101
|
Dow LF, Case AM, Paustian MP, Pinkerton BR, Simeon P, Trippier PC. The evolution of small molecule enzyme activators. RSC Med Chem 2023; 14:2206-2230. [PMID: 37974956 PMCID: PMC10650962 DOI: 10.1039/d3md00399j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
There is a myriad of enzymes within the body responsible for maintaining homeostasis by providing the means to convert substrates to products as and when required. Physiological enzymes are tightly controlled by many signaling pathways and their products subsequently control other pathways. Traditionally, most drug discovery efforts focus on identifying enzyme inhibitors, due to upregulation being prevalent in many diseases and the existence of endogenous substrates that can be modified to afford inhibitor compounds. As enzyme downregulation and reduction of endogenous activators are observed in multiple diseases, the identification of small molecules with the ability to activate enzymes has recently entered the medicinal chemistry toolbox to afford chemical probes and potential therapeutics as an alternative means to intervene in diseases. In this review we highlight the progress made in the identification and advancement of non-kinase enzyme activators and their potential in treating various disease states.
Collapse
Affiliation(s)
- Louise F Dow
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Alfie M Case
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Megan P Paustian
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Braeden R Pinkerton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Princess Simeon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center Omaha NE 68106 USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center Omaha NE 68106 USA
| |
Collapse
|
102
|
Wątroba M, Szewczyk G, Szukiewicz D. The Role of Sirtuin-1 (SIRT1) in the Physiology and Pathophysiology of the Human Placenta. Int J Mol Sci 2023; 24:16210. [PMID: 38003402 PMCID: PMC10671790 DOI: 10.3390/ijms242216210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Sirtuins, especially SIRT1, play a significant role in regulating inflammatory response, autophagy, and cell response to oxidative stress. Since their discovery, sirtuins have been regarded as anti-ageing and longevity-promoting enzymes. Sirtuin-regulated processes seem to participate in the most prevalent placental pathologies, such as pre-eclampsia. Furthermore, more and more research studies indicate that SIRT1 may prevent pre-eclampsia development or at least alleviate its manifestations. Having considered this, we reviewed recent studies on the role of sirtuins, especially SIRT1, in processes determining normal or abnormal development and functioning of the placenta.
Collapse
Affiliation(s)
| | | | - Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland; (M.W.); (G.S.)
| |
Collapse
|
103
|
Kim YH, Ryu JI, Devare MN, Jung J, Kim JY. The intricate role of Sir2 in oxidative stress response during the post-diauxic phase in Saccharomyces cerevisiae. Front Microbiol 2023; 14:1285559. [PMID: 38029141 PMCID: PMC10666771 DOI: 10.3389/fmicb.2023.1285559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Silent information regulator 2 (Sir2) is a conserved NAD+-dependent histone deacetylase crucial for regulating cellular stress response and the aging process in Saccharomyces cerevisiae. In this study, we investigated the molecular mechanism underlying how the absence of Sir2 can lead to altered stress susceptibilities in S. cerevisiae under different environmental and physiological conditions. In a glucose-complex medium, the sir2Δ strain showed increased sensitivity to H2O2 compared to the wild-type strain during the post-diauxic phase. In contrast, it displayed increased resistance during the exponential growth phase. Transcriptome analysis of yeast cells in the post-diauxic phase indicated that the sir2Δ mutant expressed several oxidative defense genes at lower levels than the wild-type, potentially accounting for its increased susceptibility to H2O2. Interestingly, however, the sir2Δras2Δ double mutant exhibited greater resistance to H2O2 than the ras2Δ single mutant counterpart. We found that the expression regulation of the cytoplasmic catalase encoded by CTT1 was critical for the increased resistance to H2O2 in the sir2Δras2Δ strain. The expression of the CTT1 gene was influenced by the combined effect of RAS2 deletion and the transcription factor Azf1, whose level was modulated by Sir2. These findings provide insights into the importance of understanding the intricate interactions among various factors contributing to cellular stress response.
Collapse
Affiliation(s)
| | | | | | | | - Jeong-Yoon Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
104
|
Bhasin S, Seals D, Migaud M, Musi N, Baur JA. Nicotinamide Adenine Dinucleotide in Aging Biology: Potential Applications and Many Unknowns. Endocr Rev 2023; 44:1047-1073. [PMID: 37364580 DOI: 10.1210/endrev/bnad019] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/28/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Recent research has unveiled an expansive role of NAD+ in cellular energy generation, redox reactions, and as a substrate or cosubstrate in signaling pathways that regulate health span and aging. This review provides a critical appraisal of the clinical pharmacology and the preclinical and clinical evidence for therapeutic effects of NAD+ precursors for age-related conditions, with a particular focus on cardiometabolic disorders, and discusses gaps in current knowledge. NAD+ levels decrease throughout life; age-related decline in NAD+ bioavailability has been postulated to be a contributor to many age-related diseases. Raising NAD+ levels in model organisms by administration of NAD+ precursors improves glucose and lipid metabolism; attenuates diet-induced weight gain, diabetes, diabetic kidney disease, and hepatic steatosis; reduces endothelial dysfunction; protects heart from ischemic injury; improves left ventricular function in models of heart failure; attenuates cerebrovascular and neurodegenerative disorders; and increases health span. Early human studies show that NAD+ levels can be raised safely in blood and some tissues by oral NAD+ precursors and suggest benefit in preventing nonmelanotic skin cancer, modestly reducing blood pressure and improving lipid profile in older adults with obesity or overweight; preventing kidney injury in at-risk patients; and suppressing inflammation in Parkinson disease and SARS-CoV-2 infection. Clinical pharmacology, metabolism, and therapeutic mechanisms of NAD+ precursors remain incompletely understood. We suggest that these early findings provide the rationale for adequately powered randomized trials to evaluate the efficacy of NAD+ augmentation as a therapeutic strategy to prevent and treat metabolic disorders and age-related conditions.
Collapse
Affiliation(s)
- Shalender Bhasin
- Department of Medicine, Harvard Medical School, Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Douglas Seals
- Department of Integrative Physiology and Medicine, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Marie Migaud
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of Southern Alabama, Mobile, AL 36688, USA
| | - Nicolas Musi
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joseph A Baur
- Department of Physiology, Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
105
|
Wang P, Gao R, Wu T, Zhang J, Sun X, Fan F, Wang C, Qian S, Li B, Zou Y, Huo Y, Fassett J, Chen Y, Ge J, Sun A. Accumulation of endogenous adenosine improves cardiomyocyte metabolism via epigenetic reprogramming in an ischemia-reperfusion model. Redox Biol 2023; 67:102884. [PMID: 37725888 PMCID: PMC10507380 DOI: 10.1016/j.redox.2023.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023] Open
Abstract
Adenosine kinase (ADK) plays the major role in cardiac adenosine metabolism, so that inhibition of ADK increases myocardial adenosine levels. While the cardioprotective actions of extracellular adenosine against ischemia/reperfusion (I/R) are well-established, the role of cellular adenosine in protection against I/R remains unknown. Here we investigated the role of cellular adenosine in epigenetic regulation on cardiomyocyte gene expression, glucose metabolism and tolerance to I/R. Evans blue/TTC staining and echocardiography were used to assess the extent of I/R injury in mice. Glucose metabolism was evaluated by positron emission tomography and computed tomography (PET/CT). Methylated DNA immunoprecipitation (MeDIP) and bisulfite sequencing PCR (BSP) were used to evaluate DNA methylation. Lentiviral/adenovirus transduction was used to overexpress DNMT1, and the OSI-906 was administered to inhibit IGF-1. Cardiomyocyte-specific ADK/IGF-1-knockout mice were used for mechanistic experiments.Cardiomyocyte-specific ADK knockout enhanced glucose metabolism and ameliorated myocardial I/R injury in vivo. Mechanistically, ADK deletion caused cellular adenosine accumulation, decreased DNA methyltransferase 1 (DNMT1) expression and caused hypomethylation of multiple metabolic genes, including insulin growth factor 1 (IGF-1). DNMT1 overexpression abrogated these beneficial effects by enhancing apoptosis and decreasing IGF-1 expression. Inhibition of IGF-1 signaling with OSI-906 or genetic knocking down of IGF-1 also abrogated the cardioprotective effects of ADK knockout, revealing the therapeutic potential of increasing IGF-1 expression in attenuating myocardial I/R injury. In conclusion, the present study demonstrated that cardiomyocyte ADK deletion ameliorates myocardial I/R injury via epigenetic upregulation of IGF-1 expression via the cardiomyocyte adenosine/DNMT1/IGF-1 axis.
Collapse
Affiliation(s)
- Peng Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Rifeng Gao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Cardiac Surgery Department, The Second Affiliated Hospital Zhejiang University School of Medicine, China
| | - Tingting Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinyan Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaolei Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fan Fan
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cong Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sanli Qian
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bingyu Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - John Fassett
- Department of Pharmacology and Toxicology, University of Graz, 8010, Graz, Austria
| | - Yingjie Chen
- Department of Physiology & Biophysics, University Mississippi Medical Center, MS, 39216, USA
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
106
|
Labiner HE, Sas KM, Baur JA, Sims CA. Sirt3 Deletion Increases Inflammation and Mortality in Polymicrobial Sepsis. Surg Infect (Larchmt) 2023; 24:788-796. [PMID: 38015645 PMCID: PMC10659016 DOI: 10.1089/sur.2023.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Background: Sirtuin 3 (SIRT3) is a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase that confers resilience to cellular stress by promoting mitochondrial activity. Mitochondrial dysfunction is a major driver of inflammation during sepsis. We hypothesize that Sirt3 expression improves survival in polymicrobial sepsis by mitigating the inflammatory response. Materials and Methods: Sirt3 knockout (S3KO) and wild-type (WT) mice underwent cecal ligation and puncture (CLP) or sham surgery. mRNA expression was quantified using quantitative polymerase chain reaction (qPCR) and protein expression was quantified using enzyme-linked immunosorbent assay (ELISA). Spectrophotometric assays were used to quantify serum markers of organ dysfunction. For in vitro studies, bone marrow-derived macrophages (BMDMs) were harvested from S3KO and WT mice and treated with lipopolysaccharide (LPS). Results: After CLP, hepatic Sirt3 levels decreased from baseline by nine hours and remained depressed at 24 hours. Peak serum interleukin-6 (IL-6) protein levels were higher in S3KO mice. In LPS-treated BMDMs, IL-6 mRNA levels peaked earlier in S3KO cells, although peak levels were comparable to WT. Although S3KO mice had decreased median survival after CLP compared with WT, there was no difference in five-day survival or organ dysfunction. Conclusions: Although S3KO mice initially had increased inflammation and mortality, this difference abated with time, and overall survival was comparable between the groups. This pattern is consistent with the timeline of sepsis-induced Sirt3 downregulation in WT mice, and suggests that Sirt3 downregulation occurring in sepsis is at least partially responsible for the initial hyperinflammatory response and subsequent mortality. Our data support upregulation of Sirt3 as a promising therapeutic strategy for further research in sepsis.
