101
|
MRTFA augments megakaryocyte maturation by enhancing the SRF regulatory axis. Blood Adv 2019; 2:2691-2703. [PMID: 30337297 DOI: 10.1182/bloodadvances.2018019448] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/14/2018] [Indexed: 02/02/2023] Open
Abstract
Serum response factor (SRF) is a ubiquitously expressed transcription factor that binds DNA at CArG (CC[A/T]6GG) domains in association with myocardin-family proteins (eg, myocardin-related transcription factor A [MRTFA]) or the ternary complex factor family of E26 transformation-specific (ETS) proteins. In primary hematopoietic cells, knockout of either SRF or MRTFA decreases megakaryocyte (Mk) maturation causing thrombocytopenia. The human erythroleukemia (HEL) cell line mimics the effects of MRTFA on Mk maturation, and MRTFA overexpression (MRTFAOE) in HEL cells enhances megakaryopoiesis. To identify the mechanisms underlying these effects, we performed integrated analyses of anti-SRF chromatin immunoprecipitation (ChIP) and RNA-sequencing data from noninduced and phorbol ester (12-O-tetradecanoylphorbol-13-acetate [TPA])-induced HEL cells, with and without MRTFAOE We found that 11% of genes were upregulated with TPA induction, which was enhanced by MRTFAOE, resulting in an upregulation of 25% of genes. MRTFAOE increased binding of SRF to genomic sites and enhanced TPA-induced expression of SRF target genes. The TPA-induced genes are predicted to be regulated by SRF and ETS factors, whereas those upregulated by TPA plus MRTFAOE lack ETS binding motifs, and MRTFAOE skews SRF binding to genomic regions with CArG sites in regions relatively lacking in ETS binding motifs. Finally, ChIP-polymerase chain reaction using HEL cells and primary human CD34+ cell-derived subpopulations confirms that both SRF and MRTFA have increased binding during megakaryopoiesis at upregulated target genes (eg, CORO1A). We show for the first time that MRTFA increases both the genomic association and activity of SRF and upregulates genes that enhance primary human megakaryopoiesis.
Collapse
|
102
|
Swärd K, Krawczyk KK, Morén B, Zhu B, Matic L, Holmberg J, Hedin U, Uvelius B, Stenkula K, Rippe C. Identification of the intermediate filament protein synemin/SYNM as a target of myocardin family coactivators. Am J Physiol Cell Physiol 2019; 317:C1128-C1142. [PMID: 31461342 DOI: 10.1152/ajpcell.00047.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Myocardin (MYOCD) is a critical regulator of smooth muscle cell (SMC) differentiation, but its transcriptional targets remain to be exhaustively characterized, especially at the protein level. Here we leveraged human RNA and protein expression data to identify novel potential MYOCD targets. Using correlation analyses we found several targets that we could confirm at the protein level, including SORBS1, SLMAP, SYNM, and MCAM. We focused on SYNM, which encodes the intermediate filament protein synemin. SYNM rivalled smooth muscle myosin (MYH11) for SMC specificity and was controlled at the mRNA and protein levels by all myocardin-related transcription factors (MRTFs: MYOCD, MRTF-A/MKL1, and MRTF-B/MKL2). MRTF activity is regulated by the ratio of filamentous to globular actin, and SYNM was accordingly reduced by interventions that depolymerize actin, such as latrunculin treatment and overexpression of constitutively active cofilin. Many MRTF target genes depend on serum response factor (SRF), but SYNM lacked SRF-binding motifs in its proximal promoter, which was not directly regulated by MYOCD. Furthermore, SYNM resisted SRF silencing, yet the time course of induction closely paralleled that of the SRF-dependent target gene ACTA2. SYNM was repressed by the ternary complex factor (TCF) FLI1 and was increased in mouse embryonic fibroblasts lacking three classical TCFs (ELK1, ELK3, and ELK4). Imaging showed colocalization of SYNM with the intermediate filament proteins desmin and vimentin, and MRTF-A/MKL1 increased SYNM-containing intermediate filaments in SMCs. These studies identify SYNM as a novel SRF-independent target of myocardin that is abundantly expressed in all SMCs.
Collapse
Affiliation(s)
- Karl Swärd
- Department of Experimental Medical Science, Lund, Sweden
| | | | - Björn Morén
- Department of Experimental Medical Science, Lund, Sweden
| | - Baoyi Zhu
- Department of Experimental Medical Science, Lund, Sweden.,Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), Guangdong, China
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Johan Holmberg
- Department of Experimental Medical Science, Lund, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Uvelius
- Department of Clinical Science, Lund, Lund University, Lund, Sweden
| | - Karin Stenkula
- Department of Experimental Medical Science, Lund, Sweden
| | - Catarina Rippe
- Department of Experimental Medical Science, Lund, Sweden
| |
Collapse
|
103
|
Caines R, Cochrane A, Kelaini S, Vila-Gonzalez M, Yang C, Eleftheriadou M, Moez A, Stitt AW, Zeng L, Grieve DJ, Margariti A. The RNA-binding protein QKI controls alternative splicing in vascular cells, producing an effective model for therapy. J Cell Sci 2019; 132:jcs.230276. [PMID: 31331967 DOI: 10.1242/jcs.230276] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022] Open
Abstract
Dysfunction of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) leads to ischaemia, the central pathology of cardiovascular disease. Stem cell technology will revolutionise regenerative medicine, but a need remains to understand key mechanisms of vascular differentiation. RNA-binding proteins have emerged as novel post-transcriptional regulators of alternative splicing and we have previously shown that the RNA-binding protein Quaking (QKI) plays roles in EC differentiation. In this study, we decipher the role of the alternative splicing isoform Quaking 6 (QKI-6) to induce VSMC differentiation from induced pluripotent stem cells (iPSCs). PDGF-BB stimulation induced QKI-6, which bound to HDAC7 intron 1 via the QKI-binding motif, promoting HDAC7 splicing and iPS-VSMC differentiation. Overexpression of QKI-6 transcriptionally activated SM22 (also known as TAGLN), while QKI-6 knockdown diminished differentiation capability. VSMCs overexpressing QKI-6 demonstrated greater contractile ability, and upon combination with iPS-ECs-overexpressing the alternative splicing isoform Quaking 5 (QKI-5), exhibited higher angiogenic potential in vivo than control cells alone. This study demonstrates that QKI-6 is critical for modulation of HDAC7 splicing, regulating phenotypically and functionally robust iPS-VSMCs. These findings also highlight that the QKI isoforms hold key roles in alternative splicing, giving rise to cells which can be used in vascular therapy or for disease modelling.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rachel Caines
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Amy Cochrane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Sophia Kelaini
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Marta Vila-Gonzalez
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Chunbo Yang
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Magdalini Eleftheriadou
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Arya Moez
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Lingfang Zeng
- Cardiovascular Division, King's College London, London SE5 9NU, UK
| | - David J Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Andriana Margariti
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| |
Collapse
|
104
|
Allahverdian S, Chaabane C, Boukais K, Francis GA, Bochaton-Piallat ML. Smooth muscle cell fate and plasticity in atherosclerosis. Cardiovasc Res 2019; 114:540-550. [PMID: 29385543 DOI: 10.1093/cvr/cvy022] [Citation(s) in RCA: 356] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/22/2018] [Indexed: 12/21/2022] Open
Abstract
Current knowledge suggests that intimal smooth muscle cells (SMCs) in native atherosclerotic plaque derive mainly from the medial arterial layer. During this process, SMCs undergo complex structural and functional changes giving rise to a broad spectrum of phenotypes. Classically, intimal SMCs are described as dedifferentiated/synthetic SMCs, a phenotype characterized by reduced expression of contractile proteins. Intimal SMCs are considered to have a beneficial role by contributing to the fibrous cap and thereby stabilizing atherosclerotic plaque. However, intimal SMCs can lose their properties to such an extent that they become hard to identify, contribute significantly to the foam cell population, and acquire inflammatory-like cell features. This review highlights mechanisms of SMC plasticity in different stages of native atherosclerotic plaque formation, their potential for monoclonal or oligoclonal expansion, as well as recent findings demonstrating the underestimated deleterious role of SMCs in this disease.
Collapse
Affiliation(s)
- Sima Allahverdian
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care Research Institute, University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Chiraz Chaabane
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel Servet-1, 1211 Geneva 4, Switzerland
| | - Kamel Boukais
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care Research Institute, University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Gordon A Francis
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care Research Institute, University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Marie-Luce Bochaton-Piallat
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel Servet-1, 1211 Geneva 4, Switzerland
| |
Collapse
|
105
|
Zhang H, Tian L, Shen M, Tu C, Wu H, Gu M, Paik DT, Wu JC. Generation of Quiescent Cardiac Fibroblasts From Human Induced Pluripotent Stem Cells for In Vitro Modeling of Cardiac Fibrosis. Circ Res 2019; 125:552-566. [PMID: 31288631 DOI: 10.1161/circresaha.119.315491] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
RATIONALE Activated fibroblasts are the major cell type that secretes excessive extracellular matrix in response to injury, contributing to pathological fibrosis and leading to organ failure. Effective anti-fibrotic therapeutic solutions, however, are not available due to the poorly defined characteristics and unavailability of tissue-specific fibroblasts. Recent advances in single-cell RNA-sequencing fill such gaps of knowledge by enabling delineation of the developmental trajectories and identification of regulatory pathways of tissue-specific fibroblasts among different organs. OBJECTIVE This study aims to define the transcriptome profiles of tissue-specific fibroblasts using recently reported mouse single-cell RNA-sequencing atlas and to develop a robust chemically defined protocol to derive cardiac fibroblasts (CFs) from human induced pluripotent stem cells for in vitro modeling of cardiac fibrosis and drug screening. METHODS AND RESULTS By analyzing the single-cell transcriptome profiles of fibroblasts from 10 selected mouse tissues, we identified distinct tissue-specific signature genes, including transcription factors that define the identities of fibroblasts in the heart, lungs, trachea, and bladder. We also determined that CFs in large are of the epicardial lineage. We thus developed a robust chemically defined protocol that generates CFs from human induced pluripotent stem cells. Functional studies confirmed that iPSC-derived CFs preserved a quiescent phenotype and highly resembled primary CFs at the transcriptional, cellular, and functional levels. We demonstrated that this cell-based platform is sensitive to both pro- and anti-fibrosis drugs. Finally, we showed that crosstalk between human induced pluripotent stem cell-derived cardiomyocytes and CFs via the atrial/brain natriuretic peptide-natriuretic peptide receptor-1 pathway is implicated in suppressing fibrogenesis. CONCLUSIONS This study uncovers unique gene signatures that define tissue-specific identities of fibroblasts. The bona fide quiescent CFs derived from human induced pluripotent stem cells can serve as a faithful in vitro platform to better understand the underlying mechanisms of cardiac fibrosis and to screen anti-fibrotic drugs.
Collapse
Affiliation(s)
- Hao Zhang
- From the Stanford Cardiovascular Institute (H.Z., L.T., M.S., C.T., H.W., D.T.P., J.C.W.), CA
- Department of Radiology (H.Z., L.T., M.S., C.T., H.W., M.G., D.T.P., J.C.W.), CA
- Department of Medicine, Division of Cardiology (H.Z., L.T., M.S., C.T., H.W., D.T.P., J.C.W.), CA
| | - Lei Tian
- From the Stanford Cardiovascular Institute (H.Z., L.T., M.S., C.T., H.W., D.T.P., J.C.W.), CA
- Department of Radiology (H.Z., L.T., M.S., C.T., H.W., M.G., D.T.P., J.C.W.), CA
- Department of Medicine, Division of Cardiology (H.Z., L.T., M.S., C.T., H.W., D.T.P., J.C.W.), CA
| | - Mengcheng Shen
- From the Stanford Cardiovascular Institute (H.Z., L.T., M.S., C.T., H.W., D.T.P., J.C.W.), CA
- Department of Radiology (H.Z., L.T., M.S., C.T., H.W., M.G., D.T.P., J.C.W.), CA
- Department of Medicine, Division of Cardiology (H.Z., L.T., M.S., C.T., H.W., D.T.P., J.C.W.), CA
| | - Chengyi Tu
- From the Stanford Cardiovascular Institute (H.Z., L.T., M.S., C.T., H.W., D.T.P., J.C.W.), CA
- Department of Radiology (H.Z., L.T., M.S., C.T., H.W., M.G., D.T.P., J.C.W.), CA
- Department of Medicine, Division of Cardiology (H.Z., L.T., M.S., C.T., H.W., D.T.P., J.C.W.), CA
| | - Haodi Wu
- From the Stanford Cardiovascular Institute (H.Z., L.T., M.S., C.T., H.W., D.T.P., J.C.W.), CA
- Department of Radiology (H.Z., L.T., M.S., C.T., H.W., M.G., D.T.P., J.C.W.), CA
- Department of Medicine, Division of Cardiology (H.Z., L.T., M.S., C.T., H.W., D.T.P., J.C.W.), CA
| | - Mingxia Gu
- Department of Radiology (H.Z., L.T., M.S., C.T., H.W., M.G., D.T.P., J.C.W.), CA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases (M.G.), CA
- Department of Pediatrics, Stanford University School of Medicine (M.G.), CA
| | - David T Paik
- From the Stanford Cardiovascular Institute (H.Z., L.T., M.S., C.T., H.W., D.T.P., J.C.W.), CA
- Department of Radiology (H.Z., L.T., M.S., C.T., H.W., M.G., D.T.P., J.C.W.), CA
- Department of Medicine, Division of Cardiology (H.Z., L.T., M.S., C.T., H.W., D.T.P., J.C.W.), CA
| | - Joseph C Wu
- From the Stanford Cardiovascular Institute (H.Z., L.T., M.S., C.T., H.W., D.T.P., J.C.W.), CA
- Department of Radiology (H.Z., L.T., M.S., C.T., H.W., M.G., D.T.P., J.C.W.), CA
- Department of Medicine, Division of Cardiology (H.Z., L.T., M.S., C.T., H.W., D.T.P., J.C.W.), CA
| |
Collapse
|
106
|
Prise I, Sharrocks AD. ELK1 has a dual activating and repressive role in human embryonic stem cells. Wellcome Open Res 2019; 4:41. [PMID: 31346550 PMCID: PMC6619381 DOI: 10.12688/wellcomeopenres.15091.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2019] [Indexed: 12/31/2022] Open
Abstract
Background: The ERK MAPK pathway plays a pivotal role in regulating numerous cellular processes during normal development and in the adult but is often deregulated in disease scenarios. One of its key nuclear targets is the transcription factor ELK1, which has been shown to play an important role in controlling gene expression in human embryonic stem cells (hESCs). ELK1 is known to act as a transcriptional activator in response to ERK pathway activation but repressive roles have also been uncovered, including a putative interaction with the PRC2 complex. Methods: Here we probe the activity of ELK1 in hESCs by using a combination of gene expression analysis in hESCs and during differentiation following ELK1 depletion and also analysis of chromatin occupancy of transcriptional regulators and histone mark deposition that accompany changes in gene expression. Results: We find that ELK1 can exert its canonical activating activity downstream from the ERK pathway but also possesses additional repressive activities. Despite its co-binding to PRC2 occupied regions, we could not detect any ELK1-mediated repression at these regions. Instead, we find that ELK1 has a repressive role at a subset of co-occupied SRF binding regions. Conclusions: ELK1 should therefore be viewed as a dichotomous transcriptional regulator that can act through SRF to generate both activating and repressing properties at different genomic loci.
