101
|
Zhang X, Huo C, Liu Y, Su R, Zhao Y, Li Y. Mechanism and Disease Association With a Ubiquitin Conjugating E2 Enzyme: UBE2L3. Front Immunol 2022; 13:793610. [PMID: 35265070 PMCID: PMC8899012 DOI: 10.3389/fimmu.2022.793610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Ubiquitin conjugating enzyme E2 is an important component of the post-translational protein ubiquitination pathway, which mediates the transfer of activated ubiquitin to substrate proteins. UBE2L3, also called UBcH7, is one of many E2 ubiquitin conjugating enzymes that participate in the ubiquitination of many substrate proteins and regulate many signaling pathways, such as the NF-κB, GSK3β/p65, and DSB repair pathways. Studies on UBE2L3 have found that it has an abnormal expression in many diseases, mainly immune diseases, tumors and Parkinson's disease. It can also promote the occurrence and development of these diseases. Resultantly, UBE2L3 may become an important target for some diseases. Herein, we review the structure of UBE2L3, and its mechanism in diseases, as well as diseases related to UBE2L3 and discuss the related challenges.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Chengdong Huo
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yating Liu
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Ruiliang Su
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yang Zhao
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yumin Li
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
102
|
Woida PJ, Satchell KJF. Bacterial Toxin and Effector Regulation of Intestinal Immune Signaling. Front Cell Dev Biol 2022; 10:837691. [PMID: 35252199 PMCID: PMC8888934 DOI: 10.3389/fcell.2022.837691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
The host immune response is highly effective to detect and clear infecting bacterial pathogens. Given the elaborate surveillance systems of the host, it is evident that in order to productively infect a host, the bacteria often coordinate virulence factors to fine-tune the host response during infection. These coordinated events can include either suppressing or activating the signaling pathways that control the immune response and thereby promote bacterial colonization and infection. This review will cover the surveillance and signaling systems for detection of bacteria in the intestine and a sample of the toxins and effectors that have been characterized that cirumvent these signaling pathways. These factors that promote infection and disease progression have also been redirected as tools or therapeutics. Thus, these toxins are enemies deployed to enhance infection, but can also be redeployed as allies to enable research and protect against infection.
Collapse
|
103
|
Martín-Vicente M, Resino S, Martínez I. Early innate immune response triggered by the human respiratory syncytial virus and its regulation by ubiquitination/deubiquitination processes. J Biomed Sci 2022; 29:11. [PMID: 35152905 PMCID: PMC8841119 DOI: 10.1186/s12929-022-00793-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/28/2022] [Indexed: 12/25/2022] Open
Abstract
The human respiratory syncytial virus (HRSV) causes severe lower respiratory tract infections in infants and the elderly. An exuberant inadequate immune response is behind most of the pathology caused by the HRSV. The main targets of HRSV infection are the epithelial cells of the respiratory tract, where the immune response against the virus begins. This early innate immune response consists of the expression of hundreds of pro-inflammatory and anti-viral genes that stimulates subsequent innate and adaptive immunity. The early innate response in infected cells is mediated by intracellular signaling pathways composed of pattern recognition receptors (PRRs), adapters, kinases, and transcriptions factors. These pathways are tightly regulated by complex networks of post-translational modifications, including ubiquitination. Numerous ubiquitinases and deubiquitinases make these modifications reversible and highly dynamic. The intricate nature of the signaling pathways and their regulation offers the opportunity for fine-tuning the innate immune response against HRSV to control virus replication and immunopathology.
Collapse
Affiliation(s)
- María Martín-Vicente
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Isidoro Martínez
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
104
|
Ghorbaninezhad F, Leone P, Alemohammad H, Najafzadeh B, Nourbakhsh NS, Prete M, Malerba E, Saeedi H, Tabrizi NJ, Racanelli V, Baradaran B. Tumor necrosis factor‑α in systemic lupus erythematosus: Structure, function and therapeutic implications (Review). Int J Mol Med 2022; 49:43. [PMID: 35137914 DOI: 10.3892/ijmm.2022.5098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/05/2022] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor‑α (TNF‑α) is a pleiotropic pro‑inflammatory cytokine that contributes to the pathophysiology of several autoimmune diseases, such as multiple sclerosis, inflammatory bowel disease, rheumatoid arthritis, psoriatic arthritis and systemic lupus erythematosus (SLE). The specific role of TNF‑α in autoimmunity is not yet fully understood however, partially, in a complex disease such as SLE. Through the engagement of the TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2), both the two variants, soluble and transmembrane TNF‑α, can exert multiple biological effects according to different settings. They can either function as immune regulators, impacting B‑, T‑ and dendritic cell activity, modulating the autoimmune response, or as pro‑inflammatory mediators, regulating the induction and maintenance of inflammatory processes in SLE. The present study reviews the dual role of TNF‑α, focusing on the different effects that TNF‑α may have on the pathogenesis of SLE. In addition, the efficacy and safety of anti‑TNF‑α therapies in preclinical and clinical trials SLE are discussed.
Collapse
Affiliation(s)
- Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan 5165665811, Iran
| | - Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, 'Aldo Moro' University of Bari Medical School, I‑70124 Bari, Italy
| | - Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, East Azerbaijan 5166616471, Iran
| | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, East Azerbaijan 5166616471, Iran
| | - Niloufar Sadat Nourbakhsh
- Department of Genetics, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Fars 7319846451, Iran
| | - Marcella Prete
- Department of Biomedical Sciences and Human Oncology, 'Aldo Moro' University of Bari Medical School, I‑70124 Bari, Italy
| | - Eleonora Malerba
- Department of Biomedical Sciences and Human Oncology, 'Aldo Moro' University of Bari Medical School, I‑70124 Bari, Italy
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan 5165665811, Iran
| | - Neda Jalili Tabrizi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan 5165665811, Iran
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, 'Aldo Moro' University of Bari Medical School, I‑70124 Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan 5165665811, Iran
| |
Collapse
|
105
|
Shen XL, Yuan JF, Qin XH, Song GP, Hu HB, Tu HQ, Song ZQ, Li PY, Xu YL, Li S, Jian XX, Li JN, He CY, Yu XP, Liang LY, Wu M, Han QY, Wang K, Li AL, Zhou T, Zhang YC, Wang N, Li HY. LUBAC regulates ciliogenesis by promoting CP110 removal from the mother centriole. J Cell Biol 2022; 221:212875. [PMID: 34813648 PMCID: PMC8614155 DOI: 10.1083/jcb.202105092] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/13/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
Primary cilia transduce diverse signals in embryonic development and adult tissues. Defective ciliogenesis results in a series of human disorders collectively known as ciliopathies. The CP110–CEP97 complex removal from the mother centriole is an early critical step for ciliogenesis, but the underlying mechanism for this step remains largely obscure. Here, we reveal that the linear ubiquitin chain assembly complex (LUBAC) plays an essential role in ciliogenesis by targeting the CP110–CEP97 complex. LUBAC specifically generates linear ubiquitin chains on CP110, which is required for CP110 removal from the mother centriole in ciliogenesis. We further identify that a pre-mRNA splicing factor, PRPF8, at the distal end of the mother centriole acts as the receptor of the linear ubiquitin chains to facilitate CP110 removal at the initial stage of ciliogenesis. Thus, our study reveals a direct mechanism of regulating CP110 removal in ciliogenesis and implicates the E3 ligase LUBAC as a potential therapy target of cilia-associated diseases, including ciliopathies and cancers.
Collapse
Affiliation(s)
- Xiao-Lin Shen
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Jin-Feng Yuan
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Xuan-He Qin
- School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai East Hospital, Tongji University, Shanghai, China
| | - Guang-Ping Song
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Huai-Bin Hu
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Hai-Qing Tu
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Zeng-Qing Song
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Pei-Yao Li
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Yu-Ling Xu
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Sen Li
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Xiao-Xiao Jian
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Jia-Ning Li
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Chun-Yu He
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Xi-Ping Yu
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Li-Yun Liang
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Min Wu
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Qiu-Ying Han
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Kai Wang
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Ai-Ling Li
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Tao Zhou
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Yu-Cheng Zhang
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Na Wang
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Hui-Yan Li
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China.,School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
106
|
Villamil M, Xiao W, Yu C, Huang L, Xu P, Kaiser P. The Ubiquitin Interacting Motif-Like Domain of Met4 Selectively Binds K48 Polyubiquitin Chains. Mol Cell Proteomics 2022; 21:100175. [PMID: 34763062 PMCID: PMC8693465 DOI: 10.1016/j.mcpro.2021.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 10/13/2021] [Accepted: 11/05/2021] [Indexed: 11/20/2022] Open
Abstract
Protein ubiquitylation is an important posttranslational modification that governs most cellular processes. Signaling functions of ubiquitylation are very diverse and involve proteolytic as well as nonproteolytic events, such as localization, regulation of protein interactions, and control of protein activity. The intricacy of ubiquitin signaling is further complicated by several different polyubiquitin chain types that are likely recognized and interpreted by different protein readers. For example, K48-linked ubiquitin chains represent the most abundant chain topology and are the canonical degradation signals, but have been implicated in degradation-independent functions as well, likely requiring a variety of protein readers. Ubiquitin binding domains that interact with polyubiquitin chains are likely at the center of ubiquitin signal recognition and transmission, but their structure and selectivity are largely unexplored. Here we report identification and characterization of the ubiquitin interacting motif-like (UIML) domain of the yeast transcription factor Met4 as a strictly K48-polyubiquitin specific binding unit using methods such as biolayer interferometry (BLI), pull-down assays, and mass spectrometry. We further used the selective binding property to develop an affinity probe for purification of proteins modified with K48-linked polyubiquitin chains. The affinity probe has a Kd = 100 nM for K48 tetra-ubiquitin and shows no detectable interaction with either monoubiquitin or any other polyubiquitin chain configuration. Our results define a short strictly K48-linkage-dependent binding motif and present a new affinity reagent for the K48-polyubiquitin-modified proteome. Our findings benefit the ubiquitin field in analyses of the role of K48-linked polyubiquitylation and increase our understanding of chain topology selective ubiquitin chain recognition.
Collapse
Affiliation(s)
- Mark Villamil
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Weidi Xiao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Clinton Yu
- Department of Physiology & Biophysics, University of California Irvine, Irvine, California, USA
| | - Lan Huang
- Department of Physiology & Biophysics, University of California Irvine, Irvine, California, USA
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Peter Kaiser
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA.
| |
Collapse
|
107
|
Gopalakrishnan J, Tessneer KL, Fu Y, Pasula S, Pelikan RC, Kelly JA, Wiley GB, Gaffney PM. Variants on the UBE2L3/YDJC Autoimmune Disease Risk Haplotype Increase UBE2L3 Expression by Modulating CCCTC-Binding Factor and YY1 Binding. Arthritis Rheumatol 2022; 74:163-173. [PMID: 34279042 PMCID: PMC8712360 DOI: 10.1002/art.41925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/10/2021] [Accepted: 07/08/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Genetic variants spanning UBE2L3 are associated with increased expression of the UBE2L3-encoded E2 ubiquitin-conjugating enzyme H7 (UbcH7), which facilitates activation of proinflammatory NF-κB signaling and susceptibility to autoimmune diseases. We undertook this study to delineate how genetic variants carried on the UBE2L3/YDJC autoimmune risk haplotype function to drive hypermorphic UBE2L3 expression. METHODS We used bioinformatic analyses, electrophoretic mobility shift assays, and luciferase reporter assays to identify and functionally characterize allele-specific effects of risk variants positioned in chromatin accessible regions of immune cells. Chromatin conformation capture with quantitative polymerase chain reaction (3C-qPCR), chromatin immunoprecipitation (ChIP)-qPCR, and small interfering RNA (siRNA) knockdown assays were performed on patient-derived Epstein-Barr virus-transformed B cells homozygous for the UBE2L3/YDJC nonrisk or risk haplotype to determine if the risk haplotype increases UBE2L3 expression by altering the regulatory chromatin architecture in the region. RESULTS Of the 7 prioritized variants, 5 demonstrated allele-specific increases in nuclear protein binding affinity and regulatory activity. High-throughput sequencing of chromosome conformation capture coupled with ChIP (HiChIP) and 3C-qPCR uncovered a long-range interaction between the UBE2L3 promoter (rs140490, rs140491, rs11089620) and the downstream YDJC promoter (rs3747093) that was strengthened in the presence of the UBE2L3/YDJC risk haplotype, and correlated with the loss of CCCTC-binding factor (CTCF) and gain of YY1 binding at the risk alleles. Depleting YY1 by siRNA disrupted the long-range interaction between the 2 promoters and reduced UBE2L3 expression. CONCLUSION The UBE2L3/YDJC autoimmune risk haplotype increases UBE2L3 expression through strengthening a YY1-mediated interaction between the UBE2L3 and YDJC promoters.
