101
|
Hirakata S, Aoki H, Ohno-Urabe S, Nishihara M, Furusho A, Nishida N, Ito S, Hayashi M, Yasukawa H, Imaizumi T, Hiromatsu S, Tanaka H, Fukumoto Y. Genetic Deletion of Socs3 in Smooth Muscle Cells Ameliorates Aortic Dissection in Mice. JACC Basic Transl Sci 2020; 5:126-144. [PMID: 32140621 PMCID: PMC7046542 DOI: 10.1016/j.jacbts.2019.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 01/16/2023]
Abstract
Stat3, a major signaling molecule for proinflammatory cytokines including IL-6, was activated both in inflammatory cells and in SMC in the aortic walls of human AD and mouse AD model. SMC-specific deletion of Socs3 enhanced Stat3 activation in SMC, induced moderate proinflammatory response in the aortic walls, and ameliorated AD in mice. SmSocs3-KO aortas showed increases in fibroblasts, adventitial collagen fibers, and tensile strength of the aortic walls. IL-6-stimulated SMC in culture secreted humoral factor(s) that promoted proliferative response of fibroblasts.
Aortic dissection (AD) is the acute destruction of aortic wall and is reportedly induced by inflammatory response. Here we investigated the role of smooth muscle Socs3 (a negative regulator of Janus kinases/signal transducer and activator of transcription signaling) in AD pathogenesis using a mouse model generated via β-aminopropionitrile and angiotensin II infusion. Socs3 deletion specifically in smooth muscle cells yielded a chronic inflammatory response of the aortic wall, which was associated with increased fibroblasts, reinforced aortic tensile strength, and less-severe tissue destruction. Although an acute inflammatory response is detrimental in AD, smooth muscle-regulated inflammatory response seemed protective against AD.
Collapse
Key Words
- AD, aortic dissection
- AngII, angiotensin II
- BAPN, β-aminopropionitrile
- ECM, extracellular matrix
- IL, interleukin
- Jak/Stat
- Jnk, c-Jun N-terminal kinases
- KO, knockout
- Lox, lysyl oxidase
- SM2, smooth muscle myosin heavy chain
- SMA, smooth muscle α-actin
- SMC, smooth muscle cell
- SMemb, embryonic isoform of myosin heavy chain
- Socs, suppressor of cytokine signaling
- Stat, signal transducer and activator of transcription
- WT, wild type
- aortic dissection
- inflammation
- p, phosphorylated
- smSocs3-KO, knockout of the smooth muscle cell Socs3
- smooth muscle cells
Collapse
Affiliation(s)
- Saki Hirakata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hiroki Aoki
- Cardiovascular Research Institute, Kurume University, Kurume, Japan
- Address for correspondence: Dr. Hiroki Aoki, Cardiovascular Research Institute, Kurume University, 67 Asahimachi, Kurume, Fukuoka 830-0011, Japan.
| | - Satoko Ohno-Urabe
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Michihide Nishihara
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Aya Furusho
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Norifumi Nishida
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Sohei Ito
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Makiko Hayashi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hideo Yasukawa
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | | | - Sinichi Hiromatsu
- Division of Cardiovascular Surgery, Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Hiroyuki Tanaka
- Division of Cardiovascular Surgery, Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Yoshihiro Fukumoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
102
|
Gibbs KD, Washington EJ, Jaslow SL, Bourgeois JS, Foster MW, Guo R, Brennan RG, Ko DC. The Salmonella Secreted Effector SarA/SteE Mimics Cytokine Receptor Signaling to Activate STAT3. Cell Host Microbe 2019; 27:129-139.e4. [PMID: 31901521 DOI: 10.1016/j.chom.2019.11.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/05/2019] [Accepted: 11/21/2019] [Indexed: 01/18/2023]
Abstract
Bacteria masterfully co-opt and subvert host signal transduction. As a paradigmatic example, Salmonella uses two type-3 secretion systems to inject effector proteins that facilitate Salmonella entry, establishment of an intracellular niche, and modulation of immune responses. We previously demonstrated that the Salmonella anti-inflammatory response activator SarA (Stm2585, GogC, PagJ, SteE) activates the host transcription factor STAT3 to drive expression of immunomodulatory STAT3-targets. Here, we demonstrate-by sequence, function, and biochemical measurement-that SarA mimics the cytoplasmic domain of glycoprotein 130 (gp130, IL6ST). SarA is phosphorylated at a YxxQ motif, facilitating binding to STAT3 with greater affinity than gp130. Departing from canonical gp130 signaling, SarA function is JAK-independent but requires GSK-3, a key regulator of metabolism and development. Our results reveal that SarA undergoes host phosphorylation to recruit a STAT3-activating complex, circumventing cytokine receptor activation. Effector mimicry of gp130 suggests GSK-3 can regulate normal cytokine signaling, potentially enabling metabolic and immune crosstalk.
Collapse
Affiliation(s)
- Kyle D Gibbs
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Erica J Washington
- Department of Biochemistry, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Sarah L Jaslow
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Jeffrey S Bourgeois
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA; Duke University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA
| | - Matthew W Foster
- Duke Proteomics and Metabolomics Shared Resource, Duke University Medical Center, Durham, NC 27710, USA
| | - Robyn Guo
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Richard G Brennan
- Department of Biochemistry, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA; Duke University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA; Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
103
|
Osaka T, Hashimoto Y, Okamura T, Fukuda T, Yamazaki M, Hamaguchi M, Fukui M. Reduction of Fat to Muscle Mass Ratio Is Associated with Improvement of Liver Stiffness in Diabetic Patients with Non-Alcoholic Fatty Liver Disease. J Clin Med 2019; 8:jcm8122175. [PMID: 31835362 PMCID: PMC6947171 DOI: 10.3390/jcm8122175] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/26/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022] Open
Abstract
Body weight reduction leads to improvement of nonalcoholic fatty liver disease (NAFLD), but the contributions of body composition modification on its improvement have not been clarified yet. We performed a retrospective cohort study in a Japanese university hospital to clarify the effect of body fat reduction on the improvement of hepatic stiffness as well as hepatic steatosis. The skeletal muscle mass index (SMI, kg/m2), fat to muscle mass ratio, and the change in fat to muscle mass ratio after 1 year from baseline were calculated. Controlled attenuation parameter (CAP, dB/m) and liver stiffness measurement (LSM, kPa) were evaluated by elastography. Primary outcome was set as the association of the change of fat to muscle mass ratio after 1 year from baseline with the change of liver stiffness measurement. One hundred and seventeen patients (59 men and 58 women) completed the study. The average age was 63.5 years, and baseline CAP and LSM were 273.4 ± 53.5 dB/m and 6.3 ± 3.4 kPa, respectively. After 1 year, body mass index (BMI), SMI, and LSM decreased. Multiple regression analyses demonstrated that change in fat to muscle mass ratio was associated with the change in CAP (ß = 0.38, p < 0.001) or LSM (ß = 0.21, p = 0.026). The reduction of fat to muscle mass ratio was associated with improvement in liver stiffness, but the reduction of BMI was not.
Collapse
Affiliation(s)
- Takafumi Osaka
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566, Japan; (T.O.); (Y.H.); (T.O.); (T.F.); (M.Y.); (M.H.)
- Department of Endocrinology and Diabetology, Ayabe City Hospital, Ayabe 623-0011, Japan
| | - Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566, Japan; (T.O.); (Y.H.); (T.O.); (T.F.); (M.Y.); (M.H.)
| | - Takuro Okamura
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566, Japan; (T.O.); (Y.H.); (T.O.); (T.F.); (M.Y.); (M.H.)
| | - Takuya Fukuda
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566, Japan; (T.O.); (Y.H.); (T.O.); (T.F.); (M.Y.); (M.H.)
| | - Masahiro Yamazaki
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566, Japan; (T.O.); (Y.H.); (T.O.); (T.F.); (M.Y.); (M.H.)
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566, Japan; (T.O.); (Y.H.); (T.O.); (T.F.); (M.Y.); (M.H.)
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566, Japan; (T.O.); (Y.H.); (T.O.); (T.F.); (M.Y.); (M.H.)
- Correspondence: ; Tel.: +81-75-251-5505
| |
Collapse
|
104
|
Sun Z, Xiong C, Teh SW, Lim JCW, Kumar S, Thilakavathy K. Mechanisms of Oral Bacterial Virulence Factors in Pancreatic Cancer. Front Cell Infect Microbiol 2019; 9:412. [PMID: 31867287 PMCID: PMC6904357 DOI: 10.3389/fcimb.2019.00412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer is a highly lethal disease, and most patients remain asymptomatic until the disease enters advanced stages. There is lack of knowledge in the pathogenesis, effective prevention and early diagnosis of pancreatic cancer. Recently, bacteria were found in pancreatic tissue that has been considered sterile before. The distribution of flora in pancreatic cancer tissue was reported to be different from normal pancreatic tissue. These abnormally distributed bacteria may be the risk factors for inducing pancreatic cancer. Therefore, studies on combined effect of multi-bacterial and multi-virulence factors may add to the knowledge of pancreatic cancer pathogenesis and aid in designing new preventive and therapeutic strategies. In this review, we outlined three oral bacteria associated with pancreatic cancer and their virulence factors linked with cancer.
Collapse
Affiliation(s)
- Zhong Sun
- Department of Biomedical Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - ChengLong Xiong
- Department of Public Health Microbiology, School of Public Health, Fudan University, Shanghai, China
| | - Seoh Wei Teh
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Jonathan Chee Woei Lim
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Suresh Kumar
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, Serdang, Malaysia.,Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, Serdang, Malaysia.,UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Karuppiah Thilakavathy
- Department of Biomedical Science, Universiti Putra Malaysia, Serdang, Malaysia.,Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
105
|
Wang Z, Li M, Liu L, Geng B. Muscarinic M1 and M2 receptor subtypes play opposite roles in LPS-induced septic shock. Pharmacol Rep 2019; 71:1108-1114. [PMID: 31634798 DOI: 10.1016/j.pharep.2019.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/17/2019] [Accepted: 06/12/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND To compare pharmacologic effects of pirenzepine and AF-DX116, a selective competitive antagonist for M1 and M2 subtype muscarinic cholinergic receptors (mAChRs), respectively, with atropine, a non-selective competitive antagonist for mAChRs, on Lipopolysaccharide (LPS). METHODS Male C57BL/6 mice were used to establish models of LPS-induced experimental endotoxemia. Mice were intraperitoneally injected 10 min prior to LPS injection with control (saline), atropine, pirenzepine and AF-DX116, respectively. Overall survival time was estimated using Kaplan-Meier plots. Inflammatory cytokine tumor necrosis factor-α (TNF-α) was monitored at various intervals after LPS injection and individual reagent administration. Pathological alternations in lungs and liver were analyzed. RESULTS Pirenzepine and atropine pretreatment improved survival rate of LPS-induced septic shock; in contrast, AF-DX116 accelerated death from sepsis. Moreover, TNF-α plasma level was decreased in response to pirenzepine or atropine, whereas increased in response to AF-DX116. Pirenzepine and atropine relieved whereas AF-DX116 accelerated LPS-induced pulmonary and hepatic injury. Pirenzepine reduced proportion of M1 subtype of macrophages, while AF-DX116 promoted polarization of macrophages to M1 subtype. Pirenzepine pretreatment reduced while AF-DX116 enhanced expression of SOCS3 at mRNA level. CONCLUSIONS The administration of pirenzepine and atropine may have beneficial effects on septic shock.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Emergency Medicine, the 9th Clinical Medical College of Peking University, Beijing Shijitan Hospital, Capital Medical University, Beijng, China.
| | - Mingyi Li
- Department of Emergency Medicine, the 9th Clinical Medical College of Peking University, Beijing Shijitan Hospital, Capital Medical University, Beijng, China
| | - Lu Liu
- Department of Emergency Medicine, the 9th Clinical Medical College of Peking University, Beijing Shijitan Hospital, Capital Medical University, Beijng, China
| | - Bin Geng
- Fuwai Hospital, Chinese Academy of Medical Science, Beijng, China
| |
Collapse
|
106
|
Hwang JY, Holland JE, Valenteros KB, Sun Y, Usherwood YK, Verissimo AF, McLellan JS, Grigoryan G, Usherwood EJ. Dissociating STAT4 and STAT5 Signaling Inhibitory Functions of SOCS3: Effects on CD8 T Cell Responses. Immunohorizons 2019; 3:547-558. [PMID: 31748225 PMCID: PMC7178138 DOI: 10.4049/immunohorizons.1800075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 10/31/2019] [Indexed: 12/27/2022] Open
Abstract
Cytokines are critical for guiding the differentiation of T lymphocytes to perform specialized tasks in the immune response. Developing strategies to manipulate cytokine-signaling pathways holds promise to program T cell differentiation toward the most therapeutically useful direction. Suppressor of cytokine signaling (SOCS) proteins are attractive targets, as they effectively inhibit undesirable cytokine signaling. However, these proteins target multiple signaling pathways, some of which we may need to remain uninhibited. SOCS3 inhibits IL-12 signaling but also inhibits the IL-2–signaling pathway. In this study, we use computational protein design based on SOCS3 and JAK crystal structures to engineer a mutant SOCS3 with altered specificity. We generated a mutant SOCS3 designed to ablate interactions with JAK1 but maintain interactions with JAK2. We show that this mutant does indeed ablate JAK1 inhibition, although, unexpectedly, it still coimmunoprecipitates with JAK1 and does so to a greater extent than with JAK2. When expressed in CD8 T cells, mutant SOCS3 preserved inhibition of JAK2-dependent STAT4 phosphorylation following IL-12 treatment. However, inhibition of STAT phosphorylation was ablated following stimulation with JAK1-dependent cytokines IL-2, IFN-α, and IL-21. Wild-type SOCS3 inhibited CD8 T cell expansion in vivo and induced a memory precursor phenotype. In vivo T cell expansion was restored by expression of the mutant SOCS3, and this also reverted the phenotype toward effector T cell differentiation. These data show that SOCS proteins can be engineered to fine-tune their specificity, and this can exert important changes to T cell biology.
