101
|
Song Y, Sun L, Lin M, Chen J, Qi X, Hu C, Fang J. Comparative transcriptome analysis of resistant and susceptible kiwifruits in response to Pseudomonas syringae pv. Actinidiae during early infection. PLoS One 2019; 14:e0211913. [PMID: 30779751 PMCID: PMC6380551 DOI: 10.1371/journal.pone.0211913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/22/2019] [Indexed: 12/22/2022] Open
Abstract
Kiwifruit bacterial canker is a devastating disease threatening kiwifruit production. To clarify the defense mechanism in response to Pseudomonas syringae pv. actinidiae (Psa), we observed phenotypic changes in resistant Huate (HT) and susceptible Hongyang (HY) kiwifruit varieties at 0, 12, 24, 48, 96, and 144 hour after inoculation (hai) with Psa. Brown lesions appeared in the inoculation areas 12 hai in HY shoots, and the lesion length gradually increased from 24 to 144 h. In contrast, no lesions were found in HT shoots at any time points. Furthermore, RNA-seq analysis showed significantly more differentially expressed genes between HT and HY at 12 hai than at any other time point. According to weighted gene co-expression network analysis, five modules were notably differentially expressed between HT and HY; pathway mapping using the Kyoto Encyclopedia of Gene and Genomes database was performed for the five modules. In MEgreenyellow and MEyellow modules, pathways related to"plant-pathogen interaction", "Endocytosis", "Glycine, serine and threonine metabolism", and "Carbon fixation in photosynthetic organisms" were enriched, whereas in the MEblack module, pathways related to "protein processing in endoplasmic reticulum", "plant-pathogen interaction", and "Glycolysis / Gluconeogenesis" were enriched. In particular, the Pti1 and RPS2 encoding effector receptors, and the NPR1, TGA, and PR1 genes involved in the salicylic acid signaling pathway were significantly up-regulated in HT compared with HY. This indicates that the effector-triggered immunity response was stronger and that the salicylic acid signaling pathway played a pivotal role in the Psa defense response of HT. In addition, we identified other important genes, involved in phenylpropanoid biosynthesis and Ca2+ internal flow, which were highly expressed in HT. Taken together, these results provide important information to elucidate the defense mechanisms of kiwifruit during Psa infection.
Collapse
Affiliation(s)
- Yalin Song
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Leiming Sun
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Miaomiao Lin
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jinyong Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiujuan Qi
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Chungen Hu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- * E-mail: (JF); (CH)
| | - Jinbao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- * E-mail: (JF); (CH)
| |
Collapse
|
102
|
Seifi HS, Shelp BJ. Spermine Differentially Refines Plant Defense Responses Against Biotic and Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2019; 10:117. [PMID: 30800140 PMCID: PMC6376314 DOI: 10.3389/fpls.2019.00117] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/23/2019] [Indexed: 05/05/2023]
Abstract
Roles of the major polyamines (mPA), putrescine, spermidine, and spermine (Spm), in various developmental and physiological processes in plants have been well documented. Recently, there has been increasing focus on the link between mPA metabolism and defense response during plant-stress interactions. Empirical evidence is available for a unique role of Spm, distinct from the other mPA, in eliciting an effective defense response to (a)biotic stresses. Our understanding of the precise molecular mechanism(s) by which Spm modulates these defense mechanisms is limited. Further analysis of recent studies indicates that plant Spm functions differently during biotic and abiotic interactions in the regulation of oxidative homeostasis and phytohormone signaling. Here, we summarize and integrate current knowledge about Spm-mediated modulation of plant defense responses to (a)biotic stresses, highlighting the importance of Spm as a potent plant defense activator with broad-spectrum protective effects. A model is proposed to explain how Spm refines defense mechanisms to tailor an optimal resistance response.
Collapse
Affiliation(s)
| | - Barry J. Shelp
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
103
|
Yan Q, Si J, Cui X, Peng H, Jing M, Chen X, Xing H, Dou D. GmDAD1, a Conserved Defender Against Cell Death 1 ( DAD1) From Soybean, Positively Regulates Plant Resistance Against Phytophthora Pathogens. FRONTIERS IN PLANT SCIENCE 2019; 10:107. [PMID: 30800138 PMCID: PMC6376896 DOI: 10.3389/fpls.2019.00107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/23/2019] [Indexed: 05/09/2023]
Abstract
Initially identified as a mammalian apoptosis suppressor, defender against apoptotic death 1 (DAD1) protein has conserved plant orthologs acting as negative regulators of cell death. The potential roles and action mechanisms of plant DADs in resistance against Phytophthora pathogens are still unknown. Here, we cloned GmDAD1 from soybean and performed functional dissection. GmDAD1 expression can be induced by Phytophthora sojae infection in both compatible and incompatible soybean varieties. By manipulating GmDAD1 expression in soybean hairy roots, we showed that GmDAD1 transcript accumulations are positively correlated with plant resistance levels against P. sojae. Heterologous expression of GmDAD1 in Nicotiana benthamiana enhanced its resistance to Phytophthora parasitica. NbDAD1 from N. benthamiana was shown to have similar role in conferring Phytophthora resistance. As an endoplasmic reticulum (ER)-localized protein, GmDAD1 was demonstrated to be involved in ER stress signaling and to affect the expression of multiple defense-related genes. Taken together, our findings reveal that GmDAD1 plays a critical role in defense against Phytophthora pathogens and might participate in the ER stress signaling pathway. The defense-associated characteristic of GmDAD1 makes it a valuable working target for breeding Phytophthora resistant soybean varieties.
Collapse
Affiliation(s)
- Qiang Yan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jierui Si
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoxia Cui
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Hao Peng
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Maofeng Jing
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Han Xing
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
104
|
Hernández-López A, Díaz M, Rodríguez-López J, Guillén G, Sánchez F, Díaz-Camino C. Uncovering Bax inhibitor-1 dual role in the legume-rhizobia symbiosis in common bean roots. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1049-1061. [PMID: 30462254 PMCID: PMC6363093 DOI: 10.1093/jxb/ery417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/13/2018] [Indexed: 05/23/2023]
Abstract
Bax-inhibitor 1 (BI-1) is a cell death suppressor conserved in all eukaryotes that modulates cell death in response to abiotic stress and pathogen attack in plants. However, little is known about its role in the establishment of symbiotic interactions. Here, we demonstrate the functional relevance of an Arabidopsis thaliana BI-1 homolog (PvBI-1a) to symbiosis between the common bean (Phaseolus vulgaris) and Rhizobium tropici. We show that the changes in expression of PvBI-1a observed during early symbiosis resemble those of some defence response-related proteins. By using gain- and loss-of-function approaches, we demonstrate that the overexpression of PvBI-1a in the roots of common bean increases the number of rhizobial infection events (and therefore the final number of nodules per root), but induces the premature death of nodule cells, affecting their nitrogen fixation efficiency. Nodule morphological alterations are known to be associated with changes in the expression of genes tied to defence, autophagy, and vesicular trafficking. Results obtained in the present work suggest that BI-1 has a dual role in the regulation of programmed cell death during symbiosis, extending our understanding of its critical function in the modulation of host immunity while responding to beneficial microbes.
Collapse
Affiliation(s)
- Alejandrina Hernández-López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | - Mauricio Díaz
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | - Jonathan Rodríguez-López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | - Gabriel Guillén
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | - Federico Sánchez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | - Claudia Díaz-Camino
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| |
Collapse
|
105
|
Li PT, Rashid MHO, Chen TT, Lu QW, Ge Q, Gong WK, Liu AY, Gong JW, Shang HH, Deng XY, Li JW, Li SQ, Xiao XH, Liu RX, Zhang Q, Duan L, Zou XY, Zhang Z, Jiang X, Zhang Y, Peng RH, Shi YZ, Yuan YL. Transcriptomic and biochemical analysis of upland cotton (Gossypium hirsutum) and a chromosome segment substitution line from G. hirsutum × G. barbadense in response to Verticillium dahliae infection. BMC PLANT BIOLOGY 2019; 19:19. [PMID: 30634907 PMCID: PMC6329193 DOI: 10.1186/s12870-018-1619-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/26/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Verticillium wilt (VW), also known as "cotton cancer," is one of the most destructive diseases in global cotton production that seriously impacts fiber yield and quality. Despite numerous attempts, little significant progress has been made in improving the VW resistance of upland cotton. The development of chromosome segment substitution lines (CSSLs) from Gossypium hirsutum × G. barbadense has emerged as a means of simultaneously developing new cotton varieties with high-yield, superior fiber, and resistance to VW. RESULTS In this study, VW-resistant investigations were first conducted in an artificial greenhouse, a natural field, and diseased nursery conditions, resulting in the identification of one stably VW-resistant CSSL, MBI8255, and one VW-susceptible G. hirsutum, CCRI36, which were subsequently subjected to biochemical tests and transcriptome sequencing during V991 infection (0, 1, and 2 days after inoculation). Eighteen root samples with three replications were collected to perform multiple comparisons of enzyme activity and biochemical substance contents. The findings indicated that VW resistance was positively correlated with peroxidase and polyphenol oxidase activity, but negatively correlated with malondialdehyde content. Additionally, RNA sequencing was used for the same root samples, resulting in a total of 77,412 genes, of which 23,180 differentially expressed genes were identified from multiple comparisons between samples. After Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis on the expression profiles identified using Short Time-series Expression Miner, we found that the metabolic process in the biological process, as well as the pathways of phenylpropanoid biosynthesis and plant hormone signal transduction, participated significantly in the response to VW. Gene functional annotation and expression quantity analysis indicated the important roles of the phenylpropanoid metabolic pathway and oxidation-reduction process in response to VW, which also provided plenty of candidate genes related to plant resistance. CONCLUSIONS This study concentrates on the preliminary response to V991 infection by comparing the VW-resistant CSSL and its VW-susceptible recurrent parent. Not only do our findings facilitate the culturing of new resistant varieties with high yield and superior performance, but they also broaden our understanding of the mechanisms of cotton resistance to VW.
Collapse
Affiliation(s)
- Peng-tao Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000 Henan China
| | - Md. Harun or Rashid
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Ting-ting Chen
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Quan-wei Lu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000 Henan China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Wan-kui Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Ai-ying Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Ju-wu Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Hai-hong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Xiao-ying Deng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Jun-wen Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Shao-qi Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Xiang-hui Xiao
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Rui-xian Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Qi Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Li Duan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Xian-yan Zou
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Zhen Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Xiao Jiang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Ya Zhang
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000 Henan China
| | - Ren-hai Peng
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000 Henan China
| | - Yu-zhen Shi
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - You-lu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| |
Collapse
|
106
|
Li PT, Rashid MHO, Chen TT, Lu QW, Ge Q, Gong WK, Liu AY, Gong JW, Shang HH, Deng XY, Li JW, Li SQ, Xiao XH, Liu RX, Zhang Q, Duan L, Zou XY, Zhang Z, Jiang X, Zhang Y, Peng RH, Shi YZ, Yuan YL. Transcriptomic and biochemical analysis of upland cotton (Gossypium hirsutum) and a chromosome segment substitution line from G. hirsutum × G. barbadense in response to Verticillium dahliae infection. BMC PLANT BIOLOGY 2019; 19:19. [PMID: 30634907 DOI: 10.1186/s12870-018-1619-1614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/26/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Verticillium wilt (VW), also known as "cotton cancer," is one of the most destructive diseases in global cotton production that seriously impacts fiber yield and quality. Despite numerous attempts, little significant progress has been made in improving the VW resistance of upland cotton. The development of chromosome segment substitution lines (CSSLs) from Gossypium hirsutum × G. barbadense has emerged as a means of simultaneously developing new cotton varieties with high-yield, superior fiber, and resistance to VW. RESULTS In this study, VW-resistant investigations were first conducted in an artificial greenhouse, a natural field, and diseased nursery conditions, resulting in the identification of one stably VW-resistant CSSL, MBI8255, and one VW-susceptible G. hirsutum, CCRI36, which were subsequently subjected to biochemical tests and transcriptome sequencing during V991 infection (0, 1, and 2 days after inoculation). Eighteen root samples with three replications were collected to perform multiple comparisons of enzyme activity and biochemical substance contents. The findings indicated that VW resistance was positively correlated with peroxidase and polyphenol oxidase activity, but negatively correlated with malondialdehyde content. Additionally, RNA sequencing was used for the same root samples, resulting in a total of 77,412 genes, of which 23,180 differentially expressed genes were identified from multiple comparisons between samples. After Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis on the expression profiles identified using Short Time-series Expression Miner, we found that the metabolic process in the biological process, as well as the pathways of phenylpropanoid biosynthesis and plant hormone signal transduction, participated significantly in the response to VW. Gene functional annotation and expression quantity analysis indicated the important roles of the phenylpropanoid metabolic pathway and oxidation-reduction process in response to VW, which also provided plenty of candidate genes related to plant resistance. CONCLUSIONS This study concentrates on the preliminary response to V991 infection by comparing the VW-resistant CSSL and its VW-susceptible recurrent parent. Not only do our findings facilitate the culturing of new resistant varieties with high yield and superior performance, but they also broaden our understanding of the mechanisms of cotton resistance to VW.
