitored in E. coli and phage. MO particles had nano-, micro- and nano- to microscale sizes with irregular shapes, composed of atoms as ratios of chemical formulae and presented crystallinity as pure materials. They had wide-range specific surface area levels of 0.40–46.34 m2/g. MO particles themselves showed antibacterial activity against E. coli, which was the highest among the ZnO particles. However, no viral inactivation by MO particles occurred in phage. Under dual UV irradiation, multiscale ZnO and CuO particles had superior antimicrobial activities against E. coli and phage, as mixtures of nano- and microparticles for enhanced photocatalytic antimicrobials. The results showed that the dual UV-multiscale MO particle hybrids exhibit enhanced antibiotic potentials. It can also be applied as a next-generation antibiotic tool in industrial and clinical fields.
Collapse
|
109
|
Zheng H, Jiang J, Xu S, Liu W, Xie Q, Cai X, Zhang J, Liu S, Li R. Nanoparticle-induced ferroptosis: detection methods, mechanisms and applications. NANOSCALE 2021; 13:2266-2285. [PMID: 33480938 DOI: 10.1039/d0nr08478f] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although ferroptosis is an iron-dependent cell death mechanism involved in the development of some severe diseases (e.g., Parkinsonian syndrome, stroke and tumours), the combination of nanotechnology with ferroptosis for the treatment of these diseases has attracted substantial research interest. However, it is challenging to differentiate nanoparticle-induced ferroptosis from other types of cell deaths (e.g., apoptosis, pyroptosis, and necrosis), elucidate the detailed mechanisms and identify the key property of nanoparticles responsible for ferroptotic cell deaths. Therefore, a summary of these aspects from current research on nano-ferroptosis is important and timely. In this review, we endeavour to summarize some convincing techniques that can be employed to specifically examine ferroptotic cell deaths. Then, we discuss the molecular initiating events of nanosized ferroptosis inducers and the cascade signals in cells, and therefore elaborate the ferroptosis mechanisms. Besides, the key physicochemical properties of nano-inducers are also discussed to acquire a fundamental understanding of nano-structure-activity relationships (nano-SARs) involved in ferroptosis, which may facilitate the design of nanomaterials to deliberately tune ferroptosis. Finally, future perspectives on the fundamental understanding of nanoparticle-induced ferroptosis and its applications are provided.
Collapse
Affiliation(s)
- Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Jun Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Shujuan Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Qianqian Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Xiaoming Cai
- School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jie Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
110
|
Scorzoni L, Fuchs BB, Junqueira JC, Mylonakis E. Current and promising pharmacotherapeutic options for candidiasis. Expert Opin Pharmacother 2021; 22:867-887. [PMID: 33538201 DOI: 10.1080/14656566.2021.1873951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Candida spp. are commensal yeasts capable of causing infections such as superficial, oral, vaginal, or systemic infections. Despite medical advances, the antifungal pharmacopeia remains limited and the development of alternative strategies is needed.Areas covered: We discuss available treatments for Candida spp. infections, highlighting advantages and limitations related to pharmacokinetics, cytotoxicity, and antimicrobial resistance. Moreover, we present new perspectives to improve the activity of the available antifungals, discussing their immunomodulatory potential and advances on drug delivery carriers. New therapeutic approaches are presented including recent synthesized antifungal compounds (Enchochleated-Amphotericin B, tetrazoles, rezafungin, enfumafungin, manogepix and arylamidine); drug repurposing using a diversity of antibacterial, antiviral and non-antimicrobial drugs; combination therapies with different compounds or photodynamic therapy; and innovations based on nano-particulate delivery systems.Expert opinion: With the lack of novel drugs, the available assets must be leveraged to their best advantage through modifications that enhance delivery, efficacy, and solubility. However, these efforts are met with continuous challenges presented by microbes in their infinite plight to resist and survive therapeutic drugs. The pharmacotherapeutic options in development need to focus on new antimicrobial targets. The success of each antimicrobial agent brings strategic insights to the next phased approach in treatingCandida spp. infections.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, SP Brazil
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, RI USA
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, SP Brazil
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, RI USA
| |
Collapse
|
111
|
|
112
|
Soares EV, Soares HMVM. Harmful effects of metal(loid) oxide nanoparticles. Appl Microbiol Biotechnol 2021; 105:1379-1394. [PMID: 33521847 PMCID: PMC7847763 DOI: 10.1007/s00253-021-11124-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/04/2021] [Accepted: 01/16/2021] [Indexed: 02/06/2023]
Abstract
The incorporation of nanomaterials (NMs), including metal(loid) oxide (MOx) nanoparticles (NPs), in the most diversified consumer products, has grown enormously in recent decades. Consequently, the contact between humans and these materials increased, as well as their presence in the environment. This fact has raised concerns and uncertainties about the possible risks of NMs to human health and the adverse effects on the environment. These concerns underline the need and importance of assessing its nanosecurity. The present review focuses on the main mechanisms underlying the MOx NPs toxicity, illustrated with different biological models: release of toxic ions, cellular uptake of NPs, oxidative stress, shading effect on photosynthetic microorganisms, physical restrain and damage of cell wall. Additionally, the biological models used to evaluate the potential hazardous of nanomaterials are briefly presented, with particular emphasis on the yeast Saccharomyces cerevisiae, as an alternative model in nanotoxicology. An overview containing recent scientific advances on cellular responses (toxic symptoms exhibited by yeasts) resulting from the interaction with MOx NPs (inhibition of cell proliferation, cell wall damage, alteration of function and morphology of organelles, presence of oxidative stress bio-indicators, gene expression changes, genotoxicity and cell dead) is critically presented. The elucidation of the toxic modes of action of MOx NPs in yeast cells can be very useful in providing additional clues about the impact of NPs on the physiology and metabolism of the eukaryotic cell. Current and future trends of MOx NPs toxicity, regarding their possible impacts on the environment and human health, are discussed. KEY POINTS: • The potential hazardous effects of MOx NPs are critically reviewed. • An overview of the main mechanisms associated with MOx NPs toxicity is presented. • Scientific advances about yeast cell responses to MOx NPs are updated and discussed.
Collapse
Affiliation(s)
- Eduardo V Soares
- Bioengineering Laboratory-CIETI, ISEP-School of Engineering, Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Helena M V M Soares
- REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, rua Dr Roberto Frias, s/n, 4200-465, Porto, Portugal
| |
Collapse
|
113
|
Kar S, Pathakoti K, Tchounwou PB, Leszczynska D, Leszczynski J. Evaluating the cytotoxicity of a large pool of metal oxide nanoparticles to Escherichia coli: Mechanistic understanding through In Vitro and In Silico studies. CHEMOSPHERE 2021; 264:128428. [PMID: 33022504 PMCID: PMC7919734 DOI: 10.1016/j.chemosphere.2020.128428] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/23/2020] [Accepted: 09/21/2020] [Indexed: 05/25/2023]
Abstract
The toxic effect of eight metal oxide nanoparticles (MONPs) on Escherichia coli was experimentally evaluated following standard bioassay protocols. The obtained cytotoxicity ranking of these studied MONPs is Er2O3, Gd2O3, CeO2, Co2O3, Mn2O3, Co3O4, Fe3O4/WO3 (in descending order). The computed EC50 values from experimental data suggested that Er2O3 and Gd2O3 were the most acutely toxic MONPs to E. coli. To identify the mechanism of toxicity of these 8 MONPs along with 17 other MONPs from our previous study, we employed seven classifications and machine learning (ML) algorithms including linear discriminant analysis (LDA), naïve bayes (NB), multinomial logistic regression (MLogitR), sequential minimal optimization (SMO), AdaBoost, J48, and random forest (RF). We also employed 1st and 2nd generation periodic table descriptors developed by us (without any sophisticated computing facilities) along with experimentally analyzed Zeta-potential, to model the cytotoxicity of these MONPs. Based on qualitative validation metrics, the LDA model appeared to be the best among the 7 tested models. The core environment of metal defined by the ratio of the number of core electrons to the number of valence electrons and the electronegativity count of oxygen showed a positive impact on toxicity. The identified properties were important for understanding the mechanisms of nanotoxicity and for predicting the potential environmental risk associated with MONPs exposure. The developed models can be utilized for environmental risk assessment of any untested MONP to E. coli, thereby providing a scientific basis for the design and preparation of safe nanomaterials.
Collapse
Affiliation(s)
- Supratik Kar
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217, USA
| | - Kavitha Pathakoti
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217, USA; RCMI Center for Environmental Health, Department of Biology, Jackson State University, Jackson, MS, 39217, USA
| | - Paul B Tchounwou
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217, USA; RCMI Center for Environmental Health, Department of Biology, Jackson State University, Jackson, MS, 39217, USA
| | - Danuta Leszczynska
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217, USA; Department of Civil and Environmental Engineering, Jackson State University, Jackson, MS, 39217, USA
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217, USA.
| |
Collapse
|
114
|
Boyadzhiev A, Avramescu ML, Wu D, Williams A, Rasmussen P, Halappanavar S. Impact of copper oxide particle dissolution on lung epithelial cell toxicity: response characterization using global transcriptional analysis. Nanotoxicology 2021; 15:380-399. [PMID: 33507836 DOI: 10.1080/17435390.2021.1872114] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The in vitro and in vivo toxicity of copper oxide nanoparticles (CuO NPs) is attributed to both particle and dissolved copper ion species. However, a clear understanding of (1) the specific cellular responses that are modulated by the two species and (2) the temporal dynamics in toxicity, as the proportional amount of particulate and ionic forms change over time, is lacking. In the current study, in vitro responses to microparticulate CuO (CuO MPs), CuO NPs, and dissolved Cu2+ were characterized in order to elucidate particle and ion-induced kinetic effects. Particle dissolution experiments were carried out in a relevant cell culture medium, using CuO NPs and MPs. Mouse lung epithelial cells were exposed for 2-48 h with 1-25 µg/mL CuO MPs, CuO NPs, or 7 and 54 µg/mL CuCl2. Cellular viability and genome-wide transcriptional responses were assessed. Dose and time-dependent cytotoxicity were observed in CuO NP exposed cells, which was delayed and subtle in CuCl2 and not observed in CuO MPs treated cells. Analyses of differentially expressed genes and associated pathway perturbations showed that dissolved ions released by CuO NPs in the extracellular medium are insufficient to account for the observed potency and cytotoxicity. Further organization of gene expression results in an Adverse Outcome Pathway (AOP) framework revealed a series of key events potentially involved in CuO NPs toxicity. The AOP is applicable to toxicity induced by metal oxide nanoparticles of varying solubility, and thus, can facilitate the development of in vitro alternative strategies to screen their toxicity.