Collapse
Affiliation(s)
- Ian Prise
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Andrew D Sharrocks
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
107
|
Akatsu Y, Takahashi N, Yoshimatsu Y, Kimuro S, Muramatsu T, Katsura A, Maishi N, Suzuki HI, Inazawa J, Hida K, Miyazono K, Watabe T. Fibroblast growth factor signals regulate transforming growth factor-β-induced endothelial-to-myofibroblast transition of tumor endothelial cells via Elk1. Mol Oncol 2019; 13:1706-1724. [PMID: 31094056 PMCID: PMC6670013 DOI: 10.1002/1878-0261.12504] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/31/2019] [Accepted: 05/14/2019] [Indexed: 02/04/2023] Open
Abstract
The tumor microenvironment contains various components, including cancer cells, tumor vessels, and cancer-associated fibroblasts, the latter of which are comprised of tumor-promoting myofibroblasts and tumor-suppressing fibroblasts. Multiple lines of evidence indicate that transforming growth factor-β (TGF-β) induces the formation of myofibroblasts and other types of mesenchymal (non-myofibroblastic) cells from endothelial cells. Recent reports show that fibroblast growth factor 2 (FGF2) modulates TGF-β-induced mesenchymal transition of endothelial cells, but the molecular mechanisms behind the signals that control transcriptional networks during the formation of different groups of fibroblasts remain largely unclear. Here, we studied the roles of FGF2 during the regulation of TGF-β-induced mesenchymal transition of tumor endothelial cells (TECs). We demonstrated that auto/paracrine FGF signals in TECs inhibit TGF-β-induced endothelial-to-myofibroblast transition (End-MyoT), leading to suppressed formation of contractile myofibroblast cells, but on the other hand can also collaborate with TGF-β in promoting the formation of active fibroblastic cells which have migratory and proliferative properties. FGF2 modulated TGF-β-induced formation of myofibroblastic and non-myofibroblastic cells from TECs via transcriptional regulation of various mesenchymal markers and growth factors. Furthermore, we observed that TECs treated with TGF-β were more competent in promoting in vivo tumor growth than TECs treated with TGF-β and FGF2. Mechanistically, we showed that Elk1 mediated FGF2-induced inhibition of End-MyoT via inhibition of TGF-β-induced transcriptional activation of α-smooth muscle actin promoter by myocardin-related transcription factor-A. Our data suggest that TGF-β and FGF2 oppose and cooperate with each other during the formation of myofibroblastic and non-myofibroblastic cells from TECs, which in turn determines the characteristics of mesenchymal cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Yuichi Akatsu
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan.,Biomedicine Group, Pharmaceutical Research Laboratories, Pharmaceutical Group, Nippon Kayaku Co., Ltd., Tokyo, Japan
| | - Naoya Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Japan
| | - Yasuhiro Yoshimatsu
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Japan
| | - Shiori Kimuro
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Japan
| | - Tomoki Muramatsu
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Japan
| | - Akihiro Katsura
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Nako Maishi
- Department of Vascular Biology and Molecular Pathology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi I Suzuki
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Japan
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Japan
| |
Collapse
|
108
|
Prise I, Sharrocks AD. ELK1 has a dual activating and repressive role in human embryonic stem cells. Wellcome Open Res 2019; 4:41. [DOI: 10.12688/wellcomeopenres.15091.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2019] [Indexed: 11/20/2022] Open
Abstract
Background: The ERK MAPK pathway plays a pivotal role in regulating numerous cellular processes during normal development and in the adult but is often deregulated in disease scenarios. One of its key nuclear targets is the transcription factor ELK1, which has been shown to play an important role in controlling gene expression in human embryonic stem cells (hESCs). ELK1 is known to act as a transcriptional activator in response to ERK pathway activation but repressive roles have also been uncovered, including a putative interaction with the PRC2 complex. Methods: Here we probe the activity of ELK1 in hESCs by using a combination of gene expression analysis in hESCs and during differentiation following ELK1 depletion and also analysis of chromatin occupancy of transcriptional regulators and histone mark deposition that accompany changes in gene expression. Results: We find that ELK1 can exert its canonical activating activity downstream from the ERK pathway but also possesses additional repressive activities. Despite its co-binding to PRC2 occupied regions, we could not detect any ELK1-mediated repression at these regions. Instead, we find that ELK1 has a repressive role at a subset of co-occupied SRF binding regions. This latter repressive role appears not to be exerted through competition with MRTF family co-activators. Conclusions: ELK1 should therefore be viewed as a dichotomous transcriptional regulator that can act through SRF to generate both activating and repressing properties at different genomic loci.
Collapse
|
109
|
Kovacic JC, Dimmeler S, Harvey RP, Finkel T, Aikawa E, Krenning G, Baker AH. Endothelial to Mesenchymal Transition in Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2019; 73:190-209. [PMID: 30654892 PMCID: PMC6865825 DOI: 10.1016/j.jacc.2018.09.089] [Citation(s) in RCA: 408] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/20/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022]
Abstract
Endothelial to mesenchymal transition (EndMT) is a process whereby an endothelial cell undergoes a series of molecular events that lead to a change in phenotype toward a mesenchymal cell (e.g., myofibroblast, smooth muscle cell). EndMT plays a fundamental role during development, and mounting evidence indicates that EndMT is involved in adult cardiovascular diseases (CVDs), including atherosclerosis, pulmonary hypertension, valvular disease, and fibroelastosis. Therefore, the targeting of EndMT may hold therapeutic promise for treating CVD. However, the field faces a number of challenges, including the lack of a precise functional and molecular definition, a lack of understanding of the causative pathological role of EndMT in CVDs (versus being a "bystander-phenomenon"), and a lack of robust human data corroborating the extent and causality of EndMT in adult CVDs. Here, we review this emerging but exciting field, and propose a framework for its systematic advancement at the molecular and translational levels.
Collapse
Affiliation(s)
- Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, and German Center of Cardiovascular Research, Frankfurt, Germany
| | - Richard P Harvey
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; St. Vincent's Clinical School and School of Biotechnology and Biomolecular Science, University of New South Wales, Kensington, New South Wales, Australia
| | - Toren Finkel
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, and Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Andrew H Baker
- UoE/BHF Center for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, United Kingdom.
| |
Collapse
|
110
|
Vacante F, Denby L, Sluimer JC, Baker AH. The function of miR-143, miR-145 and the MiR-143 host gene in cardiovascular development and disease. Vascul Pharmacol 2019; 112:24-30. [PMID: 30502421 PMCID: PMC6395947 DOI: 10.1016/j.vph.2018.11.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 02/09/2023]
Abstract
Noncoding RNAs (long noncoding RNAs and small RNAs) are emerging as critical modulators of phenotypic changes associated with physiological and pathological contexts in a variety of cardiovascular diseases (CVDs). Although it has been well established that hereditable genetic alterations and exposure to risk factors are crucial in the development of CVDs, other critical regulators of cell function impact on disease processes. Here we discuss noncoding RNAs have only recently been identified as key players involved in the progression of disease. In particular, we discuss micro RNA (miR)-143/145 since they represent one of the most characterised microRNA clusters regulating smooth muscle cell (SMC) differentiation and phenotypic switch in response to vascular injury and remodelling. MiR143HG is a well conserved long noncoding RNA (lncRNA), which is the host gene for miR-143/145 and recently implicated in cardiac specification during heart development. Although the lncRNA-miRNA interactions have not been completely characterised, their crosstalk is now beginning to emerge and likely requires further research focus. In this review we give an overview of the biology of the genomic axis that is miR-143/145 and MiR143HG, focusing on their important functional role(s) in the cardiovascular system.
Collapse
Affiliation(s)
- Francesca Vacante
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Laura Denby
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Judith C Sluimer
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK; Maastricht University Medical Centre, Dept. of Pathology, Maastricht 6229 HX, The Netherlands
| | - Andrew H Baker
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
111
|
Single-molecule imaging of the transcription factor SRF reveals prolonged chromatin-binding kinetics upon cell stimulation. Proc Natl Acad Sci U S A 2018; 116:880-889. [PMID: 30598445 PMCID: PMC6338867 DOI: 10.1073/pnas.1812734116] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
How transcription factors (TFs) activate transcription is a long-standing but still unsolved question. We analyzed serum response factor (SRF), a stimulus-responsive TF mediating immediate early gene (IEG) and cytoskeletal gene expression at single-molecule resolution. Cell stimulation enhanced SRF activity by increasing the number of long chromatin-associated SRF molecules in an oscillating pattern. Further, stimulation enhanced the SRF chromatin residence time, and SRF binding events segregated into three distinct residence time regimes (short, intermediate, and long bound). In summary, our single-molecule imaging study reveals highly dynamic and diverse SRF interactions with DNA. Thus, cell stimulation regulates TF activity by several interconnected mechanisms including nucleus−cytoplasm shuttling, TF phosphorylation, cofactor recruitment, and extension of chromatin residence time and enhancing chromatin-bound TF numbers. Serum response factor (SRF) mediates immediate early gene (IEG) and cytoskeletal gene expression programs in almost any cell type. So far, SRF transcriptional dynamics have not been investigated at single-molecule resolution. We provide a study of single Halo-tagged SRF molecules in fibroblasts and primary neurons. In both cell types, individual binding events of SRF molecules segregated into three chromatin residence time regimes, short, intermediate, and long binding, indicating a cell type-independent SRF property. The chromatin residence time of the long bound fraction was up to 1 min in quiescent cells and significantly increased upon stimulation. Stimulation also enhanced the long bound SRF fraction at specific timepoints (20 and 60 min) in both cell types. These peaks correlated with activation of the SRF cofactors MRTF-A and MRTF-B (myocardin-related transcription factors). Interference with signaling pathways and cofactors demonstrated modulation of SRF chromatin occupancy by actin signaling, MAP kinases, and MRTFs.
Collapse
|
112
|
Krawczyk KK, Skovsted GF, Perisic L, Dreier R, Berg JO, Hedin U, Rippe C, Swärd K. Expression of endothelin type B receptors (EDNRB) on smooth muscle cells is controlled by MKL2, ternary complex factors, and actin dynamics. Am J Physiol Cell Physiol 2018; 315:C873-C884. [PMID: 30332284 DOI: 10.1152/ajpcell.00170.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The endothelin type B receptor (ETB or EDNRB) is highly plastic and is upregulated in smooth muscle cells (SMCs) by arterial injury and following organ culture in vitro. We hypothesized that this transcriptional plasticity may arise, in part, because EDNRB is controlled by a balance of transcriptional inputs from myocardin-related transcription factors (MRTFs) and ternary complex factors (TCFs). We found significant positive correlations between the TCFs ELK3 and FLI1 versus EDNRB in human arteries. The MRTF MKL2 also correlated with EDNRB. Overexpression of ELK3, FLI1, and MKL2 in human coronary artery SMCs promoted expression of EDNRB, and the effect of MKL2 was antagonized by myocardin (MYOCD), which also correlated negatively with EDNRB at the tissue level. Silencing of MKL2 reduced basal EDNRB expression, but depolymerization of actin using latrunculin B (LatB) or overexpression of constitutively active cofilin, as well as treatment with the Rho-associated kinase (ROCK) inhibitor Y27632, increased EDNRB in a MEK/ERK-dependent fashion. Transcript-specific primers indicated that the second EDNRB transcript (EDNRB_2) was targeted, but this promoter was largely unresponsive to LatB and was inhibited rather than stimulated by MKL2 and FLI1, suggesting distant control elements or an indirect effect. LatB also reduced expression of endothelin-1, but supplementation experiments argued that this was not the cause of EDNRB induction. EDNRB finally changed in parallel with ELK3 and FLI1 in rat and human carotid artery lesions. These studies implicate the actin cytoskeleton and ELK3, FLI1, and MKL2 in the transcriptional control of EDNRB and increase our understanding of the plasticity of this receptor.