Collapse
Affiliation(s)
- Hanna E. Labiner
- Division of Trauma, Critical Care, and Burn at The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Kelli M. Sas
- Division of Trauma, Critical Care, and Burn at The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Joseph A. Baur
- Institute for Diabetes, Obesity and Metabolism and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carrie A. Sims
- Division of Trauma, Critical Care, and Burn at The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
107
|
Li M, Plecitá-Hlavatá L, Dobrinskikh E, McKeon BA, Gandjeva A, Riddle S, Laux A, Prasad RR, Kumar S, Tuder RM, Zhang H, Hu CJ, Stenmark KR. SIRT3 Is a Critical Regulator of Mitochondrial Function of Fibroblasts in Pulmonary Hypertension. Am J Respir Cell Mol Biol 2023; 69:570-583. [PMID: 37343939 PMCID: PMC10633840 DOI: 10.1165/rcmb.2022-0360oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/21/2023] [Indexed: 06/23/2023] Open
Abstract
Pulmonary hypertension (PH) is a heterogeneous and life-threatening cardiopulmonary disorder in which mitochondrial dysfunction is believed to drive pathogenesis, although the underlying mechanisms remain unclear. To determine if abnormal SIRT3 (sirtuin 3) activity is related to mitochondrial dysfunction in adventitial fibroblasts from patients with idiopathic pulmonary arterial hypertension (IPAH) and hypoxic PH calves (PH-Fibs) and whether SIRT3 could be a potential therapeutic target to improve mitochondrial function, SIRT3 concentrations in control fibroblasts, PH-Fibs, and lung tissues were determined using quantitative real-time PCR and western blot. SIRT3 deacetylase activity in cells and lung tissues was determined using western blot, immunohistochemistry staining, and immunoprecipitation. Glycolysis and mitochondrial function in fibroblasts were measured using respiratory analysis and fluorescence-lifetime imaging microscopy. The effects of restoring SIRT3 activity (by overexpression of SIRT3 with plasmid, activation SIRT3 with honokiol, and supplementation with the SIRT3 cofactor nicotinamide adenine dinucleotide [NAD+]) on mitochondrial protein acetylation, mitochondrial function, cell proliferation, and gene expression in PH-Fibs were also investigated. We found that SIRT3 concentrations were decreased in PH-Fibs and PH lung tissues, and its cofactor, NAD+, was also decreased in PH-Fibs. Increased acetylation in overall mitochondrial proteins and SIRT3-specific targets (MPC1 [mitochondrial pyruvate carrier 1] and MnSOD2 [mitochondrial superoxide dismutase]), as well as decreased MnSOD2 activity, was identified in PH-Fibs and PH lung tissues. Normalization of SIRT3 activity, by increasing its expression with plasmid or with honokiol and supplementation with its cofactor NAD+, reduced mitochondrial protein acetylation, improved mitochondrial function, inhibited proliferation, and induced apoptosis in PH-Fibs. Thus, our study demonstrated that restoration of SIRT3 activity in PH-Fibs can reduce mitochondrial protein acetylation and restore mitochondrial function and PH-Fib phenotype in PH.
Collapse
Affiliation(s)
- Min Li
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine
| | - Lydie Plecitá-Hlavatá
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | | | - B. Alexandre McKeon
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine
| | - Aneta Gandjeva
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | - Suzette Riddle
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine
| | - Aya Laux
- Department of Craniofacial Biology, and
| | - Ram Raj Prasad
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine
| | - Sushil Kumar
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine
| | - Rubin M. Tuder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | - Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine
| | | | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine
| |
Collapse
|
108
|
Zhang C, He Y, Sun X, Wei W, Liu Y, Rao Y. PROTACs Targeting Epigenetic Proteins. ACTA MATERIA MEDICA 2023; 2:409-429. [PMID: 39221114 PMCID: PMC11364368 DOI: 10.15212/amm-2023-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Epigenetics, a field that investigates alterations in gene function that can be inherited without changes in DNA sequence, encompasses molecular pathways such as histone variants, posttranslational modifications of amino acids, and covalent modifications of DNA bases. These pathways modulate the transformation of genotypes into specific phenotypes. Epigenetics plays a substantial role in cell growth, development, and differentiation by dynamically regulating gene transcription and ensuring genomic stability. This regulation is carried out by three key players: writers, readers, and erasers. In recent years, epigenetic proteins have played a crucial role in epigenetic regulation and have gradually become important targets in drug research and development. Targeted therapy is an essential strategy; however, the effectiveness of targeted drugs is often limited by drug resistance, posing a significant dilemma in clinical practice. Targeted protein degradation technologies, including proteolysis-targeting chimeras (PROTACs), have great potential in overcoming drug resistance and targeting undruggable targets. These areas of research are gaining increasing attention to various epigenetic related disease. In this review, we have provided a summary of the recently developed degraders targeting epigenetic readers, writers, and erasers. Additionally, we have outlined new applications for epigenetic protein degraders. Finally, we have addressed several unresolved challenges within the PROTAC field and offered potential solutions from our perspective. As the field continues to advance, the integration of these innovative methodologies holds great promise for addressing the challenges associated with PROTAC development.
Collapse
Affiliation(s)
- Chao Zhang
- Changping Laboratory, Beijing 102206, China
| | - Yuna He
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Xiuyun Sun
- Changping Laboratory, Beijing 102206, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Yanlong Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Yu Rao
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Changping Laboratory, Beijing 102206, China
| |
Collapse
|
109
|
Li K, Mocciaro G, Griffin JL, Zhang N. The Saccharomyces cerevisiae acetyltransferase Gcn5 exerts antagonistic pleiotropic effects on chronological ageing. Aging (Albany NY) 2023; 15:10915-10937. [PMID: 37874684 PMCID: PMC10637828 DOI: 10.18632/aging.205109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023]
Abstract
Compared to replicative lifespan, epigenetic regulation of chronological lifespan (CLS) is less well understood in yeast. Here, by screening all the viable mutants of histone acetyltransferase (HAT) and histone deacetylase (HDAC), we demonstrate that Gcn5, functioning in the HAT module of the SAGA/SLIK complex, exhibits an epistatic relationship with the HDAC Hda1 to control the expression of starvation-induced stress response and respiratory cell growth. Surprisingly, the gcn5Δ mutants lose their colony-forming potential early in the stationary phase but display a longer maximum CLS than their WT counterparts, suggesting the contradictory roles of Gcn5 in lifespan regulation. Integrative analyses of the transcriptome, metabolome and ChIP assays reveal that Gcn5 is necessary for the activation of two regulons upon glucose starvation: the Msn2/4-/Gis1-dependent stress response and the Cat8-/Adr1-mediated metabolic reprogramming, to enable pro-longevity characteristics, including redox homeostasis, stress resistance and maximal storage of carbohydrates. The activation of Cat8-/Adr1-dependent regulon also promotes the pyruvate dehydrogenase (PDH) bypass, leading to acetyl-CoA synthesis, global and targeted H3K9 acetylation. Global H3K9 acetylation levels mediated by Gcn5 and Hda1 during the transition into stationary phase are positively correlated with senescent cell populations accumulated in the aged cell cultures. These data suggest that Gcn5 lies in the centre of a feed-forward loop between histone acetylation and starvation-induced gene expression, enabling stress resistance and homeostasis but also promoting chronological ageing concomitantly.
Collapse
Affiliation(s)
- Kaiqiang Li
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Gabriele Mocciaro
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Jules L. Griffin
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
- The Rowett Institute, University of Aberdeen, Foresterhill Campus, Aberdeen AB25 2ZD, UK
| | - Nianshu Zhang
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
110
|
Kawakami R, Matsui H, Matsui M, Iso T, Yokoyama T, Ishii H, Kurabayashi M. Empagliflozin induces the transcriptional program for nutrient homeostasis in skeletal muscle in normal mice. Sci Rep 2023; 13:18025. [PMID: 37865720 PMCID: PMC10590450 DOI: 10.1038/s41598-023-45390-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/19/2023] [Indexed: 10/23/2023] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) improve heart failure (HF) outcomes across a range of patient characteristics. A hypothesis that SGLT2i induce metabolic change similar to fasting has recently been proposed to explain their profound clinical benefits. However, it remains unclear whether SGLT2i primarily induce this change in physiological settings. Here, we demonstrate that empagliflozin administration under ad libitum feeding did not cause weight loss but did increase transcripts of the key nutrient sensors, AMP-activated protein kinase and nicotinamide phosphoribosyltransferase, and the master regulator of mitochondrial gene expression, PGC-1α, in quadriceps muscle in healthy mice. Expression of these genes correlated with that of PPARα and PPARδ target genes related to mitochondrial metabolism and oxidative stress response, and also correlated with serum ketone body β-hydroxybutyrate. These results were not observed in the heart. Collectively, this study revealed that empagliflozin activates transcriptional programs critical for sensing and adaptation to nutrient availability intrinsic to skeletal muscle rather than the heart even in normocaloric condition. As activation of PGC-1α is sufficient for metabolic switch from fatigable, glycolytic metabolism toward fatigue-resistant, oxidative mechanism in skeletal muscle myofibers, our findings may partly explain the improvement of exercise tolerance in patients with HF receiving empagliflozin.
Collapse
Affiliation(s)
- Ryo Kawakami
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hiroki Matsui
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Gunma, Japan
| | - Miki Matsui
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tatsuya Iso
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tomoyuki Yokoyama
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Gunma, Japan
| | - Hideki Ishii
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
111
|
Klabunde B, Wesener A, Bertrams W, Beinborn I, Paczia N, Surmann K, Blankenburg S, Wilhelm J, Serrania J, Knoops K, Elsayed EM, Laakmann K, Jung AL, Kirschbaum A, Hammerschmidt S, Alshaar B, Gisch N, Abu Mraheil M, Becker A, Völker U, Vollmeister E, Benedikter BJ, Schmeck B. NAD + metabolism is a key modulator of bacterial respiratory epithelial infections. Nat Commun 2023; 14:5818. [PMID: 37783679 PMCID: PMC10545792 DOI: 10.1038/s41467-023-41372-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/30/2023] [Indexed: 10/04/2023] Open
Abstract
Lower respiratory tract infections caused by Streptococcus pneumoniae (Spn) are a leading cause of death globally. Here we investigate the bronchial epithelial cellular response to Spn infection on a transcriptomic, proteomic and metabolic level. We found the NAD+ salvage pathway to be dysregulated upon infection in a cell line model, primary human lung tissue and in vivo in rodents, leading to a reduced production of NAD+. Knockdown of NAD+ salvage enzymes (NAMPT, NMNAT1) increased bacterial replication. NAD+ treatment of Spn inhibited its growth while growth of other respiratory pathogens improved. Boosting NAD+ production increased NAD+ levels in immortalized and primary cells and decreased bacterial replication upon infection. NAD+ treatment of Spn dysregulated the bacterial metabolism and reduced intrabacterial ATP. Enhancing the bacterial ATP metabolism abolished the antibacterial effect of NAD+. Thus, we identified the NAD+ salvage pathway as an antibacterial pathway in Spn infections, predicting an antibacterial mechanism of NAD+.
Collapse
Affiliation(s)
- Björn Klabunde
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - André Wesener
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - Isabell Beinborn
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Kristin Surmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Sascha Blankenburg
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jochen Wilhelm
- Institute for Lung Health (ILH), Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-Universität Giessen, German Center for Lung Research (DZL), Giessen, Germany
| | - Javier Serrania
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Kèvin Knoops
- Microscopy CORE Lab, Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Eslam M Elsayed
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Katrin Laakmann
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - Anna Lena Jung
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-Universität Marburg, Marburg, Germany
| | - Andreas Kirschbaum
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Gießen and Marburg (UKGM), Marburg, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Belal Alshaar
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Mobarak Abu Mraheil
- Institute for Medical Microbiology, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Evelyn Vollmeister
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - Birke J Benedikter
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany.
- University Eye Clinic Maastricht, Maastricht University Medical Center (MUMC+), School for Mental Health and Neuroscience, Maastricht University, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany.
- Institute for Lung Health (ILH), Giessen, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany.
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-Universität Marburg, Marburg, Germany.
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Marburg, Philipps-Universität Marburg, Marburg, Germany.
- Member of the German Center for Infectious Disease Research (DZIF), Marburg, Germany.
| |
Collapse
|
112
|
Wang P, Chen M, Hou Y, Luan J, Liu R, Chen L, Hu M, Yu Q. Fingerstick blood assay maps real-world NAD + disparity across gender and age. Aging Cell 2023; 22:e13965. [PMID: 37641521 PMCID: PMC10577551 DOI: 10.1111/acel.13965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+ ) level has been associated with various age-related diseases and its pharmacological modulation emerges as a potential approach for aging intervention. But human NAD+ landscape exhibits large heterogeneity. The lack of rapid, low-cost assays limits the establishment of whole-blood NAD+ baseline and the development of personalized therapies, especially for those with poor responses towards conventional NAD+ supplementations. Here, we developed an automated NAD+ analyzer for the rapid measurement of NAD+ with 5 μL of capillary blood using recombinant bioluminescent sensor protein and automated optical reader. The minimal invasiveness of the assay allowed a frequent and decentralized mapping of real-world NAD+ dynamics. We showed that aerobic sport and NMN supplementation increased whole-blood NAD+ and that male on average has higher NAD+ than female before the age of 50. We further revealed the long-term stability of human NAD+ baseline over 100 days and identified major real-world NAD+ -modulating behaviors.