Collapse
Affiliation(s)
- Peng-Tao Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Md Harun Or Rashid
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Ting-Ting Chen
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Quan-Wei Lu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Wan-Kui Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Ai-Ying Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Ju-Wu Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Hai-Hong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Xiao-Ying Deng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Jun-Wen Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Shao-Qi Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Xiang-Hui Xiao
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Rui-Xian Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Qi Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Li Duan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Xian-Yan Zou
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Zhen Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Xiao Jiang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Ya Zhang
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Ren-Hai Peng
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Yu-Zhen Shi
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China.
| | - You-Lu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China.
| |
Collapse
|
107
|
Gao X, Ruan X, Sun Y, Wang X, Feng B. BAKing up to Survive a Battle: Functional Dynamics of BAK1 in Plant Programmed Cell Death. FRONTIERS IN PLANT SCIENCE 2019; 9:1913. [PMID: 30671069 PMCID: PMC6331536 DOI: 10.3389/fpls.2018.01913] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 12/10/2018] [Indexed: 05/12/2023]
Abstract
In plants, programmed cell death (PCD) has diverse, essential roles in vegetative and reproductive development, and in the responses to abiotic and biotic stresses. Despite the rapid progress in understanding the occurrence and functions of the diverse forms of PCD in plants, the signaling components and molecular mechanisms underlying the core PCD machinery remain a mystery. The roles of BAK1 (BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1), an essential co-receptor of multiple receptor complexes, in the regulation of immunity and development- and defense-related PCD have been well characterized. However, the ways in which BAK1 functions in mediating PCD need to be further explored. In this review, different forms of PCD in both plants and mammals are discussed. Moreover, we mainly summarize recent advances in elucidating the functions and possible mechanisms of BAK1 in controlling diverse forms of PCD. We also highlight the involvement of post-translational modifications (PTMs) of multiple signaling component proteins in BAK1-mediated PCD.
Collapse
Affiliation(s)
- Xiquan Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Xinsen Ruan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yali Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Baomin Feng
- Haixia Institute of Science and Technology, Fujian Agricultural and Forestry University, Fuzhou, China
| |
Collapse
|
108
|
Bahari MNA, Sakeh NM, Abdullah SNA, Ramli RR, Kadkhodaei S. Transciptome profiling at early infection of Elaeis guineensis by Ganoderma boninense provides novel insights on fungal transition from biotrophic to necrotrophic phase. BMC PLANT BIOLOGY 2018; 18:377. [PMID: 30594134 PMCID: PMC6310985 DOI: 10.1186/s12870-018-1594-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/06/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND Basal stem rot (BSR) caused by hemibiotroph Ganoderma boninense is a devastating disease resulting in a major loss to the oil palm industry. Since there is no physical symptom in oil palm at the early stage of G. boninense infection, characterisation of molecular defense responses in oil palm during early interaction with the fungus is of the utmost importance. Oil palm (Elaeis guineensis) seedlings were artificially infected with G. boninense inoculums and root samples were obtained following a time-course of 0, 3, 7, and 11 days-post-inoculation (d.p.i) for RNA sequencing (RNA-seq) and identification of differentially expressed genes (DEGs). RESULTS The host counter-attack was evidenced based on fungal hyphae and Ganoderma DNA observed at 3 d.p.i which became significantly reduced at 7 and 11 d.p.i. DEGs revealed upregulation of multifaceted defense related genes such as PR-protein (EgPR-1), protease inhibitor (EgBGIA), PRR protein (EgLYK3) chitinase (EgCht) and expansin (EgEXPB18) at 3 d.p.i and 7 d.p.i which dropped at 11 d.p.i. Later stage involved highly expressed transcription factors EgERF113 and EgMYC2 as potential regulators of necrotrophic defense at 11 d.p.i. The reactive oxygen species (ROS) elicitor: peroxidase (EgPER) and NADPH oxidase (EgRBOH) were upregulated and maintained throughout the treatment period. Growth and nutrient distribution were probably compromised through suppression of auxin signalling and iron uptake genes. CONCLUSIONS Based on the analysis of oil palm gene expression, it was deduced that the biotrophic phase of Ganoderma had possibly occurred at the early phase (3 until 7 d.p.i) before being challenged by the fungus via switching its lifestyle into the necrotrophic phase at later stage (11 d.p.i) and finally succumbed the host. Together, the findings suggest the dynamic defense process in oil palm and potential candidates that can serve as phase-specific biomarkers at the early stages of oil palm-G. boninense interaction.
Collapse
Affiliation(s)
| | - Nurshafika Mohd Sakeh
- Institute of Plantation Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
| | - Siti Nor Akmar Abdullah
- Institute of Plantation Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
- Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
| | - Redzyque Ramza Ramli
- Institute of Plantation Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
| | - Saied Kadkhodaei
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111 Iran
| |
Collapse
|
109
|
Baur K, Schättin A, de Bruin ED, Riener R, Duarte JE, Wolf P. Trends in robot-assisted and virtual reality-assisted neuromuscular therapy: a systematic review of health-related multiplayer games. J Neuroeng Rehabil 2018; 15:107. [PMID: 30454009 PMCID: PMC6245892 DOI: 10.1186/s12984-018-0449-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/23/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiplayer games have emerged as a promising approach to increase the motivation of patients involved in rehabilitation therapy. In this systematic review, we evaluated recent publications in health-related multiplayer games that involved patients with cognitive and/or motor impairments. The aim was to investigate the effect of multiplayer gaming on game experience and game performance in healthy and non-healthy populations in comparison to individual game play. We further discuss the publications within the context of the theory of flow and the challenge point framework. METHODS A systematic search was conducted through EMBASE, Medline, PubMed, Cochrane, CINAHL and PsycINFO. The search was complemented by recent publications in robot-assisted multiplayer neurorehabilitation. The search was restricted to robot-assisted or virtual reality-based training. RESULTS Thirteen articles met the inclusion criteria. Multiplayer modes used in health-related multiplayer games were: competitive, collaborative and co-active multiplayer modes. Multiplayer modes positively affected game experience in nine studies and game performance in six studies. Two articles reported increased game performance in single-player mode when compared to multiplayer mode. CONCLUSIONS The multiplayer modes of training reviewed improved game experience and game performance compared to single-player modes. However, the methods reviewed were quite heterogeneous and not exhaustive. One important take-away is that adaptation of the game conditions can individualize the difficulty of a game to a player's skill level in competitive multiplayer games. Robotic assistance and virtual reality can enhance individualization by, for example, adapting the haptic conditions, e.g. by increasing haptic support or by providing haptic resistance. The flow theory and the challenge point framework support these results and are used in this review to frame the idea of adapting players' game conditions.
Collapse
Affiliation(s)
- Kilian Baur
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, ETH Zurich, Tannenstrasse 1, Zurich, 8092, Switzerland. .,Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland, Forchstrasse 340, Zurich, 8008, Switzerland.
| | - Alexandra Schättin
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland, Leopold-Ruzicka-Weg 4, Zurich, 8093, Switzerland
| | - Eling D de Bruin
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland, Leopold-Ruzicka-Weg 4, Zurich, 8093, Switzerland.,Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden, Alfred Nobels Alle 23, Huddinge, 141 83, Sweden
| | - Robert Riener
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, ETH Zurich, Tannenstrasse 1, Zurich, 8092, Switzerland.,Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland, Forchstrasse 340, Zurich, 8008, Switzerland
| | - Jaime E Duarte
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, ETH Zurich, Tannenstrasse 1, Zurich, 8092, Switzerland.,Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland, Forchstrasse 340, Zurich, 8008, Switzerland.,MyoSwiss AG, Lengghalde 5, Zürich, CH-8008, Switzerland
| | - Peter Wolf
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, ETH Zurich, Tannenstrasse 1, Zurich, 8092, Switzerland.,Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland, Forchstrasse 340, Zurich, 8008, Switzerland
| |
Collapse
|
110
|
Qi YH, Mao FF, Zhou ZQ, Liu DC, Deng XY, Li JW, Mei FZ. The release of cytochrome c and the regulation of the programmed cell death progress in the endosperm of winter wheat (Triticum aestivum L.) under waterlogging. PROTOPLASMA 2018; 255:1651-1665. [PMID: 29717349 DOI: 10.1007/s00709-018-1256-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
It has been shown in mammalian systems that the mitochondria can play a key role in the regulation of apoptosis by releasing intermembrane proteins (such as cytochrome c) into the cytosol. Cytochrome c released from the mitochondria to the cytoplasm activates proteolytic enzyme cascades, leading to specific nuclear DNA degradation and cell death. This pathway is considered to be one of the important regulatory mechanisms of apoptosis. Previous studies have shown that endosperm cell development in wheat undergoes specialized programmed cell death (PCD) and that waterlogging stress accelerates the PCD process; however, little is known regarding the associated molecular mechanism. In this study, changes in mitochondrial structure, the release of cytochrome c, and gene expression were studied in the endosperm cells of the wheat (Triticum aestivum L.) cultivar "huamai 8" during PCD under different waterlogging durations. The results showed that waterlogging aggravated the degradation of mitochondrial structure, increased the mitochondrial permeability transition (MPT), and decreased mitochondrial transmembrane potential (ΔΨm), resulting in the advancement of the endosperm PCD process. In situ localization and western blotting of cytochrome c indicated that with the development of the endosperm cell, cytochrome c was gradually released from the mitochondria to the cytoplasm, and waterlogging stress led to an advancement and increase in the release of cytochrome c. In addition, waterlogging stress resulted in the increased expression of the voltage-dependent anion channel (VDAC) and adenine nucleotide translocator (ANT), suggesting that the mitochondrial permeability transition pore (MPTP) may be involved in endosperm PCD under waterlogging stress. The MPTP inhibitor cyclosporine A effectively suppressed cell death and cytochrome c release during wheat endosperm PCD. Our results indicate that the mitochondria play important roles in the PCD of endosperm cells and that the increase in mitochondrial damage and corresponding release of cytochrome c may be one of the major causes of endosperm PCD advancement under waterlogging.
Collapse
Affiliation(s)
- Yuan-Hong Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Fang-Fang Mao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhu-Qing Zhou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Dong-Cheng Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiang-Yi Deng
- College of Food and Biological Science and Technology, Wuhan Institute of Design and Sciences, Wuhan, 430070, Hubei, China
| | - Ji-Wei Li
- College of Food and Biological Science and Technology, Wuhan Institute of Design and Sciences, Wuhan, 430070, Hubei, China
| | - Fang-Zhu Mei
- Division of Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
111
|
Adhab M, Angel C, Leisner S, Schoelz JE. The P1 gene of Cauliflower mosaic virus is responsible for breaking resistance in Arabidopsis thaliana ecotype Enkheim (En-2). Virology 2018; 523:15-21. [PMID: 30059841 DOI: 10.1016/j.virol.2018.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 12/01/2022]
Abstract
Arabidopsis thaliana ecotype En-2 is resistant to several strains of Cauliflower mosaic virus (CaMV), including strain W260, but is susceptible to strain NY8153. Resistance in En-2 is conditioned by a single, semi-dominant gene called CAR1. We constructed several recombinant infectious clones between W260 and NY8153 and evaluated their capability to infect En-2. This analysis showed that the capacity of NY8153 to break resistance in En-2 was conditioned by mutations within the CaMV gene 1, a gene that encodes a protein dedicated to cell-to-cell movement (P1), and conversely, that P1 of W260 is responsible for eliciting the plant defense response. A previous study had shown that P6 of W260 was responsible for overcoming resistance in Arabidopsis ecotype Tsu-0 and that P6 of CaMV strain CM1841 was responsible for triggering resistance. The present study now shows that a second gene of CaMV is targeted by Arabidopsis for plant immunity.
Collapse
Affiliation(s)
- Mustafa Adhab
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Carlos Angel
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Scott Leisner
- Department of Biological Sciences, the University of Toledo, Toledo, OH 43606, USA
| | - James E Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
112
|
The interplay between membrane lipids and phospholipase A family members in grapevine resistance against Plasmopara viticola. Sci Rep 2018; 8:14538. [PMID: 30266912 PMCID: PMC6162203 DOI: 10.1038/s41598-018-32559-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022] Open
Abstract
Grapevine downy mildew, caused by the biotrophic oomycete Plasmopara viticola, is one of the most important diseases in modern viticulture. The search for sustainable disease control measure is of extreme importance, thus becoming imperative to fully characterize the mechanisms leading to an incompatible interaction. We have previously shown that lipid signalling events play an important role in grapevine's response to this pathogen, namely through changes in linolenic acid content, lipid peroxidation and jasmonic acid synthesis. Here, we have characterized the modulation of lipid metabolism in leaves from two V. vinifera cultivars (resistant and susceptible to P. viticola) in the first hours after pathogen inoculation. Prior to pathogen inoculation both genotypes present an inherently different fatty acid composition that is highly modulated in the resistant genotype after pathogen challenge. Such changes involve modulation of phospholipase A activity suggesting that the source of lipids mobilized upon pathogen infection are the chloroplast membranes. This work thus provides original evidence on the involvement of lipid signalling and phospholipases in grapevine immune responses to pathogen infection. The results are discussed considering the implications on the plant's physiological status and the use of discriminating lipid/fatty acids pattern in future selection procedures of cultivars.