Collapse
Affiliation(s)
- Jaanam Gopalakrishnan
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Kandice L. Tessneer
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Yao Fu
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Satish Pasula
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Richard C. Pelikan
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Jennifer A. Kelly
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Graham B. Wiley
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Patrick M. Gaffney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA,To whom correspondence should be addressed Patrick M. Gaffney, MD, Chair, Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, MS 57, Oklahoma City, Oklahoma 73104, Tel: 405-271-2572, Fax: 405-271-2536,
| |
Collapse
|
108
|
HOIL1 regulates group 2 innate lymphoid cell numbers and type 2 inflammation in the small intestine. Mucosal Immunol 2022; 15:642-655. [PMID: 35534698 PMCID: PMC9259497 DOI: 10.1038/s41385-022-00520-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 04/08/2022] [Accepted: 04/23/2022] [Indexed: 02/04/2023]
Abstract
Patients with mutations in HOIL1 experience a complex immune disorder including intestinal inflammation. To investigate the role of HOIL1 in regulating intestinal inflammation, we employed a mouse model of partial HOIL1 deficiency. The ileum of HOIL1-deficient mice displayed features of type 2 inflammation including tuft cell and goblet cell hyperplasia, and elevated expression of Il13, Il5 and Il25 mRNA. Inflammation persisted in the absence of T and B cells, and bone marrow chimeric mice revealed a requirement for HOIL1 expression in radiation-resistant cells to regulate inflammation. Although disruption of IL-4 receptor alpha (IL4Rα) signaling on intestinal epithelial cells ameliorated tuft and goblet cell hyperplasia, expression of Il5 and Il13 mRNA remained elevated. KLRG1hi CD90lo group 2 innate lymphoid cells were increased independent of IL4Rα signaling, tuft cell hyperplasia and IL-25 induction. Antibiotic treatment dampened intestinal inflammation indicating commensal microbes as a contributing factor. We have identified a key role for HOIL1, a component of the Linear Ubiquitin Chain Assembly Complex, in regulating type 2 inflammation in the small intestine. Understanding the mechanism by which HOIL1 regulates type 2 inflammation will advance our understanding of intestinal homeostasis and inflammatory disorders and may lead to the identification of new targets for treatment.
Collapse
|
109
|
Biochemical and functional characterization of the N-terminal ubiquitin-like domain of human SHARPIN. Protein Expr Purif 2021; 192:106042. [PMID: 34965468 DOI: 10.1016/j.pep.2021.106042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/20/2022]
Abstract
SHARPIN, an accessory subunit of the E3 ligase complex LUBAC, participates in the formation of LUBAC through the ubiquitin-like (UBL) domain located in the central region of SHARPIN and interacts with the ubiquitin-associated domain (UBA) of the catalytic subunit HOIP. However, the role of the N-terminal UBL domain of SHARPIN in stable LUBAC formation has not been clarified. In this study, the 1-127 domain, 128-309 domain, and UBL domain of SHARPIN expression vectors were constructed using the molecular biology method. Then the co-expression of SUMO fusion protein combined with SUMO protease (ULP enzyme) in Escherichia coli was successfully applied to improve the soluble expression of target protein. The results of circular dichroism proved that they all belong to the α+β class of proteins. The results of size exclusion chromatography showed that 128-309 domain could combine with HOIP and HOIL-1L to participate in the stability of LUBAC. Both thermal-induced and urea-induced unfolding experiment results demonstrated that the existence of the N-terminal UBL domain could make the overall structure more stable than the alone UBL domain. Biosensor experiments indicated that the existence of the N-terminal UBL domain strengthened the binding ability of the UBL domain and the UBA domain. These results were conducive to further study the structure and function of SHARPIN.
Collapse
|
110
|
Ang RL, Chan M, Legarda D, Sundberg JP, Sun SC, Gillespie VL, Chun N, Heeger PS, Xiong H, Lira SA, Ting AT. Immune dysregulation in SHARPIN-deficient mice is dependent on CYLD-mediated cell death. Proc Natl Acad Sci U S A 2021; 118:e2001602118. [PMID: 34887354 PMCID: PMC8685717 DOI: 10.1073/pnas.2001602118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/31/2022] Open
Abstract
SHARPIN, together with RNF31/HOIP and RBCK1/HOIL1, form the linear ubiquitin chain assembly complex (LUBAC) E3 ligase that catalyzes M1-linked polyubiquitination. Mutations in RNF31/HOIP and RBCK/HOIL1 in humans and Sharpin in mice lead to autoinflammation and immunodeficiency, but the mechanism underlying the immune dysregulation remains unclear. We now show that the phenotype of the Sharpincpdm/cpdm mice is dependent on CYLD, a deubiquitinase previously shown to mediate removal of K63-linked polyubiquitin chains. Dermatitis, disrupted splenic architecture, and loss of Peyer's patches in the Sharpincpdm/cpdm mice were fully reversed in Sharpincpdm/cpdm Cyld-/- mice. We observed enhanced association of RIPK1 with the death-signaling Complex II following TNF stimulation in Sharpincpdm/cpdm cells, a finding dependent on CYLD since we observed reversal in Sharpincpdm/cpdm Cyld-/- cells. Enhanced RIPK1 recruitment to Complex II in Sharpincpdm/cpdm cells correlated with impaired phosphorylation of CYLD at serine 418, a modification reported to inhibit its enzymatic activity. The dermatitis in the Sharpincpdm/cpdm mice was also ameliorated by the conditional deletion of Cyld using LysM-cre or Cx3cr1-cre indicating that CYLD-dependent death of myeloid cells is inflammatory. Our studies reveal that under physiological conditions, TNF- and RIPK1-dependent cell death is suppressed by the linear ubiquitin-dependent inhibition of CYLD. The Sharpincpdm/cpdm phenotype illustrates the pathological consequences when CYLD inhibition fails.
Collapse
Affiliation(s)
- Rosalind L Ang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
| | - Mark Chan
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | - Diana Legarda
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Shao-Cong Sun
- Department of Immunology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030
| | - Virginia L Gillespie
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Nicholas Chun
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Translational Transplant Research Center, Recanati Miller Transplant Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Peter S Heeger
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Translational Transplant Research Center, Recanati Miller Transplant Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Huabao Xiong
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sergio A Lira
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Adrian T Ting
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
- Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
111
|
Dai X, Zhang T, Hua D. Ubiquitination and SUMOylation: protein homeostasis control over cancer. Epigenomics 2021; 14:43-58. [PMID: 34875856 DOI: 10.2217/epi-2021-0371] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ubiquitination and SUMOylation are two essential components of the ubiquitination proteasome system playing fundamental roles in protein homeostasis maintenance and signal transduction, perturbation of which is associated with tumorigenesis. By comparing the mechanisms of ubiquitination and SUMOylation, assessing their crosstalk, reviewing their differential associations with cancer and identifying unaddressed yet important questions that may lead the field trend, this review sheds light on the similarities and differences of ubiquitination and SUMOylation toward the improved harnessing of both post-translational modification machineries, as well as forecasts novel onco-therapeutic opportunities through cell homeostasis control.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122,China
| | - Tongxin Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122,China
| | - Dong Hua
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122,China.,Wuxi People's Hospital, Wuxi, 214023, China.,Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
112
|
Du J, Xiang Y, Liu H, Liu S, Kumar A, Xing C, Wang Z. RIPK1 dephosphorylation and kinase activation by PPP1R3G/PP1γ promote apoptosis and necroptosis. Nat Commun 2021; 12:7067. [PMID: 34862394 PMCID: PMC8642546 DOI: 10.1038/s41467-021-27367-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 11/11/2021] [Indexed: 01/10/2023] Open
Abstract
Receptor-interacting protein kinase 1 (RIPK1) is a key regulator of inflammation and cell death. Many sites on RIPK1, including serine 25, are phosphorylated to inhibit its kinase activity and cell death. How these inhibitory phosphorylation sites are dephosphorylated is poorly understood. Using a sensitized CRISPR whole-genome knockout screen, we discover that protein phosphatase 1 regulatory subunit 3G (PPP1R3G) is required for RIPK1-dependent apoptosis and type I necroptosis. Mechanistically, PPP1R3G recruits its catalytic subunit protein phosphatase 1 gamma (PP1γ) to complex I to remove inhibitory phosphorylations of RIPK1. A PPP1R3G mutant which does not bind PP1γ fails to rescue RIPK1 activation and cell death. Furthermore, chemical prevention of RIPK1 inhibitory phosphorylations or mutation of serine 25 of RIPK1 to alanine largely restores cell death in PPP1R3G-knockout cells. Finally, Ppp1r3g-/- mice are protected from tumor necrosis factor-induced systemic inflammatory response syndrome, confirming the important role of PPP1R3G in regulating apoptosis and necroptosis in vivo.
Collapse
Affiliation(s)
- Jingchun Du
- grid.267313.20000 0000 9482 7121Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 USA ,grid.410737.60000 0000 8653 1072Department of Clinical Immunology, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510182 China
| | - Yougui Xiang
- grid.267313.20000 0000 9482 7121Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 USA ,grid.492659.50000 0004 0492 4462Caris Life Sciences, 4610 South 44th Place, Phoenix, AZ 85040 USA
| | - Hua Liu
- grid.267313.20000 0000 9482 7121Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 USA ,School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006 China
| | - Shuzhen Liu
- grid.267313.20000 0000 9482 7121Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 USA
| | - Ashwani Kumar
- grid.267313.20000 0000 9482 7121Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 USA
| | - Chao Xing
- grid.267313.20000 0000 9482 7121Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 USA ,grid.267313.20000 0000 9482 7121Department of Bioinformatics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 USA ,grid.267313.20000 0000 9482 7121Department of Population and Data Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 USA
| | - Zhigao Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA. .,Center for Regenerative Medicine, Heart Institute, Department of Internal Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL, 33602, USA.
| |
Collapse
|
113
|
Abstract
The receptor-interacting protein kinase 1 (RIPK1) is recognized as a master upstream regulator that controls cell survival and inflammatory signaling as well as multiple cell death pathways, including apoptosis and necroptosis. The activation of RIPK1 kinase is extensively modulated by ubiquitination and phosphorylation, which are mediated by multiple factors that also control the activation of the NF-κB pathway. We discuss current findings regarding the genetic modulation of RIPK1 that controls its activation and interaction with downstream mediators, such as caspase-8 and RIPK3, to promote apoptosis and necroptosis. We also address genetic autoinflammatory human conditions that involve abnormal activation of RIPK1. Leveraging these new genetic and mechanistic insights, we postulate how an improved understanding of RIPK1 biology may support the development of therapeutics that target RIPK1 for the treatment of human inflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China;
| | - Chengyu Zou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China;
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China;
| |
Collapse
|
114
|
Rogers RS, Parker A, Vainer PD, Elliott E, Sudbeck D, Parimi K, Peddada VP, Howe PG, D’Ambrosio N, Ruddy G, Stackable K, Carney M, Martin L, Osterholt T, Staudinger JL. The Interface between Cell Signaling Pathways and Pregnane X Receptor. Cells 2021; 10:cells10113262. [PMID: 34831484 PMCID: PMC8617909 DOI: 10.3390/cells10113262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
Highly expressed in the enterohepatic system, pregnane X receptor (PXR, NR1I2) is a well-characterized nuclear receptor (NR) that regulates the expression of genes in the liver and intestines that encode key drug metabolizing enzymes and drug transporter proteins in mammals. The net effect of PXR activation is to increase metabolism and clear drugs and xenobiotics from the body, producing a protective effect and mediating clinically significant drug interaction in patients on combination therapy. The complete understanding of PXR biology is thus important for the development of safe and effective therapeutic strategies. Furthermore, PXR activation is now known to specifically transrepress the inflammatory- and nutrient-signaling pathways of gene expression, thereby providing a mechanism for linking these signaling pathways together with enzymatic drug biotransformation pathways in the liver and intestines. Recent research efforts highlight numerous post-translational modifications (PTMs) which significantly influence the biological function of PXR. However, this thrust of research is still in its infancy. In the context of gene-environment interactions, we present a review of the recent literature that implicates PXR PTMs in regulating its clinically relevant biology. We also provide a discussion of how these PTMs likely interface with each other to respond to extracellular cues to appropriately modify PXR activity.