Collapse
Affiliation(s)
- Pei Wang
- Sino‐European Center of Biomedicine and Health, Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of MedicinesShenzhen Institute of Advanced Technology Chinese Academy of SciencesShenzhenChina
| | - Meiting Chen
- Sino‐European Center of Biomedicine and Health, Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of MedicinesShenzhen Institute of Advanced Technology Chinese Academy of SciencesShenzhenChina
| | - Yaying Hou
- Celfull (China) Operation and Research CenterShenzhenChina
| | - Jun Luan
- Department of Sports MedicineGuangzhou Sport UniversityGuangzhouChina
| | - Ruili Liu
- Celfull (China) Operation and Research CenterShenzhenChina
| | - Liuqing Chen
- Sino‐European Center of Biomedicine and Health, Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of MedicinesShenzhen Institute of Advanced Technology Chinese Academy of SciencesShenzhenChina
| | - Min Hu
- Department of Sports MedicineGuangzhou Sport UniversityGuangzhouChina
| | - Qiuliyang Yu
- Sino‐European Center of Biomedicine and Health, Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of MedicinesShenzhen Institute of Advanced Technology Chinese Academy of SciencesShenzhenChina
| |
Collapse
|
113
|
Borgonetti V, Caroli C, Governa P, Virginia B, Pollastro F, Franchini S, Manetti F, Les F, López V, Pellati F, Galeotti N. Helichrysum stoechas (L.) Moench reduces body weight gain and modulates mood disorders via inhibition of silent information regulator 1 (SIRT1) by arzanol. Phytother Res 2023; 37:4304-4320. [PMID: 37433745 DOI: 10.1002/ptr.7941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/13/2023]
Abstract
The prevalence of obesity is steadily rising, making safe and more efficient anti-obesity treatments an urgent medical need. Growing evidence correlates obesity and comorbidities, including anxiety and depression, with the development of a low-grade inflammation in peripheral and central tissues. We hypothesized that attenuating neuroinflammation might reduce weight gain and improve mood. We investigated the efficacy of a methanolic extract from Helichrysum stoechas (L.) Moench (HSE), well-known for its anti-inflammatory properties, and its main constituent arzanol (AZL). HPLC-ESI-MS2 and HPLC-UV were used to characterize the extract. HSE effects on mood and feeding behavior was assessed in mice. The mechanism of action of HSE and AZL was investigated in hippocampus samples and SH-SY5Y cells by western blotting and immunofluorescence. Oral administration of HSE for 3 weeks limited weight gain with no significant decrease in food intake. HSE produced an anxiolytic-like and antidepressant-like phenotype comparable to diazepam and amitriptyline, respectively, in the absence of locomotor and cognitive impairments and induced neuroprotective effects in glutamate-exposed SH-SY5Y cells. A dose-dependent reduction of SIRT1 expression was detected in SH-SY5Y cells and in hippocampal samples from HSE-treated mice. The inhibition of the SIRT1-FoxO1 pathway was induced in the hypothalamus. Molecular docking studies proposed a mechanism of SIRT1 inhibition by AZL, confirmed by the evaluation of inhibitory effects on SIRT1 enzymatic activity. HSE limited weight gain and comorbidities through an AZL-mediated SIRT1 inhibition. These activities indicate HSE an innovative therapeutic perspective for obesity and associated mood disorders.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
- Department of Molecular Medicine and Neuroscience, Scripps Research Institute, La Jolla, California, USA
| | - Clarissa Caroli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Paolo Governa
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California, USA
| | - Brighenti Virginia
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Novara, Italy
| | - Silvia Franchini
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Victor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
114
|
Harrington JS, Ryter SW, Plataki M, Price DR, Choi AMK. Mitochondria in health, disease, and aging. Physiol Rev 2023; 103:2349-2422. [PMID: 37021870 PMCID: PMC10393386 DOI: 10.1152/physrev.00058.2021] [Citation(s) in RCA: 129] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Mitochondria are well known as organelles responsible for the maintenance of cellular bioenergetics through the production of ATP. Although oxidative phosphorylation may be their most important function, mitochondria are also integral for the synthesis of metabolic precursors, calcium regulation, the production of reactive oxygen species, immune signaling, and apoptosis. Considering the breadth of their responsibilities, mitochondria are fundamental for cellular metabolism and homeostasis. Appreciating this significance, translational medicine has begun to investigate how mitochondrial dysfunction can represent a harbinger of disease. In this review, we provide a detailed overview of mitochondrial metabolism, cellular bioenergetics, mitochondrial dynamics, autophagy, mitochondrial damage-associated molecular patterns, mitochondria-mediated cell death pathways, and how mitochondrial dysfunction at any of these levels is associated with disease pathogenesis. Mitochondria-dependent pathways may thereby represent an attractive therapeutic target for ameliorating human disease.
Collapse
Affiliation(s)
- John S Harrington
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | | | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - David R Price
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
115
|
Scadden AW, Graybill AS, Hull-Crew C, Lundberg TJ, Lande NM, Klocko AD. Histone deacetylation and cytosine methylation compartmentalize heterochromatic regions in the genome organization of Neurospora crassa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547530. [PMID: 37461718 PMCID: PMC10349943 DOI: 10.1101/2023.07.03.547530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Chromosomes must correctly fold in eukaryotic nuclei for proper genome function. Eukaryotic organisms hierarchically organize their genomes, including in the fungus Neurospora crassa, where chromatin fiber loops compact into Topologically Associated Domain (TAD)-like structures formed by heterochromatic region aggregation. However, insufficient data exists on how histone post-translational modifications, including acetylation, affect genome organization. In Neurospora, the HCHC complex (comprised of the proteins HDA-1, CDP-2, HP1, and CHAP) deacetylates heterochromatic nucleosomes, as loss of individual HCHC members increases centromeric acetylation and alters the methylation of cytosines in DNA. Here, we assess if the HCHC complex affects genome organization by performing Hi-C in strains deleted of the cdp-2 or chap genes. CDP-2 loss increases intra- and inter-chromosomal heterochromatic region interactions, while loss of CHAP decreases heterochromatic region compaction. Individual HCHC mutants exhibit different patterns of histone post-translational modifications genome-wide: without CDP-2, heterochromatic H4K16 acetylation is increased, yet smaller heterochromatic regions lose H3K9 trimethylation and gain inter-heterochromatic region interactions; CHAP loss produces minimal acetylation changes but increases heterochromatic H3K9me3 enrichment. Loss of both CDP-2 and the DIM-2 DNA methyltransferase causes extensive genome disorder, as heterochromatic-euchromatic contacts increase despite additional H3K9me3 enrichment. Our results highlight how the increased cytosine methylation in HCHC mutants ensures genome compartmentalization when heterochromatic regions become hyperacetylated without HDAC activity.
Collapse
Affiliation(s)
- Ashley W. Scadden
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| | - Alayne S. Graybill
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| | - Clayton Hull-Crew
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| | - Tiffany J. Lundberg
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| | - Nickolas M. Lande
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| | - Andrew D. Klocko
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| |
Collapse
|
116
|
Bozdemir N, Uysal F. Histone acetyltransferases and histone deacetyl transferases play crucial role during oogenesis and early embryo development. Genesis 2023; 61:e23518. [PMID: 37226850 DOI: 10.1002/dvg.23518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Dynamic epigenetic regulation is critical for proper oogenesis and early embryo development. During oogenesis, fully grown germinal vesicle oocytes develop to mature Metaphase II oocytes which are ready for fertilization. Fertilized oocyte proliferates mitotically until blastocyst formation and the process is called early embryo development. Throughout oogenesis and early embryo development, spatio-temporal gene expression takes place, and this dynamic gene expression is controlled with the aid of epigenetics. Epigenetic means that gene expression can be altered without changing DNA itself. Epigenome is regulated through DNA methylation and histone modifications. While DNA methylation generally ends up with repression of gene expression, histone modifications can result in expression or repression depending on type of modification, type of histone protein and its specific residue. One of the modifications is histone acetylation which generally ends up with gene expression. Histone acetylation occurs through the addition of acetyl group onto amino terminal of the core histone proteins by histone acetyltransferases (HATs). Contrarily, histone deacetylation is associated with repression of gene expression, and it is catalyzed by histone deacetylases (HDACs). This review article focuses on what is known about alterations in the expression of HATs and HDACs and emphasizes importance of HATs and HDACs during oogenesis and early embryo development.
Collapse
Affiliation(s)
- Nazlican Bozdemir
- Department of Histology and Embryology, Ankara Medipol University School of Medicine, Ankara, Turkey
| | - Fatma Uysal
- Department of Histology and Embryology, Ankara Medipol University School of Medicine, Ankara, Turkey
| |
Collapse
|
117
|
Kim LJ, Chalmers TJ, Madawala R, Smith GC, Li C, Das A, Poon EWK, Wang J, Tucker SP, Sinclair DA, Quek LE, Wu LE. Host-microbiome interactions in nicotinamide mononucleotide (NMN) deamidation. FEBS Lett 2023; 597:2196-2220. [PMID: 37463842 DOI: 10.1002/1873-3468.14698] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023]
Abstract
The nicotinamide adenine dinucleotide (NAD+ ) precursor nicotinamide mononucleotide (NMN) is a proposed therapy for age-related disease, whereby it is assumed that NMN is incorporated into NAD+ through the canonical recycling pathway. During oral delivery, NMN is exposed to the gut microbiome, which could modify the NAD+ metabolome through enzyme activities not present in the mammalian host. We show that orally delivered NMN can undergo deamidation and incorporation in mammalian tissue via the de novo pathway, which is reduced in animals treated with antibiotics to ablate the gut microbiome. Antibiotics increased the availability of NAD+ metabolites, suggesting the microbiome could be in competition with the host for dietary NAD+ precursors. These findings highlight new interactions between NMN and the gut microbiome.
Collapse
Affiliation(s)
- Lynn-Jee Kim
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
| | | | | | - Greg C Smith
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
| | - Catherine Li
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
| | - Abhirup Das
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
| | | | - Jun Wang
- GeneHarbor (Hong Kong) Biotechnologies Limited, Hong Kong Science Park, China
- School of Life Sciences, The Chinese University of Hong Kong, China
| | | | - David A Sinclair
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
- Harvard Medical School, Boston, MA, USA
| | - Lake-Ee Quek
- School of Mathematics and Statistics, The University of Sydney, NSW, Australia
| | - Lindsay E Wu
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
| |
Collapse
|
118
|
Miura M, Igarashi M, Isotani R, Nakagawa-Nagahama Y, Kuranami S, Naruse K, Kadowaki T, Yamauchi T. SIRT1 Controls Enteroendocrine Progenitor Cell Proliferation in High-Fat Diet-Fed Mice. Cell Mol Gastroenterol Hepatol 2023; 16:1040-1057. [PMID: 37598893 PMCID: PMC10685171 DOI: 10.1016/j.jcmgh.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND & AIMS We aimed to investigate how sirtuin 1 (SIRT1), a conserved mammalian Nicotinamide adenine dinucleotide+-dependent protein deacetylase, regulates the number of enteroendocrine cells (EECs). EECs benefit metabolism, and their increase potentially could treat type 2 diabetes and obesity. METHODS We used mice with specific Sirt1 disruption in the intestinal epithelium (VilKO, villin-Cre+, and Sirt1flox/flox mice) or enteroendocrine progenitor cells (EEPCs) (NgnKO, neurogenin 3-Cre+, Sirt1flox/flox mice) and mice with increased SIRT1 activity owing to overexpression (Sir2d mice) or 24-hour fasting. Mice were fed a high-fat diet (HFD), and blood glucagon-like peptide 1 (GLP-1) and glucose levels were measured. Intestinal tissues, EECs, and formed organoids were analyzed using quantitative polymerase chain reaction, immunoblotting, and immunohistochemistry. RESULTS In HFD-fed VilKO and NgnKO mice, an increase in EECs (42.3% and 37.2%), GLP-1- or GLP-2-producing L cells (93.0% and 61.4%), and GLP-1 (85.7% and 109.6%) was observed after glucose loading, explaining the improved metabolic phenotype of HFD-VilKO mice. These increases were associated with up-regulated expression of neurogenin 3 (EEPC marker) in crypts of HFD-VilKO and HFD-NgnKO mice, respectively. Conversely, Sir2d or 24-hour fasted mice showed a decrease in EECs (21.6%), L cells (41.6%), and proliferative progenitor cells. SIRT1 overexpression- or knockdown-mediated change in the progenitor cell proliferation was associated with Wnt/β-catenin activity changes. Notably, Wnt/β-catenin inhibitor completely suppressed EEC and L-cell increases in HFD-VilKO mice or organoids from HFD-VilKO and HFD-NgnKO mice. CONCLUSIONS Intestinal SIRT1 in EECs modulates the EEPC cycle by regulating β-catenin activity and can control the number of EECs in HFD-fed mice, which is a previously unknown role.