Collapse
Affiliation(s)
- Ji Young Hwang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH 03755
| | - John E Holland
- Department of Computer Science, Dartmouth College, Hanover, NH 03755
| | - Kristine B Valenteros
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH 03755
| | - Yanbo Sun
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH 03755
| | - Young-Kwang Usherwood
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH 03755
| | - Andreia F Verissimo
- Institute for Molecular Targeting, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755; and
| | - Jason S McLellan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755
| | - Gevorg Grigoryan
- Department of Computer Science, Dartmouth College, Hanover, NH 03755
| | - Edward J Usherwood
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH 03755;
| |
Collapse
|
107
|
Tsai CH, Lee Y, Li CH, Cheng YW, Kang JJ. Down-regulation of aryl hydrocarbon receptor intensifies carcinogen-induced retinal lesion via SOCS3-STAT3 signaling. Cell Biol Toxicol 2019; 36:223-242. [DOI: 10.1007/s10565-019-09499-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/16/2019] [Indexed: 11/29/2022]
|
108
|
Davoodvandi A, Sahebnasagh R, Mardanshah O, Asemi Z, Nejati M, Shahrzad MK, Mirzaei HR, Mirzaei H. Medicinal Plants As Natural Polarizers of Macrophages: Phytochemicals and Pharmacological Effects. Curr Pharm Des 2019; 25:3225-3238. [DOI: 10.2174/1381612825666190829154934] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/20/2019] [Indexed: 12/24/2022]
Abstract
Macrophages are one of the crucial mediators of the immune response in different physiological and
pathological conditions. These cells have critical functions in the inflammation mechanisms that are involved in
the inhibition or progression of a wide range of diseases including cancer, autoimmune diseases, etc. It has been
shown that macrophages are generally divided into two subtypes, M1 and M2, which are distinguished on the
basis of their different gene expression patterns and phenotype. M1 macrophages are known as pro-inflammatory
cells and are involved in inflammatory mechanisms, whereas M2 macrophages are known as anti-inflammatory
cells that are involved in the inhibition of the inflammatory pathways. M2 macrophages help in tissue healing via
producing anti-inflammatory cytokines. Increasing evidence indicated that the appearance of different macrophage
subtypes is associated with the fate of diseases (progression versus suppression). Hence, polarization of
macrophages can be introduced as an important venue in finding, designing and developing novel therapeutic
approaches. Albeit, there are different pharmacological agents that are used for the treatment of various disorders,
it has been shown that several natural compounds have the potential to regulate M1 to M2 macrophage polarization
and vice versa. Herein, for the first time, we summarized new insights into the pharmacological effects of
natural compounds on macrophage polarization.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Roxana Sahebnasagh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Mardanshah
- Department of Laboratory Sciences, Sirjan Faculty of Medical Sciences, Sirjan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad K. Shahrzad
- Department of Internal Medicine and Endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid R. Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
109
|
Interleukin 6 Promotes Brucella abortus Clearance by Controlling Bactericidal Activity of Macrophages and CD8 + T Cell Differentiation. Infect Immun 2019; 87:IAI.00431-19. [PMID: 31451617 DOI: 10.1128/iai.00431-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022] Open
Abstract
To date, the implications of interleukin 6 (IL-6) for immune responses in the context of Brucella infection are still unknown. In the present study, we found that Brucella abortus infection induced marked production of IL-6 in mice that was important for sufficient differentiation of CD8+ T cells, a key factor in Brucella clearance. Blocking IL-6 signaling also significantly induced serum IL-4 and IL-10, together with a decreased gamma interferon (IFN-γ) level, suggesting that IL-6 is essential for priming the T-helper (Th) 1 cell immune response during Brucella infection. The IL-6 pathway also activated the bactericidal activity of primary and cultured macrophages. Bacterial killing was markedly abrogated when IL-6 signaling was suppressed, and this phenomenon was mainly associated with decreased activity of lysosome-mediated killing. Interestingly, suppressor of cytokine signaling 3 (SOCS3) was important for regulating the IL-6-dependent anti-Brucella activity through the JAK/STAT pathway. During early infection, in the absence of SOCS3, IL-6 exhibited anti-inflammatory effects and lysosome-mediated killing inhibition; however, the increase in SOCS3 successfully shifted functional IL-6 toward proinflammatory brucellacidal activity in the late stage. Our data clearly indicate that IL-6 contributes to host resistance against B. abortus infection by controlling brucellacidal activity in macrophages and priming cellular immune responses.
Collapse
|
110
|
Tiveron RDR, Costa DA, Leite MDI, Vaz CBS, Sousa M, Carlos SMCF, Oliveira CJF, Machado RR, Paulino TP. Evaluation of cell damage and modulation of cytokines TNF-α, IL-6 and IL-10 in macrophages exposed to PpIX-mediated photodynamic therapy. BRAZ J BIOL 2019; 80:497-505. [PMID: 31576928 DOI: 10.1590/1519-6984.193748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/11/2019] [Indexed: 11/22/2022] Open
Abstract
Little is known regarding whether photodynamic therapy (PDT)-induced cell death can substantially compromise macrophages (MΦ), which are important cells in PDT-induced immune responses. Here, parameters of PDT-mediated MΦ cytotoxicity and cytokine production in response to protoporphyrin IX (PpIX) were evaluated. Peritoneal MΦ from BALB/c mice were stimulated in vitro with PDT, light, PpIX, or lipopolysaccharide (LPS). After that, cell viability, lipid peroxidation, Nitric Oxide (NO), DNA damage, TNF-α, IL-6 and IL-10 were evaluated. Short PDT exposure reduced cell viability by 10-30%. There was a two-fold increase in NO and DNA degradation, despite the non-increase in lipoperoxidation. PDT increased TNF-α and IL-10, particularly in the presence of LPS, and decreased the production of IL-6 to 10-fold. PDT causes cellular stress, induces NO radicals and leads to DNA degradation, generating a cytotoxic microenvironment. Furthermore, PDT modulates pro- and anti-inflammatory cytokines in MΦ.
Collapse
Affiliation(s)
- R D R Tiveron
- Núcleo de Biotérios, Biotério Central, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brasil
| | - D A Costa
- Universidade de Uberaba, Uberaba, MG, Brasil
| | - M D I Leite
- Programa de Mestrado em Odontologia, Universidade de Uberaba, Uberaba, MG, Brasil
| | - C B S Vaz
- Universidade de Uberaba, Uberaba, MG, Brasil
| | - M Sousa
- Universidade de Uberaba, Uberaba, MG, Brasil
| | - S M C F Carlos
- Laboratório Multidisciplinar, Centro de Educação Profissional, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brasil
| | - C J F Oliveira
- Núcleo de Biotérios, Biotério Central, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brasil
| | - R R Machado
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - T P Paulino
- Laboratório Multidisciplinar, Centro de Educação Profissional, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brasil
| |
Collapse
|
111
|
Korovina I, Neuwirth A, Sprott D, Troullinaki M, Poitz DM, Deussen A, Klotzsche-von Ameln A. Myeloid SOCS3 Deficiency Regulates Angiogenesis via Enhanced Apoptotic Endothelial Cell Engulfment. J Innate Immun 2019; 12:248-256. [PMID: 31574508 DOI: 10.1159/000502645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 08/12/2019] [Indexed: 01/05/2023] Open
Abstract
Mononuclear phagocytes, such as macrophages and microglia, are key regulators of organ homeostasis including vascularization processes. Here, we investigated the role of the suppressor of cytokine signaling 3 (SOCS3) in myeloid cells as a regulator of mononuclear phagocyte function and their interaction with endothelial cells in the context of sprouting angiogenesis. As compared to SOCS3-sufficient counterparts, SOCS3-deficient microglia and macrophages displayed an increased phagocytic activity toward primary apoptotic endothelial cells, which was associated with an enhanced expression of the opsonin growth arrest-specific 6 (Gas6), a major prophagocytic molecule. Furthermore, we found that myeloid SOCS3 deficiency significantly reduced angiogenesis in an ex vivo mouse aortic ring assay, which could be reversed by the inhibition of the Gas6 receptor Mer. Together, SOCS3 in myeloid cells regulates the Gas6/Mer-dependent phagocytosis of endothelial cells, and thereby angiogenesis-related processes. Our findings provide novel insights into the complex crosstalk between mononuclear phagocytes and endothelial cells, and may therefore provide a new platform for the development of new antiangiogenic therapies.
Collapse
Affiliation(s)
- Irina Korovina
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ales Neuwirth
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - David Sprott
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Maria Troullinaki
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - David M Poitz
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Andreas Deussen
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Anne Klotzsche-von Ameln
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany, .,Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany,
| |
Collapse
|
112
|
Zhu K, Lu XJ, Chen J. The interleukin-6 regulates the function of monocytes/macrophages (MO/MФ) via the interleukin-6 receptor β in ayu (Plecoglossus altivelis). FISH & SHELLFISH IMMUNOLOGY 2019; 93:191-199. [PMID: 31326589 DOI: 10.1016/j.fsi.2019.07.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Interleukin-6 (IL-6) is one of the most pleiotropic cytokines because of its wide range of effects on cells of the immune and non-immune systems in the body. However, the role of IL-6 in fish monocytes/macrophages (MO/MФ) is poorly understood. In this study, we cloned the cDNA sequence of the IL-6 gene from ayu (Plecoglossus altivelis) and demonstrated using a tissue distribution assay that ayu interleukin-6 (PaIL-6) mRNA is expressed in all tested tissues. Changes in expression were observed in immune tissues as well as in MO/MФ after a Vibrio anguillarum infection; subsequently, PaIL-6 was expressed and purified to prepare anti-PaIL-6 antibodies. Recombinant PaIL-6 protein (rPaIL-6) treatment enhanced pro-inflammatory cytokine expression. Ayu interleukin-6 receptor β (PaIL-6Rβ) knockdown resulted in decreased pro-inflammatory cytokine expression in MO/MФ treated with rPaIL-6, whereas no significant changes were observed after ayu interleukin-6 receptor α (PaIL-6Rα) knockdown in MO/MФ. PaIL-6 and PaIL-6Rβ knockdown in MO/MФ inhibited the phosphorylation of signal transducer and activator of transcription 1. Moreover, PaIL-6Rβ knockdown inhibited the phagocytic and bactericidal ability of ayu MO/MФ treated with rPaIL-6. These data indicate that PaIL-6 may be able to regulate the function of ayu MO/MФ.
Collapse
Affiliation(s)
- Kai Zhu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Xin-Jiang Lu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
113
|
Savarraj J, Parsha K, Hergenroeder G, Ahn S, Chang TR, Kim DH, Choi HA. Early Brain Injury Associated with Systemic Inflammation After Subarachnoid Hemorrhage. Neurocrit Care 2019; 28:203-211. [PMID: 29043545 DOI: 10.1007/s12028-017-0471-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Early brain injury (EBI) after aneurysmal subarachnoid hemorrhage (aSAH) is defined as brain injury occurring within 72 h of aneurysmal rupture. Although EBI is the most significant predictor of outcomes after aSAH, its underlying pathophysiology is not well understood. We hypothesize that EBI after aSAH is associated with an increase in peripheral inflammation measured by cytokine expression levels and changes in associations between cytokines. METHODS aSAH patients were enrolled into a prospective observational study and were assessed for markers of EBI: global cerebral edema (GCE), subarachnoid hemorrhage early brain edema score (SEBES), and Hunt-Hess grade. Serum samples collected at ≤ 48 h of admission were analyzed using multiplex bead-based assays to determine levels of 13 pro- and anti-inflammatory cytokines. Pairwise correlation coefficients between cytokines were represented as networks. Cytokine levels and differences in correlation networks were compared between EBI groups. RESULTS Of the 71 patients enrolled in the study, 17 (24%) subjects had GCE, 31 (44%) subjects had SEBES ≥ 3, and 21 (29%) had HH ≥ 4. IL-6 was elevated in groups with GCE, SEBES ≥ 3, and HH ≥ 4. MIP1β was independently associated with high-grade SEBES. Correlation network analysis suggests higher systematic inflammation in subjects with SEBES ≥ 3. CONCLUSIONS EBI after SAH is associated with increased levels of specific cytokines. Peripheral levels of IL-10, IL-6, and MIP1β may be important markers of EBI. Investigating systematic correlations in addition to expression levels of individual cytokines may offer deeper insight into the underlying mechanisms related to EBI.