Collapse
|
113
|
Matsuda R, Ueno A, Nakaigawa H, Fujiwara K. Gas Exchange Rates Decrease and Leaf Temperature Increases in Nicotiana benthamiana Leaves Transiently Overexpressing Hemagglutinin in an Agrobacterium-Assisted Viral Vector System. FRONTIERS IN PLANT SCIENCE 2018; 9:1315. [PMID: 30233635 PMCID: PMC6131640 DOI: 10.3389/fpls.2018.01315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/21/2018] [Indexed: 05/30/2023]
Abstract
In this study, gas exchange characteristics and temperature of Nicotiana benthamiana leaves transiently overexpressing hemagglutinin (HA), an influenza vaccine antigen, with an Agrobacterium tumefaciens-assisted viral vector were investigated. Inoculation of leaves with an empty viral vector not containing the HA gene decreased the net photosynthetic rate (Pn) and transpiration rate (T) from 2 to 3 days post-infiltration (DPI) in the A. tumefaciens suspension. Expression of HA with the vector decreased Pn and T to much lower levels until 4 DPI. Such significant decreases were not observed in leaves infiltrated with suspension of A. tumefaciens not carrying the viral vector or in uninfiltrated leaves. Thus, viral vector inoculation itself decreased Pn and T to a certain extent and the HA expression further decreased them. The decreases in Pn and T in empty vector-inoculated and HA expression vector-inoculated leaves were associated with decreases in stomatal conductance, suggesting that the reduction of gas exchange rates was caused at least in part by stomatal closure. More detailed gas exchange and chlorophyll fluorescence analyses revealed that in HA vector-inoculated leaves, the capacity of ribulose-1,5-bisphosphate carboxylase/oxygenase to assimilate CO2 and the capacity of photosynthetic electron transport in planta were downregulated, which contributed also to the decrease in Pn. Leaf temperature (LT) increased in viral vector-inoculated leaves, which was associated with the decrease in T. When HA vector-inoculated leaves were grown at air temperatures (ATs) of 21, 23, and 26°C post-infiltration, HA accumulated earlier in leaves and the days required for HA content to attain its peak became shorter, as AT was higher. The highest LT was found 1-2 days earlier than the highest leaf HA content under all post-infiltration AT conditions. This phenomenon could be applicable in a non-destructive technique to detect the optimum harvesting date for individual plants to determine the day when leaf HA content reaches its maximum level, irrespective of spatiotemporal variation of AT, in a plant growth facility.
Collapse
Affiliation(s)
- Ryo Matsuda
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Akihiro Ueno
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Kazuhiro Fujiwara
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
114
|
Saeed F, Sattar MN, Hameed U, Ilyas M, Haider MS, Hamza M, Mansoor S, Amin I. Infectivity of okra enation leaf curl virus and the role of its V2 protein in pathogenicity. Virus Res 2018; 255:90-94. [PMID: 30009848 DOI: 10.1016/j.virusres.2018.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 11/16/2022]
Abstract
Cotton crop has been severely affected by multiple begomoviruses in Pakistan and India. In our previous study, we found okra enation leaf curl virus (OELCuV), cotton leaf curl Multan betasatellite (CLCuMuB) and cotton leaf curl Multan alphasatellite (CLCuMuA) infecting cotton in Pakistan. The current study was designed to investigate the infectivity of OELCuV and its ability to trans-replicate non-cognate CLCuMuB. Agro-infectious clones containing the partial tandem repeats of OELCuV and CLCuMuB were constructed and the infectivity assays were carried out through Agrobacterium mediated transformation in the model host species Nicotiana benthamiana under controlled conditions. The results showed that in the inoculated plants OELCuV alone can cause downward curling and yellowing of leaves with thickened veins. However, when co-inoculated with the non-cognate CLCuMuB it could functionally trans-replicate CLCuMuB resulting in a more severe phenotype. The expression of Pre-coat/V2 protein in the N. benthamiana plants through the potato virus X (PVX) system caused localized cell death after severe leaf curling in the infiltrated leaves. The tissue tropism of the virus was associated with the systemic development of a hypersensitive response (HR), which ultimately lead to the plant death. The results indicated the involvement of V2 protein in the pathogenicity of OELCuV and its ability to trigger the host defense machinery. This study also demonstrated the ability of OELCuV to trans-replicate CLCuMuB resulting in typical leaf curl disease symptoms in N. benthamiana.
Collapse
Affiliation(s)
- Farah Saeed
- Institute of Agricultural Sciences, Box 540000, University of the Punjab, Lahore, Pakistan
| | | | - Usman Hameed
- Institute of Agricultural Sciences, Box 540000, University of the Punjab, Lahore, Pakistan
| | - Muhammad Ilyas
- School of Plant Sciences, Box 85721, University of Arizona, Tucson, USA
| | - Muhammad Saleem Haider
- Institute of Agricultural Sciences, Box 540000, University of the Punjab, Lahore, Pakistan
| | - Muhammad Hamza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Box 577, Faisalabad, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Box 577, Faisalabad, Pakistan
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Box 577, Faisalabad, Pakistan.
| |
Collapse
|
115
|
Kallamadi PR, Dandu K, Kirti PB, Rao CM, Thakur SS, Mulpuri S. An Insight into Powdery Mildew-Infected, Susceptible, Resistant, and Immune Sunflower Genotypes. Proteomics 2018; 18:e1700418. [DOI: 10.1002/pmic.201700418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/26/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Prathap Reddy Kallamadi
- ICAR- Indian Institute of Oilseeds Research; Rajendranagar 500 030 Hyderabad India
- University of Hyderabad; Prof. C.R. Rao Road 500 046 Hyderabad India
| | - Kamakshi Dandu
- CSIR- Centre for Cellular and Molecular Biology; Uppal Road, Habsiguda 500 007 Hyderabad India
| | | | - Chintalagiri Mohan Rao
- CSIR- Centre for Cellular and Molecular Biology; Uppal Road, Habsiguda 500 007 Hyderabad India
| | - Suman S Thakur
- CSIR- Centre for Cellular and Molecular Biology; Uppal Road, Habsiguda 500 007 Hyderabad India
| | - Sujatha Mulpuri
- ICAR- Indian Institute of Oilseeds Research; Rajendranagar 500 030 Hyderabad India
| |
Collapse
|
116
|
Pandey SS, Singh S, Pathak C, Tiwari BS. "Programmed Cell Death: A Process of Death for Survival" - How Far Terminology Pertinent for Cell Death in Unicellular Organisms. J Cell Death 2018; 11:1179066018790259. [PMID: 30116103 PMCID: PMC6088462 DOI: 10.1177/1179066018790259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/22/2018] [Indexed: 02/01/2023] Open
Abstract
Programmed cell death (PCD) is genetically regulated phenomenon of selective elimination of target cells that are either under pathological conditions or unwanted for organism’s normal growth and development due to other reasons. The process although being genetically controlled is physiological in nature that renders some hallmarks like blebs in the cell membrane, lobe formation in nuclear membrane, DNA nicks resulting to DNA ladder of 200 bp, and downstream activation of caspases. Moreover, as the process refers to the death of “targeted cell”, the term is exclusively suitable for multicellular organisms. Number of reports advocate similar type of cell death process in unicellular organisms. As cell death in unicellular organisms is also reflected by the signature of PCD obtained in metazoans, such cell death has been grouped under the broad category of PCD. It is pertinent to mention that by definition a unicellular organism is made of a single cell wherein it carries out all of its life processes. Using the term “Programmed Cell Death” with a preset “survival strategy of the organism” for unicellular organisms looks misnomer. Therefore, this correspondence argues and requests recommendation committee on cell death to revisit for the nomenclature of the cell death process in the unicellular organisms.
Collapse
Affiliation(s)
- Shiv Shanker Pandey
- Crop Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Samer Singh
- Department of Microbial Biotechnology, Panjab University, Chandigarh, India
| | - Chandramani Pathak
- Plant Cell Biology & Biotechnology, Institute of Advanced Research (IAR), Gandhinagar, India
| | - Budhi Sagar Tiwari
- Plant Cell Biology & Biotechnology, Institute of Advanced Research (IAR), Gandhinagar, India
| |
Collapse
|
117
|
Boots M, Best A. The evolution of constitutive and induced defences to infectious disease. Proc Biol Sci 2018; 285:rspb.2018.0658. [PMID: 30051865 PMCID: PMC6083258 DOI: 10.1098/rspb.2018.0658] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/21/2018] [Indexed: 01/15/2023] Open
Abstract
In response to infectious disease, hosts typically mount both constitutive and induced defences. Constitutive defence prevents infection in the first place, while induced defence typically shortens the infectious period. The two routes to defence, therefore, have very different implications not only to individuals but also to the epidemiology of the disease. Moreover, the costs of constitutive defences are likely to be paid even in the absence of disease, while induced defences are likely to incur the most substantial costs when they are used in response to infection. We examine theoretically the evolutionary implications of these fundamental differences. A key result is that high virulence in the parasite typically selects for higher induced defences even if they result in immunopathology leading to very high disease mortality. Disease impacts on fecundity are critical to the relative investment in constitutive and induced defence with important differences found when parasites castrate their hosts. The trade-off between constitutive and induced defence has been cited as a cause of the diversity in defence, but we show that the trade-off alone is unlikely to lead to diversity. Our models provide a framework to examine relative investment in different defence components both experimentally and in the field.
Collapse
Affiliation(s)
- Mike Boots
- Department of Integrative Biology, University of California, Berkeley, Berkeley CA, USA .,Department of Biosciences, University of Exeter, Penryn Campus, Penryn TR11 9FE, UK
| | - Alex Best
- School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK
| |
Collapse
|
118
|
Karny A, Zinger A, Kajal A, Shainsky-Roitman J, Schroeder A. Therapeutic nanoparticles penetrate leaves and deliver nutrients to agricultural crops. Sci Rep 2018; 8:7589. [PMID: 29773873 PMCID: PMC5958142 DOI: 10.1038/s41598-018-25197-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/09/2018] [Indexed: 12/13/2022] Open
Abstract
As the world population grows, there is a need for efficient agricultural technologies to provide global food requirements and reduce environmental toll. In medicine, nanoscale drug delivery systems grant improved therapeutic precision by overcoming biological barriers and enhancing drug targeting to diseased tissues. Here, we loaded nanoscale drug-delivery systems with agricultural nutrients, and applied them to the leaves of tomato plants. We show that the nanoparticles – liposomes composed of plant-derived lipids, penetrate the leaf and translocate in a bidirectional manner, distributing to other leaves and to the roots. The liposomes were then internalized by the plant cells, where they released their active ingredient. Up to 33% of the applied nanoparticles penetrated the leaf, compared to less than one percent of free-molecules applied in a similar manner. In our study, tomato plants treated with liposomes loaded with Fe and Mg overcame acute nutrient deficiency which was not treatable using ordinary agricultural nutrients. Furthermore, to address regulatory concerns regarding airborne nanoparticles, we rationally designed liposomes that were stable only over short spraying distances (less than 2 meters), while the liposomes disintegrated into safe molecular building blocks (phospholipids) over longer airborne distances. These findings support expanding the implementation of nanotechnology for delivering micronutrients to agricultural crops for increasing yield.