Collapse
Affiliation(s)
- Masaomi Miura
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaki Igarashi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Biology, Koch Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | - Ryosuke Isotani
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshiko Nakagawa-Nagahama
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Kuranami
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kyoko Naruse
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
119
|
Sgadari M, Cacciola NA, Power K, Martano M, Restucci B. Sirtuin 1 Expression in Canine Mammary Tumors: A Pilot Study. Animals (Basel) 2023; 13:2609. [PMID: 37627400 PMCID: PMC10451855 DOI: 10.3390/ani13162609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Sirtuin 1 (SIRT1) is a protein involved in aging, cell protection, and energy metabolism in mammals. Recently, SIRT1 has been intensively studied in medical oncology, but the role of SIRT1 is still controversial, as it has been proposed as both an oncogene and a tumor suppressor. The aim of this study is to investigate the expression of SIRT1 by immunohistochemistry in canine mammary tissues, and by Western blot and immunofluorescence analysis in different canine mammary cell lines. Our results showed a decrease in SIRT1 expression from normal mammary gland tissue, and from benign and well-differentiated malignant tumors (G1) to less differentiated ones (G2-G3). Furthermore, a shift in the subcellular localization of SIRT1 from the nucleus to the cytoplasm was observed in less differentiated malignant tumors. However, further studies are needed to investigate the subcellular localization of SIRT1 in canine cancer cells and the role it may play in oncogenesis in animals.
Collapse
Affiliation(s)
- Mariafrancesca Sgadari
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via F. Delpino 1, 80137 Naples, Italy; (N.A.C.); (K.P.); (M.M.)
| | | | | | | | - Brunella Restucci
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via F. Delpino 1, 80137 Naples, Italy; (N.A.C.); (K.P.); (M.M.)
| |
Collapse
|
120
|
Qu M, Zhang H, Cheng P, Wubshet AK, Yin X, Wang X, Sun Y. Histone deacetylase 6's function in viral infection, innate immunity, and disease: latest advances. Front Immunol 2023; 14:1216548. [PMID: 37638049 PMCID: PMC10450946 DOI: 10.3389/fimmu.2023.1216548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023] Open
Abstract
In the family of histone-deacetylases, histone deacetylase 6 (HDAC6) stands out. The cytoplasmic class IIb histone deacetylase (HDAC) family is essential for many cellular functions. It plays a crucial and debatable regulatory role in innate antiviral immunity. This review summarises the current state of our understanding of HDAC6's structure and function in light of the three mechanisms by which it controls DNA and RNA virus infection: cytoskeleton regulation, host innate immune response, and autophagy degradation of host or viral proteins. In addition, we summed up how HDAC6 inhibitors are used to treat a wide range of diseases, and how its upstream signaling plays a role in the antiviral mechanism. Together, the findings of this review highlight HDAC6's importance as a new therapeutic target in antiviral immunity, innate immune response, and some diseases, all of which offer promising new avenues for the development of drugs targeting the immune response.
Collapse
Affiliation(s)
- Min Qu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huijun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengyuan Cheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ashenafi Kiros Wubshet
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Basic and Diagnostic Sciences, College of Veterinary Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Xiangping Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
121
|
Mehramiz M, Porter T, O’Brien EK, Rainey-Smith SR, Laws SM. A Potential Role for Sirtuin-1 in Alzheimer's Disease: Reviewing the Biological and Environmental Evidence. J Alzheimers Dis Rep 2023; 7:823-843. [PMID: 37662612 PMCID: PMC10473168 DOI: 10.3233/adr-220088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/08/2023] [Indexed: 09/05/2023] Open
Abstract
Sirtuin-1 (Sirt1), encoded by the SIRT1 gene, is a conserved Nicotinamide adenine dinucleotide (NAD+) dependent deacetylase enzyme, considered as the master regulator of metabolism in humans. Sirt1 contributes to a wide range of biological pathways via several mechanisms influenced by lifestyle, such as diet and exercise. The importance of a healthy lifestyle is of relevance to highly prevalent modern chronic diseases, such as Alzheimer's disease (AD). There is growing evidence at multiple levels for a role of Sirt1/SIRT1 in AD pathological mechanisms. As such, this review will explore the relevance of Sirt1 to AD pathological mechanisms, by describing the involvement of Sirt1/SIRT1 in the development of AD pathological hallmarks, through its impact on the metabolism of amyloid-β and degradation of phosphorylated tau. We then explore the involvement of Sirt1/SIRT1 across different AD-relevant biological processes, including cholesterol metabolism, inflammation, circadian rhythm, and gut microbiome, before discussing the interplay between Sirt1 and AD-related lifestyle factors, such as diet, physical activity, and smoking, as well as depression, a common comorbidity. Genome-wide association studies have explored potential associations between SIRT1 and AD, as well as AD risk factors and co-morbidities. We summarize this evidence at the genetic level to highlight links between SIRT1 and AD, particularly associations with AD-related risk factors, such as heart disease. Finally, we review the current literature of potential interactions between SIRT1 genetic variants and lifestyle factors and how this evidence supports the need for further research to determine the relevance of these interactions with respect to AD and dementia.
Collapse
Affiliation(s)
- Mehrane Mehramiz
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Eleanor K. O’Brien
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Stephanie R. Rainey-Smith
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- School of Psychological Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Simon M. Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
122
|
Liao Q, Zhu C, Sun X, Wang Z, Chen X, Deng H, Tang J, Jia S, Liu W, Xiao W, Liu X. Disruption of sirtuin 7 in zebrafish facilitates hypoxia tolerance. J Biol Chem 2023; 299:105074. [PMID: 37481210 PMCID: PMC10448219 DOI: 10.1016/j.jbc.2023.105074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023] Open
Abstract
SIRT7 is a member of the sirtuin family proteins with nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase activity, which can inhibit the activity of hypoxia-inducible factors independently of its enzymatic activity. However, the role of SIRT7 in affecting hypoxia signaling in vivo is still elusive. Here, we find that sirt7-null zebrafish are more resistant to hypoxic conditions, along with an increase of hypoxia-responsive gene expression and erythrocyte numbers, compared with their wildtype siblings. Overexpression of sirt7 suppresses the expression of hypoxia-responsive genes. Further assays indicate that sirt7 interacts with zebrafish hif-1αa, hif-1αb, hif-2αa, and hif-2αb to inhibit their transcriptional activity and mediate their protein degradation. In addition, sirt7 not only binds to the hypoxia responsive element of hypoxia-inducible gene promoters but also causes a reduction of H3K18Ac on these promoters. Sirt7 may regulate hypoxia-responsive gene expression through its enzymatic and nonenzymatic activities. This study provides novel insights into sirt7 function and sheds new light on the regulation of hypoxia signaling by sirt7.
Collapse
Affiliation(s)
- Qian Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chunchun Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xueyi Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zixuan Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hongyan Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jinhua Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shuke Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Hubei Hongshan Laboratory, Wuhan, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China.
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
123
|
Liu Y, Yang H, Luo N, Fu Y, Qiu F, Pan Z, Li X, Jian W, Yang X, Xue Q, Luo Y, Yu B, Liu Z. An Fgr kinase inhibitor attenuates sepsis-associated encephalopathy by ameliorating mitochondrial dysfunction, oxidative stress, and neuroinflammation via the SIRT1/PGC-1α signaling pathway. J Transl Med 2023; 21:486. [PMID: 37475042 PMCID: PMC10360347 DOI: 10.1186/s12967-023-04345-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is characterized by diffuse brain dysfunction, long-term cognitive impairment, and increased morbidity and mortality. The current treatment for SAE is mainly symptomatic; the lack of specific treatment options and a poor understanding of the underlying mechanism of disease are responsible for poor patient outcomes. Fgr is a member of the Src family of tyrosine kinases and is involved in the innate immune response, hematologic cancer, diet-induced obesity, and hemorrhage-induced thalamic pain. This study investigated the protection provided by an Fgr kinase inhibitor in SAE and the underlying mechanism(s) of action. METHODS A cecal ligation and puncture (CLP)-induced mouse sepsis model was established. Mice were treated with or without an Fgr inhibitor and a PGC-1α inhibitor/activator. An open field test, a novel object recognition test, and an elevated plus maze were used to assess neurobehavioral changes in the mice. Western blotting and immunofluorescence were used to measure protein expression, and mRNA levels were measured using quantitative PCR (qPCR). An enzyme-linked immunosorbent assay was performed to quantify inflammatory cytokines. Mitochondrial membrane potential and morphology were measured by JC-1, electron microscopy, and the MitoTracker Deep Red probe. Oxidative stress and mitochondrial dysfunction were analyzed. In addition, the regulatory effect of Fgr on sirtuin 1 (SIRT1) was assessed. RESULTS CLP-induced sepsis increased the expression of Fgr in the hippocampal neurons. Pharmacological inhibition of Fgr attenuated CLP-induced neuroinflammation, the survival rate, cognitive and emotional dysfunction, oxidative stress, and mitochondrial dysfunction. Moreover, Fgr interacted with SIRT1 and reduced its activity and expression. In addition, activation of SIRT1/PGC-1α promoted the protective effects of the Fgr inhibitor on CLP-induced brain dysfunction, while inactivation of SIRT1/PGC-1α counteracted the benefits of the Fgr inhibitor. CONCLUSIONS To our knowledge, this is the first report of Fgr kinase inhibition markedly ameliorating SAE through activation of the SIRT1/PGC-1α pathway, and this may be a promising therapeutic target for SAE.
Collapse
Affiliation(s)
- Yuqiang Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Han Yang
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Nanbo Luo
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yifei Fu
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fang Qiu
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Zhenglong Pan
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiongjuan Li
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wenling Jian
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xinping Yang
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qingsheng Xue
- Department of Anesthesiology, Ruijin Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Zhiheng Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| |
Collapse
|
124
|
Grabowska AD, Wątroba M, Witkowska J, Mikulska A, Sepúlveda N, Szukiewicz D. Interplay between Systemic Glycemia and Neuroprotective Activity of Resveratrol in Modulating Astrocyte SIRT1 Response to Neuroinflammation. Int J Mol Sci 2023; 24:11640. [PMID: 37511397 PMCID: PMC10380505 DOI: 10.3390/ijms241411640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The flow of substances between the blood and the central nervous system is precisely regulated by the blood-brain barrier (BBB). Its disruption due to unbalanced blood glucose levels (hyper- and hypoglycemia) occurring in metabolic disorders, such as type 2 diabetes, can lead to neuroinflammation, and increase the risk of developing neurodegenerative diseases. One of the most studied natural anti-diabetic, anti-inflammatory, and neuroprotective compounds is resveratrol (RSV). It activates sirtuin 1 (SIRT1), a key metabolism regulator dependent on cell energy status. The aim of this study was to assess the astrocyte SIRT1 response to neuroinflammation and subsequent RSV treatment, depending on systemic glycemia. For this purpose, we used an optimized in vitro model of the BBB consisting of endothelial cells and astrocytes, representing microvascular and brain compartments (MC and BC), in different glycemic backgrounds. Astrocyte-secreted SIRT1 reached the highest concentration in hypo-, the lowest in normo-, and the lowest in hyperglycemic backgrounds. Lipopolysaccharide (LPS)-induced neuroinflammation caused a substantial decrease in SIRT1 in all glycemic backgrounds, as observed earliest in hyperglycemia. RSV partially counterbalanced the effect of LPS on SIRT1 secretion, most remarkably in normoglycemia. Our results suggest that abnormal glycemic states have a worse prognosis for RSV-therapy effectiveness compared to normoglycemia.