Collapse
Affiliation(s)
- Jude Savarraj
- Department of Neurosurgery, University of Texas Health Science Center at Houston-McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Kaushik Parsha
- Department of Neurosurgery, University of Texas Health Science Center at Houston-McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Georgene Hergenroeder
- Department of Neurosurgery, University of Texas Health Science Center at Houston-McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Sungho Ahn
- Department of Neurosurgery, University of Texas Health Science Center at Houston-McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Tiffany R Chang
- Department of Neurosurgery, University of Texas Health Science Center at Houston-McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Dong H Kim
- Department of Neurosurgery, University of Texas Health Science Center at Houston-McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - H Alex Choi
- Department of Neurosurgery, University of Texas Health Science Center at Houston-McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA.
| |
Collapse
|
114
|
Liu S, Yan R, Chen B, Pan Q, Chen Y, Hong J, Zhang L, Liu W, Wang S, Chen JL. Influenza Virus-Induced Robust Expression of SOCS3 Contributes to Excessive Production of IL-6. Front Immunol 2019; 10:1843. [PMID: 31474976 PMCID: PMC6706793 DOI: 10.3389/fimmu.2019.01843] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Influenza A virus (IAV) remains a major public health threat in the world, as indicated by the severe pneumonia caused by its infection annually. Interleukin-6 (IL-6) involved excessive inflammatory response to IAV infection profoundly contributes to the virus pathogenesis. However, the precise mechanisms underlying such a response are poorly understood. Here we found from both in vivo and in vitro studies that IAV not only induced a surge of IL-6 release, but also greatly upregulated expression of suppressor of cytokine signaling-3 (SOCS3), the potent suppressor of IL-6-associated signal transducer and activator of transcription 3 (STAT3) signaling. Interestingly, there existed a cytokine-independent mechanism of the robust induction of SOCS3 by IAV at early stages of the infection. Furthermore, we employed SOCS3-knockdown transgenic mice (TG), and surprisingly observed from virus challenge experiments using these mice that disruption of SOCS3 expression provided significant protection against IAV infection, as evidenced by attenuated acute lung injury, a higher survival rate of infected animals and lower viral load in infected tissues as compared with those of wild-type littermates under the same condition. The activity of nuclear factor-kappa B (NFκB) and the expression of its target gene IL-6 were suppressed in SOCS3-knockdown A549 cells and the TG mice after infection with IAV. Moreover, we defined that enhanced STAT3 activity caused by SOCS3 silencing was important for the regulation of NFκB and IL-6. These findings establish a critical role for IL-6-STAT3-SOCS3 axis in the pathogenesis of IAV and suggest that influenza virus may have evolved a strategy to circumvent IL-6/STAT3-mediated immune response through upregulating SOCS3.
Collapse
Affiliation(s)
- Shasha Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ruoxiang Yan
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Biao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qidong Pan
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jinxuan Hong
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lianfeng Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Beijing, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Song Wang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
115
|
Morey M, O'Gaora P, Pandit A, Hélary C. Hyperglycemia acts in synergy with hypoxia to maintain the pro-inflammatory phenotype of macrophages. PLoS One 2019; 14:e0220577. [PMID: 31415598 PMCID: PMC6695165 DOI: 10.1371/journal.pone.0220577] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/18/2019] [Indexed: 12/21/2022] Open
Abstract
Diabetic foot ulcers (DFUs) are characterized by a chronic inflammation state which prevents cutaneous wound healing, and DFUs eventually lead to infection and leg amputation. Macrophages located in DFUs are locked in an pro-inflammatory phenotype. In this study, the effect of hyperglycemia and hypoxia on the macrophage phenotype was analyzed. For this purpose, a microarray was performed to study the gene expression profile of macrophages cultivated in a high glucose concentration. Hyperglycemia upregulated the expression of pro-inflammatory cytokines such as TNF-α, IL-1, IL-6, chemokines and downregulated the expression of two receptors involved in phagocytosis (CD 36 and Class B scavenger type I receptors). In addition, eleven anti-apoptotic factors were upregulated whereas three pro-apoptotic genes were downregulated. Subsequently, the contribution of hypoxia and hyperglycemia to chronic inflammation and their potential synergistic effect was evaluated on activated THP-1 derived macrophages. A long term post activation effect (17 hours) was only observed on the upregulation of pro-inflammatory cytokines when hypoxia was combined with a high glucose concentration. In contrast, hyperglycemia and hypoxia did not have any effect on wound healing molecules such as TGF-β1. Taken together, the results show that hyperglycemia acts in synergy with hypoxia to maintain a chronic inflammation state in macrophages.
Collapse
Affiliation(s)
- Mangesh Morey
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Peadar O'Gaora
- UCD School of Biomedical and Biomolecular Science, University College Dublin, Belfield, Dublin, Ireland
| | - Abhay Pandit
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
- * E-mail: (AP); (CH)
| | - Christophe Hélary
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris,place Jussieu, Paris, France
- * E-mail: (AP); (CH)
| |
Collapse
|
116
|
Morris R, Kershaw NJ, Babon JJ. The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci 2019; 27:1984-2009. [PMID: 30267440 DOI: 10.1002/pro.3519] [Citation(s) in RCA: 494] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
More than 50 cytokines signal via the JAK/STAT pathway to orchestrate hematopoiesis, induce inflammation and control the immune response. Cytokines are secreted glycoproteins that act as intercellular messengers, inducing proliferation, differentiation, growth, or apoptosis of their target cells. They act by binding to specific receptors on the surface of target cells and switching on a phosphotyrosine-based intracellular signaling cascade initiated by kinases then propagated and effected by SH2 domain-containing transcription factors. As cytokine signaling is proliferative and often inflammatory, it is tightly regulated in terms of both amplitude and duration. Here we review molecular details of the cytokine-induced signaling cascade and describe the architectures of the proteins involved, including the receptors, kinases, and transcription factors that initiate and propagate signaling and the regulatory proteins that control it.
Collapse
Affiliation(s)
- Rhiannon Morris
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3050, Victoria, Australia
| | - Nadia J Kershaw
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3050, Victoria, Australia
| | - Jeffrey J Babon
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3050, Victoria, Australia
| |
Collapse
|
117
|
Cordonier EL, Liu T, Saito K, Chen SS, Xu Y, Fukuda M. Luciferase Reporter Mice for In Vivo Monitoring and Ex Vivo Assessment of Hypothalamic Signaling of Socs3 Expression. J Endocr Soc 2019; 3:1246-1260. [PMID: 31214662 PMCID: PMC6570635 DOI: 10.1210/js.2019-00077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/17/2019] [Indexed: 11/19/2022] Open
Abstract
Suppressor of cytokine signaling-3 (SOCS3) is a negative regulator of actions of cytokines and the metabolic hormone leptin. In the hypothalamus, SOCS3 is induced in response to several conditions such as inflammation and high-fat diet feeding, modulates cellular signaling of cytokines and leptin, and mediates the effects of these biological conditions. However, signaling mechanisms controlling hypothalamic Socs3 expression remains to be fully established. To facilitate the identification of molecular pathways of Socs3 induction, we generated a real-time gene expression reporter mouse of Socs3 (Socs3-Luc mice). We successfully detected a remarkable increase in luciferase activity in various tissues of Socs3-Luc mice in response to a peripheral injection of lipopolysaccharide, a potent inducer of inflammation, reflecting expression levels of endogenous Socs3 mRNA. Using ex vivo hypothalamic explants of Socs3-Luc mice, we demonstrate that hypothalamic luciferase activity was significantly elevated in slices stimulated with known inducers of Socs3 such as proinflammatory cytokines IL-6, IL-1β, and TNF-α, lipopolysaccharide, and cAMP-inducing agent forskolin. Using the ex vivo model, we found glycogen synthase kinase-3 (GSK3)β-specific inhibitors to be potent inducers of Socs3. Furthermore, pharmacological inhibitors of β-catenin, a downstream mediator of GSK3β signaling, reduced Socs3 luciferase activity ex vivo. Finally, hypothalamic inhibition of GSK3β hindered leptin-induced phosphorylation of signal transducers and activators of transcription 3 in hypothalamic explants. These results suggest that the Socs3-luciferase mouse is useful for in vivo monitoring of Socs3 gene expression and for ex vivo slice-based screening to identify signaling pathways that control Socs3 in the hypothalamus.
Collapse
Affiliation(s)
- Elizabeth L Cordonier
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Tiemin Liu
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Kenji Saito
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Siyu S Chen
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Makoto Fukuda
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
118
|
Hansen IS, Schoonejans JM, Sritharan L, van Burgsteden JA, Ambarus CA, Baeten DLP, den Dunnen J. ER stress abrogates the immunosuppressive effect of IL-10 on human macrophages through inhibition of STAT3 activation. Inflamm Res 2019; 68:775-785. [PMID: 31227842 PMCID: PMC6667425 DOI: 10.1007/s00011-019-01261-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 04/23/2019] [Accepted: 06/12/2019] [Indexed: 01/08/2023] Open
Abstract
Objective and design To determine whether ER stress affects the inhibitory pathways of the human immune system, particularly the immunosuppressive effect of IL-10 on macrophages. Material or subjects In vitro stimulation of human monocyte-derived macrophages. Treatment Cells were stimulated with TLR ligands and IL-10, while ER stress was induced using thapsigargin or tunicamycin. Methods mRNA expression was determined using qPCR, while cytokine protein production was measured using ELISA. Protein expression of receptors and transcription factors was determined using flow cytometry. Student’s t test was used for statistics. Results While under normal conditions IL-10 potently suppresses pro-inflammatory cytokine production by LPS-stimulated macrophages, we demonstrate that ER stress counteracts the immunosuppressive effects of IL-10, leading to increased pro-inflammatory cytokine production. We identified that ER stress directly interferes with IL-10R signaling by reducing STAT3 phosphorylation on Tyr705, which thereby inhibits the expression of SOCS3. Moreover, we show that ER stress also inhibits STAT3 activation induced by other receptors such as IL-6R. Conclusions Combined, these data uncover a new general mechanism by which ER stress promotes inflammation. Considering its potential involvement in the pathogenesis of diseases such as Crohn’s disease and spondyloarthritis, targeting of this mechanism may provide new opportunities to counteract inflammation.
Collapse
Affiliation(s)
- Ivo S Hansen
- Amsterdam Rheumatology and Immunology Center, Location Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Josca M Schoonejans
- Amsterdam Rheumatology and Immunology Center, Location Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Lathees Sritharan
- Amsterdam Rheumatology and Immunology Center, Location Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Johan A van Burgsteden
- Amsterdam Rheumatology and Immunology Center, Location Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Carmen A Ambarus
- Amsterdam Rheumatology and Immunology Center, Location Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Dominique L P Baeten
- Amsterdam Rheumatology and Immunology Center, Location Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jeroen den Dunnen
- Amsterdam Rheumatology and Immunology Center, Location Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. .,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
119
|
Lamano JB, Lamano JB, Li YD, DiDomenico JD, Choy W, Veliceasa D, Oyon DE, Fakurnejad S, Ampie L, Kesavabhotla K, Kaur R, Kaur G, Biyashev D, Unruh DJ, Horbinski CM, James CD, Parsa AT, Bloch O. Glioblastoma-Derived IL6 Induces Immunosuppressive Peripheral Myeloid Cell PD-L1 and Promotes Tumor Growth. Clin Cancer Res 2019; 25:3643-3657. [PMID: 30824583 PMCID: PMC6571046 DOI: 10.1158/1078-0432.ccr-18-2402] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/02/2019] [Accepted: 02/25/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Upregulation of programmed death-ligand 1 (PD-L1) on circulating and tumor-infiltrating myeloid cells is a critical component of GBM-mediated immunosuppression that has been associated with diminished response to vaccine immunotherapy and poor survival. Although GBM-derived soluble factors have been implicated in myeloid PD-L1 expression, the identity of such factors has remained unknown. This study aimed to identify factors responsible for myeloid PD-L1 upregulation as potential targets for immune modulation. EXPERIMENTAL DESIGN Conditioned media from patient-derived GBM explant cell cultures was assessed for cytokine expression and utilized to stimulate naïve myeloid cells. Myeloid PD-L1 induction was quantified by flow cytometry. Candidate cytokines correlated with PD-L1 induction were evaluated in tumor sections and plasma for relationships with survival and myeloid PD-L1 expression. The role of identified cytokines on immunosuppression and survival was investigated in vivo utilizing immunocompetent C57BL/6 mice bearing syngeneic GL261 and CT-2A tumors. RESULTS GBM-derived IL6 was identified as a cytokine that is necessary and sufficient for myeloid PD-L1 induction in GBM through a STAT3-dependent mechanism. Inhibition of IL6 signaling in orthotopic murine glioma models was associated with reduced myeloid PD-L1 expression, diminished tumor growth, and increased survival. The therapeutic benefit of anti-IL6 therapy proved to be CD8+ T-cell dependent, and the antitumor activity was additive with that provided by programmed death-1 (PD-1)-targeted immunotherapy. CONCLUSIONS Our findings suggest that disruption of IL6 signaling in GBM reduces local and systemic myeloid-driven immunosuppression and enhances immune-mediated antitumor responses against GBM.
