101
|
Wilkinson AN, Chang K, Kuns RD, Henden AS, Minnie SA, Ensbey KS, Clouston AD, Zhang P, Koyama M, Hidalgo J, Rose-John S, Varelias A, Vuckovic S, Gartlan KH, Hill GR. IL-6 dysregulation originates in dendritic cells and mediates graft-versus-host disease via classical signaling. Blood 2019; 134:2092-2106. [PMID: 31578204 DOI: 10.1182/blood.2019000396] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/22/2019] [Indexed: 12/13/2022] Open
Abstract
Graft-versus-host disease (GVHD) after allogeneic stem cell transplantation (alloSCT) is characterized by interleukin-6 (IL-6) dysregulation. IL-6 can mediate effects via various pathways, including classical, trans, and cluster signaling. Given the recent availability of agents that differentially inhibit these discrete signaling cascades, understanding the source and signaling and cellular targets of this cytokine is paramount to inform the design of clinical studies. Here we demonstrate that IL-6 secretion from recipient dendritic cells (DCs) initiates the systemic dysregulation of this cytokine. Inhibition of DC-driven classical signaling after targeted IL-6 receptor (IL-6R) deletion in T cells eliminated pathogenic donor Th17/Th22 cell differentiation and resulted in long-term survival. After engraftment, donor DCs assume the same role, maintaining classical IL-6 signaling-dependent GVHD responses. Surprisingly, cluster signaling was not active after transplantation, whereas inhibition of trans signaling with soluble gp130Fc promoted severe, chronic cutaneous GVHD. The latter was a result of exaggerated polyfunctional Th22-cell expansion that was reversed by IL-22 deletion or IL-6R inhibition. Importantly, inhibition of IL-6 classical signaling did not impair the graft-versus-leukemia effect. Together, these data highlight IL-6 classical signaling and downstream Th17/Th22 differentiation as important therapeutic targets after alloSCT.
Collapse
Affiliation(s)
- Andrew N Wilkinson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Karshing Chang
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Rachel D Kuns
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Andrea S Henden
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Simone A Minnie
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | | | - Ping Zhang
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Motoko Koyama
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Juan Hidalgo
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, and
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany; and
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Slavica Vuckovic
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Kate H Gartlan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Geoffrey R Hill
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Division of Medical Oncology, University of Washington, Seattle, WA
| |
Collapse
|
102
|
Fazel Modares N, Polz R, Haghighi F, Lamertz L, Behnke K, Zhuang Y, Kordes C, Häussinger D, Sorg UR, Pfeffer K, Floss DM, Moll JM, Piekorz RP, Ahmadian MR, Lang PA, Scheller J. IL-6 Trans-signaling Controls Liver Regeneration After Partial Hepatectomy. Hepatology 2019; 70:2075-2091. [PMID: 31100194 DOI: 10.1002/hep.30774] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/05/2019] [Indexed: 12/17/2022]
Abstract
Interleukin-6 (IL-6) is critically involved in liver regeneration after partial hepatectomy (PHX). Previous reports suggest that IL-6 trans-signaling through the soluble IL-6/IL-6R complex is involved in this process. However, the long-term contribution of IL-6 trans-signaling for liver regeneration after PHX is unknown. PHX-induced generation of the soluble IL-6R by ADAM (a disintegrin and metallo) proteases enables IL-6 trans-signaling, in which IL-6 forms an agonistic complex with the soluble IL-6 receptor (sIL-6R) to activate all cells expressing the signal-transducing receptor chain glycoprotein 130 (gp130). In contrast, without activation of ADAM proteases, IL-6 in complex with membrane-bound IL-6R and gp130 activates classic signaling. Here, we describe the generation of IL-6 trans-signaling mice, which exhibit boosted IL-6 trans-signaling and abrogated classic signaling by genetic conversion of all membrane-bound IL-6R into sIL-6R proteins phenocopying hyperactivation of ADAM-mediated shedding of IL-6R as single substrate. Importantly, although IL-6R deficient mice were strongly affected by PHX, survival and regeneration of IL-6 trans-signaling mice was indistinguishable from control mice, demonstrating that IL-6 trans-signaling fully compensates for disabled classic signaling in liver regeneration after PHX. Moreover, we monitored the long-term consequences of global IL-6 signaling inhibition versus IL-6 trans-signaling selective blockade after PHX by IL-6 monoclonal antibodies and soluble glycoprotein 130 as fragment crystallizable fusion, respectively. Both global IL-6 blockade and selective inhibition of IL-6 trans-signaling results in a strong decrease of overall survival after PHX, accompanied by decreased signal transducer and activator of transcription 3 phosphorylation and proliferation of hepatocytes. Mechanistically, IL-6 trans-signaling induces hepatocyte growth factor production by hepatic stellate cells. Conclusion: IL-6 trans-signaling, but not classic signaling, controls liver regeneration following PHX.
Collapse
Affiliation(s)
- Nastaran Fazel Modares
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Robin Polz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Fereshteh Haghighi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Larissa Lamertz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Kristina Behnke
- Institute of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Yuan Zhuang
- Institute of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Claus Kordes
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Ursula R Sorg
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Roland P Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - M Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Philipp A Lang
- Institute of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
103
|
Martinez-Fabregas J, Wilmes S, Wang L, Hafer M, Pohler E, Lokau J, Garbers C, Cozzani A, Fyfe PK, Piehler J, Kazemian M, Mitra S, Moraga I. Kinetics of cytokine receptor trafficking determine signaling and functional selectivity. eLife 2019; 8:e49314. [PMID: 31774398 PMCID: PMC6914340 DOI: 10.7554/elife.49314] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/24/2019] [Indexed: 12/27/2022] Open
Abstract
Cytokines activate signaling via assembly of cell surface receptors, but it is unclear whether modulation of cytokine-receptor binding parameters can modify biological outcomes. We have engineered IL-6 variants with different affinities to gp130 to investigate how cytokine receptor binding dwell-times influence functional selectivity. Engineered IL-6 variants showed a range of signaling amplitudes and induced biased signaling, with changes in receptor binding dwell-times affecting more profoundly STAT1 than STAT3 phosphorylation. We show that this differential signaling arises from defective translocation of ligand-gp130 complexes to the endosomal compartment and competitive STAT1/STAT3 binding to phospho-tyrosines in gp130, and results in unique patterns of STAT3 binding to chromatin. This leads to a graded gene expression response and differences in ex vivo differentiation of Th17, Th1 and Treg cells. These results provide a molecular understanding of signaling biased by cytokine receptors, and demonstrate that manipulation of signaling thresholds is a useful strategy to decouple cytokine functional pleiotropy.
Collapse
Affiliation(s)
- Jonathan Martinez-Fabregas
- Division of Cell Signaling and Immunology, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| | - Stephan Wilmes
- Division of Cell Signaling and Immunology, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| | - Luopin Wang
- Department Computer SciencePurdue UniversityWest LafayetteUnited States
| | | | - Elizabeth Pohler
- Division of Cell Signaling and Immunology, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| | - Juliane Lokau
- Department of Pathology, Medical FacultyOtto-von-Guericke-University MagdeburgMagdeburgGermany
| | - Christoph Garbers
- Department of Pathology, Medical FacultyOtto-von-Guericke-University MagdeburgMagdeburgGermany
| | - Adeline Cozzani
- INSERM UMR-S-11721, Centre de Recherche Jean-Pierre Aubert (JPARC), Institut pour la Recherche sur le Cancer de Lille (IRCL), Université de LilleLilleFrance
| | - Paul K Fyfe
- Division of Cell Signaling and Immunology, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| | - Jacob Piehler
- Department of BiologyUniversity of OsnabrückOsnabrückGermany
| | - Majid Kazemian
- Department Computer SciencePurdue UniversityWest LafayetteUnited States
| | - Suman Mitra
- INSERM UMR-S-11721, Centre de Recherche Jean-Pierre Aubert (JPARC), Institut pour la Recherche sur le Cancer de Lille (IRCL), Université de LilleLilleFrance
| | - Ignacio Moraga
- Division of Cell Signaling and Immunology, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| |
Collapse
|
104
|
ADAM17 Activity and IL-6 Trans-Signaling in Inflammation and Cancer. Cancers (Basel) 2019; 11:cancers11111736. [PMID: 31694340 PMCID: PMC6895846 DOI: 10.3390/cancers11111736] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 11/02/2019] [Indexed: 02/08/2023] Open
Abstract
All ligands of the epidermal growth factor receptor (EGF-R) are transmembrane proteins, which need to be proteolytically cleaved in order to be systemically active. The major protease responsible for this cleavage is the membrane metalloprotease ADAM17, which also has been implicated in cleavage of TNFα and interleukin-6 (IL-6) receptor. It has been recently shown that in the absence of ADAM17, the main protease for EGF-R ligand processing, colon cancer formation is largely abrogated. Intriguingly, colon cancer formation depends on EGF-R activity on myeloid cells rather than on intestinal epithelial cells. A major activity of EGF-R on myeloid cells is the stimulation of IL-6 synthesis. Subsequently, IL-6 together with the ADAM17 shed soluble IL-6 receptor acts on intestinal epithelial cells via IL-6 trans-signaling to induce colon cancer formation, which can be blocked by the inhibitor of IL-6 trans-signaling, sgp130Fc. Blockade of IL-6 trans-signaling therefore offers a new therapeutic window downstream of the EGF-R for the treatment of colon cancer and possibly of other EGF-R related neoplastic diseases.
Collapse
|
105
|
Chen Y, Vandereyken M, Newton IP, Moraga I, Näthke IS, Swamy M. Loss of adenomatous polyposis coli function renders intestinal epithelial cells resistant to the cytokine IL-22. PLoS Biol 2019; 17:e3000540. [PMID: 31770366 PMCID: PMC6903767 DOI: 10.1371/journal.pbio.3000540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 12/10/2019] [Accepted: 11/07/2019] [Indexed: 12/26/2022] Open
Abstract
Interleukin-22 (IL-22) is a critical immune defence cytokine that maintains intestinal homeostasis and promotes wound healing and tissue regeneration, which can support the growth of colorectal tumours. Mutations in the adenomatous polyposis coli gene (Apc) are a major driver of familial colorectal cancers (CRCs). How IL-22 contributes to APC-mediated tumorigenesis is poorly understood. To investigate IL-22 signalling in wild-type (WT) and APC-mutant cells, we performed RNA sequencing (RNAseq) of IL-22-treated murine small intestinal epithelial organoids. In WT epithelia, antimicrobial defence and cellular stress response pathways were most strongly induced by IL-22. Surprisingly, although IL-22 activates signal transducer and activator of transcription 3 (STAT3) in APC-mutant cells, STAT3 target genes were not induced. Our analyses revealed that ApcMin/Min cells are resistant to IL-22 due to reduced expression of the IL-22 receptor, and increased expression of inhibitors of STAT3, particularly histone deacetylases (HDACs). We further show that IL-22 increases DNA damage and genomic instability, which can accelerate cellular transition from heterozygosity (ApcMin/+) to homozygosity (ApcMin/Min) to drive tumour formation. Our data reveal an unexpected role for IL-22 in promoting early tumorigenesis while excluding a function for IL-22 in transformed epithelial cells.
Collapse
Affiliation(s)
- Yu Chen
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- MRC Protein Phosphorylation and Ubiquitylation Unit (PPU), School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Maud Vandereyken
- MRC Protein Phosphorylation and Ubiquitylation Unit (PPU), School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ian P. Newton
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ignacio Moraga
- Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Inke S. Näthke
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mahima Swamy
- MRC Protein Phosphorylation and Ubiquitylation Unit (PPU), School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
106
|
Bongartz H, Gille K, Hessenkemper W, Mandel K, Lewitzky M, Feller SM, Schaper F. The multi-site docking protein Grb2-associated binder 1 (Gab1) enhances interleukin-6-induced MAPK-pathway activation in an SHP2-, Grb2-, and time-dependent manner. Cell Commun Signal 2019; 17:135. [PMID: 31651330 PMCID: PMC6814103 DOI: 10.1186/s12964-019-0451-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background Cytokine-dependent activation of signalling pathways is tightly orchestrated. The spatiotemporal activation of signalling pathways dictates the specific physiological responses to cytokines. Dysregulated signalling accounts for neoplastic, developmental, and inflammatory diseases. Grb2-associated binder (Gab) family proteins are multi-site docking proteins, which expand cytokine-induced signal transduction in a spatial- and time-dependent manner by coordinating the recruitment of proteins involved in mitogen activated protein kinase (MAPK)/extracellular-signal regulated kinase (ERK) and phosphatidyl-inositol-3-kinase (PI3K) signalling. Interaction of Gab family proteins with these signalling proteins determines strength, duration and localization of active signalling cascades. However, the underlying molecular mechanisms of signal orchestration by Gab family proteins in IL-6-induced signalling are only scarcely understood. Methods We performed kinetic analyses of interleukin-6 (IL-6)-induced MAPK activation and analysed downstream responses. We compared signalling in wild-type cells, Gab1 knock-out cells, those reconstituted to express Gab1 mutants, and cells expressing gp130 receptors or receptor mutants. Results Interleukin-6-induced MAPK pathway activation can be sub-divided into an early Gab1-independent and a subsequent Gab1-dependent phase. Early Gab1-independent MAPK activation is critical for the subsequent initiation of Gab1-dependent amplification of MAPK pathway activation and requires binding of SH2 domain-containing phosphatase 2 (SHP2) to the interleukin-6 receptor complex. Subsequent and coordinated recruitment of Grb2 and SHP2 to Gab1 is essential for Gab1-dependent amplification of IL-6-induced late MAPK pathway activation and subsequent gene expression. Conclusions Overall, we elaborated the molecular requirements for Gab1-dependent, spatiotemporal orchestration of interleukin-6-dependent MAPK signalling. We discriminated IL-6-induced Gab1-independent, early activation of MAPK signalling and Gab1-dependent, sustained activation of MAPK signalling.