Collapse
Affiliation(s)
- Robert S. Rogers
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Annemarie Parker
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Phill D. Vainer
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Elijah Elliott
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Dakota Sudbeck
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Kaushal Parimi
- Thomas Jefferson Independent Day School, Joplin, MO 64801, USA;
| | - Venkata P. Peddada
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Parker G. Howe
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Nick D’Ambrosio
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Gregory Ruddy
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Kaitlin Stackable
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Megan Carney
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Lauren Martin
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Thomas Osterholt
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Jeff L. Staudinger
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
- Correspondence:
| |
Collapse
|
115
|
Gomez-Diaz C, Jonsson G, Schodl K, Deszcz L, Bestehorn A, Eislmayr K, Almagro J, Kavirayani A, Seida M, Fennell LM, Hagelkruys A, Kovarik P, Penninger JM, Ikeda F. The ubiquitin ligase HOIL-1L regulates immune responses by interacting with linear ubiquitin chains. iScience 2021; 24:103241. [PMID: 34755089 PMCID: PMC8561004 DOI: 10.1016/j.isci.2021.103241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/30/2021] [Accepted: 10/05/2021] [Indexed: 11/28/2022] Open
Abstract
The Linear Ubiquitin Chain Assembly Complex (LUBAC), composed of HOIP, HOIL-1L, and SHARPIN, promotes tumor necrosis factor (TNF)-dependent NF-κB signaling in diverse cell types. HOIL-1L contains an Npl4 Zinc Finger (NZF) domain that specifically recognizes linear ubiquitin chains, but its physiological role in vivo has remained unclear. Here, we demonstrate that the HOIL-1L NZF domain has important regulatory functions in inflammation and immune responses in mice. We generated knockin mice (Hoil-1lT201A;R208A/T201A;R208A) expressing a HOIL-1L NZF mutant and observed attenuated responses to TNF- and LPS-induced shock, including prolonged survival, stabilized body temperature, reduced cytokine production, and liver damage markers. Cells derived from Hoil-1lT201A;R208A/T201A;R208A mice show reduced TNF-dependent NF-κB activation and incomplete recruitment of HOIL-1L into TNF Receptor (TNFR) Complex I. We further show that HOIL-1L NZF cooperates with SHARPIN to prevent TNFR-dependent skin inflammation. Collectively, our data suggest that linear ubiquitin-chain binding by HOIL-1L regulates immune responses and inflammation in vivo. An RBR-type E3 ligase HOIL-1L decodes linear ubiquitin chains via the NZF domain HOIL-1L NZF is essential for proper responses to LPS and TNF-induced shock in mice Intact HOIL-1L NZF is required for activating the TNF-induced NF-kB pathway HOIL-1L NZF cooperates with SHARPIN to control inflammation in mice
Collapse
Affiliation(s)
- Carlos Gomez-Diaz
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Gustav Jonsson
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Katrin Schodl
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Luiza Deszcz
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Annika Bestehorn
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Kevin Eislmayr
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Jorge Almagro
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Anoop Kavirayani
- Vienna Biocenter Core Facilities (VBCF), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Mayu Seida
- Medical Institute of Bioregulation (MIB), Kyushu University, Fukuoka 812-8582, Japan
| | - Lilian M Fennell
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Astrid Hagelkruys
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Pavel Kovarik
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Josef M Penninger
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria.,Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Fumiyo Ikeda
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria.,Medical Institute of Bioregulation (MIB), Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
116
|
Kats I, Reinbold C, Kschonsak M, Khmelinskii A, Armbruster L, Ruppert T, Knop M. Up-regulation of ubiquitin-proteasome activity upon loss of NatA-dependent N-terminal acetylation. Life Sci Alliance 2021; 5:5/2/e202000730. [PMID: 34764209 PMCID: PMC8605321 DOI: 10.26508/lsa.202000730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/26/2022] Open
Abstract
Inactivation of N-terminal acetyltransferase A is found to alter Rpn4 as well as E3 ligase abundance, causing up-regulation of Ubiquitin–proteasome activity. In this context, Tom1 is also identified as a novel chain-elongating enzyme of the UFD-pathway. N-terminal acetylation is a prominent protein modification, and inactivation of N-terminal acetyltransferases (NATs) cause protein homeostasis stress. Using multiplexed protein stability profiling with linear ubiquitin fusions as reporters for the activity of the ubiquitin proteasome system, we observed increased ubiquitin proteasome system activity in NatA, but not NatB or NatC mutants. We find several mechanisms contributing to this behavior. First, NatA-mediated acetylation of the N-terminal ubiquitin–independent degron regulates the abundance of Rpn4, the master regulator of the expression of proteasomal genes. Second, the abundance of several E3 ligases involved in degradation of UFD substrates is increased in cells lacking NatA. Finally, we identify the E3 ligase Tom1 as a novel chain-elongating enzyme (E4) involved in the degradation of linear ubiquitin fusions via the formation of branched K11, K29, and K48 ubiquitin chains, independently of the known E4 ligases involved in UFD, leading to enhanced ubiquitination of the UFD substrates.
Collapse
Affiliation(s)
- Ilia Kats
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Christian Reinbold
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Marc Kschonsak
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | - Laura Armbruster
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Thomas Ruppert
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany .,Deutsches Krebsforschungszentrum (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
117
|
Cabrera SF, Muratore ME, Buijnsters P. The intriguing role of USP30 inhibitors as deubiquitinating enzymes from the patent literature since 2013. Expert Opin Ther Pat 2021; 32:523-559. [PMID: 34743664 DOI: 10.1080/13543776.2022.2003780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION : Ubiquitin specific peptidase 30 (USP30) is a mitochondrial deubiquitinase that antagonizes ubiquitination-mediated mitophagy of damaged or impaired mitochondria driven by the activity of PARK2/Parkin ubiquitin ligase and PINK1 protein kinase. Researchers have related low levels of USP30 to enhanced mitophagy and therefore have been pursuing mitophagy activation utilizing USP30 inhibitors as an alternative approach to target neurodegenerative disorders and other human diseases associated with defective mitophagy. AREAS COVERED : This review covers the research and patent literature on the discovery and development of USP30 inhibitors since 2013. EXPERT OPINION : Strategies towards mitophagy activation utilizing small-molecule inhibitors of USP30 have emerged as alternative pathways for the potential treatment of many human diseases. Research efforts have led to identifying good potent and selective small-molecule USP30 inhibitors. Most small-molecule USP30 inhibitors share a common N-cyano motif that binds covalently to the target. Non-covalently binding inhibitors have recently been disclosed as well. Lead compounds exhibit satisfactory inhibitory activities and are currently in preclinical development. Regrettably, complete pharmacological characterization and in vivo evaluation to validate and prove the therapeutic potential is lacking. Target validation could pave the way for discovering and developing USP30 inhibitors that could ultimately lead to marketed drugs.
Collapse
Affiliation(s)
- Sofia Ferrer Cabrera
- A Division of Janssen Pharmaceutica NV, Discovery Chemistry department, Discovery, Product Development & Supply, Janssen Research and Development, Beerse, Belgium
| | - Michael E Muratore
- A Division of Janssen Pharmaceutica NV, Discovery Chemistry department, Discovery, Product Development & Supply, Janssen Research and Development, Beerse, Belgium
| | - Peter Buijnsters
- A Division of Janssen Pharmaceutica NV, Discovery Chemistry department, Discovery, Product Development & Supply, Janssen Research and Development, Beerse, Belgium
| |
Collapse
|
118
|
Tripathi-Giesgen I, Behrends C, Alpi AF. The ubiquitin ligation machinery in the defense against bacterial pathogens. EMBO Rep 2021; 22:e52864. [PMID: 34515402 PMCID: PMC8567218 DOI: 10.15252/embr.202152864] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/21/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
The ubiquitin system is an important part of the host cellular defense program during bacterial infection. This is in particular evident for a number of bacteria including Salmonella Typhimurium and Mycobacterium tuberculosis which—inventively as part of their invasion strategy or accidentally upon rupture of seized host endomembranes—become exposed to the host cytosol. Ubiquitylation is involved in the detection and clearance of these bacteria as well as in the activation of innate immune and inflammatory signaling. Remarkably, all these defense responses seem to emanate from a dense layer of ubiquitin which coats the invading pathogens. In this review, we focus on the diverse group of host cell E3 ubiquitin ligases that help to tailor this ubiquitin coat. In particular, we address how the divergent ubiquitin conjugation mechanisms of these ligases contribute to the complexity of the anti‐bacterial coating and the recruitment of different ubiquitin‐binding effectors. We also discuss the activation and coordination of the different E3 ligases and which strategies bacteria evolved to evade the activities of the host ubiquitin system.
Collapse
Affiliation(s)
- Ishita Tripathi-Giesgen
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Christian Behrends
- Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, Ludwig-Maximilians-University München, München, Germany
| | - Arno F Alpi
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
119
|
Fung SY, Lu HY, Sharma M, Sharma AA, Saferali A, Jia A, Abraham L, Klein T, Gold MR, Noterangelo LD, Overall CM, Turvey SE. MALT1-Dependent Cleavage of HOIL1 Modulates Canonical NF-κB Signaling and Inflammatory Responsiveness. Front Immunol 2021; 12:749794. [PMID: 34721419 PMCID: PMC8552041 DOI: 10.3389/fimmu.2021.749794] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Nuclear factor kappa B (NF-κB) is a critical transcription factor involved in regulating cell activation, inflammation, and survival. The linear ubiquitin chain assembly complex (LUBAC) which consists of HOIL1, HOIP, and SHARPIN, catalyzes the linear ubiquitination of target proteins—a post-translational modification that is essential for NF-κB activation. Human germline pathogenic variants that dysregulate linear ubiquitination and NF-κB signaling are associated with immunodeficiency and/or autoinflammation including dermatitis, recurrent fevers, systemic inflammation and enteropathy. We previously identified MALT1 paracaspase as a novel negative regulator of LUBAC by proteolytic cleavage of HOIL1. To directly investigate the impact of HOIL1 cleavage activity on the inflammatory response, we employed a stable transduction system to express and directly compare non-cleavable HOIL1 with wild-type HOIL1 in primary HOIL1-deficient patient skin fibroblasts. We discovered that non-cleavable HOIL1 resulted in enhanced NF-κB signaling in response to innate stimuli. Transcriptomics revealed enrichment of inflammation and proinflammatory cytokine-related pathways after stimulation. Multiplexed cytokine assays confirmed a ‘hyperinflammatory’ phenotype in these cells. This work highlights the physiological importance of MALT1-dependent cleavage and modulation of HOIL1 on NF-κB signaling and inflammation, provides a mechanism for the autoinflammation observed in MALT1-deficient patients, and will inform the development of therapeutics that target MALT1 paracaspase and LUBAC function in treating autoinflammatory skin diseases.
Collapse
Affiliation(s)
- Shan-Yu Fung
- Department of Pediatrics, British Columbia Children's Hospital and The University of British Columbia, Vancouver, BC, Canada.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics and Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Henry Y Lu
- Department of Pediatrics, British Columbia Children's Hospital and The University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Mehul Sharma
- Department of Pediatrics, British Columbia Children's Hospital and The University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Ashish A Sharma
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Aabida Saferali
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Alicia Jia
- Department of Pediatrics, British Columbia Children's Hospital and The University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Libin Abraham
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Theo Klein
- Department of Analytical Solutions, Ducares/Triskelion BV, Utrecht, Netherlands
| | - Michael R Gold
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Luigi D Noterangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Christopher M Overall
- Department of Biochemistry and Molecular Biology, Department of Oral Biological and Medical Science, Center for Blood Research, The University of British Columbia, Vancouver, BC, Canada
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital and The University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
120
|
Linear Ubiquitination Mediates EGFR-Induced NF-κB Pathway and Tumor Development. Int J Mol Sci 2021; 22:ijms222111875. [PMID: 34769306 PMCID: PMC8585052 DOI: 10.3390/ijms222111875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/03/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that instigates several signaling cascades, including the NF-κB signaling pathway, to induce cell differentiation and proliferation. Overexpression and mutations of EGFR are found in up to 30% of solid tumors and correlate with a poor prognosis. Although it is known that EGFR-mediated NF-κB activation is involved in tumor development, the signaling axis is not well elucidated. Here, we found that plakophilin 2 (PKP2) and the linear ubiquitin chain assembly complex (LUBAC) were required for EGFR-mediated NF-κB activation. Upon EGF stimulation, EGFR recruited PKP2 to the plasma membrane, and PKP2 bridged HOIP, the catalytic E3 ubiquitin ligase in the LUBAC, to the EGFR complex. The recruitment activated the LUBAC complex and the linear ubiquitination of NEMO, leading to IκB phosphorylation and subsequent NF-κB activation. Furthermore, EGF-induced linear ubiquitination was critical for tumor cell proliferation and tumor development. Knockout of HOIP impaired EGF-induced NF-κB activity and reduced cell proliferation. HOIP knockout also abrogated the growth of A431 epidermal xenograft tumors in nude mice by more than 70%. More importantly, the HOIP inhibitor, HOIPIN-8, inhibited EGFR-mediated NF-κB activation and cell proliferation of A431, MCF-7, and MDA-MB-231 cancer cells. Overall, our study reveals a novel linear ubiquitination signaling axis of EGFR and that perturbation of HOIP E3 ubiquitin ligase activity is potential targeted cancer therapy.