Collapse
Affiliation(s)
- Jonathan B Lamano
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | | | - Yuping D Li
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | | | - Winward Choy
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Dorina Veliceasa
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Daniel E Oyon
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Shayan Fakurnejad
- Stanford School of Medicine, Stanford University, Stanford, California
| | - Leonel Ampie
- Department of Neurosurgery, University of Virginia School of Medicine, University of Virginia, Charlottesville, Virginia
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland
| | - Kartik Kesavabhotla
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Rajwant Kaur
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Gurvinder Kaur
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Dauren Biyashev
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Dusten J Unruh
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Craig M Horbinski
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
- Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - C David James
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
- Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | | | - Orin Bloch
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
- Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
120
|
Cevey ÁC, Penas FN, Alba Soto CD, Mirkin GA, Goren NB. IL-10/STAT3/SOCS3 Axis Is Involved in the Anti-inflammatory Effect of Benznidazole. Front Immunol 2019; 10:1267. [PMID: 31214200 PMCID: PMC6558013 DOI: 10.3389/fimmu.2019.01267] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022] Open
Abstract
Anti-parasitic treatment for Chagas disease mainly relies on benznidazole, which is virtually the only drug available in the market. Besides its anti-parasitic effects, benznidazole has anti-inflammatory properties. In this work we studied the mechanisms involved in the latter, demonstrating the participation of the IL-10/STAT3/SOCS3 pathway. To achieve this goal, the anti-inflammatory properties of benznidazole were studied using an in vitro model of cardiomyocyte primary culture stimulated with LPS. LPS increased both SOCS3 expression and STAT3 phosphorylation. The addition of benznidazole increased their expression even further. Specific inhibition of STAT3 precluded this effect, suggesting a role for STAT3 in the increase of SOCS3 expression induced by benznidazole. To assess the participation of SOCS3 in the anti-inflammatory effect of benznidazole, we accomplished specific knockdown of SOCS3 with siRNA. Silencing of SOCS3 in cardiomyocytes precluded the inhibitory effects of benznidazole on TNF-α, IL-6, iNOS expression and NO release. Moreover, in the absence of SOCS3, benznidazole could neither prevent IKK phosphorylation nor IκBα degradation, supporting the notion that SOCS3 is required for the benznidazole-mediated inhibition of the NF-κB pathway. Previously, we demonstrated that IL-10 increases the expression of SOCS3 in cultured cardiomyocytes. Here, we found that benznidazole shows a trend to increased IL-10 expression. To evaluate whether benznidazole increased SOCS3 in an IL-10-dependent manner, cardiomyocytes from IL-10 knockout mice were pre-treated with benznidazole and stimulated with LPS. Benznidazole neither inhibited NO release nor avoid IKK phosphorylation or IκBα degradation, showing that IL-10 is required for benznidazole-mediated inhibition of NF-κB. Moreover, exogenous addition of IL-10 to IL-10 knockout cardiomyocytes restored the inhibitory effect of benznidazole on NO release. The results reported herein show, for the first time, that the IL-10/STAT3/SOCS3 axis is involved in the anti-inflammatory effects of benznidazole. These findings may add up to new therapeutic strategies for chronic Chagas disease given its inflammatory nature.
Collapse
Affiliation(s)
- Ágata C Cevey
- Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico N Penas
- Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Catalina D Alba Soto
- Facultad de Medicina, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gerardo A Mirkin
- Facultad de Medicina, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nora B Goren
- Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
121
|
Khan MGM, Ghosh A, Variya B, Santharam MA, Kandhi R, Ramanathan S, Ilangumaran S. Hepatocyte growth control by SOCS1 and SOCS3. Cytokine 2019; 121:154733. [PMID: 31154249 DOI: 10.1016/j.cyto.2019.154733] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
Abstract
The extraordinary capacity of the liver to regenerate following injury is dependent on coordinated and regulated actions of cytokines and growth factors. Whereas hepatocyte growth factor (HGF) and epidermal growth factor (EGF) are direct mitogens to hepatocytes, inflammatory cytokines such as TNFα and IL-6 also play essential roles in the liver regeneration process. These cytokines and growth factors activate different signaling pathways in a sequential manner to elicit hepatocyte proliferation. The kinetics and magnitude of these hepatocyte-activating stimuli are tightly regulated to ensure restoration of a functional liver mass without causing uncontrolled cell proliferation. Hepatocyte proliferation can become deregulated under conditions of chronic inflammation, leading to accumulation of genetic aberrations and eventual neoplastic transformation. Among the control mechanisms that regulate hepatocyte proliferation, negative feedback inhibition by the 'suppressor of cytokine signaling (SOCS)' family proteins SOCS1 and SOCS3 play crucial roles in attenuating cytokine and growth factor signaling. Loss of SOCS1 or SOCS3 in the mouse liver increases the rate of liver regeneration and renders hepatocytes susceptible to neoplastic transformation. The frequent epigenetic repression of the SOCS1 and SOCS3 genes in hepatocellular carcinoma has stimulated research in understanding the growth regulatory mechanisms of SOCS1 and SOCS3 in hepatocytes. Whereas SOCS3 is implicated in regulating JAK-STAT signaling induced by IL-6 and attenuating EGFR signaling, SOCS1 is crucial for the regulation of HGF signaling. These two proteins also module the functions of certain key proteins that control the cell cycle. In this review, we discuss the current understanding of the functions of SOCS1 and SOCS3 in controlling hepatocyte proliferation, and its implications to liver health and disease.
Collapse
Affiliation(s)
- Md Gulam Musawwir Khan
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Amit Ghosh
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Bhavesh Variya
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Madanraj Appiya Santharam
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Rajani Kandhi
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Sheela Ramanathan
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Subburaj Ilangumaran
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.
| |
Collapse
|
122
|
Gerst F, Wagner R, Oquendo MB, Siegel-Axel D, Fritsche A, Heni M, Staiger H, Häring HU, Ullrich S. What role do fat cells play in pancreatic tissue? Mol Metab 2019; 25:1-10. [PMID: 31113756 PMCID: PMC6600604 DOI: 10.1016/j.molmet.2019.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/10/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023] Open
Abstract
Background It is now generally accepted that obesity is a major risk factor for type 2 diabetes mellitus (T2DM). Hepatic steatosis in particular, as well as visceral and ectopic fat accumulation within tissues, is associated with the development of the disease. We recently presented the first study on isolated human pancreatic adipocytes and their interaction with islets [Gerst, F., Wagner, R., Kaiser, G., Panse, M., Heni, M., Machann, J., et al., 2017. Metabolic crosstalk between fatty pancreas and fatty liver: effects on local inflammation and insulin secretion. Diabetologia 60(11):2240–2251.]. The results indicate that the function of adipocytes depends on the overall metabolic status in humans which, in turn, differentially affects islet hormone release. Scope of Review This review summarizes former and recent studies on factors derived from adipocytes and their effects on insulin-secreting β-cells, with particular emphasis on the human pancreas. The adipocyte secretome is discussed with a special focus on its influence on insulin secretion, β-cell survival and apoptotic β-cell death. Major Conclusions Human pancreatic adipocytes store lipids and release adipokines, metabolites, and pro-inflammatory molecules in response to the overall metabolic, humoral, and neuronal status. The differentially regulated adipocyte secretome impacts on endocrine function, i.e., insulin secretion, β-cell survival and death which interferes with glycemic control. This review attempts to explain why the extent of pancreatic steatosis is associated with reduced insulin secretion in some studies but not in others.
Collapse
Affiliation(s)
- Felicia Gerst
- German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Robert Wagner
- German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Morgana Barroso Oquendo
- German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Dorothea Siegel-Axel
- German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Martin Heni
- German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Harald Staiger
- German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Internal Medicine IV, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Susanne Ullrich
- German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany.
| |
Collapse
|
123
|
Chen H, Erndt-Marino J, Diaz-Rodriguez P, Kulwatno J, Jimenez-Vergara AC, Thibeault SL, Hahn MS. In vitro evaluation of anti-fibrotic effects of select cytokines for vocal fold scar treatment. J Biomed Mater Res B Appl Biomater 2019; 107:1056-1067. [PMID: 30184328 PMCID: PMC7011756 DOI: 10.1002/jbm.b.34198] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/30/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023]
Abstract
Scarring of the vocal fold lamina propria (LP) can cause considerable voice disorders due to reduced pliability in scar tissue, attributed in part to abnormal extracellular matrix (ECM) deposition produced by the fibrotic vocal fold fibroblast (fVFF). Cytokines with anti-fibrotic potential have been investigated to limit abnormal LP ECM, but are limited by the need for repeat injections. Moreover, the potentially significant role played by activated macrophages (AMOs) is usually not considered even though the interaction between AMO and fibrotic fibroblasts is known to regulate scar formation across different tissues. AMO are also regulated by cytokines that are used for LP scar removal, but little is known about AMO behaviors in response to these cytokines within the context of LP scar. In the present study, we evaluated anti-fibrotic effects of hepatocyte growth factor (HGF), interleukin-10 (IL-10) and interleukin-6 (IL-6) in a 3D, in vitro fVFF-AMO co-culture system using poly(ethylene glycol) diacrylate (PEGDA) hydrogels. Data from all cytokines was synthesized into a heat-map that enabled assessment of specific associations between AMO and fVFF phenotypes. Cumulatively, our results indicated that both HGF and IL-10 are potentially anti-fibrotic (reduction in fibrotic markers and enhancement in normal, anti-fibrotic VFF markers), while IL-6 displays more complex, marker specific effects. Possible associations between AMO and fVFF phenotypes were found and may highlight a potential desirable macrophage phenotype. These data support the therapeutic potential of HGF and IL-10 for LP scar treatment, and shed light on future strategies aimed at targeting specific AMO phenotypes. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1056-1067, 2019.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Josh Erndt-Marino
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | | | - Jonathan Kulwatno
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | | | - Susan L Thibeault
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Mariah S. Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
124
|
Milich LM, Ryan CB, Lee JK. The origin, fate, and contribution of macrophages to spinal cord injury pathology. Acta Neuropathol 2019; 137:785-797. [PMID: 30929040 PMCID: PMC6510275 DOI: 10.1007/s00401-019-01992-3] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/16/2022]
Abstract
Virtually all phases of spinal cord injury pathogenesis, including inflammation, cell proliferation and differentiation, as well as tissue remodeling, are mediated in part by infiltrating monocyte-derived macrophages. It is now clear that these infiltrating macrophages have distinct functions from resident microglia and are capable of mediating both harmful and beneficial effects after injury. These divergent effects have been largely attributed to environmental cues, such as specific cytokines, that influence the macrophage polarization state. In this review, we also consider the possibility that different macrophage origins, including the spleen, bone marrow, and local self-renewal, may also affect macrophage fate, and ultimately their function that contribute to the complex pathobiology of spinal cord injury.
Collapse
Affiliation(s)
- Lindsay M Milich
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - Christine B Ryan
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - Jae K Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
125
|
Tait Wojno ED, Hunter CA, Stumhofer JS. The Immunobiology of the Interleukin-12 Family: Room for Discovery. Immunity 2019; 50:851-870. [PMID: 30995503 PMCID: PMC6472917 DOI: 10.1016/j.immuni.2019.03.011] [Citation(s) in RCA: 291] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022]
Abstract
The discovery of interleukin (IL)-6 and its receptor subunits provided a foundation to understand the biology of a group of related cytokines: IL-12, IL-23, and IL-27. These family members utilize shared receptors and cytokine subunits and influence the outcome of cancer, infection, and inflammatory diseases. Consequently, many facets of their biology are being therapeutically targeted. Here, we review the landmark discoveries in this field, the combinatorial biology inherent to this family, and how patient datasets have underscored the critical role of these pathways in human disease. We present significant knowledge gaps, including how similar signals from these cytokines can mediate distinct outcomes, and discuss how a better understanding of the biology of the IL-12 family provides new therapeutic opportunities.