Collapse
Affiliation(s)
- Anna D. Grabowska
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology and Pathophysiology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (M.W.); (J.W.); (A.M.); (D.S.)
| | - Mateusz Wątroba
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology and Pathophysiology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (M.W.); (J.W.); (A.M.); (D.S.)
| | - Joanna Witkowska
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology and Pathophysiology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (M.W.); (J.W.); (A.M.); (D.S.)
| | - Agnieszka Mikulska
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology and Pathophysiology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (M.W.); (J.W.); (A.M.); (D.S.)
| | - Nuno Sepúlveda
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
- CEAUL—Centro de Estatística e Aplicações da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Dariusz Szukiewicz
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology and Pathophysiology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (M.W.); (J.W.); (A.M.); (D.S.)
| |
Collapse
|
125
|
Wu K, Wang Y, Liu R, Wang H, Rui T. The role of mammalian Sirtuin 6 in cardiovascular diseases and diabetes mellitus. Front Physiol 2023; 14:1207133. [PMID: 37497437 PMCID: PMC10366693 DOI: 10.3389/fphys.2023.1207133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023] Open
Abstract
Cardiovascular diseases are severe diseases posing threat to human health because of their high morbidity and mortality worldwide. The incidence of diabetes mellitus is also increasing rapidly. Various signaling molecules are involved in the pathogenesis of cardiovascular diseases and diabetes. Sirtuin 6 (Sirt6), which is a class III histone deacetylase, has attracted numerous attentions since its discovery. Sirt6 enjoys a unique structure, important biological functions, and is involved in multiple cellular processes such as stress response, mitochondrial biogenesis, transcription, insulin resistance, inflammatory response, chromatin silencing, and apoptosis. Sirt6 also plays significant roles in regulating several cardiovascular diseases including atherosclerosis, coronary heart disease, as well as cardiac remodeling, bringing Sirt6 into the focus of clinical interests. In this review, we examine the recent advances in understanding the mechanistic working through which Sirt6 alters the course of lethal cardiovascular diseases and diabetes mellitus.
Collapse
|
126
|
Tao Z, Jin Z, Wu J, Cai G, Yu X. Sirtuin family in autoimmune diseases. Front Immunol 2023; 14:1186231. [PMID: 37483618 PMCID: PMC10357840 DOI: 10.3389/fimmu.2023.1186231] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
In recent years, epigenetic modifications have been widely researched. As humans age, environmental and genetic factors may drive inflammation and immune responses by influencing the epigenome, which can lead to abnormal autoimmune responses in the body. Currently, an increasing number of studies have emphasized the important role of epigenetic modification in the progression of autoimmune diseases. Sirtuins (SIRTs) are class III nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylases and SIRT-mediated deacetylation is an important epigenetic alteration. The SIRT family comprises seven protein members (namely, SIRT1-7). While the catalytic core domain contains amino acid residues that have remained stable throughout the entire evolutionary process, the N- and C-terminal regions are structurally divergent and contribute to differences in subcellular localization, enzymatic activity and substrate specificity. SIRT1 and SIRT2 are localized in the nucleus and cytoplasm. SIRT3, SIRT4, and SIRT5 are mitochondrial, and SIRT6 and SIRT7 are predominantly found in the nucleus. SIRTs are key regulators of various physiological processes such as cellular differentiation, apoptosis, metabolism, ageing, immune response, oxidative stress, and mitochondrial function. We discuss the association between SIRTs and common autoimmune diseases to facilitate the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Zhengjie Tao
- Science and Education Section, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- Department of Ultrasonics, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Zihan Jin
- Clinical Lab, Changzhou Second People’s Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Jiabiao Wu
- Department of Immunology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Gaojun Cai
- Cardiology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Xiaolong Yu
- Science and Education Section, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- Department of Ultrasonics, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
127
|
Sosa Ponce ML, Remedios MH, Moradi-Fard S, Cobb JA, Zaremberg V. SIR telomere silencing depends on nuclear envelope lipids and modulates sensitivity to a lysolipid. J Cell Biol 2023; 222:e202206061. [PMID: 37042812 PMCID: PMC10103788 DOI: 10.1083/jcb.202206061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/29/2022] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
The nuclear envelope (NE) is important in maintaining genome organization. The role of lipids in communication between the NE and telomere regulation was investigated, including how changes in lipid composition impact gene expression and overall nuclear architecture. Yeast was treated with the non-metabolizable lysophosphatidylcholine analog edelfosine, known to accumulate at the perinuclear ER. Edelfosine induced NE deformation and disrupted telomere clustering but not anchoring. Additionally, the association of Sir4 at telomeres decreased. RNA-seq analysis showed altered expression of Sir-dependent genes located at sub-telomeric (0-10 kb) regions, consistent with Sir4 dispersion. Transcriptomic analysis revealed that two lipid metabolic circuits were activated in response to edelfosine, one mediated by the membrane sensing transcription factors, Spt23/Mga2, and the other by a transcriptional repressor, Opi1. Activation of these transcriptional programs resulted in higher levels of unsaturated fatty acids and the formation of nuclear lipid droplets. Interestingly, cells lacking Sir proteins displayed resistance to unsaturated-fatty acids and edelfosine, and this phenotype was connected to Rap1.
Collapse
Affiliation(s)
| | | | - Sarah Moradi-Fard
- Departments of Biochemistry and Molecular Biology and Oncology, Cumming School of Medicine, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Calgary, Canada
| | - Jennifer A. Cobb
- Departments of Biochemistry and Molecular Biology and Oncology, Cumming School of Medicine, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Calgary, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Vanina Zaremberg
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| |
Collapse
|
128
|
Shahraki K, Shahraki K, Ghasemi Boroumand P, Sheervalilou R. Promotor methylation in ocular surface squamous neoplasia development: epigenetics implications in molecular diagnosis. Expert Rev Mol Diagn 2023; 23:753-769. [PMID: 37493058 DOI: 10.1080/14737159.2023.2240238] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION Cancer is heavily influenced by epigenetic mechanisms that include DNA methylation, histone modifications, and non-coding RNA. A considerable proportion of human malignancies are believed to be associated with global DNA hypomethylation, with localized hypermethylation at promoters of certain genes. AREA COVERED The present review aims to emphasize on recent investigations on the epigenetic landscape of ocular surface squamous neoplasia, that could be targeted/explored using novel approaches such as personalized medicine. EXPERT OPINION While the former is thought to contribute to genomic instability, promoter-specific hypermethylation might facilitate tumorigenesis by silencing tumor suppressor genes. Ocular surface squamous neoplasia, the most prevalent type of ocular surface malignancy, is suggested to be affected by epigenetic mechanisms, as well. Although the exact role of epigenetics in ocular surface squamous neoplasia has mostly been unexplored, recent findings have greatly contributed to our understanding regarding this pathology of the eye.
Collapse
Affiliation(s)
- Kourosh Shahraki
- Ocular Tissue Engineering Research Center, Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Ophthalmology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Kianoush Shahraki
- Department of Ophthalmology, Zahedan University of Medical Sciences, Zahedan, Iran
- Cornea Department, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Paria Ghasemi Boroumand
- ENT, Head and Neck Research Center and Department, Iran University of Medical Science, Tehran, Iran
| | | |
Collapse
|
129
|
Song Q, Wang J, Griffiths A, Lee SM, Iyamu ID, Huang R, Cordoba-Chacon J, Song Z. Nicotinamide N-methyltransferase upregulation contributes to palmitate-elicited peroxisome proliferator-activated receptor transactivation in hepatocytes. Am J Physiol Cell Physiol 2023; 325:C29-C41. [PMID: 37212549 PMCID: PMC10259858 DOI: 10.1152/ajpcell.00010.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) plays a pivotal role in regulating lipid metabolism and hepatic PPARγ transactivation contributes to fatty liver development. Fatty acids (FAs) are well-known endogenous ligands for PPARγ. Palmitate, a 16-C saturated FA (SFA) and the most abundant SFA in human circulation, is a strong inducer of hepatic lipotoxicity, a central pathogenic factor for various fatty liver diseases. In this study, using both alpha mouse liver 12 (AML12) and primary mouse hepatocytes, we investigated the effects of palmitate on hepatic PPARγ transactivation and underlying mechanisms, as well as the role of PPARγ transactivation in palmitate-induced hepatic lipotoxicity, all of which remain ambiguous currently. Our data revealed that palmitate exposure was concomitant with both PPARγ transactivation and upregulation of nicotinamide N-methyltransferase (NNMT), a methyltransferase catalyzing the degradation of nicotinamide, the predominant precursor for cellular NAD+ biosynthesis. Importantly, we discovered that PPARγ transactivation by palmitate was blunted by NNMT inhibition, suggesting that NNMT upregulation plays a mechanistic role in PPARγ transactivation. Further investigations uncovered that palmitate exposure is associated with intracellular NAD+ decline and NAD+ replenishment with NAD+-enhancing agents, nicotinamide and nicotinamide riboside, obstructed palmitate-induced PPARγ transactivation, implying that cellular NAD+ decline resulted from NNMT upregulation represents a potential mechanism behind palmitate-elicited PPARγ transactivation. At last, our data showed that the PPARγ transactivation marginally ameliorated palmitate-induced intracellular triacylglycerol accumulation and cell death. Collectively, our data provided the first-line evidence supporting that NNMT upregulation plays a mechanistic role in palmitate-elicited PPARγ transactivation, potentially through reducing cellular NAD+ contents.NEW & NOTEWORTHY Hepatic PPARγ transactivation contributes to fatty liver development. Saturated fatty acids (SFAs) induce hepatic lipotoxicity. Here, we investigated whether and how palmitate, the most abundant SFA in the human blood, affects PPARγ transactivation in hepatocytes. We reported for the first time that upregulation of nicotinamide N-methyltransferase (NNMT), a methyltransferase catalyzing the degradation of nicotinamide, the predominant precursor for cellular NAD+ biosynthesis, plays a mechanistic role in regulating palmitate-elicited PPARγ transactivation through reducing intracellular NAD+ contents.
Collapse
Affiliation(s)
- Qing Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Jun Wang
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Alexandra Griffiths
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Samuel Man Lee
- Division of Endocrinology/Diabetes & Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Iredia D Iyamu
- Department of Medicinal Chemistry and Molecular Pharmacology, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, United States
| | - Jose Cordoba-Chacon
- Division of Endocrinology/Diabetes & Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
130
|
Park JS, Perl A. Endosome Traffic Modulates Pro-Inflammatory Signal Transduction in CD4 + T Cells-Implications for the Pathogenesis of Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:10749. [PMID: 37445926 DOI: 10.3390/ijms241310749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Endocytic recycling regulates the cell surface receptor composition of the plasma membrane. The surface expression levels of the T cell receptor (TCR), in concert with signal transducing co-receptors, regulate T cell responses, such as proliferation, differentiation, and cytokine production. Altered TCR expression contributes to pro-inflammatory skewing, which is a hallmark of autoimmune diseases, such as systemic lupus erythematosus (SLE), defined by a reduced function of regulatory T cells (Tregs) and the expansion of CD4+ helper T (Th) cells. The ensuing secretion of inflammatory cytokines, such as interferon-γ and interleukin (IL)-4, IL-17, IL-21, and IL-23, trigger autoantibody production and tissue infiltration by cells of the adaptive and innate immune system that induce organ damage. Endocytic recycling influences immunological synapse formation by CD4+ T lymphocytes, signal transduction from crosslinked surface receptors through recruitment of adaptor molecules, intracellular traffic of organelles, and the generation of metabolites to support growth, cytokine production, and epigenetic control of DNA replication and gene expression in the cell nucleus. This review will delineate checkpoints of endosome traffic that can be targeted for therapeutic interventions in autoimmune and other disease conditions.
Collapse
Affiliation(s)
- Joy S Park
- Department of Medicine, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Andras Perl
- Department of Medicine, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Microbiology and Immunology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
131
|
Kibby EM, Conte AN, Burroughs AM, Nagy TA, Vargas JA, Whalen LA, Aravind L, Whiteley AT. Bacterial NLR-related proteins protect against phage. Cell 2023; 186:2410-2424.e18. [PMID: 37160116 PMCID: PMC10294775 DOI: 10.1016/j.cell.2023.04.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/15/2022] [Accepted: 04/07/2023] [Indexed: 05/11/2023]
Abstract
Bacteria use a wide range of immune pathways to counter phage infection. A subset of these genes shares homology with components of eukaryotic immune systems, suggesting that eukaryotes horizontally acquired certain innate immune genes from bacteria. Here, we show that proteins containing a NACHT module, the central feature of the animal nucleotide-binding domain and leucine-rich repeat containing gene family (NLRs), are found in bacteria and defend against phages. NACHT proteins are widespread in bacteria, provide immunity against both DNA and RNA phages, and display the characteristic C-terminal sensor, central NACHT, and N-terminal effector modules. Some bacterial NACHT proteins have domain architectures similar to the human NLRs that are critical components of inflammasomes. Human disease-associated NLR mutations that cause stimulus-independent activation of the inflammasome also activate bacterial NACHT proteins, supporting a shared signaling mechanism. This work establishes that NACHT module-containing proteins are ancient mediators of innate immunity across the tree of life.