Collapse
Affiliation(s)
- Avishai Karny
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Assaf Zinger
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Ashima Kajal
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Janna Shainsky-Roitman
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Avi Schroeder
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
119
|
Moretti ML, Van Horn CR, Robertson R, Segobye K, Weller SC, Young BG, Johnson WG, Douglas Sammons R, Wang D, Ge X, d' Avignon A, Gaines TA, Westra P, Green AC, Jeffery T, Lespérance MA, Tardif FJ, Sikkema PH, Christopher Hall J, McLean MD, Lawton MB, Schulz B. Glyphosate resistance in Ambrosia trifida: Part 2. Rapid response physiology and non-target-site resistance. PEST MANAGEMENT SCIENCE 2018; 74:1079-1088. [PMID: 28276187 DOI: 10.1002/ps.4569] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 05/11/2023]
Abstract
BACKGROUND The glyphosate-resistant rapid response (GR RR) resistance mechanism in Ambrosia trifida is not due to target-site resistance (TSR) mechanisms. This study explores the physiology of the rapid response and the possibility of reduced translocation and vacuolar sequestration as non-target-site resistance (NTSR) mechanisms. RESULTS GR RR leaf discs accumulated hydrogen peroxide within minutes of glyphosate exposure, but only in mature leaf tissue. The rapid response required energy either as light or exogenous sucrose. The combination of phenylalanine and tyrosine inhibited the rapid response in a dose-dependent manner. Reduced glyphosate translocation was observed in GR RR, but only when associated with tissue death caused by the rapid response. Nuclear magnetic resonance studies indicated that glyphosate enters the cytoplasm and reaches chloroplasts, and it is not moved into the vacuole of GR RR, GR non-rapid response or glyphosate-susceptible A. trifida. CONCLUSION The GR RR mechanism of resistance is not associated with vacuole sequestration of glyphosate, and the observed reduced translocation is likely a consequence of rapid tissue death. Rapid cell death was inhibited by exogenous application of aromatic amino acids phenylalanine and tyrosine. The mechanism by which these amino acids inhibit rapid cell death in the GR RR phenotype remains unknown, and it could involve glyphosate phytotoxicity or other agents generating reactive oxygen species. Implications of these findings are discussed. The GR RR mechanism is distinct from the currently described glyphosate TSR or NTSR mechanisms in other species. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marcelo L Moretti
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Christopher R Van Horn
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
- United States Department of Agriculture - Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, USA
| | - Renae Robertson
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Kabelo Segobye
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Stephen C Weller
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Bryan G Young
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - William G Johnson
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | | | | | - Xia Ge
- Department of Chemistry, Washington University, St Louis, MO, USA
| | - André d' Avignon
- Department of Chemistry, Washington University, St Louis, MO, USA
| | - Todd A Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Philip Westra
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Amanda C Green
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Taylor Jeffery
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | | | - François J Tardif
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Peter H Sikkema
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - J Christopher Hall
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Michael D McLean
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | | | - Burkhard Schulz
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| |
Collapse
|
120
|
Liu R, Cao P, Ren A, Wang S, Yang T, Zhu T, Shi L, Zhu J, Jiang AL, Zhao MW. SA inhibits complex III activity to generate reactive oxygen species and thereby induces GA overproduction in Ganoderma lucidum. Redox Biol 2018; 16:388-400. [PMID: 29631100 PMCID: PMC5953243 DOI: 10.1016/j.redox.2018.03.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/28/2022] Open
Abstract
Ganoderma lucidum has high commercial value because it produces many active compounds, such as ganoderic acids (GAs). Salicylic acid (SA) was previously reported to induce the biosynthesis of GA in G. lucidum. In this study, we found that SA induces GA biosynthesis by increasing ROS production, and further research found that NADPH oxidase-silenced strains exhibited a partial reduction in the response to SA, resulting in the induction of increased ROS production. Furthermore, the localization of ROS shows that mitochondria are sources of ROS production in response to SA treatment. An additional analysis focused on the relationship between SA-induced ROS production and mitochondrial functions, and the results showed that inhibitors of mitochondrial complexes I and II exert approximately 40–50% superimposed inhibitory effects on the respiration rate and H2O2 content when co-administered with SA. However, no obvious superimposed inhibition effects were observed in the sample co-treated with mitochondrial complex III inhibitor and SA, implying that the inhibitor of mitochondrial complex III and SA might act on the same site in mitochondria. Additional experiments revealed that complex III activity was decreased 51%, 62% and 75% after treatment with 100, 200, and 400 µM SA, respectively. Our results highlight the finding that SA inhibits mitochondrial complex III activity to increase ROS generation. In addition, inhibition of mitochondrial complex III caused ROS accumulation, which plays an essential role in SA-mediated GA biosynthesis in G. lucidum. This conclusion was also demonstrated in complex III-silenced strains. To the best of our knowledge, this study provides the first demonstration that SA inhibits complex III activity to increase the ROS levels and thereby regulate secondary metabolite biosynthesis. Mitochondria as a source of salicylic acid (SA) induced reactive oxygen species (ROS) production in Ganoderma lucidum. SA induces the accumulation of ganoderic acids in Ganoderma lucidum by mitochondria ROS overproduction. SA inhibits mitochondrial complex III activity to increase ROS and thereby induces ganoderic acids biosynthesis.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Pengfei Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Shengli Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Tao Yang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ting Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ai-Liang Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ming-Wen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
121
|
Novaes MM, Palhano-Fontes F, Peres A, Mazzetto-Betti K, Pelicioni M, Andrade KC, dos Santos AC, Pontes-Neto O, Araujo D. Neurofunctional changes after a single mirror therapy intervention in chronic ischemic stroke. Int J Neurosci 2018; 128:966-974. [DOI: 10.1080/00207454.2018.1447571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Morgana M Novaes
- Brain Institute/Onofre Lopes University Hospital, Federal University of Rio Grande Do Norte (UFRN), Natal-RN, Brazil
| | - Fernanda Palhano-Fontes
- Brain Institute/Onofre Lopes University Hospital, Federal University of Rio Grande Do Norte (UFRN), Natal-RN, Brazil
| | - Andre Peres
- Brain Institute/Onofre Lopes University Hospital, Federal University of Rio Grande Do Norte (UFRN), Natal-RN, Brazil
| | - Kelley Mazzetto-Betti
- Radiology Division, Department of Internal Medicine, Ribeirao Preto School of Medicine, University of Sao Paulo (USP), Ribeirao Preto-SP, Brazil
| | - Maristela Pelicioni
- Radiology Division, Department of Internal Medicine, Ribeirao Preto School of Medicine, University of Sao Paulo (USP), Ribeirao Preto-SP, Brazil
| | - Kátia C Andrade
- Brain Institute/Onofre Lopes University Hospital, Federal University of Rio Grande Do Norte (UFRN), Natal-RN, Brazil
| | - Antonio Carlos dos Santos
- Radiology Division, Department of Internal Medicine, Ribeirao Preto School of Medicine, University of Sao Paulo (USP), Ribeirao Preto-SP, Brazil
| | - Octavio Pontes-Neto
- Radiology Division, Department of Internal Medicine, Ribeirao Preto School of Medicine, University of Sao Paulo (USP), Ribeirao Preto-SP, Brazil
| | - Draulio Araujo
- Brain Institute/Onofre Lopes University Hospital, Federal University of Rio Grande Do Norte (UFRN), Natal-RN, Brazil
| |
Collapse
|
122
|
Hael-Conrad V, Perato SM, Arias ME, Martínez-Zamora MG, Di Peto PDLÁ, Martos GG, Castagnaro AP, Díaz-Ricci JC, Chalfoun NR. The Elicitor Protein AsES Induces a Systemic Acquired Resistance Response Accompanied by Systemic Microbursts and Micro-Hypersensitive Responses in Fragaria ananassa. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:46-60. [PMID: 28635519 DOI: 10.1094/mpmi-05-17-0121-fi] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The elicitor AsES (Acremonium strictum elicitor subtilisin) is a 34-kDa subtilisin-like protein secreted by the opportunistic fungus Acremonium strictum. AsES activates innate immunity and confers resistance against anthracnose and gray mold diseases in strawberry plants (Fragaria × ananassa Duch.) and the last disease also in Arabidopsis. In the present work, we show that, upon AsES recognition, a cascade of defense responses is activated, including: calcium influx, biphasic oxidative burst (O2⋅- and H2O2), hypersensitive cell-death response (HR), accumulation of autofluorescent compounds, cell-wall reinforcement with callose and lignin deposition, salicylic acid accumulation, and expression of defense-related genes, such as FaPR1, FaPG1, FaMYB30, FaRBOH-D, FaRBOH-F, FaCHI23, and FaFLS. All these responses occurred following a spatial and temporal program, first induced in infiltrated leaflets (local acquired resistance), spreading out to untreated lateral leaflets, and later, to distal leaves (systemic acquired resistance). After AsES treatment, macro-HR and macro-oxidative bursts were localized in infiltrated leaflets, while micro-HRs and microbursts occurred later in untreated leaves, being confined to a single cell or a cluster of a few epidermal cells that differentiated from the surrounding ones. The differentiated cells initiated a time-dependent series of physiological and anatomical changes, evolving to idioblasts accumulating H2O2 and autofluorescent compounds that blast, delivering its content into surrounding cells. This kind of systemic cell-death process in plants is described for the first time in response to a single elicitor. All data presented in this study suggest that AsES has the potential to activate a wide spectrum of biochemical and molecular defense responses in F. ananassa that may explain the induced protection toward pathogens of opposite lifestyle, like hemibiotrophic and necrotrophic fungi.
Collapse
Affiliation(s)
- Verónica Hael-Conrad
- 1 Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Silvia Marisa Perato
- 1 Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Marta Eugenia Arias
- 2 Cátedra de Anatomía Vegetal, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán. Miguel Lillo 205, 4000, Tucumán, Argentina, and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca. Av. Belgrano 300, 4700, San Fernando del Valle de Catamarca, Catamarca, Argentina; and
| | - Martín Gustavo Martínez-Zamora
- 1 Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Pía de Los Ángeles Di Peto
- 3 Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA, CONICET-Estación Experimental Agroindustrial Obispo Colombres). Av. William Cross 3150, T4101XAC, Las Talitas, Tucumán, Argentina
| | - Gustavo Gabriel Martos
- 1 Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Atilio Pedro Castagnaro
- 3 Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA, CONICET-Estación Experimental Agroindustrial Obispo Colombres). Av. William Cross 3150, T4101XAC, Las Talitas, Tucumán, Argentina
| | - Juan Carlos Díaz-Ricci
- 1 Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Nadia Regina Chalfoun
- 3 Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA, CONICET-Estación Experimental Agroindustrial Obispo Colombres). Av. William Cross 3150, T4101XAC, Las Talitas, Tucumán, Argentina
| |
Collapse
|
123
|
Lu PP, Yu TF, Zheng WJ, Chen M, Zhou YB, Chen J, Ma YZ, Xi YJ, Xu ZS. The Wheat Bax Inhibitor-1 Protein Interacts with an Aquaporin TaPIP1 and Enhances Disease Resistance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:20. [PMID: 29403525 PMCID: PMC5786567 DOI: 10.3389/fpls.2018.00020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/05/2018] [Indexed: 05/20/2023]
Abstract
Bax inhibitor-1 (BI-1) is an endoplasmic reticulum (ER)-resident cell death suppressor evolutionarily conserved in eukaryotes. The ability of BI-1 to inhibit the biotic and abiotic stresses have been well-studied in Arabidopsis, while the functions of wheat BI-1 are largely unknown. In this study, the wheat BI-1 gene TaBI-1.1 was isolated by an RNA-seq analysis of Fusarium graminearum (Fg)-treated wheat. TaBI-1.1 expression was induced by a salicylic acid (SA) treatment and down-regulated by an abscisic acid (ABA) treatment. Based on β-glucuronidase (GUS) staining, TaBI-1.1 was expressed in mature leaves and roots but not in the hypocotyl or young leaves. Constitutive expression of TaBI-1.1 in Arabidopsis enhanced its resistance to Pseudomonas syringae pv. Tomato (Pst) DC3000 infection and induced SA-related gene expression. Additionally, TaBI-1.1 transgenic Arabidopsis exhibited an alleviation of damage caused by high concentrations of SA and decreased the sensitivity to ABA. Consistent with the phenotype, the RNA-seq analysis of 35S::TaBI-1.1 and Col-0 plants showed that TaBI-1.1 was involved in biotic stresses. These results suggested that TaBI-1.1 positively regulates SA signals and plays important roles in the response to biotic stresses. In addition, TaBI-1.1 interacted with the aquaporin TaPIP1, and both them were localized to ER membrane. Furthermore, we demonstrated that TaPIP1 was up-regulated by SA treatment and TaPIP1 transgenic Arabidopsis enhanced the resistance to Pst DC3000 infection. Thus, the interaction between TaBI-1.1 and TaPIP1 on the ER membrane probably occurs in response to SA signals and defense response.
Collapse
Affiliation(s)
- Pan-Pan Lu
- College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Tai-Fei Yu
- College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Wei-Jun Zheng
- College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Ming Chen
- Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jun Chen
- Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ya-Jun Xi
- College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- *Correspondence: Zhao-Shi Xu, Ya-Jun Xi,
| | - Zhao-Shi Xu
- Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- *Correspondence: Zhao-Shi Xu, Ya-Jun Xi,
| |
Collapse
|
124
|
Lee D, Lee G, Kim B, Jang S, Lee Y, Yu Y, Seo J, Kim S, Lee YH, Lee J, Kim S, Koh HJ. Identification of a Spotted Leaf Sheath Gene Involved in Early Senescence and Defense Response in Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:1274. [PMID: 30233619 PMCID: PMC6134203 DOI: 10.3389/fpls.2018.01274] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/14/2018] [Indexed: 05/05/2023]
Abstract
Lesion mimic mutants (LMMs) commonly exhibit spontaneous cell death similar to the hypersensitive defense response that occurs in plants in response to pathogen infection. Several lesion mimic mutants have been isolated and characterized, but their molecular mechanisms remain largely unknown. Here, a spotted leaf sheath (sles) mutant derived from japonica cultivar Koshihikari is described. The sles phenotype differed from that of other LMMs in that lesion mimic spots were observed on the leaf sheath rather than on leaves. The sles mutant displayed early senescence, as shown, by color loss in the mesophyll cells, a decrease in chlorophyll content, and upregulation of chlorophyll degradation-related and senescence-associated genes. ROS content was also elevated, corresponding to increased expression of genes encoding ROS-generating enzymes. Pathogenesis-related genes were also activated and showed improved resistance to pathogen infection on the leaf sheath. Genetic analysis revealed that the mutant phenotype was controlled by a single recessive nuclear gene. Genetic mapping and sequence analysis showed that a single nucleotide substitution in the sixth exon of LOC_Os07g25680 was responsible for the sles mutant phenotype and this was confirmed by T-DNA insertion line. Taken together, our results revealed that SLES was associated with the formation of lesion mimic spots on the leaf sheath resulting early senescence and defense responses. Further examination of SLES will facilitate a better understanding of the molecular mechanisms involved in ROS homeostasis and may also provide opportunities to improve pathogen resistance in rice.