Collapse
Affiliation(s)
- Hannes Bongartz
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Gebäude 28/Pfälzer Platz, 39106, Magdeburg, Germany
| | - Karen Gille
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Gebäude 28/Pfälzer Platz, 39106, Magdeburg, Germany
| | - Wiebke Hessenkemper
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Gebäude 28/Pfälzer Platz, 39106, Magdeburg, Germany
| | - Katharina Mandel
- Institute of Molecular Medicine, Charles Tanford Protein Research Center, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120, Halle (Saale), Germany
| | - Marc Lewitzky
- Institute of Molecular Medicine, Charles Tanford Protein Research Center, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120, Halle (Saale), Germany
| | - Stephan M Feller
- Institute of Molecular Medicine, Charles Tanford Protein Research Center, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120, Halle (Saale), Germany
| | - Fred Schaper
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Gebäude 28/Pfälzer Platz, 39106, Magdeburg, Germany.
| |
Collapse
|
107
|
Membrane-associated RING-CH (MARCH) proteins down-regulate cell surface expression of the interleukin-6 receptor alpha chain (IL6Rα). Biochem J 2019; 476:2869-2882. [DOI: 10.1042/bcj20190577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 01/13/2023]
Abstract
Abstract
Interleukin 6 (IL6) is a cytokine that regulates a number of important immune and inflammatory pathways. We used the ability of IL6 to inhibit the clonal proliferation of the mouse M1 myeloid leukemia cell line in agar to positively screen a cDNA expression library for proteins that inhibited IL6 activity. We found three clones completely resistant to IL6 that contained the cDNA for the Membrane-Associated RING-CH E3 ubiquitin ligase MARCH2. MARCH2 is a member of a family of membrane-bound E3 ubiquitin ligases that target cell surface receptors for degradation. MARCH2 overexpressing M1 clones retained responsiveness to the related cytokines leukemia inhibitory factor and oncostatin M and we showed that its inhibitory effect was a result of selective down-regulation of the IL6 receptor alpha chain and not the shared receptor subunit, gp130 or other signalling molecules. This activity of MARCH2 was also shared with related proteins MARCH4, MARCH9 and an isoform of MARCH3. The transmembrane domains and C-terminal domains, as well as a functional RING domain, of MARCH proteins were all required for substrate recognition and down-regulation. Genetic deletion of individual MARCH proteins in mice had no or little effect on IL6Rα levels but combined deletions of MARCH2,3 and 4 displayed elevated steady-state levels of IL6Rα in selected haemopoietic cell subsets including CD8+ and CD4+ T cells. These studies extend the potential immunosuppressive roles of MARCH proteins to include down-regulation of IL6 inflammatory responses.
Collapse
|
108
|
Chen W, Yuan H, Cao W, Wang T, Chen W, Yu H, Fu Y, Jiang B, Zhou H, Guo H, Zhao X. Blocking interleukin-6 trans-signaling protects against renal fibrosis by suppressing STAT3 activation. Am J Cancer Res 2019; 9:3980-3991. [PMID: 31281526 PMCID: PMC6592178 DOI: 10.7150/thno.32352] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/09/2019] [Indexed: 01/04/2023] Open
Abstract
Rationale: Renal fibrosis is the terminal manifestation of chronic and irreversible renal disease. Effective therapies other than dialysis are extremely limited. In this study, we investigated the potential effects of targeting elevated interleukin-6 (IL-6) levels in the treatment of renal fibrosis. Methods: Fc-gp130 was used to specifically block IL-6 trans-signaling. Unilateral ureteral occlusion (UUO) and ischemia reperfusion (IR) mouse models were constructed to investigate the therapeutic effect of Fc-gp130 on renal fibrosis. The role of IL-6 trans-signaling and phosphorylation of signal transducer and activator of transcription (STAT) 3 in regulating fibroblast accumulation and extracellular matrix protein deposition were evaluated in cell experiments and mouse models. Results: The kidneys of mice with UUO were found to have elevated soluble IL-6 receptor (sIL-6R) levels in the progression of fibrosis. Fc-gp130 attenuated renal fibrosis in mice, as evidenced by reductions in tubular atrophy and the production of extracellular matrix protein. Blockade of IL-6 trans-signaling with Fc-gp130 also reduced inflammation levels, immune cell infiltration, and profibrotic cytokines expression in renal tissue, with decreased STAT3 phosphorylation and reduced fibroblast accumulation in the renal tissue. In vitro, Fc-gp130 also reduced the phosphorylation of STAT3 induced by transforming growth factor (TGF)-β1 in fibroblasts. Furthermore, the therapeutic effect of Fc-gp130 was confirmed in a model of acute kidney injury-chronic kidney disease. Conclusion: Overall, IL-6 trans-signaling may contribute to crucial events in the development of renal fibrosis, and the targeting of IL-6 trans-signaling by Fc-gp130 may provide a novel therapeutic strategy for the treatment of renal fibrosis.
Collapse
|
109
|
Floss DM, Scheller J. Naturally occurring and synthetic constitutive-active cytokine receptors in disease and therapy. Cytokine Growth Factor Rev 2019; 47:1-20. [PMID: 31147158 DOI: 10.1016/j.cytogfr.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
Cytokines control immune related events and are critically involved in a plethora of patho-physiological processes including autoimmunity and cancer development. Mutations which cause ligand-independent, constitutive activation of cytokine receptors are quite frequently found in diseases. Many constitutive-active cytokine receptor variants have been directly connected to disease development and mechanistically analyzed. Nature's solutions to generate constitutive cytokine receptors has been recently adopted by synthetic cytokine receptor biology, with the goal to optimize immune therapeutics. Here, CAR T cell immmunotherapy represents the first example to combine synthetic biology with genetic engineering during therapy. Hence, constitutive-active cytokine receptors are therapeutic targets, but also emerging tools to improve or modulate immunotherapeutic strategies. This review gives a comprehensive insight into the field of naturally occurring and synthetic constitutive-active cytokine receptors.
Collapse
Affiliation(s)
- Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
110
|
Reeh H, Rudolph N, Billing U, Christen H, Streif S, Bullinger E, Schliemann-Bullinger M, Findeisen R, Schaper F, Huber HJ, Dittrich A. Response to IL-6 trans- and IL-6 classic signalling is determined by the ratio of the IL-6 receptor α to gp130 expression: fusing experimental insights and dynamic modelling. Cell Commun Signal 2019; 17:46. [PMID: 31101051 PMCID: PMC6525395 DOI: 10.1186/s12964-019-0356-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/17/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Interleukin-6 is a pleiotropic cytokine with high clinical relevance and an important mediator of cellular communication, orchestrating both pro- and anti-inflammatory processes. Interleukin-6-induced signalling is initiated by binding of IL-6 to the IL-6 receptor α and subsequent binding to the signal transducing receptor subunit gp130. This active receptor complex initiates signalling through the Janus kinase/signal transducer and activator of transcription pathway. Of note, IL-6 receptor α exists in a soluble and a transmembrane form. Binding of IL-6 to membrane-bound IL-6 receptor α induces anti-inflammatory classic signalling, whereas binding of IL-6 to soluble IL-6 receptor α induces pro-inflammatory trans-signalling. Trans-signalling has been described to be markedly stronger than classic signalling. Understanding the molecular mechanisms that drive differences between trans- and classic signalling is important for the design of trans-signalling-specific therapies. These differences will be addressed here using a combination of dynamic mathematical modelling and molecular biology. METHODS We apply an iterative systems biology approach using set-based modelling and validation approaches combined with quantitative biochemical and cell biological analyses. RESULTS The combination of experimental analyses and dynamic modelling allows to relate the observed differences between IL-6-induced trans- and classic signalling to cell-type specific differences in the expression and ratios of the individual subunits of the IL-6 receptor complex. Canonical intracellular Jak/STAT signalling is indifferent in IL-6-induced trans- and classic signalling. CONCLUSION This study contributes to the understanding of molecular mechanisms of IL-6 signal transduction and underlines the power of combined dynamical modelling, model-based validation and biological experiments. The opposing pro- and anti-inflammatory responses initiated by IL-6 trans- and classic signalling depend solely on the expression ratios of the subunits of the entire receptor complex. By pointing out the importance of the receptor expression ratio for the strength of IL-6 signalling this study lays a foundation for future precision medicine approaches that aim to selectively block pro-inflammatory trans-signalling. Furthermore, the derived models can be used for future therapy design.
Collapse
Affiliation(s)
- Heike Reeh
- Department of Systems Biology, Institute of Biology, Faculty of Natural Sciences, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Nadine Rudolph
- Department of Systems Theory and Automatic Control, Institute for Automation Engineering, Faculty of Electrical Engineering and Information Technology, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Ulrike Billing
- Department of Systems Biology, Institute of Biology, Faculty of Natural Sciences, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Henrike Christen
- Department of Systems Biology, Institute of Biology, Faculty of Natural Sciences, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Stefan Streif
- Department of Systems Theory and Automatic Control, Institute for Automation Engineering, Faculty of Electrical Engineering and Information Technology, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany.,Automatic Control and System Dynamics Laboratory, Institute of Automation, Chemnitz University of Technology, Reichenhainer Straße 70, 09107, Chemnitz, Germany
| | - Eric Bullinger
- Department of Systems Theory and Automatic Control, Institute for Automation Engineering, Faculty of Electrical Engineering and Information Technology, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Monica Schliemann-Bullinger
- Department of Systems Theory and Automatic Control, Institute for Automation Engineering, Faculty of Electrical Engineering and Information Technology, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Rolf Findeisen
- Department of Systems Theory and Automatic Control, Institute for Automation Engineering, Faculty of Electrical Engineering and Information Technology, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Fred Schaper
- Department of Systems Biology, Institute of Biology, Faculty of Natural Sciences, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Heinrich J Huber
- Department of Systems Theory and Automatic Control, Institute for Automation Engineering, Faculty of Electrical Engineering and Information Technology, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany.,Comuptational Biology, Discovery Research, Boehringer Ingelheim Pharma, Birkendorfer Straße 65, 88400, Biberach, Germany
| | - Anna Dittrich
- Department of Systems Biology, Institute of Biology, Faculty of Natural Sciences, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany.
| |
Collapse
|
111
|
Modulation of the IL-6-Signaling Pathway in Liver Cells by miRNAs Targeting gp130, JAK1, and/or STAT3. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:419-433. [PMID: 31026677 PMCID: PMC6479786 DOI: 10.1016/j.omtn.2019.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/22/2019] [Accepted: 03/24/2019] [Indexed: 12/19/2022]
Abstract
Interleukin-6 (IL-6)-type cytokines share the common receptor glycoprotein 130 (gp130), which activates a signaling cascade involving Janus kinases (JAKs) and signal transducer and activator of transcription (STAT) transcription factors. IL-6 and/or its signaling pathway is often deregulated in diseases, such as chronic liver diseases and cancer. Thus, the identification of compounds inhibiting this pathway is of interest for future targeted therapies. We established novel cellular screening systems based on a STAT-responsive reporter gene (Cypridina luciferase). Of a library containing 538 microRNA (miRNA) mimics, several miRNAs affected hyper-IL-6-induced luciferase activities. When focusing on candidate miRNAs specifically targeting 3′ UTRs of signaling molecules of this pathway, we identified, e.g., miR-3677-5p as a novel miRNA affecting protein expression of both STAT3 and JAK1, whereas miR-16-1-3p, miR-4473, and miR-520f-3p reduced gp130 surface expression. Interestingly, combination treatment with 2 or 3 miRNAs targeting gp130 or different signaling molecules of the pathway did not increase the inhibitory effects on phospho-STAT3 levels and STAT3 target gene expression compared to treatment with single mimics. Taken together, we identified a set of miRNAs of potential therapeutic value for cancer and inflammatory diseases, which directly target the expression of molecules within the IL-6-signaling pathway and can dampen inflammatory signal transduction.
