101
|
Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, Zhu D, Koya JB, Wei L, Li J, Chen ZS. Microbiota in health and diseases. Signal Transduct Target Ther 2022; 7:135. [PMID: 35461318 PMCID: PMC9034083 DOI: 10.1038/s41392-022-00974-4] [Citation(s) in RCA: 1068] [Impact Index Per Article: 356.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
The role of microbiota in health and diseases is being highlighted by numerous studies since its discovery. Depending on the localized regions, microbiota can be classified into gut, oral, respiratory, and skin microbiota. The microbial communities are in symbiosis with the host, contributing to homeostasis and regulating immune function. However, microbiota dysbiosis can lead to dysregulation of bodily functions and diseases including cardiovascular diseases (CVDs), cancers, respiratory diseases, etc. In this review, we discuss the current knowledge of how microbiota links to host health or pathogenesis. We first summarize the research of microbiota in healthy conditions, including the gut-brain axis, colonization resistance and immune modulation. Then, we highlight the pathogenesis of microbiota dysbiosis in disease development and progression, primarily associated with dysregulation of community composition, modulation of host immune response, and induction of chronic inflammation. Finally, we introduce the clinical approaches that utilize microbiota for disease treatment, such as microbiota modulation and fecal microbial transplantation.
Collapse
Affiliation(s)
- Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Xuan-Yu Chen
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Dongya Zhang
- Microbiome Research Center, Moon (Guangzhou) Biotech Ltd, Guangzhou, 510535, China
| | - Chuanxing Xiao
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Dan Zhu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Jagadish B Koya
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Jilin Li
- Department of Cardiovascular, The Second Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| |
Collapse
|
102
|
Liang F, Lu X, Deng Z, Zhong HJ, Zhang W, Li Q, Zhou HH, Liou YL, He XX. Effect of Washed Microbiota Transplantation on Patients With Dyslipidemia in South China. Front Endocrinol (Lausanne) 2022; 13:827107. [PMID: 35528013 PMCID: PMC9074302 DOI: 10.3389/fendo.2022.827107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Background and Aims Although the manual crude fecal microbiota transplantation (FMT) reduces blood lipids in animal models of hyperlipidemia, its clinical effect on blood lipid metabolism in patients with hyperlipidemia and hypolipidemia remains unclear, especially in the Chinese population. It was reported that washed microbiota transplantation (WMT) was safer, more precise, and more quality-controllable than the crude FMT by manual. This study aimed to investigate the feasibility and effectiveness of WMT on lipid metabolism in the Chinese population. Methods Clinical data of patients with various indications who received WMT for 1-3 treatment procedures were collected. Changes in blood lipids before and after WMT, namely, total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), homeostasis model assessment of insulin resistance (HOMA-IR), liver fat attenuation, and liver stiffness measurement, were compared. Results A total of 177 patients (40 cases of hyperlipidemia, 87 cases with normal blood lipids, and 50 cases of hypolipidemia) were enrolled in the First Affiliated Hospital of Guangdong Pharmaceutical University. WMT has a significant therapeutic effect in reducing blood lipid levels (TC and TG) in the short- and medium term in patients with hyperlipidemia (p <0.05). Hyper blood lipid decreased to normal in the short-term (35.14%; p <0.001), and LDL-C changed to normal in the medium term (33.33%; p = 0.013). In the hypolipidemia group, 36.36% and 47.06% changed to normal in the short-term (p = 0.006) and medium term (p = 0.005) of therapeutic effects based on blood lipid levels. In the normal blood lipid group and the low-risk group of atherosclerotic cardiovascular disease (ASCVD), the change was not statistically significant, indicating that WMT does not increase the risk of blood lipid and ASCVD in the long-term. Conclusions WMT treatment changes blood lipids in patients with hyperlipidemia and hypolipidemia without serious adverse events, with no risk for increasing blood lipids and ASCVD in the long-term. There were significant decreased TC, TG, and LDL-C levels in the medium term of WMT treatment for hyperlipidemia. Therefore, the regulation of gut microbiota by WMT may indicate a new clinical method for the treatment of dyslipidemia.
Collapse
Affiliation(s)
- Fenfen Liang
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, Guangzhou, China
| | - Xinjian Lu
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, Guangzhou, China
| | - Zhiliang Deng
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, Guangzhou, China
| | - Hao-Jie Zhong
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, Guangzhou, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Clinical Precision Medicine Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Clinical Precision Medicine Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Clinical Precision Medicine Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu-Ligh Liou
- Clinical Precision Medicine Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Xiangya Medical Laboratory, Central South University, Changsha, China
| | - Xing-Xiang He
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, Guangzhou, China
| |
Collapse
|
103
|
Wang X, Tsai T, Zuo B, Wei X, Deng F, Li Y, Maxwell CV, Yang H, Xiao Y, Zhao J. Donor age and body weight determine the effects of fecal microbiota transplantation on growth performance, and fecal microbiota development in recipient pigs. J Anim Sci Biotechnol 2022; 13:49. [PMID: 35399089 PMCID: PMC8996565 DOI: 10.1186/s40104-022-00696-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/20/2022] [Indexed: 01/11/2023] Open
Abstract
Background The application of fecal microbiota transplantation (FMT) to improve swine growth performance has been sporadically studied. Most of these studies used a single microbiota source and thus the effect of donor characteristics on recipient pigs’ fecal microbiota development and growth performance is largely unknown. Results In this study, we collected feces from six donors with heavy (H) or light (L) body weight and different ages (d 42, nursery; d 96, growing; and d 170, finisher) to evaluate their effects on the growth performance and fecal microbiota development of recipient pigs. Generally, recipients that received two doses of FMT from nursery and finisher stages donor at weaning (21 ± 2 days of age) inherited the donor’s growth pattern, while the pigs gavaged with grower stage material exerted a numerically greater weight gain than the control pigs regardless of donor BW. FMT from heavier donors (NH, GH, and FH) led to the recipients to have numerically increased growth compared to their lighter counterparts (NL, GL, and FL, respectively) throughout the growing and most finishing stages. This benefit could be attributed to the enrichment of ASV25 Faecalibacterium, ASV61 Faecalibacterium, ASV438 Coriobacteriaceae_unclassified, ASV144 Bulleidia, and ASV129 Oribacterium and decrease of ASV13 Escherichia during nursery stage. Fecal microbiota transplantation from growing and finishing donors influenced the microbial community significantly in recipient pigs during the nursery stage. FMT of older donors’ gut microbiota expedited recipients’ microbiota maturity on d 35 and 49, indicated by increased estimated microbiota ages. The age-associated bacterial taxa included ASV206 Ruminococcaceae, ASV211 Butyrivibrio, ASV416 Bacteroides, ASV2 Streptococcus, and ASV291 Veillonellaceae. The body weight differences between GL and GH pigs on d 104 were associated with the increased synthesis of the essential amino acid, lysine and methionine, mixed acid fermentation, expedited glycolysis, and sucrose/galactose degradation. Conclusions Overall, our study provided insights into how donor age and body weight affect FMT outcomes regarding growth performance, microbiota community shifts, and lower GI tract metabolic potentials. This study also provided guidance to select qualified donors for future fecal microbiota transplantation. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00696-1.
Collapse
|
104
|
Lemos MPC, Zucoloto TG, Oliveira MC, de Oliveira GLV. Dysbiosis and Gut Microbiota Modulation in Systemic Sclerosis. J Clin Rheumatol 2022; 28:e568-e573. [PMID: 34030162 DOI: 10.1097/rhu.0000000000001748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Gastrointestinal (GI) involvement is an early manifestation in systemic sclerosis (SSc), affecting more than 90% of patients, and severe GI disease is a marker of poor prognosis and mortality. Recent studies have hypothesized that alterations of the intestinal microbiota, known as dysbiosis, may represent 1 of the possible environmental factors influencing SSc disease status. In addition, specific microorganisms may be associated with SSc pathogenesis, progression, and GI manifestations. Therapeutic approaches aiming to modulate the intestinal microbiota have emerged, as alternatives to treat GI symptoms, and dietary interventions, probiotic administration, and fecal microbiota transplantation are potential therapies for SSc patients. However, given the complexity and variability of pathogenesis and clinical manifestations in SSc, these therapies need to be combined with additional interventions that target other disease components. Here, we summarize studies addressing intestinal dysbiosis in SSc and discuss the potential of microbiota modulators to treat SSc-related GI disorders.
Collapse
|
105
|
Tixier EN, Verheyen E, Luo Y, Grinspan LT, Du CH, Ungaro RC, Walsh S, Grinspan AM. Systematic Review with Meta-Analysis: Fecal Microbiota Transplantation for Severe or Fulminant Clostridioides difficile. Dig Dis Sci 2022; 67:978-988. [PMID: 33748913 DOI: 10.1007/s10620-021-06908-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/19/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Severe and fulminant Clostridioides difficile infection (CDI) is associated with significant morbidity and mortality. While fecal microbiota transplantation (FMT) has proved to be a highly effective treatment for recurrent CDI, its efficacy in severe or fulminant CDI remains uncertain. AIMS To perform a systematic review with meta-analysis evaluating clinical outcomes and safety of FMT in severe and fulminant CDI. METHODS A systemic review with meta-analysis was performed through comprehensive search of Embase, Medline (Ovid), trial registers, and conference abstracts through January 2020. Studies on FMT in severe and fulminant CDI were included. Meta-analysis was done with random effects models given heterogeneity to estimate rates of cure, mortality, and colectomy. Publication bias was assessed using Egger's test. RESULTS Sixteen studies comprised of one randomized controlled trial, four cohort studies, and eleven case series were analyzed. In total, 676 patients underwent FMT for severe or fulminant CDI. The overall rate of clinical cure after single FMT was 61.3% (95% CI 43.2-78.0%) with 10.9% (95% CI 0.2-30.2%) of patients experiencing major adverse events. The overall pooled colectomy rate after FMT was 8.2% (95% CI 0.1-23.7%) with a pooled all-cause mortality rate after FMT of 15.6% (95% CI 7.8-25.0%). CONCLUSION Low-quality data support the use of fecal microbiota transplantation in patients with severe and fulminant Clostridioides difficile infection.
Collapse
Affiliation(s)
- Emily N Tixier
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Yuying Luo
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Charles H Du
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan C Ungaro
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samantha Walsh
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ari M Grinspan
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
106
|
Jiang S, Geng S, Chen Q, Zhang C, Cheng M, Yu Y, Zhang S, Shi N, Dong M. Effects of Concomitant Antibiotics Use on Immune Checkpoint Inhibitor Efficacy in Cancer Patients. Front Oncol 2022; 12:823705. [PMID: 35223505 PMCID: PMC8864310 DOI: 10.3389/fonc.2022.823705] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/14/2022] [Indexed: 12/30/2022] Open
Abstract
Objective Immune checkpoint inhibitors (ICIs) have changed the outcomes of a variety of cancers in an unprecedented manner. Gut microbiome plays a crucial regulatory role in the antineoplastic therapy of ICIs, which can be influenced by antibiotic (ABX) administration. In this efficacy evaluation, we aimed to clarify the correlations of ABX administration with the survival of cancer patients receiving ICIs treatment. Method The eligible literatures were searched using PubMed, Cochrane Library, Web of Science, and Clinical trials.gov databases before Nov 2021. The correlations of ABX administration with progression-free survival (PFS) and overall survival (OS) were determined using Hazard ratios (HRs) coupled with 95% confidence intervals (CIs). Results A total of 12 studies enrolling 6010 cancer patients receiving ICIs treatment were included in this efficacy evaluation. ABX administration was significantly correlated worse PFS (HR=1.60, 95%CI=1.33-1.92, P<0.00001) and OS (HR=1.46, 95%CI=1.32-1.61, P<0.00001). Similar results were found in the subgroup analysis of non-small cell lung cancer (NSCLC), renal cell carcinoma (RCC) and melanoma. Conclusions ABX use during ICIs treatment of cancer may significantly shorten PFS and OS. ABX should be used cautiously in cancer patients receiving ICIs. However, further validations are still essential due to existing publication bias.