Collapse
Affiliation(s)
- Andrey Boyadzhiev
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada.,Department of Biology, University of Ottawa, Ottawa, Canada
| | | | - Dongmei Wu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Pat Rasmussen
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada.,Earth and Environmental Sciences Department, University of Ottawa, Ottawa, Canada
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada.,Department of Biology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
115
|
Zheng R, Zhang H. Regulation of Electronic Properties of Metal Oxide Nanoparticles to Reveal Their Toxicity Mechanism and Safe‐by‐Design Approach. Adv Biol (Weinh) 2021. [DOI: 10.1002/adbi.202000220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Runxiao Zheng
- Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street, Jilin Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230052 P. R. China
| | - Haiyuan Zhang
- Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street, Jilin Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230052 P. R. China
| |
Collapse
|
116
|
Shin HK, Kim S, Yoon S. Use of size-dependent electron configuration fingerprint to develop general prediction models for nanomaterials. NANOIMPACT 2021; 21:100298. [PMID: 35559785 DOI: 10.1016/j.impact.2021.100298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 06/15/2023]
Abstract
Due to the lack of nano descriptors that can appropriately represent the wide chemical space of engineered nanomaterials (ENMs), applicability domain of nano-quantitative structure-activity relationship models are limited to certain types of ENMs, such as metal oxides, metals, carbon-based nanomaterials, or quantum dots. In this study, a size-dependent electron configuration fingerprint (SDEC FP) was introduced to estimate the quantity of electrons based on the core, doping, and coating materials of ENMs in different sizes. SDEC FP was used in prediction model development and nanostructure similarity analysis on datasets including metal and carbon-based nanomaterials with and without surface modifications. Cytotoxicity and zeta potential prediction models developed with SDEC FP achieved good prediction accuracies on test set. Nanostructure similarity analysis was performed through principal component analysis which showed that structural similarity between ENMs measured by SDEC FP was highly correlated with their properties.
Collapse
Affiliation(s)
- Hyun Kil Shin
- Toxicoinformatics Group, Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea.
| | - Soojin Kim
- Molecular Toxicology Group, Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Seokjoo Yoon
- Molecular Toxicology Group, Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| |
Collapse
|
117
|
Air-Liquid Interface Exposure of Lung Epithelial Cells to Low Doses of Nanoparticles to Assess Pulmonary Adverse Effects. NANOMATERIALS 2020; 11:nano11010065. [PMID: 33383962 PMCID: PMC7823463 DOI: 10.3390/nano11010065] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022]
Abstract
Reliable and predictive in vitro assays for hazard assessments of manufactured nanomaterials (MNMs) are still limited. Specifically, exposure systems which more realistically recapitulate the physiological conditions in the lung are needed to predict pulmonary toxicity. To this end, air-liquid interface (ALI) systems have been developed in recent years which might be better suited than conventional submerged exposure assays. However, there is still a need for rigorous side-by-side comparisons of the results obtained with the two different exposure methods considering numerous parameters, such as different MNMs, cell culture models and read outs. In this study, human A549 lung epithelial cells and differentiated THP-1 macrophages were exposed under submerged conditions to two abundant types of MNMs i.e., ceria and titania nanoparticles (NPs). Membrane integrity, metabolic activity as well as pro-inflammatory responses were recorded. For comparison, A549 monocultures were also exposed at the ALI to the same MNMs. In the case of titania NPs, genotoxicity was also investigated. In general, cells were more sensitive at the ALI compared to under classical submerged conditions. Whereas ceria NPs triggered only moderate effects, titania NPs clearly initiated cytotoxicity, pro-inflammatory gene expression and genotoxicity. Interestingly, low doses of NPs deposited at the ALI were sufficient to drive adverse outcomes, as also documented in rodent experiments. Therefore, further development of ALI systems seems promising to refine, reduce or even replace acute pulmonary toxicity studies in animals.
Collapse
|
118
|
Lynch I, Afantitis A, Exner T, Himly M, Lobaskin V, Doganis P, Maier D, Sanabria N, Papadiamantis AG, Rybinska-Fryca A, Gromelski M, Puzyn T, Willighagen E, Johnston BD, Gulumian M, Matzke M, Green Etxabe A, Bossa N, Serra A, Liampa I, Harper S, Tämm K, Jensen ACØ, Kohonen P, Slater L, Tsoumanis A, Greco D, Winkler DA, Sarimveis H, Melagraki G. Can an InChI for Nano Address the Need for a Simplified Representation of Complex Nanomaterials across Experimental and Nanoinformatics Studies? NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2493. [PMID: 33322568 PMCID: PMC7764592 DOI: 10.3390/nano10122493] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022]
Abstract
Chemoinformatics has developed efficient ways of representing chemical structures for small molecules as simple text strings, simplified molecular-input line-entry system (SMILES) and the IUPAC International Chemical Identifier (InChI), which are machine-readable. In particular, InChIs have been extended to encode formalized representations of mixtures and reactions, and work is ongoing to represent polymers and other macromolecules in this way. The next frontier is encoding the multi-component structures of nanomaterials (NMs) in a machine-readable format to enable linking of datasets for nanoinformatics and regulatory applications. A workshop organized by the H2020 research infrastructure NanoCommons and the nanoinformatics project NanoSolveIT analyzed issues involved in developing an InChI for NMs (NInChI). The layers needed to capture NM structures include but are not limited to: core composition (possibly multi-layered); surface topography; surface coatings or functionalization; doping with other chemicals; and representation of impurities. NM distributions (size, shape, composition, surface properties, etc.), types of chemical linkages connecting surface functionalization and coating molecules to the core, and various crystallographic forms exhibited by NMs also need to be considered. Six case studies were conducted to elucidate requirements for unambiguous description of NMs. The suggested NInChI layers are intended to stimulate further analysis that will lead to the first version of a "nano" extension to the InChI standard.
Collapse
Affiliation(s)
- Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Antreas Afantitis
- Nanoinformatics Department, NovaMechanics Ltd., 1666 Nicosia, Cyprus; (A.A.); (A.T.)
| | - Thomas Exner
- Edelweiss Connect GmbH, Hochbergerstrasse 60C, 4057 Basel, Switzerland;
| | - Martin Himly
- Department Biosciences, Paris Lodron University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria;
| | - Vladimir Lobaskin
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland;
| | - Philip Doganis
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece; (P.D.); (I.L.); (H.S.)
| | - Dieter Maier
- Biomax Informatics AG, Robert-Koch-Str. 2, 82152 Planegg, Germany;
| | - Natasha Sanabria
- National Health Laboratory Services, 1 Modderfontein Rd, Sandringham, Johannesburg 2192, South Africa; (N.S.); (M.G.)
| | - Anastasios G. Papadiamantis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Nanoinformatics Department, NovaMechanics Ltd., 1666 Nicosia, Cyprus; (A.A.); (A.T.)
| | - Anna Rybinska-Fryca
- QSAR Lab Ltd., Aleja Grunwaldzka 190/102, 80-266 Gdansk, Poland; (A.R.-F.); (M.G.); (T.P.)
| | - Maciej Gromelski
- QSAR Lab Ltd., Aleja Grunwaldzka 190/102, 80-266 Gdansk, Poland; (A.R.-F.); (M.G.); (T.P.)
| | - Tomasz Puzyn
- QSAR Lab Ltd., Aleja Grunwaldzka 190/102, 80-266 Gdansk, Poland; (A.R.-F.); (M.G.); (T.P.)
| | - Egon Willighagen
- Department of Bioinformatics—BiGCaT, School of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands;
| | - Blair D. Johnston
- Department Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany;
| | - Mary Gulumian
- National Health Laboratory Services, 1 Modderfontein Rd, Sandringham, Johannesburg 2192, South Africa; (N.S.); (M.G.)
- Haematology and Molecular Medicine, University of the Witwatersrand, 1 Jan Smuts Ave, Johannesburg 2000, South Africa
| | - Marianne Matzke
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford OX10 8BB, UK; (M.M.); (A.G.E.)
| | - Amaia Green Etxabe
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford OX10 8BB, UK; (M.M.); (A.G.E.)
| | - Nathan Bossa
- LEITAT Technological Center, Circular Economy Business Unit, C/de La Innovació 2, 08225 Terrassa, Barcelona, Spain;
| | - Angela Serra
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (A.S.); (D.G.)
| | - Irene Liampa
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece; (P.D.); (I.L.); (H.S.)
| | - Stacey Harper
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall 105 SW 26th St., Corvallis, OR 97331, USA;
| | - Kaido Tämm
- Institute of Chemistry, University of Tartu, Ülikooli 18, 50090 Tartu, Estonia;
| | - Alexander CØ Jensen
- The National Research Center for the Work Environment, Lersø Parkallé 105, 2100 Copenhagen, Denmark;
| | - Pekka Kohonen
- Misvik Biology OY, Karjakatu 35 B, 20520 Turku, Finland;
| | - Luke Slater
- Institute of Cancer and Genomics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Andreas Tsoumanis
- Nanoinformatics Department, NovaMechanics Ltd., 1666 Nicosia, Cyprus; (A.A.); (A.T.)
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (A.S.); (D.G.)
| | - David A. Winkler
- Institute of Molecular Sciences, La Trobe University, Kingsbury Drive, Bundoora 3086, Australia;
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
- CSIRO Data61, Pullenvale 4069, Australia
| | - Haralambos Sarimveis
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece; (P.D.); (I.L.); (H.S.)
| | - Georgia Melagraki
- Nanoinformatics Department, NovaMechanics Ltd., 1666 Nicosia, Cyprus; (A.A.); (A.T.)
| |
Collapse
|
119
|
Niemuth NJ, Zhang Y, Mohaimani AA, Schmoldt A, Laudadio ED, Hamers RJ, Klaper RD. Protein Fe-S Centers as a Molecular Target of Toxicity of a Complex Transition Metal Oxide Nanomaterial with Downstream Impacts on Metabolism and Growth. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15257-15266. [PMID: 33166448 DOI: 10.1021/acs.est.0c04779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oxidative stress is frequently identified as a mechanism of toxicity of nanomaterials. However, rarely have the specific underlying molecular targets responsible for these impacts been identified. We previously demonstrated significant negative impacts of transition metal oxide (TMO) lithium-ion battery cathode nanomaterial, lithium cobalt oxide (LCO), on the growth, development, hemoglobin, and heme synthesis gene expression in the larvae of a model sediment invertebrate Chironomus riparius. Here, we propose that alteration of the Fe-S protein function by LCO is a molecular initiating event leading to these changes. A 10 mg/L LCO exposure causes significant oxidation of the aconitase 4Fe-4S center after 7 d as determined from the electron paramagnetic resonance spectroscopy measurements of intact larvae and a significant reduction in the aconitase activity of larval protein after 48 h (p < 0.05). Next-generation RNA sequencing identified significant changes in the expression of genes involved in 4Fe-4S center binding, Fe-S center synthesis, iron ion binding, and metabolism for 10 mg/L LCO at 48 h (FDR-adjusted, p < 0.1). We propose an adverse outcome pathway, where the oxidation of metabolic and regulatory Fe-S centers of proteins by LCO disrupts metabolic homeostasis, which negatively impacts the growth and development, a mechanism that may apply for these conserved proteins across species and for other TMO nanomaterials.