Collapse
|
112
|
McGregor NE, Murat M, Elango J, Poulton IJ, Walker EC, Crimeen-Irwin B, Ho PWM, Gooi JH, Martin TJ, Sims NA. IL-6 exhibits both cis- and trans-signaling in osteocytes and osteoblasts, but only trans-signaling promotes bone formation and osteoclastogenesis. J Biol Chem 2019; 294:7850-7863. [PMID: 30923130 DOI: 10.1074/jbc.ra119.008074] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/25/2019] [Indexed: 11/06/2022] Open
Abstract
Interleukin 6 (IL-6) supports development of bone-resorbing osteoclasts by acting early in the osteoblast lineage via membrane-bound (cis) or soluble (trans) receptors. Here, we investigated how IL-6 signals and modifies gene expression in differentiated osteoblasts and osteocytes and determined whether these activities can promote bone formation or support osteoclastogenesis. Moreover, we used a genetically altered mouse with circulating levels of the pharmacological IL-6 trans-signaling inhibitor sgp130-Fc to determine whether IL-6 trans-signaling is required for normal bone growth and remodeling. We found that IL-6 increases suppressor of cytokine signaling 3 (Socs3) and CCAAT enhancer-binding protein δ (Cebpd) mRNA levels and promotes signal transducer and activator of transcription 3 (STAT3) phosphorylation by both cis- and trans-signaling in cultured osteocytes. In contrast, RANKL (Tnfsf11) mRNA levels were elevated only by trans-signaling. Furthermore, we observed soluble IL-6 receptor release and ADAM metallopeptidase domain 17 (ADAM17) sheddase expression by osteocytes. Despite the observation that IL-6 cis-signaling occurs, IL-6 stimulated bone formation in vivo only via trans-signaling. Although IL-6 stimulated RANKL (Tnfsf11) mRNA in osteocytes, these cells did not support osteoclast formation in response to IL-6 alone; binucleated TRAP+ cells formed, and only in response to trans-signaling. Finally, pharmacological, sgp130-Fc-mediated inhibition of IL-6 trans-signaling did not impair bone growth or remodeling unless mice had circulating sgp130-Fc levels > 10 μg/ml. At those levels, osteopenia and impaired bone growth occurred, reducing bone strength. We conclude that high sgp130-Fc levels may have detrimental off-target effects on the skeleton.
Collapse
Affiliation(s)
- Narelle E McGregor
- From the Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia
| | - Melissa Murat
- From the Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia.,the Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Jeevithan Elango
- From the Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia.,the Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ingrid J Poulton
- From the Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia
| | - Emma C Walker
- From the Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia
| | - Blessing Crimeen-Irwin
- From the Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia
| | - Patricia W M Ho
- From the Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia
| | - Jonathan H Gooi
- the Department of Medicine, University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia, and.,the Structural Biology Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia
| | - T John Martin
- From the Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia.,the Department of Medicine, University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia, and
| | - Natalie A Sims
- From the Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia, .,the Department of Medicine, University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia, and
| |
Collapse
|
113
|
Detry S, Składanowska K, Vuylsteke M, Savvides SN, Bloch Y. Revisiting the combinatorial potential of cytokine subunits in the IL-12 family. Biochem Pharmacol 2019; 165:240-248. [PMID: 30885765 DOI: 10.1016/j.bcp.2019.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/14/2019] [Indexed: 12/15/2022]
Abstract
The four core members of the Interleukin-12 (IL-12) family of cytokines, IL-12, IL-23, IL-27 and IL-35 are heterodimers which share α- and β-cytokine subunits. All four cytokines are immune modulators and have been proposed to play divergent roles in inflammatory arthritis. In recent years additional combinations of α- and β-cytokine subunits belonging to the IL-12 family have been proposed to form novel cytokines such as IL-39. However, the actual extent of the combinatorial potential of the cytokine subunits in the human IL-12 family is not known. Here, we identify several combinations of subunits that form secreted heterodimeric assemblies based on a systematic orthogonal approach. The heterodimers are detected in the conditioned media harvested from mammalian cell cultures transfected with unfused pairs of cytokine subunits. While certain previously reported subunit combinations could not be recapitulated, our approach showed robustly that all four of the canonical members could be secreted. Furthermore, we provide evidence for the interaction between Cytokine Receptor Like Factor 1 (CRLF1) and Interleukin-12 subunit alpha (p35). Similar to IL-27 and IL-35 this novel heterodimer is not abundantly secreted rendering isolation from the conditioned medium very challenging, unlike IL-12 and IL-23. Our findings set the stage for fine-tuning approaches towards the biochemical reconstitution of IL-12 family cytokines for biochemical, cellular, and structural studies.
Collapse
Affiliation(s)
- Sammy Detry
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium; Unit for Structural Biology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Katarzyna Składanowska
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium; Unit for Structural Biology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | | | - Savvas N Savvides
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium; Unit for Structural Biology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.
| | - Yehudi Bloch
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium; Unit for Structural Biology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.
| |
Collapse
|
114
|
Kleinegger F, Hofer E, Wodlej C, Golob-Schwarzl N, Birkl-Toeglhofer AM, Stallinger A, Petzold J, Orlova A, Krassnig S, Reihs R, Niedrist T, Mangge H, Park YN, Thalhammer M, Aigelsreiter A, Lax S, Garbers C, Fickert P, Rose-John S, Moriggl R, Rinner B, Haybaeck J. Pharmacologic IL-6Rα inhibition in cholangiocarcinoma promotes cancer cell growth and survival. Biochim Biophys Acta Mol Basis Dis 2019; 1865:308-321. [DOI: 10.1016/j.bbadis.2018.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/25/2018] [Accepted: 11/07/2018] [Indexed: 02/08/2023]
|
115
|
Billing U, Jetka T, Nortmann L, Wundrack N, Komorowski M, Waldherr S, Schaper F, Dittrich A. Robustness and Information Transfer within IL-6-induced JAK/STAT Signalling. Commun Biol 2019; 2:27. [PMID: 30675525 PMCID: PMC6338669 DOI: 10.1038/s42003-018-0259-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 12/07/2018] [Indexed: 01/06/2023] Open
Abstract
Cellular communication via intracellular signalling pathways is crucial. Expression and activation of signalling proteins is heterogenous between isogenic cells of the same cell-type. However, mechanisms evolved to enable sufficient communication and to ensure cellular functions. We use information theory to clarify mechanisms facilitating IL-6-induced JAK/STAT signalling despite cell-to-cell variability. We show that different mechanisms enabling robustness against variability complement each other. Early STAT3 activation is robust as long as cytokine concentrations are low. Robustness at high cytokine concentrations is ensured by high STAT3 expression or serine phosphorylation. Later the feedback-inhibitor SOCS3 increases robustness. Channel Capacity of JAK/STAT signalling is limited by cell-to-cell variability in STAT3 expression and is affected by the same mechanisms governing robustness. Increasing STAT3 amount increases Channel Capacity and robustness, whereas increasing STAT3 tyrosine phosphorylation reduces robustness but increases Channel Capacity. In summary, we elucidate mechanisms preventing dysregulated signalling by enabling reliable JAK/STAT signalling despite cell-to-cell heterogeneity.
Collapse
Affiliation(s)
- Ulrike Billing
- Otto-von-Guericke University Magdeburg, Institute of Biology, Department of Systems Biology, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Tomasz Jetka
- Polish Academy of Sciences, Institute of Fundamental Technological Research, Division of Modelling in Biology and Medicine, Pawinskiego 5B, 02- 106, Warszawa, Poland
| | - Lukas Nortmann
- Otto-von-Guericke University Magdeburg, Institute of Biology, Department of Systems Biology, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Nicole Wundrack
- Otto-von-Guericke University Magdeburg, Institute of Biology, Department of Systems Biology, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Michal Komorowski
- Polish Academy of Sciences, Institute of Fundamental Technological Research, Division of Modelling in Biology and Medicine, Pawinskiego 5B, 02- 106, Warszawa, Poland
| | - Steffen Waldherr
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200f - box 2424, 3001 Leuven, Belgium
| | - Fred Schaper
- Otto-von-Guericke University Magdeburg, Institute of Biology, Department of Systems Biology, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Anna Dittrich
- Otto-von-Guericke University Magdeburg, Institute of Biology, Department of Systems Biology, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
116
|
Mackiewicz J, Burzykowski T, Iżycki D, Mackiewicz A. Re-induction using whole cell melanoma vaccine genetically modified to melanoma stem cells-like beyond recurrence extends long term survival of high risk resected patients - updated results. J Immunother Cancer 2018; 6:134. [PMID: 30486884 PMCID: PMC6264600 DOI: 10.1186/s40425-018-0456-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/16/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND AGI-101H is an allogeneic gene modified whole cell therapeutic melanoma vaccine, evaluated in over 400 melanoma patients in the adjuvant and therapeutic settings. We present updated long-term survival results from two single-arm, phase II adjuvant trials (Trial 3 and Trial 5) with the focus on treatment beyond recurrence of the disease. METHODS Patients with resected high-risk melanoma (stage IIIB-IV) were enrolled to Trial 3 (n = 99) and Trial 5 (n = 97). The primary endpoint was disease-free survival (DFS), and the secondary was overall survival (OS). In the induction phase, the vaccine was administered every 2 weeks (eight times), followed by the maintenance phase every month until progression. At progression, maintenance was continued or re-induction was applied with or without surgery. RESULTS In Trial 3, the 10-year DFS was equal to 33.0% overall and to 52.4, 25.0, and 8.7% for stage IIIB, IIIC, and stage IV patients, respectively. In Trial 5, the overall 10-year DFS was equal to 24.2%, and to 37.5, 18.0, and 17.6% for stage IIIB, IIIC, and stage IV patients, respectively. In Trial 3, the 10-year OS was equal to 42.3% overall, and to 59.5, 37.5, and 17.4% for stage IIIB, IIIC, and stage IV patients, respectively. In Trial 5, the 10-year OS was equal to 34.3% overall and to 46.9, 28.0, and 29.4% for stage IIIB, IIIC, and stage IV patients, respectively. Among the 65 patients of Trial 3 who developed progression, 43 received re-induction with (n = 22) or without (n = 21) surgery. Two patients received surgery without re-induction. All the 22 progressing patients, who did not receive re-induction, died. Among the 75 patients of Trial 5 who experienced progression, 39 received re-induction with (n = 21) or without (n = 18) surgery. Among the 36 progressing patients who did not receive the re-induction, 35 died. Surgery and re-induction reduced (independently) the increase of mortality after progression in both trials, with the effect of re-induction reaching statistical significance in Trial 5. CONCLUSIONS Vaccination beyond recurrence of the disease with additional re-induction combined with surgery or alone increased long term survival of melanoma patients. However, further studies on larger patient cohorts are required. TRIAL REGISTRATION Central Evidence of Clinical Trials (EudraCT Number 2008-003373-40 ).