Collapse
Affiliation(s)
| | - Gry Freja Skovsted
- Department of Veterinary and Animal Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Ljubica Perisic
- Department of Molecular Medicine and Surgery, Karolinska Institutet , Stockholm , Sweden
| | - Rasmus Dreier
- Department of Medicine and Department of Clinical Physiology, Nuclear Medicine, and PET, University of Copenhagen, Herlev, Denmark
| | - Jais Oliver Berg
- Department of Plastic and Reconstructive Surgery, Herlev-Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet , Stockholm , Sweden
| | - Catarina Rippe
- Department of Experimental Medical Science, Lund University , Lund , Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University , Lund , Sweden
| |
Collapse
|
113
|
Dinsmore CJ, Soriano P. MAPK and PI3K signaling: At the crossroads of neural crest development. Dev Biol 2018; 444 Suppl 1:S79-S97. [PMID: 29453943 PMCID: PMC6092260 DOI: 10.1016/j.ydbio.2018.02.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 02/08/2023]
Abstract
Receptor tyrosine kinase-mediated growth factor signaling is essential for proper formation and development of the neural crest. The many ligands and receptors implicated in these processes signal through relatively few downstream pathways, frequently converging on the MAPK and PI3K pathways. Despite decades of study, there is still considerable uncertainty about where and when these signaling pathways are required and how they elicit particular responses. This review summarizes our current understanding of growth factor-induced MAPK and PI3K signaling in the neural crest.
Collapse
Affiliation(s)
- Colin J Dinsmore
- Department of Cell, Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA.
| |
Collapse
|
114
|
Cai R, Qimuge N, Ma M, Wang Y, Tang G, Zhang Q, Sun Y, Chen X, Yu T, Dong W, Yang G, Pang W. MicroRNA-664-5p promotes myoblast proliferation and inhibits myoblast differentiation by targeting serum response factor and Wnt1. J Biol Chem 2018; 293:19177-19190. [PMID: 30323063 DOI: 10.1074/jbc.ra118.003198] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 10/02/2018] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs (miRNAs) are noncoding RNAs that regulate gene expression at the post-transcriptional level and are involved in the regulation of the formation, maintenance, and function of skeletal muscle. Using miRNA sequencing and bioinformatics analysis, we previously found that the miRNA miR-664-5p is significantly differentially expressed in longissimus dorsi muscles of Rongchang pigs. However, the molecular mechanism by which miR-664-5p regulates myogenesis remains unclear. In this study, using flow cytometry, 5-ethynyl-2'-deoxyuridine staining, and cell count and immunofluorescent assays, we found that cell-transfected miR-664-5p mimics greatly promoted proliferation of C2C12 mouse myoblasts by increasing the proportion of cells in the S- and G2-phases and up-regulating the expression of cell cycle genes. Moreover, miR-664-5p inhibited myoblast differentiation by down-regulating myogenic gene expression. In contrast, miR-664-5p inhibitor repressed myoblast proliferation and promoted myoblast differentiation. Mechanistically, using dual-luciferase reporter gene experiments, we demonstrated that miR-664-5p directly targets the 3'-UTR of serum response factor (SRF) and Wnt1 mRNAs. We also observed that miR-664-5p inhibits both mRNA and protein levels of SRF and Wnt1 during myoblast proliferation and myogenic differentiation, respectively. Furthermore, the activating effect of miR-664-5p on myoblast proliferation was attenuated by SRF overexpression, and miR-664-5p repressed myogenic differentiation by diminishing the accumulation of nuclear β-catenin. Of note, miR-664-5p's inhibitory effect on myogenic differentiation was abrogated by treatment with Wnt1 protein, the key activator of the Wnt/β-catenin signaling pathway. Collectively, our findings suggest that miR-664-5p controls SRF and canonical Wnt/β-catenin signaling pathways in myogenesis.
Collapse
Affiliation(s)
- Rui Cai
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Naren Qimuge
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Meilin Ma
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Yingqian Wang
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Guorong Tang
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Que Zhang
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Yunmei Sun
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Xiaochang Chen
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Taiyong Yu
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Wuzi Dong
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Gongshe Yang
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Weijun Pang
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| |
Collapse
|
115
|
Gau D, Roy P. SRF'ing and SAP'ing - the role of MRTF proteins in cell migration. J Cell Sci 2018; 131:131/19/jcs218222. [PMID: 30309957 DOI: 10.1242/jcs.218222] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Actin-based cell migration is a fundamental cellular activity that plays a crucial role in a wide range of physiological and pathological processes. An essential feature of the remodeling of actin cytoskeleton during cell motility is the de novo synthesis of factors involved in the regulation of the actin cytoskeleton and cell adhesion in response to growth-factor signaling, and this aspect of cell migration is critically regulated by serum-response factor (SRF)-mediated gene transcription. Myocardin-related transcription factors (MRTFs) are key coactivators of SRF that link actin dynamics to SRF-mediated gene transcription. In this Review, we provide a comprehensive overview of the role of MRTF in both normal and cancer cell migration by discussing its canonical SRF-dependent as well as its recently emerged SRF-independent functions, exerted through its SAP domain, in the context of cell migration. We conclude by highlighting outstanding questions for future research in this field.
Collapse
Affiliation(s)
- David Gau
- Department of Bioengineering, University of Pittsburgh, PA 15213, USA
| | - Partha Roy
- Department of Bioengineering, University of Pittsburgh, PA 15213, USA .,Department of Pathology, University of Pittsburgh, PA, 15213, USA
| |
Collapse
|
116
|
Sidler M, Aitken KJ, Jiang JX, Sotiropoulos C, Aggarwal P, Anees A, Chong C, Siebenaller A, Thanabalasingam T, White JM, Choufani S, Weksberg R, Sangiorgi B, Wrana J, Delgado-Olguin P, Bägli DJ. DNA Methylation Reduces the Yes-Associated Protein 1/WW Domain Containing Transcription Regulator 1 Pathway and Prevents Pathologic Remodeling during Bladder Obstruction by Limiting Expression of BDNF. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2177-2194. [DOI: 10.1016/j.ajpath.2018.06.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/25/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
|
117
|
Yu Q, Li W, Xie D, Zheng X, Huang T, Xue P, Guo B, Gao Y, Zhang C, Sun P, Li M, Wang G, Cheng X, Zheng Q, Song Z. PI3Kγ promotes vascular smooth muscle cell phenotypic modulation and transplant arteriosclerosis via a SOX9-dependent mechanism. EBioMedicine 2018; 36:39-53. [PMID: 30241919 PMCID: PMC6197754 DOI: 10.1016/j.ebiom.2018.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022] Open
Abstract
Background Transplant arteriosclerosis (TA) remains the major cause of chronic graft failure in solid organ transplantation. The phenotypic modulation of vascular smooth muscle cells (VSMCs) is a key event for the initiation and progression of neointimal formation and TA. This study aims to explore the role and underlying mechanism of phosphoinositide 3-kinases γ (PI3Kγ) in VSMC phenotypic modulation and TA. Methods The rat model of aortic transplantation was established to detect PI3Kγ expression and its role in neointimal formation and vascular remodeling in vivo. PI3Kγ shRNA transfection was employed to knockdown PI3Kγ gene. Aortic VSMCs was cultured and treated with TNF-α to explore the role and molecular mechanism of PI3Kγ in VSMC phenotypic modulation. Findings Activated PI3Kγ/p-Akt signaling was observed in aortic allografts and in TNF-α-treated VSMCs. Lentivirus-mediated shRNA transfection effectively inhibited PI3Kγ expression in medial VSMCs while restoring the expression of VSMC contractile genes, associated with impaired neointimal formation in aortic allografts. In cultured VSMCs, PI3Kγ blockade with pharmacological inhibitor or genetic knockdown markedly abrogated TNF-α-induced downregulation of VSMC contractile genes and increase in cellular proliferation and migration. Moreover, SOX9 located in nucleus competitively inhibited the interaction of Myocardin and SRF, while PI3Kγ inhibition robustly reduced SOX9 expression and its nuclear translocation and repaired the Myocardin/SRF association. Interpretation These results suggest that PI3Kγ plays a critical role in VSMC phenotypic modulation via a SOX9-dependent mechanism. Therefore, PI3Kγ in VSMCs may represent a promising therapeutic target for the treatment of TA. Fund National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Qihong Yu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Li
- Departments of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dawei Xie
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xichuan Zheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Huang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Xue
- Departments of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Guo
- Department of Hepatology and Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Yang Gao
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Sun
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoliang Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qichang Zheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zifang Song
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
118
|
Walker A, Nissen E, Geiger A. Migratory, metabolic and functional alterations of fibrocytes in type 2 diabetes. IUBMB Life 2018; 70:1122-1132. [PMID: 30184318 DOI: 10.1002/iub.1920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/16/2022]
Abstract
Fibrocytes are bloodborne mesenchymal progenitor cells that are recruited to injured tissue sites and contribute to the repair process by acquiring a myofibroblast-like phenotype and producing extracellular matrix components and growth factors. Treatment with normal fibrocytes or their exosomes restores the ability of genetically diabetic mice to heal skin wounds, suggesting the existence of dysfunctional alterations in diabetic fibrocytes. This study compared the migratory, metabolic and functional characteristics of fibrocytes from patients with type 2 diabetes (T2DPs) and healthy controls (HCs). It was found that the frequency of these cells was abnormally low in the peripheral blood of T2DPs. Diabetic fibrocytes showed reduced expression of the C-X-C motif and C-C motif chemokine receptors (CXCR)4, (CCR)5, and CCR7, and demonstrated reduced migration in response to their ligands (CXCL)12, (CCL)5, and CCL21. They exhibited increased expression of the receptor for advanced glycation end product, suppression of the alternative AGE receptor 1, increased intracellular concentrations of AGEs, decreased expression of sirtuin-1 and elevated oxidative stress. In short-term cultures, fibrocytes from T2DPs released larger amounts of proinflammatory cytokines than those from HCs. Unlike normal fibrocytes, diabetic fibrocytes did not exhibit increased expression of type I collagen and α-smooth muscle actin on stimulation with transforming growth factor (TGF)-β1 and this abnormal response was associated with downregulation of TGF-β1 type II receptor on the cell surface. Study findings uncover multiple migratory and functional alterations of diabetic fibrocytes that may contribute to explain why T2DPs experience impaired wound healing and chronic ulcers. © 2018 IUBMB Life, 70(11):1122-1132, 2018.
Collapse
Affiliation(s)
- Audrey Walker
- Proteomics & Metabolomics Laboratory, DreiRosen Pharma GmbH, Berlin, Germany
| | - Erwin Nissen
- Proteomics & Metabolomics Laboratory, DreiRosen Pharma GmbH, Berlin, Germany
| | - Adolf Geiger
- Technology Development, DreiRosen Pharma GmbH, Berlin, Germany
| |
Collapse
|
119
|
Frismantiene A, Philippova M, Erne P, Resink TJ. Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity. Cell Signal 2018; 52:48-64. [PMID: 30172025 DOI: 10.1016/j.cellsig.2018.08.019] [Citation(s) in RCA: 282] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
Abstract
Vascular smooth muscle cells (VSMCs) are the major cell type in blood vessels. Unlike many other mature cell types in the adult body, VSMC do not terminally differentiate but retain a remarkable plasticity. Fully differentiated medial VSMCs of mature vessels maintain quiescence and express a range of genes and proteins important for contraction/dilation, which allows them to control systemic and local pressure through the regulation of vascular tone. In response to vascular injury or alterations in local environmental cues, differentiated/contractile VSMCs are capable of switching to a dedifferentiated phenotype characterized by increased proliferation, migration and extracellular matrix synthesis in concert with decreased expression of contractile markers. Imbalanced VSMC plasticity results in maladaptive phenotype alterations that ultimately lead to progression of a variety of VSMC-driven vascular diseases. The nature, extent and consequences of dysregulated VSMC phenotype alterations are diverse, reflecting the numerous environmental cues (e.g. biochemical factors, extracellular matrix components, physical) that prompt VSMC phenotype switching. In spite of decades of efforts to understand cues and processes that normally control VSMC differentiation and their disruption in VSMC-driven disease states, the crucial molecular mechanisms and signalling pathways that shape the VSMC phenotype programme have still not yet been precisely elucidated. In this article we introduce the physiological functions of vascular smooth muscle/VSMCs, outline VSMC-driven cardiovascular diseases and the concept of VSMC phenotype switching, and review molecular mechanisms that play crucial roles in the regulation of VSMC phenotypic plasticity.
Collapse
Affiliation(s)
- Agne Frismantiene
- Department of Biomedicine, Laboratory for Signal Transduction, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Maria Philippova
- Department of Biomedicine, Laboratory for Signal Transduction, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Paul Erne
- Department of Biomedicine, Laboratory for Signal Transduction, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Therese J Resink
- Department of Biomedicine, Laboratory for Signal Transduction, University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
120
|
Zhu B, Rippe C, Holmberg J, Zeng S, Perisic L, Albinsson S, Hedin U, Uvelius B, Swärd K. Nexilin/NEXN controls actin polymerization in smooth muscle and is regulated by myocardin family coactivators and YAP. Sci Rep 2018; 8:13025. [PMID: 30158653 PMCID: PMC6115340 DOI: 10.1038/s41598-018-31328-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/17/2018] [Indexed: 01/03/2023] Open
Abstract
Nexilin, encoded by the NEXN gene, is expressed in striated muscle and localizes to Z-discs, influencing mechanical stability. We examined Nexilin/NEXN in smooth muscle cells (SMCs), and addressed if Nexilin localizes to dense bodies and dense bands and whether it is regulated by actin-controlled coactivators from the MRTF (MYOCD, MKL1, MKL2) and YAP/TAZ (YAP1 and WWTR1) families. NEXN expression in SMCs was comparable to that in striated muscles. Immunofluorescence and immunoelectron microscopy suggested that Nexilin localizes to dense bodies and dense bands. Correlations at the mRNA level suggested that NEXN expression might be controlled by actin polymerization. Depolymerization of actin using Latrunculin B repressed the NEXN mRNA and protein in bladder and coronary artery SMCs. Overexpression and knockdown supported involvement of both YAP/TAZ and MRTFs in the transcriptional control of NEXN. YAP/TAZ and MRTFs appeared equally important in bladder SMCs, whereas MRTFs dominated in vascular SMCs. Expression of NEXN was moreover reduced in situations of SMC phenotypic modulation in vivo. The proximal promoter of NEXN conferred control by MRTF-A/MKL1 and MYOCD. NEXN silencing reduced actin polymerization and cell migration, as well as SMC marker expression. NEXN targeting by actin-controlled coactivators thus amplifies SMC differentiation through the actin cytoskeleton, probably via dense bodies and dense bands.