Collapse
Affiliation(s)
- Nicholas J Niemuth
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Avenue, Milwaukee, Wisconsin 53204, United States
| | - Yonqian Zhang
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Aurash A Mohaimani
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Avenue, Milwaukee, Wisconsin 53204, United States
| | - Angela Schmoldt
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Avenue, Milwaukee, Wisconsin 53204, United States
| | - Elizabeth D Laudadio
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Robert J Hamers
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Rebecca D Klaper
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Avenue, Milwaukee, Wisconsin 53204, United States
| |
Collapse
|
120
|
Chen R, Yin H, Cole IS, Shen S, Zhou X, Wang Y, Tang S. Exposure, assessment and health hazards of particulate matter in metal additive manufacturing: A review. CHEMOSPHERE 2020; 259:127452. [PMID: 32629313 DOI: 10.1016/j.chemosphere.2020.127452] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 05/15/2023]
Abstract
Metal additive manufacturing (AM), also known as metal three-dimensional (3D) printing, is a new technology offering design freedom to create complex structures that has found increasing applications in industrial processes. However, due to the fine metal powders and high temperatures involved, the printing process is likely to generate particulate matter (PM) that has a detrimental impact on the environment and human health. Therefore, comprehensive assessement of the exposure and health hazards of PM pollution related to this technique is urgently required. This review provides general knowledge of metal AM and its possible particle release. The health issues of metal PM are described considering the exposure routes, adverse human health outcomes and influencing factors. Methods of evaluating PM exposure and risk assessment techniques are also summarized. Lastly, future research needs are suggested. The information and knowledge presented in this review will contribute to the understanding, assessment, and control of possible risks in metal AM and benefit the wider metal 3D printing community, which includes machine operators, consumers, R&D scientists, and policymakers.
Collapse
Affiliation(s)
- Rui Chen
- Beijing Key Laboratory of Occupational Safety and Health, Beijing Municipal Institute of Labour Protection, Beijing Academy of Science and Technology, Beijing, 100054, China
| | - Hong Yin
- School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, VIC 3000, Australia.
| | - Ivan S Cole
- School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Shirley Shen
- CSIRO Manufacturing, Bayview Ave, Clayton, Vic 3168, Australia
| | - Xingfan Zhou
- Beijing Key Laboratory of Occupational Safety and Health, Beijing Municipal Institute of Labour Protection, Beijing Academy of Science and Technology, Beijing, 100054, China
| | - Yuqian Wang
- Beijing Key Laboratory of Occupational Safety and Health, Beijing Municipal Institute of Labour Protection, Beijing Academy of Science and Technology, Beijing, 100054, China
| | - Shichuan Tang
- Beijing Key Laboratory of Occupational Safety and Health, Beijing Municipal Institute of Labour Protection, Beijing Academy of Science and Technology, Beijing, 100054, China.
| |
Collapse
|
121
|
Rybińska-Fryca A, Mikolajczyk A, Puzyn T. Structure-activity prediction networks (SAPNets): a step beyond Nano-QSAR for effective implementation of the safe-by-design concept. NANOSCALE 2020; 12:20669-20676. [PMID: 33048104 DOI: 10.1039/d0nr05220e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A significant number of experimental studies are supported by computational methods such as quantitative structure-activity relationship modeling of nanoparticles (Nano-QSAR). This is especially so in research focused on design and synthesis of new, safer nanomaterials using safe-by-design concepts. However, Nano-QSAR has a number of important limitations. For example, it is not clear which descriptors that describe the nanoparticle physicochemical and structural properties are essential and can be adjusted to alter the target properties. This limitation can be overcome with the use of the Structure-Activity Prediction Network (SAPNet) presented in this paper. There are three main phases of building the SAPNet. First, information about the structural characterization of a nanomaterial, its physical and chemical properties and toxicity is compiled. Then, the most relevant properties (intrinsic/extrinsic) likely to influence the ENM toxicity are identified by developing "meta-models". Finally, these "meta-models" describing the dependencies between the most relevant properties of the ENMs and their adverse biological properties are developed. In this way, the network is built layer by layer from the endpoint (e.g. toxicity or other properties of interest) to descriptors that describe the particle structure. Therefore, SAPNets go beyond the current standards and provide sufficient information on what structural features should be altered to obtain a material with desired properties.
Collapse
Affiliation(s)
| | - Alicja Mikolajczyk
- QSAR Lab Ltd., Aleja Grunwaldzka 190/102, 80-266 Gdansk, Poland. and University of Gdansk, Faculty of Chemistry, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Tomasz Puzyn
- QSAR Lab Ltd., Aleja Grunwaldzka 190/102, 80-266 Gdansk, Poland. and University of Gdansk, Faculty of Chemistry, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
122
|
Papadiamantis AG, Jänes J, Voyiatzis E, Sikk L, Burk J, Burk P, Tsoumanis A, Ha MK, Yoon TH, Valsami-Jones E, Lynch I, Melagraki G, Tämm K, Afantitis A. Predicting Cytotoxicity of Metal Oxide Nanoparticles using Isalos Analytics Platform. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2017. [PMID: 33066094 PMCID: PMC7601995 DOI: 10.3390/nano10102017] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
A literature curated dataset containing 24 distinct metal oxide (MexOy) nanoparticles (NPs), including 15 physicochemical, structural and assay-related descriptors, was enriched with 62 atomistic computational descriptors and exploited to produce a robust and validated in silico model for prediction of NP cytotoxicity. The model can be used to predict the cytotoxicity (cell viability) of MexOy NPs based on the colorimetric lactate dehydrogenase (LDH) assay and the luminometric adenosine triphosphate (ATP) assay, both of which quantify irreversible cell membrane damage. Out of the 77 total descriptors used, 7 were identified as being significant for induction of cytotoxicity by MexOy NPs. These were NP core size, hydrodynamic size, assay type, exposure dose, the energy of the MexOy conduction band (EC), the coordination number of the metal atoms on the NP surface (Avg. C.N. Me atoms surface) and the average force vector surface normal component of all metal atoms (v⟂ Me atoms surface). The significance and effect of these descriptors is discussed to demonstrate their direct correlation with cytotoxicity. The produced model has been made publicly available by the Horizon 2020 (H2020) NanoSolveIT project and will be added to the project's Integrated Approach to Testing and Assessment (IATA).
Collapse
Affiliation(s)
- Anastasios G. Papadiamantis
- NovaMechanics Ltd., Nicosia 1065, Cyprus; (A.G.P.); (E.V.); (A.T.)
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (E.V.-J.); (I.L.)
| | - Jaak Jänes
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia; (J.J.); (L.S.); (J.B.); (P.B.)
| | | | - Lauri Sikk
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia; (J.J.); (L.S.); (J.B.); (P.B.)
| | - Jaanus Burk
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia; (J.J.); (L.S.); (J.B.); (P.B.)
| | - Peeter Burk
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia; (J.J.); (L.S.); (J.B.); (P.B.)
| | | | - My Kieu Ha
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (M.K.H.); (T.H.Y.)
| | - Tae Hyun Yoon
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (M.K.H.); (T.H.Y.)
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Korea
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (E.V.-J.); (I.L.)
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (E.V.-J.); (I.L.)
| | - Georgia Melagraki
- Division of Physical Sciences and Applications, Hellenic Military Academy, 16672 Vari, Greece;
| | - Kaido Tämm
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia; (J.J.); (L.S.); (J.B.); (P.B.)
| | | |
Collapse
|
123
|
Pink M, Verma N, Schmitz-Spanke S. Benchmark dose analyses of toxic endpoints in lung cells provide sensitivity and toxicity ranking across metal oxide nanoparticles and give insights into the mode of action. Toxicol Lett 2020; 331:218-226. [PMID: 32562635 DOI: 10.1016/j.toxlet.2020.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION The benchmark dose (BMD) is a dose that produces a predetermined change in the response rate of an adverse effect. This approach is increasingly utilized to analyze quantitative dose-response relationships. To proof this concept, statistical analysis was compared with the BMD approach in order to rank the sensitivity as well as the toxicity and to describe the mode of action. METHODS Bronchial (BEAS-2B) and alveolar epithelial cells (A549) were exposed to a wide concentration range (0.4-100 μg/mL) of five metal oxide nanoparticles (CeO2, CuO, TiO2, ZnO, ZrO2). Eight toxicity endpoints were determined representing integrity of lysosomal and cell membrane, oxidative stress level, glutathione based detoxification (glutathione S-transferase), oxidative metabolism (cytochrome P450), alteration of the mitochondrial membrane potential, alteration of phase II antioxidative enzyme (NAD(P)H:quinone oxidoreductase), and de novo DNA synthesis. RESULTS Based on the BMD calculated for the most sensitive test, the toxicity decreased in the following order: ZnO > CuO > TiO2>ZrO2>CeO2 in BEAS-2B. Both statistical evaluation methods revealed a higher sensitivity of BEAS-2B cells. The BMD-derived mode of action for CuO confirmed the existing hypotheses and provided insights into less known mechanisms. CONCLUSION The findings proofed that BMD analysis is an effective tool to evaluate different aspects of risk assessment.
Collapse
Affiliation(s)
- Mario Pink
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Henkestr. 9-11, 91054 Erlangen, Germany; Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Nisha Verma
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Henkestr. 9-11, 91054 Erlangen, Germany.
| | - Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Henkestr. 9-11, 91054 Erlangen, Germany.
| |
Collapse
|
124
|
Fan Y, Liu Y, Zhou Q, Du H, Zhao X, Ye F, Zhao H. Catalytic hairpin assembly indirectly covalent on Fe 3O 4@C nanoparticles with signal amplification for intracellular detection of miRNA. Talanta 2020; 223:121675. [PMID: 33303136 DOI: 10.1016/j.talanta.2020.121675] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022]
Abstract
Fluorescence resonance energy transfer, a promising method for in situ imaging of miRNA in living cells, has intrinsic limitation on sensitivity and selectivity. Herein, a fluorescent amplification strategy based on catalyzed hairpin assembly indirectly covalent on Fe3O4@C nanoparticles via short single-stranded DNA was investigated for cellular miRNA detection in living cells, integrating non-enzyme target-active releasing for amplifying the signal output, highly quenching efficiency of Fe3O4@C nanoparticles with low background, ssDNA assisted fluorescent group-fueled chain releasing from Fe3O4@C nanoparticles with enhanced fluorescence response. The designed platform exhibits highly sensitive in a wide linear concentration range of 0.450 pM-190 pM and is highly specific for miRNA-20a detection with the ability of discriminating one mistake base. Additionally, the CHA-Fe3O4@C was successfully applied in imaging visualization of miRNA-20a in the living cell. The strategy provides a promising bioassay approach for clinical research.