Collapse
Affiliation(s)
- Shuai Jiang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuai Geng
- Department of Pharmacy, Strategic Support Force Medical Center, Beijing, China
| | - Qian Chen
- Department of Pharmacy, Beijing Boren Hospital, Beijing, China
| | - Chen Zhang
- Department of Medical Imaging, Strategic Support Force Medical Center, Beijing, China
| | - Mengfei Cheng
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Yu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuo Zhang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ning Shi
- Department of Pharmacy, Strategic Support Force Medical Center, Beijing, China
| | - Mei Dong
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
107
|
Donor Screening Revisions of Fecal Microbiota Transplantation in Patients with Ulcerative Colitis. J Clin Med 2022; 11:jcm11041055. [PMID: 35207328 PMCID: PMC8879222 DOI: 10.3390/jcm11041055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/26/2022] Open
Abstract
Fecal microbiota transplantation (FMT) has been recognized as a promising treatment for dysbiosis-related diseases. Since 2014, FMT has been utilized to treat ulcerative colitis (UC) in our clinical studies and has shown efficacy and safety. As donor screening (DS) is the primary step to ensure the safety of FMT, we report our experience with DS and present the screening results to improve the prospective DS criteria and provide references for future studies. The donor candidates were screened according to the DS criteria. The first DS criteria were proposed in June 2014 and revised substantially in May 2018. We further sorted the screening results and costs of laboratory tests. From June 2014 to April 2018, the DS eligibility rate was 50%. The total laboratory testing cost for each candidate was JPY 17,580/USD 160.21. From May 2018 to September 2021, the DS eligibility rate was 25.6%. The total laboratory testing cost for each candidate was JPY 40,740/USD 371.36. The reduction in donor eligibility rates due to more stringent criteria should be considered for cost and safety. Studies must consider the latest updates and make timely modifications in the DS criteria to ensure patient safety.
Collapse
|
108
|
Jiang G, Zhang Y, Gan G, Li W, Wan W, Jiang Y, Yang T, Zhang Y, Xu Y, Wang Y, Shen Q, Wei Z, Dini-Andreote F. Exploring rhizo-microbiome transplants as a tool for protective plant-microbiome manipulation. ISME COMMUNICATIONS 2022; 2:10. [PMID: 37938685 PMCID: PMC9723603 DOI: 10.1038/s43705-022-00094-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 04/20/2023]
Abstract
The development of strategies for effectively manipulating and engineering beneficial plant-associated microbiomes is a major challenge in microbial ecology. In this sense, the efficacy and potential implications of rhizosphere microbiome transplant (RMT) in plant disease management have only scarcely been explored in the literature. Here, we initially investigated potential differences in rhizosphere microbiomes of 12 Solanaceae eggplant varieties and accessed their level of resistance promoted against bacterial wilt disease caused by the pathogen Ralstonia solanacearum, in a 3-year field trial. We elected 6 resistant microbiomes and further tested the broad feasibility of using RMT from these donor varieties to a susceptible model Solanaceae tomato variety MicroTom. Overall, we found the rhizosphere microbiome of resistant varieties to enrich for distinct and specific bacterial taxa, of which some displayed significant associations with the disease suppression. Quantification of the RMT efficacy using source tracking analysis revealed more than 60% of the donor microbial communities to successfully colonize and establish in the rhizosphere of recipient plants. RTM from distinct resistant donors resulted in different levels of wilt disease suppression, reaching up to 47% of reduction in disease incidence. Last, we provide a culture-dependent validation of potential bacterial taxa associated with antagonistic interactions with the pathogen, thus contributing to a better understanding of the potential mechanism associated with the disease suppression. Our study shows RMT from appropriate resistant donors to be a promising tool to effectively modulate protective microbiomes and promote plant health. Together we advocate for future studies aiming at understanding the ecological processes and mechanisms mediating rates of coalescence between donor and recipient microbiomes in the plant rhizosphere.
Collapse
Affiliation(s)
- Gaofei Jiang
- Laboratory of Bio-interactions and Crop Health, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yuling Zhang
- Laboratory of Bio-interactions and Crop Health, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Guiyun Gan
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Weiliu Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wen Wan
- Laboratory of Bio-interactions and Crop Health, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yaqin Jiang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Tianjie Yang
- Laboratory of Bio-interactions and Crop Health, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yong Zhang
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Yangchun Xu
- Laboratory of Bio-interactions and Crop Health, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yikui Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China.
| | - Qirong Shen
- Laboratory of Bio-interactions and Crop Health, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Zhong Wei
- Laboratory of Bio-interactions and Crop Health, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China.
| | - Francisco Dini-Andreote
- Department of Plant Science & Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
109
|
Ferre-Aracil C, El Hajra Martínez I, Vera Mendoza MI, Ramos Martínez A, Muñez Rubio E, Fernández-Cruz A, Matallana Royo V, García-Maseda S, Sánchez Romero I, Martínez Ruiz R, Calleja Panero JL. El trasplante de microbiota fecal es un tratamiento sencillo, efectivo y seguro en el manejo de la infección por C. difficile en la práctica clínica diaria. Enferm Infecc Microbiol Clin 2022. [DOI: 10.1016/j.eimc.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
110
|
Jones IJ, Sokolow SH, De Leo GA. Three reasons why expanded use of natural enemy solutions may offer sustainable control of human infections. PEOPLE AND NATURE 2022; 4:32-43. [PMID: 35450207 PMCID: PMC9017516 DOI: 10.1002/pan3.10264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Many infectious pathogens spend a significant portion of their life cycles in the environment or in animal hosts, where ecological interactions with natural enemies may influence pathogen transmission to people. Yet, our understanding of natural enemy opportunities for human disease control is lacking, despite widespread uptake and success of natural enemy solutions for pest and parasite management in agriculture. 2. Here we explore three reasons why conserving, restoring, or augmenting specific natural enemies in the environment could offer a promising complement to conventional clinical strategies to fight environmentally mediated pathogens and parasites. (1) Natural enemies of human infections abound in nature, largely understudied and undiscovered. (2) Natural enemy solutions could provide ecological options for infectious disease control where conventional interventions are lacking. And, (3) Many natural enemy solutions could provide important co-benefits for conservation and human well-being. 3. We illustrate these three arguments with a broad set of examples whereby natural enemies of human infections have been used or proposed to curb human disease burden, with some clear successes. However, the evidence base for most proposed solutions is sparse, and many opportunities likely remain undiscovered, highlighting opportunities for future research.
Collapse
Affiliation(s)
- IJ Jones
- Hopkins Marine Station of Stanford University, Pacific Grove, CA, 93950,Corresponding Author: Isabel J. Jones, , 415-309-3125
| | - SH Sokolow
- Woods Institute for the Environment, Stanford University, Stanford, CA, 94305,Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - GA De Leo
- Hopkins Marine Station of Stanford University, Pacific Grove, CA, 93950,Woods Institute for the Environment, Stanford University, Stanford, CA, 94305
| |
Collapse
|
111
|
Gweon TG, Lee YJ, Kim KO, Yim SK, Soh JS, Kim SY, Park JJ, Shin SY, Lee TH, Choi CH, Cho YS, Yong D, Chung JW, Lee KJ, Lee OY, Choi MG, Choi M. Clinical Practice Guidelines for Fecal Microbiota Transplantation in Korea. J Neurogastroenterol Motil 2022; 28:28-42. [PMID: 34980687 PMCID: PMC8748844 DOI: 10.5056/jnm21221] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 12/05/2022] Open
Abstract
Fecal microbiota transplantation (FMT) is a highly efficacious and safe modality for the treatment of recurrent or refractory Clostridioides difficile infection (CDI), with overall success rates of 90%. Thus, FMT has been widely used for 10 years. The incidence and clinical characteristics of CDI, the main indication for FMT, differ between countries. To date, several guidelines have been published. However, most of them were published in Western countries and therefore cannot represent the Korean national healthcare systems. One of the barriers to performing FMT is a lack of national guidelines. Accordingly, multidisciplinary experts in this field have developed practical guidelines for FMT. The purpose of these guidelines is to aid physicians performing FMT, which can be adapted to treat CDI and other conditions.
Collapse
Affiliation(s)
- Tae-Geun Gweon
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoo Jin Lee
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Kyeong Ok Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Sung Kyun Yim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Jeollabuk-do, Korea
| | - Jae Seung Soh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Hallym College of Medicine, Hallym University, Anyang, Gyeonggi-do, Korea
| | - Seung Young Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do, Korea
| | - Jae Jun Park
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Yong Shin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Tae Hee Lee
- Institute for Digestive Research, Digestive Disease Center, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Chang Hwan Choi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Young-Seok Cho
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Jin-Won Chung
- Division of Infectious Diseases, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Kwang Jae Lee
- Department of Internal Medicine, Ajou University School of Medicine, Suwon, Gyeonggi-do, Korea
| | - Oh Young Lee
- Department of Internal Medicine, Hanyang University School of Medicine, Seoul, Korea
| | - Myung-Gyu Choi
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Miyoung Choi
- Division of Healthcare Technology Assessment Research, National Evidence-Based Healthcare Collaboration Agency, Seoul, Korea
| | | |
Collapse
|
112
|
Guzzo GL, Andrews JM, Weyrich LS. The Neglected Gut Microbiome: Fungi, Protozoa, and Bacteriophages in Inflammatory Bowel Disease. Inflamm Bowel Dis 2022; 28:1112-1122. [PMID: 35092426 PMCID: PMC9247841 DOI: 10.1093/ibd/izab343] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 12/14/2022]
Abstract
The gut microbiome has been implicated in the pathogenesis of inflammatory bowel disease (IBD). Studies suggest that the IBD gut microbiome is less diverse than that of the unaffected population, a phenomenon often referred to as dysbiosis. However, these studies have heavily focused on bacteria, while other intestinal microorganisms-fungi, protozoa, and bacteriophages-have been neglected. Of the nonbacterial microbes that have been studied in relation to IBD, most are thought to be pathogens, although there is evidence that some of these species may instead be harmless commensals. In this review, we discuss the nonbacterial gut microbiome of IBD, highlighting the current biases, limitations, and outstanding questions that can be addressed with high-throughput DNA sequencing methods. Further, we highlight the importance of studying nonbacterial microorganisms alongside bacteria for a comprehensive view of the whole IBD biome and to provide a more precise definition of dysbiosis in patients. With the rise in popularity of microbiome-altering therapies for the treatment of IBD, such as fecal microbiota transplantation, it is important that we address these knowledge gaps to ensure safe and effective treatment of patients.
Collapse
Affiliation(s)
- Gina L Guzzo
- Address correspondence to: Gina L. Guzzo, The University of Adelaide, Adelaide, South Australia, Australia ()
| | - Jane M Andrews
- Inflammatory Bowel Disease Service, Department of Gastroenterology and Hepatology, Royal Adelaide Hospital and School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Laura S Weyrich
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia,Department of Anthropology and Huck Institutes of the Life Sciences, Pennsylvania State University, State College, PA, USA
| |
Collapse
|
113
|
Su L, Hong Z, Zhou T, Jian Y, Xu M, Zhang X, Zhu X, Wang J. Health improvements of type 2 diabetic patients through diet and diet plus fecal microbiota transplantation. Sci Rep 2022; 12:1152. [PMID: 35064189 PMCID: PMC8782834 DOI: 10.1038/s41598-022-05127-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/05/2022] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes (T2D) is a major public health problem, and gut microbiota dysbiosis has been implicated in the emergence of T2D in humans. Dietary interventions can indirectly influence the health status of patients with type 2 diabetes through their modulatory effects on the intestinal microbiota. In recent years, fecal microbiota transplantation is becoming familiar as a new medical treatment that can rapidly improve intestinal health. We conducted a 90-day controlled open-label trial to evaluate the health improvement ability of a specially designed diet, and the diet combined with fecal microbiota transplantation (FMT). According to our study, both diet and diet plus FMT treatments showed great potential in controlling blood glucose and blood pressure levels. Sequencing the V4 region of 16S rRNA gene on the Illumina MiniSeq platform revealed a shift of intestinal microbial community in T2D patients, and the changes were also observed in response to the treatments. FMT changed the gut microbiota more quickly than diet. Beneficial bacterium, such as Bifidobacterium, increased along the study and was negatively correlated with blood glucose, blood pressure, blood lipid and BMI. Sulfate-reducing bacteria (SRB), Bilophila and Desulfovibrio, decreased significantly after treatment, showed a positive correlation with blood glucose indices. Thus, the specially designed diet is beneficial to improve blood glucose control in diabetic patients, it also showed the potential to reverse dyslipidemia and dysarteriotony.