Collapse
Affiliation(s)
- Baoyi Zhu
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden. .,Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), 511518, Guangdong, China.
| | - Catarina Rippe
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Johan Holmberg
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Shaohua Zeng
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden.,Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), 511518, Guangdong, China
| | - Ljubica Perisic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Albinsson
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Uvelius
- Department of Clinical Science, Section of Urology, Lund University, SE-221 84, Lund, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| |
Collapse
|
121
|
Vaes RDW, van den Berk L, Boonen B, van Dijk DPJ, Olde Damink SWM, Rensen SS. A novel human cell culture model to study visceral smooth muscle phenotypic modulation in health and disease. Am J Physiol Cell Physiol 2018; 315:C598-C607. [PMID: 30044660 DOI: 10.1152/ajpcell.00167.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Adaptation of the smooth muscle cell (SMC) phenotype is essential for homeostasis and is often involved in pathologies of visceral organs (e.g., uterus, bladder, gastrointestinal tract). In vitro studies of the behavior of visceral SMCs under (patho)-physiological conditions are hampered by a spontaneous, uncontrolled phenotypic modulation of visceral SMCs under regular tissue culture conditions. We aimed to develop a new visceral SMC culture model that allows controlled phenotypic modulation. Human uterine SMCs [ULTR and telomerase-immortalized human myometrial cells (hTERT-HM)] were grown to confluency and kept for up to 6 days on regular tissue culture surfaces or basement membrane (BM) matrix-coated surfaces in the presence of 0-10% serum. mRNA and protein expression and localization of SMC-specific phenotype markers and their transcriptional regulators were investigated by quantitative PCR, Western blotting, and immunofluorescence. Maintaining visceral SMCs confluent for 6 days increased α-smooth muscle actin (1.9-fold) and smooth muscle protein 22-α (3.1-fold), whereas smooth muscle myosin heavy chain was only slightly upregulated (1.3-fold). Culturing on a BM matrix-coated surface further increased these proteins and also markedly promoted mRNA expression of γ-smooth muscle actin (15.0-fold), smoothelin (3.5-fold), h-caldesmon (5.2-fold), serum response factor (7.6-fold), and myocardin (8.1-fold). Whereas additional serum deprivation only minimally affected contractile markers, platelet-derived growth factor-BB and transforming growth factor β1 consistently reduced versus increased their expression. In conclusion, we present a simple and reproducible visceral SMC culture system that allows controlled phenotypic modulation toward both the synthetic and the contractile phenotype. This may greatly facilitate the identification of factors that drive visceral SMC phenotypic changes in health and disease.
Collapse
Affiliation(s)
- Rianne D W Vaes
- Department of Surgery, Maastricht University , Maastricht , The Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University , Maastricht , The Netherlands
| | - Linda van den Berk
- Department of Surgery, Maastricht University , Maastricht , The Netherlands
| | - Bas Boonen
- Department of Surgery, Maastricht University , Maastricht , The Netherlands
| | - David P J van Dijk
- Department of Surgery, Maastricht University , Maastricht , The Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University , Maastricht , The Netherlands
| | - Steven W M Olde Damink
- Department of Surgery, Maastricht University , Maastricht , The Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University , Maastricht , The Netherlands
| | - Sander S Rensen
- Department of Surgery, Maastricht University , Maastricht , The Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University , Maastricht , The Netherlands
| |
Collapse
|
122
|
Cao W, Zhang D, Li Q, Liu Y, Jing S, Cui J, Xu W, Li S, Liu J, Yu B. Biomechanical Stretch Induces Inflammation, Proliferation, and Migration by Activating NFAT5 in Arterial Smooth Muscle Cells. Inflammation 2018; 40:2129-2136. [PMID: 28840417 DOI: 10.1007/s10753-017-0653-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The increasing wall stress as is elicited by arterial hypertension promotes their reorganization in the vessel wall which may lead to arterial stiffening and contractile dysfunction. The nuclear factor of activated T cells 5 (NFAT5) pathway plays a role in regulating growth and differentiation in various cell types. We investigated whether the NFAT5 pathway was involved in the regulation of biomechanical stretch-induced human arterial smooth muscle cell (HUASMC) proliferation, inflammation, and migration. Herein, we showed that stretch promoted the expression of NFAT5 in human arterial smooth muscle cells and regulated through activation of c-Jun N-terminal kinase under these conditions. This may contribute to an improved activity of HUASMCs and thus promote reorganization in vascular remodeling processes such as hypertension-induced arterial stiffening and contractile dysfunction.
Collapse
Affiliation(s)
- Wei Cao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, People's Republic of China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Donghui Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, People's Republic of China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Qiannan Li
- Department of Geriatric, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Yue Liu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Shenhong Jing
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, People's Republic of China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Jinjin Cui
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, People's Republic of China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Wei Xu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, People's Republic of China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Shufeng Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, People's Republic of China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Jingjin Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, People's Republic of China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, People's Republic of China. .,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, 150081, People's Republic of China.
| |
Collapse
|
123
|
Small proline-rich protein 2B drives stress-dependent p53 degradation and fibroblast proliferation in heart failure. Proc Natl Acad Sci U S A 2018; 115:E3436-E3445. [PMID: 29581288 DOI: 10.1073/pnas.1717423115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Heart disease is associated with the accumulation of resident cardiac fibroblasts (CFs) that secrete extracellular matrix (ECM), leading to the development of pathological fibrosis and heart failure. However, the mechanisms underlying resident CF proliferation remain poorly defined. Here, we report that small proline-rich protein 2b (Sprr2b) is among the most up-regulated genes in CFs during heart disease. We demonstrate that SPRR2B is a regulatory subunit of the USP7/MDM2-containing ubiquitination complex. SPRR2B stimulates the accumulation of MDM2 and the degradation of p53, thus facilitating the proliferation of pathological CFs. Furthermore, SPRR2B phosphorylation by nonreceptor tyrosine kinases in response to TGF-β1 signaling and free-radical production potentiates SPRR2B activity and cell cycle progression. Knockdown of the Sprr2b gene or inhibition of SPRR2B phosphorylation attenuates USP7/MDM2 binding and p53 degradation, leading to CF cell cycle arrest. Importantly, SPRR2B expression is elevated in cardiac tissue from human heart failure patients and correlates with the proliferative state of patient-derived CFs in a process that is reversed by insulin growth factor-1 signaling. These data establish SPRR2B as a unique component of the USP7/MDM2 ubiquitination complex that drives p53 degradation, CF accumulation, and the development of pathological cardiac fibrosis.
Collapse
|
124
|
Roostalu U, Wong JK. Arterial smooth muscle dynamics in development and repair. Dev Biol 2018; 435:109-121. [PMID: 29397877 DOI: 10.1016/j.ydbio.2018.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/08/2018] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
Abstract
Arterial vasculature distributes blood from early embryonic development and provides a nutrient highway to maintain tissue viability. Atherosclerosis, peripheral artery diseases, stroke and aortic aneurysm represent the most frequent causes of death and are all directly related to abnormalities in the function of arteries. Vascular intervention techniques have been established for the treatment of all of these pathologies, yet arterial surgery can itself lead to biological changes in which uncontrolled arterial wall cell proliferation leads to restricted blood flow. In this review we describe the intricate cellular composition of arteries, demonstrating how a variety of distinct cell types in the vascular walls regulate the function of arteries. We provide an overview of the developmental origin of arteries and perivascular cells and focus on cellular dynamics in arterial repair. We summarize the current knowledge of the molecular signaling pathways that regulate vascular smooth muscle differentiation in the embryo and in arterial injury response. Our review aims to highlight the similarities as well as differences between cellular and molecular mechanisms that control arterial development and repair.
Collapse
Affiliation(s)
- Urmas Roostalu
- Manchester Academic Health Science Centre, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK.
| | - Jason Kf Wong
- Manchester Academic Health Science Centre, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK; Department of Plastic Surgery, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, UK.
| |
Collapse
|
125
|
Noncanonical hedgehog pathway activation through SRF-MKL1 promotes drug resistance in basal cell carcinomas. Nat Med 2018; 24:271-281. [PMID: 29400712 PMCID: PMC5839965 DOI: 10.1038/nm.4476] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 12/19/2017] [Indexed: 12/13/2022]
Abstract
Hedgehog pathway-dependent cancers can escape smoothened (SMO) inhibition
through canonical pathway mutations, however, 50% of resistant BCCs lack
additional variants in hedgehog genes. Here we use multi-dimensional genomics in
human and mouse resistant BCCs to identify a non-canonical hedgehog activation
pathway driven by the transcription factor, serum response factor (SRF). Active
SRF along with its co-activator megakaryoblastic leukemia 1 (MKL1) form a novel
protein complex and share chromosomal occupancy with the hedgehog transcription
factor GLI1, causing amplification of GLI1 transcriptional activity. We show
cytoskeletal activation by Rho and the formin family member Diaphanous (mDia)
are required for SRF/MKL-driven GLI1 activation and tumor cell viability.
Remarkably, we use nuclear MKL1 staining in mouse and human patient tumors to
define drug responsiveness to MKL inhibitors highlighting the therapeutic
potential of targeting this pathway. Thus, our studies illuminate for the first
time cytoskeletal-driven transcription as a personalized therapeutic target to
combat drug resistant malignancies.
Collapse
|
126
|
Foster CT, Gualdrini F, Treisman R. Mutual dependence of the MRTF-SRF and YAP-TEAD pathways in cancer-associated fibroblasts is indirect and mediated by cytoskeletal dynamics. Genes Dev 2018; 31:2361-2375. [PMID: 29317486 PMCID: PMC5795783 DOI: 10.1101/gad.304501.117] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
In this study, Foster et al. demonstrate that activation of the MRTF–SRF signaling pathway occurs in cancer-associated fibroblasts (CAFs) and is required for their proinvasive and contractile activity. The investigators also identify shared and specific direct genomic targets for MRTF–SRF and YAP–TEAD and show that MRTF and YAP are independently regulated by cytoskeletal dynamics and that this is the basis for their mutual dependence. Both the MRTF–SRF and the YAP–TEAD transcriptional regulatory networks respond to extracellular signals and mechanical stimuli. We show that the MRTF–SRF pathway is activated in cancer-associated fibroblasts (CAFs). The MRTFs are required in addition to the YAP pathway for CAF contractile and proinvasive properties. We compared MRTF–SRF and YAP–TEAD target gene sets and identified genes directly regulated by one pathway, the other, or both. Nevertheless, the two pathways exhibit mutual dependence. In CAFs, expression of direct MRTF–SRF genomic targets is also dependent on YAP–TEAD activity, and, conversely, YAP–TEAD target gene expression is also dependent on MRTF–SRF signaling. In normal fibroblasts, expression of activated MRTF derivatives activates YAP, while activated YAP derivatives activate MRTF. Cross-talk between the pathways requires recruitment of MRTF and YAP to DNA via their respective DNA-binding partners (SRF and TEAD) and is therefore indirect, arising as a consequence of activation of their target genes. In both CAFs and normal fibroblasts, we found that YAP–TEAD activity is sensitive to MRTF–SRF-induced contractility, while MRTF–SRF signaling responds to YAP–TEAD-dependent TGFβ signaling. Thus, the MRF–SRF and YAP–TEAD pathways interact indirectly through their ability to control cytoskeletal dynamics.