Collapse
Affiliation(s)
- Yaofang Fan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yanming Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Qihui Zhou
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Hao Du
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xueyang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Fei Ye
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
125
|
Nguyen MK, Moon JY, Lee YC. Microalgal ecotoxicity of nanoparticles: An updated review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110781. [PMID: 32497816 DOI: 10.1016/j.ecoenv.2020.110781] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, nanotechnology and its related industries are becoming a rapidly explosive industry that offers many benefits to human life. However, along with the increased production and use of nanoparticles (NPs), their presence in the environment creates a high risk of increasing toxic effects on aquatic organisms. Therefore, a large number of studies focusing on the toxicity of these NPs to the aquatic organisms are carried out which used algal species as a common biological model. In this review, the influences of the physio-chemical properties of NPs and the response mechanisms of the algae on the toxicity of the NPs were discussed focusing on the "assay" studies. Besides, the specific algal toxicities of each type of NPs along with the NP-induced changes in algal cells of these NPs are also assessed. Almost all commonly-used NPs exhibit algal toxicity. Although the algae have similarities in the symptoms under NP exposure, the sensitivity and variability of each algae species to the inherent properties of each NPs are quite different. They depend strongly on the concentration, size, characteristics of NPs, and biochemical nature of algae. Through the assessment, the review identifies several gaps that need to be further studied to make an explicit understanding. The findings in the majority of studies are mostly in laboratory conditions and there are still uncertainties and contradictory/inconsistent results about the behavioral effects of NPs under field conditions. Besides, there remains unsureness about NP-uptake pathways of microalgae. Finally, the toxicity mechanisms of NPs need to be thoughtfully understood which is essential in risk assessment.
Collapse
Affiliation(s)
- Minh Kim Nguyen
- Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| | - Ju-Young Moon
- Department of Beauty Design Management, Hansung University, 116 Samseongyoro-16 gil, Seoul, 02876, Republic of Korea.
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| |
Collapse
|
126
|
Liu L, Zhang M, Zhang Q, Jiang W. Graphene nanosheets damage the lysosomal and mitochondrial membranes and induce the apoptosis of RBL-2H3 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139229. [PMID: 32450398 DOI: 10.1016/j.scitotenv.2020.139229] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/27/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
The induced membrane damage is a key mechanism for the cytotoxicity of graphene nanosheets (GNSs). In this research, the physical interaction of GNSs on model membranes was investigated using artificial membranes and plasma membrane vesicles. The effects of the GNSs on plasma membrane, lysosomal and mitochondrial membranes were investigated using rat basophilic leukemia (RBL2H3) cells via lactate dehydrogenase (LDH) assay, acridine orange staining and JC-1 probe, respectively. The physical interaction with model membranes was dominated by electrostatic forces, and the adhered GNSs disrupted the membrane. The degree of physical membrane disruption was quantified by the quartz crystal microbalance with dissipation (QCM-D), confirming the serious membrane disruption. The internalized GNSs were mainly distributed in the lysosomes. They caused plasma membrane leakage, increased the lysosomal membrane permeability (LMP), and depolarized the mitochondrial membrane potential (MMP). The increased cellular levels of reactive oxygen species (ROS) were also detected after GNS exposure. The combination of physical interaction and the excess ROS production damaged the plasma and organelle membranes in living RBL-2H3 cells. The lysosomal and mitochondrial dysfunction, and the oxidative stress further induced cell apoptosis. Specially, the exposure to 25 mg/L GNSs caused severest cell mortality, plasma membrane damage, ROS generation, MMP depolarization and apoptosis. The research findings provide more comprehensive information on the graphene-induced plasma and organelle membrane damage, which is important to understand and predict the cytotoxicity of carbon-based nanomaterials.
Collapse
Affiliation(s)
- Ling Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Mengmeng Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Qiu Zhang
- School of Environmental Sciences and Engineering, Shandong University, Qingdao 266237, China
| | - Wei Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China; Shenzhen Research Institute, Shandong University, Shenzhen 518057, China.
| |
Collapse
|
127
|
No Observed Effect Level (NOEL) for Systemic Inflammation by Copper and Zinc in Welding Fumes. J Occup Environ Med 2020; 62:718-723. [PMID: 32890210 DOI: 10.1097/jom.0000000000001946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
: Copper and zinc containing welding fumes are able to induce systemic inflammation in healthy subjects. In this study the no observed effect levels (NOEL) for welding fumes containing either copper or zinc were assessed.Fifteen healthy male volunteers participated in an exposure. Each subject was exposed to two different concentrations of both, copper and zinc containing welding fumes. Exposure was performed in the Aachen Workplace Simulation Lab.The NOEL was found at metal concentrations between 0.2 and 0.3 mg/m for copper and between 0.8 and 1.2 mg/m for zinc.The NOEL identified in this study was about a factor of 10 higher than the German workplace threshold limit values (TLV). However, TLV in other countries was in the same range or even higher than the NOEL indicating a considerable risk for workers.
Collapse
|
128
|
Adeel M, Tingting J, Hussain T, He X, Ahmad MA, Irshad MK, Shakoor N, Zhang P, Changjian X, Hao Y, Zhiyong Z, Javed R, Rui Y. Bioaccumulation of ytterbium oxide nanoparticles insinuate oxidative stress, inflammatory, and pathological lesions in ICR mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:32944-32953. [PMID: 32524406 DOI: 10.1007/s11356-020-09565-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
With the rapid development in nanoscience and nanotechnology, rare earth oxide nanomaterials (REO-NMs) have been increasingly used due to their unique physical and chemical characteristics. Despite the increasing applications of REO NPs, scarce information is available on their detrimental effects. In the current study, we investigate the toxic effect of ytterbium oxide nanoparticles (Yb2O3 NPs) in mouse model by using various techniques including inductively coupled plasma mass spectrometry (ICP-MS) analysis over 30 days of exposure. Furthermore, we elucidated lung lavage fluid of mice for biochemical and cytological analysis, and lung tissues for histopathology to interpret the NP side effects. We observed a significant concentration of Yb2O3 NPs accumulated in the lung, liver, kidney, and heart tissues. Similarly, increased bioaccumulation of Yb content was found in the olfactory bulb compared to other reigns of brain. The cytological analysis of bronchoalveolar lavage fluid (BALF) revealed a significant elevation in the percentage of neutrophils and lymphocytes. Biochemical analysis showed an instilled Yb2O3 NPs, showing signs of oxidative damage through up-regulation of 60-87% of MDA while down-regulation of 20-40% of GSH-PX and GSH content. The toxicity pattern was more evident from histopathological observations. These interpretations provide enough evidence of bioaccumulation of Yb2O3 NPs in mice tissues. Overall, our findings reveal that acute exposure of Yb2O3 NPs through intranasal inhalation may cause toxicity via oxidative stress, which leads to a chronic inflammatory response. Graphical abstract Graphical illustrations of experimental findings.
Collapse
Affiliation(s)
- Muhammad Adeel
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Jin Tingting
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Tariq Hussain
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao He
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Muhammad Arslan Ahmad
- Key Lab of Eco-restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang, 110044, People's Republic of China
- Department of Tissue Engineering, China Medical University, Shenyang, 110122, People's Republic of China
| | - Muhammad Kashif Irshad
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Xie Changjian
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yi Hao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhang Zhiyong
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Rabia Javed
- Department of Tissue Engineering, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
129
|
Milosevic A, Romeo D, Wick P. Understanding Nanomaterial Biotransformation: An Unmet Challenge to Achieving Predictive Nanotoxicology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907650. [PMID: 32402142 DOI: 10.1002/smll.201907650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 06/11/2023]
Abstract
More than a decade has passed since the first concepts of predictive nanotoxicology were formulated. During this time, many advancements have been achieved in multiple disciplines, including the success stories of the fiber paradigm and the oxidative stress paradigm. However, important knowledge gaps are slowing down the development of predictive nanotoxicology and require a mutidisciplinary effort to be overcome. Among these gaps, understanding, reproducing, and modeling of nanomaterial biotransformation in biological environments is a central challenge, both in vitro and in silico. This dynamic and complex process is still a challenge for today's bioanalytics. This work explores and discusses selected approaches of the multidisciplinary efforts taken in the last decade and the challenges that remain unmet, in particular concerning nanomaterial biotransformation. It highlights some future advancements that, together, can help to understand such complex processes and accelerate the development of predictive nanotoxicology.
Collapse
Affiliation(s)
- Ana Milosevic
- Empa, Swiss Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Daina Romeo
- Empa, Swiss Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Peter Wick
- Empa, Swiss Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| |
Collapse
|
130
|
Cai X, Liu X, Jiang J, Gao M, Wang W, Zheng H, Xu S, Li R. Molecular Mechanisms, Characterization Methods, and Utilities of Nanoparticle Biotransformation in Nanosafety Assessments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907663. [PMID: 32406193 DOI: 10.1002/smll.201907663] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
It is a big challenge to reveal the intrinsic cause of a nanotoxic effect due to diverse branches of signaling pathways induced by engineered nanomaterials (ENMs). Biotransformation of toxic ENMs involving biochemical reactions between nanoparticles (NPs) and biological systems has recently attracted substantial attention as it is regarded as the upstream signal in nanotoxicology pathways, the molecular initiating event (MIE). Considering that different exposure routes of ENMs may lead to different interfaces for the arising of biotransformation, this work summarizes the nano-bio interfaces and dose calculation in inhalation, dermal, ingestion, and injection exposures to humans. Then, five types of biotransformation are shown, including aggregation and agglomeration, corona formation, decomposition, recrystallization, and redox reactions. Besides, the characterization methods for investigation of biotransformation as well as the safe design of ENMs to improve the sustainable development of nanotechnology are also discussed. Finally, future perspectives on the implications of biotransformation in clinical translation of nanomedicine and commercialization of nanoproducts are provided.