Collapse
Affiliation(s)
- Dongryung Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Gileung Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Backki Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Su Jang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Yunjoo Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Yoye Yu
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Jeonghwan Seo
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Seongbeom Kim
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul, South Korea
| | - Joohyun Lee
- Department of Applied Bioscience, Graduate School of Konkuk University, Seoul, South Korea
| | - Sunghan Kim
- Department of Biological Science, Sookmyung Women's University, Seoul, South Korea
| | - Hee-Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
- *Correspondence: Hee-Jong Koh
| |
Collapse
|
125
|
Zhou S, Hong Q, Li Y, Li Q, Li R, Zhang H, Wang M, Yuan X. Macroautophagy occurs in distal TMV-uninfected root tip tissue of tomato taking place systemic PCD. PROTOPLASMA 2018; 255:3-9. [PMID: 28551700 DOI: 10.1007/s00709-017-1125-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
Autophagy is an important mechanism for recycling cell materials upon encountering stress conditions. Our previous studies had shown that TMV infection could lead to systemic PCD in the distal uninfected tissues, including root tip and shoot tip tissues. But it is not clear whether there is autophagy in the distal apical meristem of TMV-induced plants. To better understand the autophagy process during systemic PCD, here we investigated the formation and type of autophagy in the root meristem cells occurring PCD. Transmission electron microscopy assay revealed that the autophagic structures formed by the fusion of vesicles, containing the sequestered cytoplasm, multilamellar bodies, and degraded mitochondria. In the PCD progress, many mitochondria appeared degradation with blurred inner membrane structure. And the endoplasmic reticulum was broke into small fragments. Finally, the damaged mitochodria were engulfed and degraded by the autophagosomes. These results indicated that during the systemic PCD process of root tip cells, the classical macroautophagy occurred, and the cell contents and damaged organelles (mitochondria) would be self-digested by autophagy.
Collapse
Affiliation(s)
- Shumin Zhou
- Lab of Plant Development Biology, Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qiang Hong
- Lab of Plant Development Biology, Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yang Li
- Lab of Plant Development Biology, Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Qi Li
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Ruisha Li
- Lab of Plant Development Biology, Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Hongli Zhang
- Lab of Plant Development Biology, Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Mao Wang
- College of Biology, China Agriculture University, Beijing, 100094, China.
| | - Xiaojun Yuan
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
126
|
Roshan P, Kulshreshtha A, Hallan V. Identification of host cellular targets of AC4 and AV2 proteins of tomato leaf curl palampur virus and their sub-cellular localization studies. Virusdisease 2017; 28:390-400. [PMID: 29291230 PMCID: PMC5747847 DOI: 10.1007/s13337-017-0405-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/05/2017] [Indexed: 01/06/2023] Open
Abstract
Tomato leaf curl palampur virus (ToLCPalV) is a bipartite begomovirus with genome organization typical of old world begomoviruses. It infects commercially important crops and weeds in the Asian subcontinent. Apart from other proteins, the DNA-A of the virus encodes AV2 and AC4 proteins of approximately 13.73 and 6.7 kDa, respectively. In case of other begomoviruses, previous studies have shown the role of AV2 and AC4 proteins in virus movement, pathogenesis and suppression of gene silencing. However, the ToLCPalV proteins are significantly variable in comparison to closest relative and hence there is a need to work out their functions. In this study, we identified 9 cellular proteins of tomato that interact with AV2 and AC4 proteins, through yeast two hybrid screening. Upon sequence analysis, these interactors were identified as cysteine protease, katanin p60 ATPase-containing subunit A-like, guanine deaminase, NADH dehydrogenase (ubiquinone) iron-sulfur protein, glyceraldehyde-3-phosphate dehydrogenase B, 60S acidic ribosomal P0 protein, acyl co-A dehydrogenase IBR3, oxygen-evolving enhancer protein 1 and peroxisomal membrane protein 11D. These proteins play a vital role in protein degradation, plant defense response, microtubule severing, photosynthesis and protein synthesis. The two viral proteins, however, did not interact with each other in yeast. AV2 when fused with GFP under the control of cauliflower mosaic virus 35S promoter was localized in nucleus and cytoplasm. On the other hand, AC4-GFP fusion was localized only in cytoplasm. The outcome of present study will help to elucidate the mechanism of viral pathogenesis. Further functional characterization of identified host proteins will provide an insight into their involvement in disease development.
Collapse
Affiliation(s)
- Poonam Roshan
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, India
- Plant Virology Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061 India
| | - Aditya Kulshreshtha
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, India
- Plant Virology Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061 India
| | - Vipin Hallan
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, India
- Plant Virology Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061 India
| |
Collapse
|
127
|
Khan S, Khan NA, Bano B. In-sights into the effect of heavy metal stress on the endogenous mustard cystatin. Int J Biol Macromol 2017; 105:1138-1147. [PMID: 28754626 DOI: 10.1016/j.ijbiomac.2017.07.146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 06/04/2017] [Accepted: 07/24/2017] [Indexed: 01/07/2023]
|
128
|
Valdés BA, Van der Loos HFM. Biofeedback vs. game scores for reducing trunk compensation after stroke: a randomized crossover trial. Top Stroke Rehabil 2017; 25:96-113. [PMID: 29078743 DOI: 10.1080/10749357.2017.1394633] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Background Compensatory movements are commonly employed by stroke survivors, and their use can have negative effects on motor recovery. Current practices to reduce them rely on strapping a person to a chair. The use of technology to substitute or supplement this methodology has not being thoroughly investigated. Objective To compare the use of Scores + Visual + Force and Visual + Force feedback for reducing trunk compensation. Methods Fourteen hemiparetic stroke survivors performed bimanual reaching movements while receiving feedback on trunk compensation. Participants held onto two robotic arms and performed movements in the anterior/posterior direction toward a target displayed on a monitor. A motion-tracking camera tracked trunk compensation; the robots provided force feedback; the monitor displayed the visual feedback and scores. Kinematic variables, a post-test questionnaire, and system usability were analyzed. Results Both conditions reduced trunk compensation from baseline: Scores + Visual + Force: 51.7% (40.8), p = 0.000; Visual + Force: 55.2% (40.9), p = 0.000. No statistically significant difference was found between modalities. Secondary outcome measures were not improved. Most participants would like to receive game scores to reduce trunk compensation, and the usability of the system was rated "Good." Conclusions Multimodal feedback about stroke survivors' trunk compensation levels resulted in reduced trunk displacement. No difference between feedback modalities was obtained. The positive effects of including game scores might not have been observed in a short-term intervention. Longer studies should investigate if the use of game scores could result in trunk compensation improvements when compared to trunk restraint strategies. Clinical Trial Registration Clinicaltrials.gov, NCT02912923, https://clinicaltrials.gov/ct2/show/NCT02912923?term=reaching+in+stroke&rank=2 .
Collapse
Affiliation(s)
- Bulmaro A Valdés
- a RREACH (Robotics for Rehabilitation Exercise and Assessment in Collaborative Healthcare) Lab, Department of Mechanical Engineering , The University of British Columbia , Vancouver , Canada
| | - H F Machiel Van der Loos
- a RREACH (Robotics for Rehabilitation Exercise and Assessment in Collaborative Healthcare) Lab, Department of Mechanical Engineering , The University of British Columbia , Vancouver , Canada
| |
Collapse
|
129
|
Franchi F, Peterson KM, Paulmurugan R, Folmes C, Lanza IR, Lerman A, Rodriguez-Porcel M. Noninvasive Monitoring of the Mitochondrial Function in Mesenchymal Stromal Cells. Mol Imaging Biol 2017; 18:510-8. [PMID: 26865378 DOI: 10.1007/s11307-016-0929-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Mitochondria are a gatekeeper of cell survival and mitochondrial function can be used to monitor cell stress. Here we validate a pathway-specific reporter gene to noninvasively image the mitochondrial function of stem cells. PROCEDURES We constructed a mitochondrial sensor with the firefly luciferase (Fluc) reporter gene driven by the NQO1 enzyme promoter. The sensor was introduced in stem cells and validated in vitro and in vivo, in a mouse model of myocardial ischemia/reperfusion (IR). RESULTS The sensor activity showed an inverse relationship with mitochondrial function (R (2) = -0.975, p = 0.025) and showed specificity and sensitivity for mitochondrial dysfunction. In vivo, NQO1-Fluc activity was significantly higher in IR animals vs. controls, indicative of mitochondrial dysfunction, and was corroborated by ex vivo luminometry. CONCLUSIONS Reporter gene imaging allows assessment of the biology of transplanted mesenchymal stromal cells (MSCs), providing important information that can be used to improve the phenotype and survival of transplanted stem cells.
Collapse
Affiliation(s)
- Federico Franchi
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Karen M Peterson
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Ramasamy Paulmurugan
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA
| | - Clifford Folmes
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Ian R Lanza
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Martin Rodriguez-Porcel
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
130
|
Matsuda R, Abe T, Fujiuchi N, Matoba N, Fujiwara K. Effect of temperature post viral vector inoculation on the amount of hemagglutinin transiently expressed in Nicotiana benthamiana leaves. J Biosci Bioeng 2017; 124:346-350. [PMID: 28460871 DOI: 10.1016/j.jbiosc.2017.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/03/2017] [Accepted: 04/08/2017] [Indexed: 12/13/2022]
Abstract
Transient gene expression in whole plants by using viral vectors is promising as a rapid, mass production system for biopharmaceutical proteins. Recent studies have indicated that plant growth conditions such as air temperature markedly influence the accumulation levels of target proteins. Here, we investigated time course of the amount of recombinant hemagglutinin (HA), a vaccine antigen of influenza virus, in leaves of Nicotiana benthamiana plants grown at 20°C or 25°C post viral vector inoculation. The HA content per unit of leaf biomass increased and decreased from 4 to 6 days post inoculation at 20°C and 25°C, respectively, irrespective of the subcellular localization of HA. The overall HA contents were higher when HA was targeted to the endoplasmic reticulum (ER) rather than the apoplast. Necrosis of leaf tissues was specifically observed in plants inoculated with the ER-targeting vector and grown at 25°C. With the ER-targeting vector, the maximum HA contents at 20°C and 25°C were recorded at 6 and 4 days post inoculation, respectively, and were comparable to each other. HA contents thereafter decreased at both temperatures; the rate of reduction appeared faster at 25°C than at 20°C. From a practical point of view, our results indicate that the strategy of targeting HA to the ER, growing plants at a lower temperature of 20°C, and harvesting leaves at around a week after vector inoculation should be implemented to obtain a high HA yield stably and efficiently.
Collapse
Affiliation(s)
- Ryo Matsuda
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan.
| | - Tatsuki Abe
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Naomichi Fujiuchi
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, Center for Predictive Medicine and James Graham Brown Cancer Center, University of Louisville School of Medicine, 505 S. Hancock Street, Room 615, Louisville, KY 40202, USA
| | - Kazuhiro Fujiwara
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
131
|
Hong JK, Hwang IS, Hwang BK. Functional roles of the pepper leucine-rich repeat protein and its interactions with pathogenesis-related and hypersensitive-induced proteins in plant cell death and immunity. PLANTA 2017; 246:351-364. [PMID: 28508261 DOI: 10.1007/s00425-017-2709-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/06/2017] [Indexed: 05/25/2023]
Abstract
Pepper leucine-rich repeat protein (CaLRR1) interacts with defense response proteins to regulate plant cell death and immunity. This review highlights the current understanding of the molecular functions of CaLRR1 and its interactor proteins. Plant cell death and immune responses to microbial pathogens are controlled by complex and tightly regulated molecular signaling networks. Xanthomonas campestris pv. vesicatoria (Xcv)-inducible pepper (Capsicum annuum) leucine-rich repeat protein 1 (CaLRR1) serves as a molecular marker for plant cell death and immunity signaling. In this review, we discuss recent advances in elucidating the functional roles of CaLRR1 and its interacting plant proteins, and understanding how they are involved in the cell death and defense responses. CaLRR1 physically interacts with pepper pathogenesis-related proteins (CaPR10 and CaPR4b) and hypersensitive-induced reaction protein (CaHIR1) to regulate plant cell death and defense responses. CaLRR1 is produced in the cytoplasm and trafficked to the extracellular matrix. CaLRR1 binds to CaPR10 in the cytoplasm and CaPR4b and CaHIR1 at the plasma membrane. CaLRR1 synergistically accelerates CaPR10-triggered hypersensitive cell death, but negatively regulates CaPR4b- and CaHIR1-triggered cell death. CaHIR1 interacts with Xcv filamentous hemagglutinin (Fha1) to trigger disease-associated cell death. The subcellular localization and cellular function of these CaLRR1 interactors during plant cell death and defense responses were elucidated by Agrobacterium-mediated transient expression, virus-induced gene silencing, and transgenic overexpression studies. CaPR10, CaPR4b, and CaHIR1 positively regulate defense signaling mediated by salicylic acid and reactive oxygen species, thereby activating hypersensitive cell death and disease resistance. A comprehensive understanding of the molecular functions of CaLRR1 and its interacting protein partners in cell death and defense responses will provide valuable information for the molecular genetics of plant disease resistance, which could be exploited as a sustainable disease management strategy.