Collapse
Affiliation(s)
- Charles T Foster
- Signalling and Transcription Group, Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Francesco Gualdrini
- Signalling and Transcription Group, Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Richard Treisman
- Signalling and Transcription Group, Francis Crick Institute, London NW1 1AT, United Kingdom
| |
Collapse
|
127
|
Zhang X, Azhar G, Wei JY. SIRT2 gene has a classic SRE element, is a downstream target of serum response factor and is likely activated during serum stimulation. PLoS One 2017; 12:e0190011. [PMID: 29267359 PMCID: PMC5739444 DOI: 10.1371/journal.pone.0190011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 12/06/2017] [Indexed: 01/13/2023] Open
Abstract
The sirtuin proteins are an evolutionarily conserved family of NAD+-dependent deacetylases that regulate various cellular functions. Among the seven sirtuins, SIRT2 is predominantly found in the cytoplasm, and is present in a wide range of tissues. Recent studies indicate that SIRT2 plays an important role in metabolic homeostasis. Several studies indicate that SIRT2 is upregulated under serum deprivation conditions. Since the serum response factor gene usually responds rapidly to serum deprivation and/or serum restoration following deprivation, we hypothesized that a common mechanism may serve to regulate both SIRT2 and SRF during serum stimulation. Using a bioinformatics approach, we searched the SRF binding motif in the SIRT2 gene, and found one classic CArG element (CCATAATAGG) in the SIRT2 gene promoter, which was bound to SRF in the electrophoretic mobility shift assay (EMSA). Serum deprivation induced SIRT2 expression, while SRF and the SRF binding protein, p49/STRAP, repressed SIRT2 gene expression. SIRT2 gene expression was also repressed by the Rho/SRF inhibitor, CCG-1423. These data demonstrate that the classic SRE element in the SIRT2 gene promoter region is functional and therefore, SIRT2 gene is a downstream target of the Rho/SRF signaling pathway. The increased expression of SRF that was observed in the aged heart may affect SIRT2 gene expression and contribute to altered metabolic status in senescence.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Gohar Azhar
- Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jeanne Y. Wei
- Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
128
|
Luo J, Qin L, Kural MH, Schwan J, Li X, Bartulos O, Cong XQ, Ren Y, Gui L, Li G, Ellis MW, Li P, Kotton DN, Dardik A, Pober JS, Tellides G, Rolle M, Campbell S, Hawley RJ, Sachs DH, Niklason LE, Qyang Y. Vascular smooth muscle cells derived from inbred swine induced pluripotent stem cells for vascular tissue engineering. Biomaterials 2017; 147:116-132. [PMID: 28942128 PMCID: PMC5638652 DOI: 10.1016/j.biomaterials.2017.09.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/05/2017] [Accepted: 09/17/2017] [Indexed: 12/18/2022]
Abstract
Development of autologous tissue-engineered vascular constructs using vascular smooth muscle cells (VSMCs) derived from human induced pluripotent stem cells (iPSCs) holds great potential in treating patients with vascular disease. However, preclinical, large animal iPSC-based cellular and tissue models are required to evaluate safety and efficacy prior to clinical application. Herein, swine iPSC (siPSC) lines were established by introducing doxycycline-inducible reprogramming factors into fetal fibroblasts from a line of inbred Massachusetts General Hospital miniature swine that accept tissue and organ transplants without immunosuppression within the line. Highly enriched, functional VSMCs were derived from siPSCs based on addition of ascorbic acid and inactivation of reprogramming factor via doxycycline withdrawal. Moreover, siPSC-VSMCs seeded onto biodegradable polyglycolic acid (PGA) scaffolds readily formed vascular tissues, which were implanted subcutaneously into immunodeficient mice and showed further maturation revealed by expression of the mature VSMC marker, smooth muscle myosin heavy chain. Finally, using a robust cellular self-assembly approach, we developed 3D scaffold-free tissue rings from siPSC-VSMCs that showed comparable mechanical properties and contractile function to those developed from swine primary VSMCs. These engineered vascular constructs, prepared from doxycycline-inducible inbred siPSCs, offer new opportunities for preclinical investigation of autologous human iPSC-based vascular tissues for patient treatment.
Collapse
Affiliation(s)
- Jiesi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Lingfeng Qin
- Department of Surgery, Yale University, New Haven, CT 06520, USA
| | - Mehmet H Kural
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA
| | - Jonas Schwan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| | - Xia Li
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Oscar Bartulos
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Xiao-Qiang Cong
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Cardiology, Bethune First Hospital of Jilin University, ChangChun, 130021, China
| | - Yongming Ren
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Liqiong Gui
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA
| | - Guangxin Li
- Department of Surgery, Yale University, New Haven, CT 06520, USA; Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, 110122, China
| | - Matthew W Ellis
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06519, USA
| | - Peining Li
- Department of Genetics, Yale University, New Haven, CT 06519, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Alan Dardik
- Department of Surgery, Yale University, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jordan S Pober
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale University, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - George Tellides
- Department of Surgery, Yale University, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marsha Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Stuart Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| | - Robert J Hawley
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA 02129, USA
| | - David H Sachs
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Laura E Niklason
- Yale Stem Cell Center, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
129
|
O’Sullivan MJ, Gabriel E, Panariti A, Park CY, Ijpma G, Fredberg JJ, Lauzon AM, Martin JG. Epithelial Cells Induce a Cyclo-Oxygenase-1-Dependent Endogenous Reduction in Airway Smooth Muscle Contractile Phenotype. Am J Respir Cell Mol Biol 2017; 57:683-691. [PMID: 28708434 PMCID: PMC5765417 DOI: 10.1165/rcmb.2016-0427oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/29/2017] [Indexed: 12/11/2022] Open
Abstract
Airway smooth muscle cells (ASMCs) are phenotypically regulated to exist in either a proliferative or a contractile state. However, the influence of other airway structural cell types on ASMC phenotype is largely unknown. Although epithelial cells are known to drive ASM proliferation, their effects on the contractile phenotype are uncertain. In the current study, we tested the hypothesis that epithelial cells reduce the contractile phenotype of ASMCs. To do so, we measured force production by traction microscopy, gene and protein expression, as well as calcium release by Fura-2 ratiometric imaging. ASMCs incubated with epithelial-derived medium produced less force after histamine stimulation. We observed reduced expression of myocardin, α-smooth muscle actin, and calponin within ASMCs after coculture with epithelial cells. Peak calcium release in response to histamine was diminished, and depended on the synthesis of cyclo-oxygenase-1 products by ASM and on prostaglandin E receptors 2 and 4. Together, these in vitro results demonstrate that epithelial cells have the capacity to coordinately reduce ASM contraction by functional antagonism and by reduction of the expression of certain contractile proteins.
Collapse
Affiliation(s)
- Michael J. O’Sullivan
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada; and
| | - Elizabeth Gabriel
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Alice Panariti
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada; and
| | - Chan Y. Park
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Gijs Ijpma
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada; and
| | - Jeffrey J. Fredberg
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Anne-Marie Lauzon
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada; and
| | - James G. Martin
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada; and
| |
Collapse
|
130
|
Maguire EM, Xiao Q, Xu Q. Differentiation and Application of Induced Pluripotent Stem Cell–Derived Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2017; 37:2026-2037. [DOI: 10.1161/atvbaha.117.309196] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023]
Abstract
Vascular smooth muscle cells (VSMCs) play a role in the development of vascular disease, for example, neointimal formation, arterial aneurysm, and Marfan syndrome caused by genetic mutations in VSMCs, but little is known about the mechanisms of the disease process. Advances in induced pluripotent stem cell technology have now made it possible to derive VSMCs from several different somatic cells using a selection of protocols. As such, researchers have set out to delineate key signaling processes involved in triggering VSMC gene expression to grasp the extent of gene regulatory networks involved in phenotype commitment. This technology has also paved the way for investigations into diseases affecting VSMC behavior and function, which may be treatable once an identifiable culprit molecule or gene has been repaired. Moreover, induced pluripotent stem cell–derived VSMCs are also being considered for their use in tissue-engineered blood vessels as they may prove more beneficial than using autologous vessels. Finally, while several issues remains to be clarified before induced pluripotent stem cell–derived VSMCs can become used in regenerative medicine, they do offer both clinicians and researchers hope for both treating and understanding vascular disease. In this review, we aim to update the recent progress on VSMC generation from stem cells and the underlying molecular mechanisms of VSMC differentiation. We will also explore how the use of induced pluripotent stem cell–derived VSMCs has changed the game for regenerative medicine by offering new therapeutic avenues to clinicians, as well as providing researchers with a new platform for modeling of vascular disease.
Collapse
Affiliation(s)
- Eithne Margaret Maguire
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (E.M.M., Q. Xiao); and Cardiovascular Division, King’s College London BHF Centre, United Kingdom (Q. Xu)
| | - Qingzhong Xiao
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (E.M.M., Q. Xiao); and Cardiovascular Division, King’s College London BHF Centre, United Kingdom (Q. Xu)
| | - Qingbo Xu
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (E.M.M., Q. Xiao); and Cardiovascular Division, King’s College London BHF Centre, United Kingdom (Q. Xu)
| |
Collapse
|
131
|
Zhang W, Zhu T, Wu W, Ge X, Xiong X, Zhang Z, Hu C. LOX-1 mediated phenotypic switching of pulmonary arterial smooth muscle cells contributes to hypoxic pulmonary hypertension. Eur J Pharmacol 2017; 818:84-95. [PMID: 29069578 DOI: 10.1016/j.ejphar.2017.10.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022]
Abstract
In pulmonary hypertension (PH), pulmonary arterial smooth muscle cells (PASMCs) are dedifferentiated, undergoing a contractile-to-synthetic phenotypic switching. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) plays diverse roles in the cardiovascular system, but its contribution to PH remains to be fully defined. The present study was undertaken to explore the role of LOX-1 in PASMCs dedifferentiation in hypoxia-induced pulmonary vascular remodeling and PH. In a rat model of hypoxic PH, pulmonary vascular remodeling was accompanied by increased expression of LOX-1 in pulmonary arteries. In primary rat PASMCs, hypoxia-induced PASMCs dedifferentiation occurred concomitantly with LOX-1 upregulation. Inhibition of LOX-1 by either siRNA knockdown or neutralizing antibody significantly ameliorated PASMCs dedifferentiation. Mechanistically, LOX-1 promotes PASMCs dedifferentiation under hypoxic conditions via ERK1/2-Elk-1/MRTF-A/SRF signaling pathway. In conclusion, our data uncovers an important role of LOX-1 in the maintenance of PASMCs phenotype. Therapeutic targeting of LOX-1/ERK1/2-Elk-1/MRTF-A/SRF signaling axis would be exploited to treat hypoxic PH.
Collapse
Affiliation(s)
- Weifang Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Department of Pharmacy, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Tiantian Zhu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Weihua Wu
- School of pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Xiaoyue Ge
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Xiaoming Xiong
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China
| | - Zheng Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China.
| | - Changping Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
132
|
Lacolley P, Regnault V, Segers P, Laurent S. Vascular Smooth Muscle Cells and Arterial Stiffening: Relevance in Development, Aging, and Disease. Physiol Rev 2017; 97:1555-1617. [DOI: 10.1152/physrev.00003.2017] [Citation(s) in RCA: 483] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/15/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022] Open
Abstract
The cushioning function of large arteries encompasses distension during systole and recoil during diastole which transforms pulsatile flow into a steady flow in the microcirculation. Arterial stiffness, the inverse of distensibility, has been implicated in various etiologies of chronic common and monogenic cardiovascular diseases and is a major cause of morbidity and mortality globally. The first components that contribute to arterial stiffening are extracellular matrix (ECM) proteins that support the mechanical load, while the second important components are vascular smooth muscle cells (VSMCs), which not only regulate actomyosin interactions for contraction but mediate also mechanotransduction in cell-ECM homeostasis. Eventually, VSMC plasticity and signaling in both conductance and resistance arteries are highly relevant to the physiology of normal and early vascular aging. This review summarizes current concepts of central pressure and tensile pulsatile circumferential stress as key mechanical determinants of arterial wall remodeling, cell-ECM interactions depending mainly on the architecture of cytoskeletal proteins and focal adhesion, the large/small arteries cross-talk that gives rise to target organ damage, and inflammatory pathways leading to calcification or atherosclerosis. We further speculate on the contribution of cellular stiffness along the arterial tree to vascular wall stiffness. In addition, this review provides the latest advances in the identification of gene variants affecting arterial stiffening. Now that important hemodynamic and molecular mechanisms of arterial stiffness have been elucidated, and the complex interplay between ECM, cells, and sensors identified, further research should study their potential to halt or to reverse the development of arterial stiffness.
Collapse
Affiliation(s)
- Patrick Lacolley
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| | - Véronique Regnault
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| | - Patrick Segers
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| | - Stéphane Laurent
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| |
Collapse
|
133
|
Greig FH, Kennedy S, Gibson G, Ramos JW, Nixon GF. PEA-15 (Phosphoprotein Enriched in Astrocytes 15) Is a Protective Mediator in the Vasculature and Is Regulated During Neointimal Hyperplasia. J Am Heart Assoc 2017; 6:JAHA.117.006936. [PMID: 28893763 PMCID: PMC5634313 DOI: 10.1161/jaha.117.006936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Neointimal hyperplasia following angioplasty occurs via vascular smooth muscle cell proliferation. The mechanisms involved are not fully understood but include mitogen-activated protein kinases ERK1/2 (extracellular signal-regulated kinases 1 and 2). We recently identified the intracellular mediator PEA-15 (phosphoprotein enriched in astrocytes 15) in vascular smooth muscle cells as a regulator of ERK1/2-dependent proliferation in vitro. PEA-15 acts as a cytoplasmic anchor for ERK1/2, preventing nuclear localization and thereby reducing ERK1/2-dependent gene expression. The aim of the current study was to examine the role of PEA-15 in neointimal hyperplasia in vivo. METHOD AND RESULTS Mice deficient in PEA-15 or wild-type mice were subjected to wire injury of the carotid artery. In uninjured arteries from PEA-15-deficient mice, ERK1/2 had increased nuclear translocation and increased basal ERK1/2-dependent transcription. Following wire injury, arteries from PEA-15-deficient mice developed neointimal hyperplasia at an increased rate compared with wild-type mice. This occurred in parallel with an increase in a proliferative marker and vascular smooth muscle cell proliferation. In wild-type mice, PEA-15 expression was decreased in vascular smooth muscle cells at an early stage before any increase in intima:media ratio. This regulation of PEA-15 expression following injury was also observed in an ex vivo human model of hyperplasia. CONCLUSIONS These results indicate, for the first time, a novel protective role for PEA-15 against inappropriate vascular proliferation. PEA-15 expression may also be repressed during vascular injury, suggesting that maintenance of PEA-15 expression is a novel therapeutic target in vascular disease.