Collapse
Affiliation(s)
- Lili Su
- College of Electronics and Information Engineering, School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710048, People's Republic of China.,Guangdong Quantum Hi-Tech Microecological Medical Co., Ltd, Guangzhou, Guangdong, 510030, People's Republic of China
| | - Zhifan Hong
- Guangdong Quantum Hi-Tech Microecological Medical Co., Ltd, Guangzhou, Guangdong, 510030, People's Republic of China
| | - Tong Zhou
- Guangdong Quantum Hi-Tech Microecological Medical Co., Ltd, Guangzhou, Guangdong, 510030, People's Republic of China
| | - Yuanyuan Jian
- Guangdong Quantum Hi-Tech Microecological Medical Co., Ltd, Guangzhou, Guangdong, 510030, People's Republic of China
| | - Mei Xu
- Yunnan Richland International Hospital, Kunming, Yunnan, 650224, People's Republic of China
| | - Xuanping Zhang
- College of Electronics and Information Engineering, School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710048, People's Republic of China
| | - Xiaoyan Zhu
- College of Electronics and Information Engineering, School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710048, People's Republic of China
| | - Jiayin Wang
- College of Electronics and Information Engineering, School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710048, People's Republic of China.
| |
Collapse
|
114
|
Isidori M, Corbee RJ, Trabalza-Marinucci M. Nonpharmacological Treatment Strategies for the Management of Canine Chronic Inflammatory Enteropathy—A Narrative Review. Vet Sci 2022; 9:vetsci9020037. [PMID: 35202290 PMCID: PMC8878421 DOI: 10.3390/vetsci9020037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic inflammatory enteropathy (CIE) refers to a heterogeneous group of idiopathic diseases of the dog characterised by persistent gastrointestinal (GI) clinical signs. If conventional dietary treatment alone would be unsuccessful, management of CIE is traditionally attained by the use of pharmaceuticals, such as antibiotics and immunosuppressive drugs. While being rather effective, however, these drugs are endowed with side effects, which may impact negatively on the animal’s quality of life. Therefore, novel, safe and effective therapies for CIE are highly sought after. As gut microbiota imbalances are often associated with GI disorders, a compelling rationale exists for the use of nonpharmacological methods of microbial manipulation in CIE, such as faecal microbiota transplantation and administration of pre-, pro-, syn- and postbiotics. In addition to providing direct health benefits to the host via a gentle modulation of the intestinal microbiota composition and function, these treatments may also possess immunomodulatory and epithelial barrier-enhancing actions. Likewise, intestinal barrier integrity, along with mucosal inflammation, are deemed to be two chief therapeutic targets of mesenchymal stem cells and selected vegetable-derived bioactive compounds. Although pioneering studies have revealed encouraging findings regarding the use of novel treatment agents in CIE, a larger body of research is needed to address fully their mode of action, efficacy and safety.
Collapse
Affiliation(s)
- Marco Isidori
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
- Correspondence:
| | - Ronald Jan Corbee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Yalelaan 108, 3584 CM Utrecht, The Netherlands;
| | | |
Collapse
|
115
|
Abstract
Symbiotic microorganisms inhabiting the gastrointestinal tract promote health by decreasing susceptibility to infection and enhancing resistance to a range of diseases. In this Review, we discuss our increasing understanding of the impact of the microbiome on the mammalian host and recent efforts to culture and characterize intestinal symbiotic microorganisms that produce or modify metabolites that impact disease pathology. Manipulation of the intestinal microbiome has great potential to reduce the incidence and/or severity of a wide range of human conditions and diseases, and the biomedical research community now faces the challenge of translating our understanding of the microbiome into beneficial medical therapies. Our increasing understanding of symbiotic microbial species and the application of ecological principles and machine learning are providing exciting opportunities for microbiome-based therapeutics to progress from faecal microbiota transplantation to the administration of precisely defined and clinically validated symbiotic microbial consortia that optimize disease resistance.
Collapse
|
116
|
Watane A, Cavuoto KM, Rojas M, Dermer H, Day JO, Banerjee S, Galor A. Fecal Microbial Transplant in Individuals With Immune-Mediated Dry Eye. Am J Ophthalmol 2022; 233:90-100. [PMID: 34214453 PMCID: PMC8678170 DOI: 10.1016/j.ajo.2021.06.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/01/2021] [Accepted: 06/23/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE To evaluate the safety of the Fecal Microbial Transplant for Sjogren Syndrome (FMT) trial in individuals with immune-mediated dry eye (DE). DESIGN Open-label, nonrandomized clinical trial. METHODS The study population included 10 individuals with DE symptoms and signs meeting criteria for Sjögren or positive early Sjögren markers. Procedures were 2 FMTs from a single healthy donor delivered via enema, 1 week apart. The primary outcome measure was safety. In addition, gut microbiome profiles, DE metrics, and T-cell profiles in blood were examined at baseline before FMT, and at 1 week, 1 month, and 3 months after FMT. RESULTS The mean age of the population was 60.4 years; 30% were male; 50% were white; and 50% were Hispanic. At baseline, all subjects had significantly different gut microbiome profiles from the donor, including higher mean diversity indices. Subjects had a decreased abundance of genera Faecalibacterium, Prevotella, and Ruminococcus and an increased abundance of genera Alistipes, Streptococcus, and Blautia compared to the donor. Effector and regulatory T-cell profiles were positively correlated with each other and with DE symptom severity (T helper 1 cells [Th1]; r = .76; P = .01; Th17: r = 0.83; P = .003; CD25: r = 0.66; P = .04; FoxP3: r = 0.68; P = .03). No adverse events were noted with FMT. After FMT, gut microbiome profiles in 8 subjects moved closer to the donor's profile. As a group, gut microbiome profiles at all follow-up time points were more similar to the original recipients' than the donor's microbiome; however, certain phyla, classes, and genera operational taxonomic unit (OTU) numbers remained closer to the donor vs recipients' baseline profiles out to 3 months. Five individuals subjectively reported improved dry eye symptoms 3 months after FMT. CONCLUSIONS FMT was safely performed in individuals with immune-mediated DE, with certain bacterial profiles resembling the donor out to 3 months after FMT. One-half the subjects reported improved DE symptoms. The most effective FMT administration method has yet to be determined.
Collapse
Affiliation(s)
- Arjun Watane
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Kara M. Cavuoto
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Mario Rojas
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Harrison Dermer
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Joanne O Day
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Santanu Banerjee
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL,Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL 33125
| |
Collapse
|
117
|
Doll JPK, Vázquez-Castellanos JF, Schaub AC, Schweinfurth N, Kettelhack C, Schneider E, Yamanbaeva G, Mählmann L, Brand S, Beglinger C, Borgwardt S, Raes J, Schmidt A, Lang UE. Fecal Microbiota Transplantation (FMT) as an Adjunctive Therapy for Depression-Case Report. Front Psychiatry 2022; 13:815422. [PMID: 35250668 PMCID: PMC8891755 DOI: 10.3389/fpsyt.2022.815422] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/25/2022] [Indexed: 12/20/2022] Open
Abstract
Depression is a debilitating disorder, and at least one third of patients do not respond to therapy. Associations between gut microbiota and depression have been observed in recent years, opening novel treatment avenues. Here, we present the first two patients with major depressive disorder ever treated with fecal microbiota transplantation as add-on therapy. Both improved their depressive symptoms 4 weeks after the transplantation. Effects lasted up to 8 weeks in one patient. Gastrointestinal symptoms, constipation in particular, were reflected in microbiome changes and improved in one patient. This report suggests further FMT studies in depression could be worth pursuing and adds to awareness as well as safety assurance, both crucial in determining the potential of FMT in depression treatment.
Collapse
Affiliation(s)
- Jessica P K Doll
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Jorge F Vázquez-Castellanos
- Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | | | - Nina Schweinfurth
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Cedric Kettelhack
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Else Schneider
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | | | - Laura Mählmann
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Serge Brand
- Center for Affective, Stress- and Sleep Disorders (ZASS), Psychiatric Clinics (UPK), University of Basel, Basel, Switzerland.,Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Division of Sport Science and Psychosocial Health, Department of Sport, Exercise, and Health, University of Basel, Basel, Switzerland.,Department of Psychiatry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Stefan Borgwardt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland.,Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - André Schmidt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Undine E Lang
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| |
Collapse
|
118
|
Zhang Y, Xue X, Su S, Zhou H, Jin Y, Shi Y, Lin J, Wang J, Li X, Yang G, Philpott JR, Liang J. Patients and physicians' attitudes change on fecal microbiota transplantation for inflammatory bowel disease over the past 3 years. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1619. [PMID: 34926663 PMCID: PMC8640917 DOI: 10.21037/atm-21-3683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 10/13/2021] [Indexed: 11/06/2022]
Abstract
Background In the past 3 years, increasing data and experience has become available regarding fecal microbiota transplantation (FMT) for the treatment of inflammatory bowel disease (IBD). However, how this increase in knowledge has impacted the attitudes of patients and physicians is largely unknown. This study aimed to investigate the change of patients' and physicians' attitudes towards FMT for IBD treatment. Methods Questionnaires for patient and physician attitude on FMT for IBD were pilot-tested and developed. Patients and physicians from the same groups completed the questionnaires in 2016 and 2019, separately. The attitudes towards efficacy, adverse events, and methodological features of FMT in 2016 were compared with those in 2019. Results A total of 1,255 questionnaires from 486 patients and 769 physicians were collected. Over the 3 years, an increased number of patients had heard of FMT and had similarly positive opinions towards using FMT for IBD therapy. Additionally, patients retained the tendency to overestimate the efficacy. The physicians' perceptions became closer to the findings reported in recent studies in 2019 compared with 2016. However, only a minority of patients and physicians understood the frequency required of FMT courses for induction of clinical remission. In particular, both patients and physicians underestimated the risk of mild adverse events and IBD flare. Conclusions Patients are receptive towards FMT as therapy for IBD but opportunity remains to improve understanding of benefit and potential risks. Physicians also demonstrated knowledge gaps in use of this therapy. Aligning patient preference and physician knowledge gap will lead to better education and facilitate the development of decision-making guidelines.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Histology and Embryology, School of Basic Medicine, Xi'an Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Xianmin Xue
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Song Su
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - He Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Yirong Jin
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Yanting Shi
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Junchao Lin
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Jiayao Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Xiaofei Li
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Gang Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | | | - Jie Liang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| |
Collapse
|
119
|
Popa D, Neamtu B, Mihalache M, Boicean A, Banciu A, Banciu DD, Moga DFC, Birlutiu V. Fecal Microbiota Transplant in Severe and Non-Severe Clostridioides difficile Infection. Is There a Role of FMT in Primary Severe CDI? J Clin Med 2021; 10:jcm10245822. [PMID: 34945118 PMCID: PMC8707415 DOI: 10.3390/jcm10245822] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 12/07/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Faecal microbiota transplant (FMT) is a highly effective therapy for recurrent Clostridioides difficile infection (rCDI) with cure rates ranging between 85 and 92%. The FMT role for primary Clostridioides difficile infection (CDI) has yet to be settled because of limited data and small-sample studies presented in the current literature. Our study goals were to report the risk factors and the risk of recurrence after FMT for each CDI episode (first, second, and third) and to explore if there is a role of FMT in primary severe CDI. Methods: We conducted a retrospective study to analyze the clinical characteristics and the outcomes of 96 FMT patients with a prior 10 day course of antibiotic treatment in the medical records, of which 71 patients with recurrent CDI and 25 patients with a primary CDI. Results: The overall primary cure rate in our study was 88.5% and the primary cure rate for the severe forms was 85.7%. The data analysis revealed 5.25%, 15.15%, and 27.3% FMT recurrence rates for primary, secondary, and tertiary severe CDI. The risk of recurrence was significantly associated with FMT after the second and the third CDI severe episodes (p < 0.05), but not with FMT after the first severe CDI episode. Conclusions: This study brings new data in supporting the FMT role in CDI treatment, including the primary severe CDI, however, further prospective and controlled studies on larger cohorts should be performed in this respect.
Collapse
Affiliation(s)
- Daniel Popa
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (D.P.); (M.M.); (A.B.); (D.F.C.M.); (V.B.)
- Dr. Alexandru Augustin Military Hospital of Sibiu, 550024 Sibiu, Romania
- Polisano Clinic Sibiu, 550253 Sibiu, Romania
| | - Bogdan Neamtu
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (D.P.); (M.M.); (A.B.); (D.F.C.M.); (V.B.)
- Pediatric Research Department, Pediatric Clinical Hospital Sibiu, 550166 Sibiu, Romania
- Correspondence: ; Tel.: +40-773994375
| | - Manuela Mihalache
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (D.P.); (M.M.); (A.B.); (D.F.C.M.); (V.B.)
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania
| | - Adrian Boicean
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (D.P.); (M.M.); (A.B.); (D.F.C.M.); (V.B.)