Collapse
Affiliation(s)
- Emily M Kibby
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Amy N Conte
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Toni A Nagy
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Jose A Vargas
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Lindsay A Whalen
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Aaron T Whiteley
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
132
|
He L, Wang J, Tao B, Zhu R, Li C, Ning B. Identification of ferroptosis-related genes in the progress of NASH. Front Endocrinol (Lausanne) 2023; 14:1184280. [PMID: 37305039 PMCID: PMC10247994 DOI: 10.3389/fendo.2023.1184280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Background Non-alcoholic steatohepatitis (NASH) is becoming more widespread, and some similarities exist between its etiology and ferroptosis. However, there are limited investigations on which ferroptosis-related genes (FRGs) are regulated in NASH and how to regulate them. We screened and validated the pivotal genes linked to ferroptosis in NASH to comprehend the function of ferroptosis in the development of NASH. Methods Two mRNA expression data were obtained from the Gene Expression Omnibus (GEO) as the training set and validation set respectively. FRGs were downloaded from FerrDb. The candidate genes were obtained from the intersection between differentially expressed genes (DEGs) and FRGs, and further analyzed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The hub genes were identified by the protein-protein interaction (PPI) network and Cytoscape. Then, FRGs closely related to the severity of NASH were identified and further confirmed using the validation set and mouse models. Ultimately, based on these genes, a diagnostic model was established to differentiate NASH from normal tissues using another data set from GEO. Results A total of 327 FRGs in NASH were acquired and subjected to GSEA. And 42 candidate genes were attained by overlapping the 585 FRGs with 2823 DEGs, and enrichment analysis revealed that these genes were primarily engaged in the fatty acid metabolic, inflammatory response, and oxidative stress. A total of 10 hub genes (PTGS2、IL1B、IL6、NQO1、ZFP36、SIRT1、ATF3、CDKN1A、EGR1、NOX4) were then screened by PPI network. The association between the expression of 10 hub genes and the progress of NASH was subsequently evaluated by a training set and verified by a validation set and mouse models. CDKN1A was up-regulated along with the development of NASH while SIRT1 was negatively correlated with the course of the disease. And the diagnostic model based on CDKN1A and SIRT1 successfully distinguished NASH from normal samples. Conclusion In summary, our findings provide a new approach for the diagnosis, prognosis, and treatment of NASH based on FRGs, while advancing our understanding of ferroptosis in NASH.
Collapse
Affiliation(s)
- Linwei He
- Department of Gastroenterology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jianming Wang
- Biology Science Institutes, Chongqing Medical University, Chongqing, China
| | - Baihua Tao
- Department of Gastroenterology, The People’s Hospital of Fengjie County, Chongqing, China
| | - Ruolan Zhu
- Department of Gastroenterology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Changbing Li
- Department of Gastroenterology, The People’s Hospital of Fengjie County, Chongqing, China
| | - Bo Ning
- Department of Gastroenterology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
133
|
Flori L, Piragine E, Spezzini J, Citi V, Calderone V, Martelli A. Influence of Polyphenols on Adipose Tissue: Sirtuins as Pivotal Players in the Browning Process. Int J Mol Sci 2023; 24:ijms24119276. [PMID: 37298226 DOI: 10.3390/ijms24119276] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Adipose tissue (AT) can be classified into two different types: (i) white adipose tissue (WAT), which represents the largest amount of total AT, and has the main function of storing fatty acids for energy needs and (ii) brown adipose tissue (BAT), rich in mitochondria and specialized in thermogenesis. Many exogenous stimuli, e.g., cold, exercise or pharmacological/nutraceutical tools, promote the phenotypic change of WAT to a beige phenotype (BeAT), with intermediate characteristics between BAT and WAT; this process is called "browning". The modulation of AT differentiation towards WAT or BAT, and the phenotypic switch to BeAT, seem to be crucial steps to limit weight gain. Polyphenols are emerging as compounds able to induce browning and thermogenesis processes, potentially via activation of sirtuins. SIRT1 (the most investigated sirtuin) activates a factor involved in mitochondrial biogenesis, peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), which, through peroxisome proliferator-activated receptor γ (PPAR-γ) modulation, induces typical genes of BAT and inhibits genes of WAT during the transdifferentiation process in white adipocytes. This review article aims to summarize the current evidence, from pre-clinical studies to clinical trials, on the ability of polyphenols to promote the browning process, with a specific focus on the potential role of sirtuins in the pharmacological/nutraceutical effects of natural compounds.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | - Jacopo Spezzini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, 56126 Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
134
|
Fang J, Chen W, Hou P, Liu Z, Zuo M, Liu S, Feng C, Han Y, Li P, Shi Y, Shao C. NAD + metabolism-based immunoregulation and therapeutic potential. Cell Biosci 2023; 13:81. [PMID: 37165408 PMCID: PMC10171153 DOI: 10.1186/s13578-023-01031-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 05/12/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a critical metabolite that acts as a cofactor in energy metabolism, and serves as a cosubstrate for non-redox NAD+-dependent enzymes, including sirtuins, CD38 and poly(ADP-ribose) polymerases. NAD+ metabolism can regulate functionality attributes of innate and adaptive immune cells and contribute to inflammatory responses. Thus, the manipulation of NAD+ bioavailability can reshape the courses of immunological diseases. Here, we review the basics of NAD+ biochemistry and its roles in the immune response, and discuss current challenges and the future translational potential of NAD+ research in the development of therapeutics for inflammatory diseases, such as COVID-19.
Collapse
Affiliation(s)
- Jiankai Fang
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Wangwang Chen
- Laboratory Animal Center, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Pengbo Hou
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Zhanhong Liu
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Muqiu Zuo
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Shisong Liu
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Chao Feng
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Yuyi Han
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Peishan Li
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China.
| | - Yufang Shi
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China.
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Changshun Shao
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
135
|
Li N, Miao Y, Ma J, Zhang P, Chen T, Liu Y, Che Z, Shahinnia F, Yang D. Consensus genomic regions for grain quality traits in wheat revealed by Meta-QTL analysis and in silico transcriptome integration. THE PLANT GENOME 2023:e20336. [PMID: 37144681 DOI: 10.1002/tpg2.20336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
Grain quality traits are the key factors that determine the economic value of wheat and are largely influenced by genetics and the environment. In this study, using a meta-analysis of quantitative trait loci (QTLs) and a comprehensive in silico transcriptome assessment, we identified key genomic regions and putative candidate genes for the grain quality traits protein content, gluten content, and test weight. A total of 508 original QTLs were collected from 41 articles on QTL mapping for the three quality traits in wheat published from 2003 to 2021. When these original QTLs were projected onto a high-density consensus map consisting of 14,548 markers, 313 QTLs resulted in the identification of 64 MQTLs distributed across 17 of the 21 chromosomes. Most of the meta-QTLs (MQTLs) were distributed on sub-genomes A and B. Compared with the original QTLs, the confidence interval (CI) of the MQTLs was smaller, with an average CI of 4.47 cM, while the projected QTLs CI was 11.13 cM (2.49-fold lower). The corresponding physical length of the MQTL ranged from 0.45 to 239.01 Mb. Thirty-one of these 64 MQTLs were validated in at least one genome-wide association study. In addition, five of the 64 MQTLs were selected and designated as core MQTLs. The 211 quality-related genes from rice were used to identify wheat homologs in MQTLs. In combination with transcriptional and omics analyses, 135 putative candidate genes were identified from 64 MQTL regions. The findings should contribute to a better understanding of the molecular genetic mechanisms underlying grain quality and the improvement of these traits in wheat breeding.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Aridland Crop Science, Gansu, China
- College of Life Science and Technology, Gansu Agricultural University, Gansu, China
| | - Yongping Miao
- State Key Laboratory of Aridland Crop Science, Gansu, China
- College of Life Science and Technology, Gansu Agricultural University, Gansu, China
| | - Jingfu Ma
- State Key Laboratory of Aridland Crop Science, Gansu, China
- College of Life Science and Technology, Gansu Agricultural University, Gansu, China
| | - Peipei Zhang
- State Key Laboratory of Aridland Crop Science, Gansu, China
| | - Tao Chen
- State Key Laboratory of Aridland Crop Science, Gansu, China
- College of Life Science and Technology, Gansu Agricultural University, Gansu, China
| | - Yuan Liu
- State Key Laboratory of Aridland Crop Science, Gansu, China
- College of Life Science and Technology, Gansu Agricultural University, Gansu, China
| | - Zhuo Che
- Plant Seed Master Station of Gansu Province, Gansu, China
| | - Fahimeh Shahinnia
- Institute for Crop Science and Plant Breeding, Bavarian State Research Centre for Agriculture, Freising, Germany
| | - Delong Yang
- State Key Laboratory of Aridland Crop Science, Gansu, China
- College of Life Science and Technology, Gansu Agricultural University, Gansu, China
| |
Collapse
|
136
|
Yan C, Hu W, Tu J, Li J, Liang Q, Han S. Pathogenic mechanisms and regulatory factors involved in alcoholic liver disease. J Transl Med 2023; 21:300. [PMID: 37143126 PMCID: PMC10158301 DOI: 10.1186/s12967-023-04166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023] Open
Abstract
Alcoholism is a widespread and damaging behaviour of people throughout the world. Long-term alcohol consumption has resulted in alcoholic liver disease (ALD) being the leading cause of chronic liver disease. Many metabolic enzymes, including alcohol dehydrogenases such as ADH, CYP2E1, and CATacetaldehyde dehydrogenases ALDHsand nonoxidative metabolizing enzymes such as SULT, UGT, and FAEES, are involved in the metabolism of ethanol, the main component in alcoholic beverages. Ethanol consumption changes the functional or expression profiles of various regulatory factors, such as kinases, transcription factors, and microRNAs. Therefore, the underlying mechanisms of ALD are complex, involving inflammation, mitochondrial damage, endoplasmic reticulum stress, nitrification, and oxidative stress. Moreover, recent evidence has demonstrated that the gut-liver axis plays a critical role in ALD pathogenesis. For example, ethanol damages the intestinal barrier, resulting in the release of endotoxins and alterations in intestinal flora content and bile acid metabolism. However, ALD therapies show low effectiveness. Therefore, this review summarizes ethanol metabolism pathways and highly influential pathogenic mechanisms and regulatory factors involved in ALD pathology with the aim of new therapeutic insights.
Collapse
Affiliation(s)
- Chuyun Yan
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Jinqi Tu
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College of Wuhu, Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Shuxin Han
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
137
|
Zhao Y, Xie M, Wang C, Wang Y, Peng Y, Nie X. Effects of atorvastatin on the Sirtuin/PXR signaling pathway in Mugilogobius chulae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60009-60022. [PMID: 37016258 DOI: 10.1007/s11356-023-26736-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/27/2023] [Indexed: 05/10/2023]
Abstract
Atorvastatin (ATV) is a hypolipidemic drug widely detected in the aquatic environment. Nevertheless, limited information is provided about the toxic effects of ATV on estuary or coastal species and the underlying mechanisms. In the present study, the responses of genes expression in pregnane X receptor (PXR) signaling pathway and enzymatic activities in the liver of the estuarine benthic fish (Mugilogobius chulae) were investigated under acute and sub-chronic ATV exposure. Results showed that PXR was significantly inhibited in the highest exposure concentration of ATV for a shorter time (24 h, 500 μg L-1) but induced in a lower concentration (72 h, 5 μg L-1). The downstream genes in PXR signaling pathway such as CYP3A, SULT, UGT, and GST showed similar trends to PXR. P-gp and MRP1 were repressed in most treatments. GCLC associated with GSH synthesis was mostly induced under ATV exposure for a long time (168 h), suggesting that reactive oxygen species (ROS) were generated under ATV exposure. Similarly, GST and SOD enzymatic activities significantly increased in most exposure treatments. Under ATV exposure, SIRT1 and SIRT2 displayed induction to some extent in most treatments, suggesting that SIRTs may affect PXR expression by regulating the acetylation levels of PXR. The investigation demonstrated that ATV exposure affected the expression of the Sirtuin/PXR signaling pathway, thus further interfered adaption of M. chulae to the environment.