Collapse
Affiliation(s)
- Jacek Mackiewicz
- Chair of Medical Biotechnology, University of Medical Sciences, 15 Garbary street, 61-866, Poznan, Poland. .,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary street, 61-866, Poznan, Poland. .,Department of Medical and Experimental Oncology, Heliodor Świecicki University Hospital, Poznan University of Medical Sciences, Poland 15, 16/18 Grunwaldzka St, 60-780, Poznan, Poland. .,Department of Biology and Environmental Studies, University of Medical Sciences, 8 Rokietnicka street, 60-806, Poznan, Poland.
| | - Tomasz Burzykowski
- Interuniversity Institute for Biostatistics and statistical Bioinformatics, Hasselt University, 42 Martelarenlaan street, 3500, Diepenbeek, Belgium
| | - Dariusz Iżycki
- Chair of Medical Biotechnology, University of Medical Sciences, 15 Garbary street, 61-866, Poznan, Poland
| | - Andrzej Mackiewicz
- Chair of Medical Biotechnology, University of Medical Sciences, 15 Garbary street, 61-866, Poznan, Poland.,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary street, 61-866, Poznan, Poland.,Department of Medical and Experimental Oncology, Heliodor Świecicki University Hospital, Poznan University of Medical Sciences, Poland 15, 16/18 Grunwaldzka St, 60-780, Poznan, Poland.,BioContract Sp z o.o., 36 Zambrowska street, 61-051, Poznan, Poland
| |
Collapse
|
117
|
Engelowski E, Modares NF, Gorressen S, Bouvain P, Semmler D, Alter C, Ding Z, Flögel U, Schrader J, Xu H, Lang PA, Fischer J, Floss DM, Scheller J. IL-23R Signaling Plays No Role in Myocardial Infarction. Sci Rep 2018; 8:17078. [PMID: 30459442 PMCID: PMC6244091 DOI: 10.1038/s41598-018-35188-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/08/2018] [Indexed: 01/26/2023] Open
Abstract
Ischemic heart diseases are the most frequent diseases in the western world. Apart from Interleukin (IL-)1, inflammatory therapeutic targets in the clinic are still missing. Interestingly, opposing roles of the pro-inflammatory cytokine IL-23 have been described in cardiac ischemia in mice. IL-23 is a composite cytokine consisting of p19 and p40 which binds to IL-23R and IL-12Rβ1 to initiate signal transduction characterized by activation of the Jak/STAT, PI3K and Ras/Raf/MAPK pathways. Here, we generate IL-23R-Y416FΔICD signaling deficient mice and challenged these mice in close- and open-chest left anterior descending coronary arteria ischemia/reperfusion experiments. Our experiments showed only minimal changes in all assayed parameters in IL-23R signaling deficient mice compared to wild-type mice in ischemia and for up to four weeks of reperfusion, including ejection fraction, endsystolic volume, enddiastolic volume, infarct size, gene regulation and α smooth muscle actin (αSMA) and Hyaluronic acid (HA) protein expression. Moreover, injection of IL-23 in wild-type mice after LAD ischemia/reperfusion had also no influence on the outcome of the healing phase. Our data showed that IL-23R deficiency has no effects in myocardial I/R.
Collapse
Affiliation(s)
- Erika Engelowski
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Nastaran Fazel Modares
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Simone Gorressen
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Pascal Bouvain
- Institute for Molecular Cardiology, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Dominik Semmler
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Christina Alter
- Institute for Molecular Cardiology, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Zhaoping Ding
- Institute for Molecular Cardiology, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Ulrich Flögel
- Institute for Molecular Cardiology, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Jürgen Schrader
- Institute for Molecular Cardiology, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Haifeng Xu
- Institute of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Philipp A Lang
- Institute of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jens Fischer
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany.
| |
Collapse
|
118
|
Lamertz L, Rummel F, Polz R, Baran P, Hansen S, Waetzig GH, Moll JM, Floss DM, Scheller J. Soluble gp130 prevents interleukin-6 and interleukin-11 cluster signaling but not intracellular autocrine responses. Sci Signal 2018; 11:11/550/eaar7388. [DOI: 10.1126/scisignal.aar7388] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Interleukin-6 (IL-6) is a proinflammatory cytokine of the IL-6 family, members of which signal through a complex of a cytokine-specific receptor and the signal-transducing subunit gp130. The interaction of IL-6 with the membrane-bound IL-6 receptor (IL-6R) and gp130 stimulates “classic signaling,” whereas the binding of IL-6 and a soluble version of the IL-6R to gp130 stimulates “trans-signaling.” Alternatively, “cluster signaling” occurs when membrane-bound IL-6:IL-6R complexes on transmitter cells activate gp130 receptors on neighboring receiver cells. The soluble form of gp130 (sgp130) is a selective trans-signaling inhibitor, but it does not affect classic signaling. We demonstrated that the interaction of soluble gp130 with natural and synthetic membrane-bound IL-6:IL-6R complexes inhibited IL-6 cluster signaling. Similarly, IL-11 cluster signaling through the IL-11R to gp130 was also inhibited by soluble gp130. However, autocrine classic and trans-signaling was not inhibited by extracellular inhibitors such as sgp130 or gp130 antibodies. Together, our results suggest that autocrine IL-6 signaling may occur intracellularly.
Collapse
|
119
|
Lamertz L, Floss DM, Scheller J. Combined deletion of the fibronectin-type III domains and the stalk region results in ligand-independent, constitutive activation of the Interleukin 6 signal-transducing receptor gp130. Cytokine 2018; 110:428-434. [DOI: 10.1016/j.cyto.2018.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/26/2018] [Accepted: 05/14/2018] [Indexed: 11/30/2022]
|
120
|
Cytokine-mediated modulation of the hepatic miRNome: miR-146b-5p is an IL-6-inducible miRNA with multiple targets. J Leukoc Biol 2018; 104:987-1002. [DOI: 10.1002/jlb.ma1217-499rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
|
121
|
Kwiatkowska-Borowczyk E, Czerwińska P, Mackiewicz J, Gryska K, Kazimierczak U, Tomela K, Przybyła A, Kozłowska AK, Galus Ł, Kwinta Ł, Dondajewska E, Gąbka-Buszek A, Żakowska M, Mackiewicz A. Whole cell melanoma vaccine genetically modified to stem cells like phenotype generates specific immune responses to ALDH1A1 and long-term survival in advanced melanoma patients. Oncoimmunology 2018; 7:e1509821. [PMID: 30377573 PMCID: PMC6205007 DOI: 10.1080/2162402x.2018.1509821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 12/19/2022] Open
Abstract
Allogeneic whole cell gene modified therapeutic melanoma vaccine (AGI-101H) comprising of two melanoma cell lines transduced with cDNA encoding fusion protein composed of IL-6 linked with the soluble IL-6 receptor (sIL-6R), referred to as H6 was developed. H6 served as a molecular adjuvant, however, it has altered vaccine cells phenotype towards melanoma stem cells (MSC)-like with high activity of aldehyde dehydrogenase isoenzyme (ALDH1A1). AGI-101H was applied in advanced melanoma patients with non-resected and resected disease. In the adjuvant setting, it was combined with surgery in case of recurring metastases, which were surgically removed and vaccination continued. A significant fraction of AGI-101H treated melanoma patients is still alive (11–19 years). Out of 106 living patients, 39 were HLA-A2 positive and were the subject of the study. Immunization of melanoma patients resulted in the generation of cytotoxic CD8+ T cells specific for ALDH1A1, which were detected in circulation by HLA-A0201 MHC dextramers loaded with ALDH1A188-96(LLYKLADLI) peptide. Phenotypically they were central memory CD8+ T cells. Re-stimulation with ALDH1A188-96ex vivo resulted in IFN-γ secretion and cells degranulation. Following each vaccine dose administration, the number of ALDH1A1-CD8+ T cells increased in circulation and returned to the previous level until next dose injection (one month). ALDH1A1-CD8+ T cells were also found, however in the lower number than in vaccinated patients, in the circulation of untreated melanoma with stage IV but were not found in stage II or III and healthy donors. Specific anti-ALDH1 antibodies were present in treated patients. Long-term survival suggests immuno-targeting of MSC in treated patients.
Collapse
Affiliation(s)
- Eliza Kwiatkowska-Borowczyk
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| | - Patrycja Czerwińska
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| | - Jacek Mackiewicz
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland.,Department of Medical and Experimental Oncology, Heliodor Swiecicki University Hospital, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Gryska
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Urszula Kazimierczak
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Tomela
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Przybyła
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Łukasz Galus
- Department of Medical and Experimental Oncology, Heliodor Swiecicki University Hospital, Poznan University of Medical Sciences, Poznan, Poland.,Department of Chemotherapy, Greater Poland Cancer Centre, Poznan, Poland
| | - Łukasz Kwinta
- Department of Chemotherapy, Greater Poland Cancer Centre, Poznan, Poland
| | - Ewelina Dondajewska
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Monika Żakowska
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Andrzej Mackiewicz
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
122
|
Rolvering C, Zimmer AD, Ginolhac A, Margue C, Kirchmeyer M, Servais F, Hermanns HM, Hergovits S, Nazarov PV, Nicot N, Kreis S, Haan S, Behrmann I, Haan C. The PD-L1- and IL6-mediated dampening of the IL27/STAT1 anticancer responses are prevented by α-PD-L1 or α-IL6 antibodies. J Leukoc Biol 2018; 104:969-985. [PMID: 30040142 DOI: 10.1002/jlb.ma1217-495r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 12/19/2022] Open
Abstract
Interleukin-27 (IL27) is a type-I cytokine of the IL6/IL12 family and is predominantly secreted by activated macrophages and dendritic cells. We show that IL27 induces STAT factor phosphorylation in cancerous cell lines of different tissue origin. IL27 leads to STAT1 phosphorylation and recapitulates an IFN-γ-like response in the microarray analyses, with up-regulation of genes involved in antiviral defense, antigen presentation, and immune suppression. Like IFN-γ, IL27 leads to an up-regulation of TAP2 and MHC-I proteins, which mediate increased tumor immune clearance. However, both cytokines also upregulate proteins such as PD-L1 (CD274) and IDO-1, which are associated with immune escape of cancer. Interestingly, differential expression of these genes was observed within the different cell lines and when comparing IL27 to IFN-γ. In coculture experiments of hepatocellular carcinoma (HCC) cells with peripheral blood mononuclear cells, pre-treatment of the HCC cells with IL27 resulted in lowered IL2 production by anti-CD3/-CD28 activated T-lymphocytes. Addition of anti-PD-L1 antibody, however, restored IL2 secretion. The levels of other TH 1 cytokines were also enhanced or restored upon administration of anti-PD-L1. In addition, we show that the suppression of IL27 signaling by IL6-type cytokine pre-stimulation-mimicking a situation occurring, for example, in IL6-secreting tumors or in tumor inflammation-induced cachexia-can be antagonized by antibodies against IL6-type cytokines or their receptors. Therapeutically, the antitumor effects of IL27 (mediated, e.g., by increased antigen presentation) might thus be increased by combining IL27 with blocking antibodies against PD-L1 or/and IL6-type cytokines.
Collapse
Affiliation(s)
- Catherine Rolvering
- University of Luxembourg, Life Sciences Research Unit-Signal Transduction Laboratory, Belvaux, Luxembourg
| | - Andreas D Zimmer
- University of Luxembourg, Life Sciences Research Unit-Signal Transduction Laboratory, Belvaux, Luxembourg
| | - Aurélien Ginolhac
- University of Luxembourg, Life Sciences Research Unit-Bioinformatics Core Facility, Belvaux, Luxembourg
| | - Christiane Margue
- University of Luxembourg, Life Sciences Research Unit-Signal Transduction Laboratory, Belvaux, Luxembourg
| | - Mélanie Kirchmeyer
- University of Luxembourg, Life Sciences Research Unit-Signal Transduction Laboratory, Belvaux, Luxembourg
| | - Florence Servais
- University of Luxembourg, Life Sciences Research Unit-Signal Transduction Laboratory, Belvaux, Luxembourg
| | - Heike M Hermanns
- University Hospital Würzburg, Medical Clinic II, Division of Hepatology, Würzburg, Germany
| | - Sabine Hergovits
- University Hospital Würzburg, Medical Clinic II, Division of Hepatology, Würzburg, Germany
| | - Petr V Nazarov
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Nathalie Nicot
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Stephanie Kreis
- University of Luxembourg, Life Sciences Research Unit-Signal Transduction Laboratory, Belvaux, Luxembourg
| | - Serge Haan
- University of Luxembourg, Life Sciences Research Unit-Molecular Disease Mechanisms Laboratory, Belvaux, Luxembourg
| | - Iris Behrmann
- University of Luxembourg, Life Sciences Research Unit-Signal Transduction Laboratory, Belvaux, Luxembourg
| | - Claude Haan
- University of Luxembourg, Life Sciences Research Unit-Signal Transduction Laboratory, Belvaux, Luxembourg
| |
Collapse
|
123
|
Synthetic cytokine receptors transmit biological signals using artificial ligands. Nat Commun 2018; 9:2034. [PMID: 29789554 PMCID: PMC5964073 DOI: 10.1038/s41467-018-04454-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/23/2018] [Indexed: 11/25/2022] Open
Abstract
Cytokine-induced signal transduction is executed by natural biological switches, which among many others control immune-related processes. Here, we show that synthetic cytokine receptors (SyCyRs) can induce cytokine signaling using non-physiological ligands. High-affinity GFP- and mCherry-nanobodies were fused to transmembrane and intracellular domains of the IL-6/IL-11 and IL-23 cytokine receptors gp130 and IL-12Rβ1/IL-23R, respectively. Homo- and heterodimeric GFP:mCherry fusion proteins as synthetic cytokine-like ligands were able to induce canonical signaling in vitro and in vivo. Using SyCyR ligands, we show that IL-23 receptor homodimerization results in its activation and IL-23-like signal transduction. Moreover, trimeric receptor assembly induces trans-phosphorylation among cytokine receptors with associated Janus kinases. The SyCyR technology allows biochemical analyses of transmembrane receptor signaling in vitro and in vivo, cell-specific activation through SyCyR ligands using transgenic animals and possible therapeutic regimes involving non-physiological targets during immunotherapy. Cytokine-induced signaling acts as an ON/OFF switch dependent on the presence of ligands. Here the authors construct synthetic cytokine receptors responsive to synthetic ligands able to activate canonical signaling pathways.