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania
| | - Adela Banciu
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, Polytechnic University of Bucharest, 011061 Bucharest, Romania; (A.B.); (D.D.B.)
| | - Daniel Dumitru Banciu
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, Polytechnic University of Bucharest, 011061 Bucharest, Romania; (A.B.); (D.D.B.)
| | - Doru Florian Cornel Moga
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (D.P.); (M.M.); (A.B.); (D.F.C.M.); (V.B.)
- Dr. Alexandru Augustin Military Hospital of Sibiu, 550024 Sibiu, Romania
| | - Victoria Birlutiu
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (D.P.); (M.M.); (A.B.); (D.F.C.M.); (V.B.)
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania
| |
Collapse
|
120
|
Malhotra S, Mohandas S. Updates and Opinions in Diagnosis and Treatment of Clostridiodes difficile in Pediatrics. CURRENT TREATMENT OPTIONS IN PEDIATRICS 2021; 7:203-216. [PMID: 38624958 PMCID: PMC8642749 DOI: 10.1007/s40746-021-00232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 11/30/2022]
Abstract
Purpose of review Clostridiodes difficile infection (CDI) has unique challenges for diagnosis and treatment in pediatrics. Though new antibiotics and biologics are being approved or developed for adults, most of the pediatric therapies still rely on multiple or extended antibiotic courses. This review aims to highlight emerging evidence and our clinical experience with CDI in children and can help inform readers' approach to pediatric CDI. Recent findings Use of fidaxomicin for CDI in pediatrics has been shown to be to be non-inferior to vancomycin and is associated with higher global cure rates and decreased risk of recurrence. Fecal microbiota transplant is a successful emerging therapy with cure rates of up to 90%, though safety alerts should be noted. Diagnostic laboratory testing for C. difficile remains a challenge as it still cannot definitively distinguish between colonization and true infection, and this is particularly relevant to pediatric patients as they have the highest rates of colonization. Summary The diagnosis and treatment of C. difficile infection in pediatrics remain challenging and recommendations lag behind advances made in the adult field. Recent data suggests that use of fidaxomicin both as treatment of first episode or recurrences may be beneficial in pediatrics just as in adults. At an experienced center, FMT is associated with high cure rates. Bezlotuxumab a monoclonal antibody to toxin B that is already recommended for use in adults is being studied in children and should be available for clinical use soon. Oral vancomycin prophylaxis is also an emerging strategy for high-risk patients. Finally, a possible vaccine may be on the horizon for pediatrics.
Collapse
Affiliation(s)
- Sanchi Malhotra
- Division of Infectious Diseases, Children’s Hospital Los Angeles, 4650 Sunset Blvd, MS #51, Los Angeles, CA 90027 USA
| | - Sindhu Mohandas
- Division of Infectious Diseases, Children’s Hospital Los Angeles, 4650 Sunset Blvd, MS #51, Los Angeles, CA 90027 USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| |
Collapse
|
121
|
Yracheta J, Muraoka W, Wu X, Burmeister D, Darlington D, Zhao D, Lai Z, Sayyadioskoie S, Cap AP, Bynum J, Nicholson SE. Whole blood resuscitation restores intestinal perfusion and influences gut microbiome diversity. J Trauma Acute Care Surg 2021; 91:1002-1009. [PMID: 34407003 DOI: 10.1097/ta.0000000000003381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Gut dysbiosis, an imbalance in the gut microbiome, occurs after trauma, which may be ameliorated with transfusion. We hypothesized that gut hypoperfusion following trauma causes dysbiosis and that whole blood (WB) resuscitation mitigates these effects. METHODS Anesthetized rats underwent sham (S; laparotomy only, n = 6); multiple injuries (T; laparotomy, liver and skeletal muscle crush injuries, and femur fracture, n = 5); multiple injuries and 40% hemorrhage (H; n = 7); and multiple injuries, hemorrhage, and WB resuscitation (R; n = 7), which was given as 20% estimated blood volume from donor rats 1 hour posttrauma. Baseline cecal mesenteric tissue oxygen (O2) concentration was measured following laparotomy and at 1 hour and 2 hours posttrauma. Fecal samples were collected preinjury and at euthanasia (2 hours). 16S rRNA sequencing was performed on purified DNA, and diversity and phylogeny were analyzed with QIIME (Knight Lab, La Jolla, CA; Caporaso Lab, Flagstaff, AZ) using the Greengenes 16S rRNA database (operational taxonomic units; 97% similarity). α and β diversities were estimated using observed species metrics. Permutational analysis of variance was performed for overall significance. RESULTS In H rats, an average decline of 36% ± 3.6% was seen in the mesenteric O2 concentration at 1 hour without improvement by 2 hours postinjury, which was reversed following resuscitation at 2 hours postinjury (4.1% ± 3.1% difference from baseline). There was no change in tissue O2 concentration in the S or T rats. β Diversity differed among groups for all measured indices except Bray-Curtis, with the spatial median of the S and R rats more similar compared with S and H rats (p < 0.05). While there was no difference in α diversity found among the groups, indices were significantly correlated with mesenteric O2 concentration. Members of the family Enterobacteriaceae were significantly enriched in only 2 hours. CONCLUSION Mesenteric perfusion after trauma and hemorrhage is restored with WB resuscitation, which influences β diversity of the gut microbiome. Whole blood resuscitation may also mitigate the effects of hemorrhage on intestinal dysbiosis, thereby influencing outcomes.
Collapse
Affiliation(s)
- Jaclyn Yracheta
- From the Department of Surgery (J.Y., S.S., S.E.N.), UT Health San Antonio, San Antonio; Coagulation and Blood Research, US Army Institute of Surgical Research (W.M., X.W., D.D., D.Z., A.P.C., J.B., S.E.N.), Fort Sam Houston, Texas; Department of Medicine, Uniformed Services University of the Health Sciences (D.B.), Bethesda, Maryland; and Department of Molecular Medicine (Z.L.), Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Parnell JM, Nicholson MR, Kellermayer R, Kahn SA. Pediatric Fecal Microbiota Transplantation in Recurrent Clostridioides Difficile. Pediatr Ann 2021; 50:e515-e521. [PMID: 34889135 DOI: 10.3928/19382359-20211111-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
With the rising rates of Clostridioides (Clostridium) difficile infection (CDI) in children, recognizing the limitations of CDI-directed antibiotic therapy, especially in recurrent CDI (rCDI), is important. Fecal microbiota transplantation (FMT), which directly targets the underlying gut dysbiosis present in rCDI, is an important treatment option to consider in rCDI. This article will summarize indications, procedures, effectiveness, and the safety of FMT for rCDI in pediatric patients. [Pediatr Ann. 2021;50(12):e515-e521.].
Collapse
|
123
|
Microbiota in Health and Disease-Potential Clinical Applications. Nutrients 2021; 13:nu13113866. [PMID: 34836121 PMCID: PMC8622281 DOI: 10.3390/nu13113866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022] Open
Abstract
Within the last two decades tremendous efforts in biomedicine have been undertaken to understand the interplay of commensal bacteria living in and on our human body with our own human physiology. It became clear that (1) a high diversity especially of the microbial communities in the gut are important to preserve health and that (2) certain bacteria via nutrition-microbe-host metabolic axes are beneficially affecting various functions of the host, including metabolic control, energy balance and immune function. While a large set of evidence indicate a special role for small chain fatty acids (SCFA) in that context, recently also metabolites of amino acids (e.g., tryptophan and arginine) moved into scientific attention. Of interest, microbiome alterations are not only important in nutrition associated diseases like obesity and diabetes, but also in many chronic inflammatory, oncological and neurological abnormalities. From a clinician’s point of view, it should be mentioned, that the microbiome is not only interesting to develop novel therapies, but also as a modifiable factor to improve efficiency of modern pharmaceutics, e.g., immune-therapeutics in oncology. However, so far, most data rely on animal experiments or human association studies, whereas controlled clinical intervention studies are spare. Hence, the translation of the knowledge of the last decades into clinical routine will be the challenge of microbiome based biomedical research for the next years. This review aims to provide examples for future clinical applications in various entities and to suggest bacterial species and/or microbial effector molecules as potential targets for intervention studies.
Collapse
|
124
|
Popov J, Caputi V, Nandeesha N, Rodriguez DA, Pai N. Microbiota-Immune Interactions in Ulcerative Colitis and Colitis Associated Cancer and Emerging Microbiota-Based Therapies. Int J Mol Sci 2021; 22:11365. [PMID: 34768795 PMCID: PMC8584103 DOI: 10.3390/ijms222111365] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic autoimmune disorder affecting the colonic mucosa. UC is a subtype of inflammatory bowel disease along with Crohn's disease and presents with varying extraintestinal manifestations. No single etiology for UC has been found, but a combination of genetic and environmental factors is suspected. Research has focused on the role of intestinal dysbiosis in the pathogenesis of UC, including the effects of dysbiosis on the integrity of the colonic mucosal barrier, priming and regulation of the host immune system, chronic inflammation, and progression to tumorigenesis. Characterization of key microbial taxa and their implications in the pathogenesis of UC and colitis-associated cancer (CAC) may present opportunities for modulating intestinal inflammation through microbial-targeted therapies. In this review, we discuss the microbiota-immune crosstalk in UC and CAC, as well as the evolution of microbiota-based therapies.
Collapse
Affiliation(s)
- Jelena Popov
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada;
- College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| | - Valentina Caputi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Nandini Nandeesha
- School of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland;
| | | | - Nikhil Pai
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
125
|
Cui M, Sun T, Li S, Pan H, Liu J, Zhang X, Li L, Li S, Wei C, Yu C, Yang C, Ma N, Ma B, Lu S, Chang J, Zhang W, Wang H. NIR light-responsive bacteria with live bio-glue coatings for precise colonization in the gut. Cell Rep 2021; 36:109690. [PMID: 34525358 DOI: 10.1016/j.celrep.2021.109690] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/09/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023] Open
Abstract
Recombinant bacterial colonization plays an indispensable role in disease prevention, alleviation, and treatment. Successful application mainly depends on whether bacteria can efficiently spatiotemporally colonize the host gut. However, a primary limitation of existing methods is the lack of precise spatiotemporal regulation, resulting in uncontrolled methods that are less effective. Herein, we design upconversion microgels (UCMs) to convert near-infrared light (NIR) into blue light to activate recombinant light-responsive bacteria (Lresb) in vivo, where autocrine "functional cellular glues" made of adhesive proteins assist Lresb inefficiently colonizing the gut. The programmable engineering platform is further developed for the controlled and effective colonization of Escherichia coli Nissle 1917 (EcN) in the gut. The colonizing bacteria effectively alleviate DSS-induced colitis in mice. We anticipate that this approach could facilitate the clinical application of engineered microbial therapeutics to accurately and effectively regulate host health.
Collapse
Affiliation(s)
- Meihui Cui
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Tao Sun
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China; Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Shubin Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Huizhuo Pan
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Jing Liu
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Xinyu Zhang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Lianyue Li
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Shanshan Li
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Chunyang Wei
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Chengzhuang Yu
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Chun Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Ning Ma
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Binglin Ma
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Shenjunjie Lu
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Weiwen Zhang
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China; Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Hanjie Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
126
|
Smith DR, Temime L, Opatowski L. Microbiome-pathogen interactions drive epidemiological dynamics of antibiotic resistance: A modeling study applied to nosocomial pathogen control. eLife 2021; 10:68764. [PMID: 34517942 PMCID: PMC8560094 DOI: 10.7554/elife.68764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
The human microbiome can protect against colonization with pathogenic antibiotic-resistant bacteria (ARB), but its impacts on the spread of antibiotic resistance are poorly understood. We propose a mathematical modeling framework for ARB epidemiology formalizing within-host ARB-microbiome competition, and impacts of antibiotic consumption on microbiome function. Applied to the healthcare setting, we demonstrate a trade-off whereby antibiotics simultaneously clear bacterial pathogens and increase host susceptibility to their colonization, and compare this framework with a traditional strain-based approach. At the population level, microbiome interactions drive ARB incidence, but not resistance rates, reflecting distinct epidemiological relevance of different forces of competition. Simulating a range of public health interventions (contact precautions, antibiotic stewardship, microbiome recovery therapy) and pathogens (Clostridioides difficile, methicillin-resistant Staphylococcus aureus, multidrug-resistant Enterobacteriaceae) highlights how species-specific within-host ecological interactions drive intervention efficacy. We find limited impact of contact precautions for Enterobacteriaceae prevention, and a promising role for microbiome-targeted interventions to limit ARB spread.