Collapse
|
121
|
LUBAC: a new player in polyglucosan body disease. Biochem Soc Trans 2021; 49:2443-2454. [PMID: 34709403 PMCID: PMC8589444 DOI: 10.1042/bst20210838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022]
Abstract
Altered protein ubiquitination is associated with the pathobiology of numerous diseases; however, its involvement in glycogen metabolism and associated polyglucosan body (PB) disease has not been investigated in depth. In PB disease, excessively long and less branched glycogen chains (polyglucosan bodies, PBs) are formed, which precipitate in different tissues causing myopathy, cardiomyopathy and/or neurodegeneration. Linear ubiquitin chain assembly complex (LUBAC) is a multi-protein complex composed of two E3 ubiquitin ligases HOIL-1L and HOIP and an adaptor protein SHARPIN. Together they are responsible for M1-linked ubiquitination of substrates primarily related to immune signaling and cell death pathways. Consequently, severe immunodeficiency is a hallmark of many LUBAC deficient patients. Remarkably, all HOIL-1L deficient patients exhibit accumulation of PBs in different organs especially skeletal and cardiac muscle resulting in myopathy and cardiomyopathy with heart failure. This emphasizes LUBAC's important role in glycogen metabolism. To date, neither a glycogen metabolism-related LUBAC substrate nor the molecular mechanism are known. Hence, current reviews on LUBAC's involvement in glycogen metabolism are lacking. Here, we aim to fill this gap by describing LUBAC's involvement in PB disease. We present a comprehensive review of LUBAC structure, its role in M1-linked and other types of atypical ubiquitination, PB pathology in human patients and findings in new mouse models to study the disease. We conclude the review with recent drug developments and near-future gene-based therapeutic approaches to treat LUBAC related PB disease.
Collapse
|
122
|
New Look of EBV LMP1 Signaling Landscape. Cancers (Basel) 2021; 13:cancers13215451. [PMID: 34771613 PMCID: PMC8582580 DOI: 10.3390/cancers13215451] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Epstein-Barr Virus (EBV) infection is associated with various lymphomas and carcinomas as well as other diseases in humans. The transmembrane protein LMP1 plays versatile roles in EBV life cycle and pathogenesis, by perturbing, reprograming, and regulating a large range of host cellular mechanisms and functions, which have been increasingly disclosed but not fully understood so far. We summarize recent research progress on LMP1 signaling, including the novel components LIMD1, p62, and LUBAC in LMP1 signalosome and LMP1 novel functions, such as its induction of p62-mediated selective autophagy, regulation of metabolism, induction of extracellular vehicles, and activation of NRF2-mediated antioxidative defense. A comprehensive understanding of LMP1 signal transduction and functions may allow us to leverage these LMP1-regulated cellular mechanisms for clinical purposes. Abstract The Epstein–Barr Virus (EBV) principal oncoprotein Latent Membrane Protein 1 (LMP1) is a member of the Tumor Necrosis Factor Receptor (TNFR) superfamily with constitutive activity. LMP1 shares many features with Pathogen Recognition Receptors (PRRs), including the use of TRAFs, adaptors, and kinase cascades, for signal transduction leading to the activation of NFκB, AP1, and Akt, as well as a subset of IRFs and likely the master antioxidative transcription factor NRF2, which we have gradually added to the list. In recent years, we have discovered the Linear UBiquitin Assembly Complex (LUBAC), the adaptor protein LIMD1, and the ubiquitin sensor and signaling hub p62, as novel components of LMP1 signalosome. Functionally, LMP1 is a pleiotropic factor that reprograms, balances, and perturbs a large spectrum of cellular mechanisms, including the ubiquitin machinery, metabolism, epigenetics, DNA damage response, extracellular vehicles, immune defenses, and telomere elongation, to promote oncogenic transformation, cell proliferation and survival, anchorage-independent cell growth, angiogenesis, and metastasis and invasion, as well as the development of the tumor microenvironment. We have recently shown that LMP1 induces p62-mediated selective autophagy in EBV latency, at least by contributing to the induction of p62 expression, and Reactive Oxygen Species (ROS) production. We have also been collecting evidence supporting the hypothesis that LMP1 activates the Keap1-NRF2 pathway, which serves as the key antioxidative defense mechanism. Last but not least, our preliminary data shows that LMP1 is associated with the deregulation of cGAS-STING DNA sensing pathway in EBV latency. A comprehensive understanding of the LMP1 signaling landscape is essential for identifying potential targets for the development of novel strategies towards targeted therapeutic applications.
Collapse
|
123
|
Liu Z, Dagley LF, Shield-Artin K, Young SN, Bankovacki A, Wang X, Tang M, Howitt J, Stafford CA, Nachbur U, Fitzgibbon C, Garnish SE, Webb AI, Komander D, Murphy JM, Hildebrand JM, Silke J. Oligomerization-driven MLKL ubiquitylation antagonizes necroptosis. EMBO J 2021; 40:e103718. [PMID: 34698396 DOI: 10.15252/embj.2019103718] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 09/02/2021] [Accepted: 09/20/2021] [Indexed: 11/09/2022] Open
Abstract
Mixed lineage kinase domain-like (MLKL) is the executioner in the caspase-independent form of programmed cell death called necroptosis. Receptor-interacting serine/threonine protein kinase 3 (RIPK3) phosphorylates MLKL, triggering MLKL oligomerization, membrane translocation and membrane disruption. MLKL also undergoes ubiquitylation during necroptosis, yet neither the mechanism nor the significance of this event has been demonstrated. Here, we show that necroptosis-specific multi-mono-ubiquitylation of MLKL occurs following its activation and oligomerization. Ubiquitylated MLKL accumulates in a digitonin-insoluble cell fraction comprising organellar and plasma membranes and protein aggregates. Appearance of this ubiquitylated MLKL form can be reduced by expression of a plasma membrane-located deubiquitylating enzyme. Oligomerization-induced MLKL ubiquitylation occurs on at least four separate lysine residues and correlates with its proteasome- and lysosome-dependent turnover. Using a MLKL-DUB fusion strategy, we show that constitutive removal of ubiquitin from MLKL licences MLKL auto-activation independent of necroptosis signalling in mouse and human cells. Therefore, in addition to the role of ubiquitylation in the kinetic regulation of MLKL-induced death following an exogenous necroptotic stimulus, it also contributes to restraining basal levels of activated MLKL to avoid unwanted cell death.
Collapse
Affiliation(s)
- Zikou Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Laura F Dagley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Kristy Shield-Artin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Samuel N Young
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Aleksandra Bankovacki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Translational Research, CSL Limited, Melbourne, VIC, Australia
| | - Xiangyi Wang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Michelle Tang
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Jason Howitt
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Che A Stafford
- Gene Centre and Department of Biochemistry, Ludwig Maximilian University of Munich, Munich, Germany
| | - Ueli Nachbur
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Cheree Fitzgibbon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Sarah E Garnish
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Andrew I Webb
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - David Komander
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Joanne M Hildebrand
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
124
|
Masumoto J, Zhou W, Morikawa S, Hosokawa S, Taguchi H, Yamamoto T, Kurata M, Kaneko N. Molecular biology of autoinflammatory diseases. Inflamm Regen 2021; 41:33. [PMID: 34635190 PMCID: PMC8507398 DOI: 10.1186/s41232-021-00181-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
The long battle between humans and various physical, chemical, and biological insults that cause cell injury (e.g., products of tissue damage, metabolites, and/or infections) have led to the evolution of various adaptive responses. These responses are triggered by recognition of damage-associated molecular patterns (DAMPs) and/or pathogen-associated molecular patterns (PAMPs), usually by cells of the innate immune system. DAMPs and PAMPs are recognized by pattern recognition receptors (PRRs) expressed by innate immune cells; this recognition triggers inflammation. Autoinflammatory diseases are strongly associated with dysregulation of PRR interactomes, which include inflammasomes, NF-κB-activating signalosomes, type I interferon-inducing signalosomes, and immuno-proteasome; disruptions of regulation of these interactomes leads to inflammasomopathies, relopathies, interferonopathies, and proteasome-associated autoinflammatory syndromes, respectively. In this review, we discuss the currently accepted molecular mechanisms underlying several autoinflammatory diseases.
Collapse
Affiliation(s)
- Junya Masumoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan.
| | - Wei Zhou
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Shinnosuke Morikawa
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Sho Hosokawa
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Haruka Taguchi
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Toshihiro Yamamoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Mie Kurata
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Naoe Kaneko
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
125
|
Fuseya Y, Iwai K. Biochemistry, Pathophysiology, and Regulation of Linear Ubiquitination: Intricate Regulation by Coordinated Functions of the Associated Ligase and Deubiquitinase. Cells 2021; 10:cells10102706. [PMID: 34685685 PMCID: PMC8534859 DOI: 10.3390/cells10102706] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin system modulates protein functions by decorating target proteins with ubiquitin chains in most cases. Several types of ubiquitin chains exist, and chain type determines the mode of regulation of conjugated proteins. LUBAC is a ubiquitin ligase complex that specifically generates N-terminally Met1-linked linear ubiquitin chains. Although linear ubiquitin chains are much less abundant than other types of ubiquitin chains, they play pivotal roles in cell survival, proliferation, the immune response, and elimination of bacteria by selective autophagy. Because linear ubiquitin chains regulate inflammatory responses by controlling the proinflammatory transcription factor NF-κB and programmed cell death (including apoptosis and necroptosis), abnormal generation of linear chains can result in pathogenesis. LUBAC consists of HOIP, HOIL-1L, and SHARPIN; HOIP is the catalytic center for linear ubiquitination. LUBAC is unique in that it contains two different ubiquitin ligases, HOIP and HOIL-1L, in the same ligase complex. Furthermore, LUBAC constitutively interacts with the deubiquitinating enzymes (DUBs) OTULIN and CYLD, which cleave linear ubiquitin chains generated by LUBAC. In this review, we summarize the current status of linear ubiquitination research, and we discuss the intricate regulation of LUBAC-mediated linear ubiquitination by coordinate function of the HOIP and HOIL-1L ligases and OTULIN. Furthermore, we discuss therapeutic approaches to targeting LUBAC-mediated linear ubiquitin chains.
Collapse
|
126
|
Gao C, Deng J, Zhang H, Li X, Gu S, Zheng M, Tang M, Zhu Y, Lin X, Jin J, Zhang L, Huang J, Zou J, Xia ZP, Xu PL, Shen L, Zhao B, Feng XH. HSPA13 facilitates NF-κB-mediated transcription and attenuates cell death responses in TNFα signaling. SCIENCE ADVANCES 2021; 7:eabh1756. [PMID: 34613781 PMCID: PMC8494447 DOI: 10.1126/sciadv.abh1756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
RIP1 has emerged as a master regulator in TNFα signaling that controls two distinct cellular fates: cell survival versus programmed cell death. Because the default response of most cells to TNFα is NF-κB–mediated inflammation and survival, a specific mechanism must exist to control the divergence of signaling outcome. Here, we identify HSPA13 as a transcription-independent checkpoint to modulate the role of RIP1 in TNFα signaling. Through specific binding to TNFR1 and RIP1, HSPA13 enhances TNFα-induced recruitment of RIP1 to TNFR1, and consequently promotes downstream NF-κB transcriptional responses. Meanwhile, HSPA13 attenuates the participation of RIP1 in cytosolic complex II and prevents cells from programmed death. Loss of HSPA13 shifts the transition of RIP1 from complex I to complex II and promotes both apoptosis and necroptosis. Thus, our study provides compelling evidence for the cellular protective function of HSPA13 in fine-tuning TNFα responses.