Collapse
Affiliation(s)
- Xiaoming Cai
- School of Public Health, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jun Jiang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Weili Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Shujuan Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
131
|
Liu X, Tang I, Wainberg ZA, Meng H. Safety Considerations of Cancer Nanomedicine-A Key Step toward Translation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000673. [PMID: 32406992 PMCID: PMC7486239 DOI: 10.1002/smll.202000673] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 05/15/2023]
Abstract
The rate of translational effort of nanomedicine requires strategic planning of nanosafety research in order to enable clinical trials and safe use of nanomedicine in patients. Herein, the experiences that have emerged based on the safety data of classic liposomal formulations in the space of oncology are discussed, along with a description of the new challenges that need to be addressed according to the rapid expansion of nanomedicine platform beyond liposomes. It is valuable to consider the combined use of predictive toxicological assessment supported by deliberate investigation on aspects such as absorption, distribution, metabolism, and excretion (ADME) and toxicokinetic profiles, the risk that may be introduced during nanomanufacture, unique nanomaterials properties, and nonobvious nanosafety endpoints, for example. These efforts will allow the generation of investigational new drug-enabling safety data that can be incorporated into a rational infrastructure for regulatory decision-making. Since the safety assessment relates to nanomaterials, the investigation should cover the important physicochemical properties of the material that may lead to hazards when the nanomedicine product is utilized in humans.
Collapse
Affiliation(s)
- Xiangsheng Liu
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, 90095 CA, USA
| | - Ivanna Tang
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Zev A. Wainberg
- Division of Hematology Oncology, Department of Medicine, University of California, Los Angeles, 90095 CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 90095 CA, USA
| | - Huan Meng
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, 90095 CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 90095 CA, USA
| |
Collapse
|
132
|
Abstract
Nanoparticles from natural and anthropogenic sources are abundant in the environment, thus human exposure to nanoparticles is inevitable. Due to this constant exposure, it is critically important to understand the potential acute and chronic adverse effects that nanoparticles may cause to humans. In this review, we explore and highlight the current state of nanotoxicology research with a focus on mechanistic understanding of nanoparticle toxicity at organ, tissue, cell, and biomolecular levels. We discuss nanotoxicity mechanisms, including generation of reactive oxygen species, nanoparticle disintegration, modulation of cell signaling pathways, protein corona formation, and poly(ethylene glycol)-mediated immunogenicity. We conclude with a perspective on potential approaches to advance current understanding of nanoparticle toxicity. Such improved understanding may lead to mitigation strategies that could enable safe application of nanoparticles in humans. Advances in nanotoxicity research will ultimately inform efforts to establish standardized regulatory frameworks with the goal of fully exploiting the potential of nanotechnology while minimizing harm to humans.
Collapse
Affiliation(s)
- Wen Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA;
| | - Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA;
| | - Evan M Mettenbrink
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA;
| | - Paul L DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA; .,Institute for Biomedical Engineering, Science, and Technology (IBEST), Norman, Oklahoma 73019, USA.,Stephenson Cancer Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
133
|
Bi X, Zeng C, Westerhoff P. Adsorption of Arsenic Ions Transforms Surface Reactivity of Engineered Cerium Oxide Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9437-9444. [PMID: 32639147 DOI: 10.1021/acs.est.0c02781] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cerium oxide (CeO2) nanoparticles (NPs) are massively used as abrasives in the chemical and mechanical polishing (CMP), an essential process to manufacture semiconductor wafers. The CMP process for arsenide-based semiconductor materials produces wastewater with co-occurring arsenic (As) ions and CeO2 NPs. We found that CeO2 NPs adsorbed both arsenite (As(III)) and arsenate (As(V)) ions and the adsorption isotherms suggested different adsorption energies and capacities of the two species. Applying the ferric reducing ability for nanoparticle assay, we revealed that the adsorbed As(III) and As(V) each reduced CeO2 NP surface reactivity but followed different mechanisms. The adsorbed As(III) ions below a critical coverage (110 mmol/kg) increased occupation of Ce 4f orbitals and thus reduced electron mobility of the original CeO2 NPs. The adsorbed As(V) ions withdrew electrons from Ce 4f orbitals and likely became oxidizing agents that greatly inhibited the original surface reducing ability. Electron paramagnetic resonance analysis further revealed that adsorbed As(III) and As(V) ions decreased the propensity of CeO2 NPs to produce reactive oxygen species. This work highlights the importance of examining NPs in their post-use phases in which surface reactivity and hazard potential can be greatly altered by chemical exposure history and NP surface transformations.
Collapse
Affiliation(s)
- Xiangyu Bi
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Chao Zeng
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
134
|
Li M, Xu G, Yang X, Zeng Y, Yu Y. Metal oxide nanoparticles facilitate the accumulation of bifenthrin in earthworms by causing damage to body cavity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114629. [PMID: 33618460 DOI: 10.1016/j.envpol.2020.114629] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 06/12/2023]
Abstract
In this study, we explored the influence of two metal oxide nanoparticles, nano CuO and nano ZnO (10, 50, 250 mg/kg), on accumulation of bifenthrin (100 μg/kg) in earthworms (Eisenia fetida) and its mechanism. The concentrations of bifenthrin in earthworms from binary exposure groups (bifenthrin + CuO and bifenthrin + ZnO) reached up to 23.2 and 28.9 μg/g, which were 2.65 and 3.32 times of that in bifenthrin exposure group without nanoparticles, respectively, indicating that nanoparticles facilitated the uptake of bifenthrin in earthworms. The contents of biomarkers (ROS, SOD, and MDA) in earthworms indicated that nanoparticles and bifenthrin caused damage to earthworms. Ex vivo test was utilized to investigate the toxic effects of the pollutants to cell membrane of earthworm coelomocytes and mechanism of increased bifenthrin accumulation. In ex vivo test, cell viability in binary exposure groups declined up to 30% and 21% compared to the control group after 24 h incubation, suggesting that coelomocyte membrane was injured by the pollutants. We conclude that nanoparticles damage the body cavity of earthworms, and thus lead to more accumulation of bifenthrin in earthworms. Our findings provide insights into the interactive accumulation and toxicity of nanoparticles and pesticides to soil organisms.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiutao Yang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Zeng
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| |
Collapse
|
135
|
Andraos C, Yu IJ, Gulumian M. Interference: A Much-Neglected Aspect in High-Throughput Screening of Nanoparticles. Int J Toxicol 2020; 39:397-421. [PMID: 32672081 DOI: 10.1177/1091581820938335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Despite several studies addressing nanoparticle (NP) interference with conventional toxicity assay systems, it appears that researchers still rely heavily on these assays, particularly for high-throughput screening (HTS) applications in order to generate "big" data for predictive toxicity approaches. Moreover, researchers often overlook investigating the different types of interference mechanisms as the type is evidently dependent on the type of assay system implemented. The approaches implemented in the literature appear to be not adequate as it often addresses only one type of interference mechanism with the exclusion of others. For example, interference of NPs that have entered cells would require intracellular assessment of their interference with fluorescent dyes, which has so far been neglected. The present study investigated the mechanisms of interference of gold NPs and silver NPs in assay systems implemented in HTS including optical interference as well as adsorption or catalysis. The conventional assays selected cover all optical read-out systems, that is, absorbance (XTT toxicity assay), fluorescence (CytoTox-ONE Homogeneous membrane integrity assay), and luminescence (CellTiter Glo luminescent assay). Furthermore, this study demonstrated NP quenching of fluorescent dyes also used in HTS (2',7'-dichlorofluorescein, propidium iodide, and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzamidazolocarbocyanin iodide). To conclude, NP interference is, as such, not a novel concept, however, ignoring this aspect in HTS may jeopardize attempts in predictive toxicology. It should be mandatory to report the assessment of all mechanisms of interference within HTS, as well as to confirm results with label-free methodologies to ensure reliable big data generation for predictive toxicology.
Collapse
Affiliation(s)
- Charlene Andraos
- Toxicology Department, 71899National Institute for Occupational Health, Johannesburg, South Africa
| | - Il Je Yu
- HCTm CO, LTD, Majang-myeon, Icheon, South Korea
| | - Mary Gulumian
- Toxicology Department, 71899National Institute for Occupational Health, Johannesburg, South Africa.,Haematology and Molecular Medicine Department, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
136
|
Gao L, Zhang Y, Zhao L, Niu W, Tang Y, Gao F, Cai P, Yuan Q, Wang X, Jiang H, Gao X. An artificial metalloenzyme for catalytic cancer-specific DNA cleavage and operando imaging. SCIENCE ADVANCES 2020; 6:eabb1421. [PMID: 32832637 PMCID: PMC7439319 DOI: 10.1126/sciadv.abb1421] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/29/2020] [Indexed: 05/13/2023]
Abstract
Metalloenzymes are promising anticancer candidates to overcome chemoresistance by involving unique mechanisms. To date, it is still a great challenge to obtain synthetic metalloenzymes with persistent catalytic performance for cancer-specific DNA cleavage and operando imaging. Here, an artificial metalloenzyme, copper cluster firmly anchored in bovine serum albumin conjugated with tumor-targeting peptide, is exquisitely constructed. It is capable of persistently transforming hydrogen peroxide in tumor microenvironment to hydroxyl radical and oxygen in a catalytic manner. The stable catalysis recycling stems from the electron transfer between copper cluster and substrate with well-matched energy levels. Notably, their high biocompatibility, tumor-specific recognition, and persistent catalytic performance ensure the substantial anticancer efficacy by triggering DNA damage. Meanwhile, by coupling with enzyme-like reactions, the operando therapy effect is expediently traced by chemiluminescence signal with high sensitivity and sustainability. It provides new insights into synthesizing biocompatible metalloenzymes on demand to visually monitor and efficiently combat specific cancers.