Collapse
Affiliation(s)
- David Rm Smith
- Institut Pasteur, Epidemiology and Modelling of Antibiotic Evasion (EMAE), Paris, France.,Université Paris-Saclay, UVSQ, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology team, Montigny-Le-Bretonneux, France.,Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire national des arts et métiers, Paris, France
| | - Laura Temime
- Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire national des arts et métiers, Paris, France.,PACRI unit, Institut Pasteur, Conservatoire national des arts et métiers, Paris, France
| | - Lulla Opatowski
- Institut Pasteur, Epidemiology and Modelling of Antibiotic Evasion (EMAE), Paris, France.,Université Paris-Saclay, UVSQ, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology team, Montigny-Le-Bretonneux, France
| |
Collapse
|
127
|
The Role of Fecal Microbiota Transplantation in the Treatment of Inflammatory Bowel Disease. J Clin Med 2021; 10:jcm10184055. [PMID: 34575166 PMCID: PMC8465860 DOI: 10.3390/jcm10184055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
The exact pathogenesis of inflammatory bowel disease (IBD) is still not completely understood. It is hypothesized that a genetic predisposition leads to an exaggerated immune response to an environmental trigger, leading to uncontrolled inflammation. As there is no known causative treatment, current management strategies for inflammatory bowel disease focus on correcting the excessive immune response to environmental (including microbial) triggers. In recent years, there has been growing interest in new avenues of treatment, including targeting the microbial environment itself. Fecal microbiota transplantation (FMT) is a novel treatment modality showing promising results in early studies. The article discusses the rationale for the use of FMT in inflammatory bowel disease and the yet-unresolved questions surrounding its optimal use in practice.
Collapse
|
128
|
Chu ND, Crothers JW, Nguyen LTT, Kearney SM, Smith MB, Kassam Z, Collins C, Xavier R, Moses PL, Alm EJ. Dynamic Colonization of Microbes and Their Functions after Fecal Microbiota Transplantation for Inflammatory Bowel Disease. mBio 2021; 12:e0097521. [PMID: 34281401 PMCID: PMC8406238 DOI: 10.1128/mbio.00975-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022] Open
Abstract
For fecal microbiota transplantation (FMT) to be successful in immune diseases like inflammatory bowel disease, it is assumed that therapeutic microbes and their beneficial functions and immune interactions must colonize a recipient patient and persist in sufficient quantity and for a sufficient period of time to produce a clinical benefit. Few studies, however, have comprehensively profiled the colonization and persistence of transferred microbes along with the transfer of their microbial functions and interactions with the host immune system. Using 16S, metagenomic, and immunoglobulin A (IgA) sequencing, we analyzed hundreds of longitudinal microbiome samples from a randomized controlled trial of 12 patients with ulcerative colitis who received fecal transplant or placebo for 12 weeks. We uncovered diverse competitive dynamics among donor and patient strains, showing that persistence of transferred microbes is far from static. Indeed, one patient experienced a dramatic loss of donor bacteria 10 weeks into the trial, coinciding with a bloom of pathogenic bacteria and worsening symptoms. We evaluated the transfer of microbial functions, including desired ones, such as butyrate production, and unintended ones, such as antibiotic resistance. By profiling bacteria coated with IgA, we identified bacteria associated with inflammation and found that microbial interactions with the host immune system can be transferred across people, which could play a role in gut microbiome therapeutics for immune-related diseases. Our findings shed light on the colonization dynamics of gut microbes and their functions in the context of FMT to treat a complex disease-information that may provide a foundation for developing more-targeted therapeutics. IMPORTANCE Fecal microbiota transplantation (FMT)-transferring fecal microbes from a healthy donor to a sick patient-has shown promise for gut diseases such as inflammatory bowel disease. Unlike pharmaceuticals, however, fecal transplants are complex mixtures of living organisms, which must then interact with the microbes and immune system of the recipient. We sought to understand these interactions by tracking the microbes of 12 inflammatory bowel disease patients who received fecal transplants for 12 weeks. We uncovered a range of dynamics. For example, one patient experienced successful transfer of donor bacteria, only to lose them after 10 weeks. We similarly evaluated transfer of microbial functions, including how they interacted with the recipient's immune system. Our findings shed light on the colonization dynamics of gut microbes, as well as their functions in the context of FMT-information that may provide a critical foundation for the development of more-targeted therapeutics.
Collapse
Affiliation(s)
- Nathaniel D. Chu
- Center for Microbiome Informatics and Therapeutics, Broad Institute, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Graduate Program in Microbiology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Le T. T. Nguyen
- Center for Microbiome Informatics and Therapeutics, Broad Institute, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sean M. Kearney
- Center for Microbiome Informatics and Therapeutics, Broad Institute, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Zain Kassam
- Finch Therapeutics, Somerville, Massachusetts, USA
| | - Cheryl Collins
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Ramnik Xavier
- Center for Microbiome Informatics and Therapeutics, Broad Institute, Cambridge, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| | - Peter L. Moses
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Eric J. Alm
- Center for Microbiome Informatics and Therapeutics, Broad Institute, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Graduate Program in Microbiology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
129
|
Nandwana V, Debbarma S. Fecal Microbiota Transplantation: A Microbiome Modulation Technique for Alzheimer's Disease. Cureus 2021; 13:e16503. [PMID: 34430117 PMCID: PMC8374998 DOI: 10.7759/cureus.16503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia and the fifth leading cause of death among the elderly. AD involves parts of the brain that can lead to progressive memory loss and impaired language skills and cognitive thinking, affecting one’s ability to carry out daily activities. Aging, bad dietary habits, family history, as well as altered gut microbiota composition may play a role in the pathogenesis of AD. Although the association between the imbalance of gut microbiota and AD is still difficult to determine, it has been suggested that dysbiosis can lead to the increased secretion of lipopolysaccharides and amyloid, which may impair the permeability of the intestine and the blood-brain barrier. Moreover, it can progress the process of neuroinflammation, amyloid-beta formation, and ultimately neuronal death. Microbiota-targeted interventions such as personalized diet, probiotics, or fecal microbiota transplantation (FMT) might represent a potential therapeutic option for AD. This review article discusses the procedure of FMT and its possible side effects on the recipient’s body. In addition, we review the role of FMT in the context of its application in various nervous system-related disorders (AD, Parkinson’s disease, multiple sclerosis).
Collapse
Affiliation(s)
- Varsha Nandwana
- Medicine, Lady Hardinge Medical College and Associated Hospitals, New Delhi, IND
| | - Shibajee Debbarma
- Community Medicine, Lady Hardinge Medical College and Associated Hospitals, New Delhi, IND
| |
Collapse
|
130
|
Allegretti JR, Kelly CR, Grinspan A, Mullish BH, Hurtado J, Carrellas M, Marcus J, Marchesi JR, McDonald JAK, Gerardin Y, Silverstein M, Pechlivanis A, Barker GF, Miguens Blanco J, Alexander JL, Gallagher KI, Pettee W, Phelps E, Nemes S, Sagi SV, Bohm M, Kassam Z, Fischer M. Inflammatory Bowel Disease Outcomes Following Fecal Microbiota Transplantation for Recurrent C. difficile Infection. Inflamm Bowel Dis 2021; 27:1371-1378. [PMID: 33155639 PMCID: PMC8376126 DOI: 10.1093/ibd/izaa283] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Recurrent Clostridioides difficile infection (CDI) in patients with inflammatory bowel disease (IBD) is a clinical challenge. Fecal microbiota transplantation (FMT) has emerged as a recurrent CDI therapy. Anecdotal concerns exist regarding worsening of IBD activity; however, prospective data among IBD patients are limited. METHODS Secondary analysis from an open-label, prospective, multicenter cohort study among IBD patients with 2 or more CDI episodes was performed. Participants underwent a single FMT by colonoscopy (250 mL, healthy universal donor). Secondary IBD-related outcomes included rate of de novo IBD flares, worsening IBD, and IBD improvement-all based on Mayo or Harvey-Bradshaw index (HBI) scores. Stool samples were collected for microbiome and targeted metabolomic profiling. RESULTS Fifty patients enrolled in the study, among which 15 had Crohn's disease (mean HBI, 5.8 ± 3.4) and 35 had ulcerative colitis (mean partial Mayo score, 4.2 ± 2.1). Overall, 49 patients received treatment. Among the Crohn's disease cohort, 73.3% (11 of 15) had IBD improvement, and 4 (26.6%) had no disease activity change. Among the ulcerative colitis cohort, 62% (22 of 34) had IBD improvement, 29.4% (11 of 34) had no change, and 4% (1 of 34) experienced a de novo flare. Alpha diversity significantly increased post-FMT, and ulcerative colitis patients became more similar to the donor than Crohn's disease patients (P = 0.04). CONCLUSION This prospective trial assessing FMT in IBD-CDI patients suggests IBD outcomes are better than reported in retrospective studies.
Collapse
Affiliation(s)
- Jessica R Allegretti
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Colleen R Kelly
- Division of Gastroenterology, Alpert Medical School of Brown University, Providence, RI, USA
| | - Ari Grinspan
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Jonathan Hurtado
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Boston, MA, USA
| | - Madeline Carrellas
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jenna Marcus
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Boston, MA, USA
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Julie A K McDonald
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | | | | | - Alexandros Pechlivanis
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Center for Interdisciplinary Research and Innovation, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Grace F Barker
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Jesus Miguens Blanco
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - James L Alexander
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Kate I Gallagher
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | | | - Emmalee Phelps
- Division of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sara Nemes
- Division of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sashidhar V Sagi
- Division of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthew Bohm
- Division of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Monika Fischer
- Division of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
131
|
Gholam-Mostafaei FS, Yadegar A, Asadzadeh Aghdaei H, Shahrokh S, Ebrahimi Daryani N, Zali MR. Fecal microbiota transplantation for recurrent Clostridioides difficile infection in patients with concurrent ulcerative colitis. Acta Microbiol Immunol Hung 2021. [PMID: 34383708 DOI: 10.1556/030.2021.01498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/28/2021] [Indexed: 11/19/2022]
Abstract
Treatment of recurrent Clostridioides difficile infection (rCDI) has emerged as an important management dilemma particularly in patients with underlying inflammatory bowel disease (IBD). Fecal microbiota transplantation (FMT) has been used as a safe and highly effective treatment option for rCDI refractory to standard antibiotic therapies. The aim of this study was to report the efficacy of FMT in Iranian rCDI patients with concurrent IBD. A total of seven consecutive patients with ulcerative colitis (UC) who had experienced 3 episodes of rCDI were enrolled in this study. All patients received at least a single FMT administered during colonoscopy by direct infusion of minimally processed donor stool. Patients were followed for a minimum of 6 months for assessment of treatment efficacy and adverse events (AEs) attributable to FMT. All 7 UC patients (100%) experienced a durable clinical response to a single FMT following 2 months after the procedure. One patient received a second FMT in which a successful resolution of rCDI was ultimately achieved. No serious AEs from FMT were noted. FMT through colonoscopy was a safe, simple and effective alternative treatment approach for rCDI in patients with underlying IBD. However, its use and efficacy should be pursued in long-term prospective controlled trials.
Collapse
Affiliation(s)
- Fahimeh Sadat Gholam-Mostafaei
- 1Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- 2Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- 1Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- 3Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Ebrahimi Daryani
- 4Department of Gastroenterology and Hepatology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- 3Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
132
|
Zhao R, Ji Y, Chen X, Hu Q, Zhao L. Polysaccharide from Flammulina velutipes attenuates markers of metabolic syndrome by modulating the gut microbiota and lipid metabolism in high fat diet-fed mice. Food Funct 2021; 12:6964-6980. [PMID: 34137411 DOI: 10.1039/d1fo00534k] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Natural biological macromolecules with putative functions of gut microbiota regulation possess the advantage of improving metabolic syndrome (MS). In this research, we aimed to determine the effects of Flammulina velutipes polysaccharide (FVP) (Expt. 1) and fecal microbiota transplantation (FMT) (Expt. 2) on MS-related disorders, gut microbiota structure changes and their underlying mechanisms in a murine model fed with high-fat diet (HFD). In Expt. 1, six-week-old male C57BL/6J mice were fed with a control diet (10% calories from fat) or a high fat diet (45% calories from fat), administered with saline or FVP (0.4 mg per g b.w.) by gavage over a 12-week period. In Expt. 2, mice were fed with a HFD, administered with fecal supernatants from healthy and FVP-fed donor mice for 12 weeks simultaneously. The body mass, blood lipid levels and blood glucose homeostasis of mice were analyzed, and total RNA from mouse liver and adipose tissue were extracted by TRIzol and the lipid metabolism-related gene expressions were calculated by qRT-PCR. Gut microbiota changes were evaluated by high-throughput sequencing. Results indicated that FVP and FMT supplementations showed an attenuation effect on mouse obesity, hyperlipidemia and insulin resistance. Up-regulated expressions of Ampkα1 and Ppara were found both in FVP and FMT treatment groups. Different changes were found in the gut microbiota caused by FVP and FMT, respectively. PICRUSt analysis indicated that compared with FVP supplementation, FMT showed a significant effect on regulating lipid metabolism in HFD-fed mice. The findings from this study indicated that oral administrations of FVP or FMT could significantly attenuate MS-related obesity, hyperlipidemia and insulin resistance in HFD-fed mice, and the beneficial effects may be mediated through lipid metabolism and gut microbiota regulation in different ways. These results improve the understanding of the functional activity of FVP as prebiotics.