Collapse
|
124
|
Abstract
Interleukin-6 (IL-6) is a pivotal cytokine with a diverse repertoire of physiological functions that include regulation of immune cell proliferation and differentiation. Dysregulation of IL-6 signalling is associated with inflammatory and lymphoproliferative disorders such as rheumatoid arthritis and Castleman disease, and several classes of therapeutics have been developed that target components of the IL-6 signalling pathway. So far, monoclonal antibodies against IL-6 or IL-6 receptor (IL-6R) and Janus kinases (JAK) inhibitors have been successfully developed for the treatment of autoimmune diseases such as rheumatoid arthritis. However, clinical trials of agents targeting IL-6 signalling have also raised questions about the diseases and patient populations for which such agents have an appropriate benefit-risk profile. Knowledge from clinical trials and advances in our understanding of the complexities of IL-6 signalling, including the potential to target an IL-6 trans-signalling pathway, are now indicating novel opportunities for therapeutic intervention. In this Review, we overview the roles of IL-6 in health and disease and analyse progress with several approaches of inhibiting IL-6-signalling, with the aim of illuminating when and how to apply IL-6 blockade.
Collapse
|
125
|
Lokau J, Garbers C. The length of the interleukin-11 receptor stalk determines its capacity for classic signaling. J Biol Chem 2018; 293:6398-6409. [PMID: 29523682 PMCID: PMC5925790 DOI: 10.1074/jbc.ra118.001879] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/14/2018] [Indexed: 12/30/2022] Open
Abstract
Interleukin (IL)-11 is a multifunctional cytokine that was traditionally recognized for its hematopoietic and anti-inflammatory functions, but has recently been shown also to be involved in tumorigenesis. IL-11 signaling is initiated by binding of the cytokine to the IL-11 receptor (IL-11R), which is not directly involved in signaling but required for IL-11 binding to the signal-transducing receptor glycoprotein (gp) 130. In classic signaling, IL-11 binds to the membrane-bound IL-11R to initiate signal transduction. Additionally, IL-11 signaling can be initiated via soluble IL-11R, known as trans-signaling, and this pathway only requires the three extracellular domains of the IL-11R, but not stalk, transmembrane, or intracellular region. Here, we analyzed the role of the IL-11R stalk region, a 55 amino acid stretch connecting the extracellular domains with the transmembrane helix, in classic IL-11 signaling with the help of cytokine-dependent cell lines. We showed that the stalk region is crucial for IL-11 signaling via the membrane-bound IL-11R. Using different deletion variants, we found that a minimal length of 23 amino acid residues is required for efficient signal transduction. We further found that classic IL-11 signaling depended solely on the length, but not the sequence, of the IL-11R stalk region, suggesting that the stalk functions as a spacer in the signaling complex. We previously described the IL-11R stalk region as determinant of proteolysis and regulator of IL-11 trans-signaling. The results presented here reveal an additional function in classic IL-11 signaling, highlighting the importance of the IL-11R stalk in IL-11 signaling.
Collapse
Affiliation(s)
- Juliane Lokau
- From the Institute of Biochemistry, Kiel University, 24118 Kiel, Germany
| | - Christoph Garbers
- From the Institute of Biochemistry, Kiel University, 24118 Kiel, Germany
| |
Collapse
|
126
|
Baran P, Hansen S, Waetzig GH, Akbarzadeh M, Lamertz L, Huber HJ, Ahmadian MR, Moll JM, Scheller J. The balance of interleukin (IL)-6, IL-6·soluble IL-6 receptor (sIL-6R), and IL-6·sIL-6R·sgp130 complexes allows simultaneous classic and trans-signaling. J Biol Chem 2018; 293:6762-6775. [PMID: 29559558 DOI: 10.1074/jbc.ra117.001163] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/12/2018] [Indexed: 01/24/2023] Open
Abstract
Interleukin (IL-)6 is the major pro-inflammatory cytokine within the IL-6 family. IL-6 signals via glycoprotein 130 (gp130) and the membrane-bound or soluble IL-6 receptor (IL-6R), referred to as classic or trans-signaling, respectively. Whereas inflammation triggers IL-6 expression, eventually rising to nanogram/ml serum levels, soluble IL-6R (sIL-6R) and soluble gp130 (sgp130) are constitutively present in the upper nanogram/ml range. Calculations based on intermolecular affinities have suggested that systemic IL-6 is immediately trapped in IL-6·sIL-6R and IL-6·sIL-6R·sgp130 complexes, indicating that sIL-6R and sgp130 constitute a buffer system that increases the serum half-life of IL-6 or restricts systemic IL-6 signaling. However, this scenario has not been experimentally validated. Here, we quantified IL-6·sIL-6R and IL-6·sIL-6R·sgp130 complexes over a wide concentration range. The amounts of IL-6 used in this study reflect concentrations found during active inflammatory events. Our results indicated that most IL-6 is free and not complexed with sIL-6R or sgp130, indicating that the level of endogenous sgp130 in the bloodstream is not sufficient to block IL-6 trans-signaling via sIL-6R. Importantly, addition of the single-domain antibody VHH6, which specifically stabilizes IL-6·sIL-6R complexes but did not bind to IL-6 or sIL-6R alone, drove free IL-6 into IL-6·sIL-6R complexes and boosted trans-signaling but not classic signaling, demonstrating that endogenous sIL-6R has at least the potential to form complexes with IL-6. Our findings indicate that even though high concentrations of sIL-6R and sgp130 are present in human serum, the relative ratio of free IL-6 to IL-6·sIL-6R allows for simultaneous classic and trans-signaling.
Collapse
Affiliation(s)
- Paul Baran
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Selina Hansen
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | | | - Mohammad Akbarzadeh
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Larissa Lamertz
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Heinrich J Huber
- the Institute for Automation Engineering, Otto-von-Guericke University, Magdeburg 39106, Germany
| | - M Reza Ahmadian
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Jens M Moll
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Jürgen Scheller
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany,
| |
Collapse
|
127
|
IL-6 signalling pathways and the development of type 2 diabetes. Inflammopharmacology 2018; 26:685-698. [PMID: 29508109 DOI: 10.1007/s10787-018-0458-0] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/21/2018] [Indexed: 02/07/2023]
Abstract
Interleukin 6 (IL-6), a multifunctional cytokine, has been implicated in the pathophysiology of type 2 diabetes (T2D). The elevated circulating level of IL-6 is an independent predictor of T2D and is considered to be involved in the development of inflammation, insulin resistance and β-cell dysfunction. On the other hand, an increasing number of evidence suggests that IL-6 has an anti-inflammatory role and improves glucose metabolism. The complex signal transduction mechanism of IL-6 may help explain the pleiotropic nature of the cytokine. IL-6 acts via two distinct signalling pathways called classic signalling and trans-signalling. While both signalling modes lead to activation of the same receptor subunit, their final biological effects are completely different. The aim of this review is to summarize our current knowledge about the role of IL-6 in the development of T2D. We will also discuss the importance of specific blockade of IL-6 trans-signalling rather than inhibiting both signalling pathways as a therapeutic strategy for the treatment of T2D and its associated macrovascular complications.
Collapse
|
128
|
Schett G. Physiological effects of modulating the interleukin-6 axis. Rheumatology (Oxford) 2018; 57:ii43-ii50. [DOI: 10.1093/rheumatology/kex513] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Georg Schett
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
129
|
Abstract
The interleukin (IL)-6 family cytokines is a group of cytokines consisting of IL-6, IL-11, ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), oncostatin M (OSM), cardiotrophin 1 (CT-1), cardiotrophin-like cytokine (CLC), and IL-27. They are grouped into one family because the receptor complex of each cytokine contains two (IL-6 and IL-11) or one molecule (all others cytokines) of the signaling receptor subunit gp130. IL-6 family cytokines have overlapping but also distinct biologic activities and are involved among others in the regulation of the hepatic acute phase reaction, in B-cell stimulation, in the regulation of the balance between regulatory and effector T cells, in metabolic regulation, and in many neural functions. Blockade of IL-6 family cytokines has been shown to be beneficial in autoimmune diseases, but bacterial infections and metabolic side effects have been observed. Recent advances in cytokine blockade might help to minimize such side effects during therapeutic blockade.
Collapse
Affiliation(s)
- Stefan Rose-John
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, Kiel, Germany
| |
Collapse
|
130
|
Garbers C, Rose-John S. Dissecting Interleukin-6 Classic- and Trans-Signaling in Inflammation and Cancer. Methods Mol Biol 2018; 1725:127-140. [PMID: 29322414 DOI: 10.1007/978-1-4939-7568-6_11] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Interleukin-6 is a cytokine synthesized by many cells in the human body. IL-6 binds to a membrane bound IL-6R, which is only present on hepatocytes, some epithelial cells and some leukocytes. The complex of IL-6 and IL-6R binds to the ubiquitously expressed receptor subunit gp130, which forms a homodimer and thereby initiates intracellular signaling via the JAK/STAT and the MAPK pathways. IL-6R expressing cells can cleave the receptor protein to generate a soluble IL-6R (sIL-6R), which can still bind IL-6 and can associate with gp130 and induce signaling even on cells, which do not express IL-6R. This paradigm has been called IL-6 trans-signaling whereas signaling via the membrane bound IL-6R is referred to as classic signaling. We have generated several molecular tools to differentiate between IL-6 classic- and trans-signaling and to analyze the consequence of cellular IL-6 signaling in vivo.
Collapse
|
131
|
Moll JM, Wehmöller M, Frank NC, Homey L, Baran P, Garbers C, Lamertz L, Axelrod JH, Galun E, Mootz HD, Scheller J. Split 2 Protein-Ligation Generates Active IL-6-Type Hyper-Cytokines from Inactive Precursors. ACS Synth Biol 2017; 6:2260-2272. [PMID: 29136368 DOI: 10.1021/acssynbio.7b00208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Trans-signaling of the major pro- and anti-inflammatory cytokines Interleukin (IL)-6 and IL-11 has the unique feature to virtually activate all cells of the body and is critically involved in chronic inflammation and regeneration. Hyper-IL-6 and Hyper-IL-11 are single chain designer trans-signaling cytokines, in which the cytokine and soluble receptor units are trapped in one complex via a flexible peptide linker. Albeit, Hyper-cytokines are essential tools to study trans-signaling in vitro and in vivo, the superior potency of these designer cytokines are accompanied by undesirable stress responses. To enable tailor-made generation of Hyper-cytokines, we developed inactive split-cytokine-precursors adapted for posttranslational reassembly by split-intein mediated protein trans-splicing (PTS). We identified cutting sites within IL-6 (E134/S135) and IL-11 (G116/S117) and obtained inactive split-Hyper-IL-6 and split-Hyper-IL-11 cytokine precursors. After fusion with split-inteins, PTS resulted in reconstitution of active Hyper-cytokines, which were efficiently secreted from transfected cells. Our strategy comprises the development of a background-free cytokine signaling system from reversibly inactivated precursor cytokines.