Collapse
Affiliation(s)
- Jeum Kyu Hong
- Laboratory of Plant Pathology and Protection, Department of Horticultural Science, College of Biosciences, Gyeongnam National University of Science and Technology, Jinju, 52725, Republic of Korea
| | - In Sun Hwang
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
132
|
Guo S, Wong SM. Deep sequencing analysis reveals a TMV mutant with a poly(A) tract reduces host defense responses in Nicotiana benthamiana. Virus Res 2017; 239:126-135. [PMID: 28082213 DOI: 10.1016/j.virusres.2017.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/07/2017] [Accepted: 01/08/2017] [Indexed: 12/24/2022]
Abstract
Tobacco mosaic virus (TMV) possesses an upstream pseudoknotted domain (UPD), which is important for replication. After substituting the UPD with an internal poly(A) tract (43 nt), a mutant TMV-43A was constructed. TMV-43A replicated slower than TMV and induced a non-lethal mosaic symptom in Nicotiana benthamiana. In this study, deep sequencing was performed to detect the differences of small RNA profiles between TMV- and TMV-43A-infected N. benthamiana. The results showed that TMV-43A produced lesser amount of virus-derived interfering RNAs (vsiRNAs) than that of TMV. However, the distributions of vsiRNAs generation hotspots between TMV and TMV-43A were similar. Expression of genes related to small RNA biogenesis in TMV-43A-infected N. benthamiana was significantly lower than that of TMV, which leads to generation of lesser vsiRNAs. The expressions of host defense response genes were up-regulated after TMV infection, as compared to TMV-43A-infected plants. Host defense response to TMV-43A infection was lower than that to TMV. The absence of UPD might contribute to the reduced host response to TMV-43A. Our study provides valuable information in the role of the UPD in eliciting host response genes after TMV infection in N. benthamiana. (187 words).
Collapse
Affiliation(s)
- Song Guo
- Department of Biological Sciences, National University of Singapore, Republic of Singapore
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, Republic of Singapore; Temasek Life Sciences Laboratory, Singapore, Republic of Singapore; National University of Singapore Research Institute in Suzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
133
|
Zalucki MP, Zalucki JM, Perkins LE, Schramm K, Vassão DG, Gershenzon J, Heckel DG. A Generalist Herbivore Copes with Specialized Plant Defence: the Effects of Induction and Feeding by Helicoverpa armigera (Lepidoptera: Noctuidae) Larvae on Intact Arabidopsis thaliana (Brassicales) Plants. J Chem Ecol 2017; 43:608-616. [PMID: 28585091 DOI: 10.1007/s10886-017-0855-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 03/28/2017] [Accepted: 05/28/2017] [Indexed: 10/19/2022]
Abstract
Plants of the Brassicaceae are defended from feeding by generalist insects by constitutively-expressed and herbivory-induced glucosinolates (GS). We induced Arabidopsis plants 1, 16 and 24 h prior to allowing neonate larvae of the generalist Helicoverpa armigera to feed on whole plants for 72 h. These plants were subsequently retested with another group of neonates for a further 72 h. We used wild-type A. thaliana Col-0, and mutant lines lacking indolic GS, aliphatic GS or all GS. We hypothesized that larvae would not grow well on defended plants (WT) compared to those lacking GS, and would not grow well if plants had been primed or fed on for longer, due to the expected induced GS. There was survivorship on all lines suggesting H. armigera is a suitable generalist for these experiments. Larvae performed less well on wild-type and no indolic lines than on no aliphatic and no GS lines. Larvae distributed feeding damage extensively in all lines, more so on wild type and no-indolic lines. Contrary to expectations, larvae grew better on plants that had been induced for 1 to 16 h than on un-induced plants suggesting they moved to and selected less toxic plant parts within a heterogeneously defended plant. Performance declined on all lines if plants had been induced for 24 h, or had been fed upon for a further 72 h. However, contrary to expectation, individual and total GS did not increase after these two treatments. This suggests that Arabidopsis plants induce additional (not GS) defenses after longer induction periods.
Collapse
Affiliation(s)
- M P Zalucki
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia.
| | - J M Zalucki
- Environmental Futures Research Institute, Griffith University, Brisbane, 4011, Australia
| | - L E Perkins
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - K Schramm
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany.,University of Utah, Biology, Salt Lake City, UT, 84112, USA
| | - D G Vassão
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - J Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - D G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| |
Collapse
|
134
|
Capistrano-Gossmann GG, Ries D, Holtgräwe D, Minoche A, Kraft T, Frerichmann SLM, Rosleff Soerensen T, Dohm JC, González I, Schilhabel M, Varrelmann M, Tschoep H, Uphoff H, Schütze K, Borchardt D, Toerjek O, Mechelke W, Lein JC, Schechert AW, Frese L, Himmelbauer H, Weisshaar B, Kopisch-Obuch FJ. Crop wild relative populations of Beta vulgaris allow direct mapping of agronomically important genes. Nat Commun 2017; 8:15708. [PMID: 28585529 PMCID: PMC5467160 DOI: 10.1038/ncomms15708] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 04/21/2017] [Indexed: 01/13/2023] Open
Abstract
Rapid identification of agronomically important genes is of pivotal interest for crop breeding. One source of such genes are crop wild relative (CWR) populations. Here we used a CWR population of <200 wild beets (B. vulgaris ssp. maritima), sampled in their natural habitat, to identify the sugar beet (Beta vulgaris ssp. vulgaris) resistance gene Rz2 with a modified version of mapping-by-sequencing (MBS). For that, we generated a draft genome sequence of the wild beet. Our results show the importance of preserving CWR in situ and demonstrate the great potential of CWR for rapid discovery of causal genes relevant for crop improvement. The candidate gene for Rz2 was identified by MBS and subsequently corroborated via RNA interference (RNAi). Rz2 encodes a CC-NB-LRR protein. Access to the DNA sequence of Rz2 opens the path to improvement of resistance towards rhizomania not only by marker-assisted breeding but also by genome editing. Variation among wild relatives of crop plants can be used to identify genes underlying traits of agronomic importance. Here, the authors show that a modified mapping-by-sequencing approach can rapidly identify the genetic basis for viral resistance in sugar beet using wild beet populations in their natural habitat.
Collapse
Affiliation(s)
| | - D Ries
- CeBiTec &Faculty of Biology, Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| | - D Holtgräwe
- CeBiTec &Faculty of Biology, Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| | - A Minoche
- Max Planck Institute for Molecular Genetics, Ihnestraße 73, Berlin 14195, Germany.,Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - T Kraft
- Syngenta Seeds AB, Box 302, Landskrona 26123, Sweden
| | - S L M Frerichmann
- Plant Breeding Institute, Kiel University, Am Botanischen Garten 1-9, Kiel 24118, Germany
| | - T Rosleff Soerensen
- CeBiTec &Faculty of Biology, Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| | - J C Dohm
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - I González
- Centre for Genomic Regulation (CRG), Carrer del Dr. Aiguader 88, Barcelona 08003, Spain
| | - M Schilhabel
- Plant Breeding Institute, Kiel University, Am Botanischen Garten 1-9, Kiel 24118, Germany
| | - M Varrelmann
- Department of Phytopathology, Institute of Sugar Beet Research (IfZ), Holtenser Landstraße 77, Göttingen 37079, Germany
| | - H Tschoep
- SESVanderHave N.V., Industriepark, Tienen 3300, Belgium
| | - H Uphoff
- Syngenta Seeds AB, Box 302, Landskrona 26123, Sweden
| | - K Schütze
- KWS SAAT SE, Grimsehlstraße 31, Einbeck 37555, Germany
| | - D Borchardt
- KWS SAAT SE, Grimsehlstraße 31, Einbeck 37555, Germany
| | - O Toerjek
- KWS SAAT SE, Grimsehlstraße 31, Einbeck 37555, Germany
| | - W Mechelke
- KWS SAAT SE, Grimsehlstraße 31, Einbeck 37555, Germany
| | - J C Lein
- KWS SAAT SE, Grimsehlstraße 31, Einbeck 37555, Germany
| | - A W Schechert
- Strube Research GmbH &Co. KG, Hauptstraße 1, Söllingen 38387, Germany
| | - L Frese
- Federal Research Centre for Cultivated Plants (JKI), Erwin-Baur-Str. 27, Quedlinburg 06484, Germany
| | - H Himmelbauer
- Max Planck Institute for Molecular Genetics, Ihnestraße 73, Berlin 14195, Germany.,Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria.,Centre for Genomic Regulation (CRG), Carrer del Dr. Aiguader 88, Barcelona 08003, Spain
| | - B Weisshaar
- CeBiTec &Faculty of Biology, Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| | - F J Kopisch-Obuch
- Plant Breeding Institute, Kiel University, Am Botanischen Garten 1-9, Kiel 24118, Germany.,KWS SAAT SE, Grimsehlstraße 31, Einbeck 37555, Germany
| |
Collapse
|
135
|
|
136
|
Wang Y, Peng X, Yang Z, Zhao W, Xu W, Hao J, Wu W, Shen XL, Luo Y, Huang K. iTRAQ Mitoproteome Analysis Reveals Mechanisms of Programmed Cell Death in Arabidopsis thaliana Induced by Ochratoxin A. Toxins (Basel) 2017; 9:toxins9050167. [PMID: 28524096 PMCID: PMC5450715 DOI: 10.3390/toxins9050167] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/09/2017] [Accepted: 05/15/2017] [Indexed: 01/09/2023] Open
Abstract
Ochratoxin A (OTA) is one of the most common and dangerous mycotoxins in the world. Previous work indicated that OTA could elicit spontaneous HR-like lesions formation Arabidopsis thaliana, reactive oxygen species (ROS) play an important role in OTA toxicity, and their major endogenous source is mitochondria. However, there has been no evidence as to whether OTA induces directly PCD in plants until now. In this study, the presence of OTA in Arabidopsisthaliana leaves triggered accelerated respiration, increased production of mitochondrial ROS, the opening of ROS-dependent mitochondrial permeability transition pores and a decrease in mitochondrial membrane potential as well as the release of cytochrome c into the cytosol. There were 42 and 43 significantly differentially expressed proteins identified in response to exposure to OTA for 8 and 24 h, respectively, according to iTRAQ analysis. These proteins were mainly involved in perturbation of the mitochondrial electron transport chain, interfering with ATP synthesis and inducing PCD. Digital gene expression data at transcriptional level was consistent with the cell death induced by OTA being PCD. These results indicated that mitochondrial dysfunction was a prerequisite for OTA-induced PCD and the initiation and execution of PCD via a mitochondrial-mediated pathway.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.)
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.P.); (Z.Y.); (W.Z.); (J.H.); (W.W.); (X.L.S.)
| | - Xiaoli Peng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.P.); (Z.Y.); (W.Z.); (J.H.); (W.W.); (X.L.S.)
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Zhuojun Yang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.P.); (Z.Y.); (W.Z.); (J.H.); (W.W.); (X.L.S.)
| | - Weiwei Zhao
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.P.); (Z.Y.); (W.Z.); (J.H.); (W.W.); (X.L.S.)
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.X.); (Y.L.)
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.P.); (Z.Y.); (W.Z.); (J.H.); (W.W.); (X.L.S.)
| | - Junran Hao
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.P.); (Z.Y.); (W.Z.); (J.H.); (W.W.); (X.L.S.)
| | - Weihong Wu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.P.); (Z.Y.); (W.Z.); (J.H.); (W.W.); (X.L.S.)
| | - Xiao Li Shen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.P.); (Z.Y.); (W.Z.); (J.H.); (W.W.); (X.L.S.)
- School of Public Health, Zunyi Medical University, Zunyi 563000, China
| | - Yunbo Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.X.); (Y.L.)
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.P.); (Z.Y.); (W.Z.); (J.H.); (W.W.); (X.L.S.)
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.X.); (Y.L.)
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.P.); (Z.Y.); (W.Z.); (J.H.); (W.W.); (X.L.S.)