Collapse
Affiliation(s)
- Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Meinan Xie
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Chao Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Ying Peng
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
138
|
Chen H, Liu M, Li Q, Zhou P, Huang J, Zhu Q, Li Z, Ge RS. Exposure to dipentyl phthalate in utero disrupts the adrenal cortex function of adult male rats by inhibiting SIRT1/PGC-1α and inducing AMPK phosphorylation. ENVIRONMENTAL TOXICOLOGY 2023; 38:997-1010. [PMID: 36715143 DOI: 10.1002/tox.23743] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Di-n-pentyl phthalate (DPeP) is an endocrine-disrupting phthalate plasticizer. The objective of this study was to investigate the effect of DPeP on adrenocortical function in adult male rats following in utero exposure. DPeP (0, 10, 50, 100, and 500 mg/kg/day) was administered by gavage to pregnant Sprague-Dawley rats from gestational day 14 to 21. The morphology and function of the adrenal cortex in 56-day-old male offspring were studied. DPeP at 100 and 500 mg/kg/day significantly reduced serum aldosterone levels and at 500 mg/kg/day markedly reduced corticosterone and adrenocorticotropic hormone levels. DPeP at 10-500 mg/kg markedly reduced the thickness of zona glomerulosa without affecting the thickness of zona fasciculata. DPeP significantly downregulated the expression of Agtr1a, Mc2r, Scarb1, Cyp11a1, Hsd3b1, Cyp21, Cyp11b1, Cyp11b2, Nr5a1, Nr4a2, and Bcl2 genes as well as their proteins. DPeP at 500 mg/kg/day significantly increased phosphorylated AMPK, while DPeP at 100 mg/kg/day and higher doses reduced phosphorylated AKT1 and total SIRT1 level. DPeP at 100 and 500 μM markedly induced reactive oxygen species and apoptosis in H295R cells after 24 h of culture. In conclusion, in utero exposure to DPeP disrupts adrenocortical function of the adult male offspring by (1) increasing AMPK phosphorylation and decreasing AKT1 phosphorylation and SIRT1 levels, (2) reducing adrenocorticotropic hormone levels, and (3) possibly inducing oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Haiqiong Chen
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Traumatology, The Children's Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Miaoqing Liu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiyao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pingjiang Zhou
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Huang
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongrong Li
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
139
|
Groth B, Lee YC, Huang CC, McDaniel M, Huang K, Lee LH, Lin SJ. The Histone Deacetylases Hst1 and Rpd3 Integrate De Novo NAD + Metabolism with Phosphate Sensing in Saccharomyces cerevisiae. Int J Mol Sci 2023; 24:ijms24098047. [PMID: 37175754 PMCID: PMC10179157 DOI: 10.3390/ijms24098047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a critical cofactor essential for various cellular processes. Abnormalities in NAD+ metabolism have also been associated with a number of metabolic disorders. The regulation and interconnection of NAD+ metabolic pathways are not yet completely understood. By employing an NAD+ intermediate-specific genetic system established in the model organism S. cerevisiae, we show that histone deacetylases (HDACs) Hst1 and Rpd3 link the regulation of the de novo NAD+ metabolism-mediating BNA genes with certain aspects of the phosphate (Pi)-sensing PHO pathway. Our genetic and gene expression studies suggest that the Bas1-Pho2 and Pho2-Pho4 transcription activator complexes play a role in this co-regulation. Our results suggest a model in which competition for Pho2 usage between the BNA-activating Bas1-Pho2 complex and the PHO-activating Pho2-Pho4 complex helps balance de novo activity with PHO activity in response to NAD+ or phosphate depletion. Interestingly, both the Bas1-Pho2 and Pho2-Pho4 complexes appear to also regulate the expression of the salvage-mediating PNC1 gene negatively. These results suggest a mechanism for the inverse regulation between the NAD+ salvage pathways and the de novo pathway observed in our genetic models. Our findings help provide a molecular basis for the complex interplay of two different aspects of cellular metabolism.
Collapse
Affiliation(s)
- Benjamin Groth
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Yi-Ching Lee
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Chi-Chun Huang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Matilda McDaniel
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Katie Huang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Lan-Hsuan Lee
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
140
|
Allen AR, Jones A'V, LoBianco FV, Krager KJ, Aykin-Burns N. Effect of Sirt3 on hippocampal MnSOD activity, mitochondrial function, physiology, and cognition in an aged murine model. Behav Brain Res 2023; 444:114335. [PMID: 36804441 PMCID: PMC10081808 DOI: 10.1016/j.bbr.2023.114335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
The NAD(+)-dependent deacetylase SIRT3 is a proven mitochondrial metabolic stress sensor. It has been linked to the regulation of the mitochondrial acetylome and activation of several metabolic enzymes (e.g., manganese superoxide dismutase [MnSOD]) to protect mitochondrial function and redox homeostasis, which are vital for survival, excitability, and synaptic signaling of neurons mediating short- and long-term memory formation as well as retention. Eighteen-month-old male and female wild-type (WT) and Sirt3-/- mice were behaviorally tested for hippocampus-dependent cognitive performance in a Morris water maze paradigm. Cognitive impairment was displayed during the probe trial by female and male Sirt3-/- mice but not WT mice. Upon sacrifice, brains were fixed, and morphological assessments were conducted on hippocampal tissues. Both female and male Sirt3-/- mice demonstrated impaired spatial memory retention implying that SIRT3 plays a role in long-term memory function. Golgi-staining studies revealed decreased dendritic arborization and dendritic length in the hippocampi of male Sirt3-/- compared to WT animals. Sirt3 deletion significantly increased NR1, NR2A, and NR2B expression in the hippocampus of female mice only. Enzymatic activity of MnSOD, a major mitochondrial deacetylation target of SIRT3, was significantly decreased in both female and male Sirt3-/- mice. Similarly, both female and male Sirt3-/- mice demonstrated a significant decrease in their respiratory control ratio during Complex I-driven respiration, which was apparent only in female Sirt3-/- mice during Complex II-driven respiration.
Collapse
Affiliation(s)
- Antiño R Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - A 'Vonte Jones
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Francesca V LoBianco
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kimberly J Krager
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Nukhet Aykin-Burns
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
141
|
Luo G, Liu B, Fu T, Liu Y, Li B, Li N, Geng Q. The Role of Histone Deacetylases in Acute Lung Injury-Friend or Foe. Int J Mol Sci 2023; 24:ijms24097876. [PMID: 37175583 PMCID: PMC10178380 DOI: 10.3390/ijms24097876] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Acute lung injury (ALI), caused by intrapulmonary or extrapulmonary factors such as pneumonia, shock, and sepsis, eventually disrupts the alveolar-capillary barrier, resulting in diffuse pulmonary oedema and microatasis, manifested by refractory hypoxemia, and respiratory distress. Not only is ALI highly lethal, but even if a patient survives, there are also multiple sequelae. Currently, there is no better treatment than supportive care, and we urgently need to find new targets to improve ALI. Histone deacetylases (HDACs) are epigenetically important enzymes that, together with histone acetylases (HATs), regulate the acetylation levels of histones and non-histones. While HDAC inhibitors (HDACis) play a therapeutic role in cancer, inflammatory, and neurodegenerative diseases, there is also a large body of evidence suggesting the potential of HDACs as therapeutic targets in ALI. This review explores the unique mechanisms of HDACs in different cell types of ALI, including macrophages, pulmonary vascular endothelial cells (VECs), alveolar epithelial cells (AECs), and neutrophils.
Collapse
Affiliation(s)
- Guoqing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tinglv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Boyang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
142
|
Yalcin B, Yay AH, Tan FC, Özdamar S, Yildiz OG. Investigation of the anti-oxidative and anti-inflammatory effects of melatonin on experimental liver damage by radiation. Pathol Res Pract 2023; 246:154477. [PMID: 37148837 DOI: 10.1016/j.prp.2023.154477] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/19/2023] [Accepted: 04/20/2023] [Indexed: 05/08/2023]
Abstract
Radiotherapy is one of the inevitable treatment approaches for several types of cancer. We aimed to show the protective and therapeutic effects of daily use of melatonin on liver tissues subjected to a single dose of 10 Gy (gamma-ray) total body radiation. Rats were divided into 6 groups, of which 10 were in each: control, sham, melatonin, radiation, radiation+melatonin, and melatonin+radiation. The rats received 10 Gy of external radiation throughout their entire bodies. The rats were given 10 mg/kg/day of melatonin intraperitoneally before or after radiation treatment, depending on the group. Histological methods, immunohistochemical analysis (Caspase-3, Sirtuin-1, α-SMA, NFΚB-p65), biochemical analysis by ELİSA (SOD, CAT, GSH-PX, MDA, TNF-α, TGF-β, PDGF, PGC-1α) and the Comet assay as a marker of DNA damage were applied to the liver tissues. Histopathological examinations showed structural changes in the liver tissue of the radiation group. Radiation treatment increased the immunoreactivity of Caspase-3, Sirtuin-1 and α-SMA, but these effects were relatively attenuated in the melatonin-treated groups. The melatonin+radiation group had statistically significant results close to those of the control group, in terms of Caspase-3, NFΚB-p65 and Sirtuin-1 immunoreactivity. In melatonin treated groups, hepatic biochemical markers, MDA, SOD, TNF-α, TGF-β levels, and DNA damage parameters were decreased. Administration of melatonin before and after radiation has beneficial effects, but using it before radiation may be more efficient. Accordingly, daily melatonin usage could mitigate ionizing radiation induced damage.
Collapse
Affiliation(s)
- Betul Yalcin
- Adıyaman University, Faculty of Medicine, Department of Histology and Embryology, Adıyaman, Turkey.
| | - Arzu Hanım Yay
- Erciyes University, Faculty of Medicine, Department of Histology and Embryology, Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Fazile Cantürk Tan
- Erciyes University, Faculty of Medicine, Department of Biophysics, Kayseri, Turkey
| | - Saim Özdamar
- Pamukkale University, Faculty of Medicine, Department of Histology and Embryology, Kayseri, Turkey
| | - Oğuz Galip Yildiz
- Erciyes University, Faculty of Medicine, Department of Radiation Oncology, Kayseri, Turkey
| |
Collapse
|
143
|
Ortega-Campos SM, Verdugo-Sivianes EM, Amiama-Roig A, Blanco JR, Carnero A. Interactions of circadian clock genes with the hallmarks of cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188900. [PMID: 37105413 DOI: 10.1016/j.bbcan.2023.188900] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
The molecular machinery of the circadian clock regulates the expression of many genes and processes in the organism, allowing the adaptation of cellular activities to the daily light-dark cycles. Disruption of the circadian rhythm can lead to various pathologies, including cancer. Thus, disturbance of the normal circadian clock at both genetic and environmental levels has been described as an independent risk factor for cancer. In addition, researchers have proposed that circadian genes may have a tissue-dependent and/or context-dependent role in tumorigenesis and may function both as tumor suppressors and oncogenes. Finally, circadian clock core genes may trigger or at least be involved in different hallmarks of cancer. Hence, expanding the knowledge of the molecular basis of the circadian clock would be helpful to identify new prognostic markers of tumorigenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Sara M Ortega-Campos
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville 41013, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Eva M Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville 41013, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ana Amiama-Roig
- Hospital Universitario San Pedro, Logroño 26006, Spain; Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño 26006, Spain
| | - José R Blanco
- Hospital Universitario San Pedro, Logroño 26006, Spain; Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño 26006, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville 41013, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid 28029, Spain.
| |
Collapse
|
144
|
Mahmoudian RA, Akhlaghipour I, Lotfi M, Shahidsales S, Moghbeli M. Circular RNAs as the pivotal regulators of epithelial-mesenchymal transition in gastrointestinal tumor cells. Pathol Res Pract 2023; 245:154472. [PMID: 37087995 DOI: 10.1016/j.prp.2023.154472] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Gastrointestinal (GI) cancers, as the most common human malignancies are always considered one of the most important health challenges in the world. Late diagnosis in advanced tumor stages is one of the main reasons for the high mortality rate and treatment failure in these patients. Therefore, investigating the molecular pathways involved in GI tumor progression is required to introduce the efficient markers for the early tumor diagnosis. Epithelial-mesenchymal transition (EMT) is one of the main cellular mechanisms involved in the GI tumor metastasis. Non-coding RNAs (ncRNAs) are one of the main regulatory factors in EMT process. Circular RNAs (circRNAs) are a group of covalently closed loop ncRNAs that have higher stability in body fluids compared with other ncRNAs. Considering the importance of circRNAs in regulation of EMT process, in the present review we discussed the role of circRNAs in EMT process during GI tumor invasion. It has been reported that circRNAs mainly affect the EMT process through the regulation of EMT-specific transcription factors and signaling pathways such as WNT, PI3K/AKT, TGF-β, and MAPK. This review can be an effective step in introducing a circRNA/EMT based diagnostic panel marker for the early tumor detection among GI cancer patients.