Collapse
Affiliation(s)
- Jens M. Moll
- Institute
of Biochemistry and Molecular Biology II, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Melanie Wehmöller
- Institute
of Biochemistry and Molecular Biology II, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Nils C. Frank
- Institute
of Biochemistry and Molecular Biology II, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Lisa Homey
- Institute
of Biochemistry and Molecular Biology II, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Paul Baran
- Institute
of Biochemistry and Molecular Biology II, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | | | - Larissa Lamertz
- Institute
of Biochemistry and Molecular Biology II, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Jonathan H. Axelrod
- Goldyne
Savad Institute of Gene Therapy, Hadassah Medical Organization, 91120 Jerusalem, Israel
| | - Eithan Galun
- Goldyne
Savad Institute of Gene Therapy, Hadassah Medical Organization, 91120 Jerusalem, Israel
| | - Henning D. Mootz
- Department
Chemistry and Pharmacy, Institute of Biochemistry, University of Muenster, 48149 Münster, Germany
| | - Jürgen Scheller
- Institute
of Biochemistry and Molecular Biology II, Heinrich-Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
132
|
IL-6/IL-12 Cytokine Receptor Shuffling of Extra- and Intracellular Domains Reveals Canonical STAT Activation via Synthetic IL-35 and IL-39 Signaling. Sci Rep 2017; 7:15172. [PMID: 29123149 PMCID: PMC5680241 DOI: 10.1038/s41598-017-15173-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/19/2017] [Indexed: 12/27/2022] Open
Abstract
IL-35 and IL-39 are recently discovered shared members of the IL-6- and IL-12–type cytokine family with immune-suppressive capacity. IL-35 has been reported to induce the formation of four different receptor complexes: gp130:IL-12β2, gp130:gp130, IL-12β2:IL-12β2, and IL-12β2:WSX-1. IL-39 was proposed to form a gp130:IL-23R receptor complex. IL-35, but not IL-39, has been reported to activate non-conventional STAT signaling, depending on the receptor complex and target cell. Analyses of IL-35 and IL-39 are, however, hampered by the lack of biologically active recombinant IL-35 and IL-39 proteins. Therefore, we engineered chimeric cytokine receptors to accomplish synthetic IL-35 and IL- 39 signaling by shuffling the extra- and intracellular domains of IL-6/IL-12–type cytokine receptors, resulting in biological activity for all previously described IL-35 receptor complexes. Moreover, we found that the proposed IL-39 receptor complex is biologically active and discovered two additional biologically active synthetic receptor combinations, gp130/IL-12Rβ1 and IL-23R/IL-12Rβ2. Surprisingly, synthetic IL-35 activation led to more canonical STAT signaling of all receptor complexes. In summary, our receptor shuffling approach highlights an interchangeable, modular domain structure among IL-6- and IL-12–type cytokine receptors and enabled synthetic IL-35 and IL-39 signaling.
Collapse
|
133
|
Lokau J, Flynn CM, Garbers C. Cleavage of the Interleukin-11 receptor induces processing of its C-terminal fragments by the gamma-secretase and the proteasome. Biochem Biophys Res Commun 2017; 491:296-302. [DOI: 10.1016/j.bbrc.2017.07.106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/19/2017] [Indexed: 11/26/2022]
|
134
|
Interleukin-6 as a Multifunctional Regulator: Inflammation, Immune Response, and Fibrosis. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2017. [DOI: 10.5301/jsrd.5000265] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interleukin 6 (IL-6) is a 184-amino acid protein cytokine that is produced by many types of cells and is expressed during states of cellular stress, such as inflammation, infection, wound sites, and cancer. IL-6 levels may increase several thousand-fold in these states and may help to coordinate the response to dysregulation of tissue homeostasis. IL-6 acts through a membrane-bound IL-6 receptor (mIL-6R), which, together with a second receptor, glycoprotein 130 (gp130), leads to the initiation of intracellular signaling (classic signaling). Given that IL-6R is expressed on only a few types of cells, though all cells express gp130, direct stimulation by IL-6 is limited to cells that express mIL-6R. However, IL-6R is also produced as a soluble, secreted protein that, together with IL-6, can stimulate all gp130-expressing cells by a process termed IL-6 trans-signaling. IL-6 trans-signaling can be blocked without affecting IL-6 classic signaling through mIL-6R. IL-6 has major effects on the adaptive and innate immune system and on mesenchymal and stromal responses during inflammation. It promotes the development of pathogenic T-helper 17 T cells and the maturation of B lymphocytes. Many innate immune cells, neutrophils, and monocytes/macrophages produce and respond to IL-6, resulting in autocrine feedback loops that amplify inflammation. IL-6 has been implicated in the pathogenesis of fibrotic diseases in which IL-6 trans-signaling has been shown to stimulate the proliferation of fibroblasts and the release of procollagen and fibronectin.
Collapse
|
135
|
Synthetic Deletion of the Interleukin 23 Receptor (IL-23R) Stalk Region Led to Autonomous IL-23R Homodimerization and Activation. Mol Cell Biol 2017. [PMID: 28630278 DOI: 10.1128/mcb.00014-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Interleukin 23 (IL-23) regulates the development of TH17 cells, which are important for antimicrobial and antifungal responses and autoimmune and chronic inflammatory diseases. IL-23-induced Jak/STAT signaling is mediated via the heterodimeric IL-23 receptor (IL-23R)-IL-12 receptor β1 (IL-12Rβ1) complex. The typical signal-transducing receptor of the IL-6/IL-12 family contains three extracellular-membrane-proximal fibronectin type III (FNIII) domains, which are not involved in cytokine binding but are mandatory for signal transduction. In place of FNIII-type domains, IL-23R has a structurally undefined stalk. We hypothesized that the IL-23R stalk acts as a spacer to position the cytokine binding domains at a defined distance from the plasma membrane to enable signal transduction. Minor deletions of the murine, but not of the human, IL-23R stalk resulted in unresponsiveness to IL-23. Complete deletion of the human IL-23R stalk and the extended murine IL-23R stalk, including a 20-amino-acid-long duplication of domain 3, however, induced ligand-independent, autonomous receptor activation, as determined by STAT3 phosphorylation and cell proliferation. Ligand-independent, autonomous activity was caused by IL-23R homodimers and was independent of IL-12Rβ1. Our data show that deletion of the stalk results in biologically active IL-23R homodimers, thereby creating an as-yet-undescribed receptor complex of the IL-6/IL-12 cytokine family.
Collapse
|
136
|
Sontag S, Förster M, Seré K, Zenke M. Differentiation of Human Induced Pluripotent Stem Cells (iPS Cells) and Embryonic Stem Cells (ES Cells) into Dendritic Cell (DC) Subsets. Bio Protoc 2017; 7:e2419. [PMID: 34541147 DOI: 10.21769/bioprotoc.2419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/20/2017] [Accepted: 06/26/2017] [Indexed: 11/02/2022] Open
Abstract
Induced pluripotent stem cells (iPS cells) are engineered stem cells, which exhibit properties very similar to embryonic stem cells (ES cells; Takahashi and Yamanaka, 2016). Both iPS cells and ES cells have an extraordinary self-renewal capacity and can differentiate into all cell types of our body, including hematopoietic stem/progenitor cells and dendritic cells (DC) derived thereof. This makes iPS cells particularly well suited for studying molecular mechanisms of diseases, drug discovery and regenerative therapy ( Grskovic et al., 2011 ; Bellin et al., 2012 ; Robinton and Daley, 2012). DC are the major antigen presenting cells of the immune system and thus they are key players in modulating and directing immune responses ( Merad et al., 2013 ). DC patrol peripheral and interface tissues (e.g., lung, intestine and skin) to detect invading pathogens, and upon activation they migrate to lymph nodes to activate and prime lymphocytes. DC comprise a phenotypically heterogeneous family with functionally specialized subsets (Schlitzer and Ginhoux, 2014). Generally, classical DC (cDC) and plasmacytoid DC (pDC) are distinguished, exhibiting a classical and plasma cell-like DC morphology, respectively. cDC recognize a multitude of pathogens and secrete proinflammatory cytokines upon activation, while pDC are specialized to detect intracellular pathogens and secrete type I interferons ( Merad et al., 2013 ; Schlitzer and Ginhoux, 2014). cDC are further divided into cross-presenting cDC1 and conventional cDC2, in the human system referred to as CD141+ Clec9a+ cDC1 and CD1c+ CD14- cDC2. Human pDC are characterized as CD303+ CD304+ ( Jongbloed et al., 2010 ; Joffre et al., 2012 ; Swiecki and Colonna, 2015). To investigate subset specification and function of human DC, we established a protocol to generate cDC1, cDC2 and pDC in vitro from human iPS cells (or ES cells) ( Sontag et al., 2017 ). Therefore, we differentiated iPS cells (or ES cells), via mesoderm commitment and hemato-endothelial specification, into CD43+ CD31+ hematopoietic progenitors. Subsequently, those were seeded onto inactivated OP9 stromal cells with FLT3L, SCF, GM-CSF and IL-4 or FLT3L, SCF and GM-CSF to specify cDC1 and cDC2, or cDC1 and pDC, respectively.
Collapse
Affiliation(s)
- Stephanie Sontag
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Malrun Förster
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Kristin Seré
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Martin Zenke
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
137
|
Rose-John S. The Soluble Interleukin 6 Receptor: Advanced Therapeutic Options in Inflammation. Clin Pharmacol Ther 2017; 102:591-598. [DOI: 10.1002/cpt.782] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
|
138
|
Raimondo MG, Biggioggero M, Crotti C, Becciolini A, Favalli EG. Profile of sarilumab and its potential in the treatment of rheumatoid arthritis. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1593-1603. [PMID: 28579757 PMCID: PMC5447699 DOI: 10.2147/dddt.s100302] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years the use of biotechnological agents has drastically revolutionized the therapeutic approach and the progression of rheumatoid arthritis (RA). In particular, interleukin-6 (IL-6) has been demonstrated as a pivotal cytokine in the pathogenesis of the disease by contributing to both the innate and the adaptive immune system perturbation, and to the production of acute-phase proteins involved in the systemic expression of the disorder. The first marketed IL-6 blocker was tocilizumab, a humanized anti-IL-6 receptor (anti-IL-6R) monoclonal antibody. The successful use of tocilizumab in RA has encouraged the development of other biologic agents specifically targeting the IL-6 pathway, either directed against IL-6 cytokine (sirukumab, olokizumab, and clazakizumab) or IL-6 receptor (sarilumab). One Phase II and six Phase III randomized controlled trials demonstrated a broad efficacy of sarilumab across all RA patient subtypes, ranging from methotrexate (MTX) to tumor necrosis factor inhibitor insufficient responders. In particular, sarilumab as monotherapy demonstrated a clear head-to-head superiority over adalimumab in MTX-intolerant subjects. In addition, compared with tocilizumab, sarilumab showed a similar safety profile with significantly higher affinity and longer half-life, responsible for a reduction of the frequency of administration (every other week instead weekly). All these aspects may be important in defining the strategy for positioning sarilumab in the treatment algorithm of RA. Indeed, observational data coming from post-marketing real-life studies may provide crucial additional information for better understanding the role of sarilumab in the management of the disease. This review summarizes both the biological role of IL-6 in RA and the clinical data available on sarilumab as an alternative therapeutic option in RA patients.
Collapse
Affiliation(s)
- Maria Gabriella Raimondo
- Department of Clinical Sciences and Health Community, Division of Rheumatology, University of Milan
| | - Martina Biggioggero
- Department of Clinical Sciences and Health Community, Division of Rheumatology, University of Milan
| | - Chiara Crotti
- Department of Clinical Sciences and Health Community, Division of Rheumatology, University of Milan
| | | | | |
Collapse
|
139
|
SorLA in Interleukin-6 Signaling and Turnover. Mol Cell Biol 2017; 37:MCB.00641-16. [PMID: 28265003 PMCID: PMC5440653 DOI: 10.1128/mcb.00641-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/27/2017] [Indexed: 12/30/2022] Open
Abstract
Interleukin-6 (IL-6) is a multifunctional cytokine with important functions in various physiologic processes. Mice lacking IL-6 exhibit multiple phenotypic abnormalities, such as an inadequate immune and acute-phase response, and elevated levels of circulating IL-6 have been found to accompany several pathological conditions. IL-6 binds the nonsignaling IL-6 receptor (IL-6R), which is expressed as a transmembrane, as well as a secreted circulating protein, before it engages homodimeric gp130 for signaling. Complex formation between IL-6 and the membrane-bound IL-6 receptor gives rise to classic cis signaling, whereas complex formation between IL-6 and the soluble IL-6R results in trans signaling. Here, we report that the endocytic receptor SorLA targets IL-6 and IL-6R. We present evidence that SorLA mediates efficient cellular uptake of both IL-6 and the circulating IL-6R in astrocytes. We further show that SorLA interacts with the membrane-bound IL-6R at the cell surface and thereby downregulates IL-6 cis signaling. Finally, we find that the SorLA ectodomain, released from the cell membrane upon enzymatic cleavage of full-length SorLA, may act as an IL-6 carrier protein that stabilizes IL-6 and its capacity for trans signaling.