Collapse
Affiliation(s)
- Chun Gao
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianhua Deng
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hanchenxi Zhang
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinran Li
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuchen Gu
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mingjie Zheng
- Eye Center of the Second Affiliated Hospital School of Medicine, Institutes of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mei Tang
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yezhang Zhu
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin Lin
- Institute for Immunology, Tsinghua University School of Medicine, Tsinghua University–Peking University Jointed Center for Life Sciences, Beijing 100084, China
| | - Jianping Jin
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Long Zhang
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jun Huang
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jian Zou
- Eye Center of the Second Affiliated Hospital School of Medicine, Institutes of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zong-Ping Xia
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ping-Long Xu
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Bin Zhao
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
- The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
127
|
Sun Z, Guerriero CJ, Brodsky JL. Substrate ubiquitination retains misfolded membrane proteins in the endoplasmic reticulum for degradation. Cell Rep 2021; 36:109717. [PMID: 34551305 PMCID: PMC8503845 DOI: 10.1016/j.celrep.2021.109717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/11/2021] [Accepted: 08/25/2021] [Indexed: 11/28/2022] Open
Abstract
To maintain secretory pathway fidelity, misfolded proteins are commonly retained in the endoplasmic reticulum (ER) and selected for ER-associated degradation (ERAD). Soluble misfolded proteins use ER chaperones for retention, but the machinery that restricts aberrant membrane proteins to the ER is unclear. In fact, some misfolded membrane proteins escape the ER and traffic to the lysosome/vacuole. To this end, we describe a model substrate, SZ*, that contains an ER export signal but is also targeted for ERAD. We observe decreased ER retention when chaperone-dependent SZ* ubiquitination is compromised. In addition, appending a linear tetra-ubiquitin motif onto SZ* overrides ER export. By screening known ubiquitin-binding proteins, we then positively correlate SZ* retention with Ubx2 binding. Deletion of Ubx2 also inhibits the retention of another misfolded membrane protein. Our results indicate that polyubiquitination is sufficient to retain misfolded membrane proteins in the ER prior to ERAD. Sun et al. characterize how misfolded membrane proteins are delivered for either ERAD or post-ER degradation in the secretory pathway. By using a model substrate that can access both pathways, they show that substrate retention requires chaperone-dependent substrate ubiquitination and interaction with a conserved ER membrane protein, Ubx2.
Collapse
Affiliation(s)
- Zhihao Sun
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
128
|
Delafontaine S, Meyts I. Infection and autoinflammation in inborn errors of immunity: brothers in arms. Curr Opin Immunol 2021; 72:331-339. [PMID: 34543865 DOI: 10.1016/j.coi.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022]
Abstract
The binary view of inborn errors of immunity classified as either autoinflammatory conditions or primary immunodeficiency in the strict sense, that is, increased susceptibility to infection is challenged by the description of recent inborn errors of immunity (IEI) triggers leading to activation and disruption of cell death pathways, play a major part in the pathophysiology of infection and autoinflammation. In addition, molecules with a double role in the extracellular versus intracellular milieu add to the complexity. In all, in-depth study of human inborn errors of immunity will continue to instruct us on fundamental immunology and lead to novel therapeutic targets and approaches that can be used in other monogenic and polygenic/complex immune disorders.
Collapse
Affiliation(s)
- Selket Delafontaine
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium; Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium; Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| |
Collapse
|
129
|
Song K, Cai X, Dong Y, Wu H, Wei Y, Shankavaram UT, Cui K, Lee Y, Zhu B, Bhattacharjee S, Wang B, Zhang K, Wen A, Wong S, Yu L, Xia L, Welm AL, Bielenberg DR, Camphausen KA, Kang Y, Chen H. Epsins 1 and 2 promote NEMO linear ubiquitination via LUBAC to drive breast cancer development. J Clin Invest 2021; 131:129374. [PMID: 32960814 DOI: 10.1172/jci129374] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
Estrogen receptor-negative (ER-negative) breast cancer is thought to be more malignant and devastating than ER-positive breast cancer. ER-negative breast cancer exhibits elevated NF-κB activity, but how this abnormally high NF-κB activity is maintained is poorly understood. The importance of linear ubiquitination, which is generated by the linear ubiquitin chain assembly complex (LUBAC), is increasingly appreciated in NF-κB signaling, which regulates cell activation and death. Here, we showed that epsin proteins, a family of ubiquitin-binding endocytic adaptors, interacted with LUBAC via its ubiquitin-interacting motif and bound LUBAC's bona fide substrate NEMO via its N-terminal homolog (ENTH) domain. Furthermore, epsins promoted NF-κB essential modulator (NEMO) linear ubiquitination and served as scaffolds for recruiting other components of the IκB kinase (IKK) complex, resulting in the heightened IKK activation and sustained NF-κB signaling essential for the development of ER-negative breast cancer. Heightened epsin levels in ER-negative human breast cancer are associated with poor relapse-free survival. We showed that transgenic and pharmacological approaches eliminating epsins potently impeded breast cancer development in both spontaneous and patient-derived xenograft breast cancer mouse models. Our findings established the pivotal role epsins played in promoting breast cancer. Thus, targeting epsins may represent a strategy to restrain NF-κB signaling and provide an important perspective into ER-negative breast cancer treatment.
Collapse
Affiliation(s)
- Kai Song
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaofeng Cai
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Yunzhou Dong
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hao Wu
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.,Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Uma T Shankavaram
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Kui Cui
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yang Lee
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bo Zhu
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sudarshan Bhattacharjee
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Beibei Wang
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kun Zhang
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aiyun Wen
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Scott Wong
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lili Yu
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Alana L Welm
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin A Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.,Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
130
|
Roy M, Singh R. TRIMs: selective recruitment at different steps of the NF-κB pathway-determinant of activation or resolution of inflammation. Cell Mol Life Sci 2021; 78:6069-6086. [PMID: 34283248 PMCID: PMC11072854 DOI: 10.1007/s00018-021-03900-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/04/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022]
Abstract
TNF-α-induced NF-κB pathway is an essential component of innate and adaptive immune pathway, and it is tightly regulated by various post-translational modifications including ubiquitination. Oscillations in NF-κB activation and temporal gene expression are emerging as critical determinants of inflammatory response, however, the regulators of unique outcomes in different patho-physiological conditions are not well understood. Tripartite Motif-containing proteins (TRIMs) are RING domain-containing E3 ligases involved in the regulation of cellular homeostasis, metabolism, cell death, inflammation, and host defence. Emerging reports suggest that TRIMs are recruited at different steps of TNF-α-induced NF-κB pathway and modulate via their E3 ligase activity. TRIMs show synergy and antagonism in the regulation of the NF-κB pathway and also regulate it in a feedback manner. TRIMs also regulate pattern recognition receptors (PRRs) mediated inflammatory pathways and may have evolved to directly regulate a specific arm of immune signalling. The review emphasizes TRIM-mediated ubiquitination and modulation of TNF-α-regulated temporal and NF-κB signaling and its possible impact on unique transcriptional and functional outcomes.
Collapse
Affiliation(s)
- Milton Roy
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
- Institute for Cell Engineering, The Johns Hopkins University School of Medicine, 733 North Broadway, MRB 731, Baltimore, MD, 21205, USA
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
131
|
Walinda E, Morimoto D, Sorada T, Iwai K, Sugase K. Expression, solubility monitoring, and purification of the co-folded LUBAC LTM domain by structure-guided tandem folding in autoinducing cultures. Protein Expr Purif 2021; 187:105953. [PMID: 34390872 DOI: 10.1016/j.pep.2021.105953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/12/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
The linear ubiquitin chain assembly complex tethering motif (LUBAC-LTM) domain is composed of two different accessory LUBAC components (HOIL-1L and SHARPIN) but folds as a single globular domain. Targeted disruption of the intricate LTM-LTM interaction destabilizes LUBAC in lymphoma cells, thereby attenuating LUBAC stability, which highlights that targeting the interaction between the two LTM motifs is a promising strategy for the development of new agents against cancers that depend on LUBAC activity for their survival. To further screen for small-molecule inhibitors that can selectively disrupt the LTM-LTM interaction, it is necessary to obtain high-purity samples of the LTM domain. Ideally, such a sample would not contain any components other than the LTM itself, so that false positives (molecules binding to other parts of LUBAC) could be eliminated from the screening process. Here we report a simple strategy that enabled successful bacterial production of the isolated LUBAC LTM domain in high yield and at high purity. The strategy combines (1) structural analysis highlighting the possibility of tandem expression in the SHARPINL™ to HOIL-1LL™ direction; (2) bacterial expression downstream of EGFP to efficiently monitor expression and solubility; (3) gentle low-temperature folding using autoinduction. Formation of stably folded LTM was verified by size-exclusion chromatography and heteronuclear NMR spectroscopy. From 200-ml cultures sufficient quantities (∼7 mg) of high-purity protein for structural studies could be obtained. The presented strategy will be beneficial for LUBAC LTM-based drug-screening efforts and likely serve as a useful primer for similar cases, i.e., whenever a smaller folded fragment is to be isolated from a larger protein complex for site-specific downstream applications.
Collapse
Affiliation(s)
- Erik Walinda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Daichi Morimoto
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Tomoki Sorada
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenji Sugase
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| |
Collapse
|
132
|
Fu Y, Wang H, Dai H, Zhu Q, Cui CP, Sun X, Li Y, Deng Z, Zhou X, Ge Y, Peng Z, Yuan C, Wu B, Yang X, Li R, Liu CH, He F, Wei W, Zhang L. OTULIN allies with LUBAC to govern angiogenesis by editing ALK1 linear polyubiquitin. Mol Cell 2021; 81:3187-3204.e7. [PMID: 34157307 DOI: 10.1016/j.molcel.2021.05.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/04/2021] [Accepted: 05/27/2021] [Indexed: 12/25/2022]
Abstract
OTULIN coordinates with LUBAC to edit linear polyubiquitin chains in embryonic development, autoimmunity, and inflammatory diseases. However, the mechanism by which angiogenesis, especially that of endothelial cells (ECs), is regulated by linear ubiquitination remains unclear. Here, we reveal that constitutive or EC-specific deletion of Otulin resulted in arteriovenous malformations and embryonic lethality. LUBAC conjugates linear ubiquitin chains onto Activin receptor-like kinase 1 (ALK1), which is responsible for angiogenesis defects, inhibiting ALK1 enzyme activity and Smad1/5 activation. Conversely, OTULIN deubiquitinates ALK1 to promote Smad1/5 activation. Consistently, embryonic survival of Otulin-deficient mice was prolonged by BMP9 pretreatment or EC-specific ALK1Q200D (constitutively active) knockin. Moreover, mutant ALK1 from type 2 hereditary hemorrhagic telangiectasia (HHT2) patients exhibited excessive linear ubiquitination and increased HOIP binding. As such, a HOIP inhibitor restricted the excessive angiogenesis of ECs derived from ALK1G309S-expressing HHT2 patients. These results show that OTULIN and LUBAC govern ALK1 activity to balance EC angiogenesis.
Collapse
Affiliation(s)
- Yesheng Fu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Hongtian Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Hongmiao Dai
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Qiong Zhu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Chun-Ping Cui
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Xiaoxuan Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yanchang Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Zhikang Deng
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Xuemei Zhou
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Yingwei Ge
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Zhiqiang Peng
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Chao Yuan
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Bo Wu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Xi Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Rongyu Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology (Chinese Academy of Sciences), Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100101, China.
| | - Fuchu He
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; School of Life Sciences, Peking University, Beijing 100871, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China.
| |
Collapse
|
133
|
Peris-Moreno D, Malige M, Claustre A, Armani A, Coudy-Gandilhon C, Deval C, Béchet D, Fafournoux P, Sandri M, Combaret L, Taillandier D, Polge C. UBE2L3, a Partner of MuRF1/TRIM63, Is Involved in the Degradation of Myofibrillar Actin and Myosin. Cells 2021; 10:1974. [PMID: 34440743 PMCID: PMC8392593 DOI: 10.3390/cells10081974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
The ubiquitin proteasome system (UPS) is the main player of skeletal muscle wasting, a common characteristic of many diseases (cancer, etc.) that negatively impacts treatment and life prognosis. Within the UPS, the E3 ligase MuRF1/TRIM63 targets for degradation several myofibrillar proteins, including the main contractile proteins alpha-actin and myosin heavy chain (MHC). We previously identified five E2 ubiquitin-conjugating enzymes interacting with MuRF1, including UBE2L3/UbcH7, that exhibited a high affinity for MuRF1 (KD = 50 nM). Here, we report a main effect of UBE2L3 on alpha-actin and MHC degradation in catabolic C2C12 myotubes. Consistently UBE2L3 knockdown in Tibialis anterior induced hypertrophy in dexamethasone (Dex)-treated mice, whereas overexpression worsened the muscle atrophy of Dex-treated mice. Using combined interactomic approaches, we also characterized the interactions between MuRF1 and its substrates alpha-actin and MHC and found that MuRF1 preferentially binds to filamentous F-actin (KD = 46.7 nM) over monomeric G-actin (KD = 450 nM). By contrast with actin that did not alter MuRF1-UBE2L3 affinity, binding of MHC to MuRF1 (KD = 8 nM) impeded UBE2L3 binding, suggesting that differential interactions prevail with MuRF1 depending on both the substrate and the E2. Our data suggest that UBE2L3 regulates contractile proteins levels and skeletal muscle atrophy.