Collapse
Affiliation(s)
- Reihaneh Alsadat Mahmoudian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
145
|
Sharma C, Donu D, Curry AM, Barton E, Cen Y. Multifunctional activity-based chemical probes for sirtuins. RSC Adv 2023; 13:11771-11781. [PMID: 37063743 PMCID: PMC10103746 DOI: 10.1039/d3ra02133e] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023] Open
Abstract
The sirtuin family of NAD+-dependent protein deacylases has gained significant attention during the last two decades, owing to their unique enzymatic activities as well as their critical roles in a broad array of cellular events. Innovative chemical probes are heavily pursued for the functional annotation and pharmacological perturbation of this group of "eraser" enzymes. We have developed several series of activity-based chemical probes (ABPs) to interrogate the functional state of active sirtuins in complex biological samples. They feature a simple Ala-Ala-Lys tripeptide backbone with a thioacyl "warhead", a photoaffinity group (benzophenone or diazirine), and a bioorthogonal group (terminal alkyne or azido) for conjugation to reporters. When applied in a comparative fashion, these probes reveal the changes of active sirtuin contents under different physiological conditions. Additionally, they can also be utilized in a competitive manner for inhibitor discovery. The Nobel-winning "click" conjugation to a fluorophore allows the visualization of the active enzymes, while the covalent adduct to a biotin leads to the affinity capture of the protein of interest. Furthermore, the "clickable" tag enables the easy access to proteolysis targeting chimeras (PROTACs) that effectively degrade human SIRT2 in HEK293 cells, albeit at micromolar concentrations. These small molecule probes offer unprecedented opportunities to investigate the biological functions and physiological relevance of the sirtuin family.
Collapse
Affiliation(s)
- Chiranjeev Sharma
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
| | - Dickson Donu
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
| | - Alyson M Curry
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
| | - Elizabeth Barton
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
| | - Yana Cen
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University Richmond VA 23219 USA
| |
Collapse
|
146
|
Velotti F, Bernini R. Hydroxytyrosol Interference with Inflammaging via Modulation of Inflammation and Autophagy. Nutrients 2023; 15:nu15071774. [PMID: 37049611 PMCID: PMC10096543 DOI: 10.3390/nu15071774] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
Inflammaging refers to a chronic, systemic, low-grade inflammation, driven by immune (mainly macrophages) and non-immune cells stimulated by endogenous/self, misplaced or altered molecules, belonging to physiological aging. This age-related inflammatory status is characterized by increased inflammation and decreased macroautophagy/autophagy (a degradation process that removes unnecessary or dysfunctional cell components). Inflammaging predisposes to age-related diseases, including obesity, type-2 diabetes, cancer, cardiovascular and neurodegenerative disorders, as well as vulnerability to infectious diseases and vaccine failure, representing thus a major target for anti-aging strategies. Phenolic compounds-found in extra-virgin olive oil (EVOO)-are well known for their beneficial effect on longevity. Among them, hydroxytyrosol (HTyr) appears to greatly contribute to healthy aging by its documented potent antioxidant activity. In addition, HTyr can modulate inflammation and autophagy, thus possibly counteracting and reducing inflammaging. In this review, we reference the literature on pure HTyr as a modulatory agent of inflammation and autophagy, in order to highlight its possible interference with inflammaging. This HTyr-mediated activity might contribute to healthy aging and delay the development or progression of diseases related to aging.
Collapse
Affiliation(s)
- Francesca Velotti
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
147
|
Matsubayashi S, Ito S, Araya J, Kuwano K. Drugs against metabolic diseases as potential senotherapeutics for aging-related respiratory diseases. Front Endocrinol (Lausanne) 2023; 14:1079626. [PMID: 37077349 PMCID: PMC10106576 DOI: 10.3389/fendo.2023.1079626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Recent advances in aging research have provided novel insights for the development of senotherapy, which utilizes cellular senescence as a therapeutic target. Cellular senescence is involved in the pathogenesis of various chronic diseases, including metabolic and respiratory diseases. Senotherapy is a potential therapeutic strategy for aging-related pathologies. Senotherapy can be classified into senolytics (induce cell death in senescent cells) and senomorphics (ameliorate the adverse effects of senescent cells represented by the senescence-associated secretory phenotype). Although the precise mechanism has not been elucidated, various drugs against metabolic diseases may function as senotherapeutics, which has piqued the interest of the scientific community. Cellular senescence is involved in the pathogenesis of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF), which are aging-related respiratory diseases. Large-scale observational studies have reported that several drugs, such as metformin and statins, may ameliorate the progression of COPD and IPF. Recent studies have reported that drugs against metabolic diseases may exert a pharmacological effect on aging-related respiratory diseases that can be different from their original effect on metabolic diseases. However, high non-physiological concentrations are needed to determine the efficacy of these drugs under experimental conditions. Inhalation therapy may increase the local concentration of drugs in the lungs without exerting systemic adverse effects. Thus, the clinical application of drugs against metabolic diseases, especially through an inhalation treatment modality, can be a novel therapeutic approach for aging-related respiratory diseases. This review summarizes and discusses accumulating evidence on the mechanisms of aging, as well as on cellular senescence and senotherapeutics, including drugs against metabolic diseases. We propose a developmental strategy for a senotherapeutic approach for aging-related respiratory diseases with a special focus on COPD and IPF.
Collapse
|
148
|
Yue J, Khan RS, Duong TT, Dine KE, Cui QN, O'Neill N, Aravand P, Liu T, Chaqour B, Shindler KS, Ross AG. Cell-Specific Expression of Human SIRT1 by Gene Therapy Reduces Retinal Ganglion Cell Loss Induced by Elevated Intraocular Pressure. Neurotherapeutics 2023; 20:896-907. [PMID: 36941497 PMCID: PMC10275821 DOI: 10.1007/s13311-023-01364-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
SIRT1 prevents retinal ganglion cell (RGC) loss in several acute and subacute optic neuropathy models following pharmacologic activation or genetic overexpression. We hypothesized that adeno-associated virus (AAV)-mediated overexpression of SIRT1 in RGCs in a chronic ocular hypertension model can reduce RGC loss, thereby preserving visual function by sustained therapeutic effect. A control vector AAV-eGFP and therapeutic vector AAV-SIRT1 were constructed and optimized for transduction efficiency. A magnetic microbead mouse model of ocular hypertension was optimized to induce a time-dependent and chronic loss of visual function and RGC degeneration. Mice received intravitreal injection of control or therapeutic AAV in which a codon-optimized human SIRT1 expression is driven by a RGC selective promoter. Intraocular pressure (IOP) was measured, and visual function was examined by optokinetic response (OKR) weekly for 49 days following microbead injection. Visual function, RGC survival, and axon numbers were compared among control and therapeutic AAV-treated animals. AAV-eGFP and AAV-SIRT1 showed transduction efficiency of ~ 40%. AAV-SIRT1 maintains the transduction of SIRT1 over time and is selectively expressed in RGCs. Intravitreal injections of AAV-SIRT1 in a glaucoma model preserved visual function, increased RGC survival, and reduced axonal degeneration compared with the control construct. Over-expression of SIRT1 through AAV-mediated gene transduction indicates a RGC-selective component of neuroprotection in multiple models of acute optic nerve degeneration. Results here show a neuroprotective effect of RGC-selective gene therapy in a chronic glaucoma model characterized by sustained elevation of IOP and subsequent RGC loss. Results suggest that this strategy may be an effective therapeutic approach for treating glaucoma, and warrants evaluation for the treatment of other chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Jipeng Yue
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
| | - Reas S Khan
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thu T Duong
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimberly E Dine
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
| | - Qi N Cui
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
| | - Nuala O'Neill
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
| | - Puya Aravand
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tehui Liu
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brahim Chaqour
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth S Shindler
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmara G Ross
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA.
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
149
|
Kamata K, Ayano T, Oki M. Spt3 and Spt8 Are Involved in the Formation of a Silencing Boundary by Interacting with TATA-Binding Protein. Biomolecules 2023; 13:biom13040619. [PMID: 37189367 DOI: 10.3390/biom13040619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
In Saccharomyces cerevisiae, a heterochromatin-like chromatin structure called the silencing region is present at the telomere as a complex of Sir2, Sir3, and Sir4. Although spreading of the silencing region is blocked by histone acetylase-mediated boundary formation, the details of the factors and mechanisms involved in the spread and formation of the boundary at each telomere are unknown. Here, we show that Spt3 and Spt8 block the spread of the silencing regions. Spt3 and Spt8 are members of the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex, which has histone acetyltransferase activity. We performed microarray analysis of the transcriptome of spt3Δ and spt8Δ strains and RT-qPCR analysis of the transcript levels of genes from the subtelomeric region in mutants in which the interaction of Spt3 with TATA-binding protein (TBP) is altered. The results not only indicated that both Spt3 and Spt8 are involved in TBP-mediated boundary formation on the right arm of chromosome III, but also that boundary formation in this region is DNA sequence independent. Although both Spt3 and Spt8 interact with TBP, Spt3 had a greater effect on genome-wide transcription. Mutant analysis showed that the interaction between Spt3 and TBP plays an important role in the boundary formation.
Collapse
|
150
|
Kang H, Kim S, Lee JY, Kim B. Inhibitory Effects of Ginsenoside Compound K on Lipopolysaccharide-Stimulated Inflammatory Responses in Macrophages by Regulating Sirtuin 1 and Histone Deacetylase 4. Nutrients 2023; 15:nu15071626. [PMID: 37049466 PMCID: PMC10096759 DOI: 10.3390/nu15071626] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/08/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Inflammation, an innate immune response mediated by macrophages, has been a hallmark leading to the pathophysiology of diseases. In this study, we examined the inhibitory effects of ginsenoside compound K (CK) on lipopolysaccharide (LPS)-induced inflammation and metabolic alteration in RAW 264.7 macrophages by regulating sirtuin 1 (SIRT1) and histone deacetylase 4 (HDAC4). LPS suppressed SIRT1 while promoting HDAC4 expression, accompanied by increases in cellular reactive oxygen species accumulation and pro-inflammatory gene expression; however, the addition of CK elicited the opposite effects. CK ameliorated the LPS-induced increase in glycolytic genes and abrogated the LPS-altered genes engaged in the NAD+ salvage pathway. LPS decreased basal, maximal, and non-mitochondrial respiration, reducing ATP production and proton leak in macrophages, which were abolished by CK. SIRT1 inhibition augmented Hdac4 expression along with increased LPS-induced inflammatory and glycolytic gene expression, while decreasing genes that regulate mitochondrial biogenesis; however, its activation resulted in the opposite effects. Inhibition of HDAC4 enhanced Sirt1 expression and attenuated the LPS-induced inflammatory gene expression. In conclusion, CK exerted anti-inflammatory and antioxidant properties with the potential to counteract the alterations of energy metabolism, including glycolysis and mitochondrial respiration, through activating SIRT1 and repressing HDAC4 in LPS-stimulated macrophages.
Collapse
Affiliation(s)
- Hyunju Kang
- Department of Food and Nutrition, Keimyung University, Daegu 42601, Republic of Korea
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Jin-Young Lee
- Department of Biological Sciences, Keimyung University, Daegu 42601, Republic of Korea
| | - Bohkyung Kim
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: ; Tel.: +82-51-510-2844
| |
Collapse
|