Collapse
Affiliation(s)
- Ruiqiu Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | | | | | | | | |
Collapse
|
133
|
Fecal Microbiota Transplantation Is Safe and Effective in Patients With Clostridioides difficile Infection and Cirrhosis. Clin Gastroenterol Hepatol 2021; 19:1627-1634. [PMID: 32645451 PMCID: PMC8856132 DOI: 10.1016/j.cgh.2020.06.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Clostridioides difficile infection (CDI) harms a large proportion of patients with cirrhosis. Fecal microbiota transplantation (FMT) is recommended for recurrent CDI, but its effects in patients with cirrhosis have not been established. We performed a multicenter observational study to evaluate the efficacy and safety of FMT for CDI in patients with cirrhosis. METHODS We performed a retrospective study of 63 adults with cirrhosis (median model for end-stage liver disease score, 14.5; 24 patients with decompensated cirrhosis) who underwent FMT for CDI from January 2012 through November 2018 at 8 academic centers in the United States, Canada, and Italy. We collected data on patient demographics and characteristics of cirrhosis, CDI, and FMT from medical records and compared differences among patients with different severities of cirrhosis, and FMT successes vs failures at the 8-week follow-up evaluation. We also obtained data on adverse events (AEs) and severe AEs within 12 weeks of FMT. RESULTS Patients underwent FMT for recurrent CDI (55 of 63; 87.3%), severe CDI (6 of 63; 9.5%), or fulminant CDI (2 of 63; 3.2%) primarily via colonoscopy (59 of 63; 93.7%) as outpatients (47 of 63; 76.8%). FMT success was achieved for 54 patients (85.7%). Among FMT failures, a higher proportion used non-CDI antibiotics at the time of FMT (44.4% vs 5.6%; P < .001), had Child-Pugh scores of B or C (100% vs 37.7%; P < .001), used probiotics (77.8% vs 24.1%; P = .003), had pseudomembranes (22.2% vs 0; P = .018), and underwent FMT as inpatients (45.5% vs 19%; P = .039), compared with FMT successes. In multivariable analysis, use of non-CDI antibiotics at the time of FMT (odds ratio, 17.43; 95% CI, 2.00-152.03; P = .01) and use of probiotics (odds ratio, 11.9; 95% CI, 1.81-78.3; P = .01) were associated with a greater risk of FMT failure. FMT-related AEs occurred in 33.3% of patients (21 of 63)-most were self-limited abdominal cramps or diarrhea. There were only 5 severe AEs that possibly were related to FMT; none involved infection or death. CONCLUSIONS In a retrospective study, we found FMT to be safe and effective for the treatment of CDI in patients with cirrhosis.
Collapse
|
134
|
Song YN, Yang DY, Veldhuyzen van Zanten S, Wong K, McArthur E, Song CZ, Ianiro G, Cammarota G, Kelly C, Fischer M, Russell L, Kao D. Fecal Microbiota Transplantation for Severe or Fulminant Clostridioides difficile Infection: Systematic Review and Meta-analysis. J Can Assoc Gastroenterol 2021; 5:e1-e11. [PMID: 35118227 PMCID: PMC8806043 DOI: 10.1093/jcag/gwab023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022] Open
Abstract
Background Severe or fulminant Clostridioides difficile infection (SFCDI) is associated with significant morbidity and mortality. Emerging evidence suggests fecal microbiota transplant (FMT) may be a promising therapy for SFCDI. Aim This systematic review determines the safety and efficacy of FMT in medically refractory SFCDI. Methods A systematic search of the literature was conducted using PubMed (1965 to 2020), Web of Science (1900 to 20), EMBASE (1974 to 2020), and Cochrane Review (1945 to 2020). Quality appraisal by NIH Study Quality Assessment tools, and data extraction were performed by two teams of independent researchers. The primary outcome was resolution of SFCDI 4 weeks after the final FMT. Pooled resolution rates were calculated using generalized linear mixed models estimates. Results Two hundred and forty patients from 10 studies (8 case series, 1 case–control and 1 randomized study) were included with 209 individual patient-level data. FMT resulted in resolution of SFCDI within 4 weeks in 211/240 individuals for a pooled estimate of 88% (95% confidence interval [CI]: 0.83 to 0.91). The mean number of FMT required was 1.6 for severe and 2.0 for fulminant CDI resolution. The pooled proportional estimates for patients requiring CDI-directed antimicrobials after FMT was 50% (95% CI: 0.06 to 0.94) for severe CDI and 67.0% (95% CI: 0.30 to 0.91) for fulminant CDI. Serious adverse event rates were low. Conclusion FMT appears effective in treating SFCDI patients with low adverse events, but requires multiple treatments with a significant proportion of patients requiring additional anti-CDI antibiotics to achieve resolution. The optimal route of FMT delivery remains unknown. The presence of pseudomembranous colitis may guide additional FMT or anti-CDI antibiotic treatment.
Collapse
Affiliation(s)
- Yi Nong Song
- Division of Gastroenterology, University of Alberta, Edmonton, Alberta,Canada
| | - David Yi Yang
- Division of Gastroenterology, University of Alberta, Edmonton, Alberta,Canada
| | | | - Karen Wong
- Division of Gastroenterology, University of Alberta, Edmonton, Alberta,Canada
| | | | - Claire Zhao Song
- Division of Gastroenterology, University of Alberta, Edmonton, Alberta,Canada
| | - Gianluca Ianiro
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS Universita` Cattolica del Sacro Cuore, Rome,Italy
| | - Giovanni Cammarota
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS Universita` Cattolica del Sacro Cuore, Rome,Italy
| | - Colleen Kelly
- Division of Gastroenterology, Alpert Medical School of Brown University, Providence, Rhode Island,USA
| | - Monika Fischer
- Division of Gastroenterology, Indiana University, Indianapolis, Indiana, USA
| | - Lindsey Russell
- Division of Gastroenterology, McMaster University, Hamilton, Ontario, Canada
| | - Dina Kao
- Division of Gastroenterology, University of Alberta, Edmonton, Alberta,Canada
| |
Collapse
|
135
|
Abstract
Summary
The human microbiota has a tremendous effect on our health. In the last decades, our knowledge about interactions between bacteria and humans have grown greatly. Not only is it necessary for humans to synthesize vitamins, to have tight intestinal barriers or protect from pathogens, it also has an impact on our immune system and thus plays an important role in autoimmune diseases and prevention of excessive inflammatory response. The idea of probiotics is to restore the balance in humans digestive microbiota. There is a growing number of scientific papers that proves a positive impact of using probiotics in various diseases. However, there are still questions that need to be answered before probiotics play a bigger role in the treatment. This paper presents the information about the use of probiotics in most common diseases of gastrointestinal tract.
Collapse
|
136
|
Tariq R, Saha S, Solanky D, Pardi DS, Khanna S. Predictors and Management of Failed Fecal Microbiota Transplantation for Recurrent Clostridioides difficile Infection. J Clin Gastroenterol 2021; 55:542-547. [PMID: 32701563 DOI: 10.1097/mcg.0000000000001398] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND GOALS Clostridioides difficile infection (CDI) recurs in 10% to 15% after fecal microbiota transplantation (FMT). We identify predictors, and describe management and outcome of patients with recurrent CDI after FMT in a predominantly outpatient cohort. METHODS A nested case-control study of patients undergoing FMT for recurrent CDI from August 2012 to January 2017 was performed. FMT failure was defined as recurrent diarrhea with positive C. difficile stool test during follow-up (≥2 mo). Controls (patients without FMT failures) were matched to cases 1:1 for sex and timing of FMT±1 month. RESULTS Overall, 522 patients underwent FMT; 70 [13.4%; median age 53.8 years (range, 18 to 89 y), 54.3% females] recurred within a median 5.6 months (range, 0.2 to 34.9 mo). Number of prior CDI episodes, prior CDI treatment, and prior CDI-related hospitalizations were similar in cases and controls. Systemic antibiotics after FMT (54.3% vs. 21.4%, P<0.0001), inflammatory bowel disease (IBD) (34.3% vs. 15.7%, P=0.01), pseudomembranes at FMT (4.3% vs. 0%, P=0.03), and poor bowel preparation (68.5% vs. 31.4%, P=0.01) were associated with FMT failure. On multivariate analysis, IBD [odds ratio (OR) 4.34; 95% confidence interval (CI), 1.24-15.15], systemic antibiotics (OR 7.39; 95% CI, 3.02-18.07), and poor bowel preparation (OR 3.84; 95% CI, 1.59-9.28) predicted FMT failure with an area under the curve of 0.78. Among FMT failures, 37 (52.8%) were managed with antibiotics, 32 (45.7%) with repeat FMT after antibiotics and 1 with colectomy. CONCLUSIONS Use of systemic antibiotics, IBD, and poor bowel preparation predict FMT failure. Patients with FMT failure can be managed with antibiotics and/or repeat FMT.
Collapse
Affiliation(s)
- Raseen Tariq
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
- Department of Medicine, Rochester General Hospital, Rochester, NY
| | - Srishti Saha
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Dipesh Solanky
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Darrell S Pardi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Sahil Khanna
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| |
Collapse
|
137
|
Lights and Shadows of Microbiota Modulation and Cardiovascular Risk in HIV Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136837. [PMID: 34202210 PMCID: PMC8297340 DOI: 10.3390/ijerph18136837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Human immunodeficiency virus (HIV) infection is associated with premature aging and the development of aging-related comorbidities, such as cardiovascular disease (CVD). Gut microbiota (GM) disturbance is involved in these comorbidities and there is currently interest in strategies focused on modulating GM composition and/or functionality. Scientific evidence based on well-designed clinical trials is needed to support the use of prebiotics, probiotics, symbiotics, and fecal transplantation (FT) to modify the GM and reduce the incidence of CVD in HIV-infected patients. We reviewed the data obtained from three clinical trials focused on prebiotics, 25 trials using probiotics, six using symbiotics, and four using FT. None of the trials investigated whether these compounds could reduce CVD in HIV patients. The huge variability observed in the type of compound as well as the dose and duration of administration makes it difficult to adopt general recommendations and raise serious questions about their application in clinical practice.
Collapse
|
138
|
Pavel FM, Vesa CM, Gheorghe G, Diaconu CC, Stoicescu M, Munteanu MA, Babes EE, Tit DM, Toma MM, Bungau S. Highlighting the Relevance of Gut Microbiota Manipulation in Inflammatory Bowel Disease. Diagnostics (Basel) 2021; 11:diagnostics11061090. [PMID: 34203609 PMCID: PMC8232187 DOI: 10.3390/diagnostics11061090] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/06/2021] [Accepted: 06/12/2021] [Indexed: 01/11/2023] Open
Abstract
Two different conditions are included in inflammatory bowel disease (IBD), Crohn's disease (CD) and ulcerative colitis (UC), being distinguished by chronic recurrence of gut inflammation in persons that are genetically predisposed and subjected to environmental causative factors. The normal structure of the gut microbiome and its alterations in IBD were defined in several microbial studies. An important factor in the prolonged inflammatory process in IBD is the impaired microbiome or "dysbiosis". Thus, gut microbiome management is likely to be an objective in IBD treatment. In this review, we analyzed the existing data regarding the pathophysiological/therapeutic implications of intestinal microflora in the development and evolution of IBD. Furthermore, the main effects generated by the administration of probiotics, prebiotics, fecal transplantation, and phytochemicals supplementation were analyzed regarding their potential roles in improving the clinical and biochemical status of patients suffering from Crohn's disease (CD) and ulcerative colitis (UC), and are depicted in the sections/subsections of the present paper. Data from the literature give evidence in support of probiotic and prebiotic therapy, showing effects such as improving remission rate, improving macroscopic and microscopic aspects of IBD, reducing the pro-inflammatory cytokines and interleukins, and improving the disease activity index. Therefore, the additional benefits of these therapies should not be ignored as adjuvants to medical therapy.