Collapse
Affiliation(s)
- Dulce Peris-Moreno
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France; (D.P.-M.); (M.M.); (A.C.); (C.C.-G.); (C.D.); (D.B.); (P.F.); (L.C.); (D.T.)
| | - Mélodie Malige
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France; (D.P.-M.); (M.M.); (A.C.); (C.C.-G.); (C.D.); (D.B.); (P.F.); (L.C.); (D.T.)
| | - Agnès Claustre
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France; (D.P.-M.); (M.M.); (A.C.); (C.C.-G.); (C.D.); (D.B.); (P.F.); (L.C.); (D.T.)
| | - Andrea Armani
- Department of Biomedical Sciences, Venetian Institute of Molecular Medicine, University of Padua, 35100 Padova, Italy; (A.A.); (M.S.)
| | - Cécile Coudy-Gandilhon
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France; (D.P.-M.); (M.M.); (A.C.); (C.C.-G.); (C.D.); (D.B.); (P.F.); (L.C.); (D.T.)
| | - Christiane Deval
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France; (D.P.-M.); (M.M.); (A.C.); (C.C.-G.); (C.D.); (D.B.); (P.F.); (L.C.); (D.T.)
| | - Daniel Béchet
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France; (D.P.-M.); (M.M.); (A.C.); (C.C.-G.); (C.D.); (D.B.); (P.F.); (L.C.); (D.T.)
| | - Pierre Fafournoux
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France; (D.P.-M.); (M.M.); (A.C.); (C.C.-G.); (C.D.); (D.B.); (P.F.); (L.C.); (D.T.)
| | - Marco Sandri
- Department of Biomedical Sciences, Venetian Institute of Molecular Medicine, University of Padua, 35100 Padova, Italy; (A.A.); (M.S.)
| | - Lydie Combaret
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France; (D.P.-M.); (M.M.); (A.C.); (C.C.-G.); (C.D.); (D.B.); (P.F.); (L.C.); (D.T.)
| | - Daniel Taillandier
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France; (D.P.-M.); (M.M.); (A.C.); (C.C.-G.); (C.D.); (D.B.); (P.F.); (L.C.); (D.T.)
| | - Cécile Polge
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France; (D.P.-M.); (M.M.); (A.C.); (C.C.-G.); (C.D.); (D.B.); (P.F.); (L.C.); (D.T.)
| |
Collapse
|
134
|
Zhu H, Tang YD, Zhan G, Su C, Zheng C. The Critical Role of PARPs in Regulating Innate Immune Responses. Front Immunol 2021; 12:712556. [PMID: 34367175 PMCID: PMC8341640 DOI: 10.3389/fimmu.2021.712556] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022] Open
Abstract
Poly (adenosine diphosphate-ribose) polymerases (PARPs) are a family of proteins responsible for transferring ADP-ribose groups to target proteins to initiate the ADP-ribosylation, a highly conserved and fundamental post-translational modification in all organisms. PARPs play important roles in various cellular functions, including regulating chromatin structure, transcription, replication, recombination, and DNA repair. Several studies have recently converged on the widespread involvement of PARPs and ADP-Ribosylation reaction in mammalian innate immunity. Here, we provide an overview of the emerging roles of PARPs family and ADP-ribosylation in regulating the host's innate immune responses involved in cancers, pathogenic infections, and inflammations, which will help discover and design new molecular targets for cancers, pathogenic infections, and inflammations.
Collapse
Affiliation(s)
- Huifang Zhu
- Neonatal/Pediatric Intensive Care Unit, Children’s Medical Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guoqing Zhan
- Department of Infectious Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Chenhe Su
- The Wistar Institute, Philadelphia, PA, United States
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
135
|
Inhibitory feedback control of NF-κB signalling in health and disease. Biochem J 2021; 478:2619-2664. [PMID: 34269817 PMCID: PMC8286839 DOI: 10.1042/bcj20210139] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Cells must adapt to changes in their environment to maintain cell, tissue and organismal integrity in the face of mechanical, chemical or microbiological stress. Nuclear factor-κB (NF-κB) is one of the most important transcription factors that controls inducible gene expression as cells attempt to restore homeostasis. It plays critical roles in the immune system, from acute inflammation to the development of secondary lymphoid organs, and also has roles in cell survival, proliferation and differentiation. Given its role in such critical processes, NF-κB signalling must be subject to strict spatiotemporal control to ensure measured and context-specific cellular responses. Indeed, deregulation of NF-κB signalling can result in debilitating and even lethal inflammation and also underpins some forms of cancer. In this review, we describe the homeostatic feedback mechanisms that limit and ‘re-set’ inducible activation of NF-κB. We first describe the key components of the signalling pathways leading to activation of NF-κB, including the prominent role of protein phosphorylation and protein ubiquitylation, before briefly introducing the key features of feedback control mechanisms. We then describe the array of negative feedback loops targeting different components of the NF-κB signalling cascade including controls at the receptor level, post-receptor signalosome complexes, direct regulation of the critical ‘inhibitor of κB kinases’ (IKKs) and inhibitory feedforward regulation of NF-κB-dependent transcriptional responses. We also review post-transcriptional feedback controls affecting RNA stability and translation. Finally, we describe the deregulation of these feedback controls in human disease and consider how feedback may be a challenge to the efficacy of inhibitors.
Collapse
|
136
|
Zhou C, Zhang X, Yang C, He Y, Zhang L. PLEKHO2 inhibits TNFα-induced cell death by suppressing RIPK1 activation. Cell Death Dis 2021; 12:714. [PMID: 34272357 PMCID: PMC8285381 DOI: 10.1038/s41419-021-04001-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 11/22/2022]
Abstract
Receptor interaction protein kinase 1 (RIPK1) plays a diverse role in tumor necrosis factor α (TNFα) signalings. The ubiquitination of RIPK1 is essential for NF-κB activation, whereas its kinase activity promotes apoptosis and necroptosis. However, the mechanisms underlying have not been fully illuminated. Here we report that PH domain-containing family O member 2 (PLEKHO2) inhibits RIPK1-dependent cell death and is necessary for NF-κB activation in response to TNFα. Cells of PLKEHO2 deficiency are more susceptible to TNF-α induced apoptosis and necroptosis with increased RIPK1 activation, which is consistent with the observation that the susceptibility of PLEKHO2-/- cells is effectively prevented by treatment of RIPK1 kinase inhibitor. Moreover, PLEKHO2 deficient cells exhibit compromised RIPK1 ubiquitination and NF-κB activation in response to TNFα. Ultimately, PLEKHO2-deficient mice display greatly increased hepatotoxicity and lethality after TNFα-induced hepatitis. In summary, our study revealed that PLEKHO2 is a novel inhibitor of apoptosis and necroptosis, which plays a key role in regulating RIPK1 ubiquitination and activation.
Collapse
Affiliation(s)
- Chenchen Zhou
- Department of Biomedical Engineering, the Fifth medical Centre, Chinese PLA General Hospital, Beijing, 100071, China
| | - Xueli Zhang
- Department of pathology, the Fifth medical Centre, Chinese PLA General Hospital, Beijing, 100071, China
| | - Cuiping Yang
- Department of Respiratory and Critical Care Medicine, the Fifth medical Centre, Chinese PLA General Hospital, Beijing, 100071, China
| | - Yuan He
- Department of Respiratory and Critical Care Medicine, the Fifth medical Centre, Chinese PLA General Hospital, Beijing, 100071, China
| | - Luo Zhang
- Department of Biomedical Engineering, the Fifth medical Centre, Chinese PLA General Hospital, Beijing, 100071, China.
- Research Center of Bioengineering, the Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
137
|
Zhou L, Ge Y, Fu Y, Wu B, Zhang Y, Li L, Cui CP, Wang S, Zhang L. Global Screening of LUBAC and OTULIN Interacting Proteins by Human Proteome Microarray. Front Cell Dev Biol 2021; 9:686395. [PMID: 34262903 PMCID: PMC8274477 DOI: 10.3389/fcell.2021.686395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
Linear ubiquitination is a reversible posttranslational modification, which plays key roles in multiple biological processes. Linear ubiquitin chain assembly complex (LUBAC) catalyzes linear ubiquitination, while the deubiquitinase OTULIN (OTU deubiquitinase with linear linkage specificity, FAM105B) exclusively cleaves the linear ubiquitin chains. However, our understanding of linear ubiquitination is restricted to a few substrates and pathways. Here we used a human proteome microarray to detect the interacting proteins of LUBAC and OTULIN by systematically screening up to 20,000 proteins. We identified many potential interacting proteins of LUBAC and OTULIN, which may function as regulators or substrates of linear ubiquitination. Interestingly, our results also hint that linear ubiquitination may have broad functions in diverse pathways. In addition, we recognized lymphocyte activation gene-3 (LAG3, CD223), a transmembrane receptor that negatively regulates lymphocyte functions as a novel substrate of linear ubiquitination in the adaptive immunity pathway. In conclusion, our results provide searchable, accessible data for the interacting proteins of LUBAC and OTULIN, which broaden our understanding of linear ubiquitination.
Collapse
Affiliation(s)
- Lijie Zhou
- Department of Physiopathology, Anhui Medical University, Hefei, China.,State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yingwei Ge
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yesheng Fu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Bo Wu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yong Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Lei Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Chun-Ping Cui
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Siying Wang
- Department of Physiopathology, Anhui Medical University, Hefei, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| |
Collapse
|
138
|
Tu H, Tang Y, Zhang J, Cheng L, Joo D, Zhao X, Lin X. Linear Ubiquitination of RIPK1 on Lys 612 Regulates Systemic Inflammation via Preventing Cell Death. THE JOURNAL OF IMMUNOLOGY 2021; 207:602-612. [PMID: 34162724 DOI: 10.4049/jimmunol.2100299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/12/2021] [Indexed: 01/02/2023]
Abstract
Receptor-interacting protein kinase-1 (RIPK1) is a master regulator of the TNF-α-induced cell death program. The function of RIPK1 is tightly controlled by posttranslational modifications, including linear ubiquitin chain assembly complex-mediated linear ubiquitination. However, the physiological function and molecular mechanism by which linear ubiquitination of RIPK1 regulates TNF-α-induced intracellular signaling remain unclear. In this article, we identified Lys627 residue as a major linear ubiquitination site in human RIPK1 (or Lys612 in murine RIPK1) and generated Ripk1K612R/K612R mice, which spontaneously develop systemic inflammation triggered by sustained emergency hematopoiesis. Mechanistically, without affecting NF-κB activation, Ripk1K612R/K612R mutation enhances apoptosis and necroptosis activation and promotes TNF-α-induced cell death. The systemic inflammation and hematopoietic disorders in Ripk1K612R/K612R mice are completely abolished by deleting TNF receptor 1 or both RIPK3 and Caspase-8. These data suggest the critical role of TNF-α-induced cell death in the resulting phenotype in Ripk1K612R/K612R mice. Together, our results demonstrate that linear ubiquitination of RIPK1 on K612 is essential for limiting TNF-α-induced cell death to further prevent systemic inflammation.