Collapse
Affiliation(s)
- Liang Gao
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Ya Zhang
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Lina Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Corresponding author. (X. G.); (L. Z.)
| | - Wenchao Niu
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yuhua Tang
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Fuping Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Pengju Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Yuan
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiayan Wang
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Huaidong Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xueyun Gao
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
- Corresponding author. (X. G.); (L. Z.)
| |
Collapse
|
137
|
Zielińska A, Costa B, Ferreira MV, Miguéis D, Louros JMS, Durazzo A, Lucarini M, Eder P, V. Chaud M, Morsink M, Willemen N, Severino P, Santini A, Souto EB. Nanotoxicology and Nanosafety: Safety-By-Design and Testing at a Glance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4657. [PMID: 32605255 PMCID: PMC7369733 DOI: 10.3390/ijerph17134657] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 01/01/2023]
Abstract
This review offers a systematic discussion about nanotoxicology and nanosafety associated with nanomaterials during manufacture and further biomedical applications. A detailed introduction on nanomaterials and their most frequently uses, followed by the critical risk aspects related to regulatory uses and commercialization, is provided. Moreover, the impact of nanotoxicology in research over the last decades is discussed, together with the currently available toxicological methods in cell cultures (in vitro) and in living organisms (in vivo). A special focus is given to inorganic nanoparticles such as titanium dioxide nanoparticles (TiO2NPs) and silver nanoparticles (AgNPs). In vitro and in vivo case studies for the selected nanoparticles are discussed. The final part of this work describes the significance of nano-security for both risk assessment and environmental nanosafety. "Safety-by-Design" is defined as a starting point consisting on the implementation of the principles of drug discovery and development. The concept "Safety-by-Design" appears to be a way to "ensure safety", but the superficiality and the lack of articulation with which it is treated still raises many doubts. Although the approach of "Safety-by-Design" to the principles of drug development has helped in the assessment of the toxicity of nanomaterials, a combination of scientific efforts is constantly urgent to ensure the consistency of methods and processes. This will ensure that the quality of nanomaterials is controlled and their safe development is promoted. Safety issues are considered strategies for discovering novel toxicological-related mechanisms still needed to be promoted.
Collapse
Affiliation(s)
- Aleksandra Zielińska
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (B.C.); (M.V.F.); (D.M.); (J.M.S.L.)
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Beatriz Costa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (B.C.); (M.V.F.); (D.M.); (J.M.S.L.)
| | - Maria V. Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (B.C.); (M.V.F.); (D.M.); (J.M.S.L.)
| | - Diogo Miguéis
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (B.C.); (M.V.F.); (D.M.); (J.M.S.L.)
| | - Jéssica M. S. Louros
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (B.C.); (M.V.F.); (D.M.); (J.M.S.L.)
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland;
| | - Marco V. Chaud
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba—UNISO, Sorocaba 18023-000, Brazil;
| | - Margreet Morsink
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women& Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA; (M.M.); (N.W.); (P.S.)
- Translational Liver Research, Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522 NB Enschede, The Netherlands
| | - Niels Willemen
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women& Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA; (M.M.); (N.W.); (P.S.)
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522 NB Enschede, The Netherlands
| | - Patrícia Severino
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women& Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA; (M.M.); (N.W.); (P.S.)
- Nanomedicine and Nanotechnology Laboratory (LNMed), Institute of Technology and Research (ITP), University of Tiradentes (Unit), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (B.C.); (M.V.F.); (D.M.); (J.M.S.L.)
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
138
|
Luo X, Zhang J, Wu YP, Yang X, Kuang XP, Li WX, Li YF, He RR, Liu M. Multifunctional HNT@Fe 3O 4@PPy@DOX Nanoplatform for Effective Chemo-Photothermal Combination Therapy of Breast Cancer with MR Imaging. ACS Biomater Sci Eng 2020; 6:3361-3374. [PMID: 33463181 DOI: 10.1021/acsbiomaterials.9b01709] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multifunctional nanoparticles for imaging and treatment in cancer are getting more and more attention recently. Herein, halloysite nanotubes (HNTs), natural clay nanotubes, are designed as multifunctional nanoplatform for targeted delivering photothermal therapy agents and chemotherapeutic drugs. Fe3O4 was anchored on the outer surfaces of HNTs and then doxorubicin (DOX) was loaded on the nanotubes. Afterward, a layer of polypyrrole (PPy), as photothermal agent, was wrapped on the tubes. The nanoplatform of HNT@Fe3O4@PPy@DOX can be guided to tumor tissue by an external magnetic field, and then performs chemo-photothermal combined therapy by 808 nm laser irradiation. HNT@Fe3O4@PPy@DOX shows the ability of T2-weighted magnetic resonance imaging, which could be considered as a promising application in magnetic targeting tumor therapy. In vitro and in vivo experiments demonstrate that HNTs nanoplatform has good biocompatibility and produces a strong antitumor effect trigged by near-infrared laser irradiation. The novel chemo-photothermal therapy nanoplatform based on HNTs may be developed as a multifunctional nanoparticle for imaging and therapy in breast cancer.
Collapse
Affiliation(s)
- Xiang Luo
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jun Zhang
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yan-Ping Wu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiaohan Yang
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xiu-Ping Kuang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.,Yunnan University of Traditional Chinese Medicine, Kunming 650550, China
| | - Wei-Xi Li
- Yunnan University of Traditional Chinese Medicine, Kunming 650550, China
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Mingxian Liu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
139
|
Graham UM, Dozier AK, Oberdörster G, Yokel RA, Molina R, Brain JD, Pinto JM, Weuve J, Bennett DA. Tissue Specific Fate of Nanomaterials by Advanced Analytical Imaging Techniques - A Review. Chem Res Toxicol 2020; 33:1145-1162. [PMID: 32349469 PMCID: PMC7774012 DOI: 10.1021/acs.chemrestox.0c00072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A variety of imaging and analytical methods have been developed to study nanoparticles in cells. Each has its benefits, limitations, and varying degrees of expense and difficulties in implementation. High-resolution analytical scanning transmission electron microscopy (HRSTEM) has the unique ability to image local cellular environments adjacent to a nanoparticle at near atomic resolution and apply analytical tools to these environments such as energy dispersive spectroscopy and electron energy loss spectroscopy. These tools can be used to analyze particle location, translocation and potential reformation, ion dispersion, and in vivo synthesis of second-generation nanoparticles. Such analyses can provide in depth understanding of tissue-particle interactions and effects that are caused by the environmental "invader" nanoparticles. Analytical imaging can also distinguish phases that form due to the transformation of "invader" nanoparticles in contrast to those that are triggered by a response mechanism, including the commonly observed iron biomineralization in the form of ferritin nanoparticles. The analyses can distinguish ion species, crystal phases, and valence of parent nanoparticles and reformed or in vivo synthesized phases throughout the tissue. This article will briefly review the plethora of methods that have been developed over the last 20 years with an emphasis on the state-of-the-art techniques used to image and analyze nanoparticles in cells and highlight the sample preparation necessary for biological thin section observation in a HRSTEM. Specific applications that provide visual and chemical mapping of the local cellular environments surrounding parent nanoparticles and second-generation phases are demonstrated, which will help to identify novel nanoparticle-produced adverse effects and their associated mechanisms.
Collapse
Affiliation(s)
- Uschi M Graham
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, 5555 Ridge Avenue, Cincinnati, Ohio 45213, United States
- Pharmaceutical Sciences, University of Kentucky, 789 South Limestone, Lexington, Kentucky 40506, United States
| | - Alan K Dozier
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, 5555 Ridge Avenue, Cincinnati, Ohio 45213, United States
| | - Günter Oberdörster
- School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York 14642, United States
| | - Robert A Yokel
- Pharmaceutical Sciences, University of Kentucky, 789 South Limestone, Lexington, Kentucky 40506, United States
| | - Ramon Molina
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Joseph D Brain
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Jayant M Pinto
- Department of Surgery, The University of Chicago Medicine, 5841 S. Maryland Avenue, Chicago, Illinois 60637, United States
| | - Jennifer Weuve
- School of Public Health, Department of Epidemiology, Boston University, 715 Albany Street, The Talbot Building, T3E & T4E, Boston, Massachusetts 02118, United States
| | - David A Bennett
- Department of Neurological Sciences, Rush University Medical Center, 1725 W. Harrison Street, Suite 1118, Chicago, Illinois 60612, United States
| |
Collapse
|
140
|
Abstract
The remarkable advances coming about through nanotechnology promise to revolutionize many aspects of modern life; however, these advances come with a responsibility for due diligence to ensure that they are not accompanied by adverse consequences for human health or the environment. Many novel nanomaterials (having at least one dimension <100 nm) could be highly mobile if released into the environment and are also very reactive, which has raised concerns for potential adverse impacts including, among others, the potential for neurotoxicity. Several lines of evidence led to concerns for neurotoxicity, but perhaps none more than observations that inhaled nanoparticles impinging on the mucosal surface of the nasal epithelium could be internalized into olfactory receptor neurons and transported by axoplasmic transport into the olfactory bulbs without crossing the blood-brain barrier. From the olfactory bulb, there is concern that nanomaterials may be transported deeper into the brain and affect other brain structures. Of course, people will not be exposed to only engineered nanomaterials, but rather such exposures will occur in a complex mixture of environmental materials, some of which are incidentally generated particles of a similar inhalable size range to engineered nanomaterials. To date, most experimental studies of potential neurotoxicity of nanomaterials have not considered the potential exposure sources and pathways that could lead to exposure, and most studies of nanomaterial exposure have not considered potential neurotoxicity. Here, we present a review of potential sources of exposures to nanoparticles, along with a review of the literature on potential neurotoxicity of nanomaterials. We employ the linked concepts of an aggregate exposure pathway (AEP) and an adverse outcome pathway (AOP) to organize and present the material. The AEP includes a sequence of key events progressing from material sources, release to environmental media, external exposure, internal exposure, and distribution to the target site. The AOP begins with toxicant at the target site causing a molecular initiating event and, like the AEP, progress sequentially to actions at the level of the cell, organ, individual, and population. Reports of nanomaterial actions are described at every key event along the AEP and AOP, except for changes in exposed populations that have not yet been observed. At this last stage, however, there is ample evidence of population level effects from exposure to ambient air particles that may act similarly to engineered nanomaterials. The data give an overall impression that current exposure levels may be considerably lower than those reported experimentally to be neurotoxic. This impression, however, is tempered by the absence of long-term exposure studies with realistic routes and levels of exposure to address concerns for chronic accumulation of materials or damage. Further, missing across the board are "key event relationships", which are quantitative expressions linking the key events of either the AEP or the AOP, making it impossible to quantitatively project the likelihood of adverse neurotoxic effects from exposure to nanomaterials or to estimate margins of exposure for such relationships.