Collapse
Affiliation(s)
- Flavia Maria Pavel
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (F.M.P.); (C.M.V.)
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (F.M.P.); (C.M.V.)
| | - Gina Gheorghe
- Department 5, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.G.); (C.C.D.)
- Department of Internal Medicine, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Camelia C. Diaconu
- Department 5, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.G.); (C.C.D.)
- Department of Internal Medicine, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410041 Oradea, Romania; (M.S.); (M.A.M.); (E.E.B.)
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410041 Oradea, Romania; (M.S.); (M.A.M.); (E.E.B.)
| | - Elena Emilia Babes
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410041 Oradea, Romania; (M.S.); (M.A.M.); (E.E.B.)
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.M.T.); (M.M.T.)
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.M.T.); (M.M.T.)
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.M.T.); (M.M.T.)
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
- Correspondence: ; Tel.: +40-726-776-588
| |
Collapse
|
139
|
Núñez F P, Quera R, Bay C, Thomson P. Fecal microbiota transplant, its usefulness beyond Clostridioides difficile in gastrointestinal diseases. GASTROENTEROLOGIA Y HEPATOLOGIA 2021; 45:223-230. [PMID: 34118321 DOI: 10.1016/j.gastrohep.2021.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
Fecal microbiota transplant (FMT) is currently recommended for recurrent Clostridioidesdifficile infection. However, it is interesting to acknowledge the potential therapeutic role in other diseases associated with dysbiosis. This review will focus on the current and potential indications of FMT in gastrointestinal diseases, evaluating the available evidence and also exposing the necessary requirements to carry it out.
Collapse
Affiliation(s)
- Paulina Núñez F
- Program of Inflammatory Bowel Disease, Gastroenterology Department, Clínica Universidad de los Andes, Department of Gastroenterology, Hospital San Juan de Dios, Faculty of Medicine, Universidad de Chile, Chile.
| | - Rodrigo Quera
- Program of Inflammatory Bowel Disease, Gastroenterology Department, Clínica Universidad de los Andes, Chile
| | - Constanza Bay
- Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Chile
| | - Pamela Thomson
- School of Veterinary Medicine, Faculty of Life Sciences, Universidad Andrés Bello, Chile
| |
Collapse
|
140
|
Agarwal A, Maheshwari A, Verma S, Arrup D, Phillips L, Vinayek R, Nair P, Hagan M, Dutta S. Superiority of Higher-Volume Fresh Feces Compared to Lower-Volume Frozen Feces in Fecal Microbiota Transplantation for Recurrent Clostridioides Difficile Colitis. Dig Dis Sci 2021; 66:2000-2004. [PMID: 32656604 DOI: 10.1007/s10620-020-06459-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/28/2020] [Indexed: 01/26/2023]
Abstract
GOALS To compare the clinical outcomes of different protocols for fecal microbiota transplantation (FMT) in two community hospitals with similar patient demographics. BACKGROUND FMT is commonly performed for recurrent or refractory Clostridioides difficile infection (rCDI). The clinical efficacy of FMT for this indication has been well established. However, there has been no standardization or optimization of the amount of fecal material, method of feces preparation, or route of delivery for FMT. STUDY In this retrospective study, patients with rCDI received FMT using commercially available frozen fecal preparation (22.7 g) at Center A and locally prepared fresh fecal filtrate (30-50 g) at Center B. The primary outcome was defined as complete resolution of clinical symptoms related to rCDI after at least 8 weeks of follow-up. RESULTS Fifty patients from each center were included in the study. Clinical success after initial FMT with lower-volume frozen fecal preparation at Center A was 32/50 (64.0%) compared to 49/50 (98.0%) with higher-volume fresh fecal filtrate at Center B (p < 0.0001). Seventeen patients in Center A and 1 patient in Center B underwent at least one repeat FMT. Overall clinical success was achieved in 43/50 (86%) of patients in Center A and 50/50 (100%) in Center B (p = 0.012). CONCLUSIONS Our results suggest superior clinical efficacy of a larger amount of fresh fecal filtrate over a smaller amount of commercially available frozen fecal preparation. Further studies are needed to examine the effect of varying amounts of feces and the optimal protocol for FMT in patients with rCDI.
Collapse
Affiliation(s)
- Amol Agarwal
- Mercy Medical Center, 301 St Paul Pl, Physician's Office Building, 7th Floor, Baltimore, MD, 21202, USA
| | - Anurag Maheshwari
- Mercy Medical Center, 301 St Paul Pl, Physician's Office Building, 7th Floor, Baltimore, MD, 21202, USA.
| | | | | | | | | | | | - Matilda Hagan
- Mercy Medical Center, 301 St Paul Pl, Physician's Office Building, 7th Floor, Baltimore, MD, 21202, USA
| | | |
Collapse
|
141
|
Jones JB, Liu L, Rank LA, Wetzel D, Woods EC, Biok N, Anderson SE, Lee MR, Liu R, Huth S, Sandhu BK, Gellman SH, McBride SM. Cationic Homopolymers Inhibit Spore and Vegetative Cell Growth of Clostridioides difficile. ACS Infect Dis 2021; 7:1236-1247. [PMID: 33739823 PMCID: PMC8130196 DOI: 10.1021/acsinfecdis.0c00843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A wide range of synthetic polymers have been explored for antimicrobial activity. These materials usually contain both cationic and hydrophobic subunits because these two characteristics are prominent among host-defense peptides. Here, we describe a series of nylon-3 polymers containing only cationic subunits and their evaluation against the gastrointestinal, spore-forming pathogen Clostridioides difficile. Despite their highly hydrophilic nature, these homopolymers showed efficacy against both the vegetative and spore forms of the bacterium, including an impact on C. difficile spore germination. The polymer designated P34 demonstrated the greatest efficacy against C. difficile strains, along with low propensities to lyse human red blood cells or intestinal epithelial cells. To gain insight into the mechanism of P34 action, we evaluated several cell-surface mutant strains of C. difficile to determine the impacts on growth, viability, and cell morphology. The results suggest that P34 interacts with the cell wall, resulting in severe cell bending and death in a concentration-dependent manner. The unexpected finding that nylon-3 polymers composed entirely of cationic subunits display significant activities toward C. difficile should expand the range of other polymers considered for antibacterial applications.
Collapse
Affiliation(s)
- Joshua B. Jones
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Lei Liu
- Department of Chemistry and Department of Medicine, University of Wisconsin, Madison, WI, USA
| | | | - Daniela Wetzel
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Emily C. Woods
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Naomi Biok
- Department of Chemistry and Department of Medicine, University of Wisconsin, Madison, WI, USA
| | | | - Myung-ryul Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Sean Huth
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Brindar K. Sandhu
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Samuel H. Gellman
- Department of Chemistry and Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Shonna M. McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| |
Collapse
|
142
|
Pomares Bascuñana RÁ, Veses V, Sheth CC. Effectiveness of fecal microbiota transplant for the treatment of Clostridioides difficile diarrhea: a systematic review and meta-analysis. Lett Appl Microbiol 2021; 73:149-158. [PMID: 33864273 DOI: 10.1111/lam.13486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
Clostridioides difficile is a major cause of health-care related infections and antibiotic-associated diarrhea. High recurrence rates following antibiotic treatment, along with the emergence of hypervirulent and multidrug resistant ribotypes makes essential the development of safe, effective, novel therapies for the treatment of C. difficile infections. The primary outcome evaluated in this meta-analysis was the effectiveness of fecal microbiota transplantation (FMT). Secondary outcomes were the proportion of patients suffering adverse effects along with the most effective administration route. The mean treatment effectiveness was 82% (95% CI: 75-89). Overall, patients receiving FMT via colonoscopy experienced more adverse effects than patients whom received enema, or oral capsules (71·6% vs 40·2%, and 35·3% respectively). Comparing administration of FMT by colonoscopy versus enema resulted in a Hedges' g of -0·74 (95% CI of -0·9 to -0·58), indicating a slight advantage in favor of colonoscopy. The comparison between colonoscopy and capsule returned a Hedges' g of 0·44 (95% CI of 0·20-0·69), indicating that delivery of the FMT by capsule was statistically significantly more effective. FMT provides an effective and safe treatment for C. difficile diarrhea. Further research into the efficacy of different preparation protocols is needed.
Collapse
Affiliation(s)
- R Á Pomares Bascuñana
- Department of Medicine, Faculty of Health Sciences, Universidad Cardenal Herrera, CEU Universities, Valencia, Spain
| | - V Veses
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera, CEU Universities, Valencia, Spain
| | - C C Sheth
- Department of Medicine, Faculty of Health Sciences, Universidad Cardenal Herrera, CEU Universities, Valencia, Spain
| |
Collapse
|
143
|
Zhang Y, Yang Q, Ling J, Long L, Huang H, Yin J, Wu M, Tang X, Lin X, Zhang Y, Dong J. Shifting the microbiome of a coral holobiont and improving host physiology by inoculation with a potentially beneficial bacterial consortium. BMC Microbiol 2021; 21:130. [PMID: 33910503 PMCID: PMC8082877 DOI: 10.1186/s12866-021-02167-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/30/2021] [Indexed: 12/20/2022] Open
Abstract
Background The coral microbiome plays a key role in host health by being involved in energy metabolism, nutrient cycling, and immune system formation. Inoculating coral with beneficial bacterial consortia may enhance the ability of this host to cope with complex and changing marine environments. In this study, the coral Pocillopora damicornis was inoculated with a beneficial microorganisms for corals (BMC) consortium to investigate how the coral host and its associated microbial community would respond. Results High-throughput 16S rRNA gene sequencing revealed no significant differences in bacterial community α-diversity. However, the bacterial community structure differed significantly between the BMC and placebo groups at the end of the experiment. Addition of the BMC consortium significantly increased the relative abundance of potentially beneficial bacteria, including the genera Mameliella and Endozoicomonas. Energy reserves and calcification rates of the coral host were also improved by the addition of the BMC consortium. Co-occurrence network analysis indicated that inoculation of coral with the exogenous BMC consortium improved the physiological status of the host by shifting the coral-associated microbial community structure. Conclusions Manipulating the coral-associated microbial community may enhance the physiology of coral in normal aquarium conditions (no stress applied), which may hypothetically contribute to resilience and resistance in this host. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02167-5.
Collapse
Affiliation(s)
- Ying Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.,Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, 572000, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Lijuan Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.,Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, 572000, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.,Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, 572000, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jianping Yin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Meilin Wu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xiaoyu Tang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiancheng Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanying Zhang
- Ocean school, Yantai University, Yantai, 264005, China.
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China. .,Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, 572000, China. .,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
144
|
Croci S, D’Apolito LI, Gasperi V, Catani MV, Savini I. Dietary Strategies for Management of Metabolic Syndrome: Role of Gut Microbiota Metabolites. Nutrients 2021; 13:nu13051389. [PMID: 33919016 PMCID: PMC8142993 DOI: 10.3390/nu13051389] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Metabolic syndrome (MetS) is a complex pathophysiological state with incidence similar to that of a global epidemic and represents a risk factor for the onset of chronic non-communicable degenerative diseases (NCDDs), including cardiovascular disease (CVD), type 2 diabetes mellitus, chronic kidney disease, and some types of cancer. A plethora of literature data suggest the potential role of gut microbiota in interfering with the host metabolism, thus influencing several MetS risk factors. Perturbation of the gut microbiota’s composition and activity, a condition known as dysbiosis, is involved in the etiopathogenesis of multiple chronic diseases. Recent studies have shown that some micro-organism-derived metabolites (including trimethylamine N-oxide (TMAO), lipopolysaccharide (LPS) of Gram-negative bacteria, indoxyl sulfate and p-cresol sulfate) induce subclinical inflammatory processes involved in MetS. Gut microbiota’s taxonomic species or abundance are modified by many factors, including diet, lifestyle and medications. The main purpose of this review is to highlight the correlation between different dietary strategies and changes in gut microbiota metabolites. We mainly focus on the validity/inadequacy of specific dietary patterns to reduce inflammatory processes, including leaky gut and subsequent endotoxemia. We also describe the chance of probiotic supplementation to interact with the immune system and limit negative consequences associated with MetS.