Collapse
Affiliation(s)
- Elia D Tait Wojno
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, 235 Hungerford Hill Rd., Ithaca, NY 14853, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Ave., Philadelphia, PA 19104-4539, USA.
| | - Jason S Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 West Markham St., Little Rock, AR 72205, USA.
| |
Collapse
|
126
|
Zhao TX, Mallat Z. Targeting the Immune System in Atherosclerosis. J Am Coll Cardiol 2019; 73:1691-1706. [DOI: 10.1016/j.jacc.2018.12.083] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/20/2018] [Accepted: 12/30/2018] [Indexed: 02/08/2023]
|
127
|
Guram K, Kim SS, Wu V, Sanders PD, Patel S, Schoenberger SP, Cohen EEW, Chen SY, Sharabi AB. A Threshold Model for T-Cell Activation in the Era of Checkpoint Blockade Immunotherapy. Front Immunol 2019; 10:491. [PMID: 30936880 PMCID: PMC6431643 DOI: 10.3389/fimmu.2019.00491] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
Continued discoveries of negative regulators of inflammatory signaling provide detailed molecular insights into peripheral tolerance and anti-tumor immunity. Accumulating evidence indicates that peripheral tolerance is maintained at multiple levels of immune responses by negative regulators of proinflammatory signaling, soluble anti-inflammatory factors, inhibitory surface receptors & ligands, and regulatory cell subsets. This review provides a global overview of these regulatory machineries that work in concert to maintain peripheral tolerance at cellular and host levels, focusing on the direct and indirect regulation of T cells. The recent success of checkpoint blockade immunotherapy (CBI) has initiated a dramatic shift in the paradigm of cancer treatment. Unprecedented responses to CBI have highlighted the central role of T cells in both anti-tumor immunity and peripheral tolerance and underscored the importance of T cell exhaustion in cancer. We discuss the therapeutic implications of modulating the negative regulators of T cell function for tumor immunotherapy with an emphasis on inhibitory surface receptors & ligands—central players in T cell exhaustion and targets of checkpoint blockade immunotherapies. We then introduce a Threshold Model for Immune Activation—the concept that these regulatory mechanisms contribute to defining a set threshold of immunogenic (proinflammatory) signaling required to elicit an anti-tumor or autoimmune response. We demonstrate the value of the Threshold Model in understanding clinical responses and immune related adverse events in the context of peripheral tolerance, tumor immunity, and the era of Checkpoint Blockade Immunotherapy.
Collapse
Affiliation(s)
- Kripa Guram
- Department of Radiation Medicine and Applied Sciences, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Sangwoo S Kim
- Department of Radiation Medicine and Applied Sciences, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Victoria Wu
- Moores Comprehensive Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - P Dominick Sanders
- Department of Radiation Medicine and Applied Sciences, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Sandip Patel
- Division of Hematology and Oncology, Center for Personalized Cancer Therapy, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Stephen P Schoenberger
- Division of Hematology and Oncology, Center for Personalized Cancer Therapy, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States.,Laboratory of Cellular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Ezra E W Cohen
- Moores Comprehensive Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Si-Yi Chen
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Andrew B Sharabi
- Department of Radiation Medicine and Applied Sciences, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States.,Moores Comprehensive Cancer Center, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
128
|
Harling K, Adankwah E, Güler A, Afum-Adjei Awuah A, Adu-Amoah L, Mayatepek E, Owusu-Dabo E, Nausch N, Jacobsen M. Constitutive STAT3 phosphorylation and IL-6/IL-10 co-expression are associated with impaired T-cell function in tuberculosis patients. Cell Mol Immunol 2019; 16:275-287. [PMID: 30886421 PMCID: PMC6460487 DOI: 10.1038/cmi.2018.5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/27/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023] Open
Abstract
T-cells critically contribute to protection against Mycobacterium tuberculosis infection, and impaired T-cell responses can lead to disease progression. Pro-inflammatory and immunosuppressive cytokines affect T-cells, and fine-tuned regulation of cytokine signaling via the Jak/STAT signaling pathways is crucial for appropriate T-cell function. Constitutive STAT3 phosphorylation as a consequence of aberrant cytokine signaling has been described to occur in pathognomonic T-cell responses in inflammatory and autoimmune diseases. We characterized blood samples from tuberculosis patients (n=28) and healthy contacts (n=28) from Ghana for M. tuberculosis-specific T-cell responses, constitutive cytokine production, and SOCS3 and pSTAT3 expression. Lentiviral modulation of primary CD4+ T-cells was performed to determine the effects of SOCS3 on T-cell functions. T-cells from tuberculosis patients expressed higher levels of IL-10 and IL-6 and lower levels of T helper type (TH)17 cytokines after M. tuberculosis-specific stimulation compared to healthy contacts. In addition, tuberculosis patients had higher IL-10 and IL-6 levels in the supernatants of non-stimulated immune cells and plasma samples compared to healthy contacts. Notably, aberrant cytokine expression was accompanied by high constitutive pSTAT3 levels and SOCS3 expression in T-cells. Multivariate analysis identified an IL-6/IL-10 co-expression-based principal component in tuberculosis patients that correlated with high pSTAT3 levels. SOCS3 contributed to a regulatory component, and tuberculosis patients with high SOCS3 expression showed decreased TH1 cytokine expression and impaired IL-2-induced STAT5 phosphorylation. SOCS3 over-expression in primary CD4+ T-cells confirmed the SOCS3 inhibitory function on IL-2-induced STAT5 phosphorylation. We conclude that constitutive pSTAT3 and high SOCS3 expression are influential factors that indicate impaired T-cell functions in tuberculosis patients.
Collapse
Affiliation(s)
- Kirstin Harling
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, 40225, Duesseldorf, Germany
| | - Ernest Adankwah
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, 40225, Duesseldorf, Germany
| | - Alptekin Güler
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, 40225, Duesseldorf, Germany
| | - Anthony Afum-Adjei Awuah
- Kumasi Centre for collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
- School of Public Health, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Louis Adu-Amoah
- Kumasi Centre for collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, 40225, Duesseldorf, Germany
| | - Ellis Owusu-Dabo
- Kumasi Centre for collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
- School of Public Health, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Norman Nausch
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, 40225, Duesseldorf, Germany
| | - Marc Jacobsen
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, 40225, Duesseldorf, Germany.
| |
Collapse
|
129
|
Astaxanthin Ameliorates Lipopolysaccharide-Induced Neuroinflammation, Oxidative Stress and Memory Dysfunction through Inactivation of the Signal Transducer and Activator of Transcription 3 Pathway. Mar Drugs 2019; 17:md17020123. [PMID: 30781690 PMCID: PMC6410230 DOI: 10.3390/md17020123] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
Astaxanthin (AXT), a xanthophyll carotenoid compound, has potent antioxidant, anti-inflammatory and neuroprotective properties. Neuroinflammation and oxidative stress are significant in the pathogenesis and development of Alzheimer's disease (AD). Here, we studied whether AXT could alleviate neuroinflammation, oxidative stress and memory loss in lipopolysaccharide (LPS) administered mice model. Additionally, we investigated the anti-oxidant activity and the anti-neuroinflammatory response of AXT in LPS-treated BV-2 microglial cells. The AXT administration ameliorated LPS-induced memory loss. This effect was associated with the reduction of LPS-induced expression of inflammatory proteins, as well as the production of reactive oxygen species (ROS), nitric oxide (NO), cytokines and chemokines both in vivo and in vitro. AXT also reduced LPS-induced β-secretase and Aβ1⁻42 generation through the down-regulation of amyloidogenic proteins both in vivo and in vitro. Furthermore, AXT suppressed the DNA binding activities of the signal transducer and activator of transcription 3 (STAT3). We found that AXT directly bound to the DNA- binding domain (DBD) and linker domain (LD) domains of STAT3 using docking studies. The oxidative stress and inflammatory responses were not downregulated in BV-2 cells transfected with DBD-null STAT3 and LD-null STAT3. These results indicated AXT inhibits LPS-induced oxidant activity, neuroinflammatory response and amyloidogenesis via the blocking of STAT3 activity through direct binding.
Collapse
|
130
|
Sharma R, van Mil S, Melanson B, Thomas BJ, Rooke J, Mallet JF, Matar C, Schwarz JM, Ismail N. Programming Effects of Pubertal Lipopolysaccharide Treatment in Male and Female CD-1 Mice. THE JOURNAL OF IMMUNOLOGY 2019; 202:2131-2140. [DOI: 10.4049/jimmunol.1801351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/22/2019] [Indexed: 12/22/2022]
|
131
|
Subhi Y, Krogh Nielsen M, Molbech CR, Oishi A, Singh A, Nissen MH, Sørensen TL. Plasma markers of chronic low-grade inflammation in polypoidal choroidal vasculopathy and neovascular age-related macular degeneration. Acta Ophthalmol 2019; 97:99-106. [PMID: 30288946 DOI: 10.1111/aos.13886] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Ageing is the strongest predictor of neovascular age-related macular degeneration (AMD), where neuroinflammation is known to play a major role. Less is known about polypoidal choroidal vasculopathy (PCV), which is an important differential diagnosis to neovascular AMD. Here, we report plasma markers of inflammation with age (inflammaging) in patients with PCV, patients with neovascular AMD and a healthy age-matched control group. METHODS We isolated plasma from fresh venous blood obtained from participants (n = 90) with either PCV, neovascular AMD, or healthy maculae. Interleukin(IL)-1β, IL-6, IL-8, IL-10 and tumour necrosis factor receptor 2 (TNF-R2) were measured using U-PLEX Human Assays. Routine plasma C-reactive protein (CRP) was measured using Dimension Vista 1500. RESULTS Patients with PCV had plasma levels of IL-1β, IL-6, IL-8, IL-10 and TNF-R2 similar to that in healthy controls. Patients with neovascular AMD had significantly higher plasma IL-1β, IL-6 and IL-10 than healthy controls, whereas no significant differences were observed for plasma IL-8 and TNF-R2. Differences between plasma IL-1β, IL-6 and IL-10 possessed a positive but weak ability in discriminating neovascular AMD from PCV. Both patients with PCV and patients with neovascular AMD had significantly higher levels of routine plasma CRP. CONCLUSION Patients with PCV differ from patients with neovascular AMD in terms of plasma inflammaging profile. Apart from increased CRP, no signs of inflammaging were observed in patients with PCV. In patients with neovascular AMD, we find a specific angiogenesis-twisted inflammaging profile.
Collapse
Affiliation(s)
- Yousif Subhi
- Clinical Eye Research Division; Department of Ophthalmology; Zealand University Hospital; Roskilde Denmark
- Faculty of Health and Medical Science; University of Copenhagen; Copenhagen Denmark
| | - Marie Krogh Nielsen
- Clinical Eye Research Division; Department of Ophthalmology; Zealand University Hospital; Roskilde Denmark
- Faculty of Health and Medical Science; University of Copenhagen; Copenhagen Denmark
| | - Christopher Rue Molbech
- Clinical Eye Research Division; Department of Ophthalmology; Zealand University Hospital; Roskilde Denmark
- Faculty of Health and Medical Science; University of Copenhagen; Copenhagen Denmark
| | - Akio Oishi
- Department of Ophthalmology and Visual Sciences; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Amardeep Singh
- Clinical Eye Research Division; Department of Ophthalmology; Zealand University Hospital; Roskilde Denmark
- Department of Clinical Sciences Lund; Ophthalmology; Skane University Hospital; Lund University; Lund Sweden
| | - Mogens Holst Nissen
- Faculty of Health and Medical Science; University of Copenhagen; Copenhagen Denmark
- Eye Research Unit; Department of Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| | - Torben Lykke Sørensen
- Clinical Eye Research Division; Department of Ophthalmology; Zealand University Hospital; Roskilde Denmark
- Faculty of Health and Medical Science; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
132
|
Degboé Y, Rauwel B, Baron M, Boyer JF, Ruyssen-Witrand A, Constantin A, Davignon JL. Polarization of Rheumatoid Macrophages by TNF Targeting Through an IL-10/STAT3 Mechanism. Front Immunol 2019; 10:3. [PMID: 30713533 PMCID: PMC6345709 DOI: 10.3389/fimmu.2019.00003] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 01/02/2019] [Indexed: 12/31/2022] Open
Abstract
Macrophages contribute to the pathogenesis of rheumatoid arthritis (RA). They can display different states of activation or “polarization,” notably the so-called inflammatory “M1” and the various alternative “M2” polarizations, characterized by distinct functions. Data regarding the effects of RA anti-cytokine biological disease-modifying anti-rheumatic drugs (bDMARDs) on macrophage polarization are scarce. We aimed to assess in vitro modulation of macrophage polarization by bDMARDs targeting pro-inflammatory cytokines in RA. We generated monocyte derived macrophages using blood samples from 20 RA patients with active RA and 30 healthy controls. We evaluated in vitro the impact on M1 inflammatory macrophages of: etanercept (ETA), adalimumab (ADA), certolizumab (CZP), tocilizumab (TCZ), and rituximab (RTX). We assessed the impact on macrophage polarization using flow cytometry and RTqPCR to study the expression of surface markers and perform functional studies of cytokine production, phagocytosis, and negative feedback control of inflammation. Among evaluated bDMARDs, anti-TNF agents modulated the polarization of inflammatory macrophages by decreasing inflammatory surface markers (CD40, CD80) and favoring alternative markers (CD16, CD163, MerTK). Anti-TNF agents also induced alternative functions in macrophages activated in inflammatory condition with (i) the inhibition of inflammatory cytokines (TNF, IL-6, IL-12), (ii) an increase in phagocytosis. These findings were mechanistically related to an increase in early IL-10 production, responsible for higher negative feedback control of inflammation involving SOCS3 and Gas6. This IL-10 effect was STAT3-dependent. Anti-TNF agents not only inhibit in vitro inflammatory functions of macrophages, but also favor resolution of inflammation through polarization toward alternative features specifically involving the IL-10/STAT3 axis.