Collapse
Affiliation(s)
- Hailin Tu
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Yong Tang
- Department of Molecular Biology, Princeton University, Princeton, NJ; and
| | - Jie Zhang
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Liqing Cheng
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Donghyun Joo
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xueqiang Zhao
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Xin Lin
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China;
| |
Collapse
|
139
|
Rodriguez Carvajal A, Grishkovskaya I, Gomez Diaz C, Vogel A, Sonn-Segev A, Kushwah MS, Schodl K, Deszcz L, Orban-Nemeth Z, Sakamoto S, Mechtler K, Kukura P, Clausen T, Haselbach D, Ikeda F. The linear ubiquitin chain assembly complex (LUBAC) generates heterotypic ubiquitin chains. eLife 2021; 10:e60660. [PMID: 34142657 PMCID: PMC8245127 DOI: 10.7554/elife.60660] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 06/17/2021] [Indexed: 12/21/2022] Open
Abstract
The linear ubiquitin chain assembly complex (LUBAC) is the only known ubiquitin ligase for linear/Met1-linked ubiquitin chain formation. One of the LUBAC components, heme-oxidized IRP2 ubiquitin ligase 1 (HOIL-1L), was recently shown to catalyse oxyester bond formation between ubiquitin and some substrates. However, oxyester bond formation in the context of LUBAC has not been directly observed. Here, we present the first 3D reconstruction of human LUBAC obtained by electron microscopy and report its generation of heterotypic ubiquitin chains containing linear linkages with oxyester-linked branches. We found that this event depends on HOIL-1L catalytic activity. By cross-linking mass spectrometry showing proximity between the catalytic RING-in-between-RING (RBR) domains, a coordinated ubiquitin relay mechanism between the HOIL-1-interacting protein (HOIP) and HOIL-1L ligases is suggested. In mouse embryonic fibroblasts, these heterotypic chains were induced by TNF, which is reduced in cells expressing an HOIL-1L catalytic inactive mutant. In conclusion, we demonstrate that LUBAC assembles heterotypic ubiquitin chains by the concerted action of HOIP and HOIL-1L.
Collapse
Affiliation(s)
- Alan Rodriguez Carvajal
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
| | - Irina Grishkovskaya
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Carlos Gomez Diaz
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
| | - Antonia Vogel
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Adar Sonn-Segev
- Department of Chemistry, University of Oxford, Chemistry Research LaboratoryOxfordUnited Kingdom
| | - Manish S Kushwah
- Department of Chemistry, University of Oxford, Chemistry Research LaboratoryOxfordUnited Kingdom
| | - Katrin Schodl
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
| | - Luiza Deszcz
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | | | | | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Philipp Kukura
- Department of Chemistry, University of Oxford, Chemistry Research LaboratoryOxfordUnited Kingdom
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - David Haselbach
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Fumiyo Ikeda
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
- Medical Institute of Bioregulation (MIB), Kyushu UniversityFukuokaJapan
| |
Collapse
|
140
|
Abstract
Ubiquitination involves the covalent attachment of the protein ubiquitin to substrates. It can be reversed by the action of deubiquitinating enzymes (DUBs), thereby providing an important layer of regulation. Originally believed to be restricted to lysine residues, it is emerging that additional amino acids, including serine, threonine and cysteine, are also modified. It remains unknown which DUBs might target these unusual sites for deubiquitination. Herein, we develop representative model substrates and screen 53 DUBs for non-lysine activity, thereby providing important insights into DUB function. Strikingly, we find that a poorly studied DUB class has potent and highly selective serine/threonine activity. These findings suggest that non-lysine ubiquitination rivals the regulatory sophistication of its conventional counterpart and might serve distinct cellular functions. The reversibility of ubiquitination by the action of deubiquitinating enzymes (DUBs) serves as an important regulatory layer within the ubiquitin system. Approximately 100 DUBs are encoded by the human genome, and many have been implicated with pathologies, including neurodegeneration and cancer. Non-lysine ubiquitination is chemically distinct, and its physiological importance is emerging. Here, we couple chemically and chemoenzymatically synthesized ubiquitinated lysine and threonine model substrates to a mass spectrometry-based DUB assay. Using this platform, we profile two-thirds of known catalytically active DUBs for threonine esterase and lysine isopeptidase activity and find that most DUBs demonstrate dual selectivity. However, with two anomalous exceptions, the ovarian tumor domain DUB class demonstrates specific (iso)peptidase activity. Strikingly, we find the Machado–Joseph disease (MJD) class to be unappreciated non-lysine DUBs with highly specific ubiquitin esterase activity rivaling the efficiency of the most active isopeptidases. Esterase activity is dependent on the canonical catalytic triad, but proximal hydrophobic residues appear to be general determinants of non-lysine activity. Our findings also suggest that ubiquitin esters have appreciable cellular stability and that non-lysine ubiquitination is an integral component of the ubiquitin system. Its regulatory sophistication is likely to rival that of canonical ubiquitination.
Collapse
|
141
|
Maculins T, Verschueren E, Hinkle T, Choi M, Chang P, Chalouni C, Rao S, Kwon Y, Lim J, Katakam AK, Kunz RC, Erickson BK, Huang T, Tsai TH, Vitek O, Reichelt M, Senbabaoglu Y, Mckenzie B, Rohde JR, Dikic I, Kirkpatrick DS, Murthy A. Multiplexed proteomics of autophagy-deficient murine macrophages reveals enhanced antimicrobial immunity via the oxidative stress response. eLife 2021; 10:e62320. [PMID: 34085925 PMCID: PMC8177894 DOI: 10.7554/elife.62320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Defective autophagy is strongly associated with chronic inflammation. Loss-of-function of the core autophagy gene Atg16l1 increases risk for Crohn's disease in part by enhancing innate immunity through myeloid cells such as macrophages. However, autophagy is also recognized as a mechanism for clearance of certain intracellular pathogens. These divergent observations prompted a re-evaluation of ATG16L1 in innate antimicrobial immunity. In this study, we found that loss of Atg16l1 in myeloid cells enhanced the killing of virulent Shigella flexneri (S.flexneri), a clinically relevant enteric bacterium that resides within the cytosol by escaping from membrane-bound compartments. Quantitative multiplexed proteomics of murine bone marrow-derived macrophages revealed that ATG16L1 deficiency significantly upregulated proteins involved in the glutathione-mediated antioxidant response to compensate for elevated oxidative stress, which simultaneously promoted S.flexneri killing. Consistent with this, myeloid-specific deletion of Atg16l1 in mice accelerated bacterial clearance in vitro and in vivo. Pharmacological induction of oxidative stress through suppression of cysteine import enhanced microbial clearance by macrophages. Conversely, antioxidant treatment of macrophages permitted S.flexneri proliferation. These findings demonstrate that control of oxidative stress by ATG16L1 and autophagy regulates antimicrobial immunity against intracellular pathogens.
Collapse
Affiliation(s)
- Timurs Maculins
- Department of Cancer Immunology, GenentechSouth San FranciscoUnited States
- Institute of Biochemistry II, Goethe UniversityFrankfurt am MainGermany
| | - Erik Verschueren
- Department of Microchemistry, Proteomics and Lipidomics, GenentechSouth San FranciscoUnited States
| | - Trent Hinkle
- Department of Microchemistry, Proteomics and Lipidomics, GenentechSouth San FranciscoUnited States
| | - Meena Choi
- Department of Microchemistry, Proteomics and Lipidomics, GenentechSouth San FranciscoUnited States
- Khoury College of Computer Sciences, Northeastern UniversityBostonUnited States
| | - Patrick Chang
- Department of Pathology, GenentechSouth San FranciscoUnited States
| | - Cecile Chalouni
- Department of Pathology, GenentechSouth San FranciscoUnited States
| | - Shilpa Rao
- Department of Oncology Bioinformatics, GenentechSouth San FranciscoUnited States
| | - Youngsu Kwon
- Department of Translational Immunology, GenentechSouth San FranciscoUnited States
| | - Junghyun Lim
- Department of Cancer Immunology, GenentechSouth San FranciscoUnited States
| | | | | | | | - Ting Huang
- Khoury College of Computer Sciences, Northeastern UniversityBostonUnited States
| | - Tsung-Heng Tsai
- Khoury College of Computer Sciences, Northeastern UniversityBostonUnited States
- Department of Mathematical Sciences, Kent State UniversityKentUnited States
| | - Olga Vitek
- Khoury College of Computer Sciences, Northeastern UniversityBostonUnited States
| | - Mike Reichelt
- Department of Pathology, GenentechSouth San FranciscoUnited States
| | - Yasin Senbabaoglu
- Department of Oncology Bioinformatics, GenentechSouth San FranciscoUnited States
| | - Brent Mckenzie
- Department of Translational Immunology, GenentechSouth San FranciscoUnited States
| | - John R Rohde
- Department of Microbiology and Immunology, Dalhousie UniversityHalifaxCanada
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe UniversityFrankfurt am MainGermany
- Department of Infectious Diseases, GenentechSouth San FranciscoUnited States
| | | | - Aditya Murthy
- Interline TherapeuticsSouth San FranciscoUnited States
| |
Collapse
|
142
|
Necroptosis molecular mechanisms: Recent findings regarding novel necroptosis regulators. Exp Mol Med 2021; 53:1007-1017. [PMID: 34075202 PMCID: PMC8166896 DOI: 10.1038/s12276-021-00634-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/05/2023] Open
Abstract
Necroptosis is a form of programmed necrosis that is mediated by various cytokines and pattern recognition receptors (PRRs). Cells dying by necroptosis show necrotic phenotypes, including swelling and membrane rupture, and release damage-associated molecular patterns (DAMPs), inflammatory cytokines, and chemokines, thereby mediating extreme inflammatory responses. Studies on gene knockout or necroptosis-specific inhibitor treatment in animal models have provided extensive evidence regarding the important roles of necroptosis in inflammatory diseases. The necroptosis signaling pathway is primarily modulated by activation of receptor-interacting protein kinase 3 (RIPK3), which phosphorylates mixed-lineage kinase domain-like protein (MLKL), mediating MLKL oligomerization. In the necroptosis process, these proteins are fine-tuned by posttranslational regulation via phosphorylation, ubiquitination, glycosylation, and protein-protein interactions. Herein, we review recent findings on the molecular regulatory mechanisms of necroptosis.
Collapse
|
143
|
Small molecules targeting ubiquitination to control inflammatory diseases. Drug Discov Today 2021; 26:2414-2422. [PMID: 33992766 DOI: 10.1016/j.drudis.2021.04.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/29/2022]
Abstract
The ubiquitination and deubiquitination of proteins govern signal transduction in every aspect of physiology and pathology, especially in cancer, inflammation, and autoimmune diseases. Rapid progress has been made in obtaining an in-depth understanding of the ubiquitination system since its first discovery during the 1970s. Manipulation of ubiquitination by small molecules is considered a novel therapeutic avenue. In this review, we summarize key applications of small molecules targeting ubiquitination enzymes and currently available technologies applied to the discovery of small molecules that control ubiquitination.