Collapse
Affiliation(s)
| | | | - Valeria Gasperi
- Correspondence: (V.G.); (M.V.C.); Tel.: +39-06-72596465 (V.G. & M.V.C.)
| | | | | |
Collapse
|
145
|
Huda MN, Kim M, Bennett BJ. Modulating the Microbiota as a Therapeutic Intervention for Type 2 Diabetes. Front Endocrinol (Lausanne) 2021; 12:632335. [PMID: 33897618 PMCID: PMC8060771 DOI: 10.3389/fendo.2021.632335] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/04/2021] [Indexed: 12/20/2022] Open
Abstract
Mounting evidence suggested that the gut microbiota has a significant role in the metabolism and disease status of the host. In particular, Type 2 Diabetes (T2D), which has a complex etiology that includes obesity and chronic low-grade inflammation, is modulated by the gut microbiota and microbial metabolites. Current literature supports that unbalanced gut microbial composition (dysbiosis) is a risk factor for T2D. In this review, we critically summarize the recent findings regarding the role of gut microbiota in T2D. Beyond these associative studies, we focus on the causal relationship between microbiota and T2D established using fecal microbiota transplantation (FMT) or probiotic supplementation, and the potential underlying mechanisms such as byproducts of microbial metabolism. These microbial metabolites are small molecules that establish communication between microbiota and host cells. We critically summarize the associations between T2D and microbial metabolites such as short-chain fatty acids (SCFAs) and trimethylamine N-Oxide (TMAO). Additionally, we comment on how host genetic architecture and the epigenome influence the microbial composition and thus how the gut microbiota may explain part of the missing heritability of T2D found by GWAS analysis. We also discuss future directions in this field and how approaches such as FMT, prebiotics, and probiotics supplementation are being considered as potential therapeutics for T2D.
Collapse
Affiliation(s)
- M. Nazmul Huda
- Department of Nutrition, University of California Davis, Davis, CA, United States
- Obesity and Metabolism Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Human Nutrition Research Center, Davis, CA, United States
| | - Myungsuk Kim
- Department of Nutrition, University of California Davis, Davis, CA, United States
- Obesity and Metabolism Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Human Nutrition Research Center, Davis, CA, United States
| | - Brian J. Bennett
- Department of Nutrition, University of California Davis, Davis, CA, United States
- Obesity and Metabolism Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Human Nutrition Research Center, Davis, CA, United States
| |
Collapse
|
146
|
Mehta SR, Yen EF. Microbiota-based Therapies Clostridioides difficile infection that is refractory to antibiotic therapy. Transl Res 2021; 230:197-207. [PMID: 33278650 DOI: 10.1016/j.trsl.2020.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/05/2020] [Accepted: 11/29/2020] [Indexed: 11/27/2022]
Abstract
Clostridioides difficile infection (CDI) has had a devastating impact worldwide with significant rates of mortality, especially among the elderly. Despite effective antibiotics, the incidence of recurrent CDI (rCDI) is increasing and more difficult to treat with antibiotics alone. Fecal Microbiota Transplantation (FMT) has emerged as a consistently effective treatment for rCDI. Mechanisms for FMT are not entirely understood, but remain an area of active investigation. There have been recent safety reports with the use of FMT regarding transmission of pathogens in a few patients that have led to serious illness. With appropriate screening, FMT can be safely administered and continue to have a significant impact on eradication of rCDI and improve the lives of patients suffering from this disease. In this review, we summarize current treatments for CDI with a focus on microbiota-based therapies used for antibiotic refractory disease.
Collapse
Affiliation(s)
- Shama R Mehta
- NorthShore University HealthSystem, Division of Gastroenterology, 2650 Ridge Avenue, Suite G221, Evanston, IL 60201
| | - Eugene F Yen
- NorthShore University HealthSystem, Division of Gastroenterology, 2650 Ridge Avenue, Suite G221, Evanston, IL 60201.
| |
Collapse
|
147
|
Schmidt EKA, Raposo PJF, Madsen KL, Fenrich KK, Kabarchuk G, Fouad K. What Makes a Successful Donor? Fecal Transplant from Anxious-Like Rats Does Not Prevent Spinal Cord Injury-Induced Dysbiosis. BIOLOGY 2021; 10:254. [PMID: 33804928 PMCID: PMC8063845 DOI: 10.3390/biology10040254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) causes gut dysbiosis and an increased prevalence of depression and anxiety. Previous research showed a link between these two consequences of SCI by using a fecal transplant from healthy rats which prevented both SCI-induced microbiota changes and the subsequent development of anxiety-like behaviour. However, whether the physical and mental state of the donor are important factors in the efficacy of FMT therapy after SCI remains unknown. In the present study, rats received a fecal transplant following SCI from uninjured donors with increased baseline levels of anxiety-like behaviour and reduced proportion of Lactobacillus in their stool. This fecal transplant increased intestinal permeability, induced anxiety-like behaviour, and resulted in minor but long-term alterations in the inflammatory state of the recipients compared to vehicle controls. There was no significant effect of the fecal transplant on motor recovery in rehabilitative training, suggesting that anxiety-like behaviour did not affect the motivation to participate in rehabilitative therapy. The results of this study emphasize the importance of considering both the microbiota composition and the mental state of the donor for fecal transplants following spinal cord injury.
Collapse
Affiliation(s)
- Emma K. A. Schmidt
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada; (E.K.A.S.); (K.K.F.); (G.K.)
| | - Pamela J. F. Raposo
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada;
- Department of Physical Therapy, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Karen L. Madsen
- Division of Gastroenterology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Keith K. Fenrich
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada; (E.K.A.S.); (K.K.F.); (G.K.)
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Gillian Kabarchuk
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada; (E.K.A.S.); (K.K.F.); (G.K.)
| | - Karim Fouad
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada; (E.K.A.S.); (K.K.F.); (G.K.)
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada;
- Department of Physical Therapy, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
148
|
Cheng F, Huang Z, Wei W, Li Z. Fecal microbiota transplantation for Crohn's disease: a systematic review and meta-analysis. Tech Coloproctol 2021; 25:495-504. [PMID: 33759066 DOI: 10.1007/s10151-020-02395-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/20/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Crohn's disease (CD) is a chronic idiopathic inflammatory intestinal disorder associated with fecal dysbiosis. Fecal microbiota transplantation (FMT) is an emerging treatment approach for CD. But its efficacy and safety remain controversial. We performed a systematic review and meta-analysis to evaluate the efficacy and safety of FMT in CD patients. METHODS Electronic databases were searched for studies that reported efficacy and/or safety of FMT for CD. Clinical remission was established as the primary outcome. Secondary outcome was clinical response. Odds ratios with 95% confidence intervals (CIs) were reported. RESULTS In all, 12 trials were included in our study. Pooled analysis showed that 0.62 (95% CI 0.48, 0.81) of CD patients achieved clinical remission and 0.79 (95% CI 0.71, 0.89) of CD patients achieved clinical response post-FMT. Sub-analyses suggested the rate of clinical remission with fresh stool FMT was higher than with frozen stool FMT (73% vs 43%; p < 0.05). Most adverse events were minor and self-resolving and no major FMT-related adverse event has been reported so far. CONCLUSIONS The evidence showed that FMT is an effective and safe therapy for CD. FMT may be successful because it increases the overall diversity of enteric microbiome. Additional randomized controlled studies are needed.
Collapse
Affiliation(s)
- F Cheng
- Division of Gastroenterology, Zigong First People's Hospital, 42 Shangyihao Road, Zigong, 643000, Sichuan, China.
| | - Z Huang
- Division of Gastroenterology, Zigong First People's Hospital, 42 Shangyihao Road, Zigong, 643000, Sichuan, China
| | - W Wei
- Division of Gastroenterology, Zigong First People's Hospital, 42 Shangyihao Road, Zigong, 643000, Sichuan, China
| | - Z Li
- Division of Gastroenterology, Zigong First People's Hospital, 42 Shangyihao Road, Zigong, 643000, Sichuan, China
| |
Collapse
|
149
|
Guilfoyle J, Considine J, Bouchoucha SL. Faecal microbiota transplantation and the patient experience: A systematic review. J Clin Nurs 2021; 30:1236-1252. [PMID: 33377562 DOI: 10.1111/jocn.15625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/17/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022]
Abstract
AIM To review and synthesise the literature examining the patients' experience of faecal microbiota transplantation. BACKGROUND Faecal microbiota transplantation is a common treatment for many conditions, including Clostridium Difficile infections. Patients' experience of treatments is an important influence on clinical decision-making and treatment adherence. DESIGN The PRISMA guidelines guided this systematic review. The review was registered with PROSPERO [CRD42020140446]. METHOD A search of Cumulative Index of Nursing and Allied Health Literature, Medline and Embase was conducted for studies published in English and French up to June 2020. Risk of bias was examined using Critical Appraisal Skills Program tools, and quality appraisal was performed independently by three reviewers. Primary outcome of interest was the patient experience of faecal microbiota transplantation. Data were synthesised using a narrative approach. RESULTS The search identified 3316 citations, and 12 studies were included. Methodological quality of studies was moderate to low quality. Few studies have accurately explored the patients' experience of faecal microbiota transplantation: most focus on clinical outcomes or hypothetical scenarios regarding the patients' perspectives of faecal microbiota transplantation. Only one study was identified where the sole focus was the patients' experience of faecal microbiota transplantation. Patient's experience of faecal microbiota transplantation was diverse and complex with physiological and psychological components dependent on the patient's medical condition, the administration method and the efficacy. CONCLUSION Patients did not find faecal microbiota transplantation unappealing; however, patients equally reported the procedural experience was unpleasant. Limited results and low quality evidence suggest that further evaluation of the patient experience of faecal microbiota transplantation would be beneficial. RELEVANCE TO CLINICAL PRACTICE Identifying the patients' experience of faecal microbiota transplantation may inform recommendations regarding alternate treatment therapies and enable opportunities to provide quality care for patients that require faecal microbiota transplantation.
Collapse
Affiliation(s)
- Jessica Guilfoyle
- School of Nursing and Midwifery, Deakin University, Geelong, Vic., Australia
| | - Julie Considine
- School of Nursing and Midwifery, Deakin University, Geelong, Vic., Australia.,Centre for Quality and Patient Safety Research in the Institute for Health Transformation, Deakin University, Geelong, Vic., Australia.,Centre for Quality and Patient Safety-Eastern Health Partnership, Box Hill, Vic., Australia
| | - Stéphane L Bouchoucha
- School of Nursing and Midwifery, Deakin University, Geelong, Vic., Australia.,Centre for Quality and Patient Safety Research in the Institute for Health Transformation, Deakin University, Geelong, Vic., Australia
| |
Collapse
|
150
|
Arora A, Behl T, Sehgal A, Singh S, Sharma N, Bhatia S, Sobarzo-Sanchez E, Bungau S. Unravelling the involvement of gut microbiota in type 2 diabetes mellitus. Life Sci 2021; 273:119311. [PMID: 33662428 DOI: 10.1016/j.lfs.2021.119311] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus is the most prevalent metabolic disorder characterized by hyperglycemia, hyperlipidemia as well as insulin resistance and is affecting the lives of a huge population across the globe. Genetic mutations, obesity and lack of physical activity constitute the possible factors that can lead to onset and progression of this disorder. However, there is another major factor that can be the root cause of type 2 diabetes mellitus and that is an imbalance in the microorganisms that inhabit the gut. The gut microbiome is a vital component that needs to be given significant attention because any "dysbiosis" in the colonic microorganisms can transform the host from a state of health to a state of disease. This transformation is quite obvious since the gut barrier integrity, host metabolism such as sensitivity to insulin and maintaining blood glucose level are carried out by the tiny organisms inhabiting our intestine. In fact, the normal functioning of the human body is accredited to the microbes, particularly the bacteria, because they generate their metabolites that communicate with host cells and maintain normal physiology. Giving importance to gut health is, therefore, necessary to prevent metabolic diseases that can be maintained by the intake of prebiotics, probiotics, synbiotics along with healthy diet. The tiny microorganisms in the gut that keep our body free of disorders such as type 2 diabetes mellitus need to be in a state of 'eubiosis', else the consequences of disturbance in gut microbes can progress to serious complications in the host.
Collapse
Affiliation(s)
- Arpita Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Haryana, India; Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Eduardo Sobarzo-Sanchez
- Instituto de investigacion y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile; Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Simona Bungau
- Department of Pharmacy, Faculty of Pharmacy, University of Oradea, Romania
| |
Collapse
|