Collapse
|
140
|
Timper K, Denson JL, Steculorum SM, Heilinger C, Engström-Ruud L, Wunderlich CM, Rose-John S, Wunderlich FT, Brüning JC. IL-6 Improves Energy and Glucose Homeostasis in Obesity via Enhanced Central IL-6 trans-Signaling. Cell Rep 2017; 19:267-280. [PMID: 28402851 DOI: 10.1016/j.celrep.2017.03.043] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/03/2017] [Accepted: 03/13/2017] [Indexed: 02/07/2023] Open
Abstract
Interleukin (IL)-6 engages similar signaling mechanisms to leptin. Here, we find that central application of IL-6 in mice suppresses feeding and improves glucose tolerance. In contrast to leptin, whose action is attenuated in obesity, the ability of IL-6 to suppress feeding is enhanced in obese mice. IL-6 suppresses feeding in the absence of neuronal IL-6-receptor (IL-6R) expression in hypothalamic or all forebrain neurons of mice. Conversely, obese mice exhibit increased soluble IL-6R levels in the cerebrospinal fluid. Blocking IL-6 trans-signaling in the CNS abrogates the ability of IL-6 to suppress feeding. Furthermore, gp130 expression is enhanced in the paraventricular nucleus of the hypothalamus (PVH) of obese mice, and deletion of gp130 in the PVH attenuates the beneficial central IL-6 effects on metabolism. Collectively, these experiments indicate that IL-6 trans-signaling is enhanced in the CNS of obese mice, allowing IL-6 to exert its beneficial metabolic effects even under conditions of leptin resistance.
Collapse
Affiliation(s)
- Katharina Timper
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Jesse Lee Denson
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Sophie Marie Steculorum
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Christian Heilinger
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Linda Engström-Ruud
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Claudia Maria Wunderlich
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | | | - F Thomas Wunderlich
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany.
| | - Jens Claus Brüning
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany; National Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| |
Collapse
|
141
|
Wittlich M, Dudek M, Böttcher JP, Schanz O, Hegenbarth S, Bopp T, Schmitt E, Kurts C, Garbers C, Rose John S, Knolle PA, Wohlleber D. Liver sinusoidal endothelial cell cross-priming is supported by CD4 T cell-derived IL-2. J Hepatol 2017; 66:978-986. [PMID: 28025060 DOI: 10.1016/j.jhep.2016.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 11/18/2016] [Accepted: 12/05/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Liver sinusoidal endothelial cells (LSECs) are prominent liver-resident antigen (cross-)presenting cells. LSEC cross-priming of naïve CD8 T cells does not require CD4 T cell help in contrast to priming by dendritic cells (DC) but leads to the formation of memory T cells that is preceded by transient Granzyme B (GzmB) expression. Here we provide evidence for a so far unrecognized CD4 T helper cell function in LSEC-induced CD8 T cell activation. METHODS Naïve CD8 T cells and differentiated T helper 1 (Th1) cells were stimulated by antigen-presenting LSEC, and GzmB expression in CD8 T cells was determined by flow cytometry. To identify molecular pathways mediating this GzmB expression, mechanistic proof-of-concept experiments were conducted using stimulatory anti-CD3 antibody together with Hyper-IL-6. RESULTS We demonstrate that LSECs simultaneously function in antigen co-presentation to CD8 and CD4 T cells. Such co-presentation revealed a function of Th1 cells to increase GzmB expression in CD8 T cells after LSEC but not DC cross-priming. IL-2 released from Th1 cells was required but not sufficient for rapid GzmB induction in CD8 T cells. T cell receptor together with IL-6 trans-signaling was necessary for IL-2 to mediate rapid GzmB induction. CONCLUSIONS Our findings indicate that LSECs can serve as a platform to facilitate CD4-CD8 T cell crosstalk enhancing the immune function of LSECs to cross-prime CD8 T cells. IL-6 trans-signaling-mediated responsiveness for IL-2 inducing sustained GzmB expression in CD8 T cells reveals unique mechanisms of CD4 T cell help and CD8 T cell differentiation through liver-resident antigen-presenting cells. LAY SUMMARY Our findings demonstrate that LSEC co-present antigen to CD8 and CD4 T cells and thereby enable CD4 T cell help for LSEC-priming of CD8 T cells. This CD4 T cell help selectively enhances the rapid upregulation of GzmB and effector function of LSEC-primed CD8 T cells thereby enhancing functional differentiation towards CD8 effector T cells.
Collapse
Affiliation(s)
- Michaela Wittlich
- Institute of Experimental Immunology, University Hospital Bonn, Germany
| | - Michael Dudek
- Institute of Molecular Immunology and Experimental Oncology, Klinikum München rechts der Isar, Technische Universität München, Germany
| | - Jan P Böttcher
- Institute of Experimental Immunology, University Hospital Bonn, Germany
| | - Oliver Schanz
- Institute of Experimental Immunology, University Hospital Bonn, Germany
| | - Silke Hegenbarth
- Institute of Molecular Immunology and Experimental Oncology, Klinikum München rechts der Isar, Technische Universität München, Germany
| | - Tobias Bopp
- Institute of Immunology, University Hospital Mainz, Germany
| | - Edgar Schmitt
- Institute of Immunology, University Hospital Mainz, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, University Hospital Bonn, Germany
| | | | | | - Percy A Knolle
- Institute of Experimental Immunology, University Hospital Bonn, Germany; Institute of Molecular Immunology and Experimental Oncology, Klinikum München rechts der Isar, Technische Universität München, Germany
| | - Dirk Wohlleber
- Institute of Molecular Immunology and Experimental Oncology, Klinikum München rechts der Isar, Technische Universität München, Germany.
| |
Collapse
|
142
|
Hesse J, Leberling S, Boden E, Friebe D, Schmidt T, Ding Z, Dieterich P, Deussen A, Roderigo C, Rose CR, Floss DM, Scheller J, Schrader J. CD73-derived adenosine and tenascin-C control cytokine production by epicardium-derived cells formed after myocardial infarction. FASEB J 2017; 31:3040-3053. [PMID: 28363952 DOI: 10.1096/fj.201601307r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/13/2017] [Indexed: 01/29/2023]
Abstract
Epicardium-derived cells (EPDCs) play a fundamental role in embryonic cardiac development and are reactivated in the adult heart in response to myocardial infarction (MI). In this study, EPDCs from post-MI rat hearts highly expressed the ectoenzyme CD73 and secreted the profibrotic matricellular protein tenascin-C (TNC). CD73 on EPDCs extensively generated adenosine from both extracellular ATP and NAD. This in turn stimulated the release of additional nucleotides from a Brefeldin A-sensitive intracellular pool via adenosine-A2BR signaling, forming a positive-feedback loop. A2BR activation, in addition, strongly promoted the release of major regulatory cytokines, such as IL-6, IL-11, and VEGF. TNC was found to stimulate EPDC migration and, together with ATP-P2X7R signaling, to activate inflammasomes in EPDCs via TLR4. Our results demonstrate that EPDCs are an important source of various proinflammatory factors in the post-MI heart controlled by purinergic and TNC signaling.-Hesse, J., Leberling, S., Boden, E., Friebe, D., Schmidt, T., Ding, Z., Dieterich, P., Deussen, A., Roderigo, C., Rose, C. R., Floss, D. M., Scheller, J., Schrader, J. CD73-derived adenosine and tenascin-C control cytokine production by epicardium-derived cells formed after myocardial infarction.
Collapse
Affiliation(s)
- Julia Hesse
- Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stella Leberling
- Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Elisabeth Boden
- Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniela Friebe
- Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Timo Schmidt
- Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Zhaoping Ding
- Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Dieterich
- Institute of Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andreas Deussen
- Institute of Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Claudia Roderigo
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Schrader
- Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany;
| |
Collapse
|
143
|
Chehboun S, Labrecque-Carbonneau J, Pasquin S, Meliani Y, Meddah B, Ferlin W, Sharma M, Tormo A, Masson JF, Gauchat JF. Epstein-Barr virus-induced gene 3 (EBI3) can mediate IL-6 trans-signaling. J Biol Chem 2017; 292:6644-6656. [PMID: 28280243 DOI: 10.1074/jbc.m116.762021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/06/2017] [Indexed: 11/06/2022] Open
Abstract
Epstein-Barr virus-induced gene 3 (EBI3) is a subunit of the composite cytokines IL-27 and IL-35. Both have beneficial functions or effects in models of infectious and autoimmune diseases. This suggests that administration of EBI3 could be therapeutically useful by binding free p28 and p35 to generate IL-27 and IL-35. IL-27- and IL-35-independent functions of EBI3 could compromise its therapeutic uses. We therefore assessed the effects of EBI3 on cytokine receptor-expressing cells. We observed that EBI3 activates STAT3 and induces the proliferation of the IL-6-dependent B9 mouse plasmacytoma cell line. Analyses using blocking mAbs and Ba/F3 transfectants expressing gp130 indicate that EBI3 activity was linked to its capacity to mediate IL-6 trans-signaling, albeit less efficiently than soluble IL-6Rα. In line with this interpretation, co-immunoprecipitation and SPR experiments indicated that EBI3 binds IL-6. An important pro-inflammatory function of IL-6 trans-signaling is to activate blood vessel endothelial cells. We observed that EBI3 in combination with IL-6 could induce the expression of chemokines by human venal endothelial cells. Our results indicate that EBI3 can promote pro-inflammatory IL-6 functions by mediating trans-signaling. These unexpected observations suggest that use of EBI3 as a therapeutic biologic for autoimmune diseases will likely require co-administration of soluble gp130 to prevent the side effects associated with IL-6 trans-signaling. Together with previous studies that demonstrated activation of IL-6R by p28 (IL-30), new findings further suggest a complex interrelation between IL-27 and IL-6.
Collapse
Affiliation(s)
| | | | | | | | - Bouchra Meddah
- the Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | | | - Mukut Sharma
- the Research Service, Kansas City Veterans Affairs Medical Center and Midwest Biomedical Research Foundation, Kansas City, Missouri 64128-2226
| | | | | | | |
Collapse
|
144
|
Malysheva K, de Rooij K, Lowik CW, Baeten DL, Rose-John S, Stoika R, Korchynskyi O. Interleukin 6/Wnt interactions in rheumatoid arthritis: interleukin 6 inhibits Wnt signaling in synovial fibroblasts and osteoblasts. Croat Med J 2017; 57:89-98. [PMID: 27106351 PMCID: PMC4856197 DOI: 10.3325/cmj.2016.57.89] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim To evaluate the impact of previously unrecognized negative interaction between the Wnt and interleukin (IL) 6 signaling pathways in skeletal tissues as a possible major mechanism leading to age- and inflammation-related destruction of bone and joints. Methods Luciferase reporter assays were performed to monitor Wnt pathway activation upon IL-6 and tumor necrosis factor-α (TNFα) treatment. Functional contribution of IL-6 and TNFα interaction to inhibition of bone formation was evaluated in vitro using small hairpin RNAs (shRNA) in mouse mesenchymal precursor cells (MPC) of C2C12 and KS483 lines induced to differentiate into osteoblasts by bone morphogenetic proteins (BMP). Results IL-6 inhibited the activation of Wnt signaling in primary human synoviocytes, and, together with TNFα and Dickkopf-1, inhibited the activation of Wnt response. ShRNA-mediated knockdown of IL-6 mRNA significantly increased early BMP2/7-induced osteogenesis and rescued it from the negative effect of TNFα in C2C12 cells, as well as intensified bone matrix mineralization in KS483 cells. Conclusion IL-6 is an important mediator in the inhibition of osteoblast differentiation by TNFα, and knockdown of IL-6 partially rescues osteogenesis from the negative control of inflammation. The anti-osteoblastic effects of IL-6 are most likely mediated by its negative interaction with Wnt signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olexandr Korchynskyi
- Olexandr Korchynskyi, Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of the National Academy of Sciences of Ukraine (NASU), 14/16, Drahomanov St., Lviv 79005, Ukraine,
| |
Collapse
|
145
|
Sontag S, Förster M, Qin J, Wanek P, Mitzka S, Schüler HM, Koschmieder S, Rose-John S, Seré K, Zenke M. Modelling IRF8 Deficient Human Hematopoiesis and Dendritic Cell Development with Engineered iPS Cells. Stem Cells 2017; 35:898-908. [DOI: 10.1002/stem.2565] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Stephanie Sontag
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School; Aachen Germany
- Helmholtz Institute for Biomedical Engineering; RWTH Aachen University; Aachen Germany
| | - Malrun Förster
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School; Aachen Germany
- Helmholtz Institute for Biomedical Engineering; RWTH Aachen University; Aachen Germany
| | - Jie Qin
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School; Aachen Germany
- Helmholtz Institute for Biomedical Engineering; RWTH Aachen University; Aachen Germany
| | - Paul Wanek
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School; Aachen Germany
- Helmholtz Institute for Biomedical Engineering; RWTH Aachen University; Aachen Germany
| | - Saskia Mitzka
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School; Aachen Germany
- Helmholtz Institute for Biomedical Engineering; RWTH Aachen University; Aachen Germany
| | - Herdit M. Schüler
- Department of Human Genetics, RWTH Aachen University Medical School; Aachen Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation; RWTH Aachen University Medical School; Aachen Germany
| | - Stefan Rose-John
- Medical Faculty, Institute of Biochemistry, Christian-Albrechts-University; Kiel Germany
| | - Kristin Seré
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School; Aachen Germany
- Helmholtz Institute for Biomedical Engineering; RWTH Aachen University; Aachen Germany
| | - Martin Zenke
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School; Aachen Germany
- Helmholtz Institute for Biomedical Engineering; RWTH Aachen University; Aachen Germany
| |
Collapse
|
146
|
Fabbi M, Carbotti G, Ferrini S. Dual Roles of IL-27 in Cancer Biology and Immunotherapy. Mediators Inflamm 2017; 2017:3958069. [PMID: 28255204 PMCID: PMC5309407 DOI: 10.1155/2017/3958069] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/23/2016] [Accepted: 01/12/2017] [Indexed: 01/09/2023] Open
Abstract
IL-27 is a pleiotropic two-chain cytokine, composed of EBI3 and IL-27p28 subunits, which is structurally related to both IL-12 and IL-6 cytokine families. IL-27 acts through a heterodimer receptor consisting of IL-27Rα (WSX1) and gp130 chains, which mediate signaling predominantly through STAT1 and STAT3. IL-27 was initially reported as an immune-enhancing cytokine that supports CD4+ T cell proliferation, T helper (Th)1 cell differentiation, and IFN-γ production, acting in concert with IL-12. However, subsequent studies demonstrated that IL-27 displays complex immune-regulatory functions, which may result in either proinflammatory or anti-inflammatory effects in relationship to the biological context and experimental models considered. Several pieces of evidence, obtained in preclinical tumor models, indicated that IL-27 has a potent antitumor activity, related not only to the induction of tumor-specific Th1 and cytotoxic T lymphocyte (CTL) responses but also to direct inhibitory effects on tumor cell proliferation, survival, invasiveness, and angiogenic potential. Nonetheless, given its immune-regulatory functions, the effects of IL-27 on cancer may be dual and protumor effects may also occur. Here, we will summarize IL-27 biological activities and its functional overlaps with the IFNs and discuss its dual role in tumors in the light of potential applications to cancer immunotherapy.