Collapse
Affiliation(s)
- Yannick Degboé
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Benjamin Rauwel
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France
| | - Michel Baron
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France
| | - Jean-Frédéric Boyer
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France
| | - Adeline Ruyssen-Witrand
- Centre de Rhumatologie, CHU de Toulouse, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, Toulouse, France.,UMR1027, INSERM-Université Paul Sabatier Toulouse III, Toulouse, France
| | - Arnaud Constantin
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Jean-Luc Davignon
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France
| |
Collapse
|
133
|
Gao Y, Zhao H, Wang P, Wang J, Zou L. The roles of SOCS3 and STAT3 in bacterial infection and inflammatory diseases. Scand J Immunol 2018; 88:e12727. [PMID: 30341772 DOI: 10.1111/sji.12727] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Yu Gao
- Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy; The People's Hospital of China Three Gorges University; Yichang China
- Department of Microbiology, Tumor and Cell Biology; Karolinska Institutet; Stockholm Sweden
| | - Honglei Zhao
- Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy; The People's Hospital of China Three Gorges University; Yichang China
- Department of Oncology-Pathology; Karolinska Institutet; Stockholm Sweden
| | - Peng Wang
- Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy; The People's Hospital of China Three Gorges University; Yichang China
| | - Jun Wang
- Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy; The People's Hospital of China Three Gorges University; Yichang China
| | - Lili Zou
- Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy; The People's Hospital of China Three Gorges University; Yichang China
| |
Collapse
|
134
|
Pulmonary phagocyte-derived NPY controls the pathology of severe influenza virus infection. Nat Microbiol 2018; 4:258-268. [PMID: 30455472 DOI: 10.1038/s41564-018-0289-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 10/10/2018] [Indexed: 01/21/2023]
Abstract
Crosstalk between the autonomic nervous system and the immune system by means of the sympathetic and parasympathetic pathways is a critical process in host defence. Activation of the sympathetic nervous system results in the release of catecholamines as well as neuropeptide Y (NPY). Here, we investigated whether phagocytes are capable of the de novo production of NPY, as has been described for catecholamines. We show that the synthesis of NPY and its Y1 receptor (Y1R) is increased in phagocytes in lungs following severe influenza virus infection. The genetic deletion of Npy or Y1r specifically in phagocytes greatly improves the pathology of severe influenza virus infection, which is characterized by excessive virus replication and pulmonary inflammation. Mechanistically, it is the induction of suppressor of cytokine signalling 3 (SOCS3) via NPY-Y1R activation that is responsible for impaired antiviral response and promoting pro-inflammatory cytokine production, thereby enhancing the pathology of influenza virus infection. Thus, direct regulation of the NPY-Y1R-SOCS3 pathway on phagocytes may act as a fine-tuner of an innate immune response to virus infection, which could be a therapeutic target for lethal influenza virus infection.
Collapse
|
135
|
Barroeta-Espar I, Weinstock LD, Perez-Nievas BG, Meltzer AC, Siao Tick Chong M, Amaral AC, Murray ME, Moulder KL, Morris JC, Cairns NJ, Parisi JE, Lowe VJ, Petersen RC, Kofler J, Ikonomovic MD, López O, Klunk WE, Mayeux RP, Frosch MP, Wood LB, Gomez-Isla T. Distinct cytokine profiles in human brains resilient to Alzheimer's pathology. Neurobiol Dis 2018; 121:327-337. [PMID: 30336198 DOI: 10.1016/j.nbd.2018.10.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/03/2018] [Accepted: 10/12/2018] [Indexed: 12/29/2022] Open
Abstract
Our group has previously studied the brains of some unique individuals who are able to tolerate robust amounts of Alzheimer's pathological lesions (amyloid plaques and neurofibrillary tangles) without experiencing dementia while alive. These rare resilient cases do not demonstrate the patterns of neuronal/synaptic loss that are normally found in the brains of typical demented Alzheimer's patients. Moreover, they exhibit decreased astrocyte and microglial activation markers GFAP and CD68, suggesting that a suppressed neuroinflammatory response may be implicated in human brain resilience to Alzheimer's pathology. In the present work, we used a multiplexed immunoassay to profile a panel of 27 cytokines in the brains of controls, typical demented Alzheimer's cases, and two groups of resilient cases, which possessed pathology consistent with either high probability (HP, Braak stage V-VI and CERAD 2-3) or intermediate probability (IP, Braak state III-IV and CERAD 1-3) of Alzheimer's disease in the absence of dementia. We used a multivariate partial least squares regression approach to study differences in cytokine expression between resilient cases and both Alzheimer's and control cases. Our analysis identified distinct profiles of cytokines in the entorhinal cortex (one of the earliest and most severely affected brain regions in Alzheimer's disease) that are up-regulated in both HP and IP resilient cases relative to Alzheimer's and control cases. These cytokines, including IL-1β, IL-6, IL-13, and IL-4 in HP resilient cases and IL-6, IL-10, and IP-10 in IP resilient cases, delineate differential inflammatory activity in brains resilient to Alzheimer's pathology compared to Alzheimer's cases. Of note, these cytokines all have been associated with pathogen clearance and/or the resolution of inflammation. Moreover, our analysis in the superior temporal sulcus (a multimodal association cortex that consistently accumulates Alzheimer's pathology at later stages of the disease along with overt symptoms of dementia) revealed increased expression of neurotrophic factors, such as PDGF-bb and basic FGF in resilient compared to AD cases. The same region also had reduced expression of chemokines associated with microglial recruitment, including MCP-1 in HP resilient cases and MIP-1α in IP resilient cases compared to AD. Altogether, our data suggest that different patterns of cytokine expression exist in the brains of resilient and Alzheimer's cases, link these differences to reduced glial activation, increased neuronal survival and preserved cognition in resilient cases, and reveal specific cytokine targets that may prove relevant to the identification of novel mechanisms of brain resiliency to Alzheimer's pathology.
Collapse
Affiliation(s)
- Isabel Barroeta-Espar
- Massachusetts General Hospital ADRC, Harvard University, 15 Parkman St #835, Boston, MA 02114, United States
| | - Laura D Weinstock
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA 30332, United States; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, United States.
| | - Beatriz G Perez-Nievas
- Massachusetts General Hospital ADRC, Harvard University, 15 Parkman St #835, Boston, MA 02114, United States
| | - Avery C Meltzer
- Massachusetts General Hospital ADRC, Harvard University, 15 Parkman St #835, Boston, MA 02114, United States
| | - Michael Siao Tick Chong
- Massachusetts General Hospital ADRC, Harvard University, 15 Parkman St #835, Boston, MA 02114, United States
| | - Ana C Amaral
- Massachusetts General Hospital ADRC, Harvard University, 15 Parkman St #835, Boston, MA 02114, United States.
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, United States.
| | - Krista L Moulder
- Department of Neurology, Knight Alzheimer Disease Research Center, Washington University, 1 Brookings Dr, St. Louis, MO 63130, United States.
| | - John C Morris
- Department of Neurology, Knight Alzheimer Disease Research Center, Washington University, 1 Brookings Dr, St. Louis, MO 63130, United States.
| | - Nigel J Cairns
- Department of Neurology, Knight Alzheimer Disease Research Center, Washington University, 1 Brookings Dr, St. Louis, MO 63130, United States.
| | - Joseph E Parisi
- Department of Neurology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, United States.
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, United States.
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, United States.
| | - Julia Kofler
- Department of Pathology, University of Pittsburgh School of Medicine, 4200 Fifth Ave, Pittsburgh, PA 15260, United States.
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh School of Medicine, 4200 Fifth Ave, Pittsburgh, PA 15260, United States; Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 DeSoto Street, Pittsburgh, PA 15260, United States.
| | - Oscar López
- Department of Neurology, University of Pittsburgh School of Medicine, 4200 Fifth Ave, Pittsburgh, PA 15260, United States.
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 DeSoto Street, Pittsburgh, PA 15260, United States
| | - Richard P Mayeux
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain and The Gertrude H. Sergievsky Center, Columbia University, 116th St & Broadway, New York, NY 10027, United States.
| | - Matthew P Frosch
- Massachusetts General Hospital ADRC, Harvard University, 15 Parkman St #835, Boston, MA 02114, United States.
| | - Levi B Wood
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA 30332, United States; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, United States; Georgia W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA 30332, United States; Beth Israel Deaconess Cancer Center, 330 Brookline Ave, Boston, MA 02215, United States.
| | - Teresa Gomez-Isla
- Massachusetts General Hospital ADRC, Harvard University, 15 Parkman St #835, Boston, MA 02114, United States.
| |
Collapse
|
136
|
Guimarães ET, Dos Santos TB, Silva DKC, Meira CS, Moreira DRM, da Silva TF, Salmon D, Barreiro EJ, Soares MBP. Potent immunosuppressive activity of a phosphodiesterase-4 inhibitor N-acylhydrazone in models of lipopolysaccharide-induced shock and delayed-type hypersensitivity reaction. Int Immunopharmacol 2018; 65:108-118. [PMID: 30312879 DOI: 10.1016/j.intimp.2018.09.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/19/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022]
Abstract
Immunosuppressive drugs are widely used for the treatment of immune-mediated diseases and inflammation, but the toxicity and side effects of the available immunosuppressors make the search of new agents of great relevance. Here, we evaluated the immunomodulatory activity of an N-acylhydrazone derivative, (E)-N'-(3,4-dimethoxybenzylidene)-4-methoxybenzohydrazide (LASSBio-1386), a phosphodiesterase-4 (PDE-4) inhibitor. LASSBio-1386 inhibited lymphocyte activation in a concentration-dependent fashion, decreasing lymphoproliferation and IFN-γ and IL-2 production stimulated by anti-CD3/CD28 mAbs or concanavalin A (Con A) and inducing cell-cycle arrest in the G0/G1 phase. These effects were not blocked by RU486, a glucocorticoid receptor (GR) antagonist, indicating an effect independent of glucocorticoid receptor activation. Combination index-isobologram analysis indicates a synergistic effect between LASSBio-1386 and dexamethasone in lymphoproliferation inhibition. LASSBio-1386 presented immunomodulatory action in macrophage cultures, as observed by a significant and concentration-dependent decrease in NO and TNF-α production, an effect achieved by reducing IĸB expression and NF-κB activation. In the mouse model of endotoxic shock, LASSBio-1386 at 50 and 100 mg/kg protected 50 and 85% of mice against LPS-induced lethality, respectively. In agreement to its in vitro action, treatment with 100 mg/kg of LASSBio-1386 reduced TNF-α and IL-1β serum levels, while increased IL-6 and IL-10. Finally, LASSBio-1386 reduced the paw edema in a BSA-induced delayed-type hypersensitivity model. These findings demonstrate the immunomodulatory and immunosuppressant effects of LASSBio-1386 and indicate this molecule is a promising pharmacologic agent for immune-mediated diseases.