Collapse
|
144
|
Zhao J, Wang X, Mi Z, Jiang X, Sun L, Zheng B, Wang J, Meng M, Zhang L, Wang Z, Song J, Yuan Z, Wu Z. STAT3/miR-135b/NF-κB axis confers aggressiveness and unfavorable prognosis in non-small-cell lung cancer. Cell Death Dis 2021; 12:493. [PMID: 33990540 PMCID: PMC8121828 DOI: 10.1038/s41419-021-03773-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
Non-small-cell lung cancer (NSCLC) is one of the most commonly diagnosed cancers worldwide but has limited effective therapies. Uncovering the underlying pathological and molecular changes, as well as mechanisms, will improve the treatment. Dysregulated microRNAs (miRNAs) have been proven to play important roles in the initiation and progression of various cancers, including NSCLC. In this manuscript, we identified microRNA-135b (miR-135b) as a tumor-promoting miRNA in NSCLC. We found that miR-135b was significantly upregulated and that its upregulation was associated with poor prognosis in NSCLC patients. miR-135b was an independent prognostic factor in NSCLC. Overexpressing miR-135b significantly promoted the aggressiveness of NSCLC, as evidenced by enhanced cell proliferation, migration, invasion, anti-apoptosis, and angiogenesis in vitro and in vivo, and knockdown of miR-135b had the opposite effects. Mechanistically, our results reveal that miR-135b directly targets the 3'-untranslated region (UTR) of the deubiquitinase CYLD, thereby modulating ubiquitination and activation of NF-κB signaling. Moreover, we found that interleukin-6 (IL-6)/STAT3 could elevate miR-135b levels and that STAT3 directly bound the promoter of miR-135b; thus, these findings highlight a new positive feedback loop of the IL-6/STAT3/miR-135b/NF-κB signaling in NSCLC and suggest that miR-135b could be a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Jinlin Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
| | - Xin Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
| | - Zeyun Mi
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Tianjin Medical University, 300070, Tianjin, China
| | - Xiangli Jiang
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute & Hospital, 300060, Tianjin, China
| | - Lin Sun
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, 300060, Tianjin, China
| | - Boyu Zheng
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
| | - Jing Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
| | - Maobin Meng
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
| | - Lu Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
| | - Zhongqiu Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
| | - Junwei Song
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, 518060, Shenzhen, Guangdong, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China.
| | - Zhiqiang Wu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China.
| |
Collapse
|
145
|
Zinatizadeh MR, Schock B, Chalbatani GM, Zarandi PK, Jalali SA, Miri SR. The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases. Genes Dis 2021; 8:287-297. [PMID: 33997176 PMCID: PMC8093649 DOI: 10.1016/j.gendis.2020.06.005] [Citation(s) in RCA: 229] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 05/26/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
The nuclear factor kappa B (NF-kB) family of transcription factors plays an essential role as stressors in the cellular environment, and controls the expression of important regulatory genes such as immunity, inflammation, death, and cell proliferation. NF-kB protein is located in the cytoplasm, and can be activated by various cellular stimuli. There are two pathways for NF-kB activation, as the canonical and non-canonical pathways, which require complex molecular interactions with adapter proteins and phosphorylation and ubiquitinase enzymes. Accordingly, this increases NF-kB translocation in the nucleus and regulates gene expression. In this study, the concepts that emerge in different cellular systems allow the design of NF-kB function in humans. This would not only allow the development for rare diseases associated with NF-kB, but would also be used as a source of useful information to eliminate widespread consequences such as cancer or inflammatory/immune diseases.
Collapse
Affiliation(s)
| | - Bettina Schock
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| | - Ghanbar Mahmoodi Chalbatani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, 1336616357, Iran
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, 1336616357, Iran
| | | | - Seyed Amir Jalali
- Department of Medical Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1336616357, Iran
| | - Seyed Rouhollah Miri
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, 1336616357, Iran
| |
Collapse
|
146
|
Petrova T, Zhang J, Nanda SK, Figueras-Vadillo C, Cohen P. HOIL-1-catalysed ester-linked ubiquitylation restricts IL-18 signaling in cytotoxic T cells but promotes TLR signalling in macrophages. FEBS J 2021; 288:5909-5924. [PMID: 33932090 DOI: 10.1111/febs.15896] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/19/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022]
Abstract
The atypical E3 ligase HOIL-1 forms ester bonds between ubiquitin and serine/threonine residues in proteins, but the physiological roles of this unusual modification are unknown. We now report that IL-18 signalling leading to the production of interferon γ (IFNγ) and granulocyte-macrophage colony-stimulating factor (GM-CSF) is enhanced in cytotoxic T cells from knock-in mice expressing the E3 ligase-inactive HOIL-1[C458S] mutant, demonstrating that the formation of HOIL-1-catalysed ester-linked ubiquitin bonds restricts the activation of this pathway. We show that the interaction of IRAK2 with TRAF6 is required for IL-18-stimulated IFN-γ and GM-CSF production, and that the increased production of these cytokines in cytotoxic T cells from HOIL-1[C458S] mice correlates with an increase in both the number and size of the Lys63/Met1-linked hybrid ubiquitin chains attached to IRAK2 in these cells. In contrast, the secretion of IL-12 and IL-6 and the formation of il-12 and il-6 mRNA induced in bone marrow-derived macrophages (BMDMs) by prolonged stimulation with TLR-activating ligands that signal via myddosomes, which also requires the interaction of IRAK2 with TRAF6, were not increased but modestly reduced in HOIL-1[C458S] BMDM. The decreased production of these cytokines correlated with reduced ubiquitylation of IRAK2. Our results establish that changes in HOIL-1-catalysed ester-linked ubiquitylation can promote or reduce cytokine production depending on the ligand, receptor and immune cell and may be explained by differences in the ubiquitylation of IRAK2.
Collapse
Affiliation(s)
- Tsvetana Petrova
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life sciences, University of Dundee, UK
| | - Jiazhen Zhang
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life sciences, University of Dundee, UK
| | - Sambit K Nanda
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life sciences, University of Dundee, UK
| | - Clara Figueras-Vadillo
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life sciences, University of Dundee, UK
| | - Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life sciences, University of Dundee, UK
| |
Collapse
|
147
|
Torrino S, Tiroille V, Dolfi B, Dufies M, Hinault C, Bonesso L, Dagnino S, Uhler J, Irondelle M, Gay AS, Fleuriot L, Debayle D, Lacas-Gervais S, Cormont M, Bertero T, Bost F, Gilleron J, Clavel S. UBTD1 regulates ceramide balance and endolysosomal positioning to coordinate EGFR signaling. eLife 2021; 10:68348. [PMID: 33884955 PMCID: PMC8118655 DOI: 10.7554/elife.68348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
To adapt in an ever-changing environment, cells must integrate physical and chemical signals and translate them into biological meaningful information through complex signaling pathways. By combining lipidomic and proteomic approaches with functional analysis, we have shown that ubiquitin domain-containing protein 1 (UBTD1) plays a crucial role in both the epidermal growth factor receptor (EGFR) self-phosphorylation and its lysosomal degradation. On the one hand, by modulating the cellular level of ceramides through N-acylsphingosine amidohydrolase 1 (ASAH1) ubiquitination, UBTD1 controls the ligand-independent phosphorylation of EGFR. On the other hand, UBTD1, via the ubiquitination of Sequestosome 1 (SQSTM1/p62) by RNF26 and endolysosome positioning, participates in the lysosomal degradation of EGFR. The coordination of these two ubiquitin-dependent processes contributes to the control of the duration of the EGFR signal. Moreover, we showed that UBTD1 depletion exacerbates EGFR signaling and induces cell proliferation emphasizing a hitherto unknown function of UBTD1 in EGFR-driven human cell proliferation.
Collapse
Affiliation(s)
- Stéphanie Torrino
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,Université Côte d'Azur, Inserm, C3M, Team Targeting prostate cancer cell metabolism, Nice, France
| | - Victor Tiroille
- Université Côte d'Azur, Inserm, C3M, Team Targeting prostate cancer cell metabolism, Nice, France
| | - Bastien Dolfi
- Université Côte d'Azur, Inserm, C3M, Team Metabolism and cancer, Nice, France
| | - Maeva Dufies
- Biomedical Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Charlotte Hinault
- Université Côte d'Azur, Inserm, C3M, Team Targeting prostate cancer cell metabolism, Nice, France.,Biochemistry Laboratory, University Hospital, Nice, France
| | | | - Sonia Dagnino
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial CollegeLondon, London, United Kingdom
| | - Jennifer Uhler
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | - Mireille Cormont
- Université Côte d'Azur, Inserm, C3M, Team Cellular and Molecular Pathophysiology of Obesity and Diabetes, Nice, France
| | | | - Frederic Bost
- Université Côte d'Azur, Inserm, C3M, Team Targeting prostate cancer cell metabolism, Nice, France
| | - Jerome Gilleron
- Université Côte d'Azur, Inserm, C3M, Team Cellular and Molecular Pathophysiology of Obesity and Diabetes, Nice, France
| | - Stephan Clavel
- Université Côte d'Azur, Inserm, C3M, Team Targeting prostate cancer cell metabolism, Nice, France
| |
Collapse
|
148
|
Çopuroğlu FE, Hapil FZ, Yoldaş ŞB, Özeş ON. Positive regulation of TNFR1 signaling via SH3 recognition motif. ACTA ACUST UNITED AC 2021; 45:171-179. [PMID: 33907493 PMCID: PMC8068768 DOI: 10.3906/biy-2010-28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/01/2021] [Indexed: 12/03/2022]
Abstract
TNF is a pleiotropic cytokine and shows its biological function by binding to its receptors called TNFR1 and TNFR2. While TNFR1 induces apoptosis by activation of caspase-8 via the “death domain”, it also activates IKKα/β, MKK3/6, MKK4/7 by activation of TAK1. Although the TNFR1 signaling pathway is known by in large, it is not known how AKT and MAPKs p38, ERK1/2, and JNK1/2 are activated. The presence of a proline-rich PPAP region, (P448PAP451, a binding site for the SH3 domain-containing proteins) very close to the C-terminus promoted us to determine whether this region has any role in the TNFR1 signal transduction. To test this, the codons of P448 and P451 were changed to that of Alanin, GCG, via site-directed mutagenesis, and this plasmid was named as TNFR1-SH3-P/A. Subsequently, ectopically expressed the wild type TNFR1 and TNFR1-SH3-P/A in 293T cells and determined the levels of TNF-α-mediated phosphorylations of ERK, p38, JNK and AKT, NF-kB, and caspase-8 activation. While ectopic expression of our mutant diminished TNFα-mediated phosphorylations of p38, JNK, ERK and AKT, it increased NF-kB, and caspase-8 activations. In conclusion, TNFα-mediated ERK, AKT, JNK, p38 activations are affected by TNFR1 SH3 domain modifications.
Collapse
Affiliation(s)
- Fatma Ece Çopuroğlu
- Department of Medical Biology and Genetics, Institute of Health Sciences, Akdeniz University, Antalya Turkey2
| | - Fatma Zehra Hapil
- Department of Medical Biology and Genetics, Institute of Health Sciences, Akdeniz University, Antalya Turkey2
| | - Şükran Burçak Yoldaş
- Department of Medical Biology and Genetics, Institute of Health Sciences, Akdeniz University, Antalya Turkey2
| | | |
Collapse
|
149
|
Budroni V, Versteeg GA. Negative Regulation of the Innate Immune Response through Proteasomal Degradation and Deubiquitination. Viruses 2021; 13:584. [PMID: 33808506 PMCID: PMC8066222 DOI: 10.3390/v13040584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/25/2022] Open
Abstract
The rapid and dynamic activation of the innate immune system is achieved through complex signaling networks regulated by post-translational modifications modulating the subcellular localization, activity, and abundance of signaling molecules. Many constitutively expressed signaling molecules are present in the cell in inactive forms, and become functionally activated once they are modified with ubiquitin, and, in turn, inactivated by removal of the same post-translational mark. Moreover, upon infection resolution a rapid remodeling of the proteome needs to occur, ensuring the removal of induced response proteins to prevent hyperactivation. This review discusses the current knowledge on the negative regulation of innate immune signaling pathways by deubiquitinating enzymes, and through degradative ubiquitination. It focusses on spatiotemporal regulation of deubiquitinase and E3 ligase activities, mechanisms for re-establishing proteostasis, and degradation through immune-specific feedback mechanisms vs. general protein quality control pathways.
Collapse
Affiliation(s)
| | - Gijs A. Versteeg
- Max Perutz Labs, Department of Microbiology, Immunobiology, and Genetics, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
150
|
Liang X, Cao Y, Li C, Yu H, Yang C, Liu H. MALT1 as a promising target to treat lymphoma and other diseases related to MALT1 anomalies. Med Res Rev 2021; 41:2388-2422. [PMID: 33763890 DOI: 10.1002/med.21799] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/23/2020] [Accepted: 03/03/2021] [Indexed: 12/25/2022]
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a key adaptor protein that regulates the NF-κB pathway, in which MALT1 functions as a scaffold protein and protease to trigger downstream signals. The abnormal expression of MALT1 is closely associated with lymphomagenesis and other diseases, including solid tumors and autoimmune diseases. MALT1 is the only protease in the underlying pathogenesis of these diseases, and its proteolytic activity can be pharmacologically regulated. Therefore, MALT1 is a potential and promising target for anti-lymphoma and other MALT1-related disease treatments. Currently, the development of MALT1 inhibitors is still in its early stages. This review presents an overview of MALT1, particularly its X-ray structures and biological functions, and elaborates on the pathogenesis of diseases associated with its dysregulation. We then summarize previously reported MALT1 inhibitors, focusing on their molecular structure, biological activity, structure-activity relationship, and limitations. Finally, we propose future research directions to accelerate the discovery of novel MALT1 inhibitors with clinical applications. Overall, this review provides a comprehensive and systematic overview of MALT1-related research advances and serves as a theoretical basis for drug discovery and research.
Collapse
Affiliation(s)
- Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - YiChun Cao
- School of Pharmacy, Fudan University, Shanghai, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haolan Yu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chenghua Yang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|