Collapse
Affiliation(s)
- Fiona H Greig
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, United Kingdom
| | - Simon Kennedy
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - George Gibson
- Department of Cardiothoracic Surgery, Aberdeen Royal Hospital, Aberdeen, United Kingdom
| | - Joe W Ramos
- Cancer Biology Program, University of Hawaii Cancer Centre University of Hawaii at Mānoa, Honolulu, HI
| | - Graeme F Nixon
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, United Kingdom
| |
Collapse
|
134
|
Suzuki HI, Katsura A, Mihira H, Horie M, Saito A, Miyazono K. Regulation of TGF-β-mediated endothelial-mesenchymal transition by microRNA-27. J Biochem 2017; 161:417-420. [PMID: 28338957 PMCID: PMC5412016 DOI: 10.1093/jb/mvx017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/21/2017] [Indexed: 12/30/2022] Open
Abstract
Multiple microRNAs (miRNAs) regulate epithelial-mesenchymal transition and endothelial-mesenchymal transition (EndMT). Here we report that microRNA-27b (miR-27b) positively regulates transforming growth factor-β (TGF-β)-induced EndMT of MS-1 mouse pancreatic microvascular endothelial cells. TGF-β induced miR-23b/24-1/27b expression, and inhibition of miR-27 suppressed TGF-β-mediated induction of mesenchymal genes. Genome-wide miRNA target analysis revealed that miR-27 targets Elk1, which acts as a competitive inhibitor of myocardin-related transcription factor-serum response factor signalling and as a myogenic repressor. miR-27b was also found to regulate several semaphorin receptors including Neuropilin 2, Plexin A2 and Plexin D1. These results suggest important roles of miR-27 in TGF-β-driven EndMT.
Collapse
Affiliation(s)
- Hiroshi I Suzuki
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St, 76-417, Cambridge, MA 02139, USA
| | - Akihiro Katsura
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hajime Mihira
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masafumi Horie
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
135
|
Ma Y, Li Q, Li A, Wei Y, Long P, Jiang X, Sun F, Weiskirchen R, Wu B, Liang C, Grötzinger J, Wei Y, Yu W, Mercola M, Huang Y, Wang J, Yu Y, Schwartz RJ. The CSRP2BP histone acetyltransferase drives smooth muscle gene expression. Nucleic Acids Res 2017; 45:3046-3058. [PMID: 27940555 PMCID: PMC5389687 DOI: 10.1093/nar/gkw1227] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 11/27/2016] [Indexed: 12/20/2022] Open
Abstract
The expression of nearly all smooth muscle genes are controlled by serum response factor binding sites in their promoter regions. However, SRF alone is not sufficient for regulating smooth muscle cell development. It associates with other cardiovascular specific cofactors to regulate smooth muscle gene expression. Previously, we showed that the transcription co-factor CRP2 was a regulator of smooth muscle gene expression. Here, we report that CSRP2BP, a coactivator for CRP2, is a histone acetyltransferase and a driver of smooth muscle gene expression. CSRP2BP directly interacted with SRF, CRP2 and myocardin. CSRP2BP synergistically activated smooth muscle gene promoters in an SRF-dependent manner. A combination of SRF, GATA6 and CRP2 required CSRP2BP for robust smooth muscle gene promoter activity. Knock-down of Csrp2bp in smooth muscle cells resulted in reduced smooth muscle gene expression. We conclude that the CSRP2BP histone acetyltransferase is a coactivator for CRP2 that works synergistically with SRF and myocardin to regulate smooth muscle gene expression.
Collapse
Affiliation(s)
- Yanlin Ma
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The Key Laboratory of Tropical Diseases and Translational Medicine of The Ministry of Education, Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 570102, China
- The Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA
- To whom correspondence should be addressed. Tel: +1 713 743 6595; Fax: +1 713 743 8351; . Correspondence may also be addressed to Yanhong Yu. Tel: +86 206 1648687; Fax: +86 206 1648020; . Correspondence may also be addressed to Yanlin Ma. Tel: +86 898 66776091; Fax: +86 898 66893600;
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The Key Laboratory of Tropical Diseases and Translational Medicine of The Ministry of Education, Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 570102, China
- These authors contributed equally to this work as the first authors
| | - Ankang Li
- Graduate Program in Cardiovascular Sciences, Baylor College of Medicine, Houston, TX 77030, USA
- These authors contributed equally to this work as the first authors
| | - Yunjian Wei
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The Key Laboratory of Tropical Diseases and Translational Medicine of The Ministry of Education, Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 570102, China
| | - Ping Long
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The Key Laboratory of Tropical Diseases and Translational Medicine of The Ministry of Education, Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 570102, China
| | - Xinxing Jiang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The Key Laboratory of Tropical Diseases and Translational Medicine of The Ministry of Education, Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 570102, China
| | - Fei Sun
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, University Hospital Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Bangyong Wu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The Key Laboratory of Tropical Diseases and Translational Medicine of The Ministry of Education, Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 570102, China
| | - Chao Liang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The Key Laboratory of Tropical Diseases and Translational Medicine of The Ministry of Education, Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 570102, China
| | - Joachim Grötzinger
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | - Yanxing Wei
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wei Yu
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Mark Mercola
- Stem Cell and Regeneration Program, The Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yuanhua Huang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The Key Laboratory of Tropical Diseases and Translational Medicine of The Ministry of Education, Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 570102, China
| | - Jun Wang
- Texas Heart Institute, Houston, TX 77030, USA
| | - Yanhong Yu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The Key Laboratory of Tropical Diseases and Translational Medicine of The Ministry of Education, Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 570102, China
- To whom correspondence should be addressed. Tel: +1 713 743 6595; Fax: +1 713 743 8351; . Correspondence may also be addressed to Yanhong Yu. Tel: +86 206 1648687; Fax: +86 206 1648020; . Correspondence may also be addressed to Yanlin Ma. Tel: +86 898 66776091; Fax: +86 898 66893600;
| | - Robert J. Schwartz
- Stem Cell and Regeneration Program, The Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
- Texas Heart Institute, Houston, TX 77030, USA
- To whom correspondence should be addressed. Tel: +1 713 743 6595; Fax: +1 713 743 8351; . Correspondence may also be addressed to Yanhong Yu. Tel: +86 206 1648687; Fax: +86 206 1648020; . Correspondence may also be addressed to Yanlin Ma. Tel: +86 898 66776091; Fax: +86 898 66893600;
| |
Collapse
|
136
|
Mistriotis P, Andreadis ST. Vascular aging: Molecular mechanisms and potential treatments for vascular rejuvenation. Ageing Res Rev 2017; 37:94-116. [PMID: 28579130 DOI: 10.1016/j.arr.2017.05.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022]
Abstract
Aging is the main risk factor contributing to vascular dysfunction and the progression of vascular diseases. In this review, we discuss the causes and mechanisms of vascular aging at the tissue and cellular level. We focus on Endothelial Cell (EC) and Smooth Muscle Cell (SMC) aging due to their critical role in mediating the defective vascular phenotype. We elaborate on two categories that contribute to cellular dysfunction: cell extrinsic and intrinsic factors. Extrinsic factors reflect systemic or environmental changes which alter EC and SMC homeostasis compromising vascular function. Intrinsic factors induce EC and SMC transformation resulting in cellular senescence. Replenishing or rejuvenating the aged/dysfunctional vascular cells is critical to the effective repair of the vasculature. As such, this review also elaborates on recent findings which indicate that stem cell and gene therapies may restore the impaired vascular cell function, reverse vascular aging, and prolong lifespan.
Collapse
Affiliation(s)
- Panagiotis Mistriotis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA.
| |
Collapse
|
137
|
Yao Y, Hu Z, Ye J, Hu C, Song Q, Da X, Yu Y, Li H, Xu C, Chen Q, Wang QK. Targeting AGGF1 (angiogenic factor with G patch and FHA domains 1) for Blocking Neointimal Formation After Vascular Injury. J Am Heart Assoc 2017. [PMID: 28649088 PMCID: PMC5669188 DOI: 10.1161/jaha.117.005889] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Despite recent improvements in angioplasty and placement of drug‐eluting stents in treatment of atherosclerosis, restenosis and in‐stent thrombosis impede treatment efficacy and cause numerous deaths. Research efforts are needed to identify new molecular targets for blocking restenosis. We aim to establish angiogenic factor AGGF1 (angiogenic factor with G patch and FHA domains 1) as a novel target for blocking neointimal formation and restenosis after vascular injury. Methods and Results AGGF1 shows strong expression in carotid arteries; however, its expression is markedly decreased in arteries after vascular injury. AGGF1+/− mice show increased neointimal formation accompanied with increased proliferation of vascular smooth muscle cells (VSMCs) in carotid arteries after vascular injury. Importantly, AGGF1 protein therapy blocks neointimal formation after vascular injury by inhibiting the proliferation and promoting phenotypic switching of VSMCs to the contractile phenotype in mice in vivo. In vitro, AGGF1 significantly inhibits VSMCs proliferation and decreases the cell numbers at the S phase. AGGF1 also blocks platelet‐derived growth factor‐BB–induced proliferation, migration of VSMCs, increases expression of cyclin D, and decreases expression of p21 and p27. AGGF1 inhibits phenotypic switching of VSMCs to the synthetic phenotype by countering the inhibitory effect of platelet‐derived growth factor‐BB on SRF expression and the formation of the myocardin/SRF/CArG‐box complex involved in activation of VSMCs markers. Finally, we show that AGGF1 inhibits platelet‐derived growth factor‐BB–induced phosphorylation of MEK1/2, ERK1/2, and Elk phosphorylation involved in the phenotypic switching of VSMCs, and that overexpression of Elk abolishes the effect of AGGF1. Conclusions AGGF1 protein therapy is effective in blocking neointimal formation after vascular injury by regulating a novel AGGF1‐MEK1/2‐ERK1/2‐Elk‐myocardin‐SRF/p27 signaling pathway.
Collapse
Affiliation(s)
- Yufeng Yao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenkun Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Ye
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Changqing Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qixue Song
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xingwen Da
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yubin Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyun Chen
- Department of Molecular Cardiology, Center for Cardiovascular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH .,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH
| | - Qing Kenneth Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China .,Department of Molecular Cardiology, Center for Cardiovascular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
138
|
|
139
|
Bengal E. TAZ is involved in transcriptional complexes regulating smooth muscle cell differentiation. FEBS J 2017; 284:1628-1630. [PMID: 28581256 DOI: 10.1111/febs.14079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
TGFβ signaling plays an important role in the differentiation of vascular smooth muscle cells (VSMCs), yet the mechanism remains largely unknown. The study by Pagiatakis et al. identifies the transcriptional coactivator TAZ as a mediator of TGFβ signaling in VSMC-specific transcription. TAZ is involved in the formation of stable ternary complexes of SRF/Myocardin on CArG elements that are required for the transcription of VSMC structural genes.
Collapse
Affiliation(s)
- Eyal Bengal
- Department of Biochemistry, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
140
|
Liao XH, Xiang Y, Li H, Zheng DL, Xu Y, Xi Yu C, Li JP, Zhang XY, Xing WB, Cao DS, Bao LY, Zhang TC. VEGF-A Stimulates STAT3 Activity via Nitrosylation of Myocardin to Regulate the Expression of Vascular Smooth Muscle Cell Differentiation Markers. Sci Rep 2017; 7:2660. [PMID: 28572685 PMCID: PMC5453982 DOI: 10.1038/s41598-017-02907-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/20/2017] [Indexed: 01/21/2023] Open
Abstract
Vascular endothelial growth factor A (VEGF-A) is a pivotal player in angiogenesis. It is capable of influencing such cellular processes as tubulogenesis and vascular smooth muscle cell (VSMC) proliferation, yet very little is known about the actual signaling events that mediate VEGF-A induced VSMC phenotypic switch. In this report, we describe the identification of an intricate VEGF-A-induced signaling cascade that involves VEGFR2, STAT3, and Myocardin. We demonstrate that VEGF-A promotes VSMC proliferation via VEGFR2/STAT3-mediated upregulating the proliferation of markers like Cyclin D1 and PCNA. Specifically, VEGF-A leads to nitrosylation of Myocardin, weakens its effect on promoting the expression of contractile markers and is unable to inhibit the activation of STAT3. These observations reinforce the importance of nitric oxide and S-nitrosylation in angiogenesis and provide a mechanistic pathway for VEGF-A-induced VSMC phenotypic switch. In addition, Myocardin, GSNOR and GSNO can create a negative feedback loop to regulate the VSMC phenotypic switch. Thus, the discovery of this interactive network of signaling pathways provides novel and unexpected therapeutic targets for angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Xing Hua Liao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China. .,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.
| | - Yuan Xiang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China
| | - Hui Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China
| | - De Liang Zheng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Yao Xu
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China
| | - Cheng Xi Yu
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China
| | - Jia Peng Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China
| | - Xiao Yu Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China
| | - Wei Bin Xing
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China
| | - Dong Sun Cao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China
| | - Le Yuan Bao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China
| | - Tong Cun Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China. .,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.
| |
Collapse
|
141
|
Frismantiene A, Kyriakakis E, Dasen B, Erne P, Resink TJ, Philippova M. Actin cytoskeleton regulates functional anchorage-migration switch during T-cadherin-induced phenotype modulation of vascular smooth muscle cells. Cell Adh Migr 2017; 12:69-85. [PMID: 28524745 DOI: 10.1080/19336918.2017.1319545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Vascular smooth muscle cell (SMC) switching between differentiated and dedifferentiated phenotypes is reversible and accompanied by morphological and functional alterations that require reconfiguration of cell-cell and cell-matrix adhesion networks. Studies attempting to explore changes in overall composition of the adhesion nexus during SMC phenotype transition are lacking. We have previously demonstrated that T-cadherin knockdown enforces SMC differentiation, whereas T-cadherin upregulation promotes SMC dedifferentiation. This study used human aortic SMCs ectopically modified with respect to T-cadherin expression to characterize phenotype-associated cell-matrix adhesion molecule expression, focal adhesions configuration and migration modes. Compared with dedifferentiated/migratory SMCs (expressing T-cadherin), the differentiated/contractile SMCs (T-cadherin-deficient) exhibited increased adhesion to several extracellular matrix substrata, decreased expression of several integrins, matrix metalloproteinases and collagens, and also distinct focal adhesion, adherens junction and intracellular tension network configurations. Differentiated and dedifferentiated phenotypes displayed distinct migrational velocity and directional persistence. The restricted migration efficiency of the differentiated phenotype was fully overcome by reducing actin polymerization with ROCK inhibitor Y-27632 whereas myosin II inhibitor blebbistatin was less effective. Migration efficiency of the dedifferentiated phenotype was diminished by promoting actin polymerization with lysophosphatidic acid. These findings held true in both 2D-monolayer and 3D-spheroid migration models. Thus, our data suggest that despite global differences in the cell adhesion nexus of the differentiated and dedifferentiated phenotypes, structural actin cytoskeleton characteristics per se play a crucial role in permissive regulation of cell-matrix adhesive interactions and cell migration behavior during T-cadherin-induced SMC phenotype transition.