Collapse
Affiliation(s)
- Elisalva Teixeira Guimarães
- Núcleo de Estudo e Pesquisa em Histopatologia, Departamento de Ciências da Vida, Universidade Estadual da Bahia, CEP 41150-000 Salvador, BA, Brazil; Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), CEP 40296-710 Salvador, BA, Brazil
| | - Tatiana Barbosa Dos Santos
- Núcleo de Estudo e Pesquisa em Histopatologia, Departamento de Ciências da Vida, Universidade Estadual da Bahia, CEP 41150-000 Salvador, BA, Brazil; Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), CEP 40296-710 Salvador, BA, Brazil
| | - Dahara Keyse Carvalho Silva
- Núcleo de Estudo e Pesquisa em Histopatologia, Departamento de Ciências da Vida, Universidade Estadual da Bahia, CEP 41150-000 Salvador, BA, Brazil; Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), CEP 40296-710 Salvador, BA, Brazil
| | - Cássio Santana Meira
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), CEP 40296-710 Salvador, BA, Brazil
| | | | - Tiago Fernandes da Silva
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Universidade Federal do Rio de Janeiro, CEP 21941-971 Rio de Janeiro, RJ, Brazil
| | - Didier Salmon
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, CEP 21941-590 Rio de Janeiro, RJ, Brazil
| | - Eliezer J Barreiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Universidade Federal do Rio de Janeiro, CEP 21941-971 Rio de Janeiro, RJ, Brazil
| | - Milena Botelho Pereira Soares
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), CEP 40296-710 Salvador, BA, Brazil; Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, CEP 41253-190 Salvador, BA, Brazil.
| |
Collapse
|
137
|
Bradshaw A, Sylakowski K, Wells A. The Pro-reparative Engine: Stem Cells Aid Healing by Dampening Inflammation. CURRENT PATHOBIOLOGY REPORTS 2018; 6:109-115. [PMID: 30271682 DOI: 10.1007/s40139-018-0167-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Purpose of Review Stem cells have been proposed as sources for tissue replacement when healing does not occur. These cells could contribute directly to skin structures via differentiation, or via producing trophic factors that would 'educate' the micro-environment to encourage tissue repair. Studies in animals have supported both mechanisms, but translation to humans has been challenged by poor cell survival after transplantation. However, the improvement noted with even transient existence suggests another new possibility, that of suppressing the inflammatory response that limits regenerative healing. Herein, we will propose that this immunomodulatory aspect holds promise for promoting skin healing. Recent Findings We have found that stem cell transplantation into wounds can dampen both acute and chronic inflammation, leading to more regenerative-like healing and diminished scarring. Summary Wound healing could be improved by dampening inflammation both initially to allow for tissue replacement to proceed and late to reduce scarring.
Collapse
Affiliation(s)
- Andrew Bradshaw
- Departments of Pathology and Bioengineering, and the McGowan, Institute for Regenerative Medicine, University of Pittsburgh, and VA Pittsburgh Health System, Pittsburgh PA 15213 USA
| | - Kyle Sylakowski
- Departments of Pathology and Bioengineering, and the McGowan, Institute for Regenerative Medicine, University of Pittsburgh, and VA Pittsburgh Health System, Pittsburgh PA 15213 USA
| | - Alan Wells
- Departments of Pathology and Bioengineering, and the McGowan, Institute for Regenerative Medicine, University of Pittsburgh, and VA Pittsburgh Health System, Pittsburgh PA 15213 USA
| |
Collapse
|
138
|
Gyetvai G, Roe C, Heikal L, Ghezzi P, Mengozzi M. Leukemia inhibitory factor inhibits erythropoietin-induced myelin gene expression in oligodendrocytes. Mol Med 2018; 24:51. [PMID: 30261841 PMCID: PMC6161334 DOI: 10.1186/s10020-018-0052-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/14/2018] [Indexed: 12/27/2022] Open
Abstract
Background The pro-myelinating effects of leukemia inhibitory factor (LIF) and other cytokines of the gp130 family, including oncostatin M (OSM) and ciliary neurotrophic factor (CNTF), have long been known, but controversial results have also been reported. We recently overexpressed erythropoietin receptor (EPOR) in rat central glia-4 (CG4) oligodendrocyte progenitor cells (OPCs) to study the mechanisms mediating the pro-myelinating effects of erythropoietin (EPO). In this study, we investigated the effect of co-treatment with EPO and LIF. Methods Gene expression in undifferentiated and differentiating CG4 cells in response to EPO and LIF was analysed by DNA microarrays and by RT-qPCR. Experiments were performed in biological replicates of N ≥ 4. Functional annotation and biological term enrichment was performed using DAVID (Database for Annotation, Visualization and Integrated Discovery). The gene-gene interaction network was visualised using STRING (Search Tool for the Retrieval of Interacting Genes). Results In CG4 cells treated with 10 ng/ml of EPO and 10 ng/ml of LIF, EPO-induced myelin oligodendrocyte glycoprotein (MOG) expression, measured at day 3 of differentiation, was inhibited ≥4-fold (N = 5, P < 0.001). Inhibition of EPO-induced MOG was also observed with OSM and CNTF. Analysis of the gene expression profile of CG4 differentiating cells treated for 20 h with EPO and LIF revealed LIF inhibition of EPO-induced genes involved in lipid transport and metabolism, previously identified as positive regulators of myelination in this system. In addition, among the genes induced by LIF, and not by differentiation or by EPO, the role of suppressor of cytokine signaling 3 (SOCS3) and toll like receptor 2 (TLR2) as negative regulators of myelination was further explored. LIF-induced SOCS3 was associated with MOG inhibition; Pam3, an agonist of TLR2, inhibited EPO-induced MOG expression, suggesting that TLR2 is functional and its activation decreases myelination. Conclusions Cytokines of the gp130 family may have negative effects on myelination, depending on the cytokine environment. Electronic supplementary material The online version of this article (10.1186/s10020-018-0052-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Georgina Gyetvai
- Department of Clinical and Experimental Medicine, Brighton & Sussex Medical School, Brighton, BN1 9PS, UK
| | - Cieron Roe
- Department of Clinical and Experimental Medicine, Brighton & Sussex Medical School, Brighton, BN1 9PS, UK
| | - Lamia Heikal
- Department of Clinical and Experimental Medicine, Brighton & Sussex Medical School, Brighton, BN1 9PS, UK
| | - Pietro Ghezzi
- Department of Clinical and Experimental Medicine, Brighton & Sussex Medical School, Brighton, BN1 9PS, UK.
| | - Manuela Mengozzi
- Department of Clinical and Experimental Medicine, Brighton & Sussex Medical School, Brighton, BN1 9PS, UK
| |
Collapse
|
139
|
El-Abhar H, Abd El Fattah MA, Wadie W, El-Tanbouly DM. Cilostazol disrupts TLR-4, Akt/GSK-3β/CREB, and IL-6/JAK-2/STAT-3/SOCS-3 crosstalk in a rat model of Huntington's disease. PLoS One 2018; 13:e0203837. [PMID: 30260985 PMCID: PMC6160003 DOI: 10.1371/journal.pone.0203837] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022] Open
Abstract
Countless neurodegenerative diseases are associated with perverse multiple targets of cyclic nucleotide signalling, hastening neuronal death. Cilostazol, a phosphodiesterase-III inhibitor, exerts neuroprotective effects against sundry models of neurotoxicity, however, its role against Huntington's disease (HD) has not yet been tackled. Hence, its modulatory effect on several signalling pathways using the 3-nitropropionic acid (3-NP) model was conducted. Animals were injected with 3-NP (10 mg/kg/day, i.p) for two successive weeks with or without the administration of cilostazol (100 mg/kg/day, p.o.). Contrary to the 3-NP effects, cilostazol largely preserved striatal dopaminergic neurons, improved motor coordination, and enhanced the immunohistochemical reaction of tyrosine hydroxylase enzyme. The anti-inflammatory effect of cilostazol was documented by the pronounced reduction of the toll like receptor-4 (TLR-4) protein expression and the inflammatory cytokine IL-6, but with a marked elevation in IL-10 striatal contents. As a consequence, cilostazol reduced IL-6 downstream signal, where it promoted the level of suppressor of cytokine signalling 3 (SOCS3), while abated the phosphorylation of Janus Kinase 2 (JAK-2) and Signal transducers and activators of transcription 3 (STAT-3). Phosphorylation of the protein kinase B/glycogen synthase kinase-3β/cAMP response element binding protein (Akt/GSK-3β/CREB) cue is another signalling pathway that was modulated by cilostazol to further signify its anti-inflammatory and antiapoptotic capacities. The latter was associated with a reduction in the caspase-3 expression assessed by immunohistochemical assay. In conclusion the present study provided a new insight into the possible mechanisms by which cilostazol possesses neuroprotective properties. These intersecting mechanisms involve the interference between TLR-4, IL-6-IL-10/JAK-2/STAT-3/SOCS-3, and Akt/GSK-3β/CREB signalling pathways.
Collapse
Affiliation(s)
- Hanan El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- * E-mail:
| | - Mai A. Abd El Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Walaa Wadie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dalia M. El-Tanbouly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
140
|
Chang R, Song L, Xu Y, Wu Y, Dai C, Wang X, Sun X, Hou Y, Li W, Zhan X, Zhan L. Loss of Wwox drives metastasis in triple-negative breast cancer by JAK2/STAT3 axis. Nat Commun 2018; 9:3486. [PMID: 30154439 PMCID: PMC6113304 DOI: 10.1038/s41467-018-05852-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/11/2018] [Indexed: 12/19/2022] Open
Abstract
Loss of WW domain-containing oxidoreductase (Wwox) expression has been observed in breast cancer (BC). However, its regulatory effects are largely unknown, especially in triple-negative breast cancer (TNBC). Herein, gene expression profiling revealed that JAK/STAT3 pathway was one of the most differentially modulated pathways in basal-like BC cells. The lower expression of Wwox was significantly correlated with high activation of STAT3 in basal-like cells and TNBC tissues. Overexpression of Wwox markedly inhibited proliferation and metastasis of BC cells by suppressing STAT3 activation, which is to interact with JAK2 to inhibit JAK2 and STAT3 phosphorylation. Furthermore, Wwox limited STAT3 binding to the interleukin-6 promoter, repressing expression of the IL-6 cytokine. Altogether, our data established that Wwox suppresses BC cell metastasis and proliferation by JAK2/STAT3 pathway. Targeting of Wwox with STAT3 could offer a promising therapeutic strategy for TNBC. In breast cancer, the loss of expression of WW domain-containing oxireductase (Wwox) has been observed. Here, the authors illustrate that in triple negative breast cancer models Wwox suppresses metastasis and proliferation via the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Renxu Chang
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lele Song
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yi Xu
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yanjun Wu
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cheng Dai
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xinyu Wang
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xia Sun
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Li
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Zhejiang, 310020, China
| | - Xianbao Zhan
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Lixing Zhan
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China. .,Department of Cellular and Genetic Medicine, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
141
|
Sex differences in the peripheral and central immune responses following lipopolysaccharide treatment in pubertal and adult CD‐1 mice. Int J Dev Neurosci 2018; 71:94-104. [DOI: 10.1016/j.ijdevneu.2018.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
|
142
|
Abstract
The development and activity of our immune system are largely controlled by the action of pleiotropic cytokines and growth factors, small secreted proteins, which bind to receptors on the surface of immune cells to initiate an appropriate physiological response. Cytokine signalling is predominantly executed by intracellular proteins known as the Janus kinases (JAKs) and the signal transducers and activators of transcriptions (STATs). Although the 'nuts and bolts' of cytokine-activated pathways have been well established, the nuanced way in which distinct cellular outcomes are achieved and the precise molecular details of the proteins that regulate these pathways are still being elucidated. This is highlighted by the intricate role of the suppressor of cytokine signalling (SOCS) proteins. The SOCS proteins act as negative feedback inhibitors, dampening specific cytokine signals to prevent excessive cellular responses and returning the cell to a homeostatic state. A great deal of study has demonstrated their ability to inhibit these pathways at the receptor complex, either through direct inhibition of JAK activity or by targeting the receptor complex for proteasomal degradation. Detailed analysis of individual SOCS proteins is slowly revealing the complex and highly controlled manner by which they can achieve specificity for distinct substrates. However, for many of the SOCS, a level of detail is still lacking, including confident identification of the full suite of tyrosine phosphorylated targets of their SH2 domain. This review will highlight the general mechanisms which govern SOCS specificity of action and discuss the similarities and differences between selected SOCS proteins, focusing on CIS, SOCS1 and SOCS3. Because of the functional and sequence similarities within the SOCS family, we will also discuss the evidence for functional redundancy.
Collapse
Affiliation(s)
- Edmond M Linossi
- a Walter and Eliza Hall Institute of Medical Research , Parkville , Australia
- b Department of Medical Biology , University of Melbourne , Parkville , Australia
| | - Dale J Calleja
- a Walter and Eliza Hall Institute of Medical Research , Parkville , Australia
| | - Sandra E Nicholson
- a Walter and Eliza Hall Institute of Medical Research , Parkville , Australia
- b Department of Medical Biology , University of Melbourne , Parkville , Australia
| |
Collapse
|
143
|
Bousoik E, Montazeri Aliabadi H. "Do We Know Jack" About JAK? A Closer Look at JAK/STAT Signaling Pathway. Front Oncol 2018; 8:287. [PMID: 30109213 PMCID: PMC6079274 DOI: 10.3389/fonc.2018.00287] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
Janus tyrosine kinase (JAK) family of proteins have been identified as crucial proteins in signal transduction initiated by a wide range of membrane receptors. Among the proteins in this family JAK2 has been associated with important downstream proteins, including signal transducers and activators of transcription (STATs), which in turn regulate the expression of a variety of proteins involved in induction or prevention of apoptosis. Therefore, the JAK/STAT signaling axis plays a major role in the proliferation and survival of different cancer cells, and may even be involved in resistance mechanisms against molecularly targeted drugs. Despite extensive research focused on the protein structure and mechanisms of activation of JAKs, and signal transduction through these proteins, their importance in cancer initiation and progression seem to be underestimated. This manuscript is an attempt to highlight the role of JAK proteins in cancer biology, the most recent developments in targeting JAKs, and the central role they play in intracellular cross-talks with other signaling cascades.