Collapse
Affiliation(s)
- Marina Fabbi
- Laboratory of Biotherapy, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Grazia Carbotti
- Laboratory of Biotherapy, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Silvano Ferrini
- Laboratory of Biotherapy, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| |
Collapse
|
147
|
Aparicio-Siegmund S, Deseke M, Lickert A, Garbers C. Trans-signaling of interleukin-6 (IL-6) is mediated by the soluble IL-6 receptor, but not by soluble CD5. Biochem Biophys Res Commun 2017; 484:808-812. [PMID: 28159554 DOI: 10.1016/j.bbrc.2017.01.174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/28/2017] [Indexed: 12/20/2022]
Abstract
IL-6 exerts its pleiotropic activities on its target cells via the IL-6 alpha-receptor (IL-6R), which is expressed on a limited number of cell types. IL-6 can further signal via soluble forms of its receptor (sIL-6R), a process that has been termed trans-signaling. Recently, CD5 was described as an alternative alpha-receptor for IL-6 on B cells leading to the phosphorylation of the transcription factor STAT3 via the signal-transducing β-receptor gp130 in a Jak2-dependent manner. In this study, we sought to investigate whether IL-6 was also able to signal via soluble CD5 (sCD5) analogous to IL-6 trans-signaling. We show that IL-6 indeed binds to sCD5, but that this does not lead to the activation of signal transduction or cell proliferation. Furthermore, sCD5 did also not interfere with IL-6 classic signaling, suggesting that the affinity between the two proteins was too weak to provoke a biological effect. Thus, trans-signaling of IL-6 can only occur via sIL-6R, but not sCD5.
Collapse
Affiliation(s)
| | - Malte Deseke
- Institute of Biochemistry, Kiel University, 24118 Kiel, Germany
| | - Annett Lickert
- Institute of Biochemistry, Kiel University, 24118 Kiel, Germany
| | | |
Collapse
|
148
|
Adams R, Burnley RJ, Valenzano CR, Qureshi O, Doyle C, Lumb S, Del Carmen Lopez M, Griffin R, McMillan D, Taylor RD, Meier C, Mori P, Griffin LM, Wernery U, Kinne J, Rapecki S, Baker TS, Lawson ADG, Wright M, Ettorre A. Discovery of a junctional epitope antibody that stabilizes IL-6 and gp80 protein:protein interaction and modulates its downstream signaling. Sci Rep 2017; 7:37716. [PMID: 28134246 PMCID: PMC5278397 DOI: 10.1038/srep37716] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/15/2016] [Indexed: 12/24/2022] Open
Abstract
Protein:protein interactions are fundamental in living organism homeostasis. Here we introduce VHH6, a junctional epitope antibody capable of specifically recognizing a neo-epitope when two proteins interact, albeit transiently, to form a complex. Orthogonal biophysical techniques have been used to prove the "junctional epitope" nature of VHH6, a camelid single domain antibody recognizing the IL-6-gp80 complex but not the individual components alone. X-ray crystallography, HDX-MS and SPR analysis confirmed that the CDR regions of VHH6 interact simultaneously with IL-6 and gp80, locking the two proteins together. At the cellular level, VHH6 was able to alter the response of endothelial cells to exogenous IL-6, promoting a sustained STAT3 phosphorylation signal, an accumulation of IL-6 in vesicles and an overall pro-inflammatory phenotype supported further by transcriptomic analysis. Junctional epitope antibodies, like VHH6, not only offer new opportunities in screening and structure-aided drug discovery, but could also be exploited as therapeutics to modulate complex protein:protein interactions.
Collapse
Affiliation(s)
- Ralph Adams
- New Medicines, UCB-Celltech, 208 Bath Road, SL1 3WE, Slough UK
| | | | | | - Omar Qureshi
- New Medicines, UCB-Celltech, 208 Bath Road, SL1 3WE, Slough UK
| | - Carl Doyle
- New Medicines, UCB-Celltech, 208 Bath Road, SL1 3WE, Slough UK
| | - Simon Lumb
- New Medicines, UCB-Celltech, 208 Bath Road, SL1 3WE, Slough UK
| | | | - Robert Griffin
- New Medicines, UCB-Celltech, 208 Bath Road, SL1 3WE, Slough UK
| | - David McMillan
- New Medicines, UCB-Celltech, 208 Bath Road, SL1 3WE, Slough UK
| | | | - Chris Meier
- New Medicines, UCB-Celltech, 208 Bath Road, SL1 3WE, Slough UK
| | - Prashant Mori
- New Medicines, UCB-Celltech, 208 Bath Road, SL1 3WE, Slough UK
| | - Laura M Griffin
- New Medicines, UCB-Celltech, 208 Bath Road, SL1 3WE, Slough UK
| | - Ulrich Wernery
- Central Veterinary Research Laboratory, P.O.Box 597, Dubai, United Arab Emirates
| | - Jörg Kinne
- Central Veterinary Research Laboratory, P.O.Box 597, Dubai, United Arab Emirates
| | - Stephen Rapecki
- New Medicines, UCB-Celltech, 208 Bath Road, SL1 3WE, Slough UK
| | - Terry S Baker
- New Medicines, UCB-Celltech, 208 Bath Road, SL1 3WE, Slough UK
| | | | - Michael Wright
- New Medicines, UCB-Celltech, 208 Bath Road, SL1 3WE, Slough UK
| | - Anna Ettorre
- New Medicines, UCB-Celltech, 208 Bath Road, SL1 3WE, Slough UK
| |
Collapse
|
149
|
Proteolytic Origin of the Soluble Human IL-6R In Vivo and a Decisive Role of N-Glycosylation. PLoS Biol 2017; 15:e2000080. [PMID: 28060820 PMCID: PMC5218472 DOI: 10.1371/journal.pbio.2000080] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 12/08/2016] [Indexed: 12/15/2022] Open
Abstract
Signaling of the cytokine interleukin-6 (IL-6) via its soluble IL-6 receptor (sIL-6R) is responsible for the proinflammatory properties of IL-6 and constitutes an attractive therapeutic target, but how the sIL-6R is generated in vivo remains largely unclear. Here, we use liquid chromatography–mass spectrometry to identify an sIL-6R form in human serum that originates from proteolytic cleavage, map its cleavage site between Pro-355 and Val-356, and determine the occupancy of all O- and N-glycosylation sites of the human sIL-6R. The metalloprotease a disintegrin and metalloproteinase 17 (ADAM17) uses this cleavage site in vitro, and mutation of Val-356 is sufficient to completely abrogate IL-6R proteolysis. N- and O-glycosylation were dispensable for signaling of the IL-6R, but proteolysis was orchestrated by an N- and O-glycosylated sequon near the cleavage site and an N-glycan exosite in domain D1. Proteolysis of an IL-6R completely devoid of glycans is significantly impaired. Thus, glycosylation is an important regulator for sIL-6R generation. Interleukin-6 (IL-6) is a cytokine secreted by our body upon infection or trauma to stimulate the immune system response. IL-6 is partially responsible for fever and triggers inflammation in many diseases. It activates its target cells via the membrane-bound IL-6 receptor (IL-6R), and soluble forms of this receptor (sIL-6R) are present in high amounts in the serum of healthy individuals and mediate the inflammatory response in all cells of the human body. However, it remains unclear how the soluble form of this cytokine is generated in humans. In this study, we isolate sIL-6R from human serum and show that the majority is produced via cleavage of the membrane-bound IL-6R by a protease. We identify the exact cleavage site and find that it is identical to a cleavage site used by the metalloprotease ADAM17. We further show that glycosylation, a post-transcriptional modification, is dispensable for the transport and biological function of IL-6R and map the occupancy of all O- and N-glycosylation sites. However, we find that only a single N-glycan is critically involved in the regulation of proteolysis by ADAM17 and conclude that glycosylation is an important regulator for sIL-6R generation.
Collapse
|
150
|
Bergmann J, Müller M, Baumann N, Reichert M, Heneweer C, Bolik J, Lücke K, Gruber S, Carambia A, Boretius S, Leuschner I, Becker T, Rabe B, Herkel J, Wunderlich FT, Mittrücker HW, Rose-John S, Schmidt-Arras D. IL-6 trans-signaling is essential for the development of hepatocellular carcinoma in mice. Hepatology 2017; 65:89-103. [PMID: 27770462 DOI: 10.1002/hep.28874] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/08/2016] [Accepted: 09/11/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is one of the most frequent tumors worldwide with rising incidence. The inflammatory cytokine, interleukin-6 (IL-6), is a critical mediator of HCC development. It can signal through two distinct pathways: the IL-6 classic and the IL-6 trans-signaling pathway. Whereas IL-6 classic signaling is important for innate and acquired immunity, IL-6 trans-signaling has been linked to accelerated liver regeneration and several chronic inflammatory pathologies. However, its implication in liver tumorigenesis has not been addressed yet. Here, we show that IL-6 trans-signaling, but not IL-6 classic signaling, is essential to promote hepatocellular carcinogenesis by two mechanisms: First, it prevents DNA-damage-induced hepatocyte apoptosis through suppression of p53 and enhances β-catenin activation and tumor proliferation. Second, IL-6 trans-signaling directly induces endothelial cell proliferation to promote tumor angiogenesis. Consequently, soluble gp130 fused to Fc transgenic mice lacking IL-6 trans-signaling are largely protected from tumor formation in a diethylnitrosamine/3,3',5,5'-tetrachloro-1,4-bis(pyridyloxy)benzene model of HCC. CONCLUSION IL-6 trans-signaling, and not IL-6 classic signaling, is mandatory for development of hepatocellular carcinogenesis. Therefore, specific inhibition of IL-6 trans-signaling, rather than total inhibition of IL-6 signaling, is sufficient to blunt tumor initiation and impair tumor progression without compromising IL-6 classic signaling-driven protective immune responses. (Hepatology 2017;65:89-103).
Collapse
Affiliation(s)
- Juri Bergmann
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany.,Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Miryam Müller
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Niklas Baumann
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Manuel Reichert
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany.,Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Carola Heneweer
- Department of Radiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Julia Bolik
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Karsten Lücke
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Gruber
- Max-Planck-Institute for Metabolism Research, CECAD and Institute for Genetics, Cologne, Germany
| | - Antonella Carambia
- Department of Medicine I, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Boretius
- Department of Radiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ivo Leuschner
- Institute of Pathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thomas Becker
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Björn Rabe
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Johannes Herkel
- Department of Medicine I, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - F Thomas Wunderlich
- Max-Planck-Institute for Metabolism Research, CECAD and Institute for Genetics, Cologne, Germany
| | - Hans-Willi Mittrücker
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Dirk Schmidt-Arras
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|