Collapse
Affiliation(s)
- Agne Frismantiene
- a Department of Biomedicine , Laboratory for Signal Transduction, University Hospital Basel and University of Basel , Basel , Switzerland
| | - Emmanouil Kyriakakis
- a Department of Biomedicine , Laboratory for Signal Transduction, University Hospital Basel and University of Basel , Basel , Switzerland
| | - Boris Dasen
- a Department of Biomedicine , Laboratory for Signal Transduction, University Hospital Basel and University of Basel , Basel , Switzerland
| | - Paul Erne
- a Department of Biomedicine , Laboratory for Signal Transduction, University Hospital Basel and University of Basel , Basel , Switzerland
| | - Therese J Resink
- a Department of Biomedicine , Laboratory for Signal Transduction, University Hospital Basel and University of Basel , Basel , Switzerland
| | - Maria Philippova
- a Department of Biomedicine , Laboratory for Signal Transduction, University Hospital Basel and University of Basel , Basel , Switzerland
| |
Collapse
|
142
|
Aji K, Zhang Y, Aimaiti A, Wang Y, Rexiati M, Azhati B, Tusong H, Cui L, Wang C. MicroRNA-145 regulates the differentiation of human adipose-derived stem cells to smooth muscle cells via targeting Krüppel-like factor 4. Mol Med Rep 2017; 15:3787-3795. [PMID: 28440409 DOI: 10.3892/mmr.2017.6478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 11/04/2016] [Indexed: 11/05/2022] Open
Abstract
Understanding the molecular mechanisms underlying human adipose-derived stem cell (hASC) differentiation to smooth muscle may contribute to the development of effective therapies for relevant muscle defects, such as bladder wall and urethral defects. A previous study described the differentiation of hASCs to smooth muscle cells (SMCs) by transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein‑4 (BMP4) treatment. The present study investigated whether microRNA-145 (miR‑145) may be involved in the process of hASC differentiation. The expression of miR‑145 was significantly increased during differentiation of ASCs to SMCs. SMC‑specific genes and proteins, including a‑smooth muscle actin (α‑SMA), smooth muscle protein‑22α(SM22α), calponin and myosin heavy chain (SM‑MHC) were upregulated by transfection of a miR‑145 mimic. By contrast, these factors were downregulated following introduction of antisense oligonucleotides. In addition, Krüppel‑like factor 4 (KLF4) levels, which decreased during the differentiation of hASCs, were downregulated when the cells were transfected miR‑145 mimics. Futhermore, inhibition of KLF4 by treatment with short‑interfering‑RNA against KLF4, resulted in increased expression of SMC‑specific genes and proteins. In conclusion, the results of the present study demonstrated that by regulating KLF4, miR‑145 may be involved in regulating smooth muscle differentiation of ASCs induced by TGF‑β1 and BMP4.
Collapse
Affiliation(s)
- Kaisaier Aji
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yun Zhang
- Department of Orthopedics, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Abudusaimi Aimaiti
- Department of Joint Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yujie Wang
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Mulati Rexiati
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Baihetiya Azhati
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Hamulati Tusong
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Lei Cui
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Chen Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
143
|
Pagiatakis C, Sun D, Tobin SW, Miyake T, McDermott JC. TGFβ-TAZ/SRF signalling regulates vascular smooth muscle cell differentiation. FEBS J 2017; 284:1644-1656. [PMID: 28342289 DOI: 10.1111/febs.14070] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/06/2017] [Accepted: 03/23/2017] [Indexed: 12/15/2022]
Abstract
Vascular smooth muscle cells (VSMCs) do not terminally differentiate; they modulate their phenotype between proliferative and differentiated states, which is a major factor contributing to vascular diseases. TGFβ signalling has been implicated in inducing VSMC differentiation, although the exact mechanism remains largely unknown. Our goal was to assess the network of transcription factors involved in the induction of VSMC differentiation, and to determine the role of TAZ in promoting the quiescent VSMC phenotype. TGFβ robustly induces VSMC marker genes in 10T1/2 mouse embryonic fibroblast cells and the potent transcriptional regulator TAZ has been shown to retain Smad complexes on DNA. Thus, the role of TAZ in regulation of VSMC differentiation was studied. Using primary aortic VSMCs coupled with siRNA-mediated gene silencing, our studies reveal that TAZ is required for TGFβ induction of smooth muscle genes and is also required for the differentiated VSMC phenotype; synergy between TAZ and SRF, and TAZ and Myocardin (MyoC856), in regulating smooth muscle gene activation was observed. These data provide evidence of components of a novel signalling pathway that links TGFβ signalling to induction of smooth muscle genes through a mechanism involving regulation of TAZ and SRF proteins. In addition, we report a physical interaction of TAZ and MyoC856. These observations elucidate a novel level of control of VSMC induction which may have implications for vascular diseases and congenital vascular malformations.
Collapse
Affiliation(s)
- Christina Pagiatakis
- Department of Biology, York University, Toronto, ON, Canada.,Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada.,Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| | - Dandan Sun
- Department of Biology, York University, Toronto, ON, Canada.,Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada.,Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| | - Stephanie W Tobin
- Department of Biology, York University, Toronto, ON, Canada.,Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada.,Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| | | | - John C McDermott
- Department of Biology, York University, Toronto, ON, Canada.,Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada.,Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada.,Centre for Research in Mass Spectrometry (CRMS), York University, Toronto, ON, Canada
| |
Collapse
|
144
|
Grossi M, Bhattachariya A, Nordström I, Turczyńska KM, Svensson D, Albinsson S, Nilsson BO, Hellstrand P. Pyk2 inhibition promotes contractile differentiation in arterial smooth muscle. J Cell Physiol 2017; 232:3088-3102. [PMID: 28019664 DOI: 10.1002/jcp.25760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 01/12/2023]
Abstract
Modulation from contractile to synthetic phenotype of vascular smooth muscle cells is a central process in disorders involving compromised integrity of the vascular wall. Phenotype modulation has been shown to include transition from voltage-dependent toward voltage-independent regulation of the intracellular calcium level, and inhibition of non-voltage dependent calcium influx contributes to maintenance of the contractile phenotype. One possible mediator of calcium-dependent signaling is the FAK-family non-receptor protein kinase Pyk2, which is activated by a number of stimuli in a calcium-dependent manner. We used the Pyk2 inhibitor PF-4594755 and Pyk2 siRNA to investigate the role of Pyk2 in phenotype modulation in rat carotid artery smooth muscle cells and in cultured intact arteries. Pyk2 inhibition promoted the expression of smooth muscle markers at the mRNA and protein levels under stimulation by FBS or PDGF-BB and counteracted phenotype shift in cultured intact carotid arteries and balloon injury ex vivo. During long-term (24-96 hr) treatment with PF-4594755, smooth muscle markers increased before cell proliferation was inhibited, correlating with decreased KLF4 expression and differing from effects of MEK inhibition. The Pyk2 inhibitor reduced Orai1 and preserved SERCA2a expression in carotid artery segments in organ culture, and eliminated the inhibitory effect of PDGF stimulation on L-type calcium channel and large-conductance calcium-activated potassium channel expression in carotid cells. Basal intracellular calcium level, calcium wave activity, and store-operated calcium influx were reduced after Pyk2 inhibition of growth-stimulated cells. Pyk2 inhibition may provide an interesting approach for preserving vascular smooth muscle differentiation under pathophysiological conditions.
Collapse
Affiliation(s)
- Mario Grossi
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Ina Nordström
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Daniel Svensson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Bengt-Olof Nilsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Per Hellstrand
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
145
|
Li H, Xiang Y, Fan LJ, Zhang XY, Li JP, Yu CX, Bao LY, Cao DS, Xing WB, Liao XH, Zhang TC. Myocardin inhibited the gap protein connexin 43 via promoted miR-206 to regulate vascular smooth muscle cell phenotypic switch. Gene 2017; 616:22-30. [PMID: 28342807 DOI: 10.1016/j.gene.2017.03.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 11/15/2022]
Abstract
Myocardin is regarded as a key mediator for the change of smooth muscle phenotype. The gap junction protein connexin 43 (Cx43) has been shown to be involved in vascular smooth muscle cells (VSMCs) proliferation and the development of atherosclerosis. However, the role of myocardin on gap junction of cell communication and the relation between myocardin and Cx43 in VSMC phenotypic switch has not been investigated. The goal of the present study is to investigate the molecular mechanism by which myocardin affects Cx43-regulated VSMC proliferation. Data presented in this study demonstrated that inhibition of the Cx43 activation process impaired VSMC proliferation. On the other hand, overexpression miR-206 inhibited VSMC proliferation. In additon, miR-206 silences the expression of Cx43 via targeting Cx43 3' Untranslated Regions. Importantly, myocardin can significantly promote the expression of miR-206. Cx43 regulates VSMCs' proliferation and metastasis through miR-206, which could be promoted by myocardin and used as a marker for diagnosis and a target for therapeutic intervention. Thus myocardin affected the gap junction by inhibited Cx43 and myocardin-miR-206-Cx43 formed a loop to regulate VSMC phenotypic switch.
Collapse
Affiliation(s)
- Hui Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Yuan Xiang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Li-Juan Fan
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Xiao-Yu Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Jia-Peng Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Cheng-Xi Yu
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Le-Yuan Bao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Dong-Sun Cao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Wei-Bing Xing
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Xing-Hua Liao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, PR China.
| | - Tong-Cun Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, PR China.
| |
Collapse
|
146
|
Jehanno C, Flouriot G, Nicol-Benoît F, Le Page Y, Le Goff P, Michel D. Envisioning metastasis as a transdifferentiation phenomenon clarifies discordant results on cancer. Breast Dis 2017; 36:47-59. [PMID: 27177343 DOI: 10.3233/bd-150210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer is generally conceived as a dedifferentiation process in which quiescent post-mitotic differentiated cells acquire stem-like properties and the capacity to proliferate. This view holds for the initial stages of carcinogenesis but is more questionable for advanced stages when the cells can transdifferentiate into the contractile phenotype associated to migration and metastasis. Singularly from this perspective, the hallmark of the most aggressive cancers would correspond to a genuine differentiation status, even if it is different from the original one. This seeming paradox could help reconciling discrepancies in the literature about the pro- or anti-tumoral functions of candidate molecules involved in cancer and whose actual effects depend on the tumoral grade. These ambiguities which are likely to concern a myriad of molecules and pathways, are illustrated here with the selected examples of chromatin epigenetics and myocardin-related transcription factors, using the human MCF10A and MCF7 breast cancer cells. Self-renewing stem like cells are characterized by a loose chromatin with low levels of the H3K9 trimetylation, but high levels of this mark can also appear in cancer cells acquiring a contractile-type differentiation state associated to metastasis. Similarly, the myocardin-related transcription factor MRTF-A is involved in metastasis and epithelial-mesenchymal transition, whereas this factor is naturally enriched in the quiescent cells which are precisely the most resistant to cancer: cardiomyocytes. These seeming paradoxes reflect the bistable epigenetic landscape of cancer in which dedifferentiated self-renewing and differentiated migrating states are incompatible at the single cell level, though coexisting at the population level.