Collapse
Affiliation(s)
- Emira Bousoik
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, School of Pharmacy, Chapman University, Irvine, CA, United States.,School of Pharmacy, Omar Al-Mukhtar University, Dèrna, Libya
| | - Hamidreza Montazeri Aliabadi
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, School of Pharmacy, Chapman University, Irvine, CA, United States
| |
Collapse
|
144
|
Yoshimura A, Ito M, Chikuma S, Akanuma T, Nakatsukasa H. Negative Regulation of Cytokine Signaling in Immunity. Cold Spring Harb Perspect Biol 2018; 10:a028571. [PMID: 28716890 PMCID: PMC6028070 DOI: 10.1101/cshperspect.a028571] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytokines are key modulators of immunity. Most cytokines use the Janus kinase and signal transducers and activators of transcription (JAK-STAT) pathway to promote gene transcriptional regulation, but their signals must be attenuated by multiple mechanisms. These include the suppressors of cytokine signaling (SOCS) family of proteins, which represent a main negative regulation mechanism for the JAK-STAT pathway. Cytokine-inducible Src homology 2 (SH2)-containing protein (CIS), SOCS1, and SOCS3 proteins regulate cytokine signals that control the polarization of CD4+ T cells and the maturation of CD8+ T cells. SOCS proteins also regulate innate immune cells and are involved in tumorigenesis. This review summarizes recent progress on CIS, SOCS1, and SOCS3 in T cells and tumor immunity.
Collapse
Affiliation(s)
- Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Minako Ito
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shunsuke Chikuma
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takashi Akanuma
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroko Nakatsukasa
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
145
|
Tanaka S, Jiang Y, Martinez GJ, Tanaka K, Yan X, Kurosaki T, Kaartinen V, Feng XH, Tian Q, Wang X, Dong C. Trim33 mediates the proinflammatory function of Th17 cells. J Exp Med 2018; 215:1853-1868. [PMID: 29930104 PMCID: PMC6028517 DOI: 10.1084/jem.20170779] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 03/28/2018] [Accepted: 05/17/2018] [Indexed: 12/31/2022] Open
Abstract
Transforming growth factor-β (TGF-β) regulates reciprocal regulatory T cell (T reg) and T helper 17 (Th17) differentiation, the underlying mechanism of which is still not understood. Here, we report that tripartite motif-containing 33 (Trim33), a modulator of TGF-β signaling that associates with Smad2, regulates the proinflammatory function of Th17 cells. Trim33 deficiency in T cells ameliorated an autoimmune disease in vivo. Trim33 was required for induction in vitro of Th17, but not T reg cells. Moreover, Smad4 and Trim33 play contrasting roles in the regulation of IL-10 expression; loss of Trim33 enhanced IL-10 production. Furthermore, Trim33 was recruited to the Il17a and Il10 gene loci, dependent on Smad2, and mediated their chromatin remodeling during Th17 differentiation. Trim33 thus promotes the proinflammatory function of Th17 cells by inducing IL-17 and suppressing IL-10 expression.
Collapse
Affiliation(s)
- Shinya Tanaka
- Department of Immunology and Center for Inflammation and Cancer, MD Anderson Cancer Center, Houston, TX.,Division of Immunology and Genome Biology, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yu Jiang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Gustavo J Martinez
- Department of Immunology and Center for Inflammation and Cancer, MD Anderson Cancer Center, Houston, TX
| | - Kentaro Tanaka
- Department of Immunology and Center for Inflammation and Cancer, MD Anderson Cancer Center, Houston, TX
| | | | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, Osaka University, Osaka, Japan
| | - Vesa Kaartinen
- Department of Biological and Materials Sciences, University of Michigan, Ann Arbor, MI
| | - Xin-Hua Feng
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qiang Tian
- Institute for System Biology, Seattle, WA
| | - Xiaohu Wang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China .,Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing, China
| |
Collapse
|
146
|
Jaslow SL, Gibbs KD, Fricke WF, Wang L, Pittman KJ, Mammel MK, Thaden JT, Fowler VG, Hammer GE, Elfenbein JR, Ko DC. Salmonella Activation of STAT3 Signaling by SarA Effector Promotes Intracellular Replication and Production of IL-10. Cell Rep 2018; 23:3525-3536. [PMID: 29924996 PMCID: PMC6314477 DOI: 10.1016/j.celrep.2018.05.072] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/24/2018] [Accepted: 05/21/2018] [Indexed: 12/23/2022] Open
Abstract
Salmonella enterica is an important foodborne pathogen that uses secreted effector proteins to manipulate host pathways to facilitate survival and dissemination. Different S. enterica serovars cause disease syndromes ranging from gastroenteritis to typhoid fever and vary in their effector repertoire. We leveraged this natural diversity to identify stm2585, here designated sarA (Salmonella anti-inflammatory response activator), as a Salmonella effector that induces production of the anti-inflammatory cytokine IL-10. RNA-seq of cells infected with either ΔsarA or wild-type S. Typhimurium revealed that SarA activates STAT3 transcriptional targets. Consistent with this, SarA is necessary and sufficient for STAT3 phosphorylation, STAT3 inhibition blocks IL-10 production, and SarA and STAT3 interact by co-immunoprecipitation. These effects of SarA contribute to intracellular replication in vitro and bacterial load at systemic sites in mice. Our results demonstrate the power of using comparative genomics for identifying effectors and that Salmonella has evolved mechanisms for activating an important anti-inflammatory pathway.
Collapse
Affiliation(s)
- Sarah L Jaslow
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Kyle D Gibbs
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - W Florian Fricke
- Department of Nutrigenomics, University of Hohenheim, Stuttgart, Germany
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Kelly J Pittman
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Mark K Mammel
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Joshua T Thaden
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Vance G Fowler
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Gianna E Hammer
- Department of Immunology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Johanna R Elfenbein
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA; Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
147
|
Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat Med 2018; 24:954-960. [DOI: 10.1038/s41591-018-0024-8] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 03/20/2018] [Indexed: 02/06/2023]
|
148
|
Lessard AJ, LeBel M, Egarnes B, Préfontaine P, Thériault P, Droit A, Brunet A, Rivest S, Gosselin J. Triggering of NOD2 Receptor Converts Inflammatory Ly6C high into Ly6C low Monocytes with Patrolling Properties. Cell Rep 2018; 20:1830-1843. [PMID: 28834747 DOI: 10.1016/j.celrep.2017.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/16/2017] [Accepted: 07/28/2017] [Indexed: 01/09/2023] Open
Abstract
The signals that regulate the fate of circulating monocytes remain unknown. In the present study, we demonstrate that triggering of the NOD2 receptor by muramyl dipeptide (MDP) converts inflammatory Ly6Chigh monocytes into patrolling Ly6Clow monocytes. Administration of MDP to Nr4a1-/- mice, which lack Ly6Clow monocytes, or to Ly6Clow-depleted mice led to the emergence of blood-patrolling monocytes with a profile similar to that of Ly6Clow monocytes, including high expression of CX3CR1 and LFA1. Using intravital microscopy in animal models of inflammatory diseases, we also found that converted Ly6Chigh monocytes patrol the endothelium of blood vessels and that their presence contributes to a reduction in the inflammatory response following MDP injection. Our results demonstrate that NOD2 contributes to the regulation of blood monocytes and suggest that it could be therapeutically targeted to treat inflammatory diseases.
Collapse
Affiliation(s)
- Anne-Julie Lessard
- Laboratory of Innate Immunology, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Manon LeBel
- Laboratory of Innate Immunology, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Benoit Egarnes
- Laboratory of Innate Immunology, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Paul Préfontaine
- Centre de recherche du CHU de Québec, Université Laval, Québec, QC G1V 4G2, Canada
| | - Peter Thériault
- Centre de recherche du CHU de Québec, Université Laval, Québec, QC G1V 4G2, Canada
| | - Arnaud Droit
- Department of Molecular Medicine, Université Laval, Québec, QC G1V 4G2, Canada; Centre de recherche du CHU de Québec, Université Laval, Québec, QC G1V 4G2, Canada
| | - Alexandre Brunet
- Department of Molecular Medicine, Université Laval, Québec, QC G1V 4G2, Canada; Centre de recherche du CHU de Québec, Université Laval, Québec, QC G1V 4G2, Canada
| | - Serge Rivest
- Department of Molecular Medicine, Université Laval, Québec, QC G1V 4G2, Canada; Centre de recherche du CHU de Québec, Université Laval, Québec, QC G1V 4G2, Canada
| | - Jean Gosselin
- Laboratory of Innate Immunology, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada; Department of Molecular Medicine, Université Laval, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
149
|
Mukwaya A, Lennikov A, Xeroudaki M, Mirabelli P, Lachota M, Jensen L, Peebo B, Lagali N. Time-dependent LXR/RXR pathway modulation characterizes capillary remodeling in inflammatory corneal neovascularization. Angiogenesis 2018; 21:395-413. [PMID: 29445990 PMCID: PMC5878196 DOI: 10.1007/s10456-018-9604-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/06/2018] [Indexed: 12/13/2022]
Abstract
Inflammation in the normally immune-privileged cornea can initiate a pathologic angiogenic response causing vision-threatening corneal neovascularization. Inflammatory pathways, however, are numerous, complex and are activated in a time-dependent manner. Effective resolution of inflammation and associated angiogenesis in the cornea requires knowledge of these pathways and their time dependence, which has, to date, remained largely unexplored. Here, using a model of endogenous resolution of inflammation-induced corneal angiogenesis, we investigate the time dependence of inflammatory genes in effecting capillary regression and the return of corneal transparency. Endogenous capillary regression was characterized by a progressive thinning and remodeling of angiogenic capillaries and inflammatory cell retreat in vivo in the rat cornea. By whole-genome longitudinal microarray analysis, early suppression of VEGF ligand-receptor signaling and inflammatory pathways preceded an unexpected later-phase preferential activation of LXR/RXR, PPARα/RXRα and STAT3 canonical pathways, with a concurrent attenuation of LPS/IL-1 inhibition of RXR function and Wnt/β-catenin signaling pathways. Potent downstream inflammatory cytokines such as Cxcl5, IL-1β, IL-6 and Ccl2 were concomitantly downregulated during the remodeling phase. Upstream regulators of the inflammatory pathways included Socs3, Sparc and ApoE. A complex and coordinated time-dependent interplay between pro- and anti-inflammatory signaling pathways highlights a potential anti-inflammatory role of LXR/RXR, PPARα/RXRα and STAT3 signaling pathways in resolving inflammatory corneal angiogenesis.
Collapse
Affiliation(s)
- Anthony Mukwaya
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden
| | - Anton Lennikov
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden
| | - Maria Xeroudaki
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden
| | - Pierfrancesco Mirabelli
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden
| | - Mieszko Lachota
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Lasse Jensen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Beatrice Peebo
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden
| | - Neil Lagali
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden.
| |
Collapse
|
150
|
Comi M, Amodio G, Gregori S. Interleukin-10-Producing DC-10 Is a Unique Tool to Promote Tolerance Via Antigen-Specific T Regulatory Type 1 Cells. Front Immunol 2018; 9:682. [PMID: 29686676 PMCID: PMC5900789 DOI: 10.3389/fimmu.2018.00682] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/20/2018] [Indexed: 01/09/2023] Open
Abstract
The prominent role of tolerogenic dendritic cells (tolDCs) in promoting immune tolerance and the development of efficient methods to generate clinical grade products allow the application of tolDCs as cell-based approach to dampen antigen (Ag)-specific T cell responses in autoimmunity and transplantation. Interleukin (IL)-10 potently modulates the differentiation and functions of myeloid cells. Our group contributed to the identification of IL-10 as key factor in inducing a subset of human tolDCs, named dendritic cell (DC)-10, endowed with the ability to spontaneously release IL-10 and induce Ag-specific T regulatory type 1 (Tr1) cells. We will provide an overview on the role of IL-10 in modulating myeloid cells and in promoting DC-10. Moreover, we will discuss the clinical application of DC-10 as inducers of Ag-specific Tr1 cells for tailoring Tr1-based cell therapy, and as cell product for promoting and restoring tolerance in T-cell-mediated diseases.
Collapse
Affiliation(s)
- Michela Comi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Giada Amodio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) San Raffaele Scientific Institute IRCCS, Milan, Italy
| |
Collapse
|