- Correspondence: ; Tel.: +86-10-6273-8793
| |
Collapse
|
137
|
Li Z, Ding B, Zhou X, Wang GL. The Rice Dynamin-Related Protein OsDRP1E Negatively Regulates Programmed Cell Death by Controlling the Release of Cytochrome c from Mitochondria. PLoS Pathog 2017; 13:e1006157. [PMID: 28081268 PMCID: PMC5266325 DOI: 10.1371/journal.ppat.1006157] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 01/25/2017] [Accepted: 12/29/2016] [Indexed: 11/18/2022] Open
Abstract
Programmed cell death (PCD) mediated by mitochondrial processes has emerged as an important mechanism for plant development and responses to abiotic and biotic stresses. However, the role of translocation of cytochrome c from the mitochondria to the cytosol during PCD remains unclear. Here, we demonstrate that the rice dynamin-related protein 1E (OsDRP1E) negatively regulates PCD by controlling mitochondrial structure and cytochrome c release. We used a map-based cloning strategy to isolate OsDRP1E from the lesion mimic mutant dj-lm and confirmed that the E409V mutation in OsDRP1E causes spontaneous cell death in rice. Pathogen inoculation showed that dj-lm significantly enhances resistance to fungal and bacterial pathogens. Functional analysis of the E409V mutation showed that the mutant protein impairs OsDRP1E self-association and formation of a higher-order complex; this in turn reduces the GTPase activity of OsDRP1E. Furthermore, confocal microscopy showed that the E409V mutation impairs localization of OsDRP1E to the mitochondria. The E409V mutation significantly affects the morphogenesis of cristae in mitochondria and causes the abnormal release of cytochrome c from mitochondria into cytoplasm. Taken together, our results demonstrate that the mitochondria-localized protein OsDRP1E functions as a negative regulator of cytochrome c release and PCD in plants. Plants have developed a hypersensitive response (HR) that shows rapid programed cell death (PCD) around the infection site, which in turn limits pathogen invasion and restricts the spread of pathogens. Although many studies reported the characterization of PCD in different pathosystems in the last decade, the molecular mechanisms on how PCD is initiated and how it regulates host resistance are still unclear. Lesion mimic mutants exhibit spontaneous HR-like cell death without pathogen invasion and are ideal genetic materials for dissecting the PCD pathway. In this study, we characterized the lesion mimic gene OsDRP1E that negatively regulates plant PCD through the control of cytochrome c release from mitochondria. Our results suggest that the E409V point mutation in the dynamin-related protein OsDRP1E affects the morphogenesis of mitochondrial cristae that leads to the cytochrome c release into cytoplasm. This study provides new insights into the function of dynamin-related proteins in plant immunity.
Collapse
Affiliation(s)
- Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China and College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Bo Ding
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (GLW); (BD)
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China and College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (GLW); (BD)
| |
Collapse
|
138
|
Zhang Y, Avalos JL. Traditional and novel tools to probe the mitochondrial metabolism in health and disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [PMID: 28067471 DOI: 10.1002/wsbm.1373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 02/06/2023]
Abstract
Mitochondrial metabolism links energy production to other essential cellular processes such as signaling, cellular differentiation, and apoptosis. In addition to producing adenosine triphosphate (ATP) as an energy source, mitochondria are responsible for the synthesis of a myriad of important metabolites and cofactors such as tetrahydrofolate, α-ketoacids, steroids, aminolevulinic acid, biotin, lipoic acid, acetyl-CoA, iron-sulfur clusters, heme, and ubiquinone. Furthermore, mitochondria and their metabolism have been implicated in aging and several human diseases, including inherited mitochondrial disorders, cardiac dysfunction, heart failure, neurodegenerative diseases, diabetes, and cancer. Therefore, there is great interest in understanding mitochondrial metabolism and the complex relationship it has with other cellular processes. A large number of studies on mitochondrial metabolism have been conducted in the last 50 years, taking a broad range of approaches. In this review, we summarize and discuss the most commonly used tools that have been used to study different aspects of the metabolism of mitochondria: ranging from dyes that monitor changes in the mitochondrial membrane potential and pharmacological tools to study respiration or ATP synthesis, to more modern tools such as genetically encoded biosensors and trans-omic approaches enabled by recent advances in mass spectrometry, computation, and other technologies. These tools have allowed the large number of studies that have shaped our current understanding of mitochondrial metabolism. WIREs Syst Biol Med 2017, 9:e1373. doi: 10.1002/wsbm.1373 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Yanfei Zhang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - José L Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.,Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
139
|
Nawkar GM, Maibam P, Park JH, Woo SG, Kim CY, Lee SY, Kang CH. In silico study on Arabidopsis BAG gene expression in response to environmental stresses. PROTOPLASMA 2017; 254:409-421. [PMID: 27002965 PMCID: PMC5216074 DOI: 10.1007/s00709-016-0961-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/10/2016] [Indexed: 05/13/2023]
Abstract
BAG (Bcl-2 athanogene) family proteins are conserved in a wide range of eukaryotes, and they have been proposed to play a crucial role in plant programmed cell death (PCD). During the past decade, with the help of advanced bioinformatics tools, seven homologs of BAG genes have been identified in the Arabidopsis genome; these genes are involved in pathogen attack and abiotic stress conditions. In this study, gene expression of Arabidopsis BAG family members under environmental stresses was analyzed using the Botany Array Resource (BAR) expression browser tool and the in silico data were partially confirmed by qRT-PCR analysis for the selected stress- and hormone-treated conditions related to environmental stresses. Particularly, the induction of AtBAG6 gene in response to heat shock was confirmed by using GUS reporter lines. The loss of the AtBAG6 gene resulted into impairment in basal thermotolerance of plant and showed enhanced cell death in response to heat stress. To elucidate the regulatory mechanisms of BAG genes, we analyzed ∼1-kbp promoter regions for the presence of stress-responsive elements. Our transcription profiling finally revealed that the Arabidopsis BAG genes differentially respond to environmental stresses under the control of specifically organized upstream regulatory elements.
Collapse
Affiliation(s)
- Ganesh M Nawkar
- Division of Applied Life Science and PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Punyakishore Maibam
- Division of Applied Life Science and PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Joung Hun Park
- Division of Applied Life Science and PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Su Gyeong Woo
- Eco-friendly Bio-Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 580-185, Republic of Korea
| | - Cha Young Kim
- Eco-friendly Bio-Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 580-185, Republic of Korea
| | - Sang Yeol Lee
- Division of Applied Life Science and PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| | - Chang Ho Kang
- Division of Applied Life Science and PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
140
|
Lu Z, Sha J, Tian Y, Zhang X, Liu B, Wu Z. Polyphenolic allelochemical pyrogallic acid induces caspase-3(like)-dependent programmed cell death in the cyanobacterium Microcystis aeruginosa. ALGAL RES 2017. [DOI: 10.1016/j.algal.2016.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
141
|
Wang S, Zhang Y, Song Q, Fang Z, Chen Z, Zhang Y, Zhang L, Zhang L, Niu N, Ma S, Wang J, Yao Y, Hu Z, Zhang G. Mitochondrial Dysfunction Causes Oxidative Stress and Tapetal Apoptosis in Chemical Hybridization Reagent-Induced Male Sterility in Wheat. FRONTIERS IN PLANT SCIENCE 2017; 8:2217. [PMID: 29367855 PMCID: PMC5767846 DOI: 10.3389/fpls.2017.02217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/18/2017] [Indexed: 05/07/2023]
Abstract
Male sterility in plants has been strongly linked to mitochondrial dysfunction. Chemical hybridization agent (CHA)-induced male sterility is an important tool in crop heterosis. Therefore, it is important to better understand the relationship between mitochondria and CHA-induced male sterility in wheat. This study reports on the impairment of mitochondrial function duo to CHA-SQ-1, which occurs by decreasing cytochrome oxidase and adenosine triphosphate synthase protein levels and theirs activities, respiratory rate, and in turn results in the inhibition of the mitochondrial electron transport chain (ETC), excessive production of reactive oxygen species (ROS) and disruption of the alternative oxidase pathway. Subsequently, excessive ROS combined with MnSOD defects results in damage to the mitochondrial membrane, followed by ROS release into the cytoplasm. The microspores underwent severe oxidative stress during pollen development. Furthermore, chronic oxidative stress, together with the overexpression of type II metacaspase, triggered premature tapetal apoptosis, which resulted in pollen abortion. Accordingly, we propose a metabolic pathway for mitochondrial-mediated male sterility in wheat, which provides information on the molecular events underlying CHA-SQ-1-induced abortion of anthers and may serve as an additional guide to the practical application of hybrid breeding.
Collapse
Affiliation(s)
- Shuping Wang
- Key Laboratory of Crop Heterosis of Shaanxi Province, College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, China
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agronomy, Yangtze University, Jingzhou, China
- *Correspondence: Gaisheng Zhang, Shuping Wang,
| | - Yingxin Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qilu Song
- Key Laboratory of Crop Heterosis of Shaanxi Province, College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, China
| | - Zhengwu Fang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agronomy, Yangtze University, Jingzhou, China
| | - Zheng Chen
- Key Laboratory of Crop Heterosis of Shaanxi Province, College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, China
| | - Yamin Zhang
- Key Laboratory of Crop Heterosis of Shaanxi Province, College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, China
| | - Lili Zhang
- Key Laboratory of Crop Heterosis of Shaanxi Province, College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Na Niu
- Key Laboratory of Crop Heterosis of Shaanxi Province, College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, China
| | - Shoucai Ma
- Key Laboratory of Crop Heterosis of Shaanxi Province, College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, China
| | - Junwei Wang
- Key Laboratory of Crop Heterosis of Shaanxi Province, College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, China
| | - Yaqin Yao
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Zanmin Hu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Gaisheng Zhang
- Key Laboratory of Crop Heterosis of Shaanxi Province, College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, China
- *Correspondence: Gaisheng Zhang, Shuping Wang,
| |
Collapse
|
142
|
Bahieldin A, Atef A, Edris S, Gadalla NO, Ali HM, Hassan SM, Al-Kordy MA, Ramadan AM, Makki RM, Al-Hajar ASM, El-Domyati FM. Ethylene responsive transcription factor ERF109 retards PCD and improves salt tolerance in plant. BMC PLANT BIOLOGY 2016; 16:216. [PMID: 27716054 PMCID: PMC5053207 DOI: 10.1186/s12870-016-0908-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 09/27/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND The ultimate goal of this work was to detect the role of transcription factors (TFs) concordantly expressed with genes related to programmed cell death (PCD) during PCD and salt stress. This work was based on the hypothesis that TFs and their driven genes likely co-express under different stimuli. The conserved superfamily ethylene responsive factor (AP2/ERF) draw attention of the present study as it participates in the response to biotic and abiotic stimuli as well as to program cell death (PCD). RESULTS RNA-Seq analysis was done for tobacco (N. benthamiana) leaves exposed to oxalic acid (OA) at 20 mM for 0, 2, 6, 12 and 24 h to induce PCD. Genes up-regulated after 2 h of OA treatment with known function during PCD were utilized as landmarks to select TFs with concordant expression. Knockdown mutants of these TFs were generated in tobacco via virus induced gene silencing (VIGS) in order to detect their roles during PCD. Based on the results of PCD assay, knockout (KO) T-DNA insertion mutants of Arabidopsis as well as over-expression lines of two selected TFs, namely ERF109 and TFIID5, analogs to those in tobacco, were tested under salt stress (0, 100, 150 and 200 mM NaCl). CONCLUSIONS Results of knockdown mutant tobacco cells confirmed the influence of these two TFs during PCD. Knockout insertion mutants and over-expression lines indicated the role of ERF109 in conferring salt tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Ahmed Atef
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Sherif Edris
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), Faculty of Medicine, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Nour O. Gadalla
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Hani M. Ali
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Sabah M. Hassan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Magdy A. Al-Kordy
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Ahmed M. Ramadan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Rania M. Makki
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Abdulrahman S. M. Al-Hajar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Fotouh M. El-Domyati
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
143
|
Abstract
Plants are sessile organisms exposed constantly to potential virulent microbes seeking for full pathogenesis in hosts. Different from animals employing both adaptive and innate immune systems, plants only rely on innate immunity to detect and fight against pathogen invasions. Plant innate immunity is proposed to be a two-tiered immune system including pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In PTI, PAMPs, the elicitors derived from microbial pathogens, are perceived by cell surface-localized proteins, known as pattern recognition receptors (PRRs), including receptor-like kinases (RLKs) and receptor-like proteins (RLPs). As single-pass transmembrane proteins, RLKs and RLPs contain an extracellular domain (ECD) responsible for ligand binding. Recognitions of signal molecules by PRR-ECDs induce homo- or heterooligomerization of RLKs and RLPs to trigger corresponding intracellular immune responses. RLKs possess a cytoplasmic Ser/Thr kinase domain that is absent in RLPs, implying that protein phosphorylations underlie key mechanism in transducing immunity signalings and that RLPs unlikely mediate signal transduction independently, and recruitment of other patterns, such as RLKs, is required for the function of RLPs in plant immunity. Receptor-like cytoplasmic kinases, resembling RLK structures but lacking the ECD, act as immediate substrates of PRRs, modulating PRR activities and linking PRRs with downstream signaling mediators. In this chapter, we summarize recent discoveries illustrating the molecular machines of major components of PRR complexes in mediating pathogen perception and immunity activation in plants.