Collapse
|
147
|
Yu T, Zheng Y, Wang Y, Xiong W, Lin L. Advanced glycation end products interfere with gastric smooth muscle contractile marker expression via the AGE/RAGE/NF-κB pathway. Exp Mol Pathol 2017; 102:7-14. [PMID: 27939576 DOI: 10.1016/j.yexmp.2016.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/25/2016] [Accepted: 12/05/2016] [Indexed: 11/23/2022]
Abstract
Excessive production of advanced glycation end products (AGE) has been implicated in the pathogenesis of diabetic complications. Smooth muscle (SM) phenotype transition is involved in diabetes-associated gastric motility dysfunction. We investigated whether AGE interfere with gastric antral SM contractile marker expression. Sixteen Sprague-Dawley rats were randomly divided into control and streptozotocin-induced diabetic groups. Sixteen weeks after streptozotocin administration, gastric antral SM strip contractility in the groups were measured. The gastric tissue expression of AGE was tested. Primary cultured gastric smooth muscle cells (SMCs) were used in complementary in vitro studies. In the presence and absence of AGE, SMCs were transfected with myocardin plasmid or treated with nuclear factor-κB (NF-κB) inhibitor or anti-RAGE antibody. Diabetic rats showed weakness of SM strip contractility and decreased expression of SM contractile marker genes (myosin heavy chains [MHC], α-actin, calponin) as compared with the control group. Gastric antral SM layer Nε-(carboxymethyl) lysine (CML) level, the major AGE compound, were increased in the diabetic rats. AGE downregulated SM contractile markers and myocardin expression in a concentration-dependent manner. Myocardin overexpression prevented these results. AGE treatment activated NF-κB in SMCs. The NF-κB inhibitor BAY 11-7082 and anti-RAGE antibody blocked the effects of AGE on myocardin downregulation. AGE may induce the development of gastric dysmotility by downregulating SM contractile proteins and myocardin expression via the AGE/RAGE/NF-κB pathway.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Animals
- Biomarkers/metabolism
- Blotting, Western
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cells, Cultured
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Dose-Response Relationship, Drug
- Gastric Emptying
- Gene Expression/drug effects
- Glycation End Products, Advanced/pharmacology
- Male
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Muscle Contraction
- Muscle, Smooth/drug effects
- Muscle, Smooth/metabolism
- Muscle, Smooth/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- NF-kappa B/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Pyloric Antrum/metabolism
- Pyloric Antrum/physiopathology
- Random Allocation
- Rats, Sprague-Dawley
- Receptor for Advanced Glycation End Products/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/drug effects
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Calponins
Collapse
Affiliation(s)
- Ting Yu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, China
| | - Yongping Zheng
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, China
| | - Yun Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, China
| | - Wenjie Xiong
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, China
| | - Lin Lin
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, China.
| |
Collapse
|
148
|
Rosenwald M, Efthymiou V, Opitz L, Wolfrum C. SRF and MKL1 Independently Inhibit Brown Adipogenesis. PLoS One 2017; 12:e0170643. [PMID: 28125644 PMCID: PMC5268445 DOI: 10.1371/journal.pone.0170643] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 01/09/2017] [Indexed: 11/18/2022] Open
Abstract
Active brown adipose tissue is responsible for non-shivering thermogenesis in mammals which affects energy homeostasis. The molecular mechanisms underlying this activation as well as the formation and activation of brite adipocytes have gained increasing interest in recent years as they might be utilized to regulate systemic metabolism. We show here that the transcriptional regulators SRF and MKL1 both act as repressors of brown adipogenesis. Loss-of-function of these transcription factors leads to a significant induction of brown adipocyte differentiation, increased levels of UCP1 and other thermogenic genes as well as increased respiratory function, while SRF induction exerts the opposite effects. Interestingly, we observed that knockdown of MKL1 does not lead to a reduced expression of typical SRF target genes and that the SRF/MKL1 inhibitor CCG-1423 had no significant effects on brown adipocyte differentiation. Contrary, knockdown of MKL1 induces a significant increase in the transcriptional activity of PPARγ target genes and MKL1 interacts with PPARγ, suggesting that SRF and MKL1 independently inhibit brown adipogenesis and that MKL1 exerts its effect mainly by modulating PPARγ activity.
Collapse
Affiliation(s)
- Matthias Rosenwald
- Swiss Federal Institute of Technology, ETH Zürich, Institute of Food Nutrition and Health, Schwerzenbach, Switzerland
| | - Vissarion Efthymiou
- Swiss Federal Institute of Technology, ETH Zürich, Institute of Food Nutrition and Health, Schwerzenbach, Switzerland
| | - Lennart Opitz
- Swiss Federal Institute of Technology, ETH Zürich, Institute of Food Nutrition and Health, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Swiss Federal Institute of Technology, ETH Zürich, Institute of Food Nutrition and Health, Schwerzenbach, Switzerland
| |
Collapse
|
149
|
Hasanov Z, Ruckdeschel T, König C, Mogler C, Kapel SS, Korn C, Spegg C, Eichwald V, Wieland M, Appak S, Augustin HG. Endosialin Promotes Atherosclerosis Through Phenotypic Remodeling of Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2017; 37:495-505. [PMID: 28126825 DOI: 10.1161/atvbaha.116.308455] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 01/11/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Vascular smooth muscle cells (VSMC) play a key role in the pathogenesis of atherosclerosis, the globally leading cause of death. The transmembrane orphan receptor endosialin (CD248) has been characterized as an activation marker of cells of the mesenchymal lineage including tumor-associated pericytes, stromal myofibroblasts, and activated VSMC. We, therefore, hypothesized that VSMC-expressed endosialin may display functional involvement in the pathogenesis of atherosclerosis. APPROACH AND RESULTS Expression of endosialin was upregulated during atherosclerosis in apolipoprotein E (ApoE)-null mice and human atherosclerotic samples analyzed by quantitative real-time polymerase chain reaction and immunohistochemistry. Atherosclerosis, assessed by Oil Red O staining of the descending aorta, was significantly reduced in ApoE/endosialin-deficient mice on Western-type diet. Marker analysis of VSMC in lesions induced by shear stress-modifying cast implantation around the right carotid artery identified a more pronounced contractile VSMC phenotype in the absence of endosialin. Moreover, in addition to contributing to neointima formation, endosialin also potentially regulated the proinflammatory phenotype of VSMC as evidenced in surrogate cornea pocket assay experiments in vivo and corresponding flow cytometry and ELISA analyses in vitro. CONCLUSIONS The experiments identify endosialin as a potential regulator of phenotypic remodeling of VSMC contributing to atherosclerosis. The association of endosialin with atherosclerosis and its absent expression in nonatherosclerotic samples warrant further consideration of endosialin as a therapeutic target and biomarker.
Collapse
Affiliation(s)
- Zulfiyya Hasanov
- From the Division of Vascular Oncology and Metastasis (Z.H., T.R., C.K., C.M., S.S.K., C.K., C.S., M.W., S.A., H.G.A.) and Small Animal Imaging (V.E.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; Institute of Pathology, Technical University Munich, Germany (C.M.); Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim (CBTM), Heidelberg University, Germany (S.S.K., M.W., H.G.A.); and German Cancer Consortium, Heidelberg, Germany (H.G.A.)
| | - Tina Ruckdeschel
- From the Division of Vascular Oncology and Metastasis (Z.H., T.R., C.K., C.M., S.S.K., C.K., C.S., M.W., S.A., H.G.A.) and Small Animal Imaging (V.E.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; Institute of Pathology, Technical University Munich, Germany (C.M.); Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim (CBTM), Heidelberg University, Germany (S.S.K., M.W., H.G.A.); and German Cancer Consortium, Heidelberg, Germany (H.G.A.)
| | - Courtney König
- From the Division of Vascular Oncology and Metastasis (Z.H., T.R., C.K., C.M., S.S.K., C.K., C.S., M.W., S.A., H.G.A.) and Small Animal Imaging (V.E.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; Institute of Pathology, Technical University Munich, Germany (C.M.); Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim (CBTM), Heidelberg University, Germany (S.S.K., M.W., H.G.A.); and German Cancer Consortium, Heidelberg, Germany (H.G.A.)
| | - Carolin Mogler
- From the Division of Vascular Oncology and Metastasis (Z.H., T.R., C.K., C.M., S.S.K., C.K., C.S., M.W., S.A., H.G.A.) and Small Animal Imaging (V.E.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; Institute of Pathology, Technical University Munich, Germany (C.M.); Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim (CBTM), Heidelberg University, Germany (S.S.K., M.W., H.G.A.); and German Cancer Consortium, Heidelberg, Germany (H.G.A.)
| | - Stephanie S Kapel
- From the Division of Vascular Oncology and Metastasis (Z.H., T.R., C.K., C.M., S.S.K., C.K., C.S., M.W., S.A., H.G.A.) and Small Animal Imaging (V.E.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; Institute of Pathology, Technical University Munich, Germany (C.M.); Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim (CBTM), Heidelberg University, Germany (S.S.K., M.W., H.G.A.); and German Cancer Consortium, Heidelberg, Germany (H.G.A.)
| | - Claudia Korn
- From the Division of Vascular Oncology and Metastasis (Z.H., T.R., C.K., C.M., S.S.K., C.K., C.S., M.W., S.A., H.G.A.) and Small Animal Imaging (V.E.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; Institute of Pathology, Technical University Munich, Germany (C.M.); Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim (CBTM), Heidelberg University, Germany (S.S.K., M.W., H.G.A.); and German Cancer Consortium, Heidelberg, Germany (H.G.A.)
| | - Carleen Spegg
- From the Division of Vascular Oncology and Metastasis (Z.H., T.R., C.K., C.M., S.S.K., C.K., C.S., M.W., S.A., H.G.A.) and Small Animal Imaging (V.E.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; Institute of Pathology, Technical University Munich, Germany (C.M.); Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim (CBTM), Heidelberg University, Germany (S.S.K., M.W., H.G.A.); and German Cancer Consortium, Heidelberg, Germany (H.G.A.)
| | - Viktoria Eichwald
- From the Division of Vascular Oncology and Metastasis (Z.H., T.R., C.K., C.M., S.S.K., C.K., C.S., M.W., S.A., H.G.A.) and Small Animal Imaging (V.E.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; Institute of Pathology, Technical University Munich, Germany (C.M.); Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim (CBTM), Heidelberg University, Germany (S.S.K., M.W., H.G.A.); and German Cancer Consortium, Heidelberg, Germany (H.G.A.)
| | - Matthias Wieland
- From the Division of Vascular Oncology and Metastasis (Z.H., T.R., C.K., C.M., S.S.K., C.K., C.S., M.W., S.A., H.G.A.) and Small Animal Imaging (V.E.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; Institute of Pathology, Technical University Munich, Germany (C.M.); Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim (CBTM), Heidelberg University, Germany (S.S.K., M.W., H.G.A.); and German Cancer Consortium, Heidelberg, Germany (H.G.A.)
| | - Sila Appak
- From the Division of Vascular Oncology and Metastasis (Z.H., T.R., C.K., C.M., S.S.K., C.K., C.S., M.W., S.A., H.G.A.) and Small Animal Imaging (V.E.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; Institute of Pathology, Technical University Munich, Germany (C.M.); Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim (CBTM), Heidelberg University, Germany (S.S.K., M.W., H.G.A.); and German Cancer Consortium, Heidelberg, Germany (H.G.A.)
| | - Hellmut G Augustin
- From the Division of Vascular Oncology and Metastasis (Z.H., T.R., C.K., C.M., S.S.K., C.K., C.S., M.W., S.A., H.G.A.) and Small Animal Imaging (V.E.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; Institute of Pathology, Technical University Munich, Germany (C.M.); Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim (CBTM), Heidelberg University, Germany (S.S.K., M.W., H.G.A.); and German Cancer Consortium, Heidelberg, Germany (H.G.A.).
| |
Collapse
|
150
|
Li H, Yue H, Hao Y, Li H, Wang S, Yu L, Zhang D, Cao Y, Zhao J. Expression profile of long noncoding RNAs in human cerebral aneurysms: a microarray analysis. J Neurosurg 2016; 127:1055-1062. [PMID: 28009235 DOI: 10.3171/2016.9.jns16839] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The pathogenesis of cerebral aneurysms (CAs) remains largely unknown. Long noncoding RNAs (lncRNAs) were reported recently to play crucial roles in many physiological and biological processes. Here, the authors compared the gene-expression profiles of CAs and their control arteries to investigate the potential functions of lncRNAs in the formation of CAs. METHODS A prospective case-control study was designed to identify the changes in expression of lncRNAs and mRNAs between 12 saccular CA samples (case group) and 12 paired superficial temporal artery samples (control group). Microarray analysis was performed to investigate the expression of lncRNAs and messenger RNAs (mRNAs), and reverse-transcription quantitative polymerase chain reaction was used to validate the microarray analysis findings. Then, an lncRNA target-prediction program and gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were applied to explore potential lncRNA functions. RESULTS A comparison between the case and control groups revealed that 1518 lncRNAs and 2545 mRNAs were expressed differentially. By using target-prediction program analysis, the authors constructed a complex network consisting of 2786 matched lncRNA-mRNA pairs, in which ine1 mRNA was potentially targeted by one to tens of lncRNAs, and vice versa. The results of further gene ontology and KEGG pathway analyses indicated that lncRNAs were involved mainly in regulating immune/inflammatory processes/pathways and vascular smooth muscle contraction, both of which are known to have crucial pathobiological relevance in terms of CA formation. CONCLUSIONS By comparing CAs with their control arteries, the authors created an expression profile of lncRNAs in CAs and propose here their possible roles in the pathogenesis of CAs. The results of this study provide novel insight into the mechanisms of CA pathogenesis and shed light on developing new therapeutic intervention for CAs in the future.
Collapse
Affiliation(s)
- Hao Li
- Department of Neurosurgery and.,China National Clinical Research Center for Neurological Diseases
| | - Haiyan Yue
- Key Laboratory of RNA Biology and.,Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences; and.,University of Chinese Academy of Sciences, Beijing, China
| | - Yajing Hao
- Key Laboratory of RNA Biology and.,Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences; and.,University of Chinese Academy of Sciences, Beijing, China
| | - Haowen Li
- Laboratory of Clinical Medicine Research, Beijing Tiantan Hospital, Capital Medical University
| | - Shuo Wang
- Department of Neurosurgery and.,China National Clinical Research Center for Neurological Diseases
| | - Lanbing Yu
- Department of Neurosurgery and.,China National Clinical Research Center for Neurological Diseases
| | - Dong Zhang
- Department of Neurosurgery and.,China National Clinical Research Center for Neurological Diseases
| | - Yong Cao
- Department of Neurosurgery and.,China National Clinical Research Center for Neurological Diseases
| | - Jizong Zhao
- Department of Neurosurgery and.,China National Clinical Research Center for Neurological Diseases
| |
Collapse
|