Collapse
Affiliation(s)
- William K. Boyes
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC USA 27711
| | - Christoph van Thriel
- Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| |
Collapse
|
141
|
Yuan L, Li Q, Bai D, Shang X, Hu F, Chen Z, An T, Chen Y, Zhang X. La 2O 3 Nanoparticles Induce Reproductive Toxicity Mediated by the Nrf-2/ARE Signaling Pathway in Kunming Mice. Int J Nanomedicine 2020; 15:3415-3431. [PMID: 32523341 PMCID: PMC7236057 DOI: 10.2147/ijn.s230949] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Lanthanum oxide (La2O3) nanoparticles (NPs) have been widely used in catalytic and photoelectric applications, but the reproductive toxicity is still unclear. This study evaluated the reproductive toxicity of two different-sized La2O3 particles in the testes. Materials and Methods Fifty Kunming mice were randomly divided into five groups. Mice were treated with La2O3 NPs by repeated intragastric administration for 90 days (control, nano-sized with 5, 10, 50 mg/kg BW and micro-sized with 50 mg/kg BW). Mice in the control group were treated with de-ionised water without La2O3 NPs. Sperm parameters, testicular histopathology, TEM assessment, hormone assay and nuclear factor erythroid 2-related factor 2 (Nrf-2) pathway were performed and evaluated. Results The body weight of mice treated with La2O3 NPs or not had no difference; sperm parameters and histological assessment showed that La2O3 NPs could induce reproductive toxicity in the testicle. Serum testosterone and gonadotropin-releasing hormone (GnRH) in the NH (nano-sized with 50 mg/kg BW) group were markedly decreased relative to control group, and an increase of luteinizing hormone (LH) in NH group was detected . Additionally, transmission electron microscopy revealed that the ultrastructural abnormalities induced by La2O3 NPs were more severe than La2O3 MPs in the testes. Furthermore, La2O3 NPs treatment inhibited the translocation of nuclear factor erythroid 2-related factor 2 (Nrf-2) from the cytoplasm into the nucleus as well as the expression of downstream genes NAD(P)H quinone oxidoreductase1 (NQO1), hemeoxygenase 1 (HO-1) and (glutathione peroxidase) GSH-Px, thus abrogating Nrf-2-mediated defense mechanisms against oxidative stress. Conclusions The results of this study demonstrated that La2O3 NPs improved the spermatogenesis defects in mice. La2O3 NPs inhibited Nrf-2/ARE signaling pathway that resulted in apoptosis in the mice testes.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenfei Chen
- Environmental Monitoring Center Tang Shan, Tangshan 063210, Hebei, People's Republic of China
| | | | - Yajing Chen
- College of Pharmacy of North China University of Science and Technology, Tangshan 063210, Hebei, People's Republic of China
| | | |
Collapse
|
142
|
Peijnenburg WJGM, Ruggiero E, Boyles M, Murphy F, Stone V, Elam DA, Werle K, Wohlleben W. A Method to Assess the Relevance of Nanomaterial Dissolution During Reactivity Testing. MATERIALS 2020; 13:ma13102235. [PMID: 32414026 PMCID: PMC7288060 DOI: 10.3390/ma13102235] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/27/2020] [Accepted: 05/07/2020] [Indexed: 11/16/2022]
Abstract
The reactivity of particle surfaces can be used as a criterion to group nanoforms (NFs) based on similar potential hazard. Since NFs may partially or completely dissolve over the duration of the assays, with the ions themselves inducing a response, reactivity assays commonly measure the additive reactivity of the particles and ions combined. Here, we determine the concentration of ions released over the course of particle testing, and determine the relative contributions of the released ions to the total reactivity measured. We differentiate three classes of reactivity, defined as being (A) dominated by particles, (B) additive of particles and ions, or (C) dominated by ions. We provide examples for each class by analyzing the NF reactivity of Fe2O3, ZnO, CuO, Ag using the ferric reduction ability of serum (FRAS) assay. Furthermore, another two reactivity tests were performed: Dichlorodihydrofluorescin diacetate (DCFH2-DA) assay and electron paramagnetic resonance (EPR) spectroscopy. We compare assays and demonstrate that the dose-response may be almost entirely assigned to ions in one assay (CuO in DCFH2-DA), but to particles in others (CuO in EPR and FRAS). When considering this data, we conclude that one cannot specify the contribution of ions to NF toxicity for a certain NF, but only for a certain NF in a specific assay, medium and dose. The extent of dissolution depends on the buffer used, particle concentration applied, and duration of exposure. This culminates in the DCFH2-DA, EPR, FRAS assays being performed under different ion-to-particle ratios, and differing in their sensitivity towards reactions induced by either ions or particles. If applied for grouping, read-across, or other concepts based on the similarity of partially soluble NFs, results on reactivity should only be compared if measured by the same assay, incubation time, and dose range.
Collapse
Affiliation(s)
- Willie J. G. M. Peijnenburg
- National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, 3721 MA Bilthoven, The Netherlands;
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden, The Netherlands
| | - Emmanuel Ruggiero
- Department of Material Physics & Analytics & Formulation, BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany; (E.R.); (D.A.E.); (K.W.)
| | - Matthew Boyles
- Institute of Occupational Medicine (IOM), Research Avenue North, Heriot-Watt University, Midlothian, Edinburgh EH14 4AP, UK;
| | - Fiona Murphy
- Nano Safety Research Group, Heriot-Watt University, Edinburgh EH14 4AS, UK; (F.M.); (V.S.)
| | - Vicki Stone
- Nano Safety Research Group, Heriot-Watt University, Edinburgh EH14 4AS, UK; (F.M.); (V.S.)
| | - Derek A. Elam
- Department of Material Physics & Analytics & Formulation, BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany; (E.R.); (D.A.E.); (K.W.)
| | - Kai Werle
- Department of Material Physics & Analytics & Formulation, BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany; (E.R.); (D.A.E.); (K.W.)
| | - Wendel Wohlleben
- Department of Material Physics & Analytics & Formulation, BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany; (E.R.); (D.A.E.); (K.W.)
- Correspondence:
| |
Collapse
|
143
|
Yan Y, Wang G, Huang J, Zhang Y, Cheng X, Chuai M, Brand-Saberi B, Chen G, Jiang X, Yang X. Zinc oxide nanoparticles exposure-induced oxidative stress restricts cranial neural crest development during chicken embryogenesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110415. [PMID: 32151871 DOI: 10.1016/j.ecoenv.2020.110415] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/31/2020] [Accepted: 03/01/2020] [Indexed: 05/17/2023]
Abstract
Zinc oxide Nanoparticles (ZnO NPs) are widely used as emerging materials in agricultural and food-related fields, which exists potential safety hazards to public health and environment while bringing an added level of convenience to our original life. It has been proved that ZnO NPs could be taken up by pregnant women and passed through human placental barrier. However, the toxic potential for embryo development remains largely unanswered. In this study, we discovered that ZnO NPs caused the cytotoxicity in vitro. Inhibition of free Zn2+ ions in solution by EDTA or inhibition of Zn2+ ions absorption by CaCl2 could partially eliminate ZnO NPs-mediated cell toxicity, though not redeem completely. This indicated that both nanoparticles and the release of Zn2+ ions were involved in ZnO NPs-mediated cytotoxicity. In addition, we also found that both nanoparticles and Zn2+ ion release triggered reactive oxygen species (ROS) production, which further induced cell toxicity, inflammation and apoptosis, which are mediated by NF-κB signaling cascades and the mitochondria dysfunction, respectively. Eventually, these events lead to the suppressed production and migration of cranial neural crest cells (CNCCs), which subsequently prompts the craniofacial defects in chicken embryos. The application of the antioxidant N-Acetyl-L-cysteine (NAC) rescued the ZnO NPs-induced cell toxicity and malformation of the CNCCs, which further verified our hypothesis. Our results revealed the relevant mechanism of ZnO NPs exposure-inhibited the development of CNCCs, which absolutely contribute to assess the risk of nanoparticles application.
Collapse
Affiliation(s)
- Yu Yan
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China
| | - Guang Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China
| | - Ju Huang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China
| | - Yan Zhang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China
| | - Xin Cheng
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China
| | - Manli Chuai
- Division of Cell and Developmental Biology, University of Dundee, Dundee, DD1 5EH, UK
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | - Guobing Chen
- Division of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaohua Jiang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Xuesong Yang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
144
|
Yadav S, Singh M, Singh SN, Kumar B. Tanshinone IIA pretreatment promotes cell survival in human lung epithelial cells under hypoxia via AP-1-Nrf2 transcription factor. Cell Stress Chaperones 2020; 25:427-440. [PMID: 32144684 PMCID: PMC7193010 DOI: 10.1007/s12192-020-01083-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 12/27/2022] Open
Abstract
Activator protein-1 (AP-1) plays a decisive role in cell proliferation, apoptosis, and inflammation under hypoxia; thus, AP-1 subunits or dimers could be modulated for a desired phenomenon in a cell using a suitable compound of therapeutic potential. Herein, we used Tanshinone-IIA as an AP-1 (subunits) modulator, and the purpose of the study was to investigate the signaling mechanism exhibited by Tan-IIA in facilitating tolerance to hypoxia. A549 cells were pretreated with Tan-IIA and exposed to hypoxia for 6, 12, 24, and 48 h. Biochemical and molecular parameters were assessed in order to trace the signaling pathway. Tan-IIA attenuated hypoxia-induced oxidative stress by modulating the expression of AP-1 subunits (via. MAPK) and Nrf2 transcription factor, which in turn were responsible for maintaining the higher levels of antioxidant enzymes and genes (HO). Tan-IIA increased the cell survival. This could be attributed to an increased NO level via iNOS gene and activated JNK, ERK pathway that induced c-jun/c-fos, c-jun/fosB, junD/c-fos, and junD/fosB heterodimers. This in turn leads to the cell cycle progression by activating cyclins (D and B). This was further confirmed by the lower levels of p53 and their downstream genes (p16, p21, p27). In addition, Tan-IIA decreased pro-inflammatory cytokine levels by inhibiting the formation of junB/fra-1 heterodimer regulated by p38. Tan-IIA increased cell survival to hypoxia by maintaining the higher levels of cellular iNOS, HO-1, jun-D, c-jun, fos B via Nrf2-AP-1.
Collapse
Affiliation(s)
- Seema Yadav
- Experimental Biology Division, Defence Institute of Physiology and Allied Science, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110 054, India
| | - Mrinalini Singh
- Experimental Biology Division, Defence Institute of Physiology and Allied Science, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110 054, India.
| | - Som Nath Singh
- Experimental Biology Division, Defence Institute of Physiology and Allied Science, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110 054, India
| | - Bhuvnesh Kumar
- Experimental Biology Division, Defence Institute of Physiology and Allied Science, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110 054, India
| |
Collapse
|
145
|
Interfacing DNA with nanoparticles: Surface science and its applications in biosensing. Int J Biol Macromol 2020; 151:757-780. [DOI: 10.1016/j.ijbiomac.2020.02.217] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022]
|
146
|
Feng Y, Chang Y, Xu K, Zheng R, Wu X, Cheng Y, Zhang H. Safety-by-Design of Metal Oxide Nanoparticles Based on the Regulation of their Energy Edges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907643. [PMID: 32187839 DOI: 10.1002/smll.201907643] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
The safety of metal oxide (MOx) nanoparticles (NPs) has been highly concerned because of their wide application and potential toxicological injury. The safe-by-design strategy is usually developed to make safer MOx NPs based on regulation of their physicochemical properties. In the present study, manganese oxide (Mn3 O4 ) NPs, as a representative of insoluble toxic MOx NPs, are doped with a series of transition metal to regulate their conduction band energy (Ec ) out of biological redox potential range (BRPR) or Fermi energy (Ef ) far away from valence band energy (Ev ), aiming at completely eliminating the toxicity or significantly reducing the toxicity. It is found that all these M-doping cannot move Ec of Mn3 O4 NPs out of the BRPR but zinc (Zn)-, copper (Cu)-, and chromium (Cr)-doping do move Ef far away from Ev , where Zn-doping results in the largest |Ef - Ev | value. Various abiotic, in vitro and in vivo assessments reveal that Zn-, Cu-, and Cr-doped Mn3 O4 NPs can generate lower amount of •OH and trigger weaker injury than Mn3 O4 NPs, where Zn-doped Mn3 O4 NPs show the lowest toxicity. Regulating Ef far away from Ev becomes a feasible safe-by-design approach to achieve safe MOx NPs.
Collapse
Affiliation(s)
- Yanlin Feng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yun Chang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Keqiang Xu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Runxiao Zheng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaqing Wu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yan Cheng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
147
|
Gray EP, Browning CL, Vaslet CA, Gion KD, Green A, Liu M, Kane AB, Hurt RH. Chemical and Colloidal Dynamics of MnO 2 Nanosheets in Biological Media Relevant for Nanosafety Assessment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000303. [PMID: 32191401 PMCID: PMC7461694 DOI: 10.1002/smll.202000303] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/22/2020] [Indexed: 05/15/2023]
Abstract
Many layered crystal phases can be exfoliated or assembled into ultrathin 2D nanosheets with novel properties not achievable by particulate or fibrous nanoforms. Among these 2D materials are manganese dioxide (MnO2 ) nanosheets, which have applications in batteries, catalysts, and biomedical probes. A novel feature of MnO2 is its sensitivity to chemical reduction leading to dissolution and Mn2+ release. Biodissolution is critical for nanosafety assessment of 2D materials, but the timing and location of MnO2 biodissolution in environmental or occupational exposure scenarios are poorly understood. This work investigates the chemical and colloidal dynamics of MnO2 nanosheets in biological media for environmental and human health risk assessment. MnO2 nanosheets are insoluble in most aqueous phases, but react with strong and weak reducing agents in biological fluid environments. In vitro, reductive dissolution can be slow enough in cell culture media for MnO2 internalization by cells in the form of intact nanosheets, which localize in vacuoles, react to deplete intracellular glutathione, and induce cytotoxicity that is likely mediated by intracellular Mn2+ release. The results are used to classify MnO2 nanosheets within a new hazard screening framework for 2D materials, and the implications of MnO2 transformations for nanotoxicity testing and nanosafety assessment are discussed.
Collapse
Affiliation(s)
- Evan P Gray
- The Department of Civil Environmental and Construction Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Cynthia L Browning
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Charles A Vaslet
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Kyle D Gion
- The School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Allen Green
- The School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Muchun Liu
- The School of Engineering, Brown University, Providence, RI, 02912, USA
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Agnes B Kane
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Robert H Hurt
- The School of Engineering, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
148
|
Varsou DD, Afantitis A, Tsoumanis A, Papadiamantis A, Valsami-Jones E, Lynch I, Melagraki G. Zeta-Potential Read-Across Model Utilizing Nanodescriptors Extracted via the NanoXtract Image Analysis Tool Available on the Enalos Nanoinformatics Cloud Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906588. [PMID: 32174008 DOI: 10.1002/smll.201906588] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Zeta potential is one of the most critical properties of nanomaterials (NMs) which provides an estimation of the surface charge, and therefore electrostatic stability in medium and, in practical terms, influences the NM's tendency to form agglomerates and to interact with cellular membranes. This paper describes a robust and accurate read-across model to predict NM zeta potential utilizing as the input data a set of image descriptors derived from transmission electron microscopy (TEM) images of the NMs. The image descriptors are calculated using NanoXtract (http://enaloscloud.novamechanics.com/EnalosWebApps/NanoXtract/), a unique online tool that generates 18 image descriptors from the TEM images, which can then be explored by modeling to identify those most predictive of NM behavior and biological effects. NM TEM images are used to develop a model for prediction of zeta potential based on grouping of the NMs according to their nearest neighbors. The model provides interesting insights regarding the most important similarity features between NMs-in addition to core composition the main elongation emerged, which links to key drivers of NM toxicity such as aspect ratio. Both the NanoXtract image analysis tool and the validated model for zeta potential (http://enaloscloud.novamechanics.com/EnalosWebApps/ZetaPotential/) are freely available online through the Enalos Nanoinformatics platform.
Collapse
Affiliation(s)
- Dimitra-Danai Varsou
- Nanoinformatics Department, NovaMechanics Ltd., Nicosia, 1065, Cyprus
- School of Chemical Engineering, National Technical University of Athens, Athens, 15780, Greece
| | - Antreas Afantitis
- Nanoinformatics Department, NovaMechanics Ltd., Nicosia, 1065, Cyprus
| | - Andreas Tsoumanis
- Nanoinformatics Department, NovaMechanics Ltd., Nicosia, 1065, Cyprus
| | - Anastasios Papadiamantis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - Georgia Melagraki
- Nanoinformatics Department, NovaMechanics Ltd., Nicosia, 1065, Cyprus
| |
Collapse
|
149
|
Wang X, Chang CH, Jiang J, Liu X, Li J, Liu Q, Liao YP, Li L, Nel AE, Xia T. Mechanistic Differences in Cell Death Responses to Metal-Based Engineered Nanomaterials in Kupffer Cells and Hepatocytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000528. [PMID: 32337854 PMCID: PMC7263057 DOI: 10.1002/smll.202000528] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 05/18/2023]
Abstract
The mononuclear phagocyte system in the liver is a frequent target for nanoparticles (NPs). A toxicological profiling of metal-based NPs is performed in Kupffer cell (KC) and hepatocyte cell lines. Sixteen NPs are provided by the Nanomaterial Health Implications Research Consortium of the National Institute of Environmental Health Sciences to study the toxicological effects in KUP5 (KC) and Hepa 1-6 cells. Five NPs (Ag, CuO, ZnO, SiO2 , and V2 O5 ) exhibit cytotoxicity in both cell types, while SiO2 and V2 O5 induce IL-1β production in KC. Ag, CuO, and ZnO induced caspase 3 generated apoptosis in both cell types is accompanied by ion shedding and generation of mitochondrial reactive oxygen species (ROS) in both cell types. However, the cell death response to SiO2 in KC differs by inducing pyroptosis as a result of potassium efflux, caspase 1 activation, NLRP3 inflammasome assembly, IL-1β release, and cleavage of gasdermin-D. This releases pore-performing peptide fragments responsible for pyroptotic cell swelling. Interestingly, although V2 O5 induces IL-1β release and delays caspase 1 activation by vanadium ion interference in membrane Na+ /K+ adenosine triphosphate (ATP)ase activity, the major cell death mechanism in KC (and Hepa 1-6) is caspase 3 mediated apoptosis. These findings improve the understanding of the mechanisms of metal-based engineered nanomaterial (ENM) toxicity in liver cells toward comprehensive safety evaluation.
Collapse
Affiliation(s)
- Xiang Wang
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, CA 90095, United States, United States
- California NanoSystems Institute; University of California, Los Angeles, CA 90095, United States, United States
| | - Chong Hyun Chang
- California NanoSystems Institute; University of California, Los Angeles, CA 90095, United States, United States
| | - Jinhong Jiang
- California NanoSystems Institute; University of California, Los Angeles, CA 90095, United States, United States
| | - Xiangsheng Liu
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, CA 90095, United States, United States
| | - Jiulong Li
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, CA 90095, United States, United States
| | - Qi Liu
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, CA 90095, United States, United States
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, CA 90095, United States, United States
| | - Linjiang Li
- California NanoSystems Institute; University of California, Los Angeles, CA 90095, United States, United States
| | - André E. Nel
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, CA 90095, United States, United States
- California NanoSystems Institute; University of California, Los Angeles, CA 90095, United States, United States
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, CA 90095, United States, United States
- California NanoSystems Institute; University of California, Los Angeles, CA 90095, United States, United States
| |
Collapse
|
150
|
Peng G, He Y, Wang X, Cheng Y, Zhang H, Savolainen K, Mädler L, Pokhrel S, Lin S. Redox Activity and Nano-Bio Interactions Determine the Skin Injury Potential of Co 3O 4-Based Metal Oxide Nanoparticles toward Zebrafish. ACS NANO 2020; 14:4166-4177. [PMID: 32191835 DOI: 10.1021/acsnano.9b08938] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Redox-active metal oxide nanoparticles show varying oxidizing capacities and injury potentials toward biological systems. Here, two metal oxide libraries including transition-metal-doped Co3O4 and PdO-Co3O4 with strong chemical contacts were design-synthesized and used to investigate their biological injury potential and mechanisms using zebrafish as a model organism. Among different dopants, Cu significantly increased the oxidizing capacity of Co3O4. An increased amount of PdO resulted in higher density of heterojunctions, which also led to higher oxidizing capacity. The oxidizing capacity of these nanoparticles was positively correlated with higher mortality of dechorionated embryos and severe larval skin injury upon exposure. Using transgenic zebrafish Tg(LysC:eGFP), we show in real time that the redox-active nanoparticles induced skin injury and activated the infiltration of immune cells. Such inflammatory response was confirmed by the increased mRNA expression level of Nrf2a, HO-1, IL-1β, and IL-6 genes. Although the exposure to the nanoparticles alone was not lethal, the skin injury did lower the tolerance level against other environmental contaminants. More importantly, after withdrawing from the nanoparticle exposure, larvae with skin injury could recover within 24 h in uncontaminated medium, indicating such injury was transient and recoverable.
Collapse
Affiliation(s)
- Guotao Peng
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuan He
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaoxiao Wang
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yan Cheng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Kai Savolainen
- Finnish Institute of Occupational Health, Helsinki 00250, Finland
| | - Lutz Mädler
- Faculty of Production Engineering, University of Bremen, 28359 Bremen, Germany
- Leibniz Institute for Materials Engineering IWT, 28359 Bremen, Germany
| | - Suman Pokhrel
- Faculty of Production Engineering, University of Bremen, 28359 Bremen, Germany
- Leibniz Institute for Materials Engineering IWT, 28359 Bremen, Germany
| | - Sijie Lin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|