Collapse
Affiliation(s)
- K He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China.
| | - Y Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
144
|
Fatouros NE, Cusumano A, Danchin EG, Colazza S. Prospects of herbivore egg-killing plant defenses for sustainable crop protection. Ecol Evol 2016; 6:6906-6918. [PMID: 28725368 PMCID: PMC5513223 DOI: 10.1002/ece3.2365] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/07/2016] [Accepted: 07/18/2016] [Indexed: 01/17/2023] Open
Abstract
Due to a growing demand of food production worldwide, new strategies are suggested to allow for sustainable production of food with minimal effects on natural resources. A promising alternative to the application of chemical pesticides is the implementation of crops resistant to insect pests. Plants produce compounds that are harmful to a wide range of attackers, including insect pests; thus, exploitation of their natural defense system can be the key for the development of pest-resistant crops. Interestingly, some plants possess a unique first line of defense that eliminates the enemy before it becomes destructive: egg-killing. Insect eggs can trigger (1) direct defenses, mostly including plant cell tissue growth or cell death that lead to eggs desiccating, being crushed or falling off the plant or (2) indirect defenses, plant chemical cues recruiting natural enemies that kill the egg or hatching larvae (parasitoids). The consequences of plant responses to eggs are that insect larvae do not hatch or that they are impeded in development, and damage to the plant is reduced. Here, we provide an overview on the ubiquity and evolutionary history of egg-killing traits within the plant kingdom including crops. Up to now, little is known on the mechanisms and on the genetic basis of egg-killing traits. Making use of egg-killing defense traits in crops is a promising new way to sustainably reduce losses of crop yield. We provide suggestions for new breeding strategies to grow egg-killing crops and improve biological control.
Collapse
Affiliation(s)
- Nina E. Fatouros
- Biosystematics GroupWageningen UniversityDroevendaalsesteeg 16700 APWageningenThe Netherlands
| | - Antonino Cusumano
- Laboratory of EntomologyWageningen UniversityDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Etienne G.J. Danchin
- INRACNRS, UMR 1355‐7254Institut Sophia AgrobiotechUniversity of Nice Sophia Antipolis06900Sophia AntipolisFrance
| | - Stefano Colazza
- Department of Agricultural and Forest SciencesUniversity of PalermoViale delle Scienze edificio 590128PalermoItaly
| |
Collapse
|
145
|
Wang C, Yu H, Luo L, Duan L, Cai L, He X, Wen J, Mysore KS, Li G, Xiao A, Duanmu D, Cao Y, Hong Z, Zhang Z. NODULES WITH ACTIVATED DEFENSE 1 is required for maintenance of rhizobial endosymbiosis in Medicago truncatula. THE NEW PHYTOLOGIST 2016; 212:176-91. [PMID: 27245091 DOI: 10.1111/nph.14017] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/13/2016] [Indexed: 05/27/2023]
Abstract
The symbiotic interaction between legume plants and rhizobia results in the formation of root nodules, in which symbiotic plant cells host and harbor thousands of nitrogen-fixing rhizobia. Here, a Medicago truncatula nodules with activated defense 1 (nad1) mutant was identified using reverse genetics methods. The mutant phenotype was characterized using cell and molecular biology approaches. An RNA-sequencing technique was used to analyze the transcriptomic reprogramming of nad1 mutant nodules. In the nad1 mutant plants, rhizobial infection and propagation in infection threads are normal, whereas rhizobia and their symbiotic plant cells become necrotic immediately after rhizobia are released from infection threads into symbiotic cells of nodules. Defense-associated responses were detected in nad1 nodules. NAD1 is specifically present in root nodule symbiosis plants with the exception of Morus notabilis, and the transcript is highly induced in nodules. NAD1 encodes a small uncharacterized protein with two predicted transmembrane helices and is localized at the endoplasmic reticulum. Our data demonstrate a positive role for NAD1 in the maintenance of rhizobial endosymbiosis during nodulation.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haixiang Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Luo
- Shanghai Key Lab of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Liujian Duan
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liuyang Cai
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinxing He
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiangqi Wen
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aifang Xiao
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yangrong Cao
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zonglie Hong
- Department of Plant, Soil and Entomological Sciences and Program of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID, 83844, USA
| | - Zhongming Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
146
|
Wang M, Sun Y, Gu Z, Wang R, Sun G, Zhu C, Guo S, Shen Q. Nitrate Protects Cucumber Plants Against Fusarium oxysporum by Regulating Citrate Exudation. PLANT & CELL PHYSIOLOGY 2016; 57:2001-12. [PMID: 27481896 DOI: 10.1093/pcp/pcw124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/05/2016] [Indexed: 05/25/2023]
Abstract
Fusarium wilt causes severe yield losses in cash crops. Nitrogen plays a critical role in the management of plant disease; however, the regulating mechanism is poorly understood. Using biochemical, physiological, bioinformatic and transcriptome approaches, we analyzed how nitrogen forms regulate the interactions between cucumber plants and Fusarium oxysporum f. sp. cucumerinum (FOC). Nitrate significantly suppressed Fusarium wilt compared with ammonium in both pot and hydroponic experiments. Fewer FOC colonized the roots and stems under nitrate compared with ammonium supply. Cucumber grown with nitrate accumulated less fusaric acid (FA) after FOC infection and exhibited increased tolerance to chemical FA by decreasing FA absorption and transportation in shoots. A lower citrate concentration was observed in nitrate-grown cucumbers, which was associated with lower MATE (multidrug and toxin compound extrusion) family gene and citrate synthase (CS) gene expression, as well as lower CS activity. Citrate enhanced FOC spore germination and infection, and increased disease incidence and the FOC population in ammonium-treated plants. Our study provides evidence that nitrate protects cucumber plants against F. oxysporum by decreasing root citrate exudation and FOC infection. Citrate exudation is essential for regulating disease development of Fusarium wilt in cucumber plants.
Collapse
Affiliation(s)
- Min Wang
- Jiangsu Key Lab for Organic Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095, China
| | - Yuming Sun
- Jiangsu Key Lab for Organic Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095, China
| | - Zechen Gu
- Jiangsu Key Lab for Organic Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095, China
| | - Ruirui Wang
- Jiangsu Key Lab for Organic Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095, China
| | - Guomei Sun
- Jiangsu Key Lab for Organic Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095, China
| | - Chen Zhu
- Jiangsu Key Lab for Organic Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095, China
| | - Shiwei Guo
- Jiangsu Key Lab for Organic Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095, China
| | - Qirong Shen
- Jiangsu Key Lab for Organic Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095, China
| |
Collapse
|
147
|
Rasouli H, Farzaei MH, Mansouri K, Mohammadzadeh S, Khodarahmi R. Plant Cell Cancer: May Natural Phenolic Compounds Prevent Onset and Development of Plant Cell Malignancy? A Literature Review. Molecules 2016; 21:E1104. [PMID: 27563858 PMCID: PMC6274315 DOI: 10.3390/molecules21091104] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/03/2016] [Accepted: 08/08/2016] [Indexed: 12/15/2022] Open
Abstract
Phenolic compounds (PCs) are known as a chemically diverse category of secondary and reactive metabolites which are produced in plants via the shikimate-phenylpropanoid pathways. These compounds-ubiquitous in plants-are an essential part of the human diet, and are of considerable interest due to their antioxidant properties. Phenolic compounds are essential for plant functions, because they are involved in oxidative stress reactions, defensive systems, growth, and development. A large body of cellular and animal evidence carried out in recent decades has confirmed the anticancer role of PCs. Phytohormones-especially auxins and cytokinins-are key contributors to uncontrolled growth and tumor formation. Phenolic compounds can prevent plant growth by the endogenous regulation of auxin transport and enzymatic performance, resulting in the prevention of tumorigenesis. To conclude, polyphenols can reduce plant over-growth rate and the development of tumors in plant cells by regulating phytohormones. Future mechanistic studies are necessary to reveal intracellular transcription and transduction agents associated with the preventive role of phenolics versus plant pathological malignancy cascades.
Collapse
Affiliation(s)
- Hassan Rasouli
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6714967346, Iran.
| | - Mohammad Hosein Farzaei
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6714967346, Iran.
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714967346, Iran.
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6714967346, Iran.
| | - Sara Mohammadzadeh
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6714967346, Iran.
| | - Reza Khodarahmi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6714967346, Iran.
- Nano Drug Delivery Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714967346, Iran.
| |
Collapse
|
148
|
Fabro G, Rizzi YS, Alvarez ME. Arabidopsis Proline Dehydrogenase Contributes to Flagellin-Mediated PAMP-Triggered Immunity by Affecting RBOHD. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:620-8. [PMID: 27269509 DOI: 10.1094/mpmi-01-16-0003-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plants activate different defense systems to counteract the attack of microbial pathogens. Among them, the recognition of conserved microbial- or pathogen-associated molecular patterns (MAMPs or PAMPs) by pattern-recognition receptors stimulates MAMP- or PAMP-triggered immunity (PTI). In recent years, the elicitors, receptors, and signaling pathways leading to PTI have been extensively studied. However, the contribution of organelles to this program deserves further characterization. Here, we studied how processes altering the mitochondrial electron transport chain (mETC) influence PTI establishment. With particular emphasis, we evaluated the effect of proline dehydrogenase (ProDH), an enzyme that can load electrons into the mETC and regulate the cellular redox state. We found that mETC uncouplers (antimycin or rotenone) and manganese superoxide dismutase deficiency impair flg22-induced responses such as accumulation of reactive oxygen species (ROS) and bacterial growth limitation. ProDH mutants also reduce these defenses, decreasing callose deposition as well. Using ProDH inhibitors and ProDH inducers (exogenous Pro treatment), we showed that this enzyme modulates the generation of ROS by the plasma membrane respiratory burst NADPH oxidase homolog D. In this way, we contribute to the understanding of mitochondrial activities influencing early and late PTI responses and the coordination of the redox-associated mitochondrial enzyme ProDH with defense events initiated at the plasma membrane.
Collapse
Affiliation(s)
- Georgina Fabro
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Yanina Soledad Rizzi
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - María Elena Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| |
Collapse
|
149
|
Cheng Y, Wang W, Yao J, Huang L, Voegele RT, Wang X, Kang Z. Two distinct Ras genes from Puccinia striiformis
exhibit differential roles in rust pathogenicity and cell death. Environ Microbiol 2016; 18:3910-3922. [DOI: 10.1111/1462-2920.13379] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 05/10/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Yulin Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences; Northwest A&F University; Yangling Shaanxi 712100 People's Republic of China
| | - Wumei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection; Northwest A&F University; Yangling Shaanxi 712100 People's Republic of China
| | - Juanni Yao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection; Northwest A&F University; Yangling Shaanxi 712100 People's Republic of China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection; Northwest A&F University; Yangling Shaanxi 712100 People's Republic of China
| | - Ralf T. Voegele
- Fachgebiet Phytopathologie, Fakultät Agrarwissenschaften, Institut für Phytomedizin, Universität Hohenheim; Stuttgart Germany
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection; Northwest A&F University; Yangling Shaanxi 712100 People's Republic of China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection; Northwest A&F University; Yangling Shaanxi 712100 People's Republic of China
| |
Collapse
|
150
|
Jiang Y, Ye J, Veromann LL, Niinemets Ü. Scaling of photosynthesis and constitutive and induced volatile emissions with severity of leaf infection by rust fungus (Melampsora larici-populina) in Populus balsamifera var. suaveolens. TREE PHYSIOLOGY 2016; 36:856-72. [PMID: 27225874 DOI: 10.1093/treephys/tpw035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/30/2016] [Indexed: 05/22/2023]
Abstract
Fungal infections result in decreases in photosynthesis, induction of stress and signaling volatile emissions and reductions in constitutive volatile emissions, but the way different physiological processes scale with the severity of infection is poorly known. We studied the effects of infection by the obligate biotrophic fungal pathogen Melampsora larici-populina Kleb., the causal agent of poplar leaf rust disease, on photosynthetic characteristics, and constitutive isoprene and induced volatile emissions in leaves of Populus balsamifera var. suaveolens (Fisch.) Loudon. exhibiting different degrees of damage. The degree of fungal damage, quantified by the total area of chlorotic and necrotic leaf areas, varied between 0 (noninfected control) and ∼60%. The rates of all physiological processes scaled quantitatively with the degree of visual damage, but the scaling with damage severity was weaker for photosynthetic characteristics than for constitutive and induced volatile release. Over the whole range of damage severity, the net assimilation rate per area (AA) decreased 1.5-fold, dry mass per unit area 2.4-fold and constitutive isoprene emissions 5-fold, while stomatal conductance increased 1.9-fold and dark respiration rate 1.6-fold. The emissions of key stress and signaling volatiles (methanol, green leaf volatiles, monoterpenes, sesquiterpenes and methyl salicylate) were in most cases nondetectable in noninfested leaves, and increased strongly with increasing the spread of infection. The moderate reduction in AA resulted from the loss of photosynthetically active biomass, but the reduction in constitutive isoprene emissions and the increase in induced volatile emissions primarily reflected changes in the activities of corresponding biochemical pathways. Although all physiological alterations in fungal-infected leaves occurred in a stress severity-dependent manner, modifications in primary and secondary metabolic pathways scaled differently due to contrasting operational mechanisms.
Collapse
Affiliation(s)
- Yifan Jiang
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia College of Art, Changzhou University, Gehu 1, Changzhou 213164, Jiangsu, China
| | - Jiayan Ye
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Linda-Liisa Veromann
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| |